Science.gov

Sample records for high-power semiconductor lasers

  1. Advances in high power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyu; Zhong, Li

    2008-03-01

    High power semiconductor lasers have broad applications in the fields of military and industry. Recent advances in high power semiconductor lasers are reviewed mainly in two aspects: improvements of diode lasers performance and optimization of packaging architectures of diode laser bars. Factors which determine the performance of diode lasers, such as power conversion efficiency, temperature of operation, reliability, wavelength stabilization etc., result from a combination of new semiconductor materials, new diode structures, careful material processing of bars. The latest progress of today's high-power diode lasers at home and abroad is briefly discussed and typical data are presented. The packaging process is of decisive importance for the applicability of high-power diode laser bars, not only technically but also economically. The packaging techniques include the material choosing and the structure optimizing of heat-sinks, the bonding between the array and the heat-sink, the cooling and the fiber coupling, etc. The status of packaging techniques is stressed. There are basically three different diode package architectural options according to the integration grade. Since the package design is dominated by the cooling aspect, different effective cooling techniques are promoted by different package architectures and specific demands. The benefit and utility of each package are strongly dependent upon the fundamental optoelectronic properties of the individual diode laser bars. Factors which influence these properties are outlined and comparisons of packaging approaches for these materials are made. Modularity of package for special application requirements is an important developing tendency for high power diode lasers.

  2. High Power Continuous Wave Semiconductor Injection Laser

    DTIC Science & Technology

    1978-12-01

    hejunction rc~gion can be best accomplished in narro 7/,. laeswt width near 50 micrometers. Further optimization nnf FORM AWN2 AfI,~Jf~~’~ .* .~f’~W...high power CW operation. Trends in output powerwith varying laser length, width, reflectivity, and cavitythickness are presented graphically. LI ,N...J1 I H I I , THSI I ..... IU HIGH POWER CONTINUOUS WAVE ____________ SEMICONDUCTOR INJECTION LASER THESIS ’AIFIT/GEO/PH/78-.Z John1 C. Griffin, XIII

  3. High Power Mid Wave Infrared Semiconductor Lasers

    DTIC Science & Technology

    2006-06-15

    injected MWIR laser arrays using III-V antimonide based materials. In this approach, InGaSb quantum wells are grown on metamorphic layers on a GaSb or GaAs...also demonstrated room temperature photoluminescence up to 3 gm from InGaSb quantum wells grown on GaAs substrate. Using this approach we have...InAsSb/InAlAs quantum well lasers was reported with a To of 26K. Thus typically, the devices require thermoelectric or even cryogenic cooling to operate

  4. Reliability of high-power semiconductor laser arrays

    NASA Astrophysics Data System (ADS)

    Kung, Hsing H.; Craig, Richard R.; Zucker, Erik P.; Li, Benjamin; Scifres, Donald R.

    1992-10-01

    The reliability of continuously operating (cw) high power laser arrays is a critical factor for the acceptance of these devices in a wide range of applications. Extensive investigation into the reliability of semiconductor lasers has led to an improved understanding of failure mechanisms such as material defects, mirror damage and solder related failures as well as to methods which significantly suppress the occurrence of catastrophic failure. Furthermore, as a result of material quality improvements, laser arrays exhibit very low gradual degradation for high power operation up to 2 Watts cw. Long term lifetest data shows that the projected medium life at room temperature of such devices exceed 100,000 hours at 2 W cw.

  5. REVIEW High-power semiconductor separate-confinement double heterostructure lasers

    NASA Astrophysics Data System (ADS)

    Tarasov, I. S.

    2010-10-01

    The review is devoted to high-power semiconductor lasers. Historical reference is presented, physical and technological foundations are considered, and the concept of high-power semiconductor lasers is formulated. Fundamental and technological reasons limiting the optical power of a semiconductor laser are determined. The results of investigations of cw and pulsed high-power semiconductor lasers are presented. Main attention is paid to inspection of the results of experimental studies of single high-power semiconductor lasers. The review is mainly based on the data obtained in the laboratory of semiconductor luminescence and injection emitters at the A.F. Ioffe Physicotechnical Institute.

  6. Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers

    SciTech Connect

    Minaev, V P

    2005-11-30

    High-power semiconductor lasers and diode-pumped lasers are considered whose development qualitatively improved the characteristics of laser apparatus for surgery and force therapy, extended the scope of their applications in clinical practice, and enhanced the efficiency of medical treatment based on the use of these lasers. The characteristics of domestic apparatus are presented and their properties related to the laser emission wavelength used in them are discussed. Examples of modern medical technologies based on these lasers are considered. (invited paper)

  7. High-power semiconductor lasers at eye-safe wavelengths

    NASA Astrophysics Data System (ADS)

    Osowski, Mark L.; Gewirtz, Yossi; Lammert, Robert M.; Oh, Se W.; Panja, Chameli; Elarde, Victor C.; Vaissie, Laurent; Patel, Falgun D.; Ungar, Jeffrey E.

    2009-05-01

    InP based diode lasers are required to realize the next generation of eyesafe applications, including direct rangefinding and HEL weapons systems. We report on the progress of high power eyesafe single spatial and longitudinal mode 1550nm MOPA devices, where we have achieved peak powers in excess of 10W with 50ns pulse widths. A conceptual model based on our recent MOPA results show the path towards scaling to high powers based on spatial beam combination with operating conditions suitable for direct rangefinding applications. We also report on the progress towards high power 14xx and 15xx nm pump lasers for eyesafe HEL systems.

  8. High power semiconductor lasers for deep space communications

    NASA Technical Reports Server (NTRS)

    Katz, J.

    1981-01-01

    The parameters of semiconductor lasers pertaining to their application as optical emitters are discussed. Several methods to overcome their basic disadvantage, which is the low level of powers they emit, are reviewed. Most of these methods are based on a coherent power combining of several lasers.

  9. Spatial and Spectral Brightness Enhancement of High Power Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Leidner, Jordan Palmer

    The performance of high-power broad-area diode lasers is inhibited by beam filamentation induced by free-carrier-based self-focusing. The resulting beam degradation limits their usage in high-brightness, high-power applications such as pumping fiber lasers, and laser cutting, welding, or marking. Finite-difference propagation method simulations via RSoft's BeamPROP commercial simulation suite and a custom-built MATLAB code were used for the study and design of laser cavities that suppress or avoid filamentation. BeamPROP was used to design a tapered, passive, multi-mode interference cavity for the creation of a self-phase-locking laser array, which is comprised of many single-mode gain elements coupled to a wide output coupler to avoid damage from local high optical intensities. MATLAB simulations were used to study the effects of longitudinal and lateral cavity confinement on lateral beam quality in conventional broad-area lasers. This simulation was expanded to design a laser with lateral gain and index prescription that is predicted to operate at or above state-of-the-art powers while being efficiently coupled to conventional telecom single-mode optical fibers. Experimentally, a commercial broad-area laser was coupled in the far-field to a single-mode fiber Bragg grating to provide grating-stabilized single-mode laser feedback resulting in measured spectral narrowing for efficient pump absorption. Additionally a 19 GHz-span, spatially resolved, self-heterodyne measurement was made of a broad-area laser to study the evolution/devolution of the mode content of the emitted laser beam with increasing power levels.

  10. High power mode-locked semiconductor lasers and their applications

    NASA Astrophysics Data System (ADS)

    Lee, Shinwook

    In this dissertation, a novel semiconductor mode-locked oscillator which is an extension of eXtreme Chirped Pulse Amplification (XCPA) is investigated. An eXtreme Chirped Pulse Oscillator (XCPO) implemented with a Theta cavity also based on a semiconductor gain is presented for generating more than 30ns frequency-swept pulses with more than 100pJ of pulse energy and 3.6ps compressed pulses directly from the oscillator. The XCPO shows the two distinct characteristics which are the scalability of the output energy and the mode-locked spectrum with respect to repetition rate. The laser cavity design allows for low repetition rate operation <100MHz. The cavity significantly reduces nonlinear carrier dynamics, integrated self phase modulation (SPM), and fast gain recovery in a Semiconductor optical Amplifier (SOA). Secondly, a functional device, called a Grating Coupled Surface Emitting Laser (GCSEL) is investigated. For the first time, passive and hybrid mode-locking of a GCSEL is achieved by using saturable absorption in the passive section of GCSEL. To verify the present limitation of the GCSEL for passive and hybrid mode-locking, a dispersion matched cavity is explored. In addition, a Grating Coupled surface emitting Semiconductor Optical Amplifier (GCSOA) is also investigated to achieve high energy pulse. An energy extraction experiment for GCSOA using stretched pulses generated from the colliding pulse semiconductor mode-locked laser via a chirped fiber bragg grating, which exploits the XCPA advantages is also demonstrated. Finally, passive optical cavity amplification using an enhancement cavity is presented. In order to achieve the interferometric stability, the Hansch-Couillaud Method is employed to stabilize the passive optical cavity. The astigmatism-free optical cavity employing an acoustov optic modulator (AOM) is designed and demonstrated. In the passive optical cavity, a 7.2 of amplification factor is achieved with a 50 KHz dumping rate.

  11. The next generation of high-power semiconductor diode lasers

    NASA Astrophysics Data System (ADS)

    Botez, Dan; Yang, Jane J.

    Progress made in both high-power coherent arrays for space communications and high-power incoherent arrays for efficient pumping of solid-state (Nd-YAG) laser is reviewed. It is concluded that parallel coupling in a strong index-guided structure makes it possible to increase the performance of resonant-optical-waveguide (ROW) arrays by orders of magnitude higher than that of other array types. Preliminary results from ROW arrays show greater than 2,000 h operation at 0.5-W output with little increase in drive current. Edge-emitting POW arrays are likely to reach 2-3 W continuous-wave diffraction limited power. Monolithic solid-state pumps are likely to deliver optical flux densities in excess of 1 kW/sq cm.

  12. High-power semiconductor laser array packaged on microchannel cooler using gold-tin soldering technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Kang, Lijun; Zhang, Pu; Nie, Zhiqiang; Li, Xiaoning; Xiong, Lingling; Liu, Xingsheng

    2012-03-01

    High power semiconductor laser arrays have found increased applications in many fields. In this work, a hard soldering microchannel cooler (HSMCC) technology was developed for packaging high power diode laser array. Numerical simulations of the thermal behavior characteristics of hard solder and indium solder MCC-packaged diode lasers were conducted and analyzed. Based on the simulated results, a series of high power HSMCC packaged diode laser arrays were fabricated and characterized. The test and statistical results indicated that under the same output power the HSMCC packaged laser bar has lower smile and high reliability in comparison with the conventional copper MCC packaged laser bar using indium soldering technology.

  13. Tunable high-power blue external cavity semiconductor laser

    NASA Astrophysics Data System (ADS)

    Ding, Ding; Lv, Xueqin; Chen, Xinyi; Wang, Fei; Zhang, Jiangyong; Che, Kaijun

    2017-09-01

    A commercially available high-power GaN-based blue laser diode has been operated in a simple Littrow-type external cavity (EC). Two kinds of EC configurations with the grating lines perpendicular (A configuration) and parallel (B configuration) to the p-n junction are evaluated. Good performance has been demonstrated for the EC laser with B configuration due to the better mode selection effect induced by the narrow feedback wavelength range from the grating. Under an injection current of 1100 mA, the spectral linewidth is narrowed significantly down to ∼0.1 nm from ∼1 nm (the free-running width), with a good wavelength-locking behavior and a higher than 35 dB-amplified spontaneous emission suppression ratio. Moreover, a tuning bandwidth of 3.6 nm from 443.9 nm to 447.5 nm is realized with output power of 1.24 W and EC coupling efficiency of 80% at the central wavelength. The grating-coupled blue EC laser with narrow spectral linewidth, flexible wavelength tunability, and high output power shows potential applications in atom cooling and trapping, high-resolution spectroscopy, second harmonic generation, and high-capacity holographic data storage.

  14. High power semiconductor laser source for space applications

    NASA Astrophysics Data System (ADS)

    Goodwin, A. R.; Whiteaway, J. E. A.; Collar, A. J.

    1986-07-01

    Semiconductor laser sources for optical communication links between geostationary and low Earth orbiting satellites were investigated. Phase locked arrays of coupled stripes or related devices offer single mode operation at much lower optical and current density than other techniques. The highest powers are expected using GaAlAs, the best reliability using InGaAsP. Use of very thin highly doped p-InP buffer layers in planar growth, wide mesas, long cavities, and facet coating for DCPBH lasers are suggested. Continuous output power values up to 340 mW can be generated by unoptimized multimode InGaAsP lasers emitting at 1.3 microns. It should be possible to generate continuous power levels greater than 1000 mW by optimizing facet reflectivity and thermal impedance. The Y-coupled array is the most promising concept. The addition of flared output guides, and the positioning of the couplers close to the facet with the larger number of emitters, should improve performance.

  15. Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package

    DTIC Science & Technology

    2001-10-01

    Pumped (OP) type-II lasers The optically pumped laser devices were tested by pumping with 980 nm diode laser . Figure 29 shows the typical...Choi, and D. A. Coppeta "High-power diode - laser - pumped InAsSb/GaSb and GaInAsSb/GaSb lasers emitting from 3 to 4 µm" Appl. Phys. Lett. 64, 152 (1994...Arias, M. Zandian, R. R. Zucca, and Y.-Z. Liu "High-power diode - pumped mid-infrared semiconductor lasers ," Proc. SPIE 2382, 262

  16. High-power optically pumped semiconductor laser apllications

    NASA Astrophysics Data System (ADS)

    Morioka, S. Brandon

    2011-03-01

    OPS lasers have found applications in various industrial and scientific laser applications due to their power scaling capability, their wide range of emission wavelengths, physical size and their superior reliability. This paper provides an overview of commercially available OPS lasers and the applications in which they are used including biotechnology, medical, holography, Titanium-Sapphire laser pumping, non-lethal defense, forensics, and entertainment.

  17. Generation of high-power ultrashort optical pulses by semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Dudelev, V. V.; Zazulin, S. V.; Kolykhalova, E. D.; Losev, S. N.; Deryagin, A. G.; Kuchinskii, V. I.; Efanov, M. V.; Sokolovskii, G. S.

    2016-12-01

    Fiber-coupled semiconductor lasers have been studied when pumped by high-power short electrical pulses of 5 ns width and leading front duration below 1 ns. In this pumping regime, it is possible to ensure significant sharpening of output pulses, the duration of which decreases below 80 ps for a single-mode laser and below 120 ps for a broad aperture multimode laser at an output peak optical power as high as 1.5 and 27 W, respectively.

  18. High-power high-brightness semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Botez, D.

    2005-01-01

    Broad-stripe (greater than or equal to 100 microns) diode lasers have achieved CW powers as high as 15W, and wallplug efficiencies as high as 70%. For high coherent power photonic-crystal structures with modulated gain, that is active photonic crystals (APCs), of large index steps have been used, as early as 1988, for effective lateral-mode control range in large-aperture (100-200 microns) devices. Photonic-bandpass (PBP) structures relying on long-range resonant leaky-wave coupling, so called ROW arrays, have allowed stable, near-diffraction-limited beam operation to powers as high as 1.6W CW and 10W peak pulsed. Photonic-bandgap (PBG) structures with a built-in lattice defect, so called ARROW lasers, have provided up to 0.5W CW stable, single-mode power and hold the potential for 1W CW highly reliable single-mode operation. The solution for high-efficiency surface emission, from 2nd-order DFB/DBR lasers, in a single-lobe beam pattern was found in 2000. Single-lobe and single-mode operation in a diffraction-limited beam orthonormal to the chip surface was demonstrated, which opens the way for the realization of 2-D surface-emitting, 2nd-order APCs for the stable generation of watts of CW single-lobe, single-mode power from large 2-D apertures, as well as scalability of such devices at the wafer level.

  19. A study on the reliability of indium solder die bonding of high power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xingsheng; Davis, Ronald W.; Hughes, Lawrence C.; Rasmussen, Michael H.; Bhat, Rajaram; Zah, Chung-En; Stradling, Jim

    2006-07-01

    High power semiconductor lasers have found increased applications. Indium solder is one of the most widely used solders in high power laser die bonding. Indium solder has some advantages in laser die bonding. It also has some concerns, however, especially in terms of reliability. In this paper, the reliability of indium solder die bonding of high power broad area semiconductor lasers was studied. It was found that indium solder bonded lasers have much shorter lifetime than AuSn solder bonded devices. Catastrophic degradation was observed in indium solder bonded lasers. Nondestructive optical and acoustic microscopy was conducted during the lifetime testing to monitor the failure process and destructive failure analysis was performed after the lasers failed. It was found that the sudden failure was caused by electromigration of indium solder at the high testing current of up to 7A. It was shown that voids were created and gradually enlarged by indium solder electromigration, which caused local heating near the facets of the laser. The local heating induced catastrophic optical mirror damage (COMD) of the lasers. It was discussed that current crowding, localized high temperature, and large temperature gradient contributed to the fast indium solder electromigration. It was observed that some bright pattern structures appeared on the front facet of the indium solder bonded lasers after the devices failed and the bright patterns grew and spread upon further testing. Failure analysis showed that the bright pattern structure apparent on the front facet was due to crystallization of the TiOx material of the front facet coating as a result of overheating during lifetime testing. It was concluded that indium solder is not suitable for high power laser applications due to electromigration at high current densities and high temperatures.

  20. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power.

    PubMed

    Rudin, B; Wittwer, V J; Maas, D J H C; Hoffmann, M; Sieber, O D; Barbarin, Y; Golling, M; Südmeyer, T; Keller, U

    2010-12-20

    High-power ultrafast lasers are important for numerous industrial and scientific applications. Current multi-watt systems, however, are based on relatively complex laser concepts, for example using additional intracavity elements for pulse formation. Moving towards a higher level of integration would reduce complexity, packaging, and manufacturing cost, which are important requirements for mass production. Semiconductor lasers are well established for such applications, and optically-pumped vertical external cavity surface emitting lasers (VECSELs) are most promising for higher power applications, generating the highest power in fundamental transverse mode (>20 W) to date. Ultrashort pulses have been demonstrated using passive modelocking with a semiconductor saturable absorber mirror (SESAM), achieving for example 2.1-W average power, sub-100-fs pulse duration, and 50-GHz pulse repetition rate. Previously the integration of both the gain and absorber elements into a single wafer was demonstrated with the MIXSEL (modelocked integrated external-cavity surface emitting laser) but with limited average output power (<200 mW). We have demonstrated the power scaling concept of the MIXSEL using optimized quantum dot saturable absorbers in an antiresonant structure design combined with an improved thermal management by wafer removal and mounting of the 8-µm thick MIXSEL structure directly onto a CVD-diamond heat spreader. The simple straight cavity with only two components has generated 28-ps pulses at 2.5-GHz repetition rate and an average output power of 6.4 W, which is higher than for any other modelocked semiconductor laser.

  1. Characterization of a Low-phase-noise, High-power (370 mW), External-Cavity Semiconductor Laser

    DTIC Science & Technology

    2010-07-21

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5670--10-9272 Characterization of a Low- phase -noise, High-power (370 mW), External...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Characterization of a Low- phase -noise, High-power (370 mW), External-cavity Semiconductor Laser R.E...404-2077 Past research efforts have attempted to demonstrate semiconductor lasers with reduced levels of phase noise, approaching noise levels

  2. Lifetime of high-power GaAs photoconductive semiconductor switch triggered by laser of different power density

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Wei; Shen, Yi; Shi, Jinshui; Zhang, Linwen; Xia, Liansheng

    2015-02-01

    Conduction modes of GaAs photoconductive semiconductor switch (PCSS) and their conditions are expounded. Laser diode and high-power picosecond Nd:YAG lasers are used as triggers for nonlinear mode and quasi-linear mode respectively in high-power conduction experiment. GaAs PCSS`s failure mechanisms and factors influencing lifetime in both modes are analyzed. It is found that the power density of laser at trigger time determines in which mode GaAs PCSS operates. Low-power laser triggers a nonlinear mode conduction in which GaAs PCSS`s lifetime is only 103, while high-power laser triggers a quasi-linear mode conduction in which GaAs PCSS`s lifetime is up to 105. According to the findings, the compact high-power pulsed power system based on mass of GaAs PCSSs demands for miniature high-power laser generators.

  3. The main factors that affect coupling efficiency of high-power semiconductor laser array and selfoc lens array

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoping; Liu, Desen

    2008-03-01

    The coupling technique of high-power semiconductor laser array is an advancing key project. A high power density collimated beam, which facula is much smaller, can be get by coupling high-power laser array with selfoc lens array. At the same time, the coupling efficiency is higher. The factors which affect the coupling efficiency mainly include NA, diameter, length and end surface fabricating of selfoc lens and coupling technique. In this paper, an 1×19 linear laser array which maximum continuous output power is 22W is coupled with a corresponding selfoc lens array. The maximum coupling efficiency is 58.2%.

  4. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser.

    PubMed

    Laurain, A; Myara, M; Beaudoin, G; Sagnes, I; Garnache, A

    2009-06-08

    We demonstrate high power high efficiency (0:3 W) low noise single frequency operation of a compact extended-cavity surface-emitting-semiconductor-laser exhibiting a continuous tunability over 0:84 THz with high beam quality. We took advantage of thermal lens-based stability to develop a short (< 3 mm) plano-plano external cavity without any intracavity filter. The structure is optically pumped by a 1 W commercial 830 nm multimode diode laser. No heat management was required. We measured a low divergence circular TEM(00) beam at the diffraction limit (M(2) < 1:05) with a linear light polarization (> 37 dB). The side mode suppression ratio is 60 dB. The free running laser linewidth is 850 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting a low intensity noise, with a cutoff frequency approximately 250 MHz above which the shot noise level is reached. We show that pump properties define the cavity design and laser coherence.

  5. Reliability of single-mode and multi-mode high-power semiconductor lasers at eye-safe wavelengths

    NASA Astrophysics Data System (ADS)

    Stakelon, T.; Lucas, J.; Osowski, M.; Lammert, R.; Moon, S.; Panja, C.; Elarde, V.; Gallup, K.; Hu, W.; Ungar, J.

    2009-02-01

    High power semiconductor lasers with wavelengths in the eye-safer region have application to a variety of defense, medical and industrial applications. We report on the reliability of high power multimode and single mode InGaAsP/InP diode lasers with wavelengths in the range 1320 to 1550 nm in a variety of configurations, including single-chip, conduction-cooled arrays, arrays incorporating internal diffraction gratings, master-oscillator power amplifiers, and fiber-coupled modules of the above. In all cases we show very low rates of degradation in optical power and the absence of sudden failure from catastrophic optical damage or from laser-package interactions.

  6. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  7. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser.

    PubMed

    Mangold, Mario; Zaugg, Christian A; Link, Sandro M; Golling, Matthias; Tilma, Bauke W; Keller, Ursula

    2014-03-10

    The high-power semiconductor laser studied here is a modelocked integrated external-cavity surface emitting laser (MIXSEL), which combines the gain of vertical-external-cavity surface-emitting lasers (VECSELs) with the saturable absorber of a semiconductor saturable absorber mirror (SESAM) in a single semiconductor layer stack. The MIXSEL concept allows for stable and self-starting fundamental passive modelocking in a simple straight cavity and the average power scaling is based on the semiconductor disk laser concept. Previously record-high average output power from an optically pumped MIXSEL was demonstrated, however the long pulse duration of 17 ps prevented higher pulse repetition rates and many interesting applications such as supercontinuum generation and broadband frequency comb generation. With a novel MIXSEL structure, the first femtosecond operation was then demonstrated just recently. Here we show that such a MIXSEL can also support pulse repetition rate scaling from ≈5 GHz to >100 GHz with excellent beam quality and high average output power, by mechanically changing the cavity length of the linear straight cavity and the output coupler. Up to a pulse repetition rate of 15 GHz we obtained average output power >1 W and pulse durations <4 ps. Furthermore we have been able to demonstrate the highest pulse repetition rate from any fundamentally modelocked semiconductor disk laser with 101.2 GHz at an average output power of 127 mW and a pulse duration of 570 fs.

  8. High power laser dump

    NASA Astrophysics Data System (ADS)

    Hsu, M. S.; Hsu, J. P.

    1985-08-01

    A high power laser dump has defined laser beam introduction angles to the internal surface of a cylinder to maximize energy dispersion and absorption and, has two zones formed of distinctive reflective and absorbing materials.

  9. Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers.

    PubMed

    Holly, Carlo; Hengesbach, Stefan; Traub, Martin; Hoffmann, Dieter

    2013-07-01

    The simulation of spectral stabilization of broad-area edge-emitting semiconductor diode lasers is presented in this paper. In the reported model light-, temperature- and charge carrier-distributions are solved iteratively in frequency domain for transverse slices along the semiconductor heterostructure using wide-angle finite-difference beam propagation. Depending on the operating current the laser characteristics are evaluated numerically, including near- and far-field patterns of the astigmatic laser beam, optical output power and the emission spectra, with central wavelength and spectral width. The focus of the model lies on the prediction of influences on the spectrum and power characteristics by frequency selective feedback from external optical resonators. Results for the free running and the spectrally stabilized diode are presented.

  10. Numerical study of high-power semiconductor lasers for operation at sub-zero temperatures

    NASA Astrophysics Data System (ADS)

    Hasler, K. H.; Frevert, C.; Crump, P.; Erbert, G.; Wenzel, H.

    2017-04-01

    We present results on the impact of the Al-content in the waveguide structure on the electro-optical characteristics of 9xx nm, GaAs-based high-power lasers operated at room (300 K) and at sub-zero (200 K) heat sink temperatures. Experimentally a strong improvement of conversion efficiency and output power has been found if the lasers are cooled down. Numerical simulations using a software tool which solves the thermo-dynamic based drift-diffusion equations are able to reproduce the experimental findings. The reasons for the improved performance at lower temperatures are the enhancement of the modal gain and the reduced accumulation of electrons in the p-confinement layers resulting in a reduction of the leakage current. The latter allows the realization of lasers with a reduced Al content having a smaller series resistance and thus further enlarged conversion efficiency at sub-zero temperatures.

  11. Life prediction of 808nm high power semiconductor laser by accelerated life test of constant current stress

    NASA Astrophysics Data System (ADS)

    Yao, Nan; Li, Wei; Zhao, Yihao; Zhong, Li; Liu, Suping; Ma, Xiaoyu

    2015-10-01

    High power semiconductor laser is widely used because of its high transformation efficiency, good working stability, compact volume and simple driving requirements. Laser's lifetime is very long, but tests at high levels of stress can speed up the failure process and shorten the times to failure significantly. So accelerated life test is used here for forecasting the lifetime of 808nm CW GaAs/AlGaAs high power semiconductor laser that has an output power of 1W under 1.04A. Accelerated life test of constant current stress based on the Inverse Power Law Relationship was designed. Tests were conducted under 1.3A, 1.6A and 1.9A at room temperature. It is the first time that this method is used in the domestic research of laser's lifetime prediction. Applying Weibull Distribution to describe the lifetime distribution and analyzing the data of times to failure, characteristics lifetime's functional relationship model with current is achieved. Then the characteristics lifetime under normal current is extrapolated, which is 9473h. Besides, to confirm the validity of the functional relationship model, we conduct an additional accelerated life test under 1.75A. Based on this experimental data we calculated the characteristics lifetime corresponding to 1.75A that is 171h, while the extrapolated characteristics lifetime from the former functional relationship model is 162h. The two results shows 5% deviation that is very low and acceptable, which indicates that the test design is reasonable and authentic.

  12. High-order diffraction gratings for high-power semiconductor lasers

    SciTech Connect

    Vasil'eva, V. V.; Vinokurov, D. A.; Zolotarev, V. V.; Leshko, A. Yu.; Petrunov, A. N.; Pikhtin, N. A.; Rastegaeva, M. G.; Sokolova, Z. N. Shashkin, I. S.; Tarasov, I. S.

    2012-02-15

    A deep diffraction grating with a large period ({approx}2 {mu}m) within one of the cladding layers is proposed for the implementation of selective feedback in a semiconductor laser. Frequency dependences of reflectance in the 12th diffraction order for rectangular, triangular, and trapezoidal diffraction gratings are calculated. It is shown that the maximum reflectance of the waveguide mode is attained using a rectangular or trapezoidal grating {approx}2 {mu}m deep in the laser structure. Deep trapezoidal diffraction gratings with large periods are fabricated in the Al{sub 0.3}Ga{sub 0.7}As cladding layer of a GaAs/AlGaAs laser structure using photolithography and reactive ion etching.

  13. High-power single spatial mode AlGaAs channeled-substrate-planar semiconductor diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Carlin, D. B.; Ettenberg, M.

    1989-01-01

    A high power single spatial mode channeled substrate planar AlGaAs semiconductor diode laser was developed. The emission wavelength was optimized at 860 to 880 nm. The operating characteristics (power current, single spatial mode behavior, far field radiation patterns, and spectral behavior) and results of computer modeling studies on the performance of the laser are discussed. Reliability assessment at high output levels is included. Performance results on a new type of channeled substrate planar diode laser incorporating current blocking layers, grown by metalorganic chemical vapor deposition, to more effectively focus the operational current to the lasing region was demonstrated. The optoelectronic behavior and fabrication procedures for this new diode laser are discussed. The highlights include single spatial mode devices with up to 160 mW output at 8600 A, and quantum efficiencies of 70 percent (1 W/amp) with demonstrated operating lifetimes of 10,000 h at 50 mW.

  14. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  15. Far field and wavefront characterization of a high-power semiconductor laser for free space optical communications

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Saif, Babak N.

    1991-01-01

    The spatial pointing angle and far field beamwidth of a high-power semiconductor laser are characterized as a function of CW power and also as a function of temperature. The time-averaged spatial pointing angle and spatial lobe width were measured under intensity-modulated conditions. The measured pointing deviations are determined to be well within the pointing requirements of the NASA Laser Communications Transceiver (LCT) program. A computer-controlled Mach-Zehnder phase-shifter interferometer is used to characterize the wavefront quality of the laser. The rms phase error over the entire pupil was measured as a function of CW output power. Time-averaged measurements of the wavefront quality are also made under intensity-modulated conditions. The measured rms phase errors are determined to be well within the wavefront quality requirements of the LCT program.

  16. Toward realizing high power semiconductor terahertz laser sources at room temperature

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    2011-05-01

    The terahertz (THz) spectral range offers promising applications in science, industry, and military. THz penetration through nonconductors (fabrics, wood, plastic) enables a more efficient way of performing security checks (for example at airports), as illegal drugs and explosives could be detected. Being a non-ionizing radiation, THz radiation is environment-friendly enabling a safer analysis environment than conventional X-ray based techniques. However, the lack of a compact room temperature THz laser source greatly hinders mass deployment of THz systems in security check points and medical centers. In the past decade, tremendous development has been made in GaAs/AlGaAs based THz Quantum Cascade Laser (QCLs), with maximum operating temperatures close to 200 K (without magnetic field). However, higher temperature operation is severely limited by a small LO-phonon energy (~ 36 meV) in this material system. With a much larger LO-phonon energy of ~ 90 meV, III-Nitrides are promising candidates for room temperature THz lasers. However, realizing high quality material for GaN-based intersubband devices presents a significant challenge. Advances with this approach will be presented. Alternatively, recent demonstration of InP based mid-infrared QCLs with extremely high peak power of 120 W at room temperature opens up the possibility of producing high power THz emission with difference frequency generation through two mid-infrared wavelengths.

  17. Three-dimensional failure analysis of high power semiconductor laser diodes operated in vacuum

    NASA Astrophysics Data System (ADS)

    Yeoh, Terence S.; Chaney, John A.; Leung, Martin S.; Ives, Neil A.; Feinberg, Z. D.; Ho, James G.; Wen, Jianguo

    2007-12-01

    The damaged region of a semiconductor laser diode that failed in a vacuum environment was analyzed using focused ion beam (FIB) serial sectioning, time-of-flight secondary ion mass spectrometry (ToF-SIMS), high resolution transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), energy dispersive x-ray spectroscopy (EDS), and nanodiffraction. The FIB nanotomography models and the TEM cross sections show a damage structure extending deep into the core and originating at the diode/antireflective (AR) coating interface. Nanocrystalline gold was detected at this interface using both TEM diffraction and EDS, and the localization of gold along the core at the diode/AR interface was corroborated using 3D ToF-SIMS. A thinning of the AR coating above the failure site was observed by TEM with a corresponding increase in carbon content on the AR surface detected with EELS. It is suggested that failure proceeded by pyrolysis of adsorbed hydrocarbons on the AR coating, which, in the presence of a high optical flux, contributed to carbothermal reduction of the AR coating. As the optical flux increased, thermal gradients facilitate metal migration, leading to larger gold clusters. These clusters are sites for deep level traps and may promote catalytic reactions.

  18. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier.

    PubMed

    Chi, Mingjun; Jensen, Ole Bjarlin; Holm, Jesper; Pedersen, Christian; Andersen, Peter Eskil; Erbert, Götz; Sumpf, Bernd; Petersen, Paul Michael

    2005-12-26

    A high-power narrow-linewidth laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The external cavity laser system uses a new tapered amplifier with a super-large optical-cavity (SLOC) design that leads to improved performance of the external cavity diode lasers. The laser system is tunable over a 29 nm range centered at 802 nm. As high as 1.95 W output power is obtained at 803.84 nm, and an output power above 1.5 W is achieved from 793 to 812 nm at operating current of 3.0 A. The emission linewidth is below 0.004 nm and the beam quality factor M2 is below 1.3 over the 29 nm tunable range. As an example of application, the laser system is used as a pump source for the generation of 405 nm blue light by single-pass frequency doubling in a periodically poled KTiOPO4. An output power of 24 mW at 405 nm, corresponding to a conversion efficiency of 0.83%/W is attained.

  19. Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers.

    PubMed

    Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C

    2013-04-08

    In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.

  20. Simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm

    SciTech Connect

    Gorlachuk, P V; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Simakov, V A; Chernov, R V

    2014-02-28

    We report the simulation of power – current characteristics of high-power semiconductor lasers emitting in the range 1.5 – 1.55 μm. A technique is described which allows one to determine the thermal resistance and characteristic temperatures of a laser diode. The radiative and nonradiative carrier recombination rates are evaluated. Simulation results are shown to agree well with experimental data. (lasers)

  1. Nonlinear optical compression of high-power 10-μm CO2 laser pulses in gases and semiconductors

    NASA Astrophysics Data System (ADS)

    Pigeon, Jeremy; Tochitsky, Sergei; Joshi, Chan

    2017-03-01

    We review a series of experiments on nonlinear optical compression of high-power, picosecond, 10-µm CO2 laser pulses. Presented schemes include self-phase modulation in a Xe-filled hollow glass waveguide, self-phase modulation in GaAs followed by compression, and multiple four-wave mixing compression of a laser beat-wave in GaAs. The novel nonlinear optics and technical challenges uncovered through these experiments are discussed.

  2. High-power 880-nm diode-directly-pumped passively mode-locked Nd:YVO₄ laser at 1342 nm with a semiconductor saturable absorber mirror.

    PubMed

    Li, Fang-Qin; Liu, Ke; Han, Lin; Zong, Nan; Bo, Yong; Zhang, Jing-Yuan; Peng, Qin-Jun; Cui, Da-Fu; Xu, Zu-Yan

    2011-04-15

    A high-power 880-nm diode-directly-pumped passively mode-locked 1342 nm Nd:YVO₄ laser was demonstrated with a semiconductor saturable absorber mirror (SESAM). The laser mode radii in the laser crystal and on the SESAM were optimized carefully using the ABCD matrix formalism. An average output power of 2.3 W was obtained with a repetition rate of 76 MHz and a pulse width of 29.2 ps under an absorbed pump power of 12.1 W, corresponding to an optical-optical efficiency of 19.0% and a slope efficiency of 23.9%, respectively.

  3. High power solid state lasers

    SciTech Connect

    Weber, H.

    1988-01-01

    These proceedings discuss the following subjects: trends in materials processing with laser radiation; slabs and high power systems; glasses and new crystals; solid state lasers at HOYA Corp.; lamps, resonators and transmission; glasses as active materials for high average power solid state lasers; flashlamp pumped GGG-crystals; alexandrite lasers; designing telescope resonators; mode operation of neodymium: YAG lasers; intracavity frequency doubling with KTP crystal and thermal effects in cylinder lasers.

  4. High-power pulsed lasers

    SciTech Connect

    Holzrichter, J.F.

    1980-04-02

    The ideas that led to the successful construction and operation of large multibeam fusion lasers at the Lawrence Livermore Laboratory are reviewed. These lasers are based on the use of Nd:glass laser materials. However, most of the concepts are applicable to any laser being designed for fusion experimentation. This report is a summary of lectures given by the author at the 20th Scottish University Summer School in Physics, on Laser Plasma Interaction. This report includes basic concepts of the laser plasma system, a discussion of lasers that are useful for short-pulse, high-power operation, laser design constraints, optical diagnostics, and system organization.

  5. Theory of direct and indirect effect of two-photon absorption on nonlinear optical losses in high power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Avrutin, E. A.; Ryvkin, B. S.

    2017-01-01

    The effect of the transverse laser structure on two-photon absorption (TPA) related effects in high-power diode lasers is analysed theoretically. The direct effect of TPA is found to depend significantly on the transverse waveguide structure, and predicted to be weaker in broad and asymmetric waveguide designs. The indirect effect of TPA, via carrier generation in the waveguide and free-carrier absorption, is analysed for the case of a symmetric laser waveguide and shown to be strongly dependent on the active layer position. With the active layer near the mode peak, the indirect effect is weaker than the direct effect due to the population of TPA-created carriers being efficiently depleted by their diffusion and capture into the active layer, whereas for the active layer position strongly shifted towards the p-cladding, the indirect effect can become the dominant power limitation at very high currents. It is shown that for optimizing a laser design for pulsed high power operation, both TPA related effects and the inhomogeneous carrier accumulation in the waveguide caused by diffusive current need to be taken into account.

  6. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    SciTech Connect

    Podoskin, A. A. Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S.

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  7. High power DUV lasers for material processing

    NASA Astrophysics Data System (ADS)

    Mimura, Toshio; Kakizaki, Kouji; Oizumi, Hiroaki; Kobayashi, Masakazu; Fujimoto, Junichi; Matsunaga, Takashi; Mizoguchi, Hakaru

    2016-11-01

    A frontier in laser machining has been required by material processing in DUV region because it is hard to get high power solid-state lasers in this spectral region. DUV excimer lasers are the only solution, and now the time has come to examine the new applications of material processing with DUV excimer lasers. The excimer lasers at 193nm and 248nm have been used in the semiconductor manufacturing for long years, and have field-proven stability and reliability. The high photon energy of 6.4 eV at 193nm is expected to interact directly with the chemical bond of hard-machining materials, such as CFRP, diamond and tempered glasses. We report the latest results of material processing by 193nm high power DUV laser.

  8. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Behavior of gain-guided lasers generating high-power nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Erbert, G.

    1988-11-01

    Computer-controlled apparatus was used in an investigation of gain-guided narrow-stripe AlGaAs double heterostructure lasers. These lasers were excited with current pulses of 10 ns duration and amplitudes up to 3 A. The watt-ampere characteristics together with near- and far-field radiation patterns were considered using an analytic model of the lasers. The results showed that the values of the gain under a stripe contact or of the absorption outside this region varied with the output power.

  9. High Power Fiber Lasers

    DTIC Science & Technology

    2012-08-02

    was measured using a Fabry Perot interferometer. Resonance wavelength output varied from 1975 to 1989 nm with an average value of 1983 nm while...wavefront sensor ,” Directed Energy Professional Society (DEPS) Solid State Diode Laser Technology Review (SSDLTR) 2011. 45. R.A. Sims, P. Kadwani, C.C.C...for all fiber diameters, pressure driven coating system using pressures from 0.8 to 1.0 bar with coating head die sizes; 375 m (entrance die) with

  10. Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Okumura, Ken; Nakasuji, Kaori; Suga, Tadatomo

    2015-03-01

    Thermal management of high-power semiconductor lasers is of great importance since the output power and beam quality are affected by the temperature rise of the gain region. Thermal simulations of a vertical-external-cavity surface-emitting laser by a finite-element method showed that the solder layer between the semiconductor thin film consisting of the gain region and a heat sink has a strong influence on the thermal resistance and direct bonding is preferred to achieve effective heat dissipation. To realize thin-film semiconductor lasers directly bonded on a high-thermal-conductivity substrate, surface-activated bonding using an argon fast atom beam was applied to the bonding of gallium arsenide (GaAs) and silicon carbide (SiC) wafers. The GaAs/SiC structure was demonstrated in the wafer scale (2 in. in diameter) at room temperature. The cross-sectional transmission electron microscopy observations showed that void-free bonding interfaces were achieved.

  11. High power gas laser amplifier

    DOEpatents

    Leland, Wallace T.; Stratton, Thomas F.

    1981-01-01

    A high power output CO.sub.2 gas laser amplifier having a number of sections, each comprising a plurality of annular pumping chambers spaced around the circumference of a vacuum chamber containing a cold cathode, gridded electron gun. The electron beam from the electron gun ionizes the gas lasing medium in the sections. An input laser beam is split into a plurality of annular beams, each passing through the sections comprising one pumping chamber.

  12. Optics assembly for high power laser tools

    DOEpatents

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  13. Transmission electron microscopy characterization of Au/Pt/Ti/Pt/GaAs ohmic contacts for high power GaAs/InGaAs semiconductor lasers.

    PubMed

    Łaszcz, A; Czerwinski, A; Ratajczak, J; Szerling, A; Phillipp, F; Van Aken, P A; Katcki, J

    2010-03-01

    We report on transmission electron microscopy studies of Au/Pt/Ti/Pt(10-30 nm) contact structures for high power GaAs/InGaAs semiconductor lasers. The studies showed that annealing at 450 degrees C of contact structures causes the reaction of whole Pt with substrate components (Ga and As) and the formation of Pt-GaAs interlayers with smooth interfaces as required for such structures. Annealing of the structures at 470 and 490 degrees C unfavourably affects the contact structure. At this condition, the strong downward diffusion of Au and Pt from the top layers causes a formation of Au-Pt pits, which break the Ti barrier. Transmission electron microscopy observation revealed that Au/Pt/Ti/Pt(10-30 nm) system annealed at 450 degrees C is appropriate for practical applications. The EDS technique used to identify the phase composition in the Pt(30 nm)/GaAs structure (specially produced for the EDS analysis) annealed at 450 degrees C showed that two layers were formed as a result of the reaction of the whole Pt layer with GaAs, and they consist of Ga, Pt and As. The top layer has the highest concentration of Ga. However, the bottom layer, which is close to the substrate, has the highest concentration of As.

  14. High power laser perforating tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-04-22

    ystems devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser perforation of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to perforate such boreholes.

  15. High power, high reliability laser diodes

    NASA Astrophysics Data System (ADS)

    Scifres, D. R.; Welch, D. F.; Craig, R. R.; Zucker, E.; Major, J. S.; Harnagel, G. L.; Sakamoto, M.; Haden, J. M.; Endriz, J. G.; Kung, H.

    1992-06-01

    Results are presented on catastrophic damage limits and life-test measurements for four types of high-power laser diodes operating at wavelengths between 980 nm and 690 nm. The laser diodes under consideration are CW multimode lasers, CW laser bars, quasi-CW bars/2D stacked arrays, and single transverse mode lasers.

  16. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  17. Continuous high-power gas lasers

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1979-01-01

    High power gas laser concepts are discussed with emphasis on the role that fluid mechanics has played in their development. Consideration is given to three types of systems: gasdynamic lasers, HF supersonic diffusion lasers, and electric discharge lasers. Flow effects and aerodynamic windows in such lasers are briefly described. Future directions of research are outlined.

  18. High power laser apparatus and system

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1975-01-01

    A high-power, continuous-wave laser was designed for use in power transmission and energy-collecting systems, and for producing incoherent light for pumping a laser material. The laser has a high repetitive pulsing rate per unit time, resulting in a high-power density beam. The laser is composed of xenon flash tubes powered by fast-charging capacitors flashed in succession by a high-speed motor connected to an automobile-type distributor.

  19. Scalable high-power optically pumped GaAs laser

    NASA Astrophysics Data System (ADS)

    Le, H. Q.; di Cecca, S.; Mooradian, A.

    1991-05-01

    The use of disk geometry, optically pumped semiconductor gain elements for high-power scalability and good transverse mode quality has been studied. A room-temperature TEM00 transverse mode, external-cavity GaAs disk laser has been demonstrated with 500 W peak-power output and 40-percent slope efficiency, when pumped by a Ti:Al2O3 laser. The conditions for diode laser pumping are shown to be consistent with available power level.

  20. Fabrication and optimization of 1.55-μm InGaAsP/InP high-power semiconductor diode laser

    NASA Astrophysics Data System (ADS)

    Qing, Ke; Shaoyang, Tan; Songtao, Liu; Dan, Lu; Ruikang, Zhang; Wei, Wang; Chen, Ji

    2015-09-01

    A comprehensive design optimization of 1.55-μm high power InGaAsP/InP board area lasers is performed aiming at increasing the internal quantum efficiency (ηi) while maintaining the low internal loss (αi) of the device, thereby achieving high power operation. Four different waveguide structures of broad area lasers were fabricated and characterized in depth. Through theoretical analysis and experiment verifications, we show that laser structures with stepped waveguide and thin upper separate confinement layer will result in high ηi and overall slope efficiency. A continuous wave (CW) single side output power of 160 mW was obtained for an uncoated laser with a 50-μm active area width and 1 mm cavity length. Project supported by the National Natural Science Foundation of China (Nos. 61274046, 61201103) and the National High Technology Research and Development Program of China (No. 2013AA014202).

