Key techniques of the high precision gravity field system
NASA Astrophysics Data System (ADS)
Xu, Weimin; Chen, Shi; Lu, Hongyan; Shi, Lei
2017-04-01
Ground-based gravity time series provide a direct method to monitor all sources of mass changes from local to global scale. But the effectively infinite spatial sensitivity of gravity measurements make it difficult to isolate the signal of interest. The high precision gravity field system is an alternative approach of modeling mass changes under-ground. The field system, consists of absolute gravity, gravity and gravity gradient, GNSS, leveling and climate hydrology measurements, can improve the signal-to-noise ratio for many applications by removing contributions of unwanted signal from elevation changes, air pressure changes, local hydrology, and others. The networks of field system combination, such as field-profile in more than 100 kilometers, can be used in critical zone with high seismic risk for monitoring earth dynamics, volcanic and seismic phenomena. The system is constituted by 9 typical observation stations in 3*3 array (or 4 in 2*2 array) in 60 square meters field, each station is designed for integrated measurements, including absolute gravity, gravity gradient, elevation changes, air pressure and hydrology. Time-lapse gravity changes resulting from absolute gravimeter (FG5 or A10) with standard deviation less than 2 μGal, without the contributions of Earth tides, loading and polar motion. Additional measurements such as air pressure change, local hydrology and soil moisture are indispensable. The elevation changes resulting from GNSS (on the base station) and leveling (between stations) with precision less than 10 mm. The gravity gradient is the significant measurement for delimiting the location of the related mass changes underground the station, which is measured by Scintrex CG-5 gravimeters in different height (80cm in the test field), with precision less than 10 E. It is necessary to improve the precision of gravity gradient measurements by certain method in field experiment for the high precision measurement system. Acknowledgment: This
A Novel Gravity Compensation Method for High Precision Free-INS Based on "Extreme Learning Machine".
Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing
2016-11-29
In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method.
A Novel Gravity Compensation Method for High Precision Free-INS Based on “Extreme Learning Machine”
Zhou, Xiao; Yang, Gongliu; Cai, Qingzhong; Wang, Jing
2016-01-01
In recent years, with the emergency of high precision inertial sensors (accelerometers and gyros), gravity compensation has become a major source influencing the navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper presents preliminary results concerning the effect of gravity disturbance on INS. Meanwhile, this paper proposes a novel gravity compensation method for high-precision INS, which estimates the gravity disturbance on the track using the extreme learning machine (ELM) method based on measured gravity data on the geoid and processes the gravity disturbance to the height where INS has an upward continuation, then compensates the obtained gravity disturbance into the error equations of INS to restrain the INS error propagation. The estimation accuracy of the gravity disturbance data is verified by numerical tests. The root mean square error (RMSE) of the ELM estimation method can be improved by 23% and 44% compared with the bilinear interpolation method in plain and mountain areas, respectively. To further validate the proposed gravity compensation method, field experiments with an experimental vehicle were carried out in two regions. Test 1 was carried out in a plain area and Test 2 in a mountain area. The field experiment results also prove that the proposed gravity compensation method can significantly improve the positioning accuracy. During the 2-h field experiments, the positioning accuracy can be improved by 13% and 29% respectively, in Tests 1 and 2, when the navigation scheme is compensated by the proposed gravity compensation method. PMID:27916856
High-precision measurements of global stellar magnetic fields
NASA Astrophysics Data System (ADS)
Plachinda, S. I.
2014-06-01
This paper presents a brief history of the development of devices and techniques for high-precision measurements of stellar magnetic fields. Two main approaches for the processing of spectral-polarimetric observations are described: the method of least-squares deconvolution (LSD), which is used to find a mean-weighted average of the normalized polarization profile using a set of spectral lines, and a method in which each individual spectral line is used to determine the magnetic field, viz., the single line method (SL). The advantages and disadvantages of the LSD and SL methods are discussed.
An improved gravity compensation method for high-precision free-INS based on MEC-BP-AdaBoost
NASA Astrophysics Data System (ADS)
Zhou, Xiao; Yang, Gongliu; Wang, Jing; Li, Jing
2016-12-01
In recent years, with the rapid improvement of inertial sensors (accelerometers and gyroscopes), gravity compensation has become more important for improving navigation accuracy in inertial navigation systems (INS), especially for high-precision INS. This paper proposes a mind evolutionary computation (MEC) back propagation (BP) AdaBoost algorithm neural-network-based gravity compensation method that estimates the gravity disturbance on the track based on measured gravity data. A MEC-BP-AdaBoost network-based gravity compensation algorithm used in the training process to establish the prediction model takes the carrier position (longitude and latitude) provided by INS as the input data and the gravity disturbance as the output data, and then compensates the obtained gravity disturbance into the INS’s error equations to restrain the position error propagation. The MEC-BP-AdaBoost algorithm can not only effectively avoid BP neural networks being trapped in local extrema, but also perfectly solve the nonlinearity between the input and output data that cannot be solved by traditional interpolation methods, such as least-square collocation (LSC) interpolation. The accuracy and feasibility of the proposed interpolation method are verified through numerical tests. A comparison of several other compensation methods applied in field experiments, including LSC interpolation and traditional BP interpolation, highlights the superior performance of the proposed method. The field experiment results show that the maximum value of the position error can reduce by 28% with the proposed gravity compensation method.
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.
Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia
2016-12-18
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.
Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems
Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia
2016-01-01
The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs. PMID:27999351
On the recovery of gravity anomalies from high precision altimeter data
NASA Technical Reports Server (NTRS)
Lelgemann, D.
1976-01-01
A model for the recovery of gravity anomalies from high precision altimeter data is derived which consists of small correction terms to the inverse Stokes' formula. The influence of unknown sea surface topography in the case of meandering currents such as the Gulf Stream is discussed. A formula was derived in order to estimate the accuracy of the gravity anomalies from the known accuracy of the altimeter data. It is shown that for the case of known harmonic coefficients of lower order the range of integration in Stokes inverse formula can be reduced very much.
An Online Gravity Modeling Method Applied for High Precision Free-INS.
Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao
2016-09-23
For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS.
An Online Gravity Modeling Method Applied for High Precision Free-INS
Wang, Jing; Yang, Gongliu; Li, Jing; Zhou, Xiao
2016-01-01
For real-time solution of inertial navigation system (INS), the high-degree spherical harmonic gravity model (SHM) is not applicable because of its time and space complexity, in which traditional normal gravity model (NGM) has been the dominant technique for gravity compensation. In this paper, a two-dimensional second-order polynomial model is derived from SHM according to the approximate linear characteristic of regional disturbing potential. Firstly, deflections of vertical (DOVs) on dense grids are calculated with SHM in an external computer. And then, the polynomial coefficients are obtained using these DOVs. To achieve global navigation, the coefficients and applicable region of polynomial model are both updated synchronously in above computer. Compared with high-degree SHM, the polynomial model takes less storage and computational time at the expense of minor precision. Meanwhile, the model is more accurate than NGM. Finally, numerical test and INS experiment show that the proposed method outperforms traditional gravity models applied for high precision free-INS. PMID:27669261
NASA Astrophysics Data System (ADS)
Deng, X. M.
2011-09-01
With the development of the unprecedented techniques for observation and the improvement of the advanced methods for measurement, it is time for astrometry to unfold a new era indubitably. Presently, the satellite laser ranging like LAser GEOdynamics Satellite (LAGEOS) has achieved a precision of 0.5 mas for orbit determination, the precision of Lunar Laser Ranging (LLR) has approached one millimeter, and Very Long Baseline Interferometry (VLBI) has attained the precision of 0.1 mas or even better. Beyond the current thresholds, astrometric observation will be able to attain the precision of a few μas or higher for some astrometric missions in the near future, such as Global Astrometric Interferometer for Astrophysics (GAIA) and Space Interferometry Mission (SIM). With the modern continuous improvement of the observational accuracy, we realize that Newtonian mechanics has already deviated from the high-precision astronomical observation. A relativistic model for data processing of high-precision astrometry needs to be established. On the other hand, the continued failure in merging gravity with quantum mechanics and recent cosmological observations indicate that Einstein's general relativity needs some modifications. Thus, we are motivated by testing alternative gravity theories and parameterizing relativistic model. We mainly try to research these deeply. Firstly, it is shown that the parameterized post-Newtonian parameter γ≠1 for Moffat's STVG by using Chandrasekhar's approach, and the theory is then ruled out by the experiments in the solar system. Then we propose a modified theory, MSTVG, to solve this problem. Besides, we use binary pulsar data to constrain two parameters in MSTVG. Secondly, a parameterized 2PN framework for light propagation is developed based on the previous works in our research. By considering the non-static gravitational field of the solar system, the influences of all kinds of relativistic terms with different physical origins on
Application of the spherical harmonic gravity model in high precision inertial navigation systems
NASA Astrophysics Data System (ADS)
Wang, Jing; Yang, Gongliu; Li, Xiangyun; Zhou, Xiao
2016-09-01
The spherical harmonic gravity model (SHM) may, in general, be considered as a suitable alternative to the normal gravity model (NGM), because it represents the Earth’s gravitational field more accurately. However, the high-resolution SHM has never been used in current inertial navigation systems (INSs) due to its extremely complex expression. In this paper, the feasibility and accuracy of a truncated SHM are discussed for application in a real-time free-INS with a precision demand better than 0.8 nm h-1. In particular, the time and space complexity are analyzed mathematically to verify the feasibility of the SHM. Also, a test on a typical navigation computer shows a storable range of cut-off degrees. To further evaluate the appropriate degree and accuracy of the truncated SHM, analyses of covariance and truncation error are proposed. Finally, a SHM of degree 12 is demonstrated to be the appropriate model for routine INSs in the precision range of 0.4-0.75 nm h-1. Flight simulations and road tests show its outstanding performance over the traditional NGM.
NASA Astrophysics Data System (ADS)
Wziontek, Hartmut; Wilmes, Herbert; Güntner, Andreas; Creutzfeldt, Benjamin
2010-05-01
Water mass changes are a major source of variations in residual gravimetric time series obtained from the combination of observations with superconducting and absolute gravimeters. Changes in the local water storage are the main influence, but global variations contribute to the signal significantly. For three European gravity stations, Bad Homburg, Wettzell and Medicina, different global hydrology models are compared. The influence of topographic effects is discussed and due to the long-term stability of the combined gravity time series, inter-annual signals in model data and gravimetric observations are compared. Two sources of influence are discriminated, i.e., the effect of a local zone with an extent of a few kilometers around the gravimetric station and the global contribution beyond 50km. Considering their coarse resolution and uncertainties, local effects calculated from global hydrological models are compared with the in-situ gravity observations and, for the station Wettzell, with local hydrological monitoring data.
A Direct Comparison of Two High Precision Relative Gravity Meters at Optimal Performance
NASA Astrophysics Data System (ADS)
van Westrum, D.
2015-12-01
NGS has maintained and operated GWR Superconducting Gravimeter #024 since 1995. It has been widely considered one of the most quiet instruments from that era. It was recently upgraded with state of the art electronics and its operating parameters reoptimzied. A Micro-g LaCoste gPhoneX, installed on a high precision tilt table, was collocated with the SG at the Table Mountain Geophysical Observatory near Boulder, CO and the two instruments operated side by side for approximately two months. Results in both the frequency domain and selected time series from large seismic signals (e.g. earthquakes) will be presented, allowing for a direct comparison between the instruments in identical, ideal conditions.
NASA Astrophysics Data System (ADS)
Liang, Jiahao
The NASA-supported Lunar Laser Ranging project (LLR) is located at Apache Point, New Mexico, which strives to precisely measure the orbital distance between the Earth and the Moon in an accuracy of a few millimeters. To archive this objective, LLR project requires precise data on local ground deformation, which is difficult to measure directly. However, the high precision gravity data is the reflection of vertical ground deformation of the Earth, therefore the gravity data is able to contribute to the LLR project. Gravity time series is affected by Earth tides, atmospheric pressure, polar motion, and the most critical effect, local hydrology. In order to isolate pure geodetic variation, these effects must be removed from the data. Thus, the goal of this research is to create models of above effects, especially local hydrology model, in order to isolate the vertical deformation signal. The Earth tides, atmospheric pressure and polar motion effects have been modeled and subtracted from gravity data (2009~2012). The local hydrological model has been created based on the in-situ data, which are rainfall, snowfall and temperature. The correlation coefficient and RMS misfit between the hydrological model and gravity residual (2010~2012) is 0.92 and 1.26 microGal. The instrument drift corrections in 2009 have been reanalyzed after comparing with some global hydrological models. The gravity residual from new corrections showed a correlation coefficient of 0.76 and RMS misfit of 1.25 microGal. The isolated deformation signal was obtained after we subtracted the hydrological effects, and the results can be used for further modeling.
a Mobile Atom Interferometer for High Precision Measurements of Local Gravity
NASA Astrophysics Data System (ADS)
Schmidt, M.; Senger, A.; Gorkhover, T.; Grede, S.; Kovalchuk, E. V.; Peters, A.
2009-04-01
We present a new design for the mobile and robust gravimeter GAIN (Gravimetric Atom Interferometer), which is based on interfering ensembles of laser cooled 87Rb atoms in an atomic fountain configuration. With a targeted accuracy of a few parts in 1010 for the measurement of local gravity, g, this instrument would offer about an order of magnitude improvement in performance over the best currently available absolute gravimeters. Together with the capability to perform measurements directly at sites of geophysical interest, this will open up the possibility for a number of interesting applications. We report on important subsystems of this atom interferometer, including a rack-mounted laser system and a compact vacuum chamber. Furthermore, a high flux 2-dimensional Magneto-optical trap capable of providing up to 1012 atoms/second and a high-power laser system providing 6.4 W at 780 nm are presented.
(abstract) Venus Gravity Field
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Sjogren, W. L.
1995-01-01
A global gravity field model of Venus to degree and order 75 (5772 spherical harmonic coefficients) has been estimated from Doppler radio tracking of the orbiting spacecraft Pioneer Venus Orbiter (1979-1992) and Magellan (1990-1994). After the successful aerobraking of Magellan, a near circular polar orbit was attained and relatively uniform gravity field resolution (approximately 200 km) was obtained with formal uncertainties of a few milligals. Detailed gravity for several highland features are displayed as gravity contours overlaying colored topography. The positive correlation of typography with gravity is very high being unlike that of the Earth, Moon, and Mars. The amplitudes are Earth-like, but have significantly different gravity-topography ratios for different features. Global gravity, geoid, and isostatic anomaly maps as well as the admittance function are displayed.