  1. High power ultrashort pulse lasers

    SciTech Connect

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  2. Ceramics for High Power Lasers

    DTIC Science & Technology

    2011-12-01

    easily extracted by a TEM00 . The figure below shows the relevant geometry. For standard edge- pumped lasers , a gain medium with a uniform doping... Pump laser @808nm HR Planar Mirror HR mirror ROC 20cm Gain Medium Attenuator Photo- Diode 20cm Fig. 30 Schematic of the laser set-up with a...application for doping profiles is to simplify edge pumping of slab lasers by clustering more dopant in the center of the gain medium where it can be

  3. Supplemental Task-High Power Lasers

    DTIC Science & Technology

    2011-12-20

    first task involved the growth and characterization of 1040 nm vertical external cavity surface emitting lasers ( VECSELs ). These devices have been... VECSEL research at CHTM. Vertical external cavity surface emitting lasers, crystal growth, semiconductor laser epi-structure design, quantum wells...involved the growth and characterization of 1040 nm vertical external cavity surface emitting lasers ( VECSELs ). These devices have been grown by MOCVD

  4. High power laser diodes for the NASA direct detection laser transceiver experiment

    NASA Technical Reports Server (NTRS)

    Seery, Bernard D.; Holcomb, Terry L.

    1988-01-01

    High-power semiconductor laser diodes selected for use in the NASA space laser communications experiments are discussed. The diode selection rationale is reviewed, and the laser structure is shown. The theory and design of the third mirror lasers used in the experiments are addressed.

  5. High-power, fundamental transverse mode laser

    SciTech Connect

    Dental, A.G.; Eisenstein, G.; Marcatili, E.A.J.; Tucker, R.S.

    1988-11-22

    This patent describes an optical source comprising: first and second reflectors separated from and opposite to each other for forming a single resonant optical cavity, a semiconductor gain medium having a major surface including a stripe contact extending longitudinally and transversely along the major surface for defining a large optical cavity in a volume of the gain medium thereunder, the semiconductor gain medium for generating a high-power optical signal by spontaneous emission, a single-mode optical fiber coupled to the semiconductor gain medium responsive to the high-power optical signal for causing a fundamental transverse mode optical signal to be amplified by the gain medium, the semiconductor gain medium and the single-mode optical fiber being disposed within the single resonant optical cavity formed by the reflectors, the optical source for producing stimulated coherent radiation in a fundamental transverse mode.

  6. Ceramics for High Power Lasers

    DTIC Science & Technology

    2013-07-01

    ICP-MS) on 25 elements ranging from transition metals , rare earths, alkali , alkaline earths and silicon on a set of selected YAG ceramics and...component to UCF, this work has been delayed. Laser Properties The laser performance of the Nd:YAG sample Z-714 was tested in a simple planar...entering the amplifier with anomalous GVD. The end of the 11-m Tm-doped fiber amplifier was angle-cleaved to reduce the reflection. 26 Fiber

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  8. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  9. High Power Free Electron Lasers

    SciTech Connect

    George Neil

    2004-04-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. The characteristics that have driven the development of these sources are the desire for high peak and average power, high pulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. User programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few. Recently the incorporation of energy recovery systems has permitted extension of the average power capabilities to the kW level and beyond. Development of substantially higher power systems with applications in defense and security is believed feasible with modest R&D efforts applied to a few technology areas. This paper will discuss at a summary level the physics of such devices, survey existing and planned facilities, and touch on the applications that have driven the development of these popular light sources.

  10. High power diode lasers reliability experiment

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Xie, Shaofeng; Hao, Mingming; Huang, Yun; En, Yunfei

    2013-12-01

    In order to evaluate and obtain the actual lifetime data of high power laser diodes, an automated high power laser diodes reliability experiment was developed and reported in this paper. This computer controlled setup operates the laser diodes 24 hours a day, the parameters such as output power, wavelength were test once in one hour. The experiment has 60 work stations, the temperature control range is from 25°C to 70°C, and the output power of the aging device is beyond 20W.

  11. High power regenerative laser amplifier

    DOEpatents

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  12. High power regenerative laser amplifier

    DOEpatents

    Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.

    1994-01-01

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.

  13. High power phase locked laser oscillators

    NASA Technical Reports Server (NTRS)

    Hayes, C. L.; Telk, C. L.; Soohoo, J.; Davis, W. C.

    1979-01-01

    The feasibility of mechanizing an adaptive array of independent laser oscillators for generation of a high power coherent output was experimentally investigated. Tests were structured to evaluate component/system requirements for delivery of energy to a low-earth orbit satellite. Initial experiments addressed the control issues of phase locking unstable resonators at low power levels. A successful phase lock demonstration formed the basis for the design and fabrication of the high power, water-cooled, control mirror subsequently installed in the NASA LeRC high power laser. Tests were performed to characterize the operational limits of the laser system and included quantitative assessment of the frequency stability, noise sources, and optical properties of the beam.

  14. Finite-Element Simulation for Electrothermal Characterization of High-Power Diode Laser Bars

    DTIC Science & Technology

    2010-03-31

    New York, 2000. [5] J.S. Blakemore . Semiconductor Statistics . Dover Publications, Inc., Mineola, New York, 2002. [6] SR Chinn, PS Zory, and AR Reisinger...Simulation of semiconductor diode laser performance involves interaction between multiple physics domains. This report presents the governing equations and...diode laser, semiconductor laser, simulation, high-power diode laser, finite-element simulation Weston T. Hobdy, Jordan M. Berg, Darryl James, Ayrton

  15. Generation of high-power laser light with Gigahertz splitting.

    PubMed

    Unks, B E; Proite, N A; Yavuz, D D

    2007-08-01

    We demonstrate the generation of two high-power laser beams whose frequencies are separated by the ground state hyperfine transition frequency in (87)Rb. The system uses a single master diode laser appropriately shifted by high frequency acousto-optic modulators and amplified by semiconductor tapered amplifiers. This produces two 1 W laser beams with a frequency spacing of 6.834 GHz and a relative frequency stability of 1 Hz. We discuss possible applications of this apparatus, including electromagnetically induced transparency-like effects and ultrafast qubit rotations.

  16. Lifetest on a high-power laser diode array transmitter

    NASA Astrophysics Data System (ADS)

    Greulich, P.; Hespeler, B.; Spatscheck, Th.

    1991-05-01

    The optical transmiter component of a free space optical communication system is critical, in that it impacts on the mechanical configuration, power requirements, mass, reliability, and transmission bit-rate of the entire system. Attention is presently given to the transmitter output power and beam quality, as well as its electrical-to-optical power conversion efficiency, in view of state-of-the-art high power transmitters for intensity modulation/direct detection and semiconductor laser transmitter systems.

  17. High-Power Diode Laser Technology and Characteristics

    NASA Astrophysics Data System (ADS)

    Behringer, Martin

    Laser operation relies on two conditions, stimulated emission of the amplifying medium and feedback by an optical resonator. The threshold of laser operation is obtained if the gain in the resonator compensates for the overall losses, i.e., the propagation losses and the apparent losses due to the extraction of light [2.1]. Both common laser conditions are satisfied in diode lasers in another way than in typical gas or solid-state lasers. The resonator is given by the semiconductor structure itself using the crystal facets as mirrors. The gain in diode lasers involves a whole crystal structure and not only excited single atoms, ions, or molecules. Modern semiconductor lasers restrict the excited volume to reduce the threshold current by applying quantum wells or quantum dots. Technically, this is achieved by growing very thin layers consisting of different crystal compositions for quantum wells or by applying two-dimensional growth for quantum dots. A scheme of a diode laser is shown in Fig. 2.1. The following chapter takes a short tour through the excitation of high-power semiconductor lasers by examining the current injection of carriers, the optical gain, and appropriate resonator structures. More detailed descriptions of several aspects can be found in several textbooks [2.2, 2.3].

  18. Early history of high-power lasers

    NASA Astrophysics Data System (ADS)

    Sutton, George W.

    2002-02-01

    This paper gives the history of the invention and development of early high power lasers, to which the author contributed and had personal knowledge. The earliest hint that a high power laser could be built came from the electric CO2-N2-He laser of Javan. It happened that the director of the Avco-Everett Research Laboratory had written his Ph.D. dissertation on the deactivation of the vibrational excitation of N2 in an expanding flow under Edward Teller, then at Columbia Univ. The director then started an in-house project to determine if gain could be achieved in a mixture similar to Javan's by means of a shock tunnel where a shock heated mixture of N2, CO2, and He gas was expanded through a supersonic nozzle into a cavity. This concept was named by the author as the gasdynamic laser (GDL). The paper traces the history of the initial gain measurements, the Mark II laser, the RASTA laser, the Tri-Service laser, its troubles and solutions, the United Technology's XLD gasdynamic laser, and their ALL laser. The history of the coastal Crusader will also be mentioned. Also discussed are the early experiments on a combustion-driven chemical laser, and its subsequent rejection by the director.

  19. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  20. Scaling blackbody laser to high powers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1985-01-01

    Lasers pumped by solar heated blackbody cavities have potential for multimegawatt power beaming in space. There are two basic types of blackbody lasers; cavity pumped and transfer system. The transfer system is judged to be more readily scalable to high power. In this system, either N2 or CO is heated by the blackbody cavity then transferred into the laser cavity where CO2 is injected. The N2-CO2 system was demonstrated, but probably has lower efficiency than the CO-CO system. The characteristics of potential transfer laser systems are outlined.

  1. Deformable mirror for high power laser applications

    NASA Astrophysics Data System (ADS)

    Mrň; a, Libor; Sarbort, Martin; Hola, Miroslava

    2015-01-01

    The modern trend in high power laser applications such as welding, cutting and surface hardening lies in the use of solid-state lasers. The output beam of these lasers is characterized by a Gaussian intensity distribution. However, the laser beams with different intensity distributions, e.g. top-hat, are preferable in various applications. In this paper we present a new type of deformable mirror suitable for the corresponding laser beam shaping. The deformation of the mirror is achieved by an underlying array of actuators and a pressurized coolant that also provides the necessary cooling. We describe the results of the surface shape measurement using a 3D scanner for different settings of actuators. Further, we show the achieved intensity distributions measured by a beam profiler for a low power laser beam reflected from the mirror.

  2. The future of high power laser techniques

    NASA Astrophysics Data System (ADS)

    Poprawe, Reinhart; Loosen, Peter; Hoffmann, Hans-Dieter

    2007-05-01

    High Power Lasers have been used for years in corresponding applications. Constantly new areas and new processes have been demonstrated, developed and transferred to fruitful use in industry. With the advent of diode pumped solid state lasers in the multi-kW-power regime at beam qualities not far away from the diffraction limit, a new area of applicability has opened. In welding applications speeds could be increased and systems could be developed with higher efficiently leading also to new perspectives for increased productivity, e.g. in combined processing. Quality control is increasingly demanded by the applying industries, however applications still are rare. Higher resolution of coaxial process control systems in time and space combined with new strategies in signal processing could give rise to new applications. The general approach described in this paper emphasizes the fact, that laser applications can be developed more efficiently, more precisely and with higher quality, if the laser radiation is tailored properly to the corresponding application. In applying laser sources, the parameter ranges applicable are by far wider and more flexible compared to heat, mechanical or even electrical energy. The time frame ranges from several fs to continuous wave and this spans approximately 15 orders of magnitude. Spacewise, the foci range from several µm to cm and the resulting intensities suitable for materials processing span eight orders of magnitude from 10 3 to 10 11 W/cm2. In addition to space (power, intensity) and time (pulse) the wavelength can be chosen as a further parameter of optimization. As a consequence, the resulting new applications are vast and can be utilized in almost every market segment of our global economy (Fig. 1). In the past and only partly today, however, this flexibility of laser technology is not exploited in full in materials processing, basically because in the high power regime the lasers with tailored beam properties are not

  3. High power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Holzer, Marco

    2011-02-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With well over 1000 high power disk lasers installations, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain important details of the TruDisk laser series and process relevant features of the system, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  4. High-power laser applications in Nippon Steel Corporation

    NASA Astrophysics Data System (ADS)

    Minamida, Katsuhiro

    2000-02-01

    The laser, which was invented in 1960, has been developed using various substances of solids, liquids, gases and semiconductors as laser active media. Applications of laser utilizing the coherent properties of laser light and the high power density light abound in many industries and in heavy industries respectively. The full-scale use of lasers in the steel industry began nearly 23 years ago with their applications as controllable light sources. Its contribution to the increase in efficiency and quality of the steel making process has been important and brought us the saving of the energy, the resource and the labor. Laser applications in the steel making process generally require high input energy, so it is essential to consider the interaction between the laser beam and the irradiated material. In particular, the reflectivity of the laser beam on the surface of material and the quantity of the laser-induced plasma are critical parameters for high efficient processes with low energy losses. We have developed plenty of new laser systems for the steel making process with their considerations in mind. A review of the following high-power-laser applications is given in the present paper: (1) Use of plasma as a secondary heat source in CO2 laser welding for connecting steel sheets of various grades. (2) Laser-assisted electric resistance welding of pipes. (3) New type all-laser-welded honeycomb panels for high-speed transport. (4) Laser flying welder for continuous hot rolling mill using two 45 kW CO2 lasers.

  5. Catastrophic Optical Damage in High-Power, Broad-Area Laser Diodes

    NASA Astrophysics Data System (ADS)

    Chin, Aland K.; Bertaska, Rick K.

    Catastrophic optical damage (COD) is semiconductor material within the optical cavity of laser diodes that is thermally damaged by the laser light. COD results in the failure of laser diodes. The phenomena of COD in high-power, broad-area laser diodes are described along with methods to eliminate it.

  6. High-power picosecond laser pulse recirculation.

    PubMed

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P J

    2010-07-01

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high-power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering-based light sources. We demonstrate up to 40x average power enhancement of frequency-doubled submillijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  7. High Power Picosecond Laser Pulse Recirculation

    SciTech Connect

    Shverdin, M Y; Jovanovic, I; Semenov, V A; Betts, S M; Brown, C; Gibson, D J; Shuttlesworth, R M; Hartemann, F V; Siders, C W; Barty, C P

    2010-04-12

    We demonstrate a nonlinear crystal-based short pulse recirculation cavity for trapping the second harmonic of an incident high power laser pulse. This scheme aims to increase the efficiency and flux of Compton-scattering based light sources. We demonstrate up to 36x average power enhancement of frequency doubled sub-millijoule picosecond pulses, and 17x average power enhancement of 177 mJ, 10 ps, 10 Hz pulses.

  8. High power laser with focusing mirror sets

    SciTech Connect

    Hobart, J.L.; Sasnett, M.W.; Mefferd, W.S.; Allen, P.N.

    1991-06-11

    This patent describes a laser system producing a high power laser beam which propogates along a path. It comprises an optical resonator cavity enclosing a lasing medium through which the laser beam propagates along a first portion of the path within the optical resonator cavity; wherein the laser beam emerges from the cavity and propogates along a second portion of the path outside the cavity; and a first mirror set positioned along the first portion of the path within the cavity, the first set having effective focal length providing sufficient focal power to compensate for distributed thermally-induced lensing in the lasing medium and to maintain substantially constant laser beam diameter along a region of the path adjacent the first set, wherein each mirror in the first set is shaped and oriented so that the first set is substantially astigmatism- free, wherein the first set includes a spherical mirror and a cylindrical mirror, and wherein the spherical mirror has a radius of curvature equal to R and the cylindrical mirror has a radius of curvature substantially equal to R, and the first set has an effective focal length substantially equal to f = {radical}2R/4.

  9. Modulation instability in high power laser amplifiers.

    PubMed

    Rubenchik, Alexander M; Turitsyn, Sergey K; Fedoruk, Michail P

    2010-01-18

    The modulation instability (MI) is one of the main factors responsible for the degradation of beam quality in high-power laser systems. The so-called B-integral restriction is commonly used as the criteria for MI control in passive optics devices. For amplifiers the adiabatic model, assuming locally the Bespalov-Talanov expression for MI growth, is commonly used to estimate the destructive impact of the instability. We present here the exact solution of MI development in amplifiers. We determine the parameters which control the effect of MI in amplifiers and calculate the MI growth rate as a function of those parameters. The safety range of operational parameters is presented. The results of the exact calculations are compared with the adiabatic model, and the range of validity of the latest is determined. We demonstrate that for practical situations the adiabatic approximation noticeably overestimates MI. The additional margin of laser system design is quantified.

  10. High power coherent polarization locked laser diode.

    PubMed

    Purnawirman; Phua, P B

    2011-03-14

    We have coherently combined a broad area laser diode array to obtain high power single-lobed output by using coherent polarization locking. The single-lobed coherent beam is achieved by spatially combining four diode emitters using walk-off crystals and waveplates while their phases are passively locked via polarization discrimination. While our previous work focused on coherent polarization locking of diode in Gaussian beams, we demonstrate in this paper, the feasibility of the same polarization discrimination for locking multimode beams from broad area diode lasers. The resonator is designed to mitigate the loss from smile effect by using retro-reflection feedback in the cavity. In a 980 nm diode array, we produced 7.2 W coherent output with M2 of 1.5x11.5. The brightness of the diode is improved by more than an order of magnitude.

  11. Gain switching in high power lasers

    NASA Astrophysics Data System (ADS)

    Druehl, K.; Scully, M. O.; Overhauser, A. W.

    1981-09-01

    Consideration is given to situations in which energy could be stored in a metastable state of a high-power laser and then dumped by applying a strong electric field to enhance coupling to the lower state. The electric dipole transitions induced by an external field are compared with magnetic dipole and electric quadrupole radiation due to other types of allowed transitions, and it is noted that in order for the application of the external field to increase the gain coefficient by at least an order of magnitude, the transitions in question must be forbidden for magnetic dipole radiation and occur at wavelengths of 1 to 10 microns. Field-induced transition rates are then calculated for the homonuclear diatomic molecules H2 and N2, along with the gain coefficient for H2. It is pointed out that stronger applied fields capable of increasing the gain may be produced by high-power laser pulses, resulting in gains of several per cent per cm.

  12. Apparatus for advancing a wellbore using high power laser energy

    DOEpatents

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-09-02

    Delivering high power laser energy to form a borehole deep into the earth using laser energy. Down hole laser tools, laser systems and laser delivery techniques for advancement, workover and completion activities. A laser bottom hole assembly (LBHA) for the delivery of high power laser energy to the surfaces of a borehole, which assembly may have laser optics, a fluid path for debris removal and a mechanical means to remove earth.

  13. Two photon absorption in high power broad area laser diodes

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet; Michael, Christopher P.; Zheng, Yan; Zhu, Lin; Jacob, Jonah H.

    2014-03-01

    Recent advances in thermal management and improvements in fabrication and facet passivation enabled extracting unprecedented optical powers from laser diodes (LDs). However, even in the absence of thermal roll-over or catastrophic optical damage (COD), the maximum achievable power is limited by optical non-linear effects. Due to its non-linear nature, two-photon absorption (TPA) becomes one of the dominant factors that limit efficient extraction of laser power from LDs. In this paper, theoretical and experimental analysis of TPA in high-power broad area laser diodes (BALD) is presented. A phenomenological optical extraction model that incorporates TPA explains the reduction in optical extraction efficiency at high intensities in BALD bars with 100μm-wide emitters. The model includes two contributions associated with TPA: the straightforward absorption of laser photons and the subsequent single photon absorption by the holes and electrons generated by the TPA process. TPA is a fundamental limitation since it is inherent to the LD semiconductor material. Therefore scaling the LDs to high power requires designs that reduce the optical intensity by increasing the mode size.

  14. 157 W all-fiber high-power picosecond laser.

    PubMed

    Song, Rui; Hou, Jing; Chen, Shengping; Yang, Weiqiang; Lu, Qisheng

    2012-05-01

    An all-fiber high-power picosecond laser is constructed in a master oscillator power amplifier configuration. The self-constructed fiber laser seed is passively mode locked by a semiconductor saturable absorber mirror. Average output power of 157 W is obtained after three stages of amplification at a fundamental repetition rate of 60 MHz. A short length of ytterbium double-clad fiber with a high doping level is used to suppress nonlinear effects. However, a stimulated Raman scattering (SRS) effect occurs owing to the 78 kW high peak power. A self-made all-fiber repetition rate increasing system is used to octuple the repetition rate and decrease the high peak power. Average output power of 156.6 W is obtained without SRS under the same pump power at a 480 MHz repetition rate with 0.6 nm line width.

  15. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  16. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  17. Hybrid high power femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Trunov, V. I.; Petrov, V. V.; Pestryakov, E. V.; Kirpichnikov, A. V.

    2006-01-01

    Design of a high-power femtosecond laser system based on hybrid chirped pulse amplification (CPA) technique developed by us is presented. The goal of the hybrid principle is the use of the parametric and laser amplification methods in chirped pulse amplifiers. It makes it possible to amplify the low-cycle pulses with a duration of <= fs to terawatt power with a high contrast and high conversion efficiency of the pump radiation. In a created system the Ti:Sapphire laser with 10 fs pulses at 810 nm and output energy about 1-3 nJ will be used like seed source. The oscillator pulses were stretched to duration of about 500 ps by an all-reflective grating stretcher. Then the stretched pulses are injected into a nondegenerate noncollinear optical parametric amplifier (NOPA) on the two BBO crystals. After amplification in NOPA the residual pump was used in a bow-tie four pass amplifier with hybrid active medium (based on Al II0 3:Ti 3+ and BeAl IIO 4:Ti 3+ crystals). The final stage of the amplification system consists of two channels, namely NIR (820 nm) and short-VIS (410 nm). Numerical simulation has shown that the terawatt level of output power can be achieved also in a short-VIS channel at the pumping of the double-crystal BBO NOPA by the radiation of the fourth harmonic of the Nd:YAG laser at 266 nm. Experimentally parametric amplification in BBO crystals of 30-50 fs pulses were investigated and optimized using SPIDER technique and single-shot autocomelator for the realization of shortest duration 40 fs.

  18. Effect of high-power laser radiation on characteristics of thin silicon nitride films

    SciTech Connect

    Roizin, Y.O.; Khuan, K.S.

    1986-09-01

    High-power laser radiation is used in microelectronic technology for purposes such as annealing radiation defects in MOS structures after ion implantation. This paper considers accumulated changes in electrical characteristics of metal-nitride-oxide-semiconductor (MNOS) structures under the action of neodymium laser pulses with an energy density below the visible damage threshold. The experimental results obtained are interpreted.

  19. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  20. Mid-infrared high-power diode lasers and modules

    NASA Astrophysics Data System (ADS)

    Kelemen, Márc T.; Gilly, Juergen; Rattunde, Marcel; Wagner, Joachim; Ahlert, Sandra; Biesenbach, Jens

    2010-02-01

    High-power diode lasers in the mid-infrared wavelength range between 1.8μm and 2.3μm have emerged new possibilities for applications like processing and accelerated drying of materials, medical surgery, infrared countermeasures or for pumping of solid-state and semiconductor disc lasers. We will present results on MBE grown (AlGaIn)(AsSb) quantum-well diode laser single emitters with emitter widths between 90μm and 200μm. In addition laser bars with 20% or 30% fill factor have been processed. More than 30% maximum wall-plug efficiency in cw operation for single emitters and laser bars has been reached. Even at 2200nm more than 15W have been demonstrated with a 30% fill factor bar. Due to an increasing interest in pulsed operation modes for these mid-infrared lasers, we have investigated single emitters and laser bars at 1940nm for different pulse times and duty cycles. More than 9W have been measured at 30A with 500ns pulse time and 1% duty cycle without COMD for a single emitter. Most applications mentioned before need fiber coupled output power, therefore fiber coupled modules based on single emitters or laser bars have been developed. Single-emitter based modules show 600mW out of a 200μm core fiber with NA=0.22 at different wavelengths between 1870nm and 1940nm. At 2200nm an output power of 450mW ex fiber impressively demonstrates the potential of GaSb based diode lasers well beyond wavelengths of 2μm. Combining several laser bars, 20W out of a 600μm core fiber have been established at 1870nm. Finally for a 7 bar stack at 1870nm we have demonstrated more than 85W at 50A in qcw mode.

  1. Atmospheric propagation and combining of high power lasers: comment.

    PubMed

    Goodno, Gregory D; Rothenberg, Joshua E

    2016-10-10

    Nelson et al. [Appl. Opt.55, 1757 (2016)APOPAI0003-693510.1364/AO.55.001757] recently concluded that coherent beam combining and remote phase locking of high-power lasers are fundamentally limited by the laser source linewidth. These conclusions are incorrect and not relevant to practical high-power coherently combined laser architectures.

  2. Advanced Optical Fibers for High power Fiber lasers

    DTIC Science & Technology

    2015-08-24

    0704-0188 3. DATES COVERED (From - To) - UU UU UU UU 24-08-2015 Approved for public release; distribution is unlimited. Advanced Optical Fibers for...0946 ABSTRACT Advanced Optical Fibers for High power Fiber lasers Report Title A review of recent fiber developement for high power fiber lasers...Chapter 7 Advanced Optical Fibers for High Power Fiber Lasers Liang Dong Additional information is available at the end of the chapter http://dx.doi.org

  3. Flow lasers. [fluid mechanics of high power continuous output operations

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Russell, D. A.; Hertzberg, A.

    1975-01-01

    The present work reviews the fluid-mechanical aspects of high-power continuous-wave (CW) lasers. The flow characteristics of these devices appear as classical fluid-mechanical phenomena recast in a complicated interactive environment. The fundamentals of high-power lasers are reviewed, followed by a discussion of the N2-CO2 gas dynamic laser. Next, the HF/DF supersonic diffusion laser is described, and finally the CO electrical-discharge laser is discussed.

  4. High power diode lasers for solid-state laser pumps

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.; McDonnell, Patrick N.

    1994-02-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  5. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  6. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  7. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  8. Slow Light Semiconductor Laser

    DTIC Science & Technology

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  9. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2002-06-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore, this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented result concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the sue laser system the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  10. Laser welding of polymers using high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.; Russek, Ulrich A.

    2003-09-01

    Laser welding of polymers using high power diode lasers offers specific process advantages over conventional technologies, such as short process times while providing optically and qualitatively valuable weld seams, contactless yielding of the joining energy, absence of process induced vibrations, imposing minimal thermal stress and avoiding particle generation. Furthermore this method exhibits high integration capabilities and automatization potential. Moreover, because of the current favorable cost development within the high power diode laser market laser welding of polymers has become more and more an industrially accepted joining method. This novel technology permits both, reliable high quality joining of mechanically and electronically highly sensitive micro components and hermetic sealing of macro components. There are different welding strategies available, which are adaptable to the current application. Within the frame of this discourse scientific and also application oriented results concerning laser transmission welding of polymers using preferably diode lasers are presented. Besides the used laser systems the fundamental process strategies as well as decisive process parameters are illustrated. The importance of optical, thermal and mechanical properties is discussed. Applications at real technical components will be presented, demonstrating the industrial implementation capability and the advantages of a novel technology.

  11. High power laser workover and completion tools and systems

    SciTech Connect

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2014-10-28

    Workover and completion systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser workover and completion of a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform laser workover and completion operations in such boreholes deep within the earth.

  12. Industrial high-power diode lasers: reliability, power, and brightness

    NASA Astrophysics Data System (ADS)

    Strohmaier, Stephan; An, Haiyan; Vethake, Thilo

    2012-03-01

    High power semiconductor lasers, single emitters and bars are developing fast. During the last decade key parameters of diode lasers, such as beam quality, power, spatial and spectral brightness, efficiency as well as reliability have been greatly improved. However, often only individual parameters have been optimized, accepting an adverse effect in the other key parameters. For demanding industrial applications in most cases it is not sufficient to achieve a record value in one of the parameters, on the contrary it is necessary to optimize all the mentioned parameters simultaneously. To be able to achieve this objective it is highly advantageous to have insight in the whole process chain, from epitaxial device structure design and growth, wafer processing, mounting, heat sink design, product development and finally the customer needs your final product has to fulfill. In this publication an overview of recent advances in industrial diode lasers at TRUMPF will be highlighted enabling advanced applications for both high end pump sources as well as highest brightness direct diode.

  13. High power diode and solid state lasers

    NASA Astrophysics Data System (ADS)

    Eichler, H. J.; Fritsche, H.; Lux, O.; Strohmaier, S. G.

    2017-01-01

    Diode lasers are now basic pump sources of crystal, glass fiber and other solid state lasers. Progress in the performance of all these lasers is related. Examples of recently developed diode pumped lasers and Raman frequency converters are described for applications in materials processing, Lidar and medical surgery.

  14. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  15. High-power, high-intensity laser propagation and interactions

    SciTech Connect

    Sprangle, Phillip; Hafizi, Bahman

    2014-05-15

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  16. Inertial Fusion Energy's Role in Developing the Market for High Power Laser Diodes

    SciTech Connect

    Ladran, A L; Ault, E R; Beach, R J; Campbell, J H; Erlandson, A C; Felker, A J; Freitas, B L; Meier, W R; Telford, S; Ebbers, C A; Caird, J A; Barty, C J

    2007-11-29

    Production-cost models for high-power laser-diodes indicate systems of 10GW peak power coupled with facilitization of semi-conductor manufacturing capacity could yield costs below $0.02/Watt. This is sufficient to make IFE competitive with other nuclear power technologies.

  17. High power laser downhole cutting tools and systems

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-01-20

    Downhole cutting systems, devices and methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena. Systems and devices for the laser cutting operations within a borehole in the earth. These systems and devices can deliver high power laser energy down a deep borehole, while maintaining the high power to perform cutting operations in such boreholes deep within the earth.

  18. High-Power Laser Oscillation Test Using Ceramic Waveguide

    DTIC Science & Technology

    2013-07-01

    pumping beam can generate laser output power effectively (high-gain and high-efficiency). For this purpose, sapphire was used for cladding the...1 Final Short Report for AOARD Grant Number FA2386-11-1-4082 Title of proposed project: “High-power laser oscillation test using ceramic...01 JUL 2013 2. REPORT TYPE Final 3. DATES COVERED 19-09-2011 to 01-01-2013 4. TITLE AND SUBTITLE High-power laser oscillation test using

  19. High-Power COIL and YAG Laser Welding

    DTIC Science & Technology

    2002-01-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012387 TITLE: High-Power COIL and YAG Laser Welding DISTRIBUTION...ADP012376 thru ADP012405 UNCLASSIFIED High-power COIL and YAG laser welding Fumio Wani, Tokuhiro Nakabayashi, Akiyoshi Hayakawa, Sachio Suzuki, and...is worse, but it has the function of pulse modulation which the COIL dose not have. As a result of the welding test with the 6 kW Nd:YAG laser, it

  20. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  1. Robotics For High Power Laser Beam Manipulation

    NASA Astrophysics Data System (ADS)

    Watson, Henry E.

    1989-03-01

    The research and development programs in manufacturing science at The Pennsylvania State University have a major emphasis on laser materials processing technology development. A major thrust of this program is the development of an intelligent robotic system which can manipulate a laser beam in three dimension with the precision required for welding. The robot is called LARS for Laser Articulated Robotic System. A gantry based robot was selected as the foundation for LARS and the system is divided into five major subsystems: robot, electronic control, vision, workhead, beam transport, and software. An overview of the Laser Robotics program including laser materials processing research programs will be provided.

  2. Frequency stable high power lasers in space

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    The concept of a laser heterodyne gravity wave antenna that would operate in solar orbit with a one million kilometer path length is discussed. Laser technology that would be appropriate for operation of this space-based gravity wave detector is also discussed. The rapid progress in diode laser coupled with the energy storage and potentially sub-Hertz linewidths of solid state lasers, and the possibility of efficient frequency conversion by nonlinear optical techniques defines a technology that is appropriate for laser interferometry in space. The present status of diode-laser-pumped, solid state lasers is summarized and future progress is projected in areas of linewidth control, high average power, operating efficiency, and operational lifetimes that are essential for space-based applications.

  3. Propagation and focusing properties of high-power laser beams

    NASA Astrophysics Data System (ADS)

    Lu, Baida; Bin, Zhang

    1996-11-01

    In This paper, on the basis of the generalized Huygens- Fresnel diffraction integral and by using the statistical- optics model of high-power lasers presented by Manes and Simmons at LLNL, the propagation and focusing properties of high-power lasers with amplitude modulations (AMs) and phase fluctuations (PFs) have been studied in detail. Numerical calculations for the apertured case have been performed, showing the dependence of focused field characteristics on the truncation parameter, Fresnel number of the system, phase fluctuations and amplitude modulations of high-power laser beams.

  4. Lifetime estimation of high power lasers

    NASA Astrophysics Data System (ADS)

    Lu, Guoguang; Huang, Yun; En, Yunfei

    2010-11-01

    We have set up a computer automated controlled diode array reliability experiment which can take up 10 to 20 high power cm-bars. Subsequent 25°C and 50°C lifetime tests were completed. According to the method of least squares, the degradation model of cm-bars is obtained. Using the model and weibull++7 software, the extrapolated lifetime of cmbars at 25°C is 7950 hours (2.86×109 shots). We also obtain an acceleration factor 1.88 of resulting in a thermal activation energy of Ea=0.21eV using Arrhenius function. Finally, failure analysis was carried on the gradually degraded devices, the results show that it is the facet degradation which made high power cm-bars degrade during the long time lifetime test.

  5. 120 Mbit/s QPPM high power semiconductor transmitter performance and reliability

    NASA Astrophysics Data System (ADS)

    Greulich, P.; Hespeler, B.; Spatscheck, Th.

    1991-06-01

    Optical and electrical performance of a high power semiconductor laser transmitter (HPST) and of the related driver electronics are presented. Stable single-lobed operation of the HPST is accomplished by retroreflection of one lobe of the dual-lobed far field using a GRIN lens and stripe mirror. The envisaged peak-power output power of 1 W is achieved and 120 Mbit/s data transmission applying QPPM is demonstrated. Preliminary results after 2400 h of a lifetest performed on a laser array without a stripe mirror yield a bias current increase of about 2.1 x 10 exp -5/h and an efficiency decrease of 1 x 10 exp -5 hr.

  6. Support for High Power Laser Ablation 2010

    DTIC Science & Technology

    2010-04-16

    Femtosecond Pulsed laser Ablation and Deposition Marta Castillejo Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain Tel:+34...system to transition the laser cavity’s low pressure to the ambient pressure outside the device. Diffusers use a series of shocks in a duct to...especially the incident laser fluence and ambient pressure. New results highlight the influence of the ambient pressure on ablation physics from the

  7. High-powered CO2 -lasers and noise control

    NASA Astrophysics Data System (ADS)

    Honkasalo, Antero; Kuronen, Juhani

    High-power CO2 -lasers are being more and more widely used for welding, drilling and cutting in machine shops. In the near future, different kinds of surface treatments will also become routine practice with laser units. The industries benefitting most from high power lasers will be: the automotive industry, shipbuilding, the offshore industry, the aerospace industry, the nuclear and the chemical processing industries. Metal processing lasers are interesting from the point of view of noise control because the working tool is a laser beam. It is reasonable to suppose that the use of such laser beams will lead to lower noise levels than those connected with traditional metal processing methods and equipment. In the following presentation, the noise levels and possible noise-control problems attached to the use of high-powered CO2 -lasers are studied.

  8. Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs

    DTIC Science & Technology

    2011-05-10

    REPORT Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have...harmonic Conversion, high power, VECSEL Mahmoud Fallahi University of Arizona Sponsored Project Services PO Box 3308 Tucson, AZ 85722 -3308 REPORT...8/98) Prescribed by ANSI Std. Z39.18 - 14-Jun-2010 Compact, High-Power, Low-Cost 295 nm DUV Laser by Harmonic Conversion of High Power VECSELs

  9. High power femtosecond lasers at ELI-NP

    SciTech Connect

    Dabu, Razvan

    2015-02-24

    Specifications of the high power laser system (HPLS) designed for nuclear physics experiments are presented. Configuration of the 2 × 10 PW femtosecond laser system is described. In order to reach the required laser beam parameters, advanced laser techniques are proposed for the HPLS: parametric amplification and cross-polarized wave generation for the intensity contrast improvement and spectral broadening, acousto-optic programmable filters to compensate for spectral phase dispersion, optical filters for spectrum management, combined methods for transversal laser suppression.

  10. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2016-04-08

    This slide presentation describes motivation (uniform and rapid heating of a target, opportunity to study warm dense matter, study of nuclear fusion reactions), rapid heating of matter with intense laser-driven ion beams, visualization of the expanding warm dense gold and diamond, and nuclear fusion experiments using high power lasers (direct heating of deuterium spheres (radius ~ 10nm) with an intense laser pulse.

  11. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  12. High-power disk and fiber lasers: a performance comparison

    NASA Astrophysics Data System (ADS)

    Ruppik, Stefan; Becker, Frank; Grundmann, Frank-Peter; Rath, Wolfram; Hefter, Ulrich

    2012-03-01

    The Performance of High Power Disk Lasers and Fiber Lasers along with their rapid development to the high power cw regime have been of great interest throughout the last decade. Both technologies are still in the focus of several conferences, workshops, and papers and represent the "state-of-the-art" of industrial high power solid state lasers for material processing. As both laser concepts are considered to be the leading 1 μm light-source, this presentation presents an objective and fair comparison of the two different technologies from a manufacturer who pursued both. From the geometry of the active material, through the resonator design, cooling regime, and pumping method to the point of beam quality and power scaling, the different approaches associated with the advantages, challenge and limits of each technology will be discussed. Based on ROFIN's substantial industrial experience with both laser concepts, an outlook into future trends and chances, especially linked to fiber laser, will be given.

  13. Beam Stop For High-Power Lasers

    NASA Technical Reports Server (NTRS)

    Mcdermid, Iain S.; Williamson, William B.

    1990-01-01

    Graphite/aluminum plate absorbs most of light. Beam stop fits on standard optical mounting fixture. Graphite plate thick enough to absorb incident laser beam but thin enough to transfer heat quickly to heat sink. Device used for variety of blocking purposes. For example, blocks laser beam after it passes through experimental setup, or at each stage of setup so stages checked and tested in sequence. Negligible reflectance of device is valuable safety feature, protecting both users and equipment from reflections.

  14. High-power lasers for directed-energy applications.

    PubMed

    Sprangle, Phillip; Hafizi, Bahman; Ting, Antonio; Fischer, Richard

    2015-11-01

    In this article, we review and discuss the research programs at the Naval Research Laboratory (NRL) on high-power lasers for directed-energy (DE) applications in the atmosphere. Physical processes affecting propagation include absorption/scattering, turbulence, and thermal blooming. The power levels needed for DE applications require combining a number of lasers. In atmospheric turbulence, there is a maximum intensity that can be placed on a target that is independent of the initial beam spot size and laser beam quality. By combining a number of kW-class fiber lasers, scientists at the NRL have successfully demonstrated high-power laser propagation in a turbulent atmosphere and wireless recharging. In the NRL experiments, four incoherently combined fiber lasers having a total power of 5 kW were propagated to a target 3.2 km away. These successful high-power experiments in a realistic atmosphere formed the basis of the Navy's Laser Weapon System. We compare the propagation characteristics of coherently and incoherently combined beams without adaptive optics. There is little difference in the energy on target between coherently and incoherently combined laser beams for multi-km propagation ranges and moderate to high levels of turbulence. Unlike incoherent combining, coherent combining places severe constraints on the individual lasers. These include the requirement of narrow power spectral linewidths in order to have long coherence times as well as polarization alignment of all the lasers. These requirements are extremely difficult for high-power lasers.

  15. High power, electrically tunable quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Slivken, Steven; Razeghi, Manijeh

    2016-02-01

    Mid-infrared laser sources (3-14 μm wavelengths) which have wide spectral coverage and high output power are attractive for many applications. This spectral range contains unique absorption fingerprints of most molecules, including toxins, explosives, and nerve agents. Infrared spectroscopy can also be used to detect important biomarkers, which can be used for medical diagnostics by means of breath analysis. The challenge is to produce a broadband midinfrared source which is small, lightweight, robust, and inexpensive. We are currently investigating monolithic solutions using quantum cascade lasers. A wide gain bandwidth is not sufficient to make an ideal spectroscopy source. Single mode output with rapid tuning is desirable. For dynamic wavelength selection, our group is developing multi-section laser geometries with wide electrical tuning (hundreds of cm-1). These devices are roughly the same size as a traditional quantum cascade lasers, but tuning is accomplished without any external optical components. When combined with suitable amplifiers, these lasers are capable of multi-Watt single mode output powers. This manuscript will describe our current research efforts and the potential for high performance, broadband electrical tuning with the quantum cascade laser.

  16. Freeform beam shaping for high-power multimode lasers

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim

    2014-03-01

    Widening of using high power multimode lasers in industrial laser material processing is accompanied by special requirements to irradiance profiles in such technologies like metal or plastics welding, cladding, hardening, brazing, annealing, laser pumping and amplification in MOPA lasers. Typical irradiance distribution of high power multimode lasers: free space solid state, fiber-coupled solid state and diodes lasers, fiber lasers, is similar to Gaussian. Laser technologies can be essentially improved when irradiance distribution on a workpiece is uniform (flattop) or inverse-Gauss; when building high-power pulsed lasers it is possible to enhance efficiency of pumping and amplification by applying super-Gauss irradiance distribution with controlled convexity. Therefore, "freeform" beam shaping of multimode laser beams is an important task. A proved solution is refractive field mapping beam shaper like Shaper capable to control resulting irradiance profile - with the same unit it is possible to get various beam profiles and choose optimum one for a particular application. Operational principle of these devices implies transformation of laser irradiance distribution by conserving beam consistency, high transmittance, providing collimated low divergent output beam. Using additional optics makes it possible to create resulting laser spots of necessary size and round, elliptical or linear shape. Operation out of focal plane and, hence, in field of lower wavefront curvature, allows extending depth of field. The refractive beam shapers are implemented as telescopes and collimating systems, which can be connected directly to fiber-coupled lasers or fiber lasers, thus combining functions of beam collimation and irradiance transformation.

  17. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  18. Commercial applications of high-powered laser diodes

    NASA Astrophysics Data System (ADS)

    Cunningham, David L.; Jacobs, Richard D.

    1995-04-01

    The development of high power laser diodes using surface emitting distributed feedback (SEDFB) techniques has matured to the point where serious marketing analyses have been conducted. While development of the base technology continues, the initiation of systems applications and manufacturing engineering has begun. This effort, in direct response to growing market demand, is the critical bridge between research and the development of viable products for commercial applications. This paper addresses the history of laser technology development, the current status of high powered laser diode development, the forces defining current and future markets and the role of `conventional wisdom' in laser technology and market development.

  19. Scaling brilliance of high power laser diodes

    NASA Astrophysics Data System (ADS)

    König, Harald; Grönninger, Guenther; Lauer, Christian; Reill, Wolfgang; Arzberger, Markus; Strauß, Uwe; Kissel, Heiko; Biesenbach, Jens; Kösters, Arnd; Malchus, Joerg; Krause, Volker K.

    2010-02-01

    New direct diode laser systems and fiber lasers require brilliant fiber coupled laser diodes for efficient operation. In the German funded project HEMILAS different laser bar designs are investigated with tailored beam parameter products adapted for efficient fiber coupling. In this paper we demonstrate results on 9xx and 1020nm bars suitable for coupling into 200μm fibers. With special facet technology and optimised epitaxial structure COD-free laser bars were fabricated with maximum efficiency above 66%. For short bars consisting of five 100μm wide emitters 75W CW maximum output power was reached. In QCW-mode up to 140W are demonstrated. The 10% fill factor bars with 4mm cavity are mounted with hard solder. Lifetime tests in long pulse mode with 35W output power exceed 5000 hours of testing without degradation or spontaneous failures. Slow axis divergence stays below 7° up to power levels of 40W and is suitable for simple fiber coupling into 200μm NA 0.22 fibers with SAC and FAC lenses. For fiber coupling based on beam rearrangement with step mirrors, bars with higher fill factor of 50% were fabricated and tested. The 4mm cavity short bars reach efficiencies above 60%. Lifetime tests at accelerated powers were performed. Finally fiber coupling results with output powers of up to 2.4 kW and beam quality of 30 mm mrad are demonstrated.

  20. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  1. Subpicosecond high power UV—laser system

    NASA Astrophysics Data System (ADS)

    Schwarzenbach, A. P.; Luk, T. S.; Johann, U.; McIntyre, I.; McPherson, A.; Boyer, K.; Rhodes, C. K.

    1986-08-01

    A synchronously pumped dye laser with saturable absorber jet and cavity dumper is used as the source for producing a seed beam for excimer amplifiers. An optical fiber after the dye laser and a grating pair are used to compress the dye laser pulse to 250 fsec. A two stage dye amplifier brings the pulse to about 0.1 mJ at 745.2 nm. Frequency doubling followed by summing the second harmonic with the fundamental in two KDP crystals produces radiation at 248.4 nm to be amplified in two KrF amplifiers. The UV pulse duration was measured after the first amplifier to be 450±150 fsec. The pulse energy was 23±2 mJ, and the power therefore, was nominally ˜50 GW.

  2. High power laser and cathode structure thereof

    SciTech Connect

    Nam, K. H.; Seguin, H. J.; Tulip, J.

    1981-09-08

    A cathode structure for gas lasers is disclosed that is comprised of a flat plate of non-conducting material positioned in the laser in spaced relation to the laser anode to define a discharge region therebetween, a two-dimensional array of metal sub-electrode rods passing through the plate and having their upper ends lying flush with the surface of the plate, a block of dielectric material positioned below the plate and containing a series of transverse channels therein, electric current conductors lying in the channels and adapted for connection to a power supply, the lower ends of the said rods passing through openings in the block into the channels to define a predetermined uniform gap between the ends of the rods and the electrical conductor, and a liquid electrolyte solution filling the channels and electrically connecting the sub-electrode rods and the conductors.

  3. Simulation of High Power Lasers (Preprint)

    DTIC Science & Technology

    2010-06-01

    product of laser power. 5. References 1 Wilcox, D. C, Turbulence Modeling for CFD, DCW Industries, Inc. pp. 185-193, July 1998. 2 Menter, F. L...Modeling for CFD, DCW Industries, Inc. pp. 294-296, July 1998. 4 Perram, G. P, .Int. J. Chem. Kinet. 27, 817-28 (1995). 5 Madden, T. J. and Solomon

  4. Atmospheric propagation and combining of high-power lasers.

    PubMed

    Nelson, W; Sprangle, P; Davis, C C

    2016-03-01

    In this paper, we analyze beam combining and atmospheric propagation of high-power lasers for directed-energy (DE) applications. The large linewidths inherent in high-power fiber and slab lasers cause random phase and intensity fluctuations that occur on subnanosecond time scales. Coherently combining these high-power lasers would involve instruments capable of precise phase control and operation at rates greater than ∼10  GHz. To the best of our knowledge, this technology does not currently exist. This presents a challenging problem when attempting to phase lock high-power lasers that is not encountered when phase locking low-power lasers, for example, at milliwatt power levels. Regardless, we demonstrate that even if instruments are developed that can precisely control the phase of high-power lasers, coherent combining is problematic for DE applications. The dephasing effects of atmospheric turbulence typically encountered in DE applications will degrade the coherent properties of the beam before it reaches the target. Through simulations, we find that coherent beam combining in moderate turbulence and over multikilometer propagation distances has little advantage over incoherent combining. Additionally, in cases of strong turbulence and multikilometer propagation ranges, we find nearly indistinguishable intensity profiles and virtually no difference in the energy on the target between coherently and incoherently combined laser beams. Consequently, we find that coherent beam combining at the transmitter plane is ineffective under typical atmospheric conditions.

  5. Method and apparatus for tuning high power lasers

    DOEpatents

    Hutchinson, Donald P.; Vandersluis, Kenneth L.

    1977-04-19

    This invention relates to high power gas lasers that are adapted to be tuned to a desired lasing wavelength through the use of a gas cell to lower the gain at a natural lasing wavelength and "seeding" the laser with a beam from a low power laser which is lasing at the desired wavelength. This tuning is accomplished with no loss of power and produces a pulse with an altered pulse shape. It is potentially applicable to all gas lasers.

  6. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  7. High-power laser source evaluation

    SciTech Connect

    Back, C.A.; Decker, C.D.; Dipeso, G.J.; Gerassimenko, M.; Managan, R.A.; Serduke, F.J.D.; Simonson, G.F.; Suter, L.J.

    1997-07-01

    This document reports progress in these areas: EXPERIMENTAL RESULTS FROM NOVA: TAMPED XENON UNDERDENSE X-RAY EMITTERS; MODELING MULTI-KEV RADIATION PRODUCTION OF XENON-FILLED BERYLLIUM CANS; MAPPING A CALCULATION FROM LASNEX TO CALE; HOT X RAYS FROM SEEDED NIF CAPSULES; HOHLRAUM DEBRIS MEASUREMENTS AT NOVA; FOAM AND STRUCTURAL RESPONSE CALCULATIONS FOR NIF NEUTRON EXPOSURE SAMPLE CASE ASSEMBLY DESIGN; NON-IGNITION X-RAY SOURCE FLUENCE-AREA PRODUCTS FOR NUCLEAR EFFECTS TESTING ON NIF. Also appended are reprints of two papers. The first is on the subject of ``X-Ray Production in Laser-Heated Xe Gas Targets.`` The second is on ``Efficient Production and Applications of 2- to 10-keV X Rays by Laser-Heated Underdense Radiators.``

  8. Germanate Glass Fiber Lasers for High Power

    DTIC Science & Technology

    2016-01-04

    germanate based glasses with a specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped...evidence of crystallisation after thermal cycling , and is of a low enough loss to realize a fiber laser. The glass stability is demonstrated by...specific focus on glass stability during thermal- cycling which is representative of the steps required to fabricate a doped micro-structured germanate

  9. Irradiance analyzer for high power lasers

    SciTech Connect

    Conrad, R.W.

    1981-04-07

    An irradiance analysis system which includes an array of square rods that are joined together and have a flat entrance end and a polished flat exit end through which visible light is transmitted to a fresnel lens and focused to a particular area where the image focused is photographed so that when the various frames are developed they can be analyzed in a conventional film densitometer to yield quantative data on the temporal variation of laser beam irradiance distributions.

  10. Improved Spatial Filter for high power Lasers

    SciTech Connect

    Estabrook, Kent G.; Celliers, Peter M.; Murray, James E.; DaSilva, Luiz; MacGowan, Brian J.; Rubenchik, Alexander M.; Manes, Kenneth R.; Drake, Robert P.; Afeyan, Bedros

    1998-06-01

    A new pinhole architecture incorporates features intended to reduce the rate of plasma generation in a spatial filter for high-energy laser pulse beams. An elongated pinhole aperture is provided in an apertured body for rejecting off-axis rays of the laser pulse beam. The internal surface of the elongated aperture has a diameter which progressively tapers from a larger entrance cross-sectional area at an inlet to a smaller output cross-sectional area at an outlet. The tapered internal surface causes off-axis rays to be refracted in a low density plasma layer that forms on the internal surface or specularly reflected at grazing incidence from the internal surface. Off-axis rays of the high-energy pulse beam are rejected by this design. The external surface of the apertured body adjacent to the larger entrance cross-sectional area at the inlet to the elongated aperture is angled obliquely with respect to the to direction of the path of the high-energy laser pulse beam to backscatter off-axis rays away from the high-energy pulse beam. The aperture is formed as a truncated cone or alternatively with a tapered square cross-section. The internal surface of the aperture is coated with an ablative material, preferably high-density material which can be deposited with an exploding wire.

  11. High power lasers for gamma source

    NASA Astrophysics Data System (ADS)

    Durand, Magali; Sangla, Damien; Trophème, Benoit; Sevillano, Pierre; Casanova, Alexis; Caillon, Laurianne; Courjaud, Antoine

    2017-02-01

    A high intensity Gamma source is required for Nuclear Spectroscopy, it will be delivered by the interaction between accelerated electron and intense laser beams. Those two interactions lasers are based on a multi-stage amplification scheme that ended with a second harmonics generation to deliver 200 mJ, 3.5 ps pulses at 515 nm and 100 Hz. A t-Pulse oscillator with slow and fast feedback loop implemented inside the oscillator cavity allows the possibility of synchronization to an optical reference. A temporal jitter of 120 fs rms is achieved, integrated from 10 Hz to 10 MHz. Then a regenerative amplifier, based on Yb:YAG technology, pumped by fiber-coupled QCW laser diodes, delivers pulses up to 30 mJ. The 1 nm bandwidth was compressed to 1.5 ps with a good spatial quality: M2 of 1.1. This amplifier is integrated in a compact sealed housing (750x500x150 cm), which allows a pulse-pulse stability of 0.1% rms, and a long-term stability of 1,9% over 100 hours (with +/-1°C environment). The main amplification stage uses a cryocooled Yb:YAG crystal in an active mirror configuration. The crystal is cooled at 130 K via a compact and low-vibration cryocooler, avoiding any additional phase noise contribution, 340 mJ in a six pass scheme was achieved, with 0.9 of Strehl ratio. The trade off to the gain of a cryogenic amplifier is the bandwidth reduction, however the 1030 nm pulse was compressed to 3.5 ps.

  12. High-Power Laser Source Evaluation

    DTIC Science & Technology

    1998-07-01

    uniform:«»! had been:taped. A sample beam profile at the receiver Zerodur Au-coated mirror 20 cm diameter f/6 Diode laser Diode bars 1 21 m beam...amplifiers and mirrors . This is of concern to the NIF Project and the use of unconverted 1.06 p.m light to produce these x-ray sources might require...they may result in DSWA Final Report - 34 NWET ANNUAL REPORT - QDV-99-0001 undesirable conditions at the turning mirrors or ghosts in the up-beam

  13. Device for wavefront correction in an ultra high power laser

    DOEpatents

    Ault, Earl R.; Comaskey, Brian J.; Kuklo, Thomas C.

    2002-01-01

    A system for wavefront correction in an ultra high power laser. As the laser medium flows past the optical excitation source and the fluid warms its index of refraction changes creating an optical wedge. A system is provided for correcting the thermally induced optical phase errors.

  14. Overview of the NASA high power laser program

    NASA Technical Reports Server (NTRS)

    Lundholm, J. G.

    1976-01-01

    The overall objectives of the NASA High Power Laser Program are reviewed along with their structure and center responsibilities. Present and future funding, laser power transmission in space, selected program highlights, the research and technology schedule, and the expected pace of the program are briefly considered.

  15. CHRONICLE: International forum on advanced high-power lasers and applications (AHPLA '99)

    NASA Astrophysics Data System (ADS)

    Afanas'ev, Yurii V.; Zavestovskaya, I. N.; Zvorykin, V. D.; Ionin, Andrei A.; Senatsky, Yu V.; Starodub, Aleksandr N.

    2000-05-01

    A review of reports made on the International Forum on Advanced High-Power Lasers and Applications, which was held at the beginning of November 1999 in Osaka (Japan), is presented. Five conferences were held during the forum on High-Power Laser Ablation, High-Power Lasers in Energy Engineering, High-Power Lasers in Civil Engineering and Architecture, High-Power Lasers in Manufacturing, and Advanced High-Power Lasers. The following trends in the field of high-power lasers and their applications were presented: laser fusion, laser applications in space, laser-triggered lightning, laser ablation of materials by short and ultrashort pulses, application of high-power lasers in manufacturing, application of high-power lasers in mining, laser decommissioning and decontamination of nuclear reactors, high-power solid-state and gas lasers, x-ray and free-electron lasers. One can find complete information on the forum in SPIE, vols. 3885-3889.

  16. Stretchers and compressors for ultra-high power laser systems

    SciTech Connect

    Yakovlev, I V

    2014-05-30

    This review is concerned with pulse stretchers and compressors as key components of ultra-high power laser facilities that take advantage of chirped-pulse amplification. The potentialities, characteristics, configurations and methods for the matching and alignment of these devices are examined, with particular attention to the history of the optics of ultra-short, ultra-intense pulses before and after 1985, when the chirped-pulse amplification method was proposed, which drastically changed the view of the feasibility of creating ultra-high power laser sources. The review is intended primarily for young scientists and experts who begin to address the amplification and compression of chirped pulses, experts in laser optics and all who are interested in scientific achievements in the field of ultra-high power laser systems. (review)

  17. High-power laser source evaluation

    SciTech Connect

    Back, C. A.; Decker, C. D.; Davis, J. F.; Dixit, S.; Grun, J.; Managan, R. A.; Serduke, F. J. D.; Simonson, G. F.; Suter, L. J.; Wuest, C. R.; Ze, F.

    1998-07-01

    Robust Nuclear-Weapons-Effects Testing (NWET) capability will be needed for the foreseeable future to ensure the performance and reliability, in nuclear environments, of the evolving U.S. stockpile of weapons and other assets. Ongoing research on the use of high-energy lasers to generate environments of utility in nuclear weapon radiation effects simulations is addressed in the work described in this report. Laser-driven hohlraums and a variety of other targets have been considered in an effort to develop NWET capability of the highest possible fidelity in above-ground experiments. The envelope of large-system test needs is shown as the gray region in fig. 1. It does not represent the spectrum of any device; it is just the envelope of the spectral region of outputs from a number of possible devices. It is a goal of our laser-only and ignition-capsule source development work to generate x rays that fall somewhere in this envelope. One of the earlier appearances of this envelope is in ref. 1. The Defense Special Weapons Agency provided important support for the work described herein. A total of $520K was provided in the 1997 IACROs 97-3022 for Source Development and 97-3048 for Facilitization. The period of performance specified in the Statement of Work ran from 28 February 1997 until 30 November 1997. This period was extended, by agreement with DSWA, for two reasons: 1) despite the stated period of performance, funds were not available at LLNL to begin this work until somewhat later in the fiscal year, and 2) we agreed to stretch the current resources until follow-on funds were in hand, to minimize effects of ramping down and up again. The tasks addressed in this report are the following: 1) Non-ignition-source model benchmarking and design. This involves analysis of existing and new data on laser-only sources to benchmark LASNEX predictions 2) Non-ignition-source development experiments 3) Ignition capsule design to improve total x-ray output and simplify target

  18. High power solid state laser modulator

    DOEpatents

    Birx, Daniel L.; Ball, Don G.; Cook, Edward G.

    2004-04-27

    A multi-stage magnetic modulator provides a pulse train of .+-.40 kV electrical pulses at a 5-7 kHz repetition rate to a metal vapor laser. A fractional turn transformer steps up the voltage by a factor of 80 to 1 and magnetic pulse compression is used to reduce the pulse width of the pulse train. The transformer is fabricated utilizing a rod and plate stack type of construction to achieve a high packing factor. The pulses are controlled by an SCR stack where a plurality of SCRs are electrically connected in parallel, each SCR electrically connected to a saturable inductor, all saturable inductors being wound on the same core of magnetic material for enhanced power handling characteristics.

  19. Ceramic tile grout removal & sealing using high power lasers

    SciTech Connect

    Lawrence, J.; Li, L.; Spencer, J.T.

    1996-12-31

    Work has been conducted using a Nd:YAG laser, a CO{sub 2} laser and a high power diode laser (HPDL) in order to determine the feasibility of removing contaminated tile grout from the void between adjoining vitrified ceramic tiles, and to seal the void permanently with a material having an impermeable surface glaze. Reported on in the paper are; the basic process phenomena, the process effectiveness, suitable vitrifiable material development, a heat affect study and a morphological and compositional analysis.

  20. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  1. High-power laser diodes at various wavelengths

    SciTech Connect

    Emanuel, M.A.

    1997-02-19

    High power laser diodes at various wavelengths are described. First, performance and reliability of an optimized large transverse mode diode structure at 808 and 941 nm are presented. Next, data are presented on a 9.5 kW peak power array at 900 nm having a narrow emission bandwidth suitable for pumping Yb:S-FAP laser materials. Finally, results on a fiber-coupled laser diode array at {approx}730 nm are presented.

  2. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, Joseph S.; Sapak, David L.; Ward, Julia M.

    1990-01-01

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K.sub.90.degree. C. >0.8 W/mK, and a low coefficient of thermal expansion, .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., consists essentially of (on a batch composition basis): the amounts of Li.sub.2 O and Na.sub.2 O providing an average alkali metal ionic radius sufficiently low whereby said glass has K.sub.90.degree. C. >0.8 W/mK and .alpha..sub.20.degree.-40.degree. C. <80.times.10.sup.-7 /.degree.C., and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd.sub.2 O.sub.3 can be replaced by other lasing species.

  3. High power induction free electron laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1988-12-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35 percent. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 micrometers. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these experiments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  4. High Power Induction Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Miller, John L.

    1989-07-01

    Free electron laser (FEL) amplifiers driven by linear induction accelerators have considerable potential for scaling to high average powers. The high electron beam current produces large single pass gain and extraction efficiency, resulting in high peak power. The pulse repetition frequency scaling is limited primarily by accelerator and pulsed power technology. Two FEL experiments have been performed by the Beam Research Program at the Lawrence Livermore National Laboratory (LLNL): The ELF experiment used the 3.5-MeV beam from the Experimental Test Accelerator (ETA) and operated at a wavelength of 8.6 mm. This device achieved an overall single-pass gain of 45 dB, an output power of 1.5 GW, and an extraction efficiency of 35%. The microwave beam was confined in a waveguide in the 4-m-long wiggler. The PALADIN experiment uses the 45-MeV beam from the Advanced Test Accelerator and operates at a wavelength of 10.6 IA. Using a 15-m long wiggler a single pass gain of 27 dB was produced. Gain guiding was observed to confine the amplified beam within a beam tube that had a Fresnel number less than 1. The results of these expriments have been successfully modeled using a three dimensional particle simulation code. The Program also has ongoing efforts to develop wiggler, pulsed power and induction linac technology. A focus of much of this work is the ETA-II accelerator, which incorporates magnetic pulse compression drivers. One application of ETA-II will be to drive a 1 mm wavelength FEL. The microwave output will be used for a plasma heating experiment.

  5. Phosphate glass useful in high power lasers

    DOEpatents

    Hayden, J.S.; Sapak, D.L.; Ward, J.M.

    1990-05-29

    A low- or no-silica phosphate glass useful as a laser medium and having a high thermal conductivity, K[sub 90 C] > 0.8 W/mK, and a low coefficient of thermal expansion, [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, consists essentially of (on a batch composition basis Mole %): P[sub 2]O[sub 5], 45-70; Li[sub 2]O, 15-35; Na[sub 2]O, 0-10; Al[sub 2]O[sub 3], 10-15; Nd[sub 2]O[sub 3], 0.01-6; La[sub 2]O[sub 3], 0-6; SiO[sub 2], 0-8; B[sub 2]O[sub 3], 0-8; MgO, 0-18; CaO, 0-15; SrO, 0-9; BaO, 0-9; ZnO, 0-15; the amounts of Li[sub 2]O and Na[sub 2]O providing an average alkali metal ionic radius sufficiently low whereby said glass has K[sub 90 C] > 0.8 W/mK and [alpha][sub 20--40 C] < 80[times]10[sup [minus]7]/C, and wherein, when the batch composition is melted in contact with a silica-containing surface, the final glass composition contains at most about 3.5 mole % of additional silica derived from such contact during melting. The Nd[sub 2]O[sub 3] can be replaced by other lasing species. 3 figs.

  6. Modeling of high power laser interaction with metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Kurt; Zahide, Demircioǧlu

    2017-02-01

    Laser matter interaction has been very popular subject from the first recognition of lasers. Laser application in industry or laboratory applications are based on definite interactions of the laser beam with the workpiece. In this paper, an effective model related with high power radiation interaction with metals is presented. In metals, Lorentz-Drude model is used calculate permeability theoretically. The plasma frequency was calculated at various temperatures and using the obtained results the refractive index of the metal (Ag) was investigated. The calculation result revealed that the effect of the temperature need to be considered at reflection and transmission of the laser beam.

  7. High Power CO Lasers And Their Application Potential

    NASA Astrophysics Data System (ADS)

    Maisenhalder, F.

    Comparing the state of development of high power gas lasers for civil applications, it can be seen that the CO2 laser is a well established tool; the CO laser, however, essentially remained a laboratory device. Hence, the question arises whether there will be an advantage to develop high power CO lasers for industrial applications, too. After a brief recapitulation of the typical CO-related properties, to help answering this question, the application potential of the CO laser, will be discussed. There are several wavelength-related advantages of the CO laser like increased absorption depth in glasses and crystals increased focal power density, and reduced plasma shielding. Furthermore, transmissive optical materials have considerably improved values for absorption and damage threshold, and finally power transmission through optical fibers is much more realistic in the near future for the 5 μm spectral range. In contrast to the variety of promising applications is the number of experimentally verified ones. This is due to the fact that only a few lasers are existing in the power range and in the developmental stage to be used for applications. In experiments CO lasers demonstrated advantages in the field of cutting and drilling metals and uranium isotope separation. Lasers in the high power range are developed in Japan, in the Soviet Union and in Germany. The types of lasers investigated in these countries differ from each other by the methods of gas cooling and excitation. Comparisons between Co- and CO2 lasers show that the system efficiencies of CO lasers are slightly higher by a factor of 1.3; the operation costs of CO lasers are reduced by the same factor. Investment and operation costs can be reduced considerably if for the planned application a high focal power density is used. Furthermore, the volumes of CO and CO2 lasers are comparable at present and in the future.

  8. Transparent ceramic photo-optical semiconductor high power switches

    DOEpatents

    Werne, Roger W.; Sullivan, James S.; Landingham, Richard L.

    2016-01-19

    A photoconductive semiconductor switch according to one embodiment includes a structure of sintered nanoparticles of a high band gap material exhibiting a lower electrical resistance when excited by light relative to an electrical resistance thereof when not exposed to the light. A method according to one embodiment includes creating a mixture comprising particles, at least one dopant, and at least one solvent; adding the mixture to a mold; forming a green structure in the mold; and sintering the green structure to form a transparent ceramic. Additional system, methods and products are also presented.

  9. Transient Plasma Photonic Crystals for High-Power Lasers.

    PubMed

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  10. High power repetitive TEA CO2 pulsed laser

    NASA Astrophysics Data System (ADS)

    Yang, Guilong; Li, Dianjun; Xie, Jijiang; Zhang, Laiming; Chen, Fei; Guo, Jin; Guo, Lihong

    2012-07-01

    A high power repetitive spark-pin UV-preionized TEA CO2 laser system is presented. The discharge for generating laser pulses is controlled by a rotary spark switch and a high voltage pulsed trigger. Uniform glow discharge between two symmetrical Chang-electrodes is realized by using an auto-inversion circuit. A couple of high power axial-flow fans with the maximum wind speed of 80 m/s are used for gas exchange between the electrodes. At a repetitive operation, the maximum average output laser power of 10.4 kW 10.6 μm laser is obtained at 300 Hz, with an electro-optical conversion efficiency of 15.6%. At single pulsed operation, more pumping energy and higher gases pressures can be injected, and the maximum output laser energy of 53 J is achieved.

  11. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  12. High-power high-speed single-mode diode lasers for optical intersatellite link applications

    NASA Astrophysics Data System (ADS)

    Li, Benjamin; Sha, WeiJian; Yeh, PingHui S.; Nagarajan, Radhakrishnan; Craig, Richard R.

    1998-05-01

    High power single-mode AlGaAs semiconductor lasers operating between 820 nm and 860 nm (SDL-5400 series diodes) have been successfully qualified for deployment in many free-space inter-satellite communication link programs. Traditionally these high power devices did not have sufficient bandwidth for direct high speed modulation because of large device and package parasitics. We have improved the device parasitics of the SDL-5430 laser diode, i.e. reduced the RC product, from 240 ps to about 40 ps. The initial measurements indicate that this device (SDL-5480) is suitable for high power optical inter-satellite link (OISL) applications at data rates greater than 1 Gbit/s. The preliminary life test indicates that the new device has better a reliability than the previous design.

  13. Coherent Beam Combining of High-Power Broad-Area Laser Diode Array in CW and Pulsed Modes

    SciTech Connect

    Liu, Bo; Liu, Yun; Braiman, Yehuda

    2010-01-01

    We present experimental results on coherent beam combining from large arrays of high power broad-area semiconductor lasers. Our laser array consists of 47 high-power anti-reflection coated broad-area semiconductor lasers and each laser emitter is capable of emitting 1.8 W when uncoated with a maximum array output power of 80W. The total available power from the AR coated array is approximately 40W. By using an external V-shape cavity design, we experimentally demonstrated a coherently combined beam at the output power of {approx}13 W with the 0.07 nm FWHM spectrum linewidth that is limited by the sensitivity of the optical spectrum analyzer. We also discuss coherent beam combining of high power broad area laser diode array in current driver pulse mode operation.

  14. In-volume heating using high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Denisenkov, Valentin S.; Kiyko, Vadim V.; Vdovin, Gleb V.

    2015-03-01

    High-power lasers are useful instruments suitable for applications in various fields; the most common industrial applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating source for food industry. Current heating processes use surface heating with different approaches to make the heat distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media (vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out several pilot experiments with high-power diodes heating the chosen media.

  15. Department of Defense high power laser program guidance

    NASA Astrophysics Data System (ADS)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  16. High-Power Fiber Lasers for Directed-Energy Applications

    DTIC Science & Technology

    2008-01-01

    demonstrated in a moder- ately turbulent environment. HIgH-PowEr FIbEr LAsErs Although a number of companies manufacture high-power fiber lasers , IPG ...in approximately one year. Multi- kilowatt , single-mode fiber lasers are robust, compact, and have high wall- plug efficiency, random polarization...and large band- width (~0.1%). A 1 kW, single-mode IPG fiber laser module, operating at wavelength l = 1.075 μm, exclud- ing power supply, measures w

  17. High-power diode-pumped Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Schellhorn, M.

    2008-04-01

    A high-power, continuous-wave 3.5% Tm3+ doped LiYF4 (Tm:YLF) laser has been developed. Using two Tm:YLF rods in a single cavity, 55 W of laser output at 1910 nm was obtained with a slope efficiency of 49%. The M2 factor was found to be <3. With a single Tm:YLF rod, a maximum laser power of 30 W was obtained with a slope efficiency of 50%. The laser was tuned to the peak absorption wavelength of Ho:YAG of 1907.5 nm by an intracavity quartz etalon with an output power loss < 1 W.

  18. Welding with High-power Lasers: Trends and Developments

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Gumenyuk, A.; Rethmeier, M.

    High-power laser beam welding became new stimuli within the last 10 years due to the availability of a new generation of high brightness multi kilowatt solid state lasers. In the welding research new approaches have been developed to establish reliable and praxis oriented welding processes meeting the demands of modern industrial applications during this time. The paper focuses on some of the current scientific and technological aspects in this research field like hybrid laser arc welding, simulation techniques, utilization of electromagnetic fields or reduced pressure environment for laser beam welding processes, which contributed to the further development of this technology or will play a crucial role in its further industrial implementation.

  19. High-power synchronously pumped femtosecond Raman fiber laser.

    PubMed

    Churin, D; Olson, J; Norwood, R A; Peyghambarian, N; Kieu, K

    2015-06-01

    We report a high-power synchronously pumped femtosecond Raman fiber laser operating in the normal dispersion regime. The Raman laser is pumped by a picosecond Yb(3+)-doped fiber laser. It produces highly chirped pulses with energy up to 18 nJ, average power of 0.76 W and 88% efficiency. The pulse duration is measured to be 147 fs after external compression. We observed two different regimes of operation of the laser: coherent and noise-like regime. Both regimes were experimentally characterized. Numerical simulations are in a good agreement with experimental results.

  20. Diamond optical components for high-power and high-energy laser applications

    NASA Astrophysics Data System (ADS)

    Anoikin, Eugene; Muhr, Alexander; Bennett, Andrew; Twitchen, Daniel; de Wit, Henk

    2015-02-01

    High-power and high-energy laser systems have firmly established their industrial presence with applications that span materials processing; high - precision and high - throughput manufacturing; semiconductors, and defense. Along with high average power CO2 lasers operating at wavelengths of ~ 10 microns, solid state lasers and fiber lasers operating at ~ 1 micron wavelength are now increasingly being used, both in the high average power and high energy pulse regimes. In recent years, polycrystalline diamond has become the material of choice when it comes to making optical components for multi-kilowatt CO2 lasers at 10 micron, outperforming ZnSe due to its superior thermo-mechanical characteristics. For 1 micron laser systems, fused silica has to date been the most popular optical material owing to its outstanding optical properties. This paper characterizes high - power / high - energy performance of anti-reflection coated optical windows made of different grades of diamond (single crystal, polycrystalline) and of fused silica. Thermo-optical modeling results are also presented for water cooled mounted optical windows. Laser - induced damage threshold tests are performed and analyzed. It is concluded that diamond is a superior optical material for working with extremely high-power and high-energy laser beams at 1 micron wavelength.

  1. High Power Laser Hybrid Welding - Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Nielsen, Steen Erik

    High power industrial lasers at power levels up to 100 kW is now available on the market. Therefore, welding of thicker materials has become of interest for the heavy metal industry e.g. shipyards and wind mill producers. Further, the power plant industry, producers of steel pipes, heavy machinery and steel producers are following this new technology with great interest. At Lindø Welding Technology (LWT), which is a subsidiary to FORCE Technology, a 32-kwatt disc laser is installed. At this laser facility, welding procedures related to thick section steel applications are developed. Material thicknesses between 40 and 100 mm are currently of interest. This paper describes some of the challenges that are related to the development of the high power hybrid laser welding process as well as to the perspectives for the technology as a production tool for the heavy metal industry.

  2. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  3. High-power disk lasers: advances and applications

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ryba, Tracey; Holzer, Marco

    2012-03-01

    Though the genesis of the disk laser concept dates to the early 90's, the disk laser continues to demonstrate the flexibility and the certain future of a breakthrough technology. On-going increases in power per disk, and improvements in beam quality and efficiency continue to validate the genius of the disk laser concept. As of today, the disk principle has not reached any fundamental limits regarding output power per disk or beam quality, and offers numerous advantages over other high power resonator concepts, especially over monolithic architectures. With about 2,000 high power disk lasers installations, and a demand upwards of 1,000 lasers per year, the disk laser has proven to be a robust and reliable industrial tool. With advancements in running cost, investment cost and footprint, manufacturers continue to implement disk laser technology with more vigor than ever. This paper will explain recent advances in disk laser technology and process relevant features of the laser, like pump diode arrangement, resonator design and integrated beam guidance. In addition, advances in applications in the thick sheet area and very cost efficient high productivity applications like remote welding, remote cutting and cutting of thin sheets will be discussed.

  4. High power low cost drive laser for LPP source

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor V.; Hansson, Björn A. M.; Böwering, Norbert R.; Ershov, Alex I.; Partlo, William N.; Fleurov, Vladimir B.; Khodykin, Oleh V.; Bykanov, Alexander N.; Rettig, Curtis L.; Hoffman, Jerzy R.; Vargas L., Ernesto; Chavez, Juan A.; Marx, William F.; Brandt, David C.

    2006-03-01

    We report on the approach for a high-power high-beam-quality drive laser system that is used for a laser-produced plasma (LPP) EUV source. Cymer has conducted research on a number of solutions for a multi-kW drive laser system that satisfy high volume production requirements. Types of lasers to be presented include XeF at 351 nm and CO II at 10.6 micron. We report on a high efficiency XeF amplifier with a 3rd harmonic Nd:YLF master oscillator operated in the 6 to 8 kHz range and a CO II laser system with Q-switched cavity dumped master oscillator and RF pumped fast axial flow amplifiers operated in the 10 to 100 kHz range. CO II laser short pulse gain and optical isolation techniques are reported. Optical performance data and design features of the drive laser system are discussed, as well as a path to achieve output power scaling to meet high volume manufacturing (HVM) requirements and beyond. Additionally, the electrical efficiency as a component of cost of operation is presented. Development of a drive laser with sufficient output power, high beam quality, and economical cost of operation is critical to the successful implementation of a laser-produced-plasma (LPP) EUV source for HVM applications. Cymer has conducted research on a number of solutions to this critical need. We report our progress on development of a high power system with two gas-discharge power amplifiers to produce high output power with high beam quality. We provide optical performance data and design features of the drive laser as well as a path to output power scaling to meet HVM requirements. Development of a drive laser for LPP EUV source is a challenging task. It requires multi-kW laser output power with short pulse duration and diffraction limited beam quality. In addition, this system needs to be very reliable and cost-efficient to satisfy industry requirements for high volume integrated circuit manufacturing. Feasibility studies of high power laser solutions that utilize proven laser

  5. Long distance high power optical laser fiber break detection and continuity monitoring systems and methods

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Faircloth, Brian O.; Zediker, Mark S.

    2016-02-23

    A monitoring and detection system for use on high power laser systems, long distance high power laser systems and tools for performing high power laser operations. In particular, the monitoring and detection systems provide break detection and continuity protection for performing high power laser operations on, and in, remote and difficult to access locations.

  6. Wavelength dependency in high power laser cutting and welding

    NASA Astrophysics Data System (ADS)

    Havrilla, David; Ziermann, Stephan; Holzer, Marco

    2012-03-01

    Laser cutting and welding have been around for more than 30 years. Within those three decades there has never been a greater variety of high power laser types and wavelengths to choose from than there is today. There are many considerations when choosing the right laser for any given application - capital investment, cost of ownership, footprint, serviceability, along with a myriad of other commercial & economic considerations. However, one of the most fundamental questions that must be asked and answered is this - "what type of laser is best suited for the application?". Manufacturers and users alike are realizing what, in retrospect, may seem obvious - there is no such thing as a universal laser. In many cases there is one laser type and wavelength that clearly provides the highest quality application results. This paper will examine the application fields of high power, high brightness 10.6 & 1 micron laser welding & cutting and will provide guidelines for selecting the laser that is best suited for the application. Processing speed & edge quality serve as key criteria for cutting. Whereas speed, seam quality & spatter ejection provide the paradigm for welding.

  7. High power continuous-wave Alexandrite laser with green pump

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2016-07-01

    We report on a continuous-wave (CW) Alexandrite (Cr:BeAl2O4) laser, pumped by a high power green source at 532 nm with a diffraction limited beam. An output power of 2.6 W at 755 nm, a slope efficiency of 26%, and wavelength tunability of 85 nm have been achieved using 11 W of green pump. To the best of our knowledge, this is the highest CW output power of a high brightness laser pumped Alexandrite laser reported to date. The results obtained in this experiment can lead to the development of a high power tunable CW and ultrafast sources of the near-infrared or ultraviolet radiation through frequency conversion.

  8. Highly-efficient high-power pumps for fiber lasers

    NASA Astrophysics Data System (ADS)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Komissarov, A.; Trubenko, P.; Miftakhutdinov, D.; Berishev, I.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2017-02-01

    We report on high efficiency multimode pumps that enable ultra-high efficiency high power ECO Fiber Lasers. We discuss chip and packaged pump design and performance. Peak out-of-fiber power efficiency of ECO Fiber Laser pumps was reported to be as high as 68% and was achieved with passive cooling. For applications that do not require Fiber Lasers with ultimate power efficiency, we have developed passively cooled pumps with out-of-fiber power efficiency greater than 50%, maintained at operating current up to 22A. We report on approaches to diode chip and packaged pump design that possess such performance.

  9. High power laser having a trivalent liquid host

    SciTech Connect

    Ault, Earl R.

    2005-08-16

    A laser having a lasing chamber and a semiconductor pumping device with trivalent titanium ions dissolved in a liquid host within the lasing chamber. Since the host is a liquid, it can be removed from the optical cavity when it becomes heated avoiding the inevitable optical distortion and birefringence common to glass and crystal hosts.

  10. Time-resolved far-field analysis of a high power single emitter laser diode

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald M., Jr.; Unge, Glenn L.

    1992-01-01

    A system was developed which is capable of measuring the time-resolved far-field radiation patterns from a high-power semiconductor laser under intensity modulated conditions. Angular steering of the fundamental spatial mode was observed, with pointing variations as large as 0.5 deg, or 7.5 percent of the beamwidth, during the time of the optical pulse. The variations in pointing angle were directly related to gradients in the transverse index profile of the laser, which may oscillate based on lateral spatial hole burning of the gain and carrier density.

  11. High-power YAG laser and its applications

    NASA Astrophysics Data System (ADS)

    Sato, S.; Tsuchiya, Kazuyuki; Owaki, Katsura; Morita, Ichiro

    2000-02-01

    Laser beams have been noticed as new heat resources with high energy concentration, which are different from plasma and arc. Conventionally, the only kW class industrial laser has been a carbon dioxide (CO2) laser. However, recently, several new high power lasers other than CO2 laser have been developed so that new methods of laser material processing have come out. As for YAG lasers, formerly, cw or pulse YAG lasers of several hundreds W class were used for welding or cutting of electrical appliants or cutting of thin metal plates. Now, the power has been raised to 5 - 6 kW, which enables YAG lasers to apply wider applications of material processing in many industrial fields, such as automobile industries, heavy industries and so on. It is a flexible fiber delivery that is the most remarkable advantage of YAG laser, which can be applied to ordinary machinery tools and robotic systems and makes it possible to deliver laser power to remote locations. Moreover, a shorter wavelength (1.06 micrometer) of YAG lasers than that of CO2 lasers is appropriate to metal processing. Figure 1 shows an example of YAG laser processing system utilizing those advantages. Also in IHI, the processing with YAG lasers has been studied for their practical application which has already succeeded in some sections such as cladding, repair welding and subdividing of nuclear power plants making use of YAG lasers' properties of fiber delivery of beam. Moreover, underwater processing technique is studied for practical use. In this paper, the examples of YAG laser application technology were described.

  12. Welding of aluminum alloy with high power direct diode laser

    NASA Astrophysics Data System (ADS)

    Abe, Nobuyuki; Morikawa, Atsuhito; Tsukamoto, Masahiro; Maeda, Koichi; Namba, Keizo

    2003-06-01

    Characterized by high conversion efficiency, small size, light weight and a long lifetime, high power diode lasers are currently being developed for application to various types of metal fabrication, such as welding. In this report, a 4kW high power direct diode laser was used to weld aluminum alloys, which are the focus of increasing attention from the automobile industry because of their light weight, high formability and easy recyclability. The applicability of a direct diode laser to aluminum alloy bead-on plate, butt and lap-fillet welding was studied under various welding conditions. A sound bead without cracks was successfully obtained when 1 mm thick aluminum alloy was welded by bead-on welding at a speed of 12m/min. Moreover, the bead cross section was heat conduction welding type rather than the keyhole welding type of conventional laser welding. Investigation of the welding phenomena with a high-speed video camera showed no spattering or laser plasma, so there was no problem with laser plasma damaging the focusing lens despite the diode laser's short focusing distance.

  13. High power, high contrast hybrid femtosecond laser systems

    NASA Astrophysics Data System (ADS)

    Dabu, Razvan

    2017-06-01

    For many research applications a very high laser intensity of more than 1022 W/cm2 in the focused beam is required. If a laser intensity of about 1011W/cm2 is reached on the target before the main laser pulse, the generated pre-plasma disturbs the experiment. High power femtosecond lasers must be tightly focused to get high intensity and in the same time must have a high enough intensity contrast of the temporally compressed amplified pulses. Reaching an intensity contrast in the range of 1012 represents a challenging task for a Ti:sapphire CPA laser. Hybrid femtosecond lasers combine optical parametric chirped pulsed amplification (OPCPA) in nonlinear crystals with the chirped pulse amplification (CPA) in laser active media. OPCPA provides large amplification spectral bandwidth and improves the intensity contrast of the amplified pulses. A key feature of these systems consists in the adaptation of the parametric amplification phase-matching bandwidth of nonlinear crystals to the spectral gain bandwidth of laser amplifying Ti:sapphire crystals. OPCPA in BBO crystals up to mJ energy level in the laser Front-End, followed by CPA up to ten/hundred Joules in large aperture Ti:sapphire crystals, represents a suitable solution for PW-class femtosecond lasers. The configuration and expected output beam characteristics of the hybrid amplification 2 × 10 PW ELI-NP laser are described.

  14. Heat transfer and thermal lensing in large-mode high-power laser diodes

    NASA Astrophysics Data System (ADS)

    Chan, Paddy K. L.; Pipe, Kevin P.; Plant, Jason J.; Swint, Reuel B.; Juodawlkis, Paul W.

    2007-02-01

    In semiconductor lasers, key parameters such as threshold current, efficiency, wavelength, and lifetime are closely related to temperature. These dependencies are especially important for high-power lasers, in which device heating is the main cause of decreased performance and failure. Heat sources such as non-radiative recombination in the active region typically cause the temperature to be highly peaked within the device, potentially leading to large refractive index variation with bias. Here we apply high-resolution charge-coupled device (CCD) thermoreflectance to generate two dimensional (2D) maps of the facet temperatures of a high power laser with 500 nm spatial resolution. The device under test is a slab-coupled optical waveguide laser (SCOWL) which has a large single mode and high power output. These characteristics favor direct butt-coupling the light generated from the laser diode into a single mode optical fiber. From the high spatial resolution temperature map, we can calculate the non-radiative recombination power and the optical mode size by thermal circuit and finite-element model (FEM) respectively. Due to the thermal lensing effect at high bias, the size of the optical mode will decrease and hence the coupling efficiency between the laser diode and the single mode fiber increases. At I=10I th, we found that the optical mode size has 20% decrease and the coupling efficiency has 10% increase when comparing to I=2I th. This suggests SCOWL is very suitable fr optical communication system.

  15. High Energy Density Sciences with High Power Lasers at SACLA

    NASA Astrophysics Data System (ADS)

    Kodama, Ryosuke

    2013-10-01

    One of the interesting topics on high energy density sciences with high power lasers is creation of extremely high pressures in material. The pressures of more than 0.1 TPa are the energy density corresponding to the chemical bonding energy, resulting in expectation of dramatic changes in the chemical reactions. At pressures of more than TPa, most of material would be melted on the shock Hugoniot curve. However, if the temperature is less than 1eV or lower than a melting point at pressures of more than TPa, novel solid states of matter must be created through a pressured phase transition. One of the interesting materials must be carbon. At pressures of more than TPa, the diamond structure changes to BC and cubic at more than 3TPa. To create such novel states of matter, several kinds of isentropic-like compression techniques are being developed with high power lasers. To explore the ``Tera-Pascal Science,'' now we have a new tool which is an x-ray free electron laser as well as high power lasers. The XFEL will clear the details of the HED states and also efficiently create hot dense matter. We have started a new project on high energy density sciences using an XFEL (SACLA) in Japan, which is a HERMES (High Energy density Revolution of Matter in Extreme States) project.

  16. High-power thulium lasers on a silicon photonics platform.

    PubMed

    Li, Nanxi; Purnawirman, P; Su, Zhan; Salih Magden, E; Callahan, Patrick T; Shtyrkova, Katia; Xin, Ming; Ruocco, Alfonso; Baiocco, Christopher; Ippen, Erich P; Kärtner, Franz X; Bradley, Jonathan D B; Vermeulen, Diedrik; Watts, Michael R

    2017-03-15

    Mid-infrared laser sources are of great interest for various applications, including light detection and ranging, spectroscopy, communication, trace-gas detection, and medical sensing. Silicon photonics is a promising platform that enables these applications to be integrated on a single chip with low cost and compact size. Silicon-based high-power lasers have been demonstrated at 1.55 μm wavelength, while in the 2 μm region, to the best of our knowledge, high-power, high-efficiency, and monolithic light sources have been minimally investigated. In this Letter, we report on high-power CMOS-compatible thulium-doped distributed feedback and distributed Bragg reflector lasers with single-mode output powers up to 267 and 387 mW, and slope efficiencies of 14% and 23%, respectively. More than 70 dB side-mode suppression ratio is achieved for both lasers. This work extends the applicability of silicon photonic microsystems in the 2 μm region.

  17. Collimation optics for high power blue laser diodes

    NASA Astrophysics Data System (ADS)

    Huber, M.; Forrer, H.; Wuest, P.; Moser, H.; Forrer, M.

    2017-02-01

    Similar to the well-established high power laser diodes in the infrared wavelength range, the laser diodes in the blue wavelength range require tailored optics for beam shaping, to make the light usable for a variety of applications. High power laser diode arrays or single emitters require fast and slow axis optical collimation for further transport or photonics applications using high power laser radiation. With increasing requirements in higher brightness for slow axis collimation different engineering solutions exist. By using novel production technologies, e.g. precision molding, approaches that were considered too expensive for mass production become available to broad application fields. Here we report about the benefits of molded refractive, freeform slow axis collimation optics and compare them to the ubiquitous standard circular cylindrical, as well as acircular cylindrical slow axis collimation optics. By using refractive free form slow axis collimation optics it is possible to achieve significantly better brightness compared to circular cylindrical or acircular cylindrical slow axis collimation optics.

  18. Cascaded combiners for a high power CW fiber laser

    NASA Astrophysics Data System (ADS)

    Tan, Qirui; Ge, Tingwu; Zhang, Xuexia; Wang, Zhiyong

    2016-02-01

    We report cascaded combiners for a high power continuous wave (CW) fiber laser in this paper. The cascaded combiners are fabricated with an improved lateral splicing process. During the fusing process, there is no stress or tension between the pump fiber and the double-cladding fiber. Thus, the parameters of the combiner are better than those that have been reported. The coupling efficiency is 98.5%, and the signal insertion loss is 1%. The coupling efficiency of the cascaded combiners is 97.5%. The pump lights are individually coupled into the double-cladding fiber via five combiners. The thermal effects cannot cause damage to the combiners and the cascaded combiners can operate stably in high power CW fiber lasers. We also develop a high power CW fiber laser that generates a maximum 780 W of CW signal power at 1080 nm with 71% optical-to-optical conversion efficiency. The fiber laser is pumped via five intra-cavity cascaded combiners and five extra-cavity cascaded combiners with a maximum pump power of 1096 W and a pump wavelength of 975 nm.

  19. Optical fiber transmission of high power excimer laser radiation.

    PubMed

    Pini, R; Salimbeni, R; Vannini, M

    1987-10-01

    An experimental investigation of optical fiber transmission of high power excimer laser radiation is presented. Different types of commercially available UV fiber have been tested, measuring energy handling capabilities and transmission losses of short samples at the XeCl (308-nm) and KrF (249-nm) wavelengths by using a standard excimer laser. A power density dependent damage process has been observed over 1 GW/cm(2). Fiber losses due to different radii of curvature are also reported. Experimental results have been examined to evaluate the effectiveness of excimer laser transmission through optical fibers for such medical uses as laser angioplasty, including also a comparison between the use of KrF or XeCl emission lines for this purpose. Finally, optimum excimer laser characteristics to increase the energy coupling in fibers are discussed.

  20. High power and single mode quantum cascade lasers.

    PubMed

    Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome

    2016-05-16

    We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.

  1. Automatic alignment technology in high power laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Dai, Wan-jun; Wang, Yuan-cheng; Lian, Bo; Yang, Ying; Yuan, Qiang; Deng, Xue-wei; Zhao, Jun-pu; Zhou, Wei

    2015-02-01

    The high power solid laser system is becoming larger and higher energy that requires the beam automatic alignment faster and higher precision to ensure safety running of laser system and increase the shooting success rate. This paper take SGIII laser facility for instance, introduce the basic principle of automatic alignment of large laser system. The automatic alignment based on digital image processing technology which use the imaging of seven-classes spatial filter pinholes for feedback to working. Practical application indicates that automatic alignment system of cavity mirror in SGIII facility can finish the work in 210 seconds of four bundles and will not exceed 270 seconds of all six bundles. The alignment precision promoted to 2.5% aperture from 8% aperture. The automatic alignment makes it possible for fast and safety running of lager laser system.