1985-06-20
AD-6S 676 NIGH PREC ISIGN TIDA GRAYITY(U) INSTITUTE OF 1/1 OCEANOGRAPHIC SCIENCES BIRKENHEAD ( ENGLAND ) T F BAKER ET AL. 28 JUN 85 AFGL-TR-B5-0203...Birkenhead L43 7RA. UK C Final Report 1 March 1984 - 28 February 1985 i _ 20 June 1985 Approved for public release; distribution unlimited Prepared...for T E TC - AIR FORCE GEOPHYSICS LABORATORY OCT2 8 AIR FORCE SYSTEMS COMMAND ) UNITED STATES AIR FORCE HANSCOM AFB, MASSACHUSETTS 01731 B and p
High-precision magnetic field measurements of Ap and Bp stars
NASA Astrophysics Data System (ADS)
Wade, G. A.; Donati, J.-F.; Landstreet, J. D.; Shorlin, S. L. S.
2000-04-01
In this paper we describe a new approach for measuring the mean longitudinal magnetic field and net linear polarization of Ap and Bp stars. As was demonstrated by Wade et al., least-squares deconvolution (LSD; Donati et al.) provides a powerful technique for detecting weak Stokes V, Q and U Zeeman signatures in stellar spectral lines. These signatures have the potential to apply strong new constraints to models of stellar magnetic field structure. Here we point out two important uses of LSD Stokes profiles. First, they can provide very precise determinations of the mean longitudinal magnetic field. In particular, this method allows one frequently to obtain 1σ error bars better than 50G, and smaller than 20G in some cases. This method is applicable to both broad- and sharp-lined stars, with both weak and strong magnetic fields, and effectively redefines the quality standard of longitudinal field determinations. Secondly, LSD profiles can in some cases provide a measure of the net linear polarization, a quantity analogous to the broad-band linear polarization recently used to derive detailed magnetic field models for a few stars (e.g. Leroy et al.). In this paper we report new high-precision measurements of the longitudinal fields of 14 magnetic Ap/Bp stars, as well as net linear polarization measurements for four of these stars, derived from LSD profiles.
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev
2015-04-01
Microgravity investigations are comparatively rarely used for searching of hidden ancient targets (e.g., Eppelbaum, 2013). It is caused mainly by small geometric size of the desired archaeological objects and various types of noise complicating the observed useful signal. At the same time, development of modern generation of field gravimetric equipment allows to register microGal (10-8 m/s2) anomalies that offer a new challenge in this direction. Correspondingly, an accuracy of gravity variometers (gradientometers) is also sharply increased. How we can improve the interpretation effectiveness and reliability? Undoubtedly, it must be a multi-stage process. I believe that we must begin since nonconventional methodologies for reducing topographic effect and terrain correction computation. Topographic effect reducing The possibilities of reducing topographic effects by grouping the points of additional gravimetric observations around the central point located on the survey network were demonstrated in (Khesin et al., 1996). A group of 4 to 8 additional points is located above and below along the relief approximately symmetrically and equidistant from the central point. The topographic effect is reduced to the obtained difference between the gravity field in the center of the group and its mean value for the whole group. Application of this methodology in the gold-pyrite deposit Gyzyl-Bulakh (Lesser Caucasus, western Azerbaijan) indicated its effectiveness. Computation of terrain correction Some geophysicists compare the new ideas in the field of terrain correction (TC) in gravimetry with the 'perpetuum mobile' invention. However, when we speak about very detailed gravity observations, the problem of most optimal computation of surrounding relief influence is of a great importance. Let us will consider two approaches applied earlier in ore geophysics. First approach A first method was applied in the Gyzyl-Bulakh gold-pyrite deposit situated in the Mekhmana ore region of
Scanning near-field lithography with high precision flexure orientation stage control
NASA Astrophysics Data System (ADS)
Qin, Jin; Zhang, Liang; Tan, Haosen; Wang, Liang
2017-09-01
A new design of an orientation stage for scanning near-field lithography is presented based on flexure hinges. Employing flexure mechanisms in place of rigid-body mechanisms is one of the most promising techniques to efficiently implement high precision motion and avoid problems caused by friction. For near-field scanning lithography with evanescent wave, best resolution can be achieved in contact mode. However, if the mask is fixed on a rigid stage, contact friction will deteriorate the lithography surface. To reduce friction while maintaining good contact between the mask and the substrate, the mask should be held with high lateral stiffness and low torsion stiffness. This design can hold the mask in place during the scanning process and achieve passive alignment. Circular flexure hinges, whose parameters are determined by motion requirements based on Schotborgh's equation, are used as the basic unit of the stage to achieve passive alignment by compensating motions from elastic deformation. A finite-element analysis is performed to verify this property of the stage. With the aid of this stage, 21 nm resolution is achieved in static near-field lithography and 18 nm line-width in scanning near-field lithography.
NASA Astrophysics Data System (ADS)
Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja
2016-04-01
CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.
NASA Astrophysics Data System (ADS)
Zumberge, M. A.; Harris, R. N.; Oliver, H. W.; Sasagawa, G. S.; Ponce, D. A.
Absolute gravity measurements were made at 4 sites in southern Nevada using the absolute gravity free-fall apparatus. Three of the sites are located on the Nevada Test Site at Mercury, Yucca Pass, and in northern Jackass Flats. The fourth site is at Kyle Canyon ranger station near Charleston Park where observed gravity is 216.19 mGal lower than at Mercury. Although there is an uncertainty of about 0.02 mGal in the absolute measured values, their gravity differences are considered accurate to about 0.03 mGal. Therefore, the absolute measurements should provide local control for the calibration of gravity meters between Mercury and Kyle Canyon ranger station to about 1 to 2 parts in 10,000. The average gravity differences between Mercury and Kyle Canyon obtained using LaCoste and Romberg gravity meters is 216.13 mGal, 0.06 mGal lower, or 3 parts in 10,000 lower than using the absolute gravity meter. Because of the discrepancy between the comparison of the absolute and relative gravity meters, more absolute and relative gravity control in southern Nevada, as well as the Mt. Hamilton area where the LaCoste and Romberg instruments were calibrated, is needed. Multiple gravity meter ties were also made between each of the four absolute stations to nearby base stations located on bedrock. These stations were established to help monitor possible real changes in gravity at the absolute sites that could result from seasonal variations in the depth to the water table.
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the
High Precision GPS Measurements
2010-02-28
GNSS Service (IGS) database, and magnetic field vectors from the International Geomagnetic Reference Field (IGRF) model [9]. These combined...Additonal correlations between the higher order range error and geomagnetic activity and seasonal variations are also obtained. Fig. 4 shows...clear correlation between the geomagnetic activity and enhanced higher order error at both sites. High Precision GPS Final Report Page 5 Fig.3
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth (209)Bi(82+) experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth (209)Bi(82+,80+) with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
NASA Astrophysics Data System (ADS)
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-01-01
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892
High Precision Magnetic Field Scanning System for the New Muon g-2 Experiment
NASA Astrophysics Data System (ADS)
Hong, Ran; Muon g-2 collaboration Collaboration
2017-01-01
The New Muon g-2 Experiment (E989) at Fermilab will measure the anomalous magnetic moment of muon aμ aiming at a precision of 140 ppb. This new experiment will shed light on the long-standing 3.5 standard deviation between the previous muon g-2 measurement (E821) at Brookhaven National Laboratory and the Standard Model calculation, and potentially discover new physics. The New Muon g-2 Experiment measures the precession frequency of muon in a uniform magnetic field, and the magnetic field experienced by the muons needs to be measured with a precision better than 70 ppb. For the measurement of the magnetic field in the muon storage region, the former trolley system from E821 with 17 NMR probes was refurbished and upgraded with new electronics, probes and a modern motion control system. A test solenoid magnet was set up at Argonne National Laboratory for calibrating the NMR probes and the precision studies of systematic uncertainties. In this presentation, we will describe the trolley motion control scheme, the trolley position measurement methods, the electronic system for activating and reading the NMR probes and the test solenoid facility.
May, Jody C; Dodds, James N; Kurulugama, Ruwan T; Stafford, George C; Fjeldsted, John C; McLean, John A
2015-10-21
An extensive study of two current ion mobility resolving power theories ("conditional" and "semi-empirical") was undertaken using a recently developed drift tube ion mobility-mass spectrometer. The current study investigates the quantitative agreement between experiment and theory at reduced pressure (4 Torr) for a wide range of initial ion gate widths (100 to 500 μs), and ion mobility values (K0 from 0.50 to 3.0 cm(2) V(-1) s(-1)) representing measurements obtained in helium, nitrogen, and carbon dioxide drift gas. Results suggest that the conditional resolving power theory deviates from experimental results for low mobility ions (e.g., high mass analytes) and for initial ion gate widths beyond 200 μs. A semi-empirical resolving power theory provided close-correlation of predicted resolving powers to experimental results across the full range of mobilities and gate widths investigated. Interpreting the results from the semi-empirical theory, the performance of the current instrumentation was found to be highly linear for a wide range of analytes, with optimal resolving powers being accessible for a narrow range of drift fields between 14 and 17 V cm(-1). While developed using singly-charged ion mobility data, preliminary results suggest that the semi-empirical theory has broader applicability to higher-charge state systems.
NASA Astrophysics Data System (ADS)
Zierer, Joseph J.; Mock, Jason R.; Beno, Joseph H.; Good, John; Booth, John A.; Lazzarini, Paolo; Fumi, Pierluigi; Anaclerio, Enzo
2010-07-01
Hexapods are finding increased use in telescope applications for positioning large payloads. Engineers from The University of Texas at Austin have been working with engineers from ADS International to develop large, high force, highly precise and controllable hexapod actuators for use on the Wide Field Upgrade (WFU) as part of the Hobby Eberly Telescope Dark Energy Experiment (HETDEX). These actuators are installed in a hexapod arrangement, supporting the 3000+ kg instrument payload which includes the Wide Field Corrector (WFC), support structure, and other optical/electronic components. In addition to force capability, the actuators need to meet the tracking speed (pointing) requirements for accuracy and the slewing speed (rewind) requirements, allowing as many observations in one night as possible. The hexapod actuator stroke (retraction and extension) was very closely monitored during the design phase to make sure all of the science requirements could be met, while minimizing the risk of damaging the WFC optical hardware in the unlikely event of a hexapod actuator or controller failure. This paper discusses the design trade-offs between stiffness, safety, back-drivability, accuracy, and leading to selection of the motor, high ratio worm gear, roller screw, coupling, end mounts, and other key components.
NASA Astrophysics Data System (ADS)
Fulmer, Eric C.; Nebel, Oliver; van Westrenen, Wim
2010-05-01
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients ( D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning. The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ˜1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/ 177Hf (34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct ( 176Hf/ 177Hf (34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ˜1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ˜1 mm amphibole grains within the nephelinite and the garnet megacrysts. High-precision isotope dilution results for Zr and Hf in garnet ( DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0
NASA Astrophysics Data System (ADS)
Rothacher, M.; Reigber, C.; Schmidt, R.; Foerste, C.; Koenig, R.; Flechtner, F.; Meyer, U.; Stubenvoll, R.; Barthelmes, F.; Neumayer, K. H.; Biancale, R.; Bruinsma, S.; Lemoine, J.
2005-12-01
High-resolution global mean gravity field models can be derived from the combination of satellite tracking and surface data. With the CHAMP and GRACE satellite missions, a new generation of such global gravity field models became available. Here the latest results of the processing of GRACE, CHAMP and SLR satellite tracking are presented and compared with outcomes of former analyses. The gravity field parameters obtained are the result of a substantial satellite data reprocessing, based on recently improved processing standards and models. On the other hand, surface gravity data derived from altimetry and gravimetry are globally available, providing a higher resolution than pure satellite data but lacking the high precision in the long-wavelength part. In an optimal approach the satellite-based data are combined with latest, partially newly processed surface gravity data sets to derive a global high-resolution gravity field model combining the high precision and homogeneity in the long- to medium-wavelength part from the satellite data with the short-wavelength resolution of the surface data. The obtained Earth gravity field model is an update of former EIGEN models of a resolution corresponding to a wavelength of 100 km and degree/order 360, respectively.
NASA Astrophysics Data System (ADS)
Goon, Garrett
2017-01-01
We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-( A) dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ˜ R 3 terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it's found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.
Progress in the Determination of the Earth's Gravity Field
NASA Technical Reports Server (NTRS)
Rapp, Richard H. (Editor)
1989-01-01
Topics addressed include: global gravity model development; methods for approximation of the gravity field; gravity field measuring techniques; global gravity field applications and requirements in geophysics and oceanography; and future gravity missions.
Gravity field information from Gravity Probe-B
NASA Technical Reports Server (NTRS)
Smith, D. E.; Lerch, F. J.; Colombo, O. L.; Everitt, C. W. F.
1989-01-01
The Gravity Probe-B Mission will carry the Stanford Gyroscope relativity experiment into orbit in the mid 1990's, as well as a Global Positioning System (GPS) receiver whose tracking data will be used to study the earth gravity field. Estimates of the likely quality of a gravity field model to be derived from the GPS data are presented, and the significance of this experiment to geodesy and geophysics are discussed.
Gravity quantized: Loop quantum gravity with a scalar field
Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina; Lewandowski, Jerzy
2010-11-15
...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational field because no symmetry reduction has been performed at the classical level.
Global marine gravity field map
NASA Astrophysics Data System (ADS)
Sloss, Peter W.
A color relief image of the marine gravity field from SEASAT altimeter measurements of the topography of the ocean surface is now available through the National Geophysical Data Center (NGDC) of the National Oceanic and Atmospheric Administration. This image, prepared by William F. Haxby (Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y.), has been published by NGDC for the Office of Naval Research, which was the principal sponsor of the effort leading to the development of the image. The U.S. Geological Survey, National Mapping Division, printed the map.