  2. Modeling compact high power fiber lasers and vecsels

    NASA Astrophysics Data System (ADS)

    Li, Hongbo

    Compact high power fiber lasers and the vertical-external-cavity surface-emitting lasers (VECSELs) are promising candidates for high power laser sources with diffraction-limited beam quality and are currently the subject of intensive research and development. Here three large mode area fiber lasers, namely, the photonic crystal fiber (PCF) laser, the multicore fiber (MCF) laser, and the multimode interference (MMI) fiber laser, as well as the VECSEL are modeled and designed. For the PCF laser, the effective refractive index and the effective core radius of the PCF are investigated using vectorial approaches and reformulated. Then, the classical step-index fiber theory is extended to PCFs, resulting in a highly efficient vectorial effective-index method for the design and analysis of PCFs. The new approach is employed to analyze the modal properties of the PCF lasers with depressed-index cores and to effectively estimate the number of guided modes for PCFs. The MCF laser, consisting of an active MCF and a passive coreless fiber, is modeled using the vectorial mode expansion method developed in this work. The results illustrate that the mode selection in the MCF laser by the coreless fiber section is determined by the MMI effect, not the Talbot effect. Based on the MMI and self-imaging in multimode fibers, the vectorial mode expansion approach is employed to design the first MMI fiber laser demonstrated experimentally. For the design and modeling of VECSELs, the optical, thermal, and structural properties of common material systems are investigated and the most reliable material models are summarized. The nanoscale heat transport theory is applied for the first time, to the best of my knowledge, to design and model VECSELs. In addition, the most accurate strain compensation approach is selected for VECSELs incorporating strained quantum wells to maintain structural stability. The design principles for the VECSEL subcavity are elaborated and applied to design a 1040nm

  3. Reliability of high power laser diodes with external optical feedback

    NASA Astrophysics Data System (ADS)

    Bonsendorf, Dennis; Schneider, Stephan; Meinschien, Jens; Tomm, Jens W.

    2016-03-01

    Direct diode laser systems gain importance in the fields of material processing and solid-state laser pumping. With increased output power, also the influence of strong optical feedback has to be considered. Uncontrolled optical feedback is known for its spectral and power fluctuation effects, as well as potential emitter damage. We found that even intended feedback by use of volume Bragg gratings (VBG) for spectral stabilization may result in emitter lifetime reduction. To provide stable and reliable laser systems design, guidelines and maximum feedback ratings have to be found. We present a model to estimate the optical feedback power coupled back into the laser diode waveguide. It includes several origins of optical feedback and wide range of optical elements. The failure thresholds of InGaAs and AlGaAs bars have been determined not only at standard operation mode but at various working points. The influence of several feedback levels to laser diode lifetime is investigated up to 4000h. The analysis of the semiconductor itself leads to a better understanding of the degradation process by defect spread. Facet microscopy, LBIC- and electroluminescence measurements deliver detailed information about semiconductor defects before and after aging tests. Laser diode protection systems can monitor optical feedback. With this improved understanding, the emergency shutdown threshold can be set low enough to ensure laser diode reliability but also high enough to provide better machine usability avoiding false alarms.

  4. A 3000W 808nm QCW G-stack semiconductor laser array

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Hou, Dong; Wang, Zhenfu; Xiong, Lingling; Liu, Hui; Nie, Zhiqiang; Liu, Xingsheng

    2015-02-01

    With the improvement of output power, efficiency and reliability, high power semiconductor lasers have been applied in more and more fields. In this paper, a conduction-cooled, high peak output power semiconductor laser array was studied and developed. The structure and operation parameters of G-Stack semiconductor laser array were designed and optimized using finite element method (FEM). A Quasi-continuous-wave (QCW) conduction-cooled G-Stack semiconductor laser array with a narrow spectrum width was fabricated successfully.

  5. Nonlinearity Measurements of High-Power Laser Detectors at NIST

    PubMed Central

    Li, Xiaoyu; Scott, Thomas; Yang, Shao; Cromer, Chris; Dowell, Marla

    2004-01-01

    We briefly explain the fundamentals of detector nonlinearity applicable to both electrical and optical nonlinearity measurements. We specifically discuss the attenuation method for optical nonlinearity measurement that the NIST system is based upon, and we review the possible sources of nonlinearity inherent to thermal detectors used with high-power lasers. We also describe, in detail, the NIST nonlinearity measurement system, in which detector responsivity can be measured at wavelengths of 1.06 µm and 10.6 µm, over a power range from 1 W to 1000 W. We present the data processing method used and show measurement results depicting both positive and negative nonlinear behavior. The expanded uncertainty of a typical NIST high-power laser detector calibration including nonlinearity characterization is about 1.3 %. PMID:27366622

  6. Atmospheric Propagation and Combining of High-Power Lasers

    DTIC Science & Technology

    2015-09-08

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--15-9646 Atmospheric Propagation and Combining of High-Power Lasers W. NelsoN...AUTHOR( S ) 8. PERFORMING ORGANIZATION REPORT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM( S )9. SPONSORING...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 11. SPONSOR / MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14

  7. Transmission grating stretcher for contrast enhancement of high power lasers.

    PubMed

    Tang, Yunxin; Hooker, Chris; Chekhlov, Oleg; Hawkes, Steve; Collier, John; Rajeev, P P

    2014-12-01

    We propose, for the first time, a transmission grating stretcher for high power lasers and demonstrate its superiority over conventional, reflective gold grating stretchers in terms of pulse temporal quality. We show that, compared to a conventional stretcher with the same stretching factor, the transmission-grating based stretcher yields more than an order of magnitude improvement in the contrast pedestal. We have also quantitatively characterized the roughness of the grating surfaces and estimated its impact on the contrast pedestal.

  8. Active cooling solutions for high power laser diodes stacks

    NASA Astrophysics Data System (ADS)

    Karni, Yoram; Klumel, Genady; Levy, Moshe; Berk, Yuri; Openhaim, Yaki; Gridish, Yaakov; Elgali, Asher; Avisar, Meir; Blonder, Moshe; Sagy, Hila; Gertsenshtein, Alex

    2008-02-01

    High power water cooled diode lasers find increasing demand in biomedical, cosmetic and industrial applications, where very high brightness and power are required. The high brightness is achieved either by increasing the power of each bar or by reducing the emitting area of the stacks. Two new products will be presented: Horizontal CW stacks with output power as high as 1kW using 80 W bars with emitting area width as low as 50 μm Vertical QCW stacks with output power as high as 1.2kW using 120 W bars. Heat removal from high power laser stacks often requires microchannel coolers operated with finely filtered deionized (DI) water. However, for certain industrial applications the reliability of this cooling method is widely considered insufficient due to leakage failures caused the highly corrosive DI water. Two solutions to the above problem will be discussed. A microchannel cooler-based package, which vastly reduces the corrosion problem, and a novel high-power laser diode stack that completely eliminates it. The latter solution is especially effective for pulsed applications in high duty cycle range.

  9. ARTICLES: High-power laser radiation damage to transparent insulators

    NASA Astrophysics Data System (ADS)

    Gavrilov, B. G.; Kulikov, V. I.; Pedanov, V. V.

    1982-11-01

    An experimental investigation was made of the kinetics of the post-breakdown phenomena accompanying the focusing of high-power laser radiation inside transparent insulators (using the example of single-crystal potassium alum). Measurements were made of the rate of growth of the damage region and of the propagation velocity of the elastic wave, its amplitude and wavelength. The dimensions of the breakdown region were compared with those of the damage zone in the insulator. An analysis was made of the laser radiation energy distribution in the observed phenomenon.

  10. High-Power Lasers for Science and Society

    SciTech Connect

    Siders, C. W.; Haefner, C.

    2016-10-05

    Since the first demonstration of the laser in 1960 by Theodore Maiman at Hughes Research Laboratories, the principal defining characteristic of lasers has been their ability to focus unprecedented powers of light in space, time, and frequency. High-power lasers have, over the ensuing five and a half decades, illuminated entirely new fields of scientific endeavor as well as made a profound impact on society. While the United States pioneered lasers and their early applications, we have been eclipsed in the past decade by highly effective national and international networks in both Europe and Asia, which have effectively focused their energies, efforts, and resources to achieve greater scientific and societal impact. This white paper calls for strategic investment which, by striking an appropriate balance between distributing our precious national funds and establishing centers of excellence, will ensure a broad pipeline of people and transformative ideas connecting our world-leading universities, defining flagship facilities stewarded by our national laboratories, and driving innovation across industry, to fully exploit the potential of high-power lasers.

  11. Further development of high-power pump laser diodes

    NASA Astrophysics Data System (ADS)

    Schmidt, Berthold; Lichtenstein, Norbert; Sverdlov, Boris; Matuschek, Nicolai; Mohrdiek, Stefan; Pliska, Tomas; Mueller, Juergen; Pawlik, Susanne; Arlt, Sebastian; Pfeiffer, Hans-Ulrich; Fily, Arnaud; Harder, Christoph

    2003-12-01

    AlGaAs/InGaAs based high power pump laser diodes with wavelength of around 980 nm are key products within erbium doped fiber amplifiers (EDFA) for today's long haul and metro-communication networks, whereas InGaAsP/InP based laser diodes with 14xx nm emission wavelength are relevant for advanced, but not yet widely-used Raman amplifiers. Due to the changing industrial environment cost reduction becomes a crucial factor in the development of new, pump modules. Therefore, pump laser chips were aggressively optimized in terms of power conversion and thermal stability, which allows operation without active cooling at temperatures exceeding 70°C. In addition our submarine-reliable single mode technology was extended to high power multi-mode laser diodes. These light sources can be used in the field of optical amplifiers as well as for medical, printing and industrial applications. Improvements of pump laser diodes in terms of power conversion efficiency, fiber Bragg grating (FBG) locking performance of single mode devices, noise reduction and reliability will be presented.

  12. High power diode pumped solid state laser development at Lawrence Livermore National Laboratory

    SciTech Connect

    Solarz, R.; Albrecht, G.; Hackel, L.

    1994-03-01

    The authors recent developments in high powered diode pumped solid state lasers at Lawrence Livermore National Laboratory. Over the past year the authors have made continued improvements to semiconductor pump array technology which includes the development of higher average power and lower cost pump modules. They report the performance of high power AlGaAs, InGaAs, and AlGaInP arrays. They also report on improvement to the integrated micro-optics designs in conjunction with lensing duct technology which gives rise to very high performance end pumping designs for solid state lasers which have major advantages which they detail. Substantial progress on beam quality improvements to near the diffraction limit at very high power have also been made and will be reported. They also will discuss recent experiments on high power non-linear materials for q-switches, harmonic converters, and parametric oscillators. Advances in diode pumped devices at LLNL which include tunable Cr:LiSrAlF{sub 6}, mid-IR Er:YAG, holmium based lasers and other developments will also be outlined. Concepts for delivering up to 30 kilowatts of average power from a DPSSL oscillator will be described.

  13. Innovative high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kuper, J. W.; Lotito, B. J.; Bennett, L. L.

    2007-04-01

    In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

  14. Innovative high-power CW Yb:YAG cryogenic laser

    NASA Astrophysics Data System (ADS)

    Brown, D. C.; Singley, J. M.; Yager, E.; Kuper, J. W.; Lotito, B. J.; Bennett, L. L.

    2007-02-01

    In this paper we discuss a CW Yb:YAG cryogenic laser program that has resulted in the design and demonstration of a novel high power laser. Cryogenically-cooled crystalline solid-state lasers, and Yb:YAG lasers in particular, are attractive sources of scalable CW output power with very high wallplug efficiency and excellent beam-quality that is independent of the output power. This laser consists of a distributed array of seven highly-doped thin Yb:YAG-sapphire disks in a folded multiple-Z resonator. Individual disks are pumped from opposite sides using fiber-coupled ~ 30W 940nm pump diodes. The laser system we have constructed produces a near-diffraction-limited TEM 00 output beam with the aid of an active conduction-cooling design. In addition, the device can be scaled to very high average power in a MOPA configuration, by increasing the number and diameter of the thin disks, and by increasing the power of the pump diodes with only minor modifications to the current design. The thermal and optical benefits of cryogenically-cooled solid-state lasers will be reviewed, scalability of our Yb:YAG cryogenic laser design will be discussed, and we will present experimental results including output power, slope and optical-optical efficiencies, and beam-quality.

  15. Coherent beam combining architectures for high power tapered laser arrays

    NASA Astrophysics Data System (ADS)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  16. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  17. High-power diode lasers for optical communications applications

    NASA Technical Reports Server (NTRS)

    Carlin, D. B.; Goldstein, B.; Channin, D. J.

    1985-01-01

    High-power, single-mode, double-heterojunction AlGaAs diode lasers are being developed to meet source requirements for both fiber optic local area network and free space communications systems. An individual device, based on the channeled-substrate-planar (CSP) structure, has yielded single spatial and longitudinal mode outputs of up to 90 mW CW, and has maintained a single spatial mode to 150 mW CW. Phase-locked arrays of closely spaced index-guided lasers have been designed and fabricated with the aim of multiplying the outputs of the individual devices to even higher power levels in a stable, single-lobe, anastigmatic beam. The optical modes of the lasers in such arrays can couple together in such a way that they appear to be emanating from a single source, and can therefore be efficiently coupled into optical communications systems. This paper will review the state of high-power laser technology and discuss the communication system implications of these devices.

  18. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  19. High power free-electron laser concepts and problems

    SciTech Connect

    Goldstein, J.C.

    1995-03-01

    Free-electron lasers (FELs) have long been thought to offer the potential of high average power operation. That potential exists because of several unique properties of FELs, such as the removal of ``waste heat`` at the velocity of light, the ``laser medium`` (the electron beam) is impervious to damage by very high optical intensitites, and the technology of generating very high average power relativistic electron beams. In particular, if one can build a laser with a power extraction efficiency 11 which is driven by an electron beam of average Power P{sub EB}, one expects a laser output power of P{sub L} = {eta} P{sub EB}. One approach to FEL devices with large values of {eta} (in excess of 10 %) is to use a ``tapered`` (or nonuniform) wiggler. This approach was followed at several laboratories during the FEL development Program for the Strategic Defense Initiative (SDI) project. In this paper, we review some concepts and technical requirements for high-power tapered-wiggler FELs driven by radio-frequency linear accelerators (rf-linacs) which were developed during the SDI project. Contributions from three quite different technologies - rf-accelerators, optics, and magnets - are needed to construct and operate an FEL oscillator. The particular requirements on these technologies for a high-power FEL were far beyond the state of the art in those areas when the SDI project started, so significant advances had to be made before a working device could be constructed. Many of those requirements were not clearly understood when the project started, but were developed during the course of the experimental and theoretical research for the project. This information can be useful in planning future high-power FEL projects.

  20. High-power diode lasers and their direct industrial applications

    NASA Astrophysics Data System (ADS)

    Loosen, Peter; Treusch, Hans-Georg; Haas, C. R.; Gardenier, U.; Weck, Manfred; Sinnhoff, V.; Kasperowski, S.; vor dem Esche, R.

    1995-04-01

    The paper summarizes activities of the two Fraunhofer-Institutes ILT and IPT concerning the development of high-power laser-diode stacks and their direct industrial applications. With microchannel coolers in copper technology and ultra-precision machined micro-optics a stack of 330 - 400 W total power with a maximum intensity of the focused beam of 2 104 W/cm2 has been built and tested in first applications. By further improvements of the lens-fabrication and -alignment technology as well as increase of the number of stacked diodes an output power in the kW-range and intensities up to about 105 W/cm2 shall be achieved in the near future. Applications of such laser sources in surface technology, in the processing of plastics, in laser-assisted machining and in brazing are discussed.

  1. Materials processing with a high power diode laser

    SciTech Connect

    Li, L.; Lawrence, J.; Spencer, J.T.

    1996-12-31

    This paper reports on work exploring the feasibility of a range of materials processing applications using a Diomed 60W diode laser delivered through a 600{mu}m diameter optical fibre to a 3 axis CNC workstation. The applications studied include: marking/engraving natural stones (marble and granite), marking ceramic tiles, sealing tile grouts, cutting and marking glass, marking/engraving wood, stripping paint and lacquer, and welding metallic wires. The study shows that even at the present limited power level of diode lasers, many materials processing applications can be accomplished with satisfactory results. Through the study an initial understanding of interaction of high power diode laser (HPDL) beam with various materials has been gained. Also, within the paper basic beam characteristics, and current R&D activities in HPDL technology and materials processing applications are reviewed.

  2. Annular resonators for high-power chemical lasers

    NASA Astrophysics Data System (ADS)

    Wade, Richard C.

    1993-08-01

    Resonators capable of extracting highly coherent energy from DF and HF chemical laser annular gain media have been under investigation for weapon application since 1974. This survey article traces the background of interest in these devices, describes the various concepts that have been experimentally and analytically investigated, and discusses the issues associated with their operation. From the discussion of issues, preferred concepts are selected. Applicability of these concepts to high-power operation is addressed through discussions of past and ongoing high-power demonstration programs and the issues facing their application to weapon sized devices capable of strategic and tactical missions such as ballistic missile defense (BMD), theater missile defense (TMD), and anti satellite (ASAT).

  3. High-Power Fiber Lasers Using Photonic Band Gap Materials

    NASA Technical Reports Server (NTRS)

    DiDomenico, Leo; Dowling, Jonathan

    2005-01-01

    High-power fiber lasers (HPFLs) would be made from photonic band gap (PBG) materials, according to the proposal. Such lasers would be scalable in the sense that a large number of fiber lasers could be arranged in an array or bundle and then operated in phase-locked condition to generate a superposition and highly directed high-power laser beam. It has been estimated that an average power level as high as 1,000 W per fiber could be achieved in such an array. Examples of potential applications for the proposed single-fiber lasers include welding and laser surgery. Additionally, the bundled fibers have applications in beaming power through free space for autonomous vehicles, laser weapons, free-space communications, and inducing photochemical reactions in large-scale industrial processes. The proposal has been inspired in part by recent improvements in the capabilities of single-mode fiber amplifiers and lasers to produce continuous high-power radiation. In particular, it has been found that the average output power of a single strand of a fiber laser can be increased by suitably changing the doping profile of active ions in its gain medium to optimize the spatial overlap of the electromagnetic field with the distribution of active ions. Such optimization minimizes pump power losses and increases the gain in the fiber laser system. The proposal would expand the basic concept of this type of optimization to incorporate exploitation of the properties (including, in some cases, nonlinearities) of PBG materials to obtain power levels and efficiencies higher than are now possible. Another element of the proposal is to enable pumping by concentrated sunlight. Somewhat more specifically, the proposal calls for exploitation of the properties of PBG materials to overcome a number of stubborn adverse phenomena that have impeded prior efforts to perfect HPFLs. The most relevant of those phenomena is amplified spontaneous emission (ASE), which causes saturation of gain and power

  4. Progress in efficiency-optimized high-power diode lasers

    NASA Astrophysics Data System (ADS)

    Pietrzak, A.; Hülsewede, R.; Zorn, M.; Hirsekorn, O.; Sebastian, J.; Meusel, J.; Hennig, P.; Crump, P.; Wenzel, H.; Knigge, S.; Maaßdorf, A.; Bugge, F.; Erbert, G.

    2013-10-01

    High-power diode lasers are highly efficient sources of optical energy for industrial and defense applications, either directly or as pump sources for solid state or fiber lasers. We review here how advances in diode laser design and device technology have enabled the performance to be continuously improved. An overview is presented of recent progress at JENOPTIK in the development of commercial diode lasers optimized for peak performance, robust high-yield manufacture and long lifetimes. These diode lasers are tailored to simultaneously operate with reduced vertical carrier leakage, low thermal and electrical resistance and low optical losses. In this way, the highest electro-optical efficiencies are sustained to high currents. For example, 940-nm bars with high fill factor are shown to deliver continuous wave (CW) output powers of 280 W with conversion efficiency of < 60%. These bars have a vertical far field angle with 95% power content of just 40°. In addition, 955-nm single emitters with 90μm stripe width deliver 12 W CW output with power conversion efficiency at the operating point of 69%. In parallel, the Ferdinand-Braun-Institut (FBH) is working to enable the next generation of high power diode lasers, by determining the key limitations to performance and by pioneering new technologies to address these limits. An overview of recent studies at the FBH will therefore also be presented. Examples will include structures with further reduced far field angles, higher lateral beam quality and increased peak power and efficiency. Prospects for further performance improvement will be discussed.

  5. Highly efficient and high-power diode-pumped femtosecond Yb:LYSO laser

    NASA Astrophysics Data System (ADS)

    Tian, Wenlong; Wang, Zhaohua; Zhu, Jiangfeng; Zheng, Lihe; Xu, Jun; Wei, Zhiyi

    2017-04-01

    A diode-pumped high-power femtosecond Yb:LYSO laser with high efficiency is demonstrated. With a semiconductor saturable absorber mirror for passive mode-locking and a Gires–Tournois interferometer mirror for intracavity dispersion compensation, stable mode-locking pulses of 297 fs duration at 1042 nm were obtained. The maximum average power of 3.07 W was realized under 5.17 W absorbed pump power, corresponding to as high as 59.4% opt–opt efficiency. The single pulse energy and peak power are about 35.5 nJ and 119.5 kW, respectively.

  6. Development of high-power copper vapor laser system

    NASA Astrophysics Data System (ADS)

    Kimura, Hironobu; Aoki, Nobutada; Kobayashi, Noriyasu; Konagai, Chikara; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    A high power copper vapor laser (CVL) system in master oscillator power amplifier configuration has been developed for laser isotope separation program in Japan. Maximum output power of 650 W has been successfully achieved with 9- cm diameter and 350 cm discharge length amplifier. Also MOPA output power of 2.4 kW has been demonstrated in small master oscillator with 4 cm bore and 4 stage power amplifier with 9 cm bore configuration. The authors developed a thermal calculation code to maintain an optimum copper vapor density throughout a large volume and a new thermal insulation structure design method has been proposed to combine two different heat insulators to make longitudinal temperature distribution of the laser tube as flat as possible. A CVL discharge circuit has been improved by applying an excellent magnetic switch which prove a approximately 90 kV-4000 A pulse to a CVL at 4.4 kHz repetition rate. This paper reports such CVL design methods together with the performance of the designed high power CVL system.

  7. Optical monitoring of high power direct diode laser cladding

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    Laser cladding is one of the most advanced surface modification techniques which can be used to build and repair high-value components. High power direct diode laser (HPDDL) offers unique quality and cost advantages over other lasers (CO2, Nd:YAG). Especially its rectangular laser beam with top-hat intensity distribution makes HPDDL an ideal tool for large area cladding. In order to utilize this technique successfully, the development of on-line monitoring and process control is necessary. In this study, an optical monitoring system consisting of a high-speed CCD camera, a pyrometer, and an infrared camera was used to analyze the mass- and heat-transfer in the cladding process. The particle transport in flight was viewed by a high-speed CCD camera; the interaction between powder flow and laser beam was observed by an infrared camera; and the thermal behavior of the molten pool was recorded by the pyrometer and the infrared camera. The effects of the processing parameters on the laser attenuation, particle heating and clad properties were investigated based on the obtained signals. The optical monitoring method improved the understanding about mutual interrelated phenomena in the cladding process.

  8. VACUUM WINDOW DESIGN FOR HIGH-POWER LASERS.

    SciTech Connect

    SHAFTAN, T.

    2005-04-21

    One of the problems in the high-power lasers design is in outcoupling of a powerful laser beam out of a vacuum volume into atmosphere. Usually the laser device is located inside a vacuum tank. The laser radiation is transported to the outside world through the transparent vacuum window. While considered transparent, some of the light passing through the glass is absorbed and converted to heat. For most applications, these properties are academic curiosities; however, in multi-kilowatt lasers, the heat becomes significant and can lead to a failure. The absorbed power can result in thermal stress, reduction of light transmission and, consequently, window damage. Modern optical technology has developed different types of glass (Silica, BK7, diamond, etc.) that have high thermal conductivity and damage threshold. However, for kilo- and megawatt lasers the issue still remains open. In this paper we present a solution that may relieve the heat load on the output window. We discuss advantages and issues of this particular window design.

  9. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  10. Design and comparison of laser windows for high-power lasers

    NASA Astrophysics Data System (ADS)

    Niu, Yanxiong; Liu, Wenwen; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    High-power laser systems are getting more and more widely used in industry and military affairs. It is necessary to develop a high-power laser system which can operate over long periods of time without appreciable degradation in performance. When a high-energy laser beam transmits through a laser window, it is possible that the permanent damage is caused to the window because of the energy absorption by window materials. So, when we design a high-power laser system, a suitable laser window material must be selected and the laser damage threshold of the window must be known. In this paper, a thermal analysis model of high-power laser window is established, and the relationship between the laser intensity and the thermal-stress field distribution is studied by deducing the formulas through utilizing the integral-transform method. The influence of window radius, thickness and laser intensity on the temperature and stress field distributions is analyzed. Then, the performance of K9 glass and the fused silica glass is compared, and the laser-induced damage mechanism is analyzed. Finally, the damage thresholds of laser windows are calculated. The results show that compared with K9 glass, the fused silica glass has a higher damage threshold due to its good thermodynamic properties. The presented theoretical analysis and simulation results are helpful for the design and selection of high-power laser windows.

  11. High-Power Thyratron-Type Switch For Laser Applications

    NASA Astrophysics Data System (ADS)

    Kirkman, George F.; Hartmann, Werner; Hsu, Tseng-Yang; Liou, Rong L.; Gundersen, Martin A.; Ingwersen, Pete; Merz, Spencer S.

    1989-04-01

    A review of recent progress in the development of the low-pressure (~27 Pa H2) glow discharge pulsed high-power (10~30kV) switch, the Back-Lighted Thyratron (BLT), is to be presented. The BLT operates with a glow discharge and utilizes a simple device geometry. New data on peak current capability, current rise rate, current reversal ability, life, repetition rate operation, and trigger efficiency and comparisons of delay and jitter with different trigger methods (flash-triggered, laser-triggered and electrically-triggered) are reported.

  12. Dichroic mirror for high power Nd:YAG laser

    SciTech Connect

    Dinca, A.; Lupei, V.; Miclea, P.T.; Dinca, M.P.

    1996-12-31

    The paper presents the design of a dichroic mirror used in a Nd:YAG high power laser to reflect the 1.44 {micro}m radiation and to transmit the 1.064 {micro}m one. In order to obtain a wide transmission band, all the solutions for matching basic stack with the substrate, consisting in a number of periods less or equal than three, were investigated and the best was selected. The solutions were obtained by analytical inversion of the equations for the three layer equivalent system.

  13. High-Power LOC Lasers: Synthesis and Mode Control

    DTIC Science & Technology

    1975-03-01

    Wright-Patterson AFB, OH 45433. AFAL ltr 4 Sep 1975 ^F—^»IPl««—-B-^——— ■ - m wmrnmmmmmm i i ^1 AFAL-TR-75-13 OS HIGH-POWER LOC LASERS...AIR FORCE AVIONICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 46433 ^^^^^^^^^^^A«^ - — HIWSWWW""^- tmm**~* m ...8217 — ’ - UMUtattiHta 5 y^p^pil m *mMi\\r~r’ FOREWORD This Final Report was prepared by RCA Laboratories, Princeton, New

  14. Optimized high-power diode laser, laser arrays, and bars for pump applications

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Wolf, J.; Hennig, P.

    2009-02-01

    Broad area diode laser and diode laser bars are the most efficient light sources. In comparison to solid state laser or gas laser systems the over all beam quality of the diode laser is poor. Thus most application of diode laser bars is high efficient pumping of solid state lasers converting the beam quality and scaling the power of laser systems within the kW range. The pump efficiency and the beam coupling efficiency of the diode laser pumped systems has to be increased to meet the increasing laser market demands for reduced costs. JENOPTIK Diode Lab GmbH (JDL) has optimized their high power brilliance bars to enable reliable high power operation especially, for the 9xx nm wavelength range and low far field divergences. Superior reliability with long operation time of 13,000 hours and high power operation of 200 W are demonstrated for high power bars high filling factor mounted on passively cooled heat sinks. Smaller far field divergence at high power levels requires longer cavity length and higher efficiencies in the beam coupling needs requires lower filling factors. The new high brilliance bars and arrays with 20% filling factor are showing high power operation up to 95 W and a slow axis beam divergence of less than 8° (95% power content).

  15. High-power passive-cooled diode laser device

    NASA Astrophysics Data System (ADS)

    Bonati, Guido F.; Hennig, Petra; Rollig, Ullrich; Lorenzen, Dirk

    2003-06-01

    In order to achieve a thermally stable diode laser system based on high power diode laser bars, actively cooled heatsinks in form of micro channel heat sinks (MCHS) are used to face the power loss density of 106 W/m2 while requiring a minimum device volume. At identical junction temperature, passively cooled diode lasers are usually lower in power and the device volume is much higher due to the heat flux spreading design of passive heatsinks. However, as a matter of principle, the cooling with MCHS sinks requires a sealing between the heat sink itself and the system around. This sealing is usually achieved by o-rings, what can never avoid the transfer of vapor from the cooling system into the vicinity of the diode laser. Extreme requirements on availability, which lead to corresponding lifetime requirements, like in telecom applications, already require passively cooled diode lasers without any water in the inner system boundaries. For applications not requiring the extreme compact design volume of actively cooled diode lasers but requiring extreme lifetime or a minimum outlay on the periphery, we started looking into passively cooled diode laser stacks. To achieve a minimized temperature rise in the junction, we already developed a new copper-based heat sink, spreading the power loss in an optimized manner. Based on this heatsink, we started developing a heat exchanger with a low thermal resistance while keeping the water out of the inner system boundaries. The thermal resistance is low enough to run up to 12 passively cooled diode lasers on a low ambient temperature with a minimum of periphery requirements.

  16. Recent brightness improvements of 976 nm high power laser bars

    NASA Astrophysics Data System (ADS)

    Bachmann, Alexander; Lauer, Christian; Furitsch, Michael; König, Harald; Müller, Martin; Strauß, Uwe

    2017-02-01

    Pump modules for fiber lasers and fiber-coupled direct diode laser systems require laser diodes with a high beam quality. While in fast axis direction diode lasers exhibit a nearly diffraction limited output beam, the maximum usable output power is usually limited by the slow axis divergence blooming at high power levels. Measures to improve the lateral beam quality are subject of extensive research. Among the many influencing factors are the chip temperature, thermal crosstalk between emitters, thermal lensing, lateral waveguiding and lateral mode structure. We present results on the improvements of the lateral beam divergence and brightness of gain-guided mini-bars for emission at 976 nm. For efficient fiber coupling into a 200 μm fiber with NA 0.22, the upper limit of the lateral beam parameter product is 15.5 mm mrad. Within the last years, the power level at this beam quality has been improved from 44 W to 52 W for the chips in production, enabling more cost efficient pump modules and laser systems. Our work towards further improvements of the beam quality focuses on advanced chip designs featuring reduced thermal lensing and mode shaping. Recent R&D results will be presented, showing a further improvement of the beam quality by 15%. Also, results of a chip design with an improved lateral emitter design for highest brightness levels will be shown, yielding in a record high brightness saturation of 4.8 W/mm mrad.

  17. High power narrowband 589 nm frequency doubled fibre laser source.

    PubMed

    Taylor, Luke; Feng, Yan; Calia, Domenico Bonaccini

    2009-08-17

    We demonstrate high-power high-efficiency cavity-enhanced second harmonic generation of an in-house built ultra-high spectral density (SBS-suppressed) 1178 nm narrowband Raman fibre amplifier. Up to 14.5 W 589 nm CW emission is achieved with linewidth Delta nu(589) < 7 MHz in a diffraction-limited beam, with peak external conversion efficiency of 86%. The inherently high spectral and spatial qualities of the 589 nm source are particularly suited to both spectroscopic and Laser Guide Star applications, given the seed laser can be easily frequency-locked to the Na D(2a) emission line. Further, we expect the technology to be extendable, at similar or higher powers, to wavelengths limited only by the seed-pump-pair availability. (c) 2009 Optical Society of America

  18. Cladded single crystal fibers for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Kim, W.; Shaw, B.; Bayya, S.; Askins, C.; Peele, J.; Rhonehouse, D.; Meyers, J.; Thapa, R.; Gibson, D.; Sanghera, J.

    2016-09-01

    We report on the recent progress in the development of cladded single crystal fibers for high power single frequency lasers. Various rare earth doped single crystal YAG fibers with diameters down to 17 μm with length > 1 m have been successfully drawn using a state-of-the-art Laser Heated Pedestal Growth system. Single and double cladding on rare earth doped YAG fibers have been developed using glasses where optical and physical properties were precisely matched to doped YAG core single crystal fiber. The double clad Yb:YAG fiber structures have dimensions analogous to large mode area (LMA) silica fiber. We also report successful fabrications of all crystalline core/clad fibers where thermal and optical properties are superior over glass cladded YAG fibers. Various fabrication methods, optical characterization and gain measurements on these cladded YAG fibers are reported.

  19. High-power solid-state cw dye laser.

    PubMed

    Bornemann, R; Thiel, E; Bolívar, P Haring

    2011-12-19

    In the present paper we describe a high-power tunable solid-state dye laser setup that offers peak output power up to 800 mW around 575 nm with excellent long-time power stability and low noise level. The spectral width of the laser emission is less than 3 GHz and can be tuned over more than 30 nm. A nearly circular mode profile is achieved with an M(2) better than 1.4. The device can be integrated in a compact housing (dimensions are 60 × 40 × 20 cm(3)). The limitation of long-time power stability is mainly given by photo decomposition of organic dye molecules. These processes are analyzed in detail via spatially resolved micro-imaging and spectroscopic studies.

  20. High power continuous-wave dual-wavelength alexandrite laser

    NASA Astrophysics Data System (ADS)

    Ghanbari, Shirin; Major, Arkady

    2017-10-01

    A high power dual-wavelength alexandrite (Cr:BeAl2O4) laser using a single plate birefringent filter (BRF) was demonstrated. Using a 6 mm thick BRF, dual-wavelength output at 745.2 nm and 756.2 nm (5.9 THz of frequency difference) with 850 mW of average output power was achieved as well as with 16.8% optical-to-optical and 24.2% slope efficiency. The tunability of dual-wavelength separation was also demonstrated by employing the 4 mm and 2 mm thick BRFs with similar output powers. To the best of our knowledge, this is the first demonstration of a dual-wavelength alexandrite laser.

  1. High-power laser experiments to study collisionless shock generation

    NASA Astrophysics Data System (ADS)

    Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Kato, T.; Tanji, H.; Ide, T.; Nishio, K.; Kuwada, M.; Tsubouchi, T.; Ide, H.; Norimatsu, T.; Gregory, C.; Woolsey, N.; Schaar, K.; Murphy, C.; Gregori, G.; Diziere, A.; Pelka, A.; Koenig, M.; Wang, S.; Dong, Q.; Li, Y.; Park, H.-S.; Ross, S.; Kugland, N.; Ryutov, D.; Remington, B.; Spitkovsky, A.; Froula, D.; Takabe, H.

    2013-11-01

    A collisionless Weibel-instability mediated shock in a self-generated magnetic field is studied using two-dimensional particle-in-cell simulation [Kato and Takabe, Astophys. J. Lett. 681, L93 (2008)]. It is predicted that the generation of the Weibel shock requires to use NIF-class high-power laser system. Collisionless electrostatic shocks are produced in counter-streaming plasmas using Gekko XII laser system [Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)]. A NIF facility time proposal is approved to study the formation of the collisionless Weibel shock. OMEGA and OMEGA EP experiments have been started to study the plasma conditions of counter-streaming plasmas required for the NIF experiment using Thomson scattering and to develop proton radiography diagnostics.

  2. Extremely high-power CO2 laser beam correction.

    PubMed

    Kudryashov, Alexis; Alexandrov, Alexander; Rukosuev, Alexey; Samarkin, Vadim; Galarneau, Pierre; Turbide, Simon; Châteauneuf, François

    2015-05-10

    This paper presents the results of high-power CO2 laser-aberration correction and jitter stabilization. A bimorph deformable mirror and two tip-tilt piezo correctors were used as executive elements. Two types of wavefront sensors, one Hartmann to measure higher-order aberrations (defocus, astigmatism etc.) based on an uncooled microbolometer long-wave infrared camera and the other a tip-tilt one based on the technology of obliquely sputtered, thin chromium films on Si substrates, were applied to measure wavefront aberrations. We discuss both positive and negative attributes of suggested wavefront sensors. The adaptive system is allowed to reduce aberrations of incoming laser radiation by seven times peak-to-valley and to stabilize the jitter of incoming beams up to 25 μrad at a speed of 100 Hz. The adaptive system frequency range for high-order aberration correction was 50 Hz.

  3. Latest development of high-power fiber lasers in SPI

    NASA Astrophysics Data System (ADS)

    Norman, Stephen; Zervas, Mikhail N.; Appleyard, Andrew; Durkin, Michael K.; Horley, Ray; Varnham, Malcolm P.; Nilsson, Johan; Jeong, Yoonchan

    2004-06-01

    High Power Fiber Lasers (HPFLs) and High Power Fiber Amplifiers (HPFAs) promise a number of benefits in terms of their high optical efficiency, degree of integration, beam quality, reliability, spatial compactness and thermal management. These benefits are driving the rapid adoption of HPFLs in an increasingly wide range of applications and power levels ranging from a few Watts, in for example analytical applications, to high-power >1kW materials processing (machining and welding) applications. This paper describes SPI"s innovative technologies, HPFL products and their performance capabilities. The paper highlights key aspects of the design basis and provides an overview of the applications space in both the industrial and aerospace domains. Single-fiber CW lasers delivering 1kW output power at 1080nm have been demonstrated and are being commercialized for aerospace and industrial applications with wall-plug efficiencies in the range 20 to 25%, and with beam parameter products in the range 0.5 to 100 mm.mrad (corresponding to M2 = 1.5 to 300) tailored to application requirements. At power levels in the 1 - 200 W range, SPI"s proprietary cladding-pumping technology, GTWaveTM, has been employed to produce completely fiber-integrated systems using single-emitter broad-stripe multimode pump diodes. This modular construction enables an agile and flexible approach to the configuration of a range of fiber laser / amplifier systems for operation in the 1080nm and 1550nm wavelength ranges. Reliability modeling is applied to determine Systems martins such that performance specifications are robustly met throughout the designed product lifetime. An extensive Qualification and Reliability-proving programme is underway to qualify the technology building blocks that are utilized for the fiber laser cavity, pump modules, pump-driver systems and thermo-mechanical management. In addition to the CW products, pulsed fiber lasers with pulse energies exceeding 1mJ with peak pulse

  4. Control system for high power laser drilling workover and completion unit

    DOEpatents

    Zediker, Mark S; Makki, Siamak; Faircloth, Brian O; DeWitt, Ronald A; Allen, Erik C; Underwood, Lance D

    2015-05-12

    A control and monitoring system controls and monitors a high power laser system for performing high power laser operations. The control and monitoring system is configured to perform high power laser operation on, and in, remote and difficult to access locations.

  5. High Power Diode Pumped 1.06 Micron Solid State Laser

    NASA Astrophysics Data System (ADS)

    Arvind, Mukundarajan A.; Martin, Dan W.; Osterhage, R. J.

    1989-07-01

    Diode pumped solid state lasers have been attracting significant interest in recent years due to advances in high power semiconductor diode lasers. They offer considerable advantages over flashlamp pumped lasers such as compact size, high efficiency, lower heat dissipation and solid-state reliability. In this paper, we report on the results of a Nd:YAG laser, transverse pumped by diode laser arrays. We have measured an output power of 1.14 Watts at 1.06 microns with a laser diode power consumption of 40 Watts. This represents the highest reported electrical efficiency (2.85%) for a transverse pumped, CW, TEM00 laser. The diode arrays were selected and tuned to emit at wavelengths close to the peak neodymium absorption line at 0.808 microns with Peltier coolers. Two diode laser bars side pumped a 20 mm long, 1.5 mm diameter Nd:YAG laser rod. The optical cavity is 13.8 cm long consisting of a high reflectivity mirror and a 95% reflectivity output mirror. The output beam divergence was measured to be near diffraction limited at 1.4 milliradians, and the beam diameter was 1 mm.

  6. High power metallic halide laser. [amplifying a copper chloride laser

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J. (Inventor)

    1982-01-01

    A laser amplification system is disclosed whereby a metallic halide vapor such as copper chloride is caused to flow through a laser amplifier and a heat exchanger in a closed loop system so that the flow rate is altered to control the temperature rise across the length of the laser amplifier. The copper atoms within the laser amplifier should not exceed a temperature of 3000 K, so that the number of copper atoms in the metastable state will not be high enough to prevent amplification in the amplifier. A molecular dissociation apparatus is provided at the input to the laser amplifier for dissociating the copper chloride into copper atoms and ions and chlorine atoms and ions. The dissociation apparatus includes a hollow cathode tube and an annular ring spaced apart from the tube end. A voltage differential is applied between the annular ring and the hollow cathode tube so that as the copper chloride flows through, it is dissociated into copper and chlorine ions and atoms.

  7. Development of High Power Lasers for Materials Interactions

    SciTech Connect

    Hackel, L A

    2003-04-11

    The Lawrence Livermore National Laboratory (LLNL) has a long history of developing high power lasers for use in basic science and applications. The Laser Science and Technology Program (LS&T) at LLNL supports advanced lasers and optics development both for the National Ignition Facility (NIF) as well as for high power lasers and optics technology for a broader range of government, military and industrial applications. The NIF laser is currently under construction with the first of the 192 beamlines being activated. When finished NIF will have an output energy of 2 MJ at 351 nm. This system will be used for studies of high energy density physics, equation of state and inertial confinement fusion. It is now generally acknowledged that the future of laser missile defense lies with solid state lasers. The leading laser technology for theater missile defense is under development within the LS&T and funded by the US Army SMDC. This high average power technology is based on a solid state laser operated in a heat capacity mode. In the concept the heat producing lasing cycle is separated in time from the cooling cycle thus reducing thermal gradients and allowing significantly greater average output power. Under the current program, an LLNL developed laser has achieved a record setting 13 kW of average power in 20 second duration bursts. We have also performed target lethality experiments showing a previously unrecognized advantage of a pulsed laser format. The LLNL work is now focused on achieving improved output beam quality and in developing a 100 kW output with diode pumping of a large aperture crystal gain medium on a compact mobile platform. The Short Pulse Laser Group of LS&T has been developing high power short pulse laser systems for a number of applications. Of great importance is petawatt (10{sup 12} Watt) and greater power output to support experiments on the NIF. We are developing a system of 5 M class output and 5 to 10 ps pulse duration for generating intense

  8. Robust focusing optics for high-power laser welding

    NASA Astrophysics Data System (ADS)

    McAllister, Blake

    2014-02-01

    As available power levels from both fiber and disc lasers rapidly increase, so does the need for more robust beam delivery solutions. Traditional transmissive optics for 1 micron lasers have proven to be problematic in the presence of higher power densities and are more susceptible to focal shift. A new, fully-reflective, optical solution has been developed using mirrors rather than lenses and windows to achieve the required stable focal spot, while still protecting the delicate fiber end. This patent-approved beam focusing solution, referred to as high power reflective focusing optic (HPRFO), involves specialty mirrors and a flowing gas orifice that prevents ingress of contaminants into the optically sensitive region of the assembly. These mirrors also provide a unique solution for increasing the distance between the sensitive optics and the contamination-filled region at the work, without sacrificing spot size. Longer focal lengths and lower power densities on large mass, water-cooled, copper mirrors deliver the robustness needed at increasingly high power levels. The HPRFO exhibits excellent beam quality and minimal focal shift at a fraction of commercially available optics, and has demonstrated consistent reliability on applications requiring 15 kW with prolonged beam-on times.

  9. High-power laser diodes based on InGaAsP alloys

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh

    1994-06-01

    HIGH-POWER, high-coherence solid-state lasers, based on dielectric materials such as ruby or Nd:YAG (yttrium aluminium garnet), have many civilian and military applications. The active media in these lasers are insulating, and must therefore be excited (or `pumped') by optical, rather than electrical, means. Conventional gas-discharge lamps can be used as the pumping source, but semiconductor diode lasers are more efficient, as their wavelength can be tailored to match the absorption properties of the lasing material. Semiconducting AlGaAs alloys are widely used for this purpose1, 2, but oxidation of the aluminium and the spreading of defects during device operation limit the lifetime of the diodes3, and hence the reliability of the system as a whole. Aluminium-free InGaAsP compounds, on the other hand, do not have these lifetime-limiting properties4-8. We report here the fabrication of high-power lasers based on InGaAsP (lattice-matched to GaAs substrates), which operate over the same wavelength range as conventional AlGaAs laser diodes and show significantly improved reliability. The other optical and electrical properties of these diodes are either comparable or superior to those of the AlGaAs system.

  10. High-power laser arrays for optical computing

    NASA Astrophysics Data System (ADS)

    Zucker, Erik P.; Craig, Richard R.; Mehuys, David G.; Nam, Derek W.; Welch, David F.; Scifres, Donald R.

    1991-12-01

    We demonstrate both common electrode and addressable arrays of single mode semiconductor lasers suitable for optical computing and optical data storage. In the common electrode geometry, eight lasers have been fabricated on a single chip which show excellent spectral and power uniformity. Total optical power obtained from this array has been in excess of 1.2 Watts CW. We have also fabricated two and nine element monolithic, individually addressable arrays with emitter spacings between 10 jim and 150 p m. Separately addressed, each element emits in a single spatial mode to greater than 0.1 Watts. For the nine element array, uniformity of better than 1.0 nanometer in wavelength and 1 milliamp in operating current across the array has been obtained. Results on crosstalk and reliability of the arrays are presented.

  11. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  12. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, Gaylen V.; Bass, Isaac L.; Hackel, Richard P.; Jenkins, Sherman L.; Kanz, Vernon K.; Paisner, Jeffrey A.

    1993-01-01

    A high-power continuous-wave laser resonator (10) is provided, wherein first, second, third, fourth, fifth and sixth mirrors (11-16) form a double-Z optical cavity. A first Ti:Sapphire rod (17) is disposed between the second and third mirrors (12,13) and at the mid-point of the length of the optical cavity, and a second Ti:Sapphire rod (18) is disposed between the fourth and fifth mirrors (14,15) at a quarter-length point in the optical cavity. Each Ti:Sapphire rod (17,18) is pumped by two counter-propagating pump beams from a pair of argon-ion lasers (21-22, 23-24). For narrow band operation, a 3-plate birefringent filter (36) and an etalon (37) are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors (101, 192) are disposed between the first and second mirrors (11, 12) to form a triple-Z optical cavity. A third Ti:Sapphire rod (103) is disposed between the seventh and eighth mirrors (101, 102) at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers (104, 105).

  13. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  14. High-power lasers for directed-energy applications: comment.

    PubMed

    Vorontsov, Mikhail A; Weyrauch, Thomas

    2016-12-10

    Sprangle et al. [Appl. Opt.54, F201 (2015)APOPAI0003-693510.1364/AO.54.00F201] recently concluded that our experiments on coherent combining of laser beams over an atmospheric path [Opt. Lett.36, 4455 (2011)OPLEDP0146-959210.1364/OL.36.004455] were "effective only because at these low-power levels the linewidth of the lasers was very narrow… and the level of atmospheric turbulence was low…." These conclusions are inaccurate, not relevant to practical high-power coherently combined laser systems, and contradict our most recent experiments with coherent combining of 21 laser beams with a linewidth of about 1 GHz over 7 km distance. In this comment we also challenge the major conclusion of Sprangle et al. [Appl. Opt.54, F201 (2015)APOPAI0003-693510.1364/AO.54.00F201] and the more recently published paper by Nelson et al. [Appl. Opt.55, 1757 (2016)APOPAI0003-693510.1364/AO.55.001757] regarding inefficiency of coherent beam combining under typical atmospheric conditions.

  15. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-09

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-μm wavelength region, opening up a new way to scale the output power of the 2-μm fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-μm Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-μm fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-μm wavelength region (~1900 nm → ~1940 nm → ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique.

  16. Direct spectroscopic measurement of packaging-induced strains in high-power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Mueller, Ralf; Baerwolff, A.; Neuner, M.; Elsaesser, Thomas; Lorenzen, Dirk; Daiminger, Franz X.; Gerhardt, A.; Donecker, J.

    1999-04-01

    High-power diode lasers such as `cm-bar arrays' are important for many applications. The `p-side down packaging', i.e. the direct mounting of the epitaxial layer sequence on a heat spreader ensures sufficient thermal properties, however, in such a geometry, additional mechanical strain of the active region represents a central issue, affecting both the laser parameter as well as lifetime and reliability of the device. Thermally induced strain caused by device packaging is studied in high-power semiconductor laser arrays by a novel non-invasive technique. Photocurrent measurements with intentionally strained laser array devices for 808 nm emission reveal spectral shifts of all allowed optical transitions in the active region. These shifts serve as a measure for strain and are compared with model calculations. Depending on the specific heat spreader materials we find compressive or tensile mounting induced strain contributions. For a given packaging architecture, about one quarter of the mounting induced strain is transferred to the quantum well region of the device. Spatially resolved measurements allow to measure lateral strain gradients in the devices. Using this data for calibration we show that polarization resolved electroluminescence scans can be used as convenient measure for strain homogeneity test also in quantum-well devices.

  17. The NASA high power carbon dioxide laser: A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1976-01-01

    A closed-cycle, continuous wave, carbon dioxide high power laser has been designed and fabricated to support research for the identification and evaluation of possible high power laser applications. The device is designed to generate up to 70 kW of laser power in annular shape beams from 1 to 9 cm in diameter. Electric discharge, either self sustained or electron beam sustained, is used for excitation. This laser facility provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams. The facility provides a well defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  18. High power laser welding in hyperbaric gas and water environments

    SciTech Connect

    Shannon, G.J.; McNaught, W.; Deans, W.F.; Watson, J.

    1997-06-01

    As the exploitation of oil and gas reserves moves into deeper water (>500 m), advanced welding techniques will have to be developed for installation and repair as current commercially available arc welding processes can no longer be utilized at depths greater than 300 m due to the detrimental effect of pressure on arc stability. In addition, systems relying on diver intervention are unlikely to be viable due to health and safety considerations. Here, a hyperbaric laser welding facility has been constructed and the feasibility of high power CO{sub 2} and Nd:YAG laser welding in both high pressure gas and water environments, to simulated water depths of 500 m, has been established. From initial trials on welding through water at atmospheric pressure, it was found that the different absorption characteristics of water to 10.6 {micro}m (CO{sub 2} laser) and 1.06 {micro}m (Nd:YAG laser) radiation proved crucial. The Nd:YAG laser was totally unsuitable as the beam was largely diffused in the water, whereas the CO{sub 2} beam was readily absorbed and, using high speed video equipment, was found to form a high irradiance channel and a dry region around the weld area. Welding under a high pressure gas environment produced a highly energized plume which prevented keyhole welding at pressures over 1 {times} 10{sup 6} Pa. An investigation carried out into the efficacy of a gas jet delivery system to alleviate the extent of the plume showed that argon blown horizontally across the weld was the optimum configuration, extending the welding range up to 5 {times} 10{sup 6} Pa. A limited investigation into high pressure underwater welding showed porosity to be a problem although sound welds were produced at pressures up to 2 {times} 10{sup 6} Pa.

  19. Mode Hopping in Semiconductor Lasers

    NASA Astrophysics Data System (ADS)

    Heumier, Timothy Alan

    Semiconductor lasers have found widespread use in fiberoptic communications, merchandising (bar-code scanners), entertainment (videodisc and compact disc players), and in scientific inquiry (spectroscopy, laser cooling). Some uses require a minimum degree of stability of wavelength which is not met by these lasers: Under some conditions, semiconductor lasers can discontinuously switch wavelengths in a back-and-forth manner. This is called mode hopping. We show that mode hopping is directly correlated to noise in the total intensity, and that this noise is easily detected by a photodiode. We also show that there are combinations of laser case temperature and injection current which lead to mode hopping. Conversely, there are other combinations for which the laser is stable. These results are shown to have implications for controlling mode hopping.

  20. Applications of high-power diode lasers for aluminum welding

    NASA Astrophysics Data System (ADS)

    Huber, Sonja; Merzkirch, Matthias; Zaeh, Michael F.; Schulze, Volker

    2009-02-01

    Industries worldwide are confronted with the need for an increased use of aluminum alloys in various applications. Therefore the requirements result in the necessity for a multitude of joining and welding innovations. Applications of modern aluminum alloys are not constricted to common components anymore. In fact, they are used in ever more complex lightweight structures. However, this complexity has to be fulfilled by a higher geometric flexibility in laser welding and represents a major challenge for new approaches in working lightweight structures. The present work includes the welding of aluminum utilizing Bifocal Hybrid Laser Welding (BHLW) and a 6 kW high power diode laser (HPDL) for welding. The welding setups allow for welded butt- and fillet-welds of tubes under consideration of the hardly fusion weldable alloy AA6060. Welded joints of AA6060 are investigated metallographically in regard to the influence of process parameters like intensity and the interconnected penetration. The weldability is characterized by qualitative investigations of the microstructure as well as the mechanical behavior under quasistatic loading. The investigations result in an adequate welding process for AA6060.

  1. Gain coupling of class A semiconductor lasers.

    PubMed

    Hessenius, Chris; Terry, Nathan; Fallahi, Mahmoud; Moloney, Jerome; Bedford, Robert

    2010-09-15

    We report on the development of a gain-coupled class A semiconductor laser for dual-wavelength generation via optical switching. A vertical external cavity surface emitting laser (VECSEL) structure is used, because it provides a flexible platform for high-power, high-brightness output in the near-IR and visible ranges. For the first time (to our knowledge), two VECSEL cavities sharing a common gain region are studied. Because the cavities are in competition for common carriers, birefringent filters in the external cavity control the laser cavity thresholds; this configuration demonstrates the possibility of switching between the two cavities, which can operate at different wavelengths. However, in this Letter we also show, numerically and experimentally, that with the consideration of spontaneous emission, it is possible to maintain simultaneous lasing in each cavity at a different wavelength.

  2. High-power fiber laser/amplifier: present and future

    NASA Astrophysics Data System (ADS)

    Manzur, Tariq; Bastien, Steven P.

    2000-03-01

    As a result of the overwhelming demand for bandwidth, the number of channels offered in commercially available DWDM systems has climbed from 8 to 160 in just a few short years. With the growth in channel counts comes increasing demands placed upon optical amplifiers for the long haul market. High powers, flatter gain profiles, extended bandwidths (both C- and L-band), dispersion compensation, longer distances and greater control at the optical level are all capabilities that future networks will require. Today's optical amplifiers must be capable of supporting these services in advance of their installation to prepare networks for these foreseeable demands. Optigain's expertise and focus on optical amplifiers for the telecommunications industry has enabled it to achieve a technology leadership position in the field of optical amplification. Optigain's leadership position in the development of high power amplifiers based upon fiber laser technology will permit the Company to obtain favorable pricing and to gain significant market share in high growth markets. Figures 1 and 2 show the EDFA future global market shares.

  3. Optical analysis of high power free electron laser resonators

    SciTech Connect

    Knapp, C.E.; Viswanathan, V.K.; Appert, Q.D.; Bender, S.C.; McVey, B.D.

    1987-01-01

    The first part of this paper briefly describes the optics code used at Los Alamos National Laboratory to do optical analyses of various components of a free electron laser. The body of the paper then discusses the recent results in modeling low frequency gratings and ripple on the surfaces of liquid-cooled mirrors. The ripple is caused by structural/thermal effects in the mirror surface due to heating by optical absorption in high power resonators. Of interest is how much ripple can be permitted before diffractive losses or optical mode distortions become unacceptable. Preliminary work is presented involving classical diffraction problems to support the ripple study. The limitations of the techniques are discussed and the results are compared to experimental results where available.

  4. Electric-field-assisted gain control in a high-power picosecond laser diode

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey N.; Yuferev, Valentin; Kostamovaara, Juha T.

    2003-03-01

    A laser diode structure has lately been reported that is capable of generating high-power picosecond optical pulses (~ 50 W / 20 ps) in the near-infrared range for laser radars and other applications. The physical idea consists of achieving fast gain control through the effect of a transverse electric field on the carrier distribution across the active region, which controls the local gain and local absorption at each instant. The mechanism of field-assisted gain control, which has so far been formulated only as a qualitative idea, is justified in this work by simulations of the carrier transport and laser response using the semiconductor device simulator "Atlas" (Silvaco Inc.). A simplified approach is adopted which replaces photon-assisted carrier transport with carrier penetration over the lowered potential barrier. This points to reasonably good agreement between the experimental and simulation results for picosecond pulse generation, provided that the carrier mobilities are assumed to be higher than those in the heavily doped semiconductor structure by a factor of ~ 4. One important conclusion is that comprehensive modelling of the operation of the experimental laser diode is not possible without considering photon-assisted carrier transport, which has not been studied so far at very high carrier densities (exceeding the transparency concentration).

  5. Laser-driven plasma photonic crystals for high-power lasers

    NASA Astrophysics Data System (ADS)

    Lehmann, G.; Spatschek, K. H.

    2017-05-01

    Laser-driven plasma density gratings in underdense plasma are shown to act as photonic crystals for high power lasers. The gratings are created by counterpropagating laser beams that trap electrons, followed by ballistic ion motion. This leads to strong periodic plasma density modulations with a lifetime on the order of picoseconds. The grating structure is interpreted as a plasma photonic crystal time-dependent property, e.g., the photonic band gap width. In Maxwell-Vlasov and particle-in-cell simulations it is demonstrated that the photonic crystals may act as a frequency filter and mirror for ultra-short high-power laser pulses.

  6. High-power quantum-dot tapered tunable external-cavity lasers based on chirped and unchirped structures.

    PubMed

    Haggett, Stephanie; Krakowski, Michel; Montrosset, Ivo; Cataluna, Maria Ana

    2014-09-22

    A high-power tunable external cavity laser configuration with a tapered quantum-dot semiconductor optical amplifier at its core is presented, enabling a record output power for a broadly tunable semiconductor laser source in the 1.2 - 1.3 µm spectral region. Two distinct optical amplifiers are investigated, using either chirped or unchirped quantum-dot structures, and their merits are compared, considering the combination of tunability and high output power generation. At 1230 nm, the chirped quantum-dot laser achieved a maximum power of 0.62 W and demonstrated nearly 100-nm tunability. The unchirped laser enabled a tunability range of 32 nm and at 1254 nm generated a maximum power of 0.97 W, representing a 22-fold increase in output power compared with similar narrow-ridge external-cavity lasers at the same current density.

  7. New Yb-doped crystals for high-power and ultrashort lasers

    NASA Astrophysics Data System (ADS)

    Druon, F.; Boudeile, J.; Zaouter, Y.; Hanna, M.; Balembois, F.; Georges, P.; Petit, J.; Goldner, P.; Viana, B.

    2006-09-01

    Since the beginning of the 90's, Titanium Sapphire has become the crystal of choice for the development of ultrashort laser system producing very short and powerful pulses using the Chirped Pulse Amplification technique. In parallel to these developments leading to commercial products, new laser crystals have been studied in order to reach directly other wavelength range and to overcome the need to develop cw or pulsed green laser to pump the Titanium Sapphire crystal. In order to be able to directly pump the crystals with very efficient and high power semiconductor laser, new crystals doped with ytterbium ions have been developed. Actually, in the field of femtosecond lasers, an intense interest has been shown for ytterbium-doped laser-crystals. These crystals are now well-known to be particularly suitable for very efficient, directly-diode-pumped, solid state femtosecond oscillators. However, it has been shown that the spectral properties of the Yb 3+ dopant strongly depend on the matrix host and a lot of works have been done to find the "ideal" matrix allowing both ultrashort-pulsed and high-power lasers. Firstly, in order to take advantage of the very high-power laser diodes available to pump Yb-doped materials, ideal crystals need to be able to hold high power pumping; so high thermal conductivity is required (>5W/m/K, typically). Secondly, to generate very short pulses (<100 fs) ideal crystals have to demonstrate very broad and smooth spectra. Among the numerous Yb-doped crystals already studied, many failed with one of these two contradictory criteria (contradictory because broad spectra are often synonymous of high disorder in the host lattice and the good thermal conductivity requires an ordered matrix to allow good propagation of phonons). In this paper, we are relating the performance of a new Yb-doped crystal: Yb:CaGdAlO4 (Yb:CALGO) and how it takes place in this quest of "ideal" crystal. Actually, this very new crystal allowed, to our best knowledge

  8. New material options for high-power diode laser packaging

    NASA Astrophysics Data System (ADS)

    Zweben, Carl H.

    2004-06-01

    Traditional materials have serious deficiencies in meeting requirements for thermal management and minimization of thermal stresses in high-power laser diode packaging. Copper, the standard material for applications requiring high thermal conductivity, has a coefficient of thermal expansion (CTE) that is much larger than those of ceramics and laser diodes, giving rise to thermal stresses when packages are subjected to thermal excursions. Traditional materials with low CTEs have thermal conductivities that are little or no better than that of aluminum. There are an increasing number of new packaging materials with low, tailorable CTEs and thermal conductivities up to four times those of copper that overcome these limitations. The ability to tailor material CTE has been used to solve critical warping problems in manufacturing, increasing yield from 5% to over 99%. Advanced materials fall into six categories: monolithic carbonaceous materials, metal matrix composites, carbon/carbon composites, ceramic matrix composites, polymer matrix composites, and advanced metallic alloys. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, using composites to fix manufacturing problems, cost and applications.

  9. Power spectral density specifications for high-power laser systems

    SciTech Connect

    Lawson, J.K.; Aikens, D.A.; English, R.E. Jr.; Wolfe, C.R.

    1996-04-22

    This paper describes the use of Fourier techniques to characterize the transmitted and reflected wavefront of optical components. Specifically, a power spectral density, (PSD), approach is used. High power solid-state lasers exhibit non-linear amplification of specific spatial frequencies. Thus, specifications that limit the amplitude of these spatial frequencies are necessary in the design of these systems. Further, NIF optical components have square, rectangular or irregularly shaped apertures with major dimensions up-to 800 mm. Components with non-circular apertures can not be analyzed correctly with Zernicke polynomials since these functions are an orthogonal set for circular apertures only. A more complete and powerful representation of the optical wavefront can be obtained by Fourier analysis in 1 or 2 dimensions. The PSD is obtained from the amplitude of frequency components present in the Fourier spectrum. The shape of a resultant wavefront or the focal spot of a complex multicomponent laser system can be calculated and optimized using PSDs of the individual optical components which comprise the system. Surface roughness can be calculated over a range of spatial scale-lengths by integrating the PSD. Finally, since the optical transfer function (OTF) of the instruments used to measure the wavefront degrades at high spatial frequencies, the PSD of an optical component is underestimated. We can correct for this error by modifying the PSD function to restore high spatial frequency information. The strengths of PSD analysis are leading us to develop optical specifications incorporating this function for the planned National Ignition Facility (NIF).

  10. Large-area high-power VCSEL pump arrays optimized for high-energy lasers

    NASA Astrophysics Data System (ADS)

    Wang, Chad; Geske, Jonathan; Garrett, Henry; Cardellino, Terri; Talantov, Fedor; Berdin, Glen; Millenheft, David; Renner, Daniel; Klemer, Daniel

    2012-06-01

    Practical, large-area, high-power diode pumps for one micron (Nd, Yb) as well as eye-safer wavelengths (Er, Tm, Ho) are critical to the success of any high energy diode pumped solid state laser. Diode efficiency, brightness, availability and cost will determine how realizable a fielded high energy diode pumped solid state laser will be. 2-D Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays are uniquely positioned to meet these requirements because of their unique properties, such as low divergence circular output beams, reduced wavelength drift with temperature, scalability to large 2-D arrays through low-cost and high-volume semiconductor photolithographic processes, high reliability, no catastrophic optical damage failure, and radiation and vacuum operation tolerance. Data will be presented on the status of FLIR-EOC's VCSEL pump arrays. Analysis of the key aspects of electrical, thermal and mechanical design that are critical to the design of a VCSEL pump array to achieve high power efficient array performance will be presented.

  11. Advancement of High Power Quasi-CW Laser Diode Arrays For Space-based Laser Instruments

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, nathaniel R.; Baggott, Renee S.; Singh, Upendra N.; Kavaya, Michael J.

    2004-01-01

    Space-based laser and lidar instruments play an important role in NASA s plans for meeting its objectives in both Earth Science and Space Exploration areas. Almost all the lidar instrument concepts being considered by NASA scientist utilize moderate to high power diode-pumped solid state lasers as their transmitter source. Perhaps the most critical component of any solid state laser system is its pump laser diode array which essentially dictates instrument efficiency, reliability and lifetime. For this reason, premature failures and rapid degradation of high power laser diode arrays that have been experienced by laser system designers are of major concern to NASA. This work addresses these reliability and lifetime issues by attempting to eliminate the causes of failures and developing methods for screening laser diode arrays and qualifying them for operation in space.

  12. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    SciTech Connect

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-15

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  13. Micro-scanning mirrors for high-power laser applications in laser surgery

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kimme, Simon; Grasshoff, Thomas; Todt, Ulrich; Graf, Alexander; Tulea, Cristian; Lenenbach, Achim; Schenk, Harald

    2014-03-01

    We present two novel micro scanning mirrors with large aperture and HR dielectric coatings suitable for high power laser applications in a miniaturized laser-surgical instrument for neurosurgery to cut skull tissue. An electrostatic driven 2D-raster scanning mirror with 5x7.1mm aperture is used for dynamic steering of a ps-laser beam of the laser cutting process. A second magnetic 2D-beam steering mirror enables a static beam correction of a hand guided laser instrument. Optimizations of a magnetic gimbal micro mirror with 6 mm x 8 mm mirror plate are presented; here static deflections of 3° were reached. Both MEMS devices were successfully tested with a high power ps-laser at 532nm up to 20W average laser power.

  14. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms.

    PubMed

    Hosoya, Toshiyuki; Miranda, Martin; Inoue, Ryotaro; Kozuma, Mikio

    2015-07-01

    We developed a high-power laser system at a wavelength of 399 nm for laser cooling of ytterbium atoms with ultraviolet laser diodes. The system is composed of an external cavity laser diode providing frequency stabilized output at a power of 40 mW and another laser diode for amplifying the laser power up to 220 mW by injection locking. The systematic method for optimization of our injection locking can also be applied to high power light sources at any other wavelengths. Our system does not depend on complex nonlinear frequency-doubling and can be made compact, which will be useful for providing light sources for laser cooling experiments including transportable optical lattice clocks.

  15. High power diode laser Master Oscillator-Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Andrews, John R.; Mouroulis, P.; Wicks, G.

    1994-01-01

    High power multiple quantum well AlGaAs diode laser master oscillator - power amplifier (MOPA) systems were examined both experimentally and theoretically. For two pass operation, it was found that powers in excess of 0.3 W per 100 micrometers of facet length were achievable while maintaining diffraction-limited beam quality. Internal electrical-to-optical conversion efficiencies as high as 25 percent were observed at an internal amplifier gain of 9 dB. Theoretical modeling of multiple quantum well amplifiers was done using appropriate rate equations and a heuristic model of the carrier density dependent gain. The model gave a qualitative agreement with the experimental results. In addition, the model allowed exploration of a wider design space for the amplifiers. The model predicted that internal electrical-to-optical conversion efficiencies in excess of 50 percent should be achievable with careful system design. The model predicted that no global optimum design exists, but gain, efficiency, and optical confinement (coupling efficiency) can be mutually adjusted to meet a specific system requirement. A three quantum well, low optical confinement amplifier was fabricated using molecular beam epitaxial growth. Coherent beam combining of two high power amplifiers injected from a common master oscillator was also examined. Coherent beam combining with an efficiency of 93 percent resulted in a single beam having diffraction-limited characteristics. This beam combining efficiency is a world record result for such a system. Interferometric observations of the output of the amplifier indicated that spatial mode matching was a significant factor in the less than perfect beam combining. Finally, the system issues of arrays of amplifiers in a coherent beam combining system were investigated. Based upon experimentally observed parameters coherent beam combining could result in a megawatt-scale coherent beam with a 10 percent electrical-to-optical conversion efficiency.

  16. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  17. Tapered fiber bundles for combining high-power diode lasers.

    PubMed

    Kosterin, Andrey; Temyanko, Valery; Fallahi, Mahmoud; Mansuripur, Masud

    2004-07-01

    Tapered fiber bundles are often used to combine the output power of several semiconductor lasers into a multimode optical fiber for the purpose of pumping fiber lasers and amplifiers. It is generally recognized that the brightness of such combiners does not exceed the brightness of the individual input fibers. We report that the brightness of the tapered fibers (and fiber bundles) depends on both the taper ratio and the mode-filling properties of the beams launched into the individual fibers. Brightness, therefore, can be increased by selection of sources that fill a small fraction of the input fiber's modal capacity. As proof of concept, we present the results of measurements on tapered fiber-bundle combiners having a low-output étendue. Under low mode-filling conditions per input multimode fiber (i.e., fraction of filled modes < or =0.29), we report brightness enhancements of 8.0 dB for 19 x 1 bundles, 6.7 dB for 7 x 1 bundles, and 4.0 dB for 3 x 1 combiners. Our measured coupling efficiency variations of approximately 1%-2% among the various fibers in a given bundle confirm the uniformity and quality of the fabricated devices.

  18. Semiconductor processing with excimer lasers

    SciTech Connect

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications.

  19. Present status and future aspects of high-power diode laser materials processing under the view of a German national research project

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich G.

    2000-06-01

    High power diode lasers from a few Watts up to several Kilowatts have entered industrial manufacturing environment for materials processing applications. The technology has proven to show unique features, e.g. high efficiency, small size, low energy consumption and high reliability. In the first part of this paper a short description of state-of- the-art high power diode laser technology and applications is provided and the benefits and restrictions of this laser technology will be evaluated. For large scale penetration into the manufacture market, the restrictions, especially the rather poor beam quality of high power diode lasers compared to conventional lasers have to be overcome. Also, the specialities of the high power diode lasers, i.e. their modular structure and their extremely small size have to be translated into laser manufacturing technology. The further improvement of high power diode lasers as well as the development of new diode laser specific manufacturing technologies are the essential topics of a National German Minister Priority Project entitled 'Modular Diode Laser Beam Tools': 22 Partners from industry and institutions, 4 semiconductor experts, 5 laser manufacturers and 14 applicants are working together in frame of this project to work out and transfer a joint strategy and system technology to the benefits of the future of high power diode laser technology. The goals, the structure and the work of this project will be described in the second part of this paper.

  20. EDITORIAL: Semiconductor lasers: the first fifty years Semiconductor lasers: the first fifty years

    NASA Astrophysics Data System (ADS)

    Calvez, S.; Adams, M. J.

    2012-09-01

    achievements in the June 1987 Special Issue of IEEE Journal of Quantum Electronics. The Millennium Issue of IEEE Journal of Selected Topics in Quantum Electronics presented a further set of articles on historical aspects of the subject as well as a 'snapshot' of current research in June 2000. It is not the intention here to duplicate any of this historical material that is already available, but rather to complement it with personal recollections from researchers who were involved in laser development in the USA, France, Russia and the UK. Hence, in addition to fascinating accounts of the discovery of the theoretical condition for stimulated emission from semiconductors and of the pioneering work at IBM, there are two complementary views of the laser research at the Lebedev Institute, and personal insights into the developments at STL and at Bell Laboratories. These are followed by an account of the scientific and technological connections between the early pioneering breakthroughs and the commercialisation of semiconductor laser products. Turning to the papers from today's researchers, there is coverage of many of the current 'hot' topics including quantum cascade lasers, mid-infrared lasers, high-power lasers, the exciting developments in understanding and exploiting the nonlinear dynamics of lasers, and photonic integrated circuits with extremely high communication data capacity, as well as reports of recent progress on laser materials such as dilute nitrides and bismides, photonic crystals, quantum dots and organic semiconductors. Thanks are due to Jarlath McKenna for sterling support from IOP Publishing and to Peter Blood for instigating this Special Issue and inviting us to serve as Guest Editors.

  1. Systems and assemblies for transferring high power laser energy through a rotating junction

    DOEpatents

    Norton, Ryan J.; McKay, Ryan P.; Fraze, Jason D.; Rinzler, Charles C.; Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2016-01-26

    There are provided high power laser devices and systems for transmitting a high power laser beam across a rotating assembly, including optical slip rings and optical rotational coupling assemblies. These devices can transmit the laser beam through the rotation zone in free space or within a fiber.

  2. Probabilistic Risk Assessment Process for High-Power Laser Operations in Outdoor Environments

    DTIC Science & Technology

    2016-01-01

    High- Power Laser Operations in Outdoor Environments 5a. CONTRACT NUMBER FA8650-14-D-6519 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602202F...SUPPLEMENTARY NOTES 14. ABSTRACT Risk assessment for exposure to the output from a high- power laser system involves consideration of the range of...high- power laser systems on outdoor ranges. An alternative approach based on the use of probabilistic risk assessment (PRA) techniques can result in

  3. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2015-04-07

    Systems, devices and methods for the transmission and delivery of high power laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  4. Tunable Infrared Semiconductor Lasers

    DTIC Science & Technology

    2013-12-20

    is a thulium fiber laser that has output of 20Watts at 1.908 µm with a collimated output beam diameter of about 5 mm. With a cylindrical lens, a...the device onto a copper heat sink and then to the cold finger of liquid nitrogen Dewar. In characterization, a thulium fiber laser at 1.908 nm

  5. Advanced specialty fiber designs for high power fiber lasers

    NASA Astrophysics Data System (ADS)

    Gu, Guancheng

    The output power of fiber lasers has increased rapidly over the last decade. There are two major limiting factors, namely nonlinear effects and transverse mode instability, prohibiting the power scaling capability of fiber lasers. The nonlinear effects, originating from high optical intensity, primarily limit the peak power scaling. The mode instability, on the other hand, arises from quantum-defect driven heating, causing undesired mode coupling once the power exceeds the threshold and degradation of beam quality. The mode instability has now become the bottleneck for average output power scaling of fiber lasers. Mode area scaling is the most effective way to mitigate nonlinear effects. However, the use of large mode area may increase the tendency to support multiple modes in the core, resulting in lower mode instability threshold. Therefore, it is critical to maintain single mode operation in a large mode area fiber. Sufficient higher order mode suppression can lead to effective single-transverse-mode propagation. In this dissertation, we explore the feasibility of using specialty fiber to construct high power fiber lasers with robust single-mode output. The first type of fiber discussed is the resonantly-enhanced leakage channel fiber. Coherent reflection at the fiber outer boundary can lead to additional confinement especially for highly leaky HOM, leading to lower HOM losses than what are predicted by conventional finite element mothod mode solver considering infinite cladding. In this work, we conducted careful measurements of HOM losses in two leakage channel fibers (LCF) with circular and rounded hexagonal boundary shapes respectively. Impact on HOM losses from coiling, fiber boundary shapes and coating indexes were studied in comparison to simulations. This work demonstrates the limit of the simulation method commonly used in the large-mode-area fiber designs and the need for an improved approach. More importantly, this work also demonstrates that a

  6. High power lasers and their industrial applications; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-18, 1986

    NASA Astrophysics Data System (ADS)

    Schuoecker, Dieter

    1986-01-01

    Papers are presented on the discharge behavior of an RF excited high power CO2 laser at different excitation frequencies; high power CO2 lasers for materials processing; a semiconductive preionization technique; high power Nd lasers for industrial applications; high power light transmission in optical waveguides; beam delivery systems for high power lasers; and quality control for high power CO2 laser optics. Topics discussed include the monitoring of laser material processes; measuring the quality of high power laser beams; the physics of laser material processing; metal precision drilling with lasers; and the evolution of microstructure for laser clad Fe-Cr-Mn-C alloys. Consideration is given to robotic manipulation for laser processing; laser cutting; the use of the laser versus the electron beam in welding the surface treatments; high power laser safety; and laser protective filters for the visible and near-IR spectrum.

  7. High-Power Solid-State Lasers from a Laser Glass Perspective

    SciTech Connect

    Campbell, J H; Hayden, J S; Marker, A J

    2010-12-17

    Advances in laser glass compositions and manufacturing have enabled a new class of high-energy/high-power (HEHP), petawatt (PW) and high-average-power (HAP) laser systems that are being used for fusion energy ignition demonstration, fundamental physics research and materials processing, respectively. The requirements for these three laser systems are different necessitating different glasses or groups of glasses. The manufacturing technology is now mature for melting, annealing, fabricating and finishing of laser glasses for all three applications. The laser glass properties of major importance for HEHP, PW and HAP applications are briefly reviewed and the compositions and properties of the most widely used commercial laser glasses summarized. Proposed advances in these three laser systems will require new glasses and new melting methods which are briefly discussed. The challenges presented by these laser systems will likely dominate the field of laser glass development over the next several decades.

  8. Thermal runaway in semiconductor laser windows.

    PubMed

    Johnson, R L; O'Keefe, J D

    1972-12-01

    A small perturbation model is used to obtain analytical expressions for the critical or runaway power density for laser windows constructed of semiconductor materials. These equations are used to compute the critical power density for several realistic window installations taking account of the finite value of realizable convection cooling coefficients. Computations were prepared for silicon transmitting 4 .0-micro. radiation and for germanium at 10.6 micro. In this way it is shown that power densities are principally limited by the effectiveness of cooling from the face of the window, that is, the surface perpendicular to the laser beam. Since convection cooling coefficients are small the transmission of high power densities through semiconductor windows is therefore contingent upon finding more effective means to cool the window from the face. Finally, a simplified calculation was made in an attempt to account for nonuniformity of the incident laser beam. a given window, but not severely. The results show the onuniformity reduces the runaway power for a given window, but not severely.

  9. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  10. A NASA high-power space-based laser research and applications program

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  11. GaAs Substrates for High-Power Diode Lasers

    NASA Astrophysics Data System (ADS)

    Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt

    GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.

  12. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  13. Tunable high-power narrow-spectrum external-cavity diode laser based on tapered amplifier at 668 nm.

    PubMed

    Chi, Mingjun; Erbert, G; Sumpf, B; Petersen, Paul Michael

    2010-05-15

    A 668 nm tunable high-power narrow-spectrum diode laser system based on a tapered semiconductor optical amplifier in external cavity is demonstrated. The laser system is tunable from 659to675 nm. As high as 1.38 W output power is obtained at 668.35 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M(2) is 2.0 with the output power of 1.27 W.

  14. Power semiconductor laser diode arrays characterization

    NASA Astrophysics Data System (ADS)

    Zeni, Luigi; Campopiano, Stefania; Cutolo, Antonello; D'Angelo, Giuseppe

    2003-09-01

    Nowadays, power semiconductor laser diode arrays are becoming a widespread source for a large variety of industrial applications. In particular, the availability of low-cost high-power laser diode arrays makes their use possible in the industrial context for material cutting, welding, diagnostics and processing. In the above applications, the exact control of the beam quality plays a very important role because it directly affects the reliability of the final result. In this paper, we present two different approaches useful for the characterization of the beam quality in laser diode arrays. The first one, starting from total intensity measurements on planes orthogonal to the beam propagation path, is able to deduce the working conditions of each laser setting up the array. The second one is aimed at the measurement of a global quality factor of the array itself; to this end, the empirical extension of the M2 concept to composite beams is presented along with some experimental results. As the first technique is especially intended for the non-destructive detection of design problems in the array itself and in the bias circuitry, the second one represents a powerful tool for the rapid on-line diagnostics of the laser beam during its use.

  15. The NASA high-power carbon dioxide laser - A versatile tool for laser applications

    NASA Technical Reports Server (NTRS)

    Lancashire, R. B.; Alger, D. L.; Manista, E. J.; Slaby, J. G.; Dunning, J. W.; Stubbs, R. M.

    1977-01-01

    The NASA Lewis Research Center has designed and fabricated a closed-cycle, continuous wave (CW), carbon dioxide (CO2) high-power laser to support research for the identification and evaluation of possible high-power laser applications. The device is designed to generate up to 70 kW of laser power in annular-shape beams from 1 to 9 cm in diameter. Electric discharge, either self-sustained or electron-beam-sustained, is used for excitation. This laser facility can be used in two ways. First, it provides a versatile tool on which research can be performed to advance the state-of-the-art technology of high-power CO2 lasers in such areas as electric excitation, laser chemistry, and quality of output beams, all of which are important whether the laser application is government or industry oriented. Second, the facility provides a well-defined, continuous wave beam for various application experiments, such as propulsion, power conversion, and materials processing.

  16. High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders

    NASA Astrophysics Data System (ADS)

    Tantawi, Sami G.; Tamura, Fumihiko

    2000-04-01

    We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.

  17. Random fiber laser directly pumped by a high-power laser diode.

    PubMed

    Babin, S A; Dontsova, E I; Kablukov, S I

    2013-09-01

    A random lasing based on Rayleigh scattering (RS) in a passive fiber directly pumped by a high-power laser diode (LD) has been demonstrated. Owing to the RS-based random distributed feedback (RDFB) the low-quality LD beam (938 nm) is converted into the high-quality laser output (980 nm). Because of the relatively low excess above the threshold with the available LD, the RDFB laser output is not stationary and limited in power at the 0.5 W level. In the used gradient-index fiber, the output beam has 4.5 lower divergence as compared with the pump beam thus demonstrating a new way for development of high-power fiber lasers with high-quality output.

  18. Trend of High-Power Laser Diodes for Recordable Optical Disc Drive

    NASA Astrophysics Data System (ADS)

    Yagi, Tetsuya

    Historical development trend of high-power laser diodes for recordable optical disc as CD-R and DVD-R is explained in a view point of not only how to realize highly reliable high-power operation but also how to adopt laser diodes into optical disc drives.

  19. Interaction between the laser beam and keyhole wall during high power fiber laser keyhole welding.

    PubMed

    Zou, Jianglin; Ha, Na; Xiao, Rongshi; Wu, Qiang; Zhang, Qunli

    2017-07-24

    The crucial factor of laser welding is the laser energy conversion. For a better understanding of the process, the interaction process between the laser beam and keyhole wall was investigated by observing the keyhole wall evaporation during high-power fiber laser welding. The results show that the evaporation vapor, induced by the laser beam, discretely distributed on the keyhole wall. A tiny 'hollow' zone was observed at the spot center-action region on the FKW. The evaporation vapor induced by the spot center moved downward along the front keyhole wall (FKW) with a period of about 0.3~0.75 ms, which indicates that the keyhole formation is reminiscent of a periodical laser drilling process on the FKW. The evaporation vapor on the keyhole wall suggest the assumption that the laser energy coupling mode in the keyhole was multiple-reflection, and the keyhole depth was mainly determined by the drilling behavior induced by the first absorption on the FKW.

  20. Development of high coherence high power 193nm laser

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Arakawa, Masaki; Fuchimukai, Atsushi; Sasaki, Yoichi; Onose, Takashi; Kamba, Yasuhiro; Igarashi, Hironori; Qu, Chen; Tamiya, Mitsuru; Oizumi, Hiroaki; Ito, Shinji; Kakizaki, Koji; Xuan, Hongwen; Zhao, Zhigang; Kobayashi, Yohei; Mizoguchi, Hakaru

    2016-03-01

    We have been developing a hybrid 193 nm ArF laser system that consists of a solid state seeding laser and an ArF excimer laser amplifier for power-boosting. The solid state laser consists of an Yb-fiber-solid hybrid laser system and an Er-fiber laser system as fundamentals, and one LBO and three CLBO crystals for frequency conversion. In an ArF power amplifier, the seed laser passes through the ArF gain media three times, and an average power of 110 W is obtained. As a demonstration of the potential applications of the laser, an interference exposure test is performed.

  1. Effect of interface layer on the performance of high power diode laser arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Pu; Wang, Jingwei; Xiong, Lingling; Li, Xiaoning; Hou, Dong; Liu, Xingsheng

    2015-02-01

    Packaging is an important part of high power diode laser (HPLD) development and has become one of the key factors affecting the performance of high power diode lasers. In the package structure of HPLD, the interface layer of die bonding has significant effects on the thermal behavior of high power diode laser packages and most degradations and failures in high power diode laser packages are directly related to the interface layer. In this work, the effects of interface layer on the performance of high power diode laser array were studied numerically by modeling and experimentally. Firstly, numerical simulations using finite element method (FEM) were conducted to analyze the effects of voids in the interface layer on the temperature rise in active region of diode laser array. The correlation between junction temperature rise and voids was analyzed. According to the numerical simulation results, it was found that the local temperature rise of active region originated from the voids in the solder layer will lead to wavelength shift of some emitters. Secondly, the effects of solder interface layer on the spectrum properties of high power diode laser array were studied. It showed that the spectrum shape of diode laser array appeared "right shoulder" or "multi-peaks", which were related to the voids in the solder interface layer. Finally, "void-free" techniques were developed to minimize the voids in the solder interface layer and achieve high power diode lasers with better optical-electrical performances.

  2. [Development of a High Power Green Laser Therapeutic Equipment for Hyperplasia of Prostate].

    PubMed

    Liang, Jie; Kang, Hongxiang; Shen, Benjian; Zhao, Lusheng; Wu, Xinshe; Chen, Peng; Chang, Aihong; Guo Hua; Guo, Jiayu

    2015-09-01

    The basic theory of high power green laser equipment for prostate hyperplasia therapy and the components of the system developed are introduced. Considering the requirements of the clinical therapy, the working process of the high power green laser apparatus are designed and the laser with stable output at 120 W is achieved. The controlling hardware and application software are developed, and the safety step is designed. The high power green laser apparatus manufactured with characteristics of stable output, multifunctional and friendly interface provides a choices of prostate hyperplasia therapy for using nationalization instrument.

  3. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode

    SciTech Connect

    Boyle, C.; Sigler, C.; Kirch, J. D.; Botez, D.; Mawst, L. J.; Lindberg, D. F.; Earles, T.

    2016-03-21

    Grating-coupled surface-emitting (GCSE) lasers generally operate with a double-lobed far-field beam pattern along the cavity-length direction, which is a result of lasing being favored in the antisymmetric grating mode. We experimentally demonstrate a GCSE quantum-cascade laser design allowing high-power, nearly single-lobed surface emission parallel to the longitudinal cavity. A 2nd-order Au-semiconductor distributed-feedback (DFB)/distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric (longitudinal) grating mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. Then, the antisymmetric modes are strongly absorbed by the metal in the grating, causing the symmetric mode to be favored to lase, which, in turn, produces a single-lobed beam over a range of grating duty-cycle values of 36%–41%. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of reflections from the device's cleaved ends. Peak pulsed output powers of ∼0.4 W were measured with nearly single-lobe beam-pattern (in the longitudinal direction), single-spatial-mode operation near 4.75 μm wavelength. Far-field measurements confirm a diffraction-limited beam pattern, in agreement with simulations, for a source-to-detector separation of 2 m.

  4. Use of high-power lasers in oral surgery

    NASA Astrophysics Data System (ADS)

    Gaspar, Lajos

    1993-12-01

    The treatment of 2989 patients with different type of lasers was described. The argon laser beam was used in 57 cases (portwine stains, telangiectasias, angiofibromas and other vascular lesions) and 84 operations were performed by Nd:YAG laser (leukoplakia, hemangioma etc.) furthermore 53 operations by combined laser beam. 2795 operations by carbon dioxide laser were performed in precancerous states and other white lesions, benign tumors and tumor-like states, malignant tumors and other lesions.

  5. Widely tunable lasers based on mode-hop-free semiconductor laser array

    NASA Astrophysics Data System (ADS)

    Kurobe, T.; Kimoto, T.; Muranushi, K.; Mukaihara, T.; Ariga, M.; Kagimoto, T.; Kagi, N.; Matsuo, N.; Kasukawa, A.

    2007-11-01

    Integration of mode-hop-free tunable laser array and a semiconductor optical amplifier is most reliable approach to realize widely tunable lasers. We have developed two types of tunable lasers, one is a thermally tunable DFB laser array for DWDM tunable transponders, which has shown high power and wide tunability covering Cband or L-band, housing in compact butterfly packages with robust wavelength locker. Another is a short-cavity DBR laser array for optical burst switching, whose lasing frequency can be monotonously tuned and locked on the ITU grid within 5 microseconds. Both lasers have demonstrated superior performances in system experiments.

  6. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging

    NASA Astrophysics Data System (ADS)

    Pan, X.; Veetil, S. P.; Liu, C.; Tao, H.; Jiang, Y.; Lin, Q.; Li, X.; Zhu, J.

    2016-05-01

    A coherent-modulation-imaging-based (CMI) algorithm has been employed for on-shot laser beam diagnostics in high-power laser facilities, where high-intensity short-pulsed lasers from terawatt to petawatt are designed to realize inertial confinement fusion (ICF). A single-shot intensity measurement is sufficient for wave-front reconstruction, both for the near-field and far-field at the same time. The iterative reconstruction process is computationally very efficient and was completed in dozens of seconds by the additional use of a GPU device to speed it up. The compact measurement unit—including a CCD and a piece of pre-characterized phase plate—makes it convenient for focal-spot intensity prediction in the target chamber. It can be placed almost anywhere in high-power laser facilities to achieve near-field wave-front diagnostics. The feasibility of the method has been demonstrated by conducting a series of experiments with diagnostic beams and seed pulses with deactivated amplifiers in our high-power laser system.

  7. Performance of high-power laser diode arrays for spaceborne lasers.

    PubMed

    Durand, Yannig; Culoma, Alain; Meynart, Roland; Pinsard, Jean-Luc; Volluet, Gerard

    2006-08-01

    The adequacy of commercial quasi-continuous high-power laser diode arrays (HPLDAs) as pump sources for spaceborne lasers has been assessed by endurance tests up to 3 x 10(9) shots under various stress conditions, vacuum operation up to 0.36 x 10(9) shots, and proton radiation tests. Observations of the evolution of the electro-optic parameters and of the near-field patterns of the HPLDAs during endurance tests have revealed that some diode bars could reach the required lifetime of a multibillion shots, suggesting how to build long lifetime HPLDAs by proper selection of the diode bars. The robustness of the HPLDAs against the proton environment experienced in a typical low Earth orbit has been checked. Finally, high-power laser diode arrays have been operated under vacuum, showing a behavior similar to that of HPLDAs operating in atmospheric conditions.

  8. High power laser-mechanical drilling bit and methods of use

    DOEpatents

    Grubb, Daryl L.; Kolachalam, Sharath K.; Faircloth, Brian O.; Rinzler, Charles C.; Allen, Erik C.; Underwood, Lance D.; Zediker, Mark S.

    2017-02-07

    An apparatus with a high power laser-mechanical bit for use with a laser drilling system and a method for advancing a borehole. The laser-mechanical bit has a beam path and mechanical removal devices that provide for the removal of laser-affected rock to advance a borehole.

  9. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  10. Semiconductor laser device

    SciTech Connect

    Namizaki, H.; Susaki, W.; Takamiya, S.; Tanaka, T.

    1981-07-07

    A first N-AlGaAs and a second N-GaAs layer are successively grown on an I-GaAs substrate. A third N-AlGaAs, a fourth P-AlGaAs and a fifth N-GaAs layer superpose one another on the second layer except for one lateral portion. Those portions of the five layers remote from the exposed second layer portion are changed into a P+ type and surrounded by a P zone. A positive and a negative electrode are located on the fifth layer and the exposed second layer portion, respectively. The negative electrode is nearest to a laser region located in the second layer and can be secured to a heat sink.

  11. Method and apparatus for delivering high power laser energy over long distances

    DOEpatents

    Zediker, Mark S; Rinzler, Charles C; Faircloth, Brian O; Koblick, Yeshaya; Moxley, Joel F

    2013-08-20

    Systems, devices and methods for the transmission of 1 kW or more of laser energy deep into the earth and for the suppression of associated nonlinear phenomena. Systems, devices and methods for the laser drilling of a borehole in the earth. These systems can deliver high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates.

  12. Method and system for advancement of a borehole using a high power laser

    DOEpatents

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  13. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOEpatents

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  14. Effects of High Power Lasers, No. 6 March - October 1975

    DTIC Science & Technology

    1975-11-12

    breakdown in air are described by Dabu; other reports include one by Min’ko on laser plasma generators, and an analysis of trace elements in a...laser plasma. Finally, Berezhnaya describes a polarimetry technique for laser plasma analysis , using a submillimeter laser. ; m Mk...ether and glycerin, buth the analysis is limited to the distilled water case. Results show a general similarity in the character of crater

  15. Application of high power lasers to space power and propulsion

    NASA Technical Reports Server (NTRS)

    Nored, D. L.