NASA Astrophysics Data System (ADS)
Li, Jian; Fang, Weihua; Tan, Chenyan
2016-04-01
Forest dynamics are highly relevant to land hydrology, climate, carbon budget and biodiversity. Damage and loss assessment of forest caused by typhoon is essential to the understanding of ecosystem variations. Combination of high-precision remote sensing data and field investigation is critical to the assessment of forest damage loss. In this study, high-precision remote sensing data prior to and after typhoon from IKONOS, QuickBird, unmanned aerial vehicle (UAV) are used for identifying rubber tree disturbance. The ground truth data of rubber tree damage collected through field investigation are used to verify and compare the results. Taken the forest damage induced by typhoon Rammasun (201409) in Hainan as an example, 5 damage types (overthrown, trunk snapped below 2m, trunk snapped above 2m, half-overthrown, and sheared) of rubber trees are clearly interpreted compared with field investigation results. High-precision remote sensing data is then applied to other areas to evaluate the forest damage severity. At last, rubber tree damage severity is investigated with other typhoon hazard factors such as wind, topography, soil and precipitation.
Gravity Field Characterization around Small Bodies
NASA Astrophysics Data System (ADS)
Takahashi, Yu
A small body rendezvous mission requires accurate gravity field characterization for safe, accurate navigation purposes. However, the current techniques of gravity field modeling around small bodies are not achieved to the level of satisfaction. This thesis will address how the process of current gravity field characterization can be made more robust for future small body missions. First we perform the covariance analysis around small bodies via multiple slow flybys. Flyby characterization requires less laborious scheduling than its orbit counterpart, simultaneously reducing the risk of impact into the asteroid's surface. It will be shown that the level of initial characterization that can occur with this approach is no less than the orbit approach. Next, we apply the same technique of gravity field characterization to estimate the spin state of 4179 Touatis, which is a near-Earth asteroid in close to 4:1 resonance with the Earth. The data accumulated from 1992-2008 are processed in a least-squares filter to predict Toutatis' orientation during the 2012 apparition. The center-of-mass offset and the moments of inertia estimated thereof can be used to constrain the internal density distribution within the body. Then, the spin state estimation is developed to a generalized method to estimate the internal density distribution within a small body. The density distribution is estimated from the orbit determination solution of the gravitational coefficients. It will be shown that the surface gravity field reconstructed from the estimated density distribution yields higher accuracy than the conventional gravity field models. Finally, we will investigate two types of relatively unknown gravity fields, namely the interior gravity field and interior spherical Bessel gravity field, in order to investigate how accurately the surface gravity field can be mapped out for proximity operations purposes. It will be shown that these formulations compute the surface gravity field with
Altimeter measurements for the determination of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Schutz, B. E.; Shum, C. K.
1987-01-01
The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
Gravity field of the Western Weddell Sea: Comparison of airborne gravity and Geosat derived gravity
NASA Technical Reports Server (NTRS)
Bell, R. E.; Brozena, J. M.; Haxby, W. F.; Labrecque, J. L.
1989-01-01
Marine gravity surveying in polar regions was typically difficult and costly, requiring expensive long range research vessels and ice-breakers. Satellite altimetry can recover the gravity field in these regions where it is feasible to survey with a surface vessel. Unfortunately, the data collected by the first global altimetry mission, Seasat, was collected only during the austral winter, producing a very poor quality gravitational filed for the southern oceans, particularly in the circum-Antarctic regions. The advent of high quality airborne gravity (Brozena, 1984; Brozena and Peters, 1988; Bell, 1988) and the availability of satellite altimetry data during the austral summer (Sandwell and McAdoo, 1988) has allowed the recovery of a free air gravity field for most of the Weddell Sea. The derivation of the gravity field from both aircraft and satellite measurements are briefly reviewed, before presenting along track comparisons and shaded relief maps of the Weddell Sea gravity field based on these two data sets.
Gravity field determination and error assessment techniques
NASA Technical Reports Server (NTRS)
Yuan, D. N.; Shum, C. K.; Tapley, B. D.
1989-01-01
Linear estimation theory, along with a new technique to compute relative data weights, was applied to the determination of the Earth's geopotential field and other geophysical model parameters using a combination of satellite ground-based tracking data, satellite altimetry data, and the surface gravimetry data. The relative data weights for the inhomogeneous data sets are estimated simultaneously with the gravity field and other geophysical and orbit parameters in a least squares approach to produce the University of Texas gravity field models. New techniques to perform calibration of the formal covariance matrix for the geopotential solution were developed to obtain a reliable gravity field error estimate. Different techniques, which include orbit residual analysis, surface gravity anomaly residual analysis, subset gravity solution comparisons and consider covariance analysis, were applied to investigate the reliability of the calibration.
High-resolution gravity field modeling using GRAIL mission data
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Loomis, B.; Chinn, D. S.; Smith, D. E.; Zuber, M. T.
2015-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft were designed to map the structure of the Moon through high-precision global gravity mapping. The mission consisted of two spacecraft with Ka-band inter-satellite tracking complemented by tracking from Earth. The mission had two phases: a primary mapping mission from March 1 until May 29, 2012 at an average altitude of 50 km, and an extended mission from August 30 until December 14, 2012, with an average altitude of 23 km before November 18, and 20 and 11 km after. High-resolution gravity field models using both these data sets have been estimated, with the current resolution being degree and order 1080 in spherical harmonics. Here, we focus on aspects of the analysis of the GRAIL data: we investigate eclipse modeling, the influence of empirical accelerations on the results, and we discuss the inversion of large-scale systems. In addition to global models we also estimated local gravity adjustments in areas of particular interest such as Mare Orientale, the south pole area, and the farside. We investigate the use of Ka-band Range Rate (KBRR) data versus numerical derivatives of KBRR data, and show that the latter have the capability to locally improve correlations with topography.
NASA Astrophysics Data System (ADS)
Ingleby, S. J.; Griffin, P. F.; Arnold, A. S.; Chouliara, M.; Riis, E.
2017-04-01
An integrated system of hardware and software allowing precise definition of arbitrarily oriented magnetic fields up to |B| = 1 μT within a five-layer Mumetal shield is described. The system is calibrated with reference to magnetic resonance observed between Zeeman states of the 6S1/2 F = 4 133Cs ground state. Magnetic field definition over the full 4π solid angle is demonstrated with one-sigma tolerances in magnitude, orientation, and gradient of δ|B| = 0.94 nT, δθ = 5.9 mrad, and δ |∇B | =13.0 pT/mm, respectively. This field control is used to empirically map Mx magnetometer signal amplitude as a function of the static field (B0) orientation.
High precision measurement of the 11Li and 9Li quadrupole moment ratio using zero-field β-NQR
NASA Astrophysics Data System (ADS)
Voss, A.; Pearson, M. R.; Buchinger, F.; Crawford, J. E.; Kiefl, R. F.; Levy, C. D. P.; MacFarlane, W. A.; Mané, E.; Morris, G. D.; Shelbaya, O. T. J.; Song, Q.; Wang, D.
2014-01-01
The ratio of electric quadrupole moments of 11Li and 9Li was measured using the zero-field β-detected nuclear quadrupole resonance technique at Triumf-Isac. The precision on the ratio Q11/Q9 = 1.0775(12) was improved by more than one order of magnitude and an absolute value for the quadrupole moment of 11Li was inferred. Systematic effects, as argued here, are not expected to contribute to the ratio on this scale. The zero-field spin-lattice relaxation time for 8Li implanted within SrTiO3 at 295 K in zero-field was found to be T1 = 1.73(2) s. A comparison of the quadrupole moments of 9, 11Li and their ratio is made with the latest models, however, no conclusion may yet be drawn owing to the size of the theoretical uncertainties.
Electric fields in micro-gravity can replace gravity
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
The influence of the world-wide atmospheric electric field on the growth of plants seems to have been neglected. The confirmation of the existence of electrotropism shows effects on some plants similar to gravity. I propose space ex eriments withp plants that grow in microgravity but are exposed to different electric field configurations with various field strengths and polarity. The electric field in terrestrial environment shows strong effects on some plants that can be regarded as due to phototropism. In microgravity we have full control of light and electric field, and thus we can practically eliminate the effects of gravity and we can study to what degree the electric field can replace the gravitational effects on plants. In this way we can create a new habitat for some plants and study its role in the rate of growth as well as in the sensing of free space for growth of plants in absence of gravity. By varying the strength and direction of illumination of plants we can also study the relative role of phototropism and electrotropism on different plants. This should enable us to select the most suitable plants for Advanced Life Support systems (ALS) for long-duration missions in microgravity environment. Some simple space experiments for verification of these assumptions are described that should answer the basic questions how should we design the ALS for the future high performance space stations and long duration manned space flights. The selection of the suitable plants for such ALS may go along two approaches: the self supporting electrotropic plants using the optimal electric field strength and its range of variation, non electrotropic plants that creep along the "ground" or other supporting plants or special structures. Ground based fitotron experiments have shown that several kV/m electric fields overwhelm the gravity better than clinostats can do. It happens in case of electrotropic plants but also after several days for non-electrotropic plants
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1993-01-01
Derivation of first and second partials of the gravitational potential is given in both normalized and unnormalized form. Two different recursion formulas are considered. Derivation of a general gravity gradient torque algorithm which uses the second partial of the gravitational potential is given. Derivation of the geomagnetic field vector is given in a form that closely mimics the gravitational algorithm. Ada code for all algorithms that precomputes all possible data is given. Test cases comparing the new algorithms with previous data are given, as well as speed comparisons showing the relative efficiencies of the new algorithms.
Toward a gauge field theory of gravity.
NASA Astrophysics Data System (ADS)
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Noda, Naoki; Kamimura, Shinji
2008-02-01
With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.
Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke; Kato, Seigo; Matsui, Jumei; Sako, Katsuhisa; Brindza, Paul
2015-09-01
The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+) reaction in Hall C, Jefferson Lab (JLab). It was used to analyze momenta of around 1.2 GeV/c K^+ s with a resolution of 2 ×10^-4 (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e,e'K+)Lambda,Sigma^0 and C-12 (e,e'K+)12_Lambda B_g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2×10^-4 (FWHM).
NASA Astrophysics Data System (ADS)
Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo
2014-05-01
There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (< 5%) in most major Western economies. The main reason for this is the high deployment cost of FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment
Dual geometric-gauge field aspects of gravity
Huei Peng; Wang, K.
1992-07-01
We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs.
On the role of differenced phase-delays in high-precision wide-field multi-source astrometry
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2007-07-01
Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.
E/N effects on K0 values revealed by high precision measurements under low field conditions.
Hauck, Brian C; Siems, William F; Harden, Charles S; McHugh, Vincent M; Hill, Herbert H
2016-07-01
Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm(2) V(-1) s(-1) or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.
E/N effects on K0 values revealed by high precision measurements under low field conditions
NASA Astrophysics Data System (ADS)
Hauck, Brian C.; Siems, William F.; Harden, Charles S.; McHugh, Vincent M.; Hill, Herbert H.
2016-07-01
Ion mobility spectrometry (IMS) is used to detect chemical warfare agents, explosives, and narcotics. While IMS has a low rate of false positives, their occurrence causes the loss of time and money as the alarm is verified. Because numerous variables affect the reduced mobility (K0) of an ion, wide detection windows are required in order to ensure a low false negative response rate. Wide detection windows, however, reduce response selectivity, and interferents with similar K0 values may be mistaken for targeted compounds and trigger a false positive alarm. Detection windows could be narrowed if reference K0 values were accurately known for specific instrumental conditions. Unfortunately, there is a lack of confidence in the literature values due to discrepancies in the reported K0 values and their lack of reported error. This creates the need for the accurate control and measurement of each variable affecting ion mobility, as well as for a central accurate IMS database for reference and calibration. A new ion mobility spectrometer has been built that reduces the error of measurements affecting K0 by an order of magnitude less than ±0.2%. Precise measurements of ±0.002 cm2 V-1 s-1 or better have been produced and, as a result, an unexpected relationship between K0 and the electric field to number density ratio (E/N) has been discovered in which the K0 values of ions decreased as a function of E/N along a second degree polynomial trend line towards an apparent asymptote at approximately 4 Td.
Using Clocks and Atomic Interferometry for Gravity Field Observations
NASA Astrophysics Data System (ADS)
Müller, Jürgen
2016-07-01
New technology developed in the frame of fundamental physics may lead to enhanced capabilities for geodetic applications such as refined observations of the Earth's gravity field. Here, we will present new sensor measurement concepts that apply atomic interferometry for gravimetry and clock measurements for observing potential values. In the first case, gravity anomalies can be determined by observing free-falling atoms (quantum gravimetry). In the second case, highly precise optical clocks can be used to measure differences of the gravity potential over long distances (relativistic geodesy). Principally, also inter-satellite ranging between test masses in space with nanometer accuracy belongs to these novel developments. We will show, how the new measurement concepts are connected to classical geodetic concepts, e.g. geopotential numbers and clock readings. We will illustrate the application of these new methods and their benefit for geodesy, where local and global mass variations can be observed with unforeseen accuracy and resolution, mass variations that reflect processes in the Earth system. We will present a few examples where geodesy will potentially benefit from these developments. Thus, the novel technologies might be applied for defining and realizing height systems in a new way, but also for fast local gravimetric surveys and exploration.
NASA Astrophysics Data System (ADS)
Gkinis, V.; Popp, T. J.; Johnsen, S. J.; Blunier, T.; Bigler, M.; Stowasser, C.; Schüpbach, S.; Leuenberger, D.
2010-12-01
Ice core records as obtained from polar ice caps provide a wealth of paleoclimatic information. One of the main features of ice cores is their potential for high temporal resolution. The isotopic signature of the ice, expressed through the relative abundances of the two heavy isotopologues H218O and HD16O, is a widely used proxy for the reconstruction of past temperature and accumulation. One step further the combined information obtained from these two isotopologues, commonly referred to as the deuterium excess, can be utilized to infer additional information about the source of the precipitated moisture. Until very recently isotopic analysis of polar ice was performed with isotope Ratio Mass Spectrometry (IRMS) in a discrete fashion resulting in a high workload related to the preparation of samples. Most important though the available temporal resolution of the ice core was in many cases not fully exploited. In order to overcome these limitations we have developed a system that interfaces a commercially available IR laser cavity ring-down spectrometer tailored for water isotope analysis to a stream of liquid water as extracted from a continuously melted ice rod. The system offers the possibility for simultaneous δ18O and δD analysis with a sample requirement of approximately 0.1 ml/min. The system has been deployed in the field during the NEEM ice core drilling project on 2009 and 2010. In this study we present actual on line measurements of Holocene and glacial ice. We also discuss how parameters as the melt rate, acquisition rate and integration time affect the obtained precision and resolution and we describe data analysis techniques that can improve these last two parameters. By applying spectral methods we are able to quantify the smoothing effects imposed by diffusion of the sample in the sample transfer lines and the optical cavity of the instrument. We demonstrate that with an acquisition rate of 0.2 Hz we are able to obtain a precision of 0.5‰ and 0
NASA Astrophysics Data System (ADS)
Simon, J. I.; Renne, P. R.; Vazquez, J.
2006-12-01
Study of the extended volcanic history and petrology at Coso Volcanic Field, CA has led to fundamental ideas related to silicic magma evolution and eruption prediction. Unfortunately, tests of these and related models for the time scales of subvolcanic processes at Coso are limited because relatively few modern geochronological constraints have been published. For example, tighter age constraints are needed to test the veracity of the volume-age "time-prediction" model of Bacon (1982) wherein the next eruption can be predicted reasonably well from a long-term eruption rate that simply considers the total volume of Coso rhyolites over an appropriate time span. At Coso, reported eruption events are mean ages comprising K-Ar ± hydration rind glass ages grouped by rock chemical similarities. Here we present new Ar/Ar ages for seven Pleistocene domes from groups 4, 6, and 7. Sanidine and anorthoclase were separated from nearly aphyric obsidian and pumiceous glasses. Total fusion and step-heating feldspar and glass analyses were performed. Ar/Ar spectra derived from laser step-heating of samples from previously dated domes show that excess 40Ar contamination likely biased some K-Ar results. Modern Ar/Ar analyses of the studied rhyolites with disturbed model (i.e., assuming atmospheric initial Ar) ages, but well-defined Ar isochrons still provide accurate eruption ages. In detail, a 229 ±6 ka (2 se) age is determined for the most northern dome, which is ~60 ka older than one reported K-Ar date and the nominal age for Group 4 rhyolites and ~150-370 ka younger than four other reported K-Ar dates. Based on pre-eruption zircon ages from other magma centers, the inaccuracies and magnitude of these age shifts could produce apparent magma residence times from ≥500 ka to meaningless futuristic storage times. New ages for the southern domes are older than the reported mean Group 6 age of ~90 ka. It is probable that the anomalously young K-Ar dates reflect incomplete extraction
NASA Astrophysics Data System (ADS)
Jauzac, M.; Richard, J.; Jullo, E.; Clément, B.; Limousin, M.; Kneib, J.-P.; Ebeling, H.; Natarajan, P.; Rodney, S.; Atek, H.; Massey, R.; Eckert, D.; Egami, E.; Rexroth, M.
2015-09-01
We present a high-precision mass model of galaxy cluster Abell 2744, based on a strong gravitational-lensing analysis of the Hubble Space Telescope Frontier Fields (HFF) imaging data, which now include both Advanced Camera for Surveys and Wide Field Camera 3 observations to the final depth. Taking advantage of the unprecedented depth of the visible and near-infrared data, we identify 34 new multiply imaged galaxies, bringing the total to 61, comprising 181 individual lensed images. In the process, we correct previous erroneous identifications and positions of multiple systems in the northern part of the cluster core. With the LENSTOOL software and the new sets of multiple images, we model the cluster using two cluster-scale dark matter haloes plus galaxy-scale haloes for the cluster members. Our best-fitting model predicts image positions with an rms error of 0.79 arcsec, which constitutes an improvement by almost a factor of 2 over previous parametric models of this cluster. We measure the total projected mass inside a 200 kpc aperture as (2.162 ± 0.005) × 1014 M⊙, thus reaching 1 per cent level precision for the second time, following the recent HFF measurement of MACSJ0416.1-2403. Importantly, the higher quality of the mass model translates into an overall improvement by a factor of 4 of the derived magnification factor. Together with our previous HFF gravitational lensing analysis, this work demonstrates that the HFF data enables high-precision mass measurements for massive galaxy clusters and the derivation of robust magnification maps to probe the early Universe.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGATION
Mark Zumberge
2003-06-13
At the Sleipner gas field, excess CO{sub 2} is sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. A high precision micro-gravity survey was carried out on the seafloor to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. Simple modeling of the first year data give inconclusive results, thus a more detailed approach is needed. Work towards this is underway.
Global Lunar Gravity Field Recovery from SELENE
NASA Technical Reports Server (NTRS)
Matsumoto, Koji; Heki, Kosuke; Hanada, Hideo
2002-01-01
Results of numerical simulation are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (Selenological and Engineering Explorer) which will be launched in 2005. New characteristics of the SELENE lunar gravimetry include four-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that planned satellites configuration will improve lunar gravity field in wide range of wavelength as well as far-side selenoid.
The earth's gravity field and ocean dynamics
NASA Technical Reports Server (NTRS)
Mather, R. S.
1978-01-01
An analysis of the signal-to-noise ratio of the best gravity field available shows that a basis exists for the recovery of the dominant parameters of the quasi-stationary sea surface topography. Results obtained from the analysis of GEOS-3 show that it is feasible to recover the quasi-stationary dynamic sea surface topography as a function of wavelength. The gravity field models required for synoptic ocean circulation modeling are less exacting in that constituents affecting radial components of orbital position need not be known through shorter wavelengths.
NASA Astrophysics Data System (ADS)
Gupta, P.; Crosson, E.; Richman, B. A.; Apodaca, R. L.; Green, I.
2009-12-01
The use of stable isotopic analysis techniques has proved quite valuable in establishing links between ecology and hydrology. We present an alternative and novel approach to isotope ratio mass spectrometry (IRMS) for making high-precision D/H and 18O/16O isotope ratio measurements of water vapor at a field site using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) based technology. This WS-CRDS analyzer allows continuous real-time measurements of water vapor with automated periodic calibration using liquid standards, needing no human intervention for weeks during deployment. The new automated calibration system, designed specifically for field deployment, uses syringe pumps and is robust, consistent and reliable. The advanced temperature and pressure control within the analyzer are some of the key design features that allow high precision (0.2‰ for δ18O and 1.0‰ for δD) performance at extremely low drift (< ±0.3‰ for δ18O and < ±0.9‰ for δD) despite rapidly changing ambient conditions during field deployments. To demonstrate the capabilities of this water vapor analyzer, a field trial was conducted where the common isotopologues of water vapor were measured at a local ecological site over a period of a few days. The resulting high resolution data gives us the ability to understand the impact of meteorology and plant physiology on the isotopic composition of water vapor in ambient air. Such measurements of water vapor, when combined with measurements of the isotopic composition of liquid water in plants, soil water and local water bodies, will close the eco-hydrological loop of any region. The ability of the WS-CRDS analyzer to make continuous, real-time measurements with a resolution on the order of a few seconds will aid in understanding the complex interdependencies between ecological and hydrological processes and will provide critical information in refining existing models of water transport in ecosystems. These studies are critical to
On the impact of airborne gravity data to fused gravity field models
NASA Astrophysics Data System (ADS)
Bolkas, Dimitrios; Fotopoulos, Georgia; Braun, Alexander
2016-06-01
In gravity field modeling, fused models that utilize satellite, airborne and terrestrial gravity observations are often employed to deal with erroneous terrestrially derived gravity datasets. These terrestrial datasets may suffer from long-wavelength systematic errors and inhomogeneous data coverage, which are not prevalent in airborne and satellite datasets. Airborne gravity acquisition plays an essential role in gravity field modeling, providing valuable information of the Earth's gravity field at medium and short wavelengths. Thus, assessing the impact of airborne gravity data to fused gravity field models is important for identifying problematic regions. Six study regions that represent different gravity field variability and terrestrial data point-density characteristics are investigated to quantify the impact of airborne gravity data to fused gravity field models. The numerical assessments of these representative regions resulted in predictions of airborne gravity impact for individual states and provinces in the USA and Canada, respectively. Prediction results indicate that, depending on the terrestrial data point-density and gravity field variability, the expected impact of airborne gravity can reach up to 3mGal (in terms of standard deviation) in Canada and Alaska (over areas of 1° × 1°). However, in the mainland US region, small changes are expected (0.2-0.4 mGal over areas of 1° × 1°) due to the availability of high spatial resolution terrestrial data. These results can serve as a guideline for setting airborne gravity data acquisition priorities and for improving future planning of airborne gravity surveys.
The weak gravity conjecture and scalar fields
NASA Astrophysics Data System (ADS)
Palti, Eran
2017-08-01
We propose a generalisation of the Weak Gravity Conjecture in the presence of scalar fields. The proposal is guided by properties of extremal black holes in N=2 supergravity, but can be understood more generally in terms of forbidding towers of stable gravitationally bound states. It amounts to the statement that there must exist a particle on which the gauge force acts more strongly than gravity and the scalar forces combined. We also propose that the scalar force itself should act on this particle stronger than gravity. This implies that generically the mass of this particle decreases exponentially as a function of the scalar field expectation value for super-Planckian variations, which is behaviour predicted by the Refined Swampland Conjecture. In the context of N=2 supergravity the Weak Gravity Conjecture bound can be tied to bounds on scalar field distances in field space. Guided by this, we present a general proof that for any linear combination of moduli in any Calabi-Yau compactification of string theory the proper field distance grows at best logarithmically with the moduli values for super-Planckian distances.
Estimation of gravity field by mobile gravimetry
NASA Astrophysics Data System (ADS)
Li, Q.; Verdun, J.; Cali, J.; Diament, M.; Maia, M. A.; Panet, I.
2011-12-01
In geophysics and geodesy, it is important to know the gravity field for determining of gravity anomaly maps and high-resolution geoid models. These data and model help to understand the structure and dynamics of our planet. Actual measurement techniques of the gravity field, from space to surface observations, cover a wide range of spatial resolutions of the Earth gravity field. Nevertheless, spatial and spectral extends of gravity measurements are not homogeneous on Earth's surface and for some isolated areas, measurements are missing. Furthermore, the intermediate spatial resolutions (10-100 km) are still badly covered by the terrestrial and space gravimetry. To face with the problem, an autonomous mobile gravimetry system (Limog) to be embarked on terrestrial vehicles, boats or planes has been developed, to compensate for the lack of current gravimetry techniques. The system is composed of three high resolution accelerometers mounted on a triad in order to have their sensitive axes non coplanar, to measure the components of the specific force. The determination of the movement of the vehicle and its attitude is obtained respectively with a dual frequencies GPS receiver and a 4 antenna GPS receiver. Also, this system is far less expensive than classical gravimetric apparatus and has no equivalent. An original treatment method based on a Kalman filter combining accelerometers and GPS data has been developed and tested using semi-synthetic data based on real data acquired from an experimental survey in the Mediterranean Sea. Here, we show an application of the method to gravity field determination in the East Pacific RiDe (EPR) between 15°22'N and 16°15'N from the Cruise PARISUB ("PAnache - RIde par SUBmersible", or Plume - Ridge by Submersible). An implicit least-square method of data processing has also been developed, and compared with the Kalman filter. The results of our analysis will be shown in the presentation.
GRAIL Gravity Field of the Moon
2012-12-05
This map shows the gravity field of the moon as measured by NASA GRAIL mission. The viewing perspective, known as a Mercator projection, shows the far side of the moon in the center and the nearside as viewed from Earth at either side.
Moon Gravity Field Using Prospector Data
2012-12-05
This map shows the gravity field of the moon from the Lunar Prospector mission. The viewing perspective, known as a Mercator projection, shows the far side of the moon in the center and the nearside as viewed from Earth at either side.
Gravity anomaly map of Mars and Moon and analysis of Venus gravity field: New analysis procedures
NASA Technical Reports Server (NTRS)
1984-01-01
The technique of harmonic splines allows direct estimation of a complete planetary gravity field (geoid, gravity, and gravity gradients) everywhere over the planet's surface. Harmonic spline results of Venus are presented as a series of maps at spacecraft and constant altitudes. Global (except for polar regions) and local relations of gravity to topography are described.
Weak gravity conjecture and effective field theory
NASA Astrophysics Data System (ADS)
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
McIntosh, W.C.; Sutter, J.F.; Chapin, C.E.; Kedzie, L.L.
1990-01-01
40Ar/39Ar age spectra have been obtained from 85 sanidine separates from 36 ignimbrites and one rhyolitic lava in the latest Eocene-Oligocene Mogollon-Datil volcanic field of southwestern New Mexico. Of the 97 measured age spectra, 94 yield weighted-mean plateau ages each giving single-spectrum 1?? precision of??0.25%-0.4% (??0.07-0.14 Ma). Replicate plateau age determinations for eight different samples show within-sample 1?? precisions averaging ??0.25%. Plateau ages from multiple (n=3-8) samples of individual ignimbrites show 1?? within-unit precision of ??0.1%-0.4% (??0.04-0.13 Ma). This within-unit precision represents a several-fold improvement over published K-Ar data for the same ignimbrites, and is similar to the range of precisions reported from single-crystal laser fusion studies. A further indication of the high precision of unit-mean 40Ar/30Ar ages is their close agreement with independently established stratigraphic order. Two samples failed to meet plateau criteria, apparently due to geologic contamination by older feldspars. Effects of minor contamination are shown by six other samples, which yielded slightly anomalous plateau ages. 40Ar/39Ar plateau ages permit resolution of units differing in age by 0.5% (0.15 Ma) or less. This high resolution, combined with paleomagnetic studies, has helped to correlate ignimbrites among isolated ranges and has allowed development of an integrated timestratigraphic framework for the volcanic field. Mogollon-Datil ignimbrites range in age from 36.2 to 24.3 Ma. Ignimbrite activity was strongly episodic, being confined to four brief (<2.6 m.y.) eruptive episodes separated by 1-3 m.y. gaps. Ignimbrite activity generally tended to migrate from the southeast toward the north and west. ?? 1990 Springer-Verlag.