    1976-01-01

    The transmission of laser power over long distances for applications such as direct conversion to propulsive thrust or electrical power is considered. Factors discussed include: problems inherent in transmitting, propagating, and receiving the laser beam over long ranges; high efficiency, closed-cycle, continuous wave operation; advancement of CO2 laser technology; and compatibility with photovoltaic power conversion devices.

  16. Radial current high power dummy load for characterizing the high power laser triggered transformer-type accelerator

    NASA Astrophysics Data System (ADS)

    Yin, Yi; Zhong, Hui-Huang; Liu, Jin-Liang; Ren, He-Ming; Yang, Jian-Hua; Zhang, Xiao-Ping; Hong, Zhi-qiang

    2010-09-01

    A radial-current aqueous resistive solution load was applied to characterize a laser triggered transformer-type accelerator. The current direction in the dummy load is radial and is different from the traditional load in the axial. Therefore, this type of dummy load has smaller inductance and fast response characteristic. The load was designed to accommodate both the resistance requirement of accelerator and to allow optical access for the laser. Theoretical and numerical calculations of the load's inductance and capacitance are given. The equivalent circuit of the dummy load is calculated in theory and analyzed with a PSPICE code. The simulation results agree well with the theoretical analysis. At last, experiments of the dummy load applied to the high power spiral pulse forming line were performed; a quasisquare pulse voltage is obtained at the dummy load.

  17. Development of high-power CO2 lasers and laser material processing

    NASA Astrophysics Data System (ADS)

    Nath, Ashish K.; Choudhary, Praveen; Kumar, Manoj; Kaul, R.

    2000-02-01

    Scaling laws to determine the physical dimensions of the active medium and optical resonator parameters for designing convective cooled CO2 lasers have been established. High power CW CO2 lasers upto 5 kW output power and a high repetition rate TEA CO2 laser of 500 Hz and 500 W average power incorporated with a novel scheme for uniform UV pre- ionization have been developed for material processing applications. Technical viability of laser processing of several engineering components, for example laser surface hardening of fine teeth of files, laser welding of martensitic steel shroud and titanium alloy under-strap of turbine, laser cladding of Ni super-alloy with stellite for refurbishing turbine blades were established using these lasers. Laser alloying of pre-placed SiC coating on different types of aluminum alloy, commercially pure titanium and Ti-6Al-4V alloy, and laser curing of thermosetting powder coating have been also studied. Development of these lasers and results of some of the processing studies are briefly presented here.

  18. Transmission line pulse system for avalanche characterization of high power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Riccio, Michele; Ascione, Giovanni; De Falco, Giuseppe; Maresca, Luca; De Laurentis, Martina; Irace, Andrea; Breglio, Giovanni

    2013-05-01

    Because of the increasing in power density of electronic devices for medium and high power application, reliabilty of these devices is of great interest. Understanding the avalanche behaviour of a power device has become very important in these last years because it gives an indication of the maximum energy ratings which can be seen as an index of the device ruggedness. A good description of this behaviour is given by the static IV blocking characteristc. In order to avoid self heating, very relevant in high power devices, very short pulses of current have to be used, whose value can change from few milliamps up to tens of amps. The most used method to generate short pulses is the TLP (Transmission Line Pulse) test, which is based on charging the equivalent capacitance of a transmission line to high value of voltage and subsequently discharging it onto a load. This circuit let to obtain very short square pulses but it is mostly used for evaluate the ESD capability of semiconductor and, in this environment, it generates pulses of low amplitude which are not high enough to characterize the avalanche behaviour of high power devices . Advanced TLP circuit able to generate high current are usually very expensive and often suffer of distorption of the output pulse. In this article is proposed a simple, low cost circuit, based on a boosted-TLP configuration, which is capable to produce very square pulses of about one hundreds of nanosecond with amplitude up to some tens of amps. A prototype is implemented which can produce pulses up to 20A of amplitude with 200 ns of duration which can characterize power devices up to 1600V of breakdown voltage. Usage of microcontroller based logic make the circuit very flexible. Results of SPICE simulation are provided, together with experimental results. To prove the effectiveness of the circuit, the I-V blocking characteristics of two commercial devices, namely a 600V PowerMOS and a 1200V Trench-IGBT, are measured at different

  19. High Power Lasers And Their Application In Materials Processing

    NASA Astrophysics Data System (ADS)

    Bohn, W. L.

    1985-02-01

    The idea of using a laser for materials processing is more than 20 years old. Although the concept of a non-contact method for processing with a beam of light has been pursued with great interest and enthusiasm, the practical use of laser beam processing was slow to develop. The lasers available in the 1960's were fragile and of relatively low power. In the 1970's lasers in the multi-kilowatt range were developed but the problem of laser acceptance by the customer had to be overcome. Today, reliable Nd-Yag and CO2-lasers are available and laser processing is a fast growing market. An additional boost is expected with the development of the next generation of lasers and with increased knowledge of the physical phenomena that underlie laser material processing. This paper will review latest developments in laser technology and laser-workpiece interaction with special emphasis on the impact of high speed photography on the research work in these areas.

  20. Laser remelting of Ti6AL4V using high power diode laser

    NASA Astrophysics Data System (ADS)

    Amaya-Vázquez, M. R.; Sánchez-Amaya, J. M.; Boukha, Z.; El Amrani, K.; Botana, F. J.

    2012-04-01

    Titanium alloys present excellent mechanical and corrosion properties, being widely employed in different industries such as medical, aerospace, automotive, petrochemical, nuclear and power generation, etc. Ti6Al4V is the α-β alloy most employed in industry. The modification of its properties can be achieved with convectional heat treatments and/or with laser processing. Laser remelting (LR) is a technology applied to Ti6Al4V by other authors with excimer and Nd-Yag laser with pure argon shielding gas to prevent risk of oxidation. In the present contribution, laser remelting has been applied for the first time to Ti6Al4V with a high power diode laser (with pure argon as shielding gas). Results showed that remelted samples (with medium energy densities) have higher microhardness and better corrosion resistance than Ti6Al4V base metal.

  1. Compact deep UV laser system at 222.5 nm by single-pass frequency doubling of high-power GaN diode laser emission

    NASA Astrophysics Data System (ADS)

    Ruhnke, Norman; Müller, André; Eppich, Bernd; Güther, Reiner; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2016-03-01

    Deep ultraviolet (DUV) lasers emitting below 300 nm are of great interest for many applications, for instance in medical diagnostics or for detecting biological agents. Established DUV lasers, e.g. gas lasers or frequency quadrupled solid-state lasers, are relatively bulky and have high power consumptions. A compact and reliable laser diode based system emitting in the DUV could help to address applications in environments where a portable and robust light source with low power consumption is needed. In this work, a compact DUV laser system based on single-pass frequency doubling of highpower GaN diode laser emission is presented. A commercially available high-power GaN laser diode from OSRAM Opto Semiconductors serves as a pump source. The laser diode is spectrally stabilized in an external cavity diode laser (ECDL) setup in Littrow configuration. The ECDL system reaches a maximum optical output power of 700 mW, maintaining narrowband emission below 60 pm (FWHM) at 445 nm over the entire operating range. By direct single pass frequency doubling in a BBO crystal with a length of 7.5 mm a maximum DUV output power of 16 μW at a wavelength of 222.5 nm is generated. The presented concept enables compact and efficient diode laser based light sources emitting in the DUV spectral range that are potentially suitable for in situ applications where a small footprint and low power consumption is essential.

  2. Applications of high power lasers in the battlefield

    NASA Astrophysics Data System (ADS)

    Kalisky, Yehoshua

    2009-09-01

    Laser weapon is currently considered as tactical as well as strategic beam weapons, and is considered as a part of a general layered defense system against ballistic missiles and short-range rockets. This kind of weapon can disable or destroy military targets or incoming objects used by small groups of terrorists or countries, at the speed of light. Laser weapon is effective at long or short distances, owing to beam's unique characteristics such as narrow bandwidth, high brightness, coherent both in time and space, and it travels at the speed of light. Unlike kinetic weapon, laser weapon converts the energy stored in an electromagnetic laser beam into a large amount of heat aimed on a small area spot at the skin of the missile, usually close to the liquid fuel storage tank, warhead case or engine area, following by a temperature increase and finally-catastrophic failure by material ablation or melt. The usefulness of laser light as a weapon has been studied for decades but only in recent years became feasible. There are two types of lasers being used: gas lasers and solid state lasers, including fiber lasers. All these types of lasers will be discussed below.

  3. High power tube solid-state laser with zigzag propagation of pump and laser beam

    NASA Astrophysics Data System (ADS)

    Savich, Michael

    2015-02-01

    A novel resonator and pumping design with zigzag propagation of pumping and laser beams permits to design an improved tube Solid State Laser (SSL), solving the problem of short absorption path to produce a high power laser beam (100 - 1000kW). The novel design provides an amplifier module and laser oscillator. The tube-shaped SSL includes a gain element fiber-optically coupled to a pumping source. The fiber optic coupling facilitates light entry at compound Brewster's angle of incidence into the laser gain element and uses internal reflection to follow a "zigzag" path in a generally spiral direction along the length of the tube. Optics are arranged for zigzag propagation of the laser beam, while the cryogenic cooling system is traditional. The novel method of lasing uses advantages of cylindrical geometry to reach the high volume of gain medium with compactness and structural rigidity, attain high pump density and uniformity, and reach a low threshold without excessive increase of the temperature of the crystal. The design minimizes thermal lensing and stress effects, and provides high gain amplification, high power extraction from lasing medium, high pumping and lasing efficiency and a high beam quality.

  4. Visualization of radiation from a high-power terahertz free electron laser with a thermosensitive interferometer

    NASA Astrophysics Data System (ADS)

    Vinokurov, N. A.; Knyazev, B. A.; Kulipanov, G. N.; Matveenko, A. N.; Popik, V. M.; Cherkassky, V. S.; Shcheglov, M. A.

    2007-07-01

    A thermosensitive interferometer based on a plane-parallel glass plate is used for visualization of a high-power terahertz radiation. The plane wavefront of visible radiation emitted by a semiconductor laser is reflected from the two surfaces of the plate and forms on a screen an interference pattern recorded by a digital video camera. Terahertz radiation being measured is incident on the outer surface of the plate and heats a thin surface layer, which causes a shift of interference fringes. For K8 glass, a shift by one fringe corresponds to an absorbed energy of 5.1 J/cm2. The problem of determining the sign of the phase shift was solved by comparing the interference patterns with the images obtained with an infrared imager sensitive to near IR radiation. The processing of interference patterns makes it possible to determine the power density distribution over the beam cross section of the Novosibirsk free electron laser. In these measurements, the absolute value of the beam power determined by integrating over the cross section was 65 ± 7 W for a 130-μm wavelength. Visualization of the complex image with a spatial resolution no worse than 1 mm and a frame repetition rate of 25 Hz is demonstrated.

  5. Measurement of mounting-induced strain in high-power laser diode arrays

    NASA Astrophysics Data System (ADS)

    Tomm, Jens W.; Mueller, Ralf; Baerwolff, A.; Lorenzen, Dirk

    1999-11-01

    Thermally induced strain caused by device packaging is studied in high-power semiconductor laser arrays by a novel non-invasive technique. Measurements with intentionally strained laser array devices for 808 nm emission reveal spectral shifts of quantum-confined optical transitions in the optical active region. These shifts by up to 10 meV serve as a measure for strain and are compared with model calculations. We demonstrate that different packaging techniques cause different packaging-induced strains. We also show that the packaging-induced strain portion, which gets transmitted through the solder material, differs for different packaging technologies. An intentionally strain- reduced packaging technique is shown to transmit about one quarter of the potential packaging-induced strain towards the optical active layer, whereas another packaging technique, which provides highly reliable 'single-chip' devices is found to transmit about half of the potential amount. Spatially resolved measurements demonstrate strain gradients within the devices. Also temporal strain evolution is monitored. We show that 'the burn-in' is accompanied by strain accumulation whereas for long-term operation strain relaxation occurs.

  6. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  7. Ultrahigh-power semiconductor lasers and their applications

    NASA Astrophysics Data System (ADS)

    He, Xiaoguang; Srinivasan, Swaminathan T.; Gupta, Shantanu; Patel, Rushikesh M.

    1998-08-01

    High power semiconductor laser diodes have found their place in a wide variety of markets such as printing, pumping of solid state lasers, illumination, medical diagnosis, surgery, spectroscopy and material processing. In the past two years, the performance of the commercial available multi-mode semiconductor laser diodes has been elevated to a ultra high power level (continuous wave (CW) power density higher than 15 mW/micrometers -aperture for single emitter devices and 10 mW/micrometers -aperture per cm wide bar for monolithic arrays) as the result of breakthrough in device design, processing and packaging. We present in this paper record setting performance of these ultra high power devices in terms of CW power (> 10.6 W from 100 micrometers aperture, > 180 W from 1 cm wide array) and efficiency (wall plug-in efficiency 59%, differential quantum efficiency 87%). Reliability tests of these ultra high power devices indicates that these devices have equivalent to or better reliability than conventional lower power commercial devices. We will discuss the significance of these devices in enabling new applications and empowering current applications.

  8. Beam breakup integral measurement on high-power laser chains.

    PubMed

    Villate, Denis; Blanchot, Nathalie; Rouyer, Claude

    2007-03-01

    We experimentally demonstrate the efficiency of a single-shot method to measure the beam breakup integral (B) accumulated across a high power chain. The technique uses spectrally shaped strongly chirped femtosecond pulses and takes advantage of time-to-spectral coupling generated by nonlinear effects. We performed B measurements on regenerative amplifiers (Ti:sapphire) and on the ALISE 200 J facility currently installed at CEA-CESTA (France).

  9. A stable, high power optically pumped far infrared laser system

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam; Pickett, Herbert M.

    1988-01-01

    The generation of 1.25 watts of CW laser power at the 119-micron (2522.8 GHz) methanol line is reported. The maximum frequency fluctuation of the free running laser is less than + or - 100 kHz per hour. This laser has also been tested on numerous other lines ranging from 403.7 GHz (HCOOH) to 5260 GHz (CH3OD) with improved power and stability.

  10. High power CW iodine laser pumped by solar simulator

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Lee, Min H.; Weaver, Willard R.

    1987-01-01

    An iodine photodissociation laser was pumped by a long Ar arc as the solar simulator to produce a 10-W CW output. Continuous lasing for 1 h was achieved with a flow of the laser material n-C3F7I. The 10-W CW output is the highest produced to date and establishes the feasibility of developing a solar-pumped laser for space power transmission.

  11. DUV high power lasers processing for glass and CFRP

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masakazu; Kakizaki, Kouji; Oizumi, Hiroaki; Mimura, Toshio; Fujimoto, Junichi; Mizoguchi, Hakaru

    2017-05-01

    A laser processing is widely applied to cutting, drilling, welding, bending and surface treatment in industry. Lasers with a wavelength of 1 μm are mainly used and the processing is realized by melting materials. This thermal process has a high productivity but the processed surface is hard to use for precision machining. This report is focusing on two materials which are classified in wide band gap. Ablation rate was measured with a laser microscope and an optical one. Excimer laser is expected to be a useful tool for these materials

  12. Statistical optics applied to high-power glass lasers

    SciTech Connect

    Manes, K.R.; Simmons, W.W.

    1985-04-01

    Multiterawatt laser systems, particularly the Novette system at the Lawrence Livermore National Laboratory, are simulated using statistical-optics techniques. The results are compared with experimental observations.

  13. Development of a high-power blue laser (445  nm) for material processing.

    PubMed

    Wang, Hongze; Kawahito, Yosuke; Yoshida, Ryohei; Nakashima, Yuya; Shiokawa, Kunio

    2017-06-15

    A blue diode laser has a higher absorption rate than a traditional laser, while the maximum power is limited. We report the structure and laser beam profile of a 250 W high-power blue laser (445 nm) for material processing. The absorption rate of the blue laser system for the steel was 2.75 times that of a single-mode fiber laser system (1070 nm). The characteristics of the steel after laser irradiation were determined, validating the potential of this high-power blue laser for material processing, such as heat treatment and cladding. The cost of the developed laser system was lower than that of the existing one. To the best of our knowledge, this is the first blue laser with a power as high as 250 W.

  14. Industrial applications of high-power copper vapor lasers

    SciTech Connect

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  15. Faraday isolator based on TSAG crystal for high power lasers.

    PubMed

    Mironov, E A; Palashov, O V

    2014-09-22

    A Faraday isolator based on a new magneto-optical medium, TSAG (terbium scandium aluminum garnet) crystal, has been constructed and investigated experimentally. The device provides an isolation ratio of more than 30 dB at 500 W laser power. It is shown that this medium can be used in Faraday isolators for kilowatt-level laser powers.

  16. High power visible diode laser for the treatment of eye diseases by laser coagulation

    NASA Astrophysics Data System (ADS)

    Heinrich, Arne; Hagen, Clemens; Harlander, Maximilian; Nussbaumer, Bernhard

    2015-03-01

    We present a high power visible diode laser enabling a low-cost treatment of eye diseases by laser coagulation, including the two leading causes of blindness worldwide (diabetic retinopathy, age-related macular degeneration) as well as retinopathy of prematurely born children, intraocular tumors and retinal detachment. Laser coagulation requires the exposure of the eye to visible laser light and relies on the high absorption of the retina. The need for treatment is constantly increasing, due to the demographic trend, the increasing average life expectancy and medical care demand in developing countries. The World Health Organization reacts to this demand with global programs like the VISION 2020 "The right to sight" and the following Universal Eye Health within their Global Action Plan (2014-2019). One major point is to motivate companies and research institutes to make eye treatment cheaper and easily accessible. Therefore it becomes capital providing the ophthalmology market with cost competitive, simple and reliable technologies. Our laser is based on the direct second harmonic generation of the light emitted from a tapered laser diode and has already shown reliable optical performance. All components are produced in wafer scale processes and the resulting strong economy of scale results in a price competitive laser. In a broader perspective the technology behind our laser has a huge potential in non-medical applications like welding, cutting, marking and finally laser-illuminated projection.

  17. All solid-state high power visible laser

    NASA Technical Reports Server (NTRS)

    Grossman, William M.

    1993-01-01

    The overall objective of this Phase 2 effort was to develop and deliver to NASA a high repetition rate laser-diode-pumped solid-state pulsed laser system with output in the green portion of the spectrum. The laser is for use in data communications, and high efficiency, short pulses, and low timing jitter are important features. A short-pulse 1 micron laser oscillator, a new multi-pass amplifier to boost the infrared power, and a frequency doubler to take the amplified infrared pulsed laser light into the green. This produced 1.5 W of light in the visible at a pulse repetition rate of 20 kHz in the laboratory. The pulses have a full-width at half maximum of near 1 ns. The results of this program are being commercialized.

  18. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  19. Neodymium lasers as a source of synchronized high-power optical pulses

    NASA Astrophysics Data System (ADS)

    Sizer, Theodore, II; Duling, Irl N., III

    1988-02-01

    The recent considerable progress in the development of solid-state lasers, primarily neodymium-based lasers for use as sources of short, synchronized, high-power optical pulses, is reviewed. The amplification of femtosecond optical pulses using synchronous amplification techniques with these lasers has proved particularly applicable to experimentation. The authors also presents a laser design which combines several advantageous qualities into a single laser cavity.

  20. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  1. Characterization of High-power Quasi-cw Laser Diode Arrays

    NASA Technical Reports Server (NTRS)

    Stephen, Mark A.; Vasilyev, Aleksey; Troupaki, Elisavet; Allan, Graham R.; Kashem, Nasir B.

    2005-01-01

    NASA s requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. Performance and comprehensive characterization data of Quasi-CW, High-power, laser diode arrays is presented.

  2. Optical isolator for semiconductor lasers.

    PubMed

    Kuwahara, H

    1980-01-15

    An optical isolator for semiconductor lasers, consisting of a polarizer and a quarterwave plate, was investigated experimentally. It was assembled in a compact laser-to-fiber coupling module. Experiment showed forward loss of 1.15 dB, backward loss of 24.8 dB, and rotative tolerance of 2.4 deg for 1 dB down. The length of the module is 43.2 mm. The coupling efficiency to a graded-index multimode fiber is 37.5%. The extinction ratio is improved by 6.75 dB. The suppression effect on the influence of reflected light was investigated, using the assembled module.

  3. Laser three-dimensional printing microchannel heat sink for high-power diode laser array

    NASA Astrophysics Data System (ADS)

    Jia, Guannan; Qiu, Yuntao; Yan, Anru; Yao, Shun; Wang, Zhiyong

    2016-09-01

    To improve the heat management of high-power diode lasers, a microchannel heat sink is obtained, whose structure is optimized in method of numerical simulation. Following such a design, the microchannel heat sink is fabricated by nickel-based doping rare earth materials by laser three-dimensional (3-D) printing procedure. Since the noncorrosion property of such material has been preliminarily demonstrated by salt spray test, there is no necessity to plate the interior of the laser 3-D printing microchannel heat sink with gold. The coefficient of thermal expansion of such material is 11 ppm/K. The diode laser array (LDA) with 80-W cw output power, 2-mm cavity length, 100-μm emitter width, and 20% fill-factors is mounted on it for the thermal resistance test, and the result is 0.40 K/W. Moreover, the smile effect of the mounted LDA is merely 0.8 μm.

  4. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

    1991-02-19

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

  5. Integrated injection-locked semiconductor diode laser

    DOEpatents

    Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1991-01-01

    A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

  6. High-power CW laser using hydrogen-fluorine reaction

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1975-01-01

    Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.

  7. Micro-ablation with high power pulsed copper vapor lasers.

    PubMed

    Knowles, M

    2000-07-17

    Visible and UV lasers with nanosecond pulse durations, diffraction-limited beam quality and high pulse repetition rates have demonstrated micro-ablation in a wide variety of materials with sub-micron precision and sub-micron-sized heat-affected zones. The copper vapour laser (CVL) is one of the important industrial lasers for micro-ablation applications. Manufacturing applications for the CVL include orifice drilling in fuel injection components and inkjet printers, micro-milling of micromoulds, via hole drilling in printed circuit boards and silicon machining. Recent advances in higher power (100W visible, 5W UV), diffraction-limited, compact CVLs are opening new possibilities for manufacturing with this class of nanosecond laser.

  8. Near fundamental mode high-power thin-disk laser

    NASA Astrophysics Data System (ADS)

    Schad, Sven-Silvius; Kuhn, Vincent; Gottwald, Tina; Negoita, Viorel; Killi, Alexander; Wallmeroth, Klaus

    2014-02-01

    We report on our latest results of near fundamental mode operation of Yb-doped thin-disk lasers. 4 kW of continuous wave output power at M²<1.4 has been achieved by using one disk only. To the best of our knowledge this is the highest cw output power ever extracted from a single disk resonator design aiming for fundamental mode beam quality. Furthermore, a promising optical-to-optical efficiency of up to 56% at peak power has been achieved by pumping at 969 nm. Besides zero phonon line pumping, standard resonator components of our TruDisk thin-disk laser product series have been used such as the laser disk, and the pump optics which allows for 44 passes of the pump light through the laser crystal. It should be noticed that neither aberration correction methods nor a vacuum resonator design have been necessary to achieve this result.

  9. Optical Systems For High Power Laser Beam Delivery

    NASA Astrophysics Data System (ADS)

    Durville, Frederic M.; Cilia, D.

    1989-03-01

    During the pst fifteen years, pwerful lasers have been developed for industrial applications such as cutting, piercing, welding, engraving, etc... Convenient and reliable delivery systems are still needed to widen their field of application.

  10. Laser surface texturization for high power cladding light stripper

    NASA Astrophysics Data System (ADS)

    Berisset, Michael; Lebrun, Léo.; Faucon, Marc; Kling, Rainer; Boullet, Johan; Aguergaray, Claude

    2016-03-01

    We demonstrated herein a new type of cladding light strippers suitable for high power systems. By precisely micro-machining the surface of the fiber we create CLS with efficiencies as high as 97 % for large NA, multi-mode, cladding light (NA = 0.3), and 70 % for single-mode, low NA, light. The NA of the cladding light is reduced from 0.3 down to 0.08. The CLS exhibit a 1°C/stripped-Watt temperature elevation making them very suitable for high power applications. This fabrication method is simple and reliable. We have tested different texturization geometries on several different fibers: 20/400 from Nufern, KAGOME, and LMA 10 and LMA 15 fibers (results not shown herein) and we observed good efficiencies and temperature elevation behavior for all of them. Finally, large scale production of CLS with this method is possible since the time necessary to prepare on CLS is very small, in the order of few seconds.

  11. Limitations on the Attainable Intensity of High Power Lasers

    SciTech Connect

    Fedotov, A. M.; Narozhny, N. B.; Mourou, G.; Korn, G.

    2010-08-20

    It is shown that even a single e{sup -}e{sup +} pair created by a superstrong laser field in vacuum would cause development of an avalanchelike QED cascade which rapidly depletes the incoming laser pulse. This confirms Bohr's old conjecture that the electric field of the critical QED strength E{sub S}=m{sup 2}c{sup 3}/e({h_bar}/2{pi}) could never be created.

  12. Research with high-power short-wavelength lasers

    SciTech Connect

    Holzrichter, J.F.; Campbell, E.M.; Lindl, J.D.; Storm, E.

    1985-03-05

    Three important high-temperature, high-density experiments were conducted recently using the 10-TW, short-wavelength Novette laser system at the Lawrence Livermore National Laboratory. These experiments demonstrated successful solutions to problems that arose during previous experiments with long wavelength lasers (lambda greater than or equal to 1..mu..m) in which inertial confinement fusion (ICF), x-ray laser, and other high-temperature physics concepts were being tested. The demonstrations were: (1) large-scale plasmas (typical dimensions of up to 1000 laser wavelengths) were produced in which potentially deleterious laser-plasma instabilities were collisionally damped. (2) Deuterium-tritium fuel was imploded to a density of 20 g/cm/sup 3/ and a pressure of 10/sup 10/ atm. (3) A 700-fold amplification of soft x rays by stimulated emission at 206 and 209 A (62 eV) from Se/sup +24/ ions was observed in a laser-generated plasma. Isoelectronic scaling to 155 A (87 eV) in Y/sup +29/ was also demonstrated.

  13. Optical fiber cable for transmission of high power laser energy over great distances

    DOEpatents

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  14. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    DTIC Science & Technology

    2016-02-01

    AFRL-RX-WP-JA-2016-0323 OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS...OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Optical properties of lithium terbium fluoride and implications for performance in

  15. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  16. Progress on the optical materials and components for the high power laser system in China

    NASA Astrophysics Data System (ADS)

    Shao, Jian-Da; Dai, Ya-Ping; Xu, Qiao

    2011-11-01

    The paper summarizes the recent progress on the optical materials and components for the high power laser system in China. The amplifier material, Nd glass, has been developed with continuous melt. Non-linear crystals, KDP/DKDP, have been grown with rapid and traditional growth method. Fused silica and K9 glass has been achieved high quality. Some potential materials for next generation high power laser system are also evinced in this summary.

  17. Progress on the optical materials and components for the high power laser system in China

    NASA Astrophysics Data System (ADS)

    Shao, Jian-da; Dai, Ya-ping; Xu, Qiao

    2012-01-01

    The paper summarizes the recent progress on the optical materials and components for the high power laser system in China. The amplifier material, Nd glass, has been developed with continuous melt. Non-linear crystals, KDP/DKDP, have been grown with rapid and traditional growth method. Fused silica and K9 glass has been achieved high quality. Some potential materials for next generation high power laser system are also evinced in this summary.

  18. Laser assisted die bending: a new application of high power diode lasers

    NASA Astrophysics Data System (ADS)

    Schuöcker, D.; Schumi, T.; Spitzer, O.; Bammer, F.; Schuöcker, G.; Sperrer, G.

    2015-02-01

    Nowadays high power lasers are mainly used for cutting of sheet metals, for welding, hardening and rapid prototyping. In the forming of sheet metals as bending or deep drawing lasers are not used. Nevertheless a few years ago a new application of high power lasers has been invented, where bending of materials that break at room temperature becomes possible by heating them along the bending edge with high power lasers thus allowing their treatment without cracks and rupture. For this purpose a large number of diode lasers are arranged in the bottom tool of a bending machine (a V-shaped die) which heat up the initially flat sheet metal during the bending process what is performed by pressing it into the die with a knife shaped upper tool where due to the laser heating the material is softened and thus cracks are avoided. For the technical realization of the new process of laser assisted die bending, modules equipped with numerous laser diodes and a total beam power of 2,5 kW are used. The light emitted by these modules enters a tool with a length of 15cm and is deflected towards the workpiece. By using ten of these modules with adjacent dies and by integrating those in a bending press a bending edge of sheet metals with a length of 1500mm can be realized. Such a bending press with laser assistance also needs energization with a power of practically 50kW, a respective water flow, a heat exchanger system and also a control for all functions of this system. Special measures have also been developed to avoid radiating of those tools that are not covered by a workpiece in the case of bending edges shorter than the full length of the bending tools whereas individual short circuiting of diode modules can be performed. Specific measures to ensure a safe operation without any harm to the operational person have been realized. Exploitation of the bending process has been carried out for titanium, where material thicknesses up to 3mm have been bent successfully.

  19. The advances and characteristics of high-power diode laser materials processing

    NASA Astrophysics Data System (ADS)

    Li, Lin

    2000-10-01

    This paper presents a review of the direct applications of high-power diode lasers for materials processing including soldering, surface modification (hardening, cladding, glazing and wetting modifications), welding, scribing, sheet metal bending, marking, engraving, paint stripping, powder sintering, synthesis, brazing and machining. The specific advantages and disadvantages of diode laser materials processing are compared with CO 2, Nd:YAG and excimer lasers. An effort is made to identify the fundamental differences in their beam/material interaction characteristics and materials behaviour. Also an appraisal of the future prospects of the high-power diode lasers for materials processing is given.

  20. High power ytterbium-doped fiber lasers — fundamentals and applications

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.

    2014-03-01

    In this paper, we summarize the fundamental properties and review the latest developments in high power ytterbium-doped fiber (YDF) lasers. The review is focused primarily on the main fiber laser configurations and the related cladding pumping issues. Special attention is placed on pump combination techniques and the parameters that affect the brightness enhancements observed in high power fiber lasers. The review also includes the major limitations imposed by fiber nonlinearities and other parasitic effects, such as optical damage, modal instabilities and photodarkening. The paper summarizes the power evolution in continuous-wave (CW) and pulsed YDF lasers and their impact on material processing and other industrial applications.

  1. High-power pulsed 976-nm DFB laser diodes

    NASA Astrophysics Data System (ADS)

    Zeller, Wolfgang; Kamp, Martin; Koeth, Johannes; Worschech, Lukas

    2010-04-01

    Distributed feedback (DFB) laser diodes nowadays provide stable single mode emission for many different applications covering a wide wavelength range. The available output power is usually limited because of catastrophical optical mirror damage (COD) caused by the small facet area. For some applications such as trace gas detection output powers of several ten milliwatts are sufficiently high, other applications like distance measurement or sensing in harsh environments however require much higher output power levels. We present a process combining optimizations of the layer structure with a new lateral design of the ridge waveguide which is fully compatible with standard coating and passivation processes. By implementing a large optical cavity with the active layer positioned not in the middle of the waveguide layers but very close to the upper edge, the lasers' farfield angles can be drastically reduced. Furthermore, the travelling light mode can be pushed down into the large optical cavity by continuously decreasing the ridge waveguide width towards both laser facets. The light mode then spreads over a much larger area, thus reducing the surface power density which leads to significantly higher COD thresholds. Laterally coupled DFB lasers based on this concept emitting at wavelengths around 976 nm yield hitherto unachievable COD thresholds of 1.6 W under pulsed operation. The high mode stability during the 50 ns pulses means such lasers are ideally suited for high precision distance measurement or similar tasks.

  2. Adaptive resonator control techniques for high-power lasers

    SciTech Connect

    Freeman, R.H.; Spinhirne, J.M.; Anafi, D.

    1981-01-01

    Experimental results and interpretations for correcting tilt and astigmatism aberrations using intracavity adaptive optics versus extracavity adaptive optics are presented, along with control algorithm and resonator design considerations when utilizing a multidither COAT control system for astigmatism and tilt correction. It is shown that in a high-power device, PIB (Power-in-the-Bucket) optimization, with the possible added requirement of extracavity beam clean-up to achieve good beam quality, would be a more desirable control algorithm than BQ (beam quality) optimization. Zonal multidither hill-climbing servo COAT techniques applied to tilt correction fail to achieve good correction for large tilt amplitudes when the control loop is closed after tilt is introduced. Therefore, it is suggested that a separate tilt sensor be used to provide error signal for correction of tilt and let the multidither system COAT correct for higher order aberrations

  3. Semiconductor disk laser-pumped subpicosecond holmium fibre laser

    SciTech Connect

    Chamorovskiy, A Yu; Marakulin, A V; Leinonen, T; Kurkov, Andrei S; Okhotnikov, Oleg G

    2012-01-31

    The first passively mode-locked holmium fibre laser has been demonstrated, with a semiconductor saturable absorber mirror (SESAM) as a mode locker. Semiconductor disk lasers have been used for the first time to pump holmium fibre lasers. We obtained 830-fs pulses at a repetition rate of 34 MHz with an average output power of 6.6 mW.

  4. Vectorial analytical description of the polarized light of a high-power laser diode.

    PubMed

    Xu, Qiang; Wang, Jiajie; Han, Yiping; Wu, Zhensen

    2013-03-10

    A mathematical model to describe the far-field of a high-power laser diode (LD) beam is presented. The laser beam propagation is studied by the vector Rayleigh-Sommerfeld far-field diffraction integral formula The far-field distribution of the LD beam is studied in detail; the light polarized parallel and perpendicular to the junction plane are all considered. This model is employed to predict the light intensity of high-power LDs. The computed intensity distributions are in a good agreement with the corresponding measurements. This model can be easily used to analyze the propagation properties of the high-power LD beam.

  5. Relay telescope for high power laser alignment system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2006-09-19

    A laser system includes an optical path having an intracavity relay telescope with a telescope focal point for imaging an output of the gain medium between an image location at or near the gain medium and an image location at or near an output coupler for the laser system. A kinematic mount is provided within a vacuum chamber, and adapted to secure beam baffles near the telescope focal point. An access port on the vacuum chamber is adapted for allowing insertion and removal of the beam baffles. A first baffle formed using an alignment pinhole aperture is used during alignment of the laser system. A second tapered baffle replaces the alignment aperture during operation and acts as a far-field baffle in which off angle beams strike the baffle a grazing angle of incidence, reducing fluence levels at the impact areas.

  6. Improvements in a calorimeter for high-power CW lasers

    NASA Technical Reports Server (NTRS)

    Chamberlain, G. E.; Simpson, P. A.; Smith, R. L.

    1978-01-01

    A technique for improving the measurement certainty with the BB series (Smith et al., 1972) of electrically calibrated calorimeters used in high-energy lasers is described. The technique is based on monitoring the energy which is backscattered from the meter and monitoring the overspill radiation impinging on the calorimeter at the entrance aperture. The design and performance of a second generation BB meter is discussed and compared to that of the original device in terms of number of electrical calibrations, the residual standard deviation of electrical calibration, the calibration constant for laser energy, the correcting factor for systematics, inaccuracy, imprecision, and uncertainty.

  7. High power 938 nanometer fiber laser and amplifier

    SciTech Connect

    Dawson, Jay W.; Liao, Zhi Ming; Beach, Raymond J.; Drobshoff, Alexander D.; Payne, Stephen A.; Pennington, Deanna M.; Hackenberg, Wolfgang; Calia, Domenico Bonaccini; Taylor, Luke

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  8. Improvements in a calorimeter for high-power CW lasers

    NASA Technical Reports Server (NTRS)

    Chamberlain, G. E.; Simpson, P. A.; Smith, R. L.

    1978-01-01

    A technique for improving the measurement certainty with the BB series (Smith et al., 1972) of electrically calibrated calorimeters used in high-energy lasers is described. The technique is based on monitoring the energy which is backscattered from the meter and monitoring the overspill radiation impinging on the calorimeter at the entrance aperture. The design and performance of a second generation BB meter is discussed and compared to that of the original device in terms of number of electrical calibrations, the residual standard deviation of electrical calibration, the calibration constant for laser energy, the correcting factor for systematics, inaccuracy, imprecision, and uncertainty.

  9. High power performance of double channel mesa laser

    NASA Astrophysics Data System (ADS)

    Collar, A.; Renner, D.; Greene, P. D.; Moule, D.; Butler, B.

    1985-03-01

    The fabrication and performance of 1.3 μm and 1.55 μm GaInAsP/InP double channel mesa lasers is described. These devices are relatively simple to fabricate requiring only one stage of LPE growth. Threshold currents as low as 30 mA and extremely high maximum CW output powers in excess of 100 mW have been achieved at λ = 1.3 μm. At output pwers above a few milliwatts the coherence of the laser output decreases. This property makes these devices less likely to generate modal noise to multimode optical communications systems.

  10. Photonic crystal fiber amplifiers for high power ultrafast fiber lasers

    NASA Astrophysics Data System (ADS)

    Alkeskjold, Thomas T.; Laurila, Marko; Weirich, Johannes; Johansen, Mette M.; Olausson, Christina B.; Lumholt, Ole; Noordegraaf, Danny; Maack, Martin D.; Jakobsen, Christian

    2013-12-01

    In recent years, ultrafast laser systems using large-mode-area fiber amplifiers delivering several hundreds of watts of average power has attracted significant academic and industrial interest. These amplifiers can generate hundreds of kilowatts to megawatts of peak power using direct amplification and multi-gigawatts of peak power using pulse stretching techniques. These amplifiers are enabled by advancements in Photonic Crystal Fiber (PCF) design and manufacturing technology. In this paper, we will give a short overview of state-of-the-art PCF amplifiers and describe the performance in ultrafast ps laser systems.

  11. Experimental study on artificially triggered lightning using high power lasers

    SciTech Connect

    Uchida, S.; Shimada, Y.; Yasuda, H.; Yamanaka, C.; Fujita, H.; Izawa, Y.; Yamanaka, T.; Wang, D.; Kawasaki, Z.; Matsu-ura, K.; Ishikubo, Y.; Adachi, M.

    1996-05-01

    A series of laboratory experiments has been conducted to investigate the initiating effects of laser plasma channel on electrical discharge. It was confirmed that the plasma channels reduce the required electrical field strength for electrical discharges to occur by a factor of 6. A field experimental site targeting natural lightning is being prepared. The thunderstorm monitoring system and the laser and optical systems have been developed and tested against various weather conditions. The results from the laboratory experiments and field experiments will be discussed. {copyright} {ital 1996 American Institute of Physics.}

  12. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2016-12-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  13. Research and development of neodymium phosphate laser glass for high power laser application

    NASA Astrophysics Data System (ADS)

    Hu, Lili; He, Dongbing; Chen, Huiyu; Wang, Xin; Meng, Tao; Wen, Lei; Hu, Junjiang; Xu, Yongchun; Li, Shunguang; Chen, Youkuo; Chen, Wei; Chen, Shubin; Tang, Jingping; Wang, Biao

    2017-01-01

    Neodymium phosphate laser glass is a key optical element for high-power laser facility. In this work, the latest research and development of neodymium phosphate laser glass at the Shanghai Institute of Optics and Fine Mechanics (SIOM), China, is addressed. Neodymium phosphate laser glasses, N31, N41, NAP2, and NAP4, for high peak power and high average power applications have been developed. The properties of these glasses are presented and compared to those of other commercial neodymium phosphate laser glass from the Schott and Hoya companies and the Vavilov State Optical Institute (GOI), Russia. Continuous melting and edge cladding are the two key fabrication techniques that are used for the mass production of neodymium phosphate laser glass slabs. These techniques for the fabrication of large-aperture N31 neodymium phosphate laser glass slabs with low stress birefringence and residual reflectivity have been developed by us The effect of acid etching on the microstructure, optical transmission, and mechanical properties of NAP2 glass is also discussed.

  14. High density semiconductor nanodots by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  15. Generation of high-power nanosecond pulses from laser diode-pumped Nd:YAG lasers

    NASA Technical Reports Server (NTRS)

    Chan, Kinpui

    1988-01-01

    Simulation results are used to compare the pulse energy levels and pulse energy widths that can be achieved with LD-pumped Nd:YAG lasers for both the pulse-transmission mode (PTM) and pulse-reflection mode (PRM) Q-switching methods for pulse energy levels up to hundreds of microjoules and pulse widths as short as 1 ns. It is shown that high-power pulses with pulse widths as short as 1 ns can be generated with PTM Q-switched in LD-pumped Nd:YAG lasers. With the PRM Q-switching method, pulse widths as short as 2 ns and pulse energy at the level of a few hundred microjoules can also be achieved but require pumping with 8-10-mJ AlGaAs laser diode arrays.

  16. Advances in CO2 laser fabrication for high power fibre laser devices

    NASA Astrophysics Data System (ADS)

    Boyd, Keiron; Rees, Simon; Simakov, Nikita; Daniel, Jae M. O.; Swain, Robert; Mies, Eric; Hemming, Alexander; Clarkson, W. A.; Haub, John

    2016-03-01

    CO2 laser processing facilitates contamination free, rapid, precise and reproducible fabrication of devices for high power fibre laser applications. We present recent progress in fibre end-face preparation and cladding surface modification techniques. We demonstrate a fine feature CO2 laser process that yields topography significantly smaller than that achieved with typical mechanical cleaving processes. We also investigate the side processing of optical fibres for the fabrication of all-glass cladding light strippers and demonstrate extremely efficient cladding mode removal. We apply both techniques to fibres with complex designs containing multiple layers of doped and un-doped silica as well as shaped and circularly symmetric structures. Finally, we discuss the challenges and approaches to working with various fibre and glass-types.

  17. High power fiber lasers in geothermal, oil and gas

    NASA Astrophysics Data System (ADS)

    Zediker, Mark S.

    2014-03-01

    The subject of this paper is the requirements, design, fabrication, and testing of a prototype laser rock drilling system capable of penetrating even the hardest rocks found deep in the earth. The Oil and Gas industry still uses many of the technologies that were in use at the turn of the 19th century. The drilling industry started with a great innovation with the introduction of the tri-cone bit by Howard Hughes in 1908. Since then, the industry has modified and optimized drilling systems with incremental advancement in the ability to penetrate hard crystalline rock structures. Most oil producing reservoirs are located in or below relatively soft rock formations, however, with the growing need for energy, oil companies are now attempting to drill through very hard surface rock and deep ocean formations with limited success. This paper will discuss the types of laser suitable for this application, the requirements for putting lasers in the field, the technology needed to support this laser application and the test results of components developed specifically by Foro Energy for the drilling application.

  18. Design and characterization of a novel power over fiber system integrating a high power diode laser

    NASA Astrophysics Data System (ADS)

    Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry

    2017-02-01

    High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.

  19. Microgravity Spray Cooling Research for High Powered Laser Applications

    NASA Technical Reports Server (NTRS)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  20. Microgravity Spray Cooling Research for High Powered Laser Applications

    NASA Technical Reports Server (NTRS)

    Zivich, Chad P.

    2004-01-01

    An extremely powerful laser is being developed at Goddard Space Flight Center for use on a satellite. This laser has several potential applications. One application is to use it for upper atmosphere weather research. In this case, the laser would reflect off aerosols in the upper atmosphere and bounce back to the satellite, where the aerosol velocities could be calculated and thus the upper atmosphere weather patterns could be monitored. A second application would be for the US. Air Force, which wants to use the laser strategically as a weapon for satellite defense. The Air Force fears that in the coming years as more and more nations gain limited space capabilities that American satellites may become targets, and the laser could protect the satellites. Regardless of the ultimate application, however, a critical step along the way to putting the laser in space is finding a way to efficiently cool it. While operating the laser becomes very hot and must be cooled to prevent overheating. On earth, this is accomplished by simply running cool tap water over the laser to keep it cool. But on a satellite, this is too inefficient. This would require too much water mass to be practical. Instead, we are investigating spray cooling as a means to cool the laser in microgravity. Spray cooling requires much less volume of fluid, and thus could be suitable for use on a satellite. We have inherited a 2.2 second Drop Tower rig to conduct our research with. In our experiments, water is pressurized with a compressed air tank and sprayed through a nozzle onto our test plate. We can vary the pressure applied to the water and the temperature of the plate before an experiment trial. The whole process takes place in simulated microgravity in the 2.2 second Drop Tower, and a high speed video camera records the spray as it hits the plate. We have made much progress in the past few weeks on these experiments. The rig originally did not have the capability to heat the test plate, but I did

  1. High-power laser damage in fused silica

    NASA Astrophysics Data System (ADS)

    Salleo, Alberto

    Laser-induced damage (LID) at the surface of transparent materials is widely considered the main obstacle in the development of inertial confinement fusion (ICF) facilities. This dissertation is a study, both theoretical and experimental, of LID initiation and propagation at fused silica surfaces. Numerical simulation of light propagation shows that micro-cracks due to polishing amplify light intensity in their vicinity at the air/glass boundary. The mechanism of light amplification is a combination of partial reflection at air/glass boundaries and constructive interference of the reflected waves. The maximum amplification factor for a single crack is 10.7. Multiple cracks interact cooperatively and generate higher amplification factors. Conical cracks generate amplification factors of 20. The electric field intensity profile at the glass surface due to underlying conical cracks correlates well with observed LID morphology. Light amplification at micro-cracks may also play a role in LID propagation. LID propagation rates under repetitive illumination are measured. Rear-surface LID propagates from pre-existing damage sites at sub-threshold fluence. Rear-surface propagation rates depend linearly on laser fluence and are independent of environment or beam size. Rear-surface LID propagates faster in the UV than in the IR. Front-surface LID propagation is two orders of magnitude slower than rear-surface propagation. Pump and probe experiments of LID confirm that this difference is due to laser-plasma interactions. At the front-surface, up to 60% of the laser energy is dispersed outside the glass. At the rear-surface, 35% of the laser energy is dispersed outside the glass, thus more energy is available for damage propagation. Based on these observations, a model of LID propagation is developed based on the physics of impact cratering. Laser-induced transformations of glass are studied. High pressures associated with LID permanently densify fused silica by as much as 20

  2. High Power Selective Laser Melting (HP SLM) of Aluminum Parts

    NASA Astrophysics Data System (ADS)

    Buchbinder, D.; Schleifenbaum, H.; Heidrich, S.; Meiners, W.; Bültmann, J.