Noncommutative Scalar Field Minimally Coupled to Gravity
NASA Astrophysics Data System (ADS)
Bertolami, Orfeu
A model for noncommutative scalar fields coupled to gravity based on the generalization of the Moyal product is proposed. Solutions compatible with homogeneous and isotropic flat Robertson-Walker spaces to first non-trivial order in the perturbation of the star-product are presented. It is shown that in the context of a typical chaotic inflationary scenario, at least in the slow-roll regime, noncommutativity yields no observable effect.
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Smith, K. D.
2012-12-01
include the 1934 M 6.5 Excelsior Mountains event south of Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as well as available and developed short-period focal mechanisms are compiled to evaluate the stress field to assess mechanisms of slip accommodation. Based on the complex distribution of fault orientations, the stress field varies locally northward from the SWL throughout the MD; however, in many cases, fault plane alignments can be isolated from high-precision locations, providing better constraints on stress and slip orientations.
Electric field replaces gravity in laboratory
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
For several years experiments in physical laboratories and in the fitotron have shown that one can replace gravitational field with electrical fields for plants. First obvious experiments in strong electrical fields in the MV/m regi on show that any materials and living plants respond immediately to Coulomb forces. Such fields are found in nature during thunderstorms. One has to be very careful in handling such strong fields for safety reasons. The fair weather global electrical field is about 20,000 times weaker. The coulomb forces are proportional to the square of the field strength and are thus 400 milion times weaker for a field of the order of 100 V/m.Yet it was found that some plants respond to such "weak" fields. We must remember that the electrical field is a factor of 10 38 times stronger than gravitational interaction. In plants we have dissociated in water mineral salts and the ions are subject to such ernormous forces. It was shown and published that the positive charges in the air in fields of the order of 3kV/m enhance lettuce growth by a factor of four relative to fields about 30 times weaker (100V/m). Reversal of the field polarity reverses the direction of plant growth and retards the plant's growth. Such fields overpower the gravitropism in the laboratory. More so horizontal electrical field is othogonal to gravity, now the fields do not see each other. Lettuce now growth horizontally ignoring the gravitational field. We can thus select the plants whose electrotropism even in the laboratory overwhelms gravity. This is important for the long space flights that we must grow vegetarian food for the crew. The successful harvesting of wheat in orbit does not contradict our experimental findings because wheat is not electrotropic like all plants from the grass family. The results of fitotron experiments with kV/m electrical fields are richly illustrated with colour digital photographs. We also subjected the candle flame to very strong horizontal
Studies of GRACE Gravity Field Inversion Techniques
NASA Astrophysics Data System (ADS)
Wang, L.; Shum, C.; Duan, J.; Schmidt, M.; Yuan, D.; Watkins, M. M.
2008-12-01
The geophysical inverse problem using satellite observations, such as GRACE, to estimate gravity change and mass variations at the Earth's surface is a well-known ill-posed problem. Different methods using different basis function (representing the gravity field) for different purposes (global or regional inversion) have been employed to obtain a stable solution, such as Bayesian estimation with prior information, the repro-BIQUUE of variance components and iterative least-squares estimation with simultaneous updating of a prior covariance, and to achieve enhanced spatial resolutions. The gravity field representation methods include spherical harmonics, regional gridded data (including mascons), and various wavelet representations (Poisson wavelets, Blackman band-limited regional wavelets with global representation). Finally, the use of data types (KBR range, range-rate, range-rate-rate) and data-generation methods (e.g., nonlinear orbit determination and geophysical inverse approach, energy conservation principle, etc) could also reflect relative inversion accuracy and the content of signal spectra in the resulting solution. In this contribution, we present results of a simulation experiment, which used various solution techniques and data types to attempt to quantify the relative advantage and disadvantage of each of the techniques.
High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data
NASA Technical Reports Server (NTRS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.;
2012-01-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.
Subduction dynamics: Constraints from gravity field observations
NASA Technical Reports Server (NTRS)
Mcadoo, D. C.
1985-01-01
Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.
GRAIL gravity field determination using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos
2015-11-01
The NASA mission GRAIL (Gravity Recovery and Interior Laboratory) inherited its concept from the GRACE (Gravity Recovery and Climate Experiment) mission to determine the gravity field of the Moon. We present lunar gravity fields based on the data of GRAIL's primary mission phase. Gravity field recovery is realized in the framework of the Celestial Mechanics Approach, using a development version of the Bernese GNSS Software along with Ka-band range-rate data series as observations and the GNI1B positions provided by NASA JPL as pseudo-observations. By comparing our results with the official level-2 GRAIL gravity field models we show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced pseudo-stochastic pulses (i.e., instantaneous velocity changes). We present and evaluate two lunar gravity field solutions up to degree and order 200 - AIUB-GRL200A and AIUB-GRL200B. While the first solution uses no gravity field information beyond degree 200, the second is obtained by using the official GRAIL field GRGM900C up to degree and order 660 as a priori information. This reduces the omission errors and demonstrates the potential quality of our solution if we resolved the gravity field to higher degree.
A framework for modelling kinematic measurements in gravity field applications
NASA Technical Reports Server (NTRS)
Schwarz, K. P.; Wei, M.
1989-01-01
To assess the resolution of the local gravity field from kinematic measurements, a state model for motion in the gravity field of the earth is formulated. The resulting set of equations can accommodate gravity gradients, specific force, acceleration, velocity and position as input data and can take into account approximation errors as well as sensor errors.
Quantum gravity model with fundamental spinor fields
NASA Astrophysics Data System (ADS)
Obukhov, Yu. N.; Hehl, F. W.
2014-01-01
We discuss the possibility that gravitational potentials (metric, coframe and connection) may emerge as composite fields from more fundamental spinor constituents. We use the formalism of Poincaré gauge gravity as an appropriate theoretical scheme for the rigorous development of such an approach. We postulate the constitutive relations of an elastic Cosserat type continuum that models spacetime. These generalized Hooke and MacCullagh type laws consistently take into account the translational and Lorentz rotational deformations, respectively. The resulting theory extends the recently proposed Diakonov model. An intriguing feature of our theory is that in the lowest approximation it reproduces Heisenberg's nonlinear spinor model.
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-09
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.
Regional gravity field modelling from GOCE observables
NASA Astrophysics Data System (ADS)
Pitoňák, Martin; Šprlák, Michal; Novák, Pavel; Tenzer, Robert
2017-01-01
In this article we discuss a regional recovery of gravity disturbances at the mean geocentric sphere approximating the Earth over the area of Central Europe from satellite gravitational gradients. For this purpose, we derive integral formulas which allow converting the gravity disturbances onto the disturbing gravitational gradients in the local north-oriented frame (LNOF). The derived formulas are free of singularities in case of r ≠ R . We then investigate three numerical approaches for solving their inverses. In the initial approach, the integral formulas are firstly modified for solving individually the near- and distant-zone contributions. While the effect of the near-zone gravitational gradients is solved as an inverse problem, the effect of the distant-zone gravitational gradients is computed by numerical integration from the global gravitational model (GGM) TIM-r4. In the second approach, we further elaborate the first scenario by reducing measured gravitational gradients for gravitational effects of topographic masses. In the third approach, we apply additional modification by reducing gravitational gradients for the reference GGM. In all approaches we determine the gravity disturbances from each of the four accurately measured gravitational gradients separately as well as from their combination. Our regional gravitational field solutions are based on the GOCE EGG_TRF_2 gravitational gradients collected within the period from November 1 2009 until January 11 2010. Obtained results are compared with EGM2008, DIR-r1, TIM-r1 and SPW-r1. The best fit, in terms of RMS (2.9 mGal), is achieved for EGM2008 while using the third approach which combine all four well-measured gravitational gradients. This is explained by the fact that a-priori information about the Earth's gravitational field up to the degree and order 180 was used.
The Gravity Fields of the Saturnian Satellites
NASA Astrophysics Data System (ADS)
Iess, L.
2011-12-01
In its tour of the Saturnian system, begun on July 1st, 2004, the Cassini spacecraft had many close flybys of Saturn's main satellites. However, due to impossibility to carry out simultaneously remote sensing observations and microwave tracking from ground, only a small fraction of those flybys could be exploited for gravity measurements. So far, the quadrupole field has been mapped only for Titan, Rhea and Enceladus, while for Hyperion and Iapetus the mass was the only accessible parameter. For Titan and Enceladus, the only satellites targeted more than once for gravity observations, also a rough geoid to degree and order 3 has been determined. Satellite gravity investigations rely upon accurate measurements of the spacecraft range rate, enabled by coherent, two-way radio links at X and Ka band (8.4 and 32.5 GHz). The use of hydrogen masers frequency standards at the ground station and the consid-erable suppression of plasma noise at X and Ka band frequen-cies provide range rate accuracies of 10-30 micron/s at integra-tion times of 60 s. Thanks to the higher frequency of the radio link, these measurement accuracies are in the average a factor of 10 better than those attained by Galileo in its tour of the Jovian system. However, in order to attain a reliable determination of the low degree field, good measurements must be combined with appropriate flyby geometries and adequate sampling, a condition that necessarily requires multiple flybys. We review the main results obtained so far by Cassini for Titan, Rhea and Enceladus, and discuss the methods of analysis used by the Radio Science Team.
Propagation peculiarities of mean field massive gravity
Deser, S.; Waldron, A.; Zahariade, G.
2015-07-28
Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m¯GR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the m¯GR model correspond to the RS Minkowski metric and external EM field. The common implications in bothmore » systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both m¯GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. As a result, this applies both to m¯GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.« less
NASA Technical Reports Server (NTRS)
Noever, David A.; Koczor, Ronald J.; Roberson, Rick
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.
NASA Technical Reports Server (NTRS)
Noever, David A.; Koczor, Ronald J.; Roberson, Rick
1998-01-01
We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.
Global gravity field recovery from the ARISTOTELES satellite mission
NASA Astrophysics Data System (ADS)
Visser, P. N. A. M.; Wakker, K. F.; Ambrosius, B. A. C.
1994-02-01
One of the primary objectives of the future ARISTOTELES satellite mission is to map Earth's gravity field with high resolution and accuracy. In order to achieve this objective, the ARISTOTELES satellite will be equipped with a gravity gradiometer and a Global Positioning System (GPS) receiver. Global gravity field error analyses have been performed for several combinations of gradiometer and GPS observations. These analyses indicated that the bandwidth limitation of the gradiometer prevents a stable high-accuracy, high-resolution gravity solution if no additional information is available. However, with the addition of high-accuracy GPS observations, a stable gravity field solution can be obtained. A combination of the measurements acquired by the high-quality GPS receiver and the bandwidth-limited gradiometer on board ARISTOTELES will yield a global gravity field model with a resolution of less than 100 km and with an accuracy of better than 5 mGal for gravity anomalies and 10 cm for geoid undulations.
Gravity fields of the solar system
NASA Technical Reports Server (NTRS)
Zendell, A.; Brown, R. D.; Vincent, S.
1975-01-01
The most frequently used formulations of the gravitational field are discussed and a standard set of models for the gravity fields of the earth, moon, sun, and other massive bodies in the solar system are defined. The formulas are presented in standard forms, some with instructions for conversion. A point-source or inverse-square model, which represents the external potential of a spherically symmetrical mass distribution by a mathematical point mass without physical dimensions, is considered. An oblate spheroid model is presented, accompanied by an introduction to zonal harmonics. This spheroid model is generalized and forms the basis for a number of the spherical harmonic models which were developed for the earth and moon. The triaxial ellipsoid model is also presented. These models and their application to space missions are discussed.
Gravity duals for nonrelativistic conformal field theories.
Balasubramanian, Koushik; McGreevy, John
2008-08-08
We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
Gravity Field Mapping of Mars with MGS
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Lemoine, Frank G.
1998-01-01
Tracking of the MGS spacecraft in orbit at Mars by the Deep Space Network since last September has provided doppler and range measurements that are being used to improve the model of the Mars gravity field. During most of October 1997, April 1998, and June thru August 1998 high quality tracking data were obtained while the periapse was in the northern hemisphere at altitudes in the 170 to 190 km range. The eccentric orbit had a period of about 11.5 hrs and an inclination of about 96.2 degrees so that low altitude tracking was obtained over most of the northern hemisphere, including the north polar icecap. Data from the earlier Mariner 9 and Viking missions have been added to the MGS data and a series of experimental gravity models developed from the combined datasets. These models have generally been of degree and order 70 and are a significant improvement over earlier models that did not include the MGS data. Gravity anomalies over the north polar cap region of Mars are generally less than 50 to 100 mgals and show no obvious correlation with the topography. Successive MGS orbits derived using these new models are showing agreement at the 100 meter level, and this has been confirmed with the laser altimeter (MOLA) on MGS These comparisons are expected to improve significantly as more tracking data get included in the solution and the MGS orbit becomes more circular giving a more balanced geographical distribution of data at low altitude. This will happen early in 1999 as the orbit approaches the mapping configuration of a circular orbit at about 400 Km.
Applications of satellite technology to gravity field determination
NASA Technical Reports Server (NTRS)
Argentiero, P.; Lowrey, B. E.
1975-01-01
Various techniques for using satellite technology to determine the earth's gravity field are analyzed and compared. A high-low configuration satellite to satellite tracking mission is recommended for the determination of the long wavelength portion of the gravity field. Satellite altimetry and satellite gradiometry experiments are recommended for determination of the short wavelength portion of the gravity field. The recently developed least squares collocation method for estimating the gravity field from satellite derived data is analyzed and its equivalence to conventional methods is demonstrated.
Goce and Its Role in Combined Global High Resolution Gravity Field Determination
NASA Astrophysics Data System (ADS)
Fecher, T.; Pail, R.; Gruber, T.
2013-12-01
Combined high-resolution gravity field models serve as a mandatory basis to describe static and dynamic processes in system Earth. Ocean dynamics can be modeled referring to a high-accurate geoid as reference surface, solid earth processes are initiated by the gravity field. Also geodetic disciplines such as height system determination depend on high-precise gravity field information. To fulfill the various requirements concerning resolution and accuracy, any kind of gravity field information, that means satellite as well as terrestrial and altimetric gravity field observations have to be included in one combination process. A key role is here reserved for GOCE observations, which contribute with its optimal signal content in the long to medium wavelength part and enable a more accurate gravity field determination than ever before especially in areas, where no high-accurate terrestrial gravity field observations are available, such as South America, Asia or Africa. For our contribution we prepare a combined high-resolution gravity field model up to d/o 720 based on full normal equation including recent GOCE, GRACE and terrestrial / altimetric data. For all data sets, normal equations are set up separately, relative weighted to each other in the combination step and solved. This procedure is computationally challenging and can only be performed using super computers. We put special emphasis on the combination process, for which we modified especially our procedure to include GOCE data optimally in the combination. Furthermore we modified our terrestrial/altimetric data sets, what should result in an improved outcome. With our model, in which we included the newest GOCE TIM4 gradiometry results, we can show how GOCE contributes to a combined gravity field solution especially in areas of poor terrestrial data coverage. The model is validated by independent GPS leveling data in selected regions as well as computation of the mean dynamic topography over the oceans
Global gravity field models and their use for geophysical modelling
NASA Astrophysics Data System (ADS)
Pail, R.
2015-12-01
During the last decade, the successful operation of the dedicated satellite missions GOCE and GRACE have revolutionized our picture of the Earth's gravity field. They delivered static global gravity field maps with high and homogeneous accuracy for spatial length-scales down to 70-80 km. The current satellite-only models of the fifth generation including GOCE data have reached accuracies of about 2 cm in geoid height and less than 0.7 mGal in gravity anomalies at 100 km spatial half-wavelength. However, the spatial resolution of gravity models derived from satellite data is limited. Since precise knowledge of the Earth's gravity field structure with very high resolution is essential in solid Earth applications such as lithospheric modelling, geological interpretation and exploration geophysics, satellite-only models are complemented by combined gravity field models, which contain very high-resolution gravity field information obtained by terrestrial gravity measurements over continents, and satellite altimetry over the oceans. To further increase the spatial resolution beyond 10-20 km, measured terrestrial and satellite data can also be augmented by high-resolution gravity field signals synthesized from topographic models. In this contribution an overview of the construction of satellite-only and combined global gravity field models is given. The specific characteristics of the individual input data and the resulting models will be assessed, and their impact for geophysical modelling will be discussed. On the basis of selected case studies, commission and omission errors and thus the contribution and impact of satellite gravity data on gravity field applications will be quantified, and the benefit of current satellite gravity data shall be investigated and demonstrated. Future gravity field missions beyond GRACE Follow-On will provide global gravity field information with further increased accuracy, spatial and temporal resolution. In an international initiative
A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration
Mark Zumberge; Scott Nooner
2005-12-13
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 4.3 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. This report covers 3/19/05 to 9/18/05. During this time, gravity and pressure modeling were completed and graduate student Scott Nooner finished his Ph.D. dissertation, of which this work is a major part. Three new ROVDOG (Remotely Operated Vehicle deployable Deep Ocean Gravimeter) instruments were also completed with funding from Statoil. The primary changes are increased instrument precision and increased data sampling rate. A second gravity survey was carried out from August to September of 2005, allowing us to begin examining the time-lapse gravity changes caused by the injection of CO{sub 2} into the underground aquifer, known as the Utsira formation. Preliminary processing indicates a repeatability of 3.6 {micro}Gal, comparable to the baseline survey.
Global gravity field modeling based on GOCE and complementary gravity data
NASA Astrophysics Data System (ADS)
Fecher, Thomas; Pail, Roland; Gruber, Thomas
2015-03-01
A combined high-resolution global gravity field model up to degree/order (d/o) 720, including error estimates in terms of a full variance-covariance matrix, is determined from GOCE (Gravity field and steady-state Ocean Circulation Explorer) and complementary gravity field data. GOCE observations, highly accurate in the low to medium wavelength part (∼d/o 40-220), are supplemented by GRACE (Gravity Recovery and Climate Experiment) with high accuracy in the low wavelength part (∼d/o 2-150), and altimetric and terrestrial gravity field observations to enhance the spectral resolution of the combined gravity field model. The theory of combining different data sets by least-squares techniques, applying optimum weighting strategies, is illustrated. Full normal equation systems are used to enable stochastic modeling of all individual observations. High performance computing techniques are applied in order to handle normal equations of enormous size (about 2 TB). The quality of the resulting gravity field solution is analyzed by comparisons with independent gravity field models and GPS/leveling observations, and also in the frame of the computation of a mean dynamic topography. The validation shows that the new combined model TUM2013C achieves the quality level of established high-resolution models. Compared to EGM2008, the improvements due to the inclusion of GOCE are clearly visible.
Quantum reduced loop gravity: Extension to gauge vector field
NASA Astrophysics Data System (ADS)
Bilski, Jakub; Alesci, Emanuele; Cianfrani, Francesco; Donà, Pietro; Marcianò, Antonino
2017-05-01
Within the framework of quantum reduced loop gravity, we quantize the Hamiltonian for a gauge vector field. The regularization can be performed using tools analogous to the ones adopted in full loop quantum gravity, while the matrix elements of the resulting operator between basis states are analytic coefficients. This analysis is the first step toward deriving the full quantum gravity corrections to the vector field semiclassical dynamics.
Braneworld gravity: influence of the moduli fields
NASA Astrophysics Data System (ADS)
Barceló, Carlos; Visser, Matt
2000-10-01
We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g. the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ``conservation'' law and the ``induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1] + 1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame.
Altimeter measurements for the determination of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Schutz, B. E.; Shum, C. K.
1986-01-01
Progress in the following areas is described: refining altimeter and altimeter crossover measurement models for precise orbit determination and for the solution of the earth's gravity field; performing experiments using altimeter data for the improvement of precise satellite ephemerides; and analyzing an optimal relative data weighting algorithm to combine various data types in the solution of the gravity field.
NASA Astrophysics Data System (ADS)
Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin
2011-05-01
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is
Retrieving hydrological signals from current and future gravity field missions
NASA Astrophysics Data System (ADS)
Pail, Roland; Horvath, Alexander
2017-04-01
The Global Geodetic Observing System is formed by three pillars: Changes in Earth's shape, gravity field and rotation. Dedicated satellite missions are crucial in the determination and monitoring of the Earth's gravity field. Monitoring the gravity field and studying mass transport phenomena, responsible for the temporal variability of the gravity field, are of high interest. Especially the hydrology is of importance since the mechanisms of water redistribution and unexpected events like floods and droughts can have significant socio-economic impact. The presented study investigates in the possibilities and limits of current space geodetic missions like GRACE to observe such effects. The main target of the study is to determine the potential gain in accuracy as well as spatial and temporal resolution of target signals like hydrological events, whilst operating future mission scenarios. The results from a series of comprehensive simulation runs are presented to demonstrate the benefits to society operating dedicated future space geodetic gravity field missions.
High-Precision Computation and Mathematical Physics
Bailey, David H.; Borwein, Jonathan M.
2008-11-03
At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zumberge; Scott Nooner; Glenn Sasagawa
2004-05-19
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 9/19/03 to 3/18/04. During this time, significant advancement in the 3-D gravity forward modeling code was made. Testing of the numerical accuracy of the code was undertaken using both a sheet of mass and a frustum of a cone for test cases. These were chosen because of our ability to do an analytic calculation of gravity for comparison. Tests were also done to determine the feasibility of using point mass approximations rather than cuboids for the forward modeling code. After determining that the point mass approximation is sufficient (and over six times faster computationally), several CO{sub 2} models were constructed and the time-lapse gravity signal was calculated from each. From these models, we expect to see a gravity change ranging from 3-16 {micro}Gal/year, depending on reservoir conditions and CO{sub 2} geometry. While more detailed modeling needs to be completed, these initial results show that we may be able to learn a great deal about the state of the CO{sub 2} from the time-lapse gravity results. Also, in December of 2003, we presented at the annual AGU meeting in San Francisco.
The Impact of Geological Structures On The Gravity Field
NASA Astrophysics Data System (ADS)
Marti, U.
In general, a uniform standard density value is used for the calculation of topographic effects for gravity field modelling in Switzerland. Only a limited number of promi- nent mass anomalies is treated with an individual density. In some regions this causes problems in predicting the surface gravity or the deflections of the vertical. An actual example is the construction of a new 57 km railway tunnel, where accurate deflec- tions of the vertical are needed for the orientation of gyroscope measurements. It was rather doubtful if our standard national gravity field model would fulfil the accuracy demands. Therefore, a refinement of the gravity field model was performed by digi- tising all the relevant geological structures in the vicinity of the planned tunnel. This lead to a 3D density model of irregularly shaped polyhedrons. Their influence on the gravity field (potential, gravity, deflections of the vertical and their first derivatives) are calculated rigorously. First results of this study are now available and reveal that the influences of the geological structures on the deflections of the vertical and on gravity are rather small (1 - 2 arcsec, 3 - 5 mgal) in the investigated region and they are at the limit of significance for the technical applications of levelling or gyroscope mea- surements. The largest effects are caused by quaternary sediments with a large density contrast and by some gneiss structures, which show only a small density contrast but their total mass can cause considerable anomalies in the gravity field.
NASA Astrophysics Data System (ADS)
Talvik, Silja; Oja, Tõnis; Ellmann, Artu; Jürgenson, Harli
2014-05-01
Gravity field models in a regional scale are needed for a number of applications, for example national geoid computation, processing of precise levelling data and geological modelling. Thus the methods applied for modelling the gravity field from surveyed gravimetric information need to be considered carefully. The influence of using different gridding methods, the inclusion of unit or realistic weights and indirect gridding of free air anomalies (FAA) are investigated in the study. Known gridding methods such as kriging (KRIG), least squares collocation (LSCO), continuous curvature (CCUR) and optimal Delaunay triangulation (ODET) are used for production of gridded gravity field surfaces. As the quality of data collected varies considerably depending on the methods and instruments available or used in surveying it is important to somehow weigh the input data. This puts additional demands on data maintenance as accuracy information needs to be available for each data point participating in the modelling which is complicated by older gravity datasets where the uncertainties of not only gravity values but also supplementary information such as survey point position are not always known very accurately. A number of gravity field applications (e.g. geoid computation) demand foran FAA model, the acquisition of which is also investigated. Instead of direct gridding it could be more appropriate to proceed with indirect FAA modelling using a Bouguer anomaly grid to reduce the effect of topography on the resulting FAA model (e.g. near terraced landforms). The inclusion of different gridding methods, weights and indirect FAA modelling helps to improve gravity field modelling methods. It becomes possible to estimate the impact of varying methodical approaches on the gravity field modelling as statistical output is compared. Such knowledge helps assess the accuracy of gravity field models and their effect on the aforementioned applications.
Gravity Fields and Interiors of the Saturnian Satellites
NASA Technical Reports Server (NTRS)
Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.
2006-01-01
This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".
Gravity Fields and Interiors of the Saturnian Satellites
NASA Technical Reports Server (NTRS)
Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.
2006-01-01
This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".
Gravitational collapse of massless scalar field in f (R ) gravity
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Yong; Tang, Zi-Yu; Wang, Bin
2016-11-01
We study the spherically symmetric gravitational collapse of massless scalar matter field in asymptotic flat spacetime in the Starobinsky R2 gravity, one specific model in the f (R ) gravity. In the Einstein frame of f (R ) gravity, an additional scalar field arises due to the conformal transformation. We find that in addition to the usual competition between gravitational energy and kinetic energy in the process of gravitational collapse, the new scalar field brought by the conformal transformation adds one more competing force in the dynamical system. The dynamical competition can be controlled by tuning the amplitudes of the initial perturbations of the new scalar field and the matter field. To understand the physical reasons behind these phenomena, we analyze the gravitational potential behavior and calculate the Ricci scalar at center with the change of initial amplitudes of perturbations. We find rich physics on the formation of black holes through gravitational collapse in f (R ) gravity.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-07-01
It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the short-arc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.
Developments in Lunar Gravity Field Recovery Within the Project GRAZIL
NASA Astrophysics Data System (ADS)
Wirnsberger, Harald; Klinger, Beate; Krauss, Sandro; Mayer-Gürr, Torsten
2016-10-01
The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network.As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs. In this contribution we demonstrate the progress of Graz lunar gravity field models (GrazLGM) from the beginning, till the end of the projet GRAZIL. For the latest GrazLGM version special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Furthermore, we present the first GrazLGM based on KBR observations during the primary and the extended mission phase. Our results are validated against state of the art lunar gravity field models computed at NASA-GSFC and NASA-JPL.
The gravity field of topography buried by sediments
NASA Technical Reports Server (NTRS)
Sandwell, D. T.; Liu, C. S.
1985-01-01
The gravity field over topography in the northern Indian Ocean that was completely buried by sediments of the Bengal Fan was investigated to understand the effect of sedimentation on the continental gravity field. An isopach map made from the seismic reflection and refraction in the Bay of Bengal shows two prominent N-S trending features in the basement topography. The northernmost portion of the Ninetyeast Ridge is totally buried by sediments north of 10 deg N. The other buried ridge trends roughly N-S for 1400 km at 85 deg E to the latitude of Sri Lanka and then curves toward the west. It has basement relief up to 6 km. Two free air gravity anomaly profiles across the region show a strong gravity low over the 85 deg E ridge, while the Ninetyeast Ridge shows a gravity high.
Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields
Grannell, R.B.
1982-09-01
To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.
BF gravity with Immirzi parameter and matter fields
NASA Astrophysics Data System (ADS)
Montesinos, Merced; Velázquez, Mercedes
2012-03-01
We perform the coupling of the scalar, Maxwell, and Yang-Mills fields as well as the cosmological constant to BF gravity with Immirzi parameter. The proposed action principles employ auxiliary fields in order to keep a polynomial dependence on the B fields. By handling the equations of motion for the B field and for the auxiliary fields, these latter can be expressed in terms of the physical fields and by substituting these expressions into the original action principles we recover the first-order (Holst) and second-order actions for gravity coupled to the physical matter fields. We consider these results a relevant step towards the understanding of the coupling of matter fields to gravity in the theoretical framework of BF theory.