    Selective Laser Melting (SLM) is one of the Additive Manufacturing (AM) technologies that enables the production of light weight structured components with series identical mechanical properties without the need for part specific tooling or downstream sintering processes, etc. Especially aluminum is suited for such eco-designed components due to its low weight and superior mechanical and chemical properties. However, SLM's state-of-the-art process and cost efficiency is not yet suited for series-production. In order to improve this efficiency it is indispensable to increase the build rate significantly. Thus, aluminum is qualified for high build rate applications using a new prototype machine tool including a 1 kW laser and a multi-beam system.

  3. Resection of Gingival Fibromatosis with High-power Laser.

    PubMed

    Camilotti, Renata Stifelman; Jasper, Juliana; Ferreira, Thaiana Barreto; Antonini, Fernando; Poli, Vladimir Dourado; Pagnoncelli, Rogério Miranda

    2015-01-01

    Hereditary gingival fibromatosis (HGF), also known as hereditary gingival hyperplasia, idiopathic gingival fibromatosis, and hereditary gingival overgrowth, is a rare condition but the most common form of gingival hyperplasia. Overgrowth of gingival tissue is usually slow and progressive and may delay or prevent tooth eruption, resulting in cosmetic and functional impairments. Hypertrichosis, epilepsy, and intellectual disability may be associated with HGF, which can occur in isolation or as part of a syndrome. The purpose of this case report is to describe a diode laser resection of gingival hyperplasia in a seven-year-old patient with nonsyndromic HGF and hypertrichosis. The diode laser enabled efficient removal of hypertrophic gingival tissue with good healing and minimal postoperative discomfort.

  4. Numerical investigations on high-power laser cutting of metals

    NASA Astrophysics Data System (ADS)

    Amara, E. H.; Kheloufi, K.; Tamsaout, T.; Fabbro, R.; Hirano, K.

    2015-06-01

    A theoretical approach based on a numerical simulation using experimental data is proposed as a contribution for the study of laser metal cutting under gas assistance. The aim is to simulate the stages of the kerf formation by considering the induced generated melt film dynamics, while it interacts with the laser beam and the assisting gas jet. For normal atmospheric conditions, a 3D model is developed using the finite volume method to solve the governing hydrodynamic equations, supplied with the species conservation equation. The present air, the metallic liquid, and the solid metal are considered as phases, where the interface positions are tracked by implementation of the volume-of-fluid method through Fluent CFD code, whereas an enthalpic method is used to take into account the material melting and resolidification. The results for six operating conditions in relation to the cutting velocity show an interesting agreement with the experimental observations.

  5. High-power external cavity CW red laser diode

    NASA Astrophysics Data System (ADS)

    Song, Hong Joo; Lee, Jun Ho; Park, Jiyeon; Park, Jong Hwan; Na, Hong Man; Park, Jung Ho

    2015-03-01

    An front facet-low reflection coated broad-area laser(BAL) diode with an emitter size of 50 μm x 1 μm and a chip length of 2000 μm is operated in the external cavity diode laser(ECDL). For wavelength stabilization and narrow spectral width, the diffraction grating is used in a Littrow configuration. At an injection current of 1.5 A, a output power of 0.65 W with a slop efficiency of 0.85 A/W, which is comparable to those of a solitary BAL diode, could be achieved with a spectral width of 120pm which is about 77 % narrower as compared to a solitary BAL diode. The peak wavelength stability below 10 pm was obtained in the wide range of output power up to 0.65 W.

  6. Recent advances in phosphate laser glasses for high power applications

    SciTech Connect

    Campbell, J.H.

    1996-05-14

    Recent advances in Nd-doped phosphate laser glasses for high-peak-power and high-average-power applications are reviewed. Compositional studies have progressed to the point that glasses can be tailored to have specific properties for specific applications. Non-radiative relaxation effects can be accurately modeled and empirical expressions have been developed to evaluate both intrinsic (structural) and extrinsic (contamination induced) relaxation effects. Losses due to surface scattering and bulk glass absorption have been carefully measured and can be accurately predicted. Improvements in processing have lead to high damage threshold (e.g. Pt inclusion free) and high thermal shock resistant glasses with improved edge claddings. High optical quality pieces up to 79 x 45 x 4cm{sup 3} have been made and methods for continuous melting laser glass are under development.

  7. Laminar shocks in high power laser plasma interactions

    SciTech Connect

    Cairns, R. A.; Bingham, R.; Norreys, P.; Trines, R.

    2014-02-15

    We propose a theory to describe laminar ion sound structures in a collisionless plasma. Reflection of a small fraction of the upstream ions converts the well known ion acoustic soliton into a structure with a steep potential gradient upstream and with downstream oscillations. The theory provides a simple interpretation of results dating back more than forty years but, more importantly, is shown to provide an explanation for recent observations on laser produced plasmas relevant to inertial fusion and to ion acceleration.

  8. Department of Defense High Power Laser Program Guidance

    DTIC Science & Technology

    1994-06-06

    Air Force Phillips Laboratory . Through FY94, laboratory operational funding, including civilian... Laboratory Effort and Air Materiel Command Ground-Based Laser (GBL) - Space Control USSPACECOM AF Phillips Laboratory Effort Point Defense Demonstration - Anti...ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING I.GANIZATION Phi 1l i ps Laboratory /LID REPORT numP•R 3550 Aberdeen Avenue, S.E. Kirtland AFB, NM

  9. Real-time power measurement and control for high power diode laser

    NASA Astrophysics Data System (ADS)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Wang, Zhi-yong

    2011-06-01

    As the continual improvement of technology and beam quality, diode laser, with poor beam quality, no longer just apply to pump solid-state laser. As a kind of implement of laser materials processing, high-power diode laser has been used in manufacture, as a brand new means of laser processing. Due to the influence of inevitable unstable factors, for example, the temperature of water-cooler, the current of power supply, etc, the output power of diode laser will be unstable. And laser output power, as an important parameter, frequently affects the performance of the laser beam and the experimental results of processing, especially in the laser materials processing. Therefore, researching the real-time power measurement and control of high power diode laser has great significance, and for diode laser, it would improve performance of itself. To achieve the purpose of real-time detection, traditional measuring method, placing a power sensor behind the total-reflection mirror of laser resonant cavity, is mainly applied in the system of gas laser and solid-state laser. However, Owing to the high integration level of diode laser, traditional measuring method can't be adopted. A technique for real-time measure output power of high power diode laser is developed to improve quality of the laser in this paper. A lens placed at an angle of 45° in the system was used to sample output light of laser, and a piece of ground glass was used to uniform the beam power density, then the photoelectric detector received an optic signal and converted it into electric signal. This feeble signal was processed by amplification circuit with a filter. Finally, this detected electric signal was applied to accomplish the closed-loop control of power. The performance of power measurement and control system was tested with the 300W diode laser, and the measuring inaccuracy achieved was less than +/-1%.

  10. Shock propagation and attenuation in high-power excimer lasers

    NASA Astrophysics Data System (ADS)

    Holzwarth, Achim; Berger, Peter; Huegel, Helmut

    1993-05-01

    Theoretical and experimental investigations on the propagation, reflection, and attenuation of shock waves as they occur in excimer lasers have been performed. The numerical simulations have been carried out using a two-dimensional, unsteady finite difference scheme. The experimental setup is a piston driven shock tube with a rectangular cross section working in air at atmospheric pressure. The shocks were detected interferometrically as well as by means of pressure transducers. This shock tube allows us to investigate basic phenomena of shock diffraction which can be used to confirm the computational results in the range of weak shock waves. In particular, the influence of the shape of the wall contour on the reflection of shock waves has been investigated theoretically. The decay time of pressure and density perturbations differs for various wall configurations in such a way that short electrodes accelerate the attenuation as well as does a strong area increase in the vicinity of them. After each laser pulse there is a shock travelling into the laser channel. Experiments have been carried out on the reflection of this shock at a specially formed bend that is able to focus the shock into a muffling element.

  11. High power laser heating of low absorption materials

    SciTech Connect

    Olson, K.; Talghader, J.; Ogloza, A.; Thomas, J.

    2014-09-28

    A model is presented and confirmed experimentally that explains the anomalous behavior observed in continuous wave (CW) excitation of thermally isolated optics. Distributed Bragg Reflector (DBR) high reflective optical thin film coatings of HfO₂ and SiO₂were prepared with a very low absorption, about 7 ppm, measured by photothermal common-path interferometry. When illuminated with a 17 kW CW laser for 30 s, the coatings survived peak irradiances of 13 MW/cm², on 500 μm diameter spot cross sections. The temperature profile of the optical surfaces was measured using a calibrated thermal imaging camera for illuminated spot sizes ranging from 500 μm to 5 mm; about the same peak temperatures were recorded regardless of spot size. This phenomenon is explained by solving the heat equation for an optic of finite dimensions and taking into account the non-idealities of the experiment. An analytical result is also derived showing the relationship between millisecond pulse to CW laser operation where (1) the heating is proportional to the laser irradiance (W/m²) for millisecond pulses, (2) the heating is proportional to the beam radius (W/m) for CW, and (3) the heating is proportional to W/m∙ tan⁻¹(√(t)/m) in the transition region between the two.

  12. High power VCSEL array pumped Q-switched Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Yihan; Van Leeuwen, Robert; Watkins, Laurence S.; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2012-03-01

    Solid-state lasers pumped by high-power two-dimensional arrays of vertical-cavity surface-emitting lasers (VCSELs) were investigated. Both end-pumping and side-pumping schemes of Nd:YAG lasers with high power kW-class 808 nm VCSEL pump modules were implemented. For one application 10 mJ blue laser pulses were obtained from a frequencydoubled actively Q-switched VCSEL-array dual side-pumped Nd:YAG laser operating at 946 nm. For another application 10 mJ green laser pulses were obtained from a frequency-doubled passively Q-switched VCSEL-array endpumped Nd:YAG laser operating at 1064 nm. Both QCW and CW pumping schemes were investigated to achieve high average Q-switched power.

  13. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  14. Long-term research in Japan: amorphous metals, metal oxide varistors, high-power semiconductors and superconducting generators

    SciTech Connect

    Hane, G.J.; Yorozu, M.; Sogabe, T.; Suzuki, S.

    1985-04-01

    The review revealed that significant activity is under way in the research of amorphous metals, but that little fundamental work is being pursued on metal oxide varistors and high-power semiconductors. Also, the investigation of long-term research program plans for superconducting generators reveals that activity is at a low level, pending the recommendations of a study currently being conducted through Japan's Central Electric Power Council.

  15. Towards Laser Cooling of Semiconductors

    NASA Astrophysics Data System (ADS)

    Hassani nia, Iman

    This dissertation reports on novel theoretical concepts as well as experimental efforts toward laser cooling of semiconductors. The use of quantum well system brings the opportunity to engineer bandstructure, effective masses and the spatial distribution of electrons and holes. This permits the incorporation of novel quantum mechanical phenomena to manipulate the temperature change of the material upon light-matter interaction. Inspired by the fact that Coulomb interaction can lead to blueshift of radiation after photo-absorption, the theory of Coulomb assisted laser cooling is proposed and investigated for the first time. In order to design suitable multiple quantum well (MQW) structures with Coulomb interaction a Poisson-Schrodinger solver was devised using MATLAB software. The software is capable of simulating all III-V material compositions and it results have been confirmed experimentally. In the next step, different MQW designs were proposed and optimized to exploit Coulomb interaction for assisting of optical refrigeration. One of the suitable designs with standard InGaAsP/InAlAs/InP layers was used to grow the MQW structures using metal organic vapor deposition (MOCVD). Novel techniques of fabrication were implemented to make suspended structures for detecting ultralow thermal powers. By fabricating accurate thermometers, the temperature changes of the device upon laser absorption were measured. The accurate measurement of the temperature encouraged us to characterize the electrical response of the device as another important tool to promote our understanding of the 4 underlying physical phenomena. This is in addition to the accurate spectral and time-resolved photoluminescence measurements that provided us with a wealth of information about the effects of stress, Auger recombination and excitonic radiance in such structures. As the future works, important measurements for finding the quantum efficiency of the devices via electrical characterization and

  16. Modulation characteristics of a high-power semiconductor Master Oscillator Power Amplifier (MOPA)

    NASA Technical Reports Server (NTRS)

    Cornwell, Donald Mitchell, Jr.

    1992-01-01

    A semiconductor master oscillator-power amplifier was demonstrated using an anti-reflection (AR) coated broad area laser as the amplifier. Under CW operation, diffraction-limited single-longitudinal-mode powers up to 340 mW were demonstrated. The characteristics of the far-field pattern were measured and compared to a two-dimensional reflective Fabry-Perot amplifier model of the device. The MOPA configuration was modulated by the master oscillator. Prior to injection into the amplifier, the amplitude and frequency modulation properties of the master oscillator were characterized. The frequency response of the MOPA configuration was characterized for an AM/FM modulated injection beam, and was found to be a function of the frequency detuning between the master oscillator and the resonant amplifier. A shift in the phase was also observed as a function of frequency detuning; this phase shift is attributed to the optical phase shift imparted to a wave reflected from a Fabry-Perot cavity. Square-wave optical pulses were generated at 10 MHz and 250 MHz with diffraction-limited peak powers of 200 mW and 250 mW. The peak power for a given modulation frequency is found to be limited by the injected power and the FM modulation at that frequency. The modulation results make the MOPA attractive for use as a transmitter source in applications such as free-space communications and ranging/altimetry.

  17. LASER BEAMS AND RESONATORS: Unstable resonators of high-power chemical oxygen—iodine lasers

    NASA Astrophysics Data System (ADS)

    Savin, A. V.; Strakhov, S. Yu; Druzhinin, S. L.

    2006-09-01

    Configurations of unstable resonators are considered depending on the basic parameters of a high-power chemical oxygen—iodine laser and the design of an unstable resonator is proposed which provides the compensation of the inhomogeneity of the small-signal gain downstream of the active medium, a high energy efficiency, and stability to intracavity aberrations. The optical scheme of this resonator is presented and its properties are analysed by simulating numerically the kinetics of the active medium and resonator itself in the diffraction approximation.

  18. Cladding glass ceramic for use in high powered lasers

    DOEpatents

    Marker, A.J.; Campbell, J.H.

    1998-02-17

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  19. Cladding glass ceramic for use in high powered lasers

    DOEpatents

    Marker, Alexander J.; Campbell, John H.

    1998-01-01

    A Cu-doped/Fe-doped low expansion glass ceramic composition comprising in Wt. %: SiO{sub 2} 50--65; Al{sub 2}O{sub 3} 18--27; P{sub 2}O{sub 5} 0--10; Li{sub 2}O 2--6; Na{sub 2}O 0--2; K{sub 2}O 0--2; B{sub 2}O{sub 3} 0--1; MgO 0--4; ZnO 0--5; CaO 0--4; BaO 0--5; TiO{sub 2} 1--3; ZrO{sub 3} 1--3; As{sub 2}O{sub 3} 0--1.5; Sb{sub 2}O{sub 3} 0--1.5; CuO 0--3; and Fe{sub 2}O{sub 3} 0--1 wherein the total amount of SiO{sub 2}, Al{sub 2}O{sub 3} and P{sub 2}O{sub 5} is 80--89 wt. %, and said glass ceramic contains as a dopant 0.1--3 wt. % CuO, 0.1--1 wt. % Fe{sub 2}O{sub 3} or a combined CuO+Fe{sub 2}O{sub 3} amount of 0.1--4 wt. %. The glass ceramic composition is suitable for use as a cladding material for solid laser energy storage mediums as well as for use in beam attenuators for measuring laser energy level and beam blocks or beam dumps used for absorbing excess or unused laser energy.

  20. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    NASA Astrophysics Data System (ADS)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  1. Development of fluorides for high power laser optics

    SciTech Connect

    Ready, J.F.; Vora, H.

    1980-07-01

    The laser-assisted thermonuclear fusion program has significant needs for improved optical materials with high transmission in the ultraviolet, and with low values of nonlinear index of refraction. Lithium fluoride (LiF) possesses a combination of optical properties which are of potential use. Single-crystalline LiF is limited by low mechanical strength. In this program, we investigated the technique of press-forging to increase the mechanical strength. LiF single crystals were press-forged over the temperature range 300 to 600/sup 0/C to produce fine-grained polycrystalline material.

  2. Investigations into the Feasibility of High Power Laser Window Materials

    DTIC Science & Technology

    1975-04-15

    1, 1 ,4 ) l r i gtVII Ir nIf t:trl;l (:l w illi the. ,.,l .q. ,I 1h. el,.1i , ’l lay 4 ,,, t r,11 I itll the htod r in 1,i.* shape of a nuY.z.le, with...K/J. On substituting this result in (B7) we find that for short, flat topped laser pulses, = a E T Jp/Zd S for 2r < d r 1 E T J /8) -- r Zr > d ( B10

  3. Rugged passively cooled high power laser fiber optic connectors and methods of use

    DOEpatents

    Rinzler, Charles C.; Gray, William C.; Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.; McKay, Ryan P.

    2016-06-07

    There are provided high power laser connectors and couplers and methods that are capable of providing high laser power without the need for active cooling to remote, harsh and difficult to access locations and under difficult and harsh conditions and to manage and mitigate the adverse effects of back reflections.

  4. High power singlemode GaInAs lasers with distributed Bragg reflectors

    NASA Technical Reports Server (NTRS)

    O'Brien, S.; Parke, R.; Welch, D. F.; Mehuys, D.; Scifres, D.

    1992-01-01

    High power singlemode strained GaInAs lasers have been fabricated which use buried second order gratings as distributed Bragg reflectors. The lasers operate in an edge emitting fashion with CW powers in excess of 110 mW with single longitudinal and transverse mode operation at 971.9 nm up to 42 mW.

  5. Nd:YAG Ceramic ThinZag (registered trademark) High-Power Laser Development

    DTIC Science & Technology

    2011-01-01

    CHAPTER 9 Nd:YAG Ceramic ThinZag ® High-Power Laser Development Daniel E. Klimek Principal Research Scientist, Textron Defense Systems, Wilmington... ThinZag High-Power Laser Development 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...400 mm2 slabs).1–3 The unique properties of Nd:YAG ceramic combined with the ThinZag laser configuration, developed by scientists and engineers at

  6. Development of High Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Linear Colliders

    SciTech Connect

    Tantawi, Sami

    2000-11-06

    We describe development of semiconductor X-band high-power RF switches. The target applications are high-power RF pulse compression systems for future linear colliders. We describe the design methodology of the architecture of the whole switch systems. We present the scaling law that governs the relation between power handling capability and number of elements. We designed and built several active waveguide windows for the active element. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of a few megawatts at X-band.

  7. Novel fiber-MOPA-based high power blue laser

    NASA Astrophysics Data System (ADS)

    Engin, Doruk; Fouron, Jean-Luc; Chen, Youming; Huffman, Andromeda; Fitzpatrick, Fran; Burnham, Ralph; Gupta, Shantanu

    2012-06-01

    5W peak power at 911 nm is demonstrated with a pulsed Neodymium (Nd) doped fiber master oscillator power amplifier (MOPA). This result is the first reported high gain (16dB) fiber amplifier operation at 911nm. Pulse repetition frequency (PRF) and duty-cycle dependence of the all fiber system is characterized. Negligible performance degreadation is observed down to 1% duty cycle and 10 kHz PRF, where 2.5μJ of pulse energy is achieved. Continuous wave (CW) MOPA experiments achieved 55mW average power and 9dB gain with 15% optical to optical (o-o) efficiency. Excellent agreement is established between dynammic fiber MOPA simulation tool and experimental results in predicting output amplified spontaneous emission (ase) and signal pulse shapes. Using the simulation tool robust Stimulated Brillion Scattering (SBS) free operation is predicted out of a two stage all fiber system that generates over 10W's of peak power with 500 MHz line-width. An all fiber 911 nm pulsed laser source with >10W of peak power is expected to increase reliability and reduce complexity of high energy 455 nm laser system based on optical parametric amplification for udnerwater applications. The views expressed are thos of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

  8. High-power laser float-zone crystal growth

    NASA Astrophysics Data System (ADS)

    Cohen, A.; Brauch, Uwe; Muckenschnabel, J.; Opower, Hans

    1990-10-01

    A float zone crystal growth apparatus was developed. The heat source was a 3.5 kW CO2 Trumpf laser with a long term stability of 2 %. The original laser beam was divided, in the beam delivery system, into three equivalent focusable beams. The vacuum vessel is equipped with two equivalent rotation - translation systems with a maximum translational speed of 1 mm/minute. The vessel is also pierced with five windows, three of which serve the three incoming beams, one for observation with a television camera, one for an optical pyrometer or for direct observation. The three beam windows are protected by a laminar gas curtain. A heat shield system with an after heater is planned, in order to enable growth of high temperature oxides. The system was tested in the growth of small sapphire crystals (0 4 mm) and in the growth of silicon whose dimensions were 0 10 mm x 70 mm. * On leave from the Weizmann Institute, Rehovot, Israel

  9. Ultraprecision grinding of optical materials for high-power lasers

    NASA Astrophysics Data System (ADS)

    Namba, Yoshiharu; Yoshida, Kunio; Yoshida, Hidetsugu; Nakai, Sadao

    1998-04-01

    Grinding is considered to be a rough machining process in the field of optics; a polishing process must follow the grinding process for getting optical-quality surfaces. An ultraprecision surface grinder with hydrostatic oil bearings and a glass-ceramic spindle of extremely low thermal expansion was developed to get smooth optical surfaces without any polishing process. Various optical materials such as NbF1, BK7, LHG08 fused silica, KTP, KDP and CLBO were ground into optical surfaces after empirically determining the conditions required to attain ductile-mode grinding. An extremely smooth surface less than 0.1 nm rms was obtained on BK7 glass by the ultraprecision grinding process. The laser-induced damage threshold was measured on variously finished LHG-8 laser glass at (lambda) equals 1.053 micrometers and 1-ns pulse width. The damage threshold was measured at 22.2 J/cm2 on a ground surface with the polarization parallel to the grinding direction. This number is higher than that obtained by optical polish. The damage threshold of 293 J/cm2 was also obtained on a ground LHG-8 glass surface at (lambda) equals 1.053 micrometers and 30-ns pulse width.

  10. Frequency modulation of semiconductor disk laser pulses

    SciTech Connect

    Zolotovskii, I O; Korobko, D A; Okhotnikov, O G

    2015-07-31

    A numerical model is constructed for a semiconductor disk laser mode-locked by a semiconductor saturable absorber mirror (SESAM), and the effect that the phase modulation caused by gain and absorption saturation in the semiconductor has on pulse generation is examined. The results demonstrate that, in a laser cavity with sufficient second-order dispersion, alternating-sign frequency modulation of pulses can be compensated for. We also examine a model for tuning the dispersion in the cavity of a disk laser using a Gires–Tournois interferometer with limited thirdorder dispersion. (control of radiation parameters)

  11. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  12. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    ERIC Educational Resources Information Center

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  13. Recent development on high-power tandem-pumped fiber laser

    NASA Astrophysics Data System (ADS)

    Zhou, Pu; Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Xu, Jiangmin; Wu, Jian

    2016-11-01

    High power fiber laser is attracting more and more attention due to its advantage in excellent beam quality, high electricto- optical conversion efficiency and compact system configuration. Power scaling of fiber laser is challenged by the brightness of pump source, nonlinear effect, modal instability and so on. Pumping active fiber by using high-brightness fiber laser instead of common laser diode may be the solution for the brightness limitation. In this paper, we will present the recent development of various kinds of high power fiber laser based on tandem pumping scheme. According to the absorption property of Ytterbium-doped fiber, Thulium-doped fiber and Holmium-doped fiber, we have theoretically studied the fiber lasers that operate at 1018 nm, 1178 nm and 1150 nm, respectively in detail. Consequently, according to the numerical results we have optimized the fiber laser system design, and we have achieved (1) 500 watt level 1018nm Ytterbium-doped fiber laser (2) 100 watt level 1150 nm fiber laser and 100 watt level random fiber laser (3) 30 watt 1178 nm Ytterbium-doped fiber laser, 200 watt-level random fiber laser. All of the above-mentioned are the record power for the corresponded type of fiber laser to the best of our knowledge. By using the high-brightness fiber laser operate at 1018 nm, 1178 nm and 1150 nm that we have developed, we have achieved the following high power fiber laser (1) 3.5 kW 1090 nm Ytterbium-doped fiber amplifier (2) 100 watt level Thulium-doped fiber laser and (3) 50 watt level Holmium -doped fiber laser.

  14. Experimental astrophysics with high power lasers and Z pinches

    SciTech Connect

    Remington, B A; Drake, R P; Ryutov, D D

    2004-12-10

    With the advent of high energy density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, mm-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors; equations of state relevant to planetary interiors; strong shock driven nonlinear hydrodynamics and radiative dynamics, relevant to supernova explosions and subsequent evolution; protostellar jets and high Mach-number flows; radiatively driven molecular clouds and nonlinear photoevaporation front dynamics; and photoionized plasmas relevant to accretion disks around compact objects, such as black holes and neutron stars.

  15. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    SciTech Connect

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  16. High power repetitive Blumlein pulse generators to drive lasers

    NASA Astrophysics Data System (ADS)

    Bhawalkar, J. D.; Davanloo, F.; Collins, C. B.; Agee, F. J.; Kingsley, L.

    The stacked Blumlein pulse power sources developed at the University of Texas at Dallas consist of several triaxial Blumleins stacked in series at one end. The lines are charged in parallel and synchronously commuted with a single thyratron at the other end. In this way, relatively low charging voltages are multiplied to give the desired discharge voltage across an arbitrary load without the need for complex Marx bank circuitry. In this report, we review the characteristics of this novel pulser. Performances with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described with different line configurations and extended Blumlein lengths are given. With only slight modifications, the pulsers described here can be used to produce intense transverse discharges across a wide range of loads including lasers.

  17. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  18. Transmyocardial laser revascularization with a high-power (800 W) CO2 laser: clinical report with 50 cases

    NASA Astrophysics Data System (ADS)

    Qu, Zheng; Zhang, Zhaoguang; Ye, Jianguang; Yu, Jianbo

    1999-09-01

    This paper reports the clinical experience in transmyocardial laser revascularization (TMLR) with high power CO2 laser and evaluates the preliminary results of TMLR. TMLR may improve angina pectoris and myocardial perfusion significantly. To switch on the laser in proper order may be helpful to shorten duration of surgery. A gentle removal of fat on the apex may increase the successful transmyocardial penetration.

  19. 2.1 μm high-power laser diode beam combining(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Berrou, Antoine P. C.; Elder, Ian F.; Lamb, Robert A.; Esser, M. J. Daniel

    2016-10-01

    Laser power and brightness scaling, in "eye safe" atmospheric transmission windows, is driving laser system research and development. High power lasers with good beam quality, at wavelength around 2.1 µm, are necessary for optical countermeasure applications. For such applications, focusing on efficiency and compactness of the system is mandatory. In order to cope with these requirements, one must consider the use of laser diodes which emit directly in the desired spectral region. The challenge for these diodes is to maintain a good beam quality factor as the output power increases. 2 µm diodes with excellent beam quality in both axes are available with output powers of 100 mW. Therefore, in order to reach multi-watt of average output power, broad-area single emitters and beam combining becomes relevant. Different solutions have been implemented in the 1.9 to 2 µm wavelength range, one of which is to stack multiple emitter bars reaching more than one hundred watt, while another is a fibre coupled diode module. The beam propagation factor of these systems is too high for long atmospheric propagation applications. Here we describe preliminary results on non-coherent beam combining of 2.1 µm high power Fabry-Perot GaSb laser diodes supplied by Brolis Semiconductors Ltd. First we evaluated single mode diodes (143 mW) with good beam quality (M2 < 1.5 for slow axis and < 1.1 for fast axis). Then we characterized broad-area single emitter diodes (808 mW) with an electrical-to-optical efficiency of 19 %. The emitter width was 90 µm with a cavity length of 1.5 mm. In our experiments we found that the slow axis multimode output beam consisted of two symmetric lobes with a total full width at half maximum (FWHM) divergence angle of 25 degrees, corresponding to a calculated beam quality factor of M2 = 25. The fast axis divergence was specified to be 44 degrees, with an expected beam quality factor close to the diffraction limit, which informed our selection of collimation

  20. Spectrally beam combined fiber lasers for high power, efficiency, and brightness

    NASA Astrophysics Data System (ADS)

    Honea, Eric; Afzal, Robert S.; Savage-Leuchs, Matthias; Gitkind, Neil; Humphreys, Richard; Henrie, Jason; Brar, Khush; Jander, Don

    2013-03-01

    Spectral Beam Combining (SBC) of fiber lasers provides a simple, robust architecture for power scaling lasers to high power. With appropriate designs, power scaling beyond the single fiber limit can be achieved while maintaining near diffraction limited beam quality and high efficiency. We present experimental results where we achieved > 3 kW at an M2 = 1.35 and > 39% E-O efficiency by combining 12 individual fiber lasers into a single high brightness beam.

  1. High-power 83 W holmium-doped silica fiber laser operating with high beam quality.

    PubMed

    Jackson, Stuart D; Sabella, Alex; Hemming, Alex; Bennetts, Shayne; Lancaster, David G

    2007-02-01

    A high-power 83 W cladding-pumped Tm3+-Ho3+-doped silica fiber laser is reported. Using bidirectional 793 nm diode pumping, a maximum slope efficiency of 42% was produced after a threshold launched pump power of 12 W was exceeded. The laser operated at wavelengths near 2105 nm with moderate beam quality, i.e., M2 approximately 1.5. Further power scaling of the fiber laser was limited by thermal failure of the fiber ends.

  2. High-power 83 W holmium-doped silica fiber laser operating with high beam quality

    NASA Astrophysics Data System (ADS)

    Jackson, Stuart D.; Sabella, Alex; Hemming, Alex; Bennetts, Shayne; Lancaster, David G.

    2007-02-01

    A high-power 83W cladding-pumped Tm3+-Ho3+-doped silica fiber laser is reported. Using bidirectional 793nm diode pumping, a maximum slope efficiency of 42% was produced after a threshold launched pump power of 12W was exceeded. The laser operated at wavelengths near 2105nm with moderate beam quality, i.e., M2˜1.5. Further power scaling of the fiber laser was limited by thermal failure of the fiber ends.

  3. High-power terahertz optically pumped NH{sub 3} laser for plasma diagnostics

    SciTech Connect

    Mishchenko, V. A.; Petrushevich, Yu. V.; Sobolenko, D. N.; Starostin, A. N.

    2012-06-15

    The parameter of a terahertz (THz) laser intended for plasma diagnostics in electrodynamic accelerators and tokamaks with a strong magnetic field are discussed. Generation of THz radiation in an ammonia laser under the action of high-power pulsed optical pumping by the radiation of a 10P(32) CO{sub 2} laser is simulated numerically. The main characteristics of the output radiation, such as its spectrum, peak intensity, time dependence, and total energy, are calculated.

  4. High-power terahertz optically pumped NH3 laser for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mishchenko, V. A.; Petrushevich, Yu. V.; Sobolenko, D. N.; Starostin, A. N.

    2012-06-01

    The parameter of a terahertz (THz) laser intended for plasma diagnostics in electrodynamic accelerators and tokamaks with a strong magnetic field are discussed. Generation of THz radiation in an ammonia laser under the action of high-power pulsed optical pumping by the radiation of a 10P(32) CO2 laser is simulated numerically. The main characteristics of the output radiation, such as its spectrum, peak intensity, time dependence, and total energy, are calculated.

  5. Damage testing of critical optical components for high power ultra-fast lasers

    NASA Astrophysics Data System (ADS)

    Chowdhury, Enam; Poole, Patrick; Jiang, Sheng; Taylor, Brittany; Daskalova, Rebecca; Van Woerkom, Linn; Freeman, Richard; Smith, Douglas

    2010-11-01

    Mirrors and gratings used in high power ultra fast lasers require a broad bandwidth and high damage fluence, which is essential to the design and construction of petawatt class short pulse lasers. Damage fluence of several commercially available high energy broad band dielectric mirrors with over 100 nm bandwidth at 45 degree angle of incidence, and pulse compression reflection gratings with gold coating with varying processing conditions is studied using a 25 femtosecond ultra-fast laser.

  6. Cryogenic, high power, near diffraction limited, Yb:YAG slab laser.

    PubMed

    Ganija, Miftar; Ottaway, David; Veitch, Peter; Munch, Jesper

    2013-03-25

    A cryogenic slab laser that is suitable for scaling to high power, while taking full advantage of the improved thermo-optical and thermo-mechanical properties of Yb:YAG at cryogenic temperatures is described. The laser uses a conduction cooled, end pumped, zigzag slab geometry resulting in a near diffraction limited, robust, power scalable design. The design and the initial characterization of the laser up to 200W are presented.

  7. High power single lateral mode 1050 nm laser diode bar

    NASA Astrophysics Data System (ADS)

    Liu, Guoli; Li, Jingwei; Fan, Li; Xu, Zuntu; Morales, John; Schleuning, David; Bian, Zhixi; Peters, Michael; Winhold, Heiko; Acklin, Bruno

    2017-02-01

    We present recent development of single lateral mode 1050 nm laser bars. The devices are based on an InGaAs/AlGaAs single quantum well and an asymmetric large optical cavity waveguide structure. By optimizing the AlGaAs composition, doping profiles, and QW thickness, the low internal loss of 0.5 cm-1 and high internal quantum efficiency of 98% are obtained. A standard bar (10% fill factor; 4mm cavity length) reaches 72% peak electro-optical efficiency and 1.0 W/A slope efficiency at 25°C. To achieve high single lateral mode power, the current confinement and optical loss profile in lateral direction are carefully designed and optimized to suppress higher order lateral modes. We demonstrate 1.5W single lateral mode power per emitter from a 19-emitter 10mm bar at 25°C. High electro-optical efficiency are also demonstrated at 25°C from two separate full-bar geometries on conduction cooled packaging: 20 W with <50% electro-optical efficiency from a 19-emitter bar and 50 W with <45% electro-optical efficiency from a 50-emitter bar.

  8. Packaging of complete indium-free high reliable and high power diode laser array

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Li, Xiaoning; Feng, Feifei; Liu, Yalong; Hou, Dong; Liu, Xingsheng

    2015-02-01

    High power diode lasers have been widely used in many fields. For many applications, a diode laser needs to be robust under on-off power-cycling as well as environmental thermal cycling conditions. To meet the requirements, the conduction cooled single bar CS-packaged diode laser arrays must have high durability to withstand thermal fatigue and long lifetime. In this paper, a complete indium-free bonding technology is presented for packaging high power diode laser arrays. Numerical simulations on the thermal behavior of CS-packaged diode laser array with different packaging structure were conducted and analyzed. Based on the simulation results, the device structure and packaging process of complete indium-free CS-packaged diode laser array were optimized. A series of high power hard solder CS (HCS) diode laser arrays were fabricated and characterized. Under the harsh working condition of 90s on and 30s off, good lifetime was demonstrated on 825nm 60W single bar CS-packaged diode laser with a lifetime test of more than 6100hours achieved so far with less 5% power degradation and less 1.5nm wavelength shift. Additionally, the measurement results indicated that the lower smile of complete indium-free CS-packaged diode laser arrays were achieved by advanced packaging process.

  9. Fiber laser pumped high power mid-infrared laser with picosecond pulse bunch output.

    PubMed

    Wei, Kaihua; Chen, Tao; Jiang, Peipei; Yang, Dingzhong; Wu, Bo; Shen, Yonghang

    2013-10-21

    We report a novel quasi-synchronously pumped PPMgLN-based high power mid-infrared (MIR) laser with picosecond pulse bunch output. The pump laser is a linearly polarized MOPA structured all fiberized Yb fiber laser with picosecond pulse bunch output. The output from a mode-locked seed fiber laser was directed to pass through a FBG reflector via a circulator to narrow the pulse duration from 800 ps to less than 50 ps and the spectral FWHM from 9 nm to 0.15 nm. The narrowed pulses were further directed to pass through a novel pulse multiplier through which each pulse was made to become a pulse bunch composing of 13 sub-pulses with pulse to pulse time interval of 1.26 ns. The pulses were then amplified via two stage Yb fiber amplifiers to obtain a linearly polarized high average power output up to 85 W, which were then directed to pass through an isolator and to pump a PPMgLN-based optical parametric oscillator via quasi-synchronization pump scheme for ps pulse bunch MIR output. High MIR output with average power up to 4 W was obtained at 3.45 micron showing the feasibility of such pump scheme for ps pulse bunch MIR output.

  10. Fiber optic cables for transmission of high-power laser pulses

    NASA Astrophysics Data System (ADS)

    Thomes, W. Joe, Jr.; Ott, Melanie N.; Chuska, Richard F.; Switzer, Robert C.; Blair, Diana E.

    2011-09-01

    High power pulsed lasers are commonly deployed in harsh environments, like space flight and military missions, for a variety of systems such as LIDAR, optical communications over long distances, or optical firing of explosives. Fiber coupling of the laser pulse from the laser to where it is needed can often save size, reduce weight, and lead to a more robust and reliable system. Typical fiber optic termination procedures are not sufficient for injection of these high power laser pulses without catastrophic damage to the fiber endface. In the current study, we will review the causes of fiber damage during high power injection and discuss methods used to avoid these issues to permit fiber use with high reliability in these applications. A brief review of the design considerations for high peak power laser pulse injection will be presented to familiarize the audience with all the areas that need to be considered during the design phase. The majority of this paper focuses on the proper fiber polishing methods for high power use with an emphasis on laser polishing of the fibers. Results from recently build fibers will be shown to demonstrate the techniques.

  11. High-power diode laser versus electrocautery surgery on human papillomavirus lesion treatment.

    PubMed

    Baeder, Fernando Martins; Santos, Maria Teresa Botti R; Pelino, Jose Eduardo Pelizon; Duarte, Danilo Antonio; Genovese, Walter Joao

    2012-05-01

    The use of high-power lasers has facilitated and improved human papillomavirus (HPV) treatment protocols and has also become very popular in recent years. This application has been more frequently used in hospitals, especially in gynecology. The present study aimed to evaluate the effects of high-power diode laser to remove oral lesions caused by HPV and the consequent effects on virus load following the wound tissue healing process compared with one of the most conventional surgical techniques involving electrocautery. Surgeries were performed on 5 patients who had 2 distinct lesions caused by HPV. All patients were submitted to both electrocautery and high-power diode laser. Following a 20-day period, when the area was healed, sample material was collected through curettage for virus load quantitative analysis.Observation verified the presence of virus in all the samples; however, surgeries performed with the laser also revealed a significant reduction in virus load per cell compared with those performed with electrocautery. The ease when handling the diode laser, because of the flexibility of its fibers and precision of its energy delivery system, provides high-accuracy surgery, which facilitates the treatment of large and/or multifocal lesions. The use of high-power diode laser is more effective in treatment protocols of lesions caused by HPV.

  12. Third order mode optically pumped semiconductor laser

    NASA Astrophysics Data System (ADS)

    De Rossi, A.; Semaltianos, N.; Chirlias, E.; Vinter, B.; Ortiz, V.; Berger, V.

    2002-06-01

    Lasing action on a third order waveguide mode is demonstrated at room temperature under optical pumping, in a specifically designed quantum well laser structure. The AlGaAs heterostructure involves barriers which ensure that the third order waveguide mode has a higher overlap with the single quantum well emitter than the fundamental mode. Third order mode operation of a laser structure opens the way to modal phase matched parametric down conversion inside the semiconductor laser itself. It is a first step towards the realization of semiconductor twin photon laser sources, needed for quantum information experiments.

  13. Integrated optics approach for advanced semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Suematsu, Yasuharu; Arai, Shigehisa

    1987-11-01

    Recent advances in the field of semiconductor integrated optics are reviewed from the point of view of monolithic integration of semiconductor lasers and other optical components and/or devices. Emphasis is placed on dynamic-single-mode (DSM) lasers, such as DFB and DBR lasers, intended for highly stable single-wavelength light sources for such monolithic integration. The realization of high-performance DSM lasers and the fabrication techniques of monolithically integrated optical devices and circuits are briefly reviewed. A variety of potential applications is discussed.

  14. High brilliance and high efficiency: optimized high power diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2008-02-01

    The strong increasing laser market has ongoing demands to reduce the costs of diode laser pumped systems. For that reason JENOPTIK Diode Lab GmbH (JDL) optimized the bar brilliance (small vertical far field divergence) and bar efficiency (higher optical power operation) with respect to the pump applications. High efficiency reduces the costs for mounting and cooling and high brilliance increases the coupling efficiency. Both are carefully adjusted in the 9xx nm - high power diode laser bars for pump applications in disc- and fiber lasers. Based on low loss waveguide structures high brilliance bars with 19° fast axis beam divergence (FWHM) with 58 % maximum efficiency and 27° fast axis beam divergence (FWHM) with 62 % maximum efficiency are developed. Mounted on conductive cooled heat sinks high power operation with lifetime > 20.000 hours at 120 W output power level (50 % filling factor bars) and 80W (20 % filling factor bars) is demonstrated. 808nm bars used as pump sources for Nd:YAG solid state lasers are still dominating in the market. With respect to the demands on high reliability at high power operation current results of a 100 W high power life time test are showing more than 9000 hour operation time for passively cooled packaged high efficiency 50 % filling factor bars. Measurement of the COMD-level after this hard pulse life time test demonstrates very high power levels with no significant droop in COMD-power level. This confirms the high facet stability of JDL's facet technology. New high power diode laser bars with wavelength of 825 nm and 885 nm are still under development and first results are presented.

  15. Coilable single crystal fibers of doped-YAG for high power laser applications

    NASA Astrophysics Data System (ADS)

    Maxwell, Gisele; Soleimani, Nazila; Ponting, Bennett; Gebremichael, Eminet

    2013-05-01

    Single crystal fibers are an intermediate between laser crystals and doped glass fibers. They can combine the advantages of both by guiding laser light and matching the efficiencies found in bulk crystals, making them ideal candidates for high-power laser and fiber laser applications. In particular, a very interesting feature of single crystal fiber is that they can generate high power in the eye-safe range (Er:YAG) with a high efficiency, opening new possibilities for portable directed energy weapons. This work focuses on the growth of a flexible fiber with a core of dopant (Er, Nd, Yb, etc…) that will exhibit good waveguiding properties. Direct growth or a combination of growth and cladding experiments are described. We have, to date, demonstrated the growth of a flexible foot long 45 microns doped YAG fiber. Scattering loss measurements at visible wavelengths along with dopant profile characterization are also presented. Laser characterization for these fibers is in progress.

  16. Reliability of high power/brightness diode lasers emitting from 790 to 980 nm

    NASA Astrophysics Data System (ADS)

    Bao, L.; Bai, J.; Price, K.; Devito, M.; Grimshaw, M.; Dong, W.; Guan, X.; Zhang, S.; Zhou, H.; Bruce, K.; Dawson, D.; Kanskar, M.; Martinsen, R.; Haden, J.

    2013-02-01

    This paper presents recent progress in the development of high power single emitter laser diodes from 790 nm to 980 nm for reliable use in industrial and pumping applications. High performance has been demonstrated on diode lasers from 790 nm to 980 nm, with corresponding peak efficiency ~65%. Reliability has been fully demonstrated on high power diode lasers of 3.8 mm laser cavity at 3 major wavelengths. We report on the correlation between photon-energy (wavelength) and device failure modes (reliability). A newly released laser design demonstrates diode lasers with 5.0 mm laser cavity at 915-980 nm and 790 nm, with efficiency that matches the values achieved with 3.8 mm cavity length. 915-980 nm single emitters with 5.0 mm laser cavity were especially designed for high power and high brightness applications and can be reliably operated at 12 W to 18 W. These pumps have been incorporated into nLIGHT's newly developed fiber coupled pump module, elementTM. Ongoing highly accelerated diode life-tests have accumulated over 200,000 raw device hours, with extremely low failure rate observed to date. High reliability has also been demonstrated from multiple accelerated module-level lifetests.

  17. Beam shaping design for coupling high power diode laser stack to fiber.

    PubMed

    Ghasemi, Seyed Hamed; Hantehzadeh, Mohammad-Reza; Sabbaghzadeh, Jamshid; Dorranian, Davoud; Lafooti, Majid; Vatani, Vahid; Rezaei-Nasirabad, Reza; Hemmati, Atefeh; Amidian, Ali Asghar; Alavian, Seyed Ali

    2011-06-20

    A beam shaping technique that rearranges the beam for improving the beam symmetry and power density of a ten-bar high power diode laser stack is simulated considering a stripe mirror plate and a V-Stack mirror in the beam shaping system. In this technique, the beam of a high power diode laser stack is effectively coupled into a standard 550 μm core diameter and a NA=0.22 fiber. By this technique, compactness, higher efficiency, and lower cost production of the diode are possible.