Multi-scale gravity field modeling in space and time
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2016-04-01
The Earth constantly deforms as it undergoes dynamic phenomena, such as earthquakes, post-glacial rebound and water displacement in its fluid envelopes. These processes have different spatial and temporal scales and are accompanied by mass displacements, which create temporal variations of the gravity field. Since 2002, the GRACE satellite missions provide an unprecedented view of the gravity field spatial and temporal variations. Gravity models built from these satellite data are essential to study the Earth's dynamic processes (Tapley et al., 2004). Up to present, time variations of the gravity field are often modelled using spatial spherical harmonics functions averaged over a fixed period, as 10 days or 1 month. This approach is well suited for modeling global phenomena. To better estimate gravity related to local and/or transient processes, such as earthquakes or floods, and adapt the temporal resolution of the model to its spatial resolution, we propose to model the gravity field using localized functions in space and time. For that, we build a model of the gravity field in space and time with a four-dimensional wavelet basis, well localized in space and time. First we design the 4D basis, then, we study the inverse problem to model the gravity field from the potential differences between the twin GRACE satellites, and its regularization using prior knowledge on the water cycle. Our demonstration of surface water mass signals decomposition in time and space is based on the use of synthetic along-track gravitational potential data. We test the developed approach on one year of 4D gravity modeling and compare the reconstructed water heights to those of the input hydrological model. Perspectives of this work is to apply the approach on real GRACE data, addressing the challenge of a realistic noise, to better describe and understand physical processus with high temporal resolution/low spatial resolution or the contrary.
High precision phase-shifting electron holography
Yamamoto; Kawajiri; Tanji; Hibino; Hirayama
2000-01-01
Today's information-oriented society requires high density and high quality magnetic recording media. The quantitative observation of fine magnetic structures by electron holography is greatly anticipated in the development of such new recording materials. However, the magnetic fields around particles <50 nm have not been observed, because the fields are too weak to observe in the usual way. Here we present a highly precise phase measurement technique: improved phase-shifting electron holography. Using this method, the electric field around a charged polystyrene latex particle (100 nm in diameter) and the magnetic field around iron particles (30 nm in diameter) are observed precisely. A precision of the reconstructed phase image of 2pi/300 rad is achieved in the image of the latex particle.
Torus Approach in Gravity Field Determination from Simulated GOCE Gravity Gradients
NASA Astrophysics Data System (ADS)
Liu, Huanling; Wen, Hanjiang; Xu, Xinyu; Zhu, Guangbin
2016-08-01
In Torus approach, observations are projected to the nominal orbits with constant radius and inclination, lumped coefficients provides a linear relationship between observations and spherical harmonic coefficients. Based on the relationship, two-dimensional FFT and block-diagonal least-squares adjustment are used to recover Earth's gravity field model. The Earth's gravity field model complete to degree and order 200 is recovered using simulated satellite gravity gradients on a torus grid, and the degree median error is smaller than 10-18, which shows the effectiveness of Torus approach. EGM2008 is employed as a reference model and the gravity field model is resolved using the simulated observations without noise given on GOCE orbits of 61 days. The error from reduction and interpolation can be mitigated by iterations. Due to polar gap, the precision of low-order coefficients is lower. Without considering these coefficients the maximum geoid degree error and cumulative error are 0.022mm and 0.099mm, respectively. The Earth's gravity field model is also recovered from simulated observations with white noise 5mE/Hz1/2, which is compared to that from direct method. In conclusion, it is demonstrated that Torus approach is a valid method for processing massive amount of GOCE gravity gradients.
NASA Astrophysics Data System (ADS)
Reich, M.; Guntner, A.; Mikolaj, M.; Blume, T.; Schröder, S.
2016-12-01
Continuous gravity monitoring allows for direct observation of mass changes associated with hydrological flow processes in the subsurface at the field scale. The integral nature of the observed quantity, however, may hinder the accurate attribution of the location of the observed hydrological masses. This study explores the capabilities of a superconducting gravimeter (iGrav) for observing field-scale infiltration dynamics and for estimating governing hydraulic parameters under controlled conditions. For this purpose, a sprinkling experiment was set up at a grassland site, using 8 sprinklers arranged symmetrically in the close vicinity of the iGrav. The instrument itself was placed on a pillar at 80cm above the terrain surface in a small field enclosure with a footprint of less than one square meter to increase its sensitivity for water storage in its direct surroundings. Three sprinkling experiments, covering a range of antecedent hydrological conditions, were carried out for 6 hours each with intensities of about 10 to 15 mm/hour, leading to gravity variations in the order of 20 nm/s². Complementary observations resulted from vertical profiles of soil moisture sensors, additional near-surface soil moisture sensors, tipping buckets and sprinkling intensity measurements. To further constrain the vertical moisture distribution in time, time-lapse electric resistivity tomography (ERT) was employed with two profiles crossing the sprinkling area and one outside as a reference profile. With a combined hydrological and gravitational model, different infiltration scenarios are simulated and compared to the observed gravity change. The best fit scenario is then validated with the ERT derived images of the advancing wetting front. The results show that continuous high-precision gravity monitoring in the field in combination with a simple sprinkling experiment and ERT can contribute important knowledge to water infiltration characteristics and improve soil parameter
High precision redundant robotic manipulator
Young, Kar-Keung David
1998-01-01
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degreed of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns.
High precision redundant robotic manipulator
Young, K.K.D.
1998-09-22
A high precision redundant robotic manipulator for overcoming contents imposed by obstacles or imposed by a highly congested work space is disclosed. One embodiment of the manipulator has four degrees of freedom and another embodiment has seven degrees of freedom. Each of the embodiments utilize a first selective compliant assembly robot arm (SCARA) configuration to provide high stiffness in the vertical plane, a second SCARA configuration to provide high stiffness in the horizontal plane. The seven degree of freedom embodiment also utilizes kinematic redundancy to provide the capability of avoiding obstacles that lie between the base of the manipulator and the end effector or link of the manipulator. These additional three degrees of freedom are added at the wrist link of the manipulator to provide pitch, yaw and roll. The seven degrees of freedom embodiment uses one revolute point per degree of freedom. For each of the revolute joints, a harmonic gear coupled to an electric motor is introduced, and together with properly designed based servo controllers provide an end point repeatability of less than 10 microns. 3 figs.
Evaluation of recent Earth's global gravity field models with terrestrial gravity data
NASA Astrophysics Data System (ADS)
Karpik, Alexander P.; Kanushin, Vadim F.; Ganagina, Irina G.; Goldobin, Denis N.; Kosarev, Nikolay S.; Kosareva, Alexandra M.
2016-03-01
In the context of the rapid development of environmental research technologies and techniques to solve scientific and practical problems in different fields of knowledge including geosciences, the study of Earth's gravity field models is still important today. The results of gravity anomaly modelling calculated by the current geopotential models data were compared with the independent terrestrial gravity data for the two territories located in West Siberia and Kazakhstan. Statistical characteristics of comparison results for the models under study were obtained. The results of investigations show that about 70% of the differences between the gravity anomaly values calculated by recent global geopotential models and those observed at the points in flat areas are within ±10 mGal, in mountainous areas are within ±20 mGal.
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Zakrajsek, R. J.; Kunath, R. R.; Raquet, C. A.; Alexovich, R. E.
1984-01-01
A very precise 6.7- by 6.7-m planar near-field scanner has recently become operational at the NASA Lewis Research Center. The scanner acquires amplitude and phase data at discrete points over a vertical rectangular grid. During the design phase for this scanner, special emphasis was given to the dimensional stability of the structures and the ease of adjustment of the rails that determine the accuracy of the scan plane. A laser measurement system is used for rail alignment and probe positioning. This has resulted in very repeatable horizontal and vertical motion of the probe cart and hence precise positioning in the plane described by the probe tip. The resulting accuracy will support near-field measurements at 60 GHz without corrections. Subsystem design including laser, electronic and mechanical and their performance is described. Summary data are presented on the scan plane flatness and environmental temperature stability. Representative near-field data and calculated far-field test results are presented. Prospective scanner improvements to increase test capability are also discussed.
Galanti, Eli; Kaspi, Yohai
2016-04-01
During 2016–17, the Juno and Cassini spacecraft will both perform close eccentric orbits of Jupiter and Saturn, respectively, obtaining high-precision gravity measurements for these planets. These data will be used to estimate the depth of the observed surface flows on these planets. All models to date, relating the winds to the gravity field, have been in the forward direction, thus only allowing the calculation of the gravity field from given wind models. However, there is a need to do the inverse problem since the new observations will be of the gravity field. Here, an inverse dynamical model is developed to relate the expected measurable gravity field, to perturbations of the density and wind fields, and therefore to the observed cloud-level winds. In order to invert the gravity field into the 3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration. This tool is used for the examination of various scenarios, simulating cases in which the depth of the wind depends on latitude. We show that it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn, also taking into account measurement errors. Calculating the solution uncertainties, we show that the wind depth can be determined more precisely in the low-to-mid-latitudes. In addition, the gravitational moments are found to be particularly sensitive to flows at the equatorial intermediate depths. Therefore, we expect that if deep winds exist on these planets they will have a measurable signature by Juno and Cassini.
Quantum Gravity Effects in Scalar, Vector and Tensor Field Propagation
NASA Astrophysics Data System (ADS)
Dutta, Anindita
Quantum theory of gravity deals with the physics of the gravitational field at Planck length scale (10-35 m). Even though it is experimentally hard to reach the Planck length scale, on can look for evidence of quantum gravity that is detectable in astrophysics. In this thesis, we try to find effects of loop quantum gravity corrections on observable phenomena. We show that the quantum fluctuation strain for LIGO data would be 10 -125 on the Earth. Th correction is, however, substantial near the black hole horizon. We discuss the effect of this for scalar field propagation followed by vector and tensor fields. For the scalar field, the correction introduces a new asymmetry; for the vector field, we found a new perturbation solution and for the tensor field, we found the corrected Einstein equations which are yet to solve. These will affect phenomena like Hawking radiation, black hole entropy and gravitational waves.
Particlelike distributions of the Higgs field nonminimally coupled to gravity.
Füzfa, André; Rinaldi, Massimiliano; Schlögel, Sandrine
2013-09-20
When the Higgs field is nonminimally coupled to gravity, there exists a family of spherically symmetric particlelike solutions to the field equations. These monopoles are the only globally regular and asymptotically flat distributions with finite energy of the Higgs field around compact objects. Moreover, spontaneous scalarization is strongly amplified for specific values of their mass and compactness.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zuberge; Scott Nooner; Glenn Sasagawa
2003-11-17
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A three-week trip to Statoil Research Centre in Trondheim, Norway, was made in the summer of 2003. This visit consisted of gathering data and collaborating with scientists working on the Sleipner project. The trip ended with a presentation of the seafloor gravity results to date at a SACS2 (Saline Aquifer CO{sub 2} Storage 2) meeting. This meeting provided the perfect opportunity to meet and gather information from the world's experts on the Sleipner project.
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGRATION
Mark Zumberge; Scott Nooner; Ola Eiken
2004-11-29
Since 1996, excess CO{sub 2} from the Sleipner natural gas field has been sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. In 2002, we carried out a high precision micro-gravity survey on the seafloor in order to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. A repeat survey has been scheduled for the summer of 2005. This report covers 3/18/04 to 9/19/04. During this time, we participated in several CO{sub 2} sequestration-related meetings and conferences. On March 29, 2004, we participated in the 2004 Carbon Sequestration Project Review Meeting for the Department of Energy in Pittsburgh, PA. During the week of May 2, 2004, we attended and presented at the Third Annual Conference on Carbon Capture and Sequestration in Alexandria, VA. Finally, during the week of August 8, 2004, we took part in the U.S.-Norway, CO{sub 2} Summer School in Santa Fe, NM. Additional modeling was also completed, examining the seismic velocity pushdown estimates from the gravity models and the expected deformation of the seafloor due to the injected CO{sub 2}.
Geometry, topology, field theory and two-dimensional quantum gravity
Wong, E.C.M.
1992-01-01
This dissertation presents geometrically a simplified theory of two-dimensional quantum gravity called topological gravity. The motivation for such a simplification is to shed light on the complicated problem of real quantum gravity. The author introduces new supermanifolds called semirigid super Riemann surfaces on which two-dimensional quantum field theories of topological (super) gravity are defined. It is shown that semirigid surfaces are integrable reductions from ordinary complex supermanifolds. Unlike other supergeometries, the semirigid moduli space of topological gravity is as well understood as that of ordinary Riemann surface. The author applies in semirigid gravity the operator formalism to construct correlation functions of observables in two-dimensional spacetime of arbitrarily complicated topology. A one-to-one correspondence is established between the equivalent BRST cohomology of the states in the Hilbert space and the deRham cohomology on the ordinary moduli space. Moreover, the couplings between the observables are topological, coming only through contact interactions. Two recursion relations of observables are derived in the semirigid framework. One involves in particular an observable associated to the two-dimensional cosmological constant and the other the string coupling constant. These are the same recursion relations that partially characterized the [open quotes]one matrix model,[close quotes] a discretized approach to quantum gravity, at its topological critical point. This lends strong support to the hypothesis that semirigid gravity and the one matrix model at the topological critical point are equivalent.
A comparison of satellite systems for gravity field measurements
NASA Technical Reports Server (NTRS)
Argentiero, P. D.; Lowrey, B. E.
1977-01-01
A detailed and accurate earth gravity field model is important to the understanding of the structure and composition of the earth's crust and upper mantle. Various satellite-based techniques for providing more accurate models of the gravity field are analyzed and compared. A high-low configuration satellite-to-satellite tracking mission is recommended for the determination of both the long wavelength and short wavelength portions of the field. Satellite altimetry and satellite gradiometry missions are recommended for determination of the short wavelength portion of the field.