  18. Case studies of industrial applications of high-power diode laser in Finland

    NASA Astrophysics Data System (ADS)

    Hovikorpi, Jari; Jansson, Anssi; Salminen, Antti

    2003-06-01

    The high power diode laser is a new industrial tool. It has several advantages and disadvantages compared to the conventional industrially used CO2 and Nd:YAG laser. The most promising areas of application of diode laser have been considered to be thin sheet welding and hardening. Quite a few feasibility studies of the use of diode laser have been carried out in Finland. So far there has been some application in which diode laser is the most suitable laser. Typically, the HPDL is integrated to an industrial robot. The welding of stainless steel housing, car door lock and catalytic converters are typical examples of applications in which diode laser has technological as well as economical advantages over the conventional laser and welding techniques. The welding of these products requires good control over the heat input, short through put time and low investment. The weld cross-section of a diode laser weld is, because of conduction limited welding process, more suitable for these applications than the keyhole welding. Hardening of a large gear wheel presents also a good example of an application in which the diode laser makes it possible to economically produce structures that have not earlier been possible. Hardening requires a special form of heat delivery in order to ensure evenly hardened zone and acceptable quality. The application was performed with two high power diode lasers. The case studies of these four applications are presented and discussed in details in this paper.

  19. High-Power Broad-Area Diode Lasers and Laser Bars

    NASA Astrophysics Data System (ADS)

    Erbert, Goetz; Baerwolff, Arthur; Sebastian, Juergen; Tomm, Jens

    This review presents the basic ideas and some examples of the chip technology of high-power diode lasers ( λ= 650,-1060,) in connection with the achievements of mounted single-stripe emitters in recent years.In the first section the optimization of the epitaxial layer structure for a low facet load and high conversion efficiency is discussed. The so-called broadened waveguide Large Optical Cavity (LOC) concept is described and also some advantages and disadvantages of Al-free material. The next section deals with the processing steps of epitaxial wafers to make single emitters and bars. Several possibilities to realize contact windows (implantation, insulators, and wet chemical oxidation) and laser mirrors are presented. The impact of heating in the CW regime and some aspects of reliability are the following topics. The calculation of thermal distributions in diode lasers, which shows the need for sophisticated mounting, will be given. In the last part the current state-of-the-art of single-stripe emitters will be reviewed.

  20. High-power thulium fiber laser ablation of the canine prostate

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Murray, Keith E.

    2005-04-01

    The Thulium fiber laser may have several advantages over current urology lasers, including smaller size, more efficient operation, improved spatial beam quality, more precise tissue incision, and operation in pulsed or continuous-wave modes. However, previous laser-tissue interaction studies utilizing the Thulium fiber laser have been limited to laser powers of less than 5 W. This study describes high-power Thulium fiber laser vaporization of the canine prostate, ex vivo. A continuous-wave, 110-watt Thulium fiber laser operating at a wavelength of 1.91 mm, delivered 88.5 +/- 2.3 W of power through a 600-mm-core silica fiber for non-contact vaporization of canine prostates (n=6). The Thulium fiber laser vaporized prostate tissue at a rate of 0.83 +/- 0.11 g/min. The thermal coagulation zone measured 500-2000 mm. The high-power Thulium fiber laser is capable of rapid vaporization and coagulation of the prostate, ex vivo. In vivo animal studies are currently in development for evaluation of the Thulium fiber laser for prostate vaporization and potential treatment of benign prostate hyperplasia.

  1. Generation of doughnut spot for high-power laser technologies using refractive beam shaping

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2015-03-01

    Doughnut and inverse-Gauss intensity distributions of laser spot are required in laser technologies like welding, cladding where high power fiber coupled diode or solid-state lasers as well as fiber lasers are used. In comparison to Gaussian and flat-top distributions the doughnut and inverse-Gauss profiles provide more uniform temperature distribution on a work piece - this improves the technology, increase stability of processes and efficiency of using the laser energy, reduce the heat affected zone (HAZ). This type of beam shaping has become frequently asked by users of multimode lasers, especially multimode fiber coupled diode lasers. Refractive field mapping beam shapers are applied as one of solutions for the task to manipulate intensity distribution of multimode lasers. The operation principle of these devices presumes almost lossless transformation of laser beam irradiance from Gaussian to flat-top, doughnut or inverse-Gauss through controlled wavefront manipulation inside a beam shaper using lenses with smooth optical surfaces. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying with high-power multimode lasers. Examples of real implementations and experimental results will be presented as well.

  2. Next Generation Large Mode Area Fiber Technologies for High Power Fiber Laser Arrays

    DTIC Science & Technology

    2012-06-08

    monolithically - integrated building blocks (individual laser channels) of high power beam-combined fiber laser arrays. Robust single-mode performance...mode Ge-doped and Yb-doped CCC fibers have been developed as a platform for monolithically - integrated building blocks (individual laser channels) of...of individual laser  channels in coherently‐combined arrays, (iv) suitability for  monolithic   integration  (compatibility with  splicing and coiled

  3. Character and structure of oxide ceramics synthesis using a high-power CO2 laser

    NASA Astrophysics Data System (ADS)

    Zheng, Qiguang; Wang, Tao; Tao, Xingzhi; Gu, Jianhui; Xu, Desheng; Li, Zaiguang; Zheng, Fang; Li, Xingjiao

    1996-09-01

    The oxide ceramic powders have been sintered with a high power CW CO2 laser. The products of Al2(WO3)2 as a new compound which can not be found in 2D equilibrium phase diagrams. The hardness of laser synthesized materials are shown to be higher than that produced with the general sintering method in furnace. The microstructure and character is of oxide ceramics synthesis using CW CO2 laser have investigated. We found that the products of laser sintering Al2O3-50mol percent WO3 have the electrical resistance characters varied linearly of negative temperature coefficient from the room temperature to 220 degrees C.

  4. Progress in single quantum well structures for high power laser device applications

    NASA Astrophysics Data System (ADS)

    Waters, R. G.; Tihanyi, P. L.; Hill, D. S.; Soltz, B. A.

    1988-01-01

    Recent advances made toward performance optimization of (Al)GaAs quantum well lasers are described. Topics covered include: laser reliability for broad-area devices emitting less than 300 mW and its relation to the epitaxial structure and operating current density; parametric crystal growth studies and the implications for device efficiency; realization of 57 percent cw power conversion efficiency in an oxide-defined device; progress in dry-etching technology including array fabrication and development of device-quality laser facets suitable for integration. Finally, work in the high-power regime is discussed. This includes broad-area, single-emitter lasers emitting 6W cw.

  5. High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Goldstein, B.; Pultz, G. N.; Slavin, S. E.; Carlin, D. B.; Ettenberg, M.

    1988-01-01

    A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described.

  6. High-efficiency high-power cw solid state lasers for material processing

    NASA Astrophysics Data System (ADS)

    Weber, Heinz P.; Graf, Thomas; Weber, Rudolf

    2000-02-01

    The maximum power range over which a laser resonator supports stable oscillation is mainly determined by the material constants of the active medium and by the cooling schemes. The power range for stable fundamental-mode operation can be shifted to higher powers with special cavity design and intra-cavity optics but the width of the stability range will be unaffected and can be enlarged only with adaptive optics. We present investigations on a multi- rod laser cavity and a high-power side-pumped laser system. In order to obtain constant beam parameters with varying power we prose a novel self-adaptive method to compensate for the power-dependent thermal lenses in high-power lasers.

  7. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers.

    PubMed

    Drachenberg, Derrek R; Andrusyak, Oleksiy; Venus, George; Smirnov, Vadim; Glebov, Leonid B

    2014-02-20

    High-radiance lasers are desired for many applications in defense and manufacturing. Spectral beam combining (SBC) by volume Bragg gratings (VBGs) is a very promising method for high-radiance lasers that need to achieve 100 kW level power. Laser-induced heating of VBGs under high-power radiation presents a challenge for maintaining Bragg resonance at various power levels without mechanical realignment. A novel thermal tuning technique and apparatus is presented that enables maintaining peak efficiency operation of the SBC system at various power levels without any mechanical adjustment. The method is demonstrated by combining two high-power ytterbium fiber lasers with high efficiency from low power to full combined power of 300 W (1.5 kW effective power), while maintaining peak combining efficiency within 0.5%.

  8. High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure

    NASA Astrophysics Data System (ADS)

    Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.

    2011-02-01

    The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.

  9. Two-photon fluorescence bioimaging with an all-semiconductor laser picosecond pulse source.

    PubMed

    Kuramoto, Masaru; Kitajima, Nobuyoshi; Guo, Hengchang; Furushima, Yuji; Ikeda, Masao; Yokoyama, Hiroyuki

    2007-09-15

    We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.

  10. Semiconductor laser with multiple lasing wavelengths

    DOEpatents

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  11. Semiconductor laser gyro with optical frequency dithering

    SciTech Connect

    Prokof'eva, L P; Sakharov, V K; Shcherbakov, V V

    2014-04-28

    The semiconductor laser gyro is described, in which the optical frequency dithering implemented by intracavity phase modulation suppresses the frequency lock-in and provides the interference of multimode radiation. The sensitivity of the device amounted to 10–20 deg h{sup -1}. (laser gyroscopes)

  12. Study of the high power laser-metal interactions in the gaseous atmospheres

    NASA Astrophysics Data System (ADS)

    Lugomer, Stjepan; Bitelli, G.; Stipancic, M.; Jovic, F.

    1994-08-01

    The tantalum and titanium plates were treated by pulsed, high power CO2 laser in the pressurized atmospheres of N2 and O2. Studies performed by the optical microscopy, microhardness measurements, and the auger electron spectroscopy revealed: (1) topographic modification of the surface caused by the temperature field; (2) metal hardening, caused by the laser shock; and (3) alloying/cladding, caused by the chemical reaction between the metal surface and the gaseous atmosphere.

  13. Coherent addition of high power laser diode array with a V-shape external Talbot cavity.

    PubMed

    Liu, B; Liu, Y; Braiman, Y

    2008-12-08

    We designed a V-shape external Talbot cavity for a broad-area laser diode array and demonstrated coherent laser beam combining at high power with narrow spectral linewidth. The V-shape external Talbot cavity provides good mode-discrimination and does not require a spatial filter. A multi-lobe far-field profile generated by a low filling-factor phase-locked array is confirmed by our numerical simulation.

  14. Towards high-power single-cycle THz laser for initiating high-field-sensitive phenomena.

    PubMed

    Ruchert, Clemens; Ardana, Fernando; Trisorio, Alexandre; Vicario, Carlo; Hauri, Christoph P

    2011-01-01

    Powerful THz radiation confined in one field period or less is an adequate tool for triggering nonlinear actions. We show results towards the realization of a tunable high-power THz source based on a laser-driven frequency conversion scheme in plasma and nonlinear crystals. A powerful THz source in combination with the future X-ray Free Electron Laser facility in Switzerland (SwissFEL) holds promise for exciting experiments in a variety of different research areas.

  15. Thermooptical processes in the window of a high-power gas laser

    NASA Astrophysics Data System (ADS)

    Rogozhin, M. V.; Rogalin, V. E.; Krymskii, M. I.

    2017-05-01

    We have developed a mathematical model of thermomechanical and thermooptical processes that proceed in the output window of a continuous gas laser of a multikilowatt power. Optimal parameters have been determined at which the output window not only successfully withstands an extreme radiation load, but also ensures the radiation coupling with a minimum possible divergence. We have used numerical modeling to analyze the properties of the most promising materials used in high-power CO2, CO, and oxygen-iodine lasers.

  16. High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers.

    PubMed

    Jackson, Stuart D; Bugge, Frank; Erbert, Götz

    2007-11-15

    We demonstrate high-power operation from a singly Ho3+-doped silica fiber laser that is cladding pumped directly with diode lasers operating at 1150 nm. Internal slope efficiencies approaching the Stokes limit were produced, and the maximum output power was 2.2W. This result was achieved using a low Ho3+-ion concentration and La3+-ion codoping, which together limit the transfer of energy between excited Ho3+ ions.

  17. Suppression of stimulated brillouin scattering in high power narrow linewidth fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Liming; Yan, Chuping; Feng, Jinjun; Zhang, Kun; Zhu, Chen; Zhang, Dayong; Zhao, Hong; Zhou, Shouhuan

    2017-05-01

    In this paper, limitation factor of high power narrow linewidth fiber laser is analyzed. The influence of Stimulated Brillouin Scattering and its suppressing theory are discussed. Influences of frequency number and frequency spacing to Stimulated Brillouin Scattering are analyzed respectively by simulation. The results indicate that increasing frequency number and controlling frequency spacing can reduce the power spectrum density in fiber. Then the Stimulated Brillouin Scattering threshold is increased. Finally, the fiber laser output power is increased a lot.

  18. Collisionless dissociation and isotopic enrichment of SF6 using high-powered CO2 laser radiation

    NASA Technical Reports Server (NTRS)

    Gower, M. C.; Billman, K. W.

    1977-01-01

    Dissociation of S-32F6 and the resultant isotopic enrichment of S-34F6 using high-powered CO2 laser radiation has been studied with higher experimental sensitivity than previously reported. Enrichment factors have been measured as a function of laser pulse number, wavelength, energy and time duration. A geometry independent dissociation cross section is introduced and measured values are presented. Threshold energy densities, below which no dissociation was observed, were also determined.

  19. Collisionless dissociation and isotopic enrichment of SF6 using high-powered CO2 laser radiation

    NASA Technical Reports Server (NTRS)

    Gower, M. C.; Billman, K. W.

    1977-01-01

    Dissociation of S-32F6 and the resultant isotopic enrichment of S-34F6 using high-powered CO2 laser radiation has been studied with higher experimental sensitivity than previously reported. Enrichment factors have been measured as a function of laser pulse number, wavelength, energy and time duration. A geometry independent dissociation cross section is introduced and measured values are presented. Threshold energy densities, below which no dissociation was observed, were also determined.

  20. High Power Gas-Discharge and Laser-Plasma Based EUV Sources

    DTIC Science & Technology

    2002-01-24

    of a pulsed high power laser and V. Borisov, A. Ivanov, 0. Khristoforov and A. Vinokhodov from State Research Center of Russian Federation, Troitsk...U. Stamm, D. Basting, 0. Khristoforov , A. Vinokhodov, V. Borisov, ,,Compact ZLpinch EUV source for photolithography", Proc. SPIE 4343, 615 - 620

  1. Computer simulation of effect of conditions on discharge-excited high power gas flow CO laser

    NASA Astrophysics Data System (ADS)

    Ochiai, Ryo; Iyoda, Mitsuhiro; Taniwaki, Manabu; Sato, Shunichi

    2017-01-01

    The authors have developed the computer simulation codes to analyze the effect of conditions on the performances of discharge excited high power gas flow CO laser. The six be analyzed. The simulation code described and executed by Macintosh computers consists of some modules to calculate the kinetic processes. The detailed conditions, kinetic processes, results and discussions are described in this paper below.

  2. Diffractive optics development for application on high-power solid state lasers

    NASA Astrophysics Data System (ADS)

    Bett, Thomas H.; Stevenson, R. M.; Taghizadeh, Mohammad R.; Miller, J. M.; Lightbody, Malcolm T. M.; Blair, Paul; Layet, Ben; Watson, Norman F.; Barton, Ian M.; Robb, Graeme; McMonagle, J.

    1995-12-01

    This paper reports on the development of several diffractive optical elements (DOE) to fulfill applications on high power Nd glass laser systems. The measured performance for those components realized is discussed. These are focusing beam samplers, beam shapers, and harmonic separation filters (HSF). Designs of more demanding components operating in the resonance domain are also presented. These are linear polarizing elements and beam deflectors.

  3. Studies of basic mechanisms in high pressure gases: Applications to high efficiency high power lasers

    NASA Technical Reports Server (NTRS)

    Verdeyen, J. T.; Cherrington, B. E.; Leslie, S. G.; Millar, W. S.; Edwards, B. E.

    1976-01-01

    A high power pulsed dye laser was used to optically excite high pressure cesium-xenon mixtures and the resulting measurements are presented. A microwave discharge in rubidium at relatively high xenon pressure was achieved. Preliminary studies of cadium-rare gas mixtures are discussed and a detailed description of the entire experimental apparatus is given.

  4. All-optical Q-switching limiter for high-power gigahertz modelocked diode-pumped solid-state lasers.

    PubMed

    Klenner, Alexander; Keller, Ursula

    2015-04-06

    Passively modelocked diode-pumped solid-state lasers (DPSSLs) with pulse repetition rates in the gigahertz regime suffer from an increased tendency for Q-switching instabilities. Low saturation fluence intracavity saturable absorbers - such as the semiconductor saturable absorber mirrors (SESAMs) - can solve this problem up to a certain average output power limited by the onset of SESAM damage. Here we present a passive stabilization mechanism, an all-optical Q-switching limiter, to reduce the impact of Q-switching instabilities and increase the potential output power of SESAM modelocked lasers in the gigahertz regime. With a proper cavity design a Kerr lens induced negative saturable absorber clamps the maximum fluence on the SESAM and therefore limits the onset of Q-switching instabilities. No critical cavity alignment is required because this Q-switching limiter acts well within the cavity stability regime. Using a proper cavity design, a high-power diode-pumped Yb:CALGO solid-state laser generated sub-100 fs pulses with an average output power of 4.1 W at a pulse repetition rate of 5 GHz. With a pulse duration of 96 fs we can achieve a peak power as high as 7.5 kW directly from the SESAM modelocked laser oscillator without any further external pulse amplification and/or pulse compression. We present a quantitative analysis of this Kerr lens induced Q-switching limiter and its impact on modelocked operation. Our work provides a route to compact high-power multi-gigahertz frequency combs based on SESAM modelocked diode-pumped solid-state lasers without any additional external amplification or pulse compression.

  5. Injection locking of a low cost high power laser diode at 461 nm

    SciTech Connect

    Pagett, C. J. H.; Moriya, P. H. Celistrino Teixeira, R.; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-05-15

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  6. Injection locking of a low cost high power laser diode at 461 nm

    NASA Astrophysics Data System (ADS)

    Pagett, C. J. H.; Moriya, P. H.; Celistrino Teixeira, R.; Shiozaki, R. F.; Hemmerling, M.; Courteille, Ph. W.

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  7. Injection locking of a low cost high power laser diode at 461 nm.

    PubMed

    Pagett, C J H; Moriya, P H; Celistrino Teixeira, R; Shiozaki, R F; Hemmerling, M; Courteille, Ph W

    2016-05-01

    Stable laser sources at 461 nm are important for optical cooling of strontium atoms. In most existing experiments, this wavelength is obtained by frequency doubling infrared lasers, since blue laser diodes either have low power or large emission bandwidths. Here, we show that injecting less than 10 mW of monomode laser radiation into a blue multimode 500 mW high power laser diode is capable of slaving at least 50% of the power to the desired frequency. We verify the emission bandwidth reduction by saturation spectroscopy on a strontium gas cell and by direct beating of the slave with the master laser. We also demonstrate that the laser can efficiently be used within the Zeeman slower for optical cooling of a strontium atomic beam.

  8. Realization and characterization of single-frequency tunable 637.2 nm high-power laser

    NASA Astrophysics Data System (ADS)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2016-07-01

    We report the preparation of narrow-linewidth 637.2 nm laser device by single-pass sum-frequency generation (SFG) of two infrared lasers at 1560.5 nm and 1076.9 nm in PPMgO:LN crystal. Over 8.75 W of single-frequency continuously tunable 637.2 nm laser is realized, and corresponding optical-optical conversion efficiency is 38.0%. We study the behavior of crystals with different poling periods. The detailed experiments show that the output red lasers have very good power stability and beam quality. This high-performance 637.2 nm laser is significant for the realization of high power ultra-violet (UV) 318.6 nm laser via cavity-enhanced frequency doubling. Narrow-linewidth 318.6 nm laser is important for Rydberg excitation of cesium atoms via single-photon transition.

  9. High-power gas lasers; Proceedings of the Meeting, Los Angeles, CA, Jan. 15-17, 1990

    NASA Astrophysics Data System (ADS)

    Avizonis, Petras V.; Freed, Charles; Kim, Jin J.; Tittel, Frank K.

    1990-06-01

    Various papers on high-power gas lasers are presented. Individual topics addressed include: review of high-power excimer lasers, long-pulse e-beam pumped XeF laser, mode-locking of long-pulse XeF and KrF lasers, development of an injection-controlled high-power XeF (C-A) excimer laser, design studies of a high-pulse excimer Eurolaser, highest-power excimer lasers, chemically produced XeF(B) electronic excited state, intense high repetition rate excimer lasers and applications, average-power scaling of the pulsed barium vapor laser, high-power gold vapor laser, high-power mid-IR gas lasers, irradiation distribution of a high-power laser near focal plane, copper vapor laser with self-filtering unstable resonator, high pressure pulsed chemical singlet oxygen generator, chemically pumped oxygen-iodine laser, 630-W average-power Q-switched chemical oxygen iodine laser, survey of the NF(b-X) visible laser candidate, production of Bi(2D) and BiF(A0+) in a supersonic flow, new fluid dynamical experimental techniques in chemical laser research, directed-energy overview, HF amplifiers.

  10. Performance and reliability of high power 7xx nm laser diodes

    NASA Astrophysics Data System (ADS)

    Bao, Ling; Wang, Jun; Devito, Mark; Xu, Dapeng; Grimshaw, Mike; Dong, Weimin; Guan, Xingguo; Huang, Hua; Leisher, Paul; Zhang, Shiguo; Wise, Damian; Martinsen, Robert; Haden, Jim

    2011-02-01

    High power diode lasers in 7xx-nm region, have been needed for various applications. Compared to 9xx nm lasers that have been developed extensively in the last 20 years, high power lasers at 7xx-nm region presents much more challenges for operation power, efficiency, temperature performance and reliability. This paper will present recent progresses on 7xx nm laser diodes for the above attributes. Two laser designs will be reviewed and high power diode laser performance and reliability will be presented. Single emitter devices, with 200μm wide emitting width, show up to 10W reliable operation power, with peak efficiency more than 65%. Accelerated life testing at 12A, 50°C heatsink temperature has been running for thousands of hours. High temperature performance and high COMD threshold (> 20W) will also be shown. Life-test failure modes will also be discussed. In summary, with advanced epitaxial structure design and MOCVD process, critical facet passivation and advanced heatsink and bonding technology, 7xx-8xx nm devices have been demonstrated with high performance and reliability similar to those of 9xx nm devices.

  11. Reviews of a Diode-Pumped Alkali Laser (DPAL): a potential high powered light source

    NASA Astrophysics Data System (ADS)

    Cai, He; Wang, You; Han, Juhong; An, Guofei; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Zhou, Jie; Gao, Ming; Jiang, Zhigang

    2015-03-01

    Diode pumped alkali vapor lasers (DPALs) were first developed by in W. F. Krupke at the beginning of the 21th century. In the recent years, DPALs have been rapidly developed because of their high Stokes efficiency, good beam quality, compact size and near-infrared emission wavelengths. The Stokes efficiency of a DPAL can achieve a miraculous level as high as 95.3% for cesium (Cs), 98.1% for rubidium (Rb), and 99.6% for potassium (K), respectively. The thermal effect of a DPAL is theoretically smaller than that of a normal diode-pumped solid-state laser (DPSSL). Additionally, generated heat of a DPAL can be removed by circulating the gases inside a sealed system. Therefore, the thermal management would be relatively simple for realization of a high-powered DPAL. In the meantime, DPALs combine the advantages of both DPSSLs and normal gas lasers but evade the disadvantages of them. Generally, the collisionally broadened cross sections of both the D1 and the D2 lines for a DPAL are much larger than those for the most conventional solid-state, fiber and gas lasers. Thus, DPALs provide an outstanding potentiality for realization of high-powered laser systems. It has been shown that a DPAL is now becoming one of the most promising candidates for simultaneously achieving good beam quality and high output power. With a lot of marvelous merits, a DPAL becomes one of the most hopeful high-powered laser sources of next generation.

  12. Atmospheric propagation of high power laser radiation at different weather conditions

    NASA Astrophysics Data System (ADS)

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-05-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long free transmission laser test range. Sensors around this test range continuously monitor turbulence strength, visibility, precipitation, temperature, and wind speed. High power laser radiation is obtained by a TruDisk 6001 disk laser (Trumpf company) yielding a maximum output power of 6 kW at a wavelength of 1030 nm. The laser beam is expanded to 180 mm and focused along the beam path. Power and intensity distribution are measured before and after propagation, providing information about the atmospheric transmission and alterations of diameter and position of the laser beam. Backscattered laser light is acquired by a photo receiver. As a result, measurements performed at different weather conditions show a couple of correlations to the characteristics of the laser beam. The experimental results are compared to a numerical analysis. The calculations are based on the Maxwell wave equation in Fresnel approximation. The turbulence is considered by the introduction of phase screens and the "von Karman" spectrum.

  13. Compact high-brightness and high-power diode laser source for materials processing

    NASA Astrophysics Data System (ADS)

    Treusch, Hans-Georg; Harrison, Jim; Morris, Robert; Powers, Jeff J.; Brown, Dennis; Martin, Joey

    2000-03-01

    A compact, reliable semiconductor laser source for materials processing, medical and pumping applications is described. This industrial laser source relies on a combination of technologies that have matured in recent years. In particular, effective means of stacking and imaging monolithic semiconductor laser arrays (a.k.a., bars), together with advances in the design and manufacture of the bars, have enabled the production of robust sources at market-competitive costs. Semiconductor lasers are presently the only lasers known that combine an efficiency of about 50% with compact size and high reliability. Currently the maximum demonstrated output power of a 10-mm-wide semiconductor laser bar exceeds the 260 W level when assembled on an actively cooled heat sink. (The rated power is in the range of 50 to 100 W.) Power levels in the kW range can be reached by stacking such devices. The requirements on the stacking technique and the optic assembly to achieve high brightness are discussed. Optics for beam collimation in fast and slow axis are compared. An example for an optical setup to use in materials processing will be shown. Spot sizes as low as 0.4 mm X 1.2 mm at a numerical aperture of 0.3 and output power of 1 kW are demonstrated. This results in a power density of more than 200 kW/cm2. A setup for further increase in brightness by wavelength and polarization coupling will be outlined. For incoherent coupling of multiple beams into a single core optical fiber, a sophisticated beam-shaping device is needed to homogenize the beam quality of stacked semiconductor lasers.

  14. Scalable high-power and high-brightness fiber coupled diode laser devices

    NASA Astrophysics Data System (ADS)

    Köhler, Bernd; Ahlert, Sandra; Bayer, Andreas; Kissel, Heiko; Müntz, Holger; Noeske, Axel; Rotter, Karsten; Segref, Armin; Stoiber, Michael; Unger, Andreas; Wolf, Paul; Biesenbach, Jens

    2012-03-01

    The demand for high-power and high-brightness fiber coupled diode laser devices is mainly driven by applications for solid-state laser pumping and materials processing. The ongoing power scaling of fiber lasers requires scalable fibercoupled diode laser devices with increased power and brightness. For applications in materials processing multi-kW output power with beam quality of about 30 mm x mrad is needed. We have developed a modular diode laser concept combining high power, high brightness, wavelength stabilization and optionally low weight, which becomes more and more important for a multitude of applications. In particular the defense technology requires robust but lightweight high-power diode laser sources in combination with high brightness. Heart of the concept is a specially tailored diode laser bar, whose epitaxial and lateral structure is designed such that only standard fast- and slow-axis collimator lenses in combination with appropriate focusing optics are required to couple the beam into a fiber with a core diameter of 200 μm and a numerical aperture (NA) of 0.22. The spectral quality, which is an important issue especially for fiber laser pump sources, is ensured by means of Volume Holographic Gratings (VHG) for wavelength stabilization. In this paper we present a detailed characterization of different diode laser sources based on the scalable modular concept. The optical output power is scaled from 180 W coupled into a 100 μm NA 0.22 fiber up to 1.7 kW coupled into a 400 μm NA 0.22 fiber. In addition we present a lightweight laser unit with an output power of more than 300 W for a 200 μm NA 0.22 fiber with a weight vs. power ratio of only 0.9 kg/kW.

  15. Complete indium-free CW 200W passively cooled high power diode laser array using double-side cooling technology

    NASA Astrophysics Data System (ADS)

    Wang, Jingwei; Zhu, Pengfei; Liu, Hui; Liang, Xuejie; Wu, Dihai; Liu, Yalong; Yu, Dongshan; Zah, Chung-en; Liu, Xingsheng

    2017-02-01

    High power diode lasers have been widely used in many fields. To meet the requirements of high power and high reliability, passively cooled single bar CS-packaged diode lasers must be robust to withstand thermal fatigue and operate long lifetime. In this work, a novel complete indium-free double-side cooling technology has been applied to package passively cooled high power diode lasers. Thermal behavior of hard solder CS-package diode lasers with different packaging structures was simulated and analyzed. Based on these results, the device structure and packaging process of double-side cooled CS-packaged diode lasers were optimized. A series of CW 200W 940nm high power diode lasers were developed and fabricated using hard solder bonding technology. The performance of the CW 200W 940nm high power diode lasers, such as output power, spectrum, thermal resistance, near field, far field, smile, lifetime, etc., is characterized and analyzed.

  16. 193nm high power lasers for the wide bandgap material processing

    NASA Astrophysics Data System (ADS)

    Fujimoto, Junichi; Kobayashi, Masakazu; Kakizaki, Koji; Oizumi, Hiroaki; Mimura, Toshio; Matsunaga, Takashi; Mizoguchi, Hakaru

    2017-02-01

    Recently infrared laser has faced resolution limit of finer micromachining requirement on especially semiconductor packaging like Fan-Out Wafer Level Package (FO-WLP) and Through Glass Via hole (TGV) which are hard to process with less defect. In this study, we investigated ablation rate with deep ultra violet excimer laser to explore its possibilities of micromachining on organic and glass interposers. These results were observed with a laser microscopy and Scanning Electron Microscope (SEM). As the ablation rates of both materials were quite affordable value, excimer laser is expected to be put in practical use for mass production.

  17. Non-uniform DFB-surface-etched gratings for enhanced performance high power, high brightness broad area lasers

    NASA Astrophysics Data System (ADS)

    Decker, J.; Fricke, J.; Maaßdorf, A.; Erbert, G.; Tränkle, G.; Crump, P.

    2017-02-01

    Monolithic spectral stabilization is demonstrated in narrow-stripe broad-area lasers (NBA) with high power (5W), conversion efficiency (50%) and high brightness, by using optimized high-order surface-etched DFB gratings. However, surface etched gratings introduce a high index contrast into the semiconductor, leading to the scattering losses increasing rapidly with groove etch depth, limiting efficiency and yield. We therefore review progress in the exploitation of novel, non-uniform grating configurations for improved performance. Devices with non-uniform gratings whose groove etch depth decreases toward the front facet (apodized grating) are shown to operate with enhanced spectrally stable power (6W) compared to devices with uniform gratings.

  18. Failure Mechanisms of High Temperature Semiconductor Lasers

    DTIC Science & Technology

    1993-12-01

    TEMPERATURE SEMICONDUCTOR LASERS L Background and Detiption of Anlyis Conducted This thesis describes and attempts to model the influence of elevated...for SC lasers. One such project is a laser-based solution for the growing complexity of the PAVE PACE Interboard Communications. This unit controls an...and grain boundaries. Thus dislocation lines will generally combine to form complex dislocation networks. dislocation line dislocation line H1Burgers

  19. Semiconductor Laser Tracking Frequency Distance Gauge

    NASA Technical Reports Server (NTRS)

    Phillips, James D.; Reasenberg, Robert D.

    2009-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  20. Semiconductor Laser Tracking Frequency Distance Gauge

    NASA Technical Reports Server (NTRS)

    Phillips, James D.; Reasenberg, Robert D.

    2009-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require a spaceworthy laser distance gauge of substantially improved performance. The Tracking Frequency Gauge (TFG) uses a single beam, locking a laser to the measurement interferometer. We have demonstrated this technique with pm (10(exp -12) m) performance. We report on the version we are now developing based on space-qualifiable, fiber-coupled distributed-feedback semiconductor lasers.

  1. Photoconductive Semiconductor Switch Technology for Short Pulse Electromagnetics and Lasers

    SciTech Connect

    Denison, Gary J.; Helgeson, Wesley D.; Hjalmarson, Harold P.; Loubriel, Guillermo M.; Mar, Alan; O'Malley, Martin W.; Zutavern, Fred J.

    1999-08-05

    High gain photoconductive semiconductor switches (PCSS) are being used to produce high power electromagnetic pulses foc (1) compact, repetitive accelerators, (2) ultra-wide band impulse sources, (3) precision gas switch triggers, (4) optically-activated firesets, and (5) high power optical pulse generation and control. High power, sub-nanosecond optical pulses are used for active optical sensors such as compact optical radars and range-gated hallistic imaging systems. Following a brief introduction to high gain PCSS and its general applications, this paper will focus on PCSS for optical pulse generation and control. PCSS technology can be employed in three distinct approaches to optical pulse generation and control: (1) short pulse carrier injection to induce gain-switching in semiconductor lasers, (2) electro-optical Q-switching, and (3) optically activated Q-switching. The most significant PCSS issues for these applications are switch rise time, jitter, and longevity. This paper will describe both the requirements of these applications and the most recent results from PCSS technology. Experiments to understand and expand the limitations of high gain PCSS will also be described.

  2. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    NASA Technical Reports Server (NTRS)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  3. New horizons for high-power lasers: applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran

    2000-01-01

    Although material processing with high power lasers has found widespread use in a variety of industries such as the automotive industry, electrical and electronics industries, aerospace industry etc., civil engineering construction is one field that has lagged behind in the use of lasers for material processing. This is in spite of the fact that a large variety of materials including ceramics, metals and plastics are used in very large quantities for civil engineering construction. The main reasons for the delay in the adopting of laser for processing construction material seem to be the high costs involved and the lack of sufficient power for processing heavy and thick materials. However, with the advent of more compact lasers with higher powers, higher efficiencies and lower photon costs, greater interest has been shown in recent years in the possible uses of high power lasers for material processing in the construction industry. The author traces some of the past work carried out both in Japan and abroad on the use of lasers in civil engineering, specially with respect to the processing of inorganic material such as concrete, natural stones, tiles and rocks. Recent developments regarding laser decontamination and laser assisted rock excavation are also introduced.

  4. Homogenization of high power diode laser beams for pumping and direct applications

    NASA Astrophysics Data System (ADS)

    Traub, Martin; Hoffmann, Hans-Dieter; Plum, Heinz-Dieter; Wieching, Kristin; Loosen, Peter; Poprawe, Reinhart

    2006-02-01

    High power diode lasers have become an established source for numerous direct applications like metal hardening and polymer welding due to their high efficiency, small size, low cost and high reliability. These laser sources are also used for efficient pumping of solid state lasers as Nd:YAG lasers. To increase the output power of diode lasers up to several kilowatts, the emitters are scaled laterally by forming a diode laser bar and vertically by forming a diode laser stack. For most applications like hardening and illumination, though, the undefined far field distribution of most commercially available high power diode laser stacks states a major drawback of these devices. As single emitters and bars can fail during their lifetime, the near field distribution does not remain constant. To overcome these problems, the intensity distribution can be homogenized by a waveguide or by microoptic devices. The waveguide segments the far field distribution by several total internal reflections, and these segments are overlaid at the waveguide's exit surface. By the microoptic device, the near field is divided into beamlets which are overlaid by a field lens. Both approaches are presented, and realized systems are described.

  5. Optimization of microchannel cooler of high power diode laser array package

    NASA Astrophysics Data System (ADS)

    Wu, Dihai; Zhang, Pu; Nie, Zhiqiang; Liang, Xuejie; Wang, Jingwei; Liu, Xingsheng

    2017-02-01

    High power diode laser arrays have found increasing applications in the field of pumping solid-state lasers and fiber lasers. Due to the thermal crosstalk across diode laser arrays and non-uniformity of local flow rate within microchannel cooler, junction temperature distribution becomes inhomogeneous, consequently leading to spectrum broadening and large beam divergence of diode laser pumping sources. In this work, an analytical method and numerical heat transfer based on finite volume method were employed to optimize the inner structure of microchannel cooler so as to obtain low thermal resistance and uniform junction temperature distribution for the diode laser arrays. Three-dimensional numerical models were developed to study the fluid flow and heat transfer of copper stacked microchannel coolers with different dimensions and arrangements of inner channels and fins. More uniform junction temperature distribution of diode laser array package could be achieved by self-heating compensation with specific coolant covering width. These results could provide significant guidance for the design of microchannel coolers of high power diode laser arrays for better performance.

  6. Finite element analysis of space debris removal by high-power lasers

    NASA Astrophysics Data System (ADS)

    Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming

    2015-08-01

    With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.

  7. Method for beam steering compensation in an ultra-high power liquid laser

    DOEpatents

    Ault, Earl R.

    2002-01-01

    Thermally induced distortion of the optical wavefront caused by heating of the laser media by waste heat from the excitation process and absorption of laser radiation creates optical phase errors. A system generates an error signal derived from the optical phase errors. The error signal is fed back to the power supplies driving semiconductor diodes that excite the lasing liquid thereby introducing an electrically controllable wedge into the optical cavity to correct the optical phase errors.

  8. Design of intrinsically single-mode double clad crystalline fiber waveguides for high power lasers

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Stephanie K.; Meissner, Helmuth E.

    2016-03-01

    Recently, double-clad crystalline fiber waveguides (CFWs), consisting of single crystalline or ceramic RE3+:YAG cores of square cross section and inner claddings of either undoped or laser-inactive-ion-doped YAG and outer claddings of sapphire, have been successfully demonstrated. These waveguides, manufactured by an Adhesive-Free Bonding (AFB®) technique, can be precisely engineered and fabricated with predictable beam propagation behavior. In this work, with high power laser designs in mind, minimum thicknesses for inner cladding are derived for different core cross sections and refractive index differences between the core and inner cladding and sapphire as outer cladding material for common laser core dopants such as Nd3+, Yb3+, Er3+, Tm3+ and Ho3+. All designs are intended to use high NA high power laser diode pumping to obtain high power intrinsically single transverse mode laser output. The obtained data are applicable to any crystalline fiber waveguide design, regardless of fabrication technique. As an example, a CFW with 40 μm × 40 μm 4% Tm:YAG core, 5% Yb:YAG inner cladding, and sapphire outer cladding was calculated to be intrinsically single transverse mode, with the minimum inner cladding width of 21.7 μm determined by the effective index technique [1].

  9. Watt-class high-power, high-beam-quality photonic-crystal lasers

    NASA Astrophysics Data System (ADS)

    Hirose, Kazuyoshi; Liang, Yong; Kurosaka, Yoshitaka; Watanabe, Akiyoshi; Sugiyama, Takahiro; Noda, Susumu

    2014-05-01

    The applications of surface-emitting lasers, in particular vertical-cavity surface-emitting lasers (VCSELs), are currently being extended to various low-power fields including communications and interconnections. However, the fundamental difficulties in increasing their output power by more than several milliwatts while maintaining single-mode operation prevent their application in high-power fields such as material processing, laser medicine and nonlinear optics, despite their advantageous properties of circular beams, the absence of catastrophic optical damage, and their suitability for two-dimensional integration. Here, we demonstrate watt-class high-power, single-mode operation by a two-dimensional photonic-crystal surface-emitting laser under room-temperature, continuous-wave conditions. The two-dimensional band-edge resonant effect of a photonic crystal formed by metal-organic chemical vapour deposition enables a 1,000 times broader coherent-oscillation area, which results in a high beam quality of M2 <= 1.1, narrowing the focus spot by two orders of magnitude compared to VCSELs. Our demonstration promises to realize innovative high-power applications for surface-emitting lasers.

  10. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  11. Simulation of the wavefront distortion and beam quality for a high-power zigzag slab laser

    NASA Astrophysics Data System (ADS)

    Shin, Jae Sung; Cha, Yong-Ho; Cha, Byung Heon; Lee, Hyeon Cheor; Kim, Hyun Tae; Lee, Jung Hwan

    2016-12-01

    A simulation method of the beam quality for a high-power zigzag slab laser has been developed. This method can predict the wavefront distortion and beam quality for various optical arrangements and optimize the design effectively. A Nd:YAG zigzag slab laser amplifier was designed as an application. The optimized design shows a beam quality of 1.20 corresponding to the minimized wavefront distortion with a peak-to-valley of 0.568 μm and root mean square of 0.115 μm even under high-power operation with a total pump power of 14 kW. Although there are some effects other than the optical design error that incur wavefront distortions, this method can help to determine the first optical design of the zigzag slab laser without the need for many experimental studies.

  12. Single-mode and high power waveguide lasers fabricated by ion-exchange.

    PubMed

    Della Valle, G; Festa, A; Sorbello, G; Ennser, K; Cassagnetes, C; Barbier, D; Taccheo, S

    2008-08-04

    We report on a single-end diode-pumped waveguide laser providing output power in excess of 20 mW with 17% slope efficiency in robust single longitudinal and transverse mode operation at 1533.5 nm. The active medium was an Er:Yb-doped waveguide only 9-mm long fabricated by Ag-Na ion-exchange in a phosphate glass. The overall cavity length including butt-coupled fiber-Bragg-grating mirrors was <60 mm. We also report on high power waveguide lasers providing more than 160 mW output power and 46% slope efficiency in multimode operation. Feasibility of high power single mode waveguide lasers based on ion-exchange technology in phosphate glasses is also experimentally investigated by using a 50-mm long active waveguide specially designed for efficient single-end pumping.

  13. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump.

    PubMed

    Xiao, Hu; Leng, Jinyong; Zhang, Hanwei; Huang, Liangjin; Xu, Jiangming; Zhou, Pu

    2015-09-20

    In this paper, we present our experimental results of a high-power 1018 nm fiber laser and its usage in tandem pump. A record output power of 476 W 1018 nm fiber laser is obtained with an efficiency of 78.2%. Utilizing a specially designed gain fiber, a one-stage high-power monolithic fiber amplifier tandem pumped by six 1018 nm fiber lasers is assembled. A 110 W 1090 nm seed is amplified to 2140 W, and the efficiency is as high as 86.9%. The beam quality factor M2 is measured to be 1.9. Limitations and possible solutions for purchasing higher output power are discussed.

  14. Prototype of a high-power, high-energy industrial XeCl laser

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; Demin, A. I.; Khristoforov, O. B.

    2015-03-01

    We discuss the results of fabrication and experimental study of a high-power excimer XeCl laser for industrial applications. Compactness of the laser is achieved by the employment of a laser chamber based on a ceramic tube made of Al2O3. High laser output energy (1.5 - 2.5 J pulse-1) is obtained using a wide-aperture (up to 55 × 30 mm) volume discharge with pre-ionisation by a creeping discharge. The pre-ionisation is realised through a semitransparent electrode by the UV radiation of a creeping discharge in the form of uniform plasma sheet on a surface of a plane sapphire plate. The operating lifetime of the gas mixture amounts to ~57 × 106 pulses at a stabilised average laser power of 450 W. The results obtained demonstrate real prospects for developing a new class of excimer XeCl lasers with an average power of ~1 kW.

  15. Design of a high-power, high-brightness Nd:YAG solar laser.

    PubMed

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  16. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  17. High power high repetition rate VCSEL array side-pumped pulsed blue laser

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Robert; Zhao, Pu; Chen, Tong; Xu, Bing; Watkins, Laurence; Seurin, Jean-Francois; Xu, Guoyang; Miglo, Alexander; Wang, Qing; Ghosh, Chuni

    2013-03-01

    High power, kW-class, 808 nm pump modules based on the vertical-cavity surface-emitting laser (VCSEL) technology were developed for side-pumping of solid-state lasers. Two 1.2 kW VCSEL pump modules were implemented in a dual side-pumped Q-switched Nd:YAG laser operating at 946 nm. The laser output was frequency doubled in a BBO crystal to produce pulsed blue light. With 125 μs pump pulses at a 300 Hz repetition rate 6.1 W QCW 946 nm laser power was produced. The laser power was limited by thermal lensing in the Nd:YAG rod.

  18. High-power thulium fiber laser Q switched with single-layer graphene.

    PubMed

    Tang, Yulong; Yu, Xuechao; Li, Xiaohui; Yan, Zhiyu; Wang, Qi Jie

    2014-02-01

    We report high-power 2 μm Tm3+ fiber lasers passively Q switched by double-piece single-layer graphene transferred onto a glass plate. Through manipulating intracavity laser beam size and increasing pump ratios, an average power of 5.2 W is directly achieved from the laser oscillator with an optical-to-optical slope efficiency of 26%. The laser pulse energy can be as high as ∼18  μJ, comparable to that from actively Q-switched fiber lasers. The narrowest pulse width is 320 ns, and the pulse repetition rate can be tuned from tens of kilohertz to 280 kHz by changing the pump power. To the best of our knowledge, this is the highest average power and pulse energy, as well as the narrowest pulse width, from graphene-based Q-switched 2 μm fiber lasers.

  19. Characterization of mechanical shock waves in aluminum 6061-T6 using a high power laser pulse

    NASA Astrophysics Data System (ADS)

    Gonzalez Romero, J. R.; García-Torales, G.; Gómez Rosas, G.; Ocaña, J. L.; Flores, Jorge L.

    2016-09-01

    Strengthening techniques allows enhance metal physical properties. Laser shock peening (LSP) technique consist in a surface treatment which a high power laser pulse induces a compressive residual stress field through mechanical shock waves, increasing hardness, corrosion resistance, fatigue resistance. In comparison with the shot peening technique, LSP is a method that allows precision controlling the laser incidence on the surface under treatment increasing the surface quality in the surface under treatment. In this work, mechanical shock waves are induced in aluminum and measure using two different experimental approaches. First, using a PVDZ sensors and secondly, strain gauges are used. Experimental results are presented.

  20. High-power CO[sub 2] laser with coaxial waveguide and diffusion cooling

    SciTech Connect

    Ehrlichmann, D.; Habich, U.; Plum, H.D. )

    1993-07-01

    A diffusion-cooled CO[sub 2] laser using a coaxial waveguide is analyzed theoretically and experimentally. The resonator extracting the laser beam consists of two annular plane mirrors enclosing the two ends of the waveguide. The beam exits through an aperture in one of these annular mirrors. The mirror tilt is shown to provide efficient beam extraction through this aperture. A theoretical resonator model based on the vector modes of propagation in a dielectric coaxial waveguide is presented. Experimental data show the feasibility of coaxial waveguide lasers and their ability to supply beams of high power and quality. Experimental data are discussed with respect to the presented theory.