NASA Astrophysics Data System (ADS)
Milewski, Gabriel; Engström, David; Bengtsson, Jörgen
2007-01-01
Diffractive optical elements (DOEs) realized by spatial light modulators (SLMs) often have features that distinguish them from most conventional, static DOEs: strong coupling between phase and amplitude modulation, a modulation versus steering parameter characteristic that may not be precisely known (and may vary with, e.g., temperature), and deadspace effects and interpixel cross talk. For an optimal function of the DOE, e.g. as a multiple-beam splitter, the DOE design must account for these artifacts. We present an iterative design method in which the optimal setting of each SLM pixel is carefully chosen by considering the SLM artifacts and the design targets. For instance, the deadspace-interpixel effects are modeled by dividing the pixel to be optimized, and its nearest neighbors, into a number of subareas, each with its unique response and far-field contribution. Besides the customary intensity control, the design targets can also include phase control of the optical field in one or more of the beams in the beam splitter. We show how this can be used to cancel a strong unwanted zeroth-order beam, which results from using a slightly incorrect modulation characteristic for the SLM, by purposely sending a beam in the same direction but with the opposite phase. All the designs have been implemented on the 256 × 256 central pixels of a reflective liquid crystal on silicon SLM with a selected input polarization state and a direction of transmission axis of the output polarizer such that for the available different pixel settings a phase modulation of ˜2π rad could be obtained, accompanied by an intensity modulation depth as high as >95%.
Incorporating SMART-1 Tracking Data into Lunar Gravity Field Determination
NASA Astrophysics Data System (ADS)
Goossens, S.; Matsumoto, K.; Kikuchi, F.; Sasaki, S.; Ping, J.
In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees. This also implies an improvement for the precision of the determination of orbits around the Moon. This work focuses on the determination of the lunar gravity field from all available tracking data to this date. In preparation to SELENE, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. The goal is to combine the existing good-quality data set with the tracking data from SELENE in order to derive a new lunar gravity field model. To this extent, SMART-1 tracking data, kindly provided by ESA, are also included. Due to many manoeuvres on the satellite, relatively short- arcs need to be used so the signal is not contaminated with spurious information. Good quality data fits can be obtained for these arcs, at the level of few tenths of mm/s for the Doppler data. Including SMART-1 data from the high-altitude part of the mission improves the gravity field only little. However, low-altitude tracking data prior to SMART-1's crash into the Moon are expected to contribute to the improvement of the high-frequency part of the gravity field model.
A spaceborne superconducting gravity gradiometer for mapping the earth's gravity field
NASA Technical Reports Server (NTRS)
Paik, H. J.
1981-01-01
The principles of a satellite gravity gradiometer system which measures all five independent components of the gravity gradient tensor with a sensitivity of 0.001 E/Hz to the 1/2 power or better, are analyzed, and the status of development of the system is reviewed. The superconducting gravity gradiometer uses sensitive superconducting accelerometers, each of which are composed of a weakly suspended superconducting proof mass, a superconducting magnetic transducer, and a low-noise superconducting magnetometer. The magnetic field produced by the transducer coils is modulated by the motion of the proof mass and detected by the magnetometer. A combination of two or four of such accelerometers with proper relative orientation of sensitive axes results in an in-line or a cross component gravity gradiometer.
Group field theory for quantum gravity minimally coupled to a scalar field
NASA Astrophysics Data System (ADS)
Li, Yang; Oriti, Daniele; Zhang, Mingyi
2017-10-01
We construct a group field theory model for quantum gravity minimally coupled to relativistic scalar fields, defining as well a corresponding discrete gravity path integral (and, implicitly, a coupled spin foam model) in its Feynman expansion. We also analyze a number of variations of the same model, the corresponding discrete gravity path integrals, its generalization to the coupling of multiple scalar fields and discuss its possible applications to the extraction of effective cosmological dynamics from the full quantum gravity formalism, in the context of group field theory condensate cosmology.
Gravity Effects of Solar Eclipse and Inducted Gravitational Field
NASA Astrophysics Data System (ADS)
Tang, K.; Wang, Q.; Zhang, H.; Hua, C.; Peng, F.; Hu, K.
2003-12-01
During solar eclipses in recent decades, gravity anomalies were observed and difficult to be explained by Newton's gravitational theory. During the solar eclipse of 1995, India scientists Mishra et al. recorded a gravity valley in amplitude of 12 μ Gal; they interpreted that qualitatively as atmospheric effects. During the total solar eclipse of March 1997, we conducted a comprehensive geophysical observation at Mohe geophysical observatory of China (with latitude of 53.490 N and longitude of 122.340 E. From the data we recorded, we found two valleys about 5 to 7 μ Gal. Unnikrishnan et al. inferred this gravity anomaly was caused by the environment changes. We know that the observation had been conducting in a room inside a small building with a stable coal heating system; the temperature variation inside the experimental room was less 10C during the eclipse. Moreover, the measured atmospheric pressure change was less 1hPa during the eclipse. It is reasonable to believe that surrounding environment of the observatory excluded the significant gravity variations caused by temperature, pressure variation and local moving of persons and vehicles. To further study the gravity effects related to solar eclipses, our scientific team took more observations during Zambia total solar eclipse of June 2001 and Australia total solar eclipse of December 2002. After data corrections, we found respectively two gravity anomalies, with 3 to 4μ Gal for Zambia eclipse and 1.5μ Gal for Australia eclipse. As many scientists have pointed out that pressure-gravity factor is lower than 0.3μ Gal/hPa, it means that any gravity anomaly great than 0.5μ Gal could not be inferred as the results of atmospheric pressure change. The two more gravity anomalies recorded during the solar eclipses provided us strong evidences that some gravity anomalies could not simply be inferred as atmospheric pressure change. We have tried to explain those anomalies by the induced gravitational field.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
de Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2016-04-01
The GPS instruments on-board the three Earth's Magnetic Field and Environment Explorer (Swarm) satellites provide the opportunity to measure the gravity field model at basin-wide spatial scales. In spite of being a geo-magnetic satellite mission, Swarm's GPS receiver collects highly accurate hl-SST data (van den IJssel et al., 2015), which has been exploited to produce gravity field models at a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2014), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2015) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015). With the help of GRACE gravity field models, which are derived from much more accurate ll-SST data, we investigate the best combination strategy for producing a superior model on the basis of the solutions produced by the three institutes, similarly to the approach taken by the European Gravity Service for Improved Emergency Management project (http://egsiem.eu). We demonstrate that the Swarm-derived gravity field models are able to resolve monthly solutions with 1666km spatial resolutions (roughly up to degree 12). We illustrate how these monthly solutions correlate with GRACE-derived monthly solutions, for the period of 2014 - 2015, as well as indicate which geographical areas are measured more or less accurately.
Interior Models and Gravity Field of Jupiter's Moon Amalthea
NASA Astrophysics Data System (ADS)
Weinwurm, G.; Weber, R.
2003-12-01
Before its final plunge into Jupiter in September 2003, GALILEO made a last visit to Jupiters moon Amalthea. This final flyby of the spacecrafts successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amaltheas gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEOs velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amaltheas gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Based on these numbers we calculated the impact on the trajectory of GALILEO and compared it to existing Doppler data. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the calculated gravity field models of Amalthea can be a basis for further exploration of the Jupiter system. Furthermore, the model approach can be used for any planetary body.
Super-Planckian spatial field variations and quantum gravity
NASA Astrophysics Data System (ADS)
Klaewer, Daniel; Palti, Eran
2017-01-01
We study scenarios where a scalar field has a spatially varying vacuum expectation value such that the total field variation is super-Planckian. We focus on the case where the scalar field controls the coupling of a U(1) gauge field, which allows us to apply the Weak Gravity Conjecture to such configurations. We show that this leads to evidence for a conjectured property of quantum gravity that as a scalar field variation in field space asymptotes to infinity there must exist an infinite tower of states whose mass decreases as an exponential function of the scalar field variation. We determine the rate at which the mass of the states reaches this exponential behaviour showing that it occurs quickly after the field variation passes the Planck scale.
Cartan gravity, matter fields, and the gauge principle
Westman, Hans F.; Zlosnik, Tom G.
2013-07-15
Gravity is commonly thought of as one of the four force fields in nature. However, in standard formulations its mathematical structure is rather different from the Yang–Mills fields of particle physics that govern the electromagnetic, weak, and strong interactions. This paper explores this dissonance with particular focus on how gravity couples to matter from the perspective of the Cartan-geometric formulation of gravity. There the gravitational field is represented by a pair of variables: (1) a ‘contact vector’ V{sup A} which is geometrically visualized as the contact point between the spacetime manifold and a model spacetime being ‘rolled’ on top of it, and (2) a gauge connection A{sub μ}{sup AB}, here taken to be valued in the Lie algebra of SO(2,3) or SO(1,4), which mathematically determines how much the model spacetime is rotated when rolled. By insisting on two principles, the gauge principle and polynomial simplicity, we shall show how one can reformulate matter field actions in a way that is harmonious with Cartan’s geometric construction. This yields a formulation of all matter fields in terms of first order partial differential equations. We show in detail how the standard second order formulation can be recovered. In particular, the Hodge dual, which characterizes the structure of bosonic field equations, pops up automatically. Furthermore, the energy–momentum and spin-density three-forms are naturally combined into a single object here denoted the spin-energy–momentum three-form. Finally, we highlight a peculiarity in the mathematical structure of our first-order formulation of Yang–Mills fields. This suggests a way to unify a U(1) gauge field with gravity into a SO(1,5)-valued gauge field using a natural generalization of Cartan geometry in which the larger symmetry group is spontaneously broken down to SO(1,3)×U(1). The coupling of this unified theory to matter fields and possible extensions to non-Abelian gauge fields are left as
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Finite field-dependent symmetries in perturbative quantum gravity
Upadhyay, Sudhaker
2014-01-15
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also.
Shear waves in inhomogeneous, compressible fluids in a gravity field.
Godin, Oleg A
2014-03-01
While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.
An improved model for the Earth's gravity field
NASA Technical Reports Server (NTRS)
Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.
1989-01-01
An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.
Validation of the EGSIEM combined monthly GRACE gravity fields
NASA Astrophysics Data System (ADS)
Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul
2016-04-01
Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.
High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data
NASA Astrophysics Data System (ADS)
Bucha, Blažej; Janák, Juraj; Papčo, Juraj; Bezděk, Aleš
2016-11-01
We develop a high-resolution regional gravity field model by a combination of spherical harmonics, band-limited spherical radial basis functions (SRBFs) and the residual terrain model (RTM) technique. As the main input data set, we employ a dense terrestrial gravity database (3-6 stations km-2), which enables gravity field modelling up to very short spatial scales. The approach is based on the remove-compute-restore methodology in which all the parts of the signal that can be modelled are removed prior to the least-squares adjustment in order to smooth the input gravity data. To this end, we utilize degree-2159 spherical harmonic models and the RTM technique using topographic models at 2 arcsec resolution. The residual short-scale gravity signal is modelled via the band-limited Shannon SRBF expanded up to degree 21 600, which corresponds to a spatial resolution of 30 arcsec. The combined model is validated against GNSS/levelling-based height anomalies, independent surface gravity data, deflections of the vertical and terrestrial vertical gravity gradients achieving an accuracy of 2.7 cm, 0.53 mGal, 0.39 arcsec and 279 E in terms of the RMS error, respectively. A key aspect of the combined approach, especially in mountainous areas, is the quality of the RTM. We therefore compare the performance of two RTM techniques within the innermost zone, the tesseroids and the polyhedron. It is shown that the polyhedron-based approach should be preferred in rugged terrain if a high-quality RTM is required. In addition, we deal with the RTM computations at points located below the reference surface of the residual terrain which is known to be a rather delicate issue.
High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP
NASA Technical Reports Server (NTRS)
Shum, C. K.
2002-01-01
This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.
Status of Next Generation GRACE Gravity Field Data Products
NASA Astrophysics Data System (ADS)
Bettadpur, S.; Team, L.
2006-12-01
The Gravity Recovery And Climate Experiment was launched on Mar 17, 2002 in order to measure mass flux within the Earth system through its effects on Earth's gravity field. Since that time, using the inter-satellite tracking data between the twin GRACE satellites, monthly gravity field estimates for more than 4 years have been delivered to the user community, and these fields have shown clear evidence of hydrological, oceanographic & glaciological phenomena. The GRACE Science Data System is in the midst of a re-processing activity, focusing on improvements to the background models and processing methodology. This paper describes the status of the new results from the re-processing, including changes to the background models, improvement in the processing, and the resulting error characteristics.
Gradio - Earth gravity field measurement on Aristoteles
NASA Astrophysics Data System (ADS)
Pawlak, D.; Meyer, Ph.; Bernard, A.; Touboul, P.
1991-10-01
The design and operation of Gradio, the instrument that was specifically designed for precise gradiometry measurements during the Aristoteles mission, are described. The Gradio is based on simultaneous measurements by four three-axis ultrasensitive accelerometers performed in several locations on a rigid stable structure, called gradio plate, which are then used to compute g gradients. The operational phase of Gradio will last 6 months; the orbit will be circular, near polar, and heliosynchronous, at an altitude of 200 km. It is estimated that Gradio will measure the two main components T(yy) and T(zz) of the gravity gradient tensor in the (0.005, 0.125) Hz frequency bandwidth with an accuracy of 0.01 E.U.
Phobos interior structure from its gravity field
NASA Astrophysics Data System (ADS)
Le Maistre, S.; Rosenblatt, P.; Rivoldini, A.
2015-10-01
Phobos origin remains mysterious. It could be a captured asteroid, or an in-situ object co-accreted with Mars or formed by accretion from a disk of impact ejecta.Although it is not straightforward to relate its interior properties to its origin, it is easy to agree that the interior properties of any body has to be accounted for to explain its life's history. What event could explain such an internal structure? Where should this object formed to present such interior characteristics and composition? We perform here numerical simulations to assess the ability of a gravity experiment to constrain the interior structure of the martian moon Phobos, which could in turn allow distinguishing among the competing scenarios for the moon's origin.
modern global models of the earth's gravity field: analysis of their accuracy and resolution
NASA Astrophysics Data System (ADS)
Ganagina, Irina; Karpik, Alexander; Kanushin, Vadim; Goldobin, Denis; Kosareva, Alexandra; Kosarev, Nikolay; Mazurova, Elena
2015-04-01
Introduction: Accurate knowledge of the fine structure of the Earth's gravity field extends opportunities in geodynamic problem-solving and high-precision navigation. In the course of our investigations have been analyzed the resolution and accuracy of 33 modern global models of the Earth's gravity field and among them 23 combined models and 10 satellite models obtained by the results of GOCE, GRACE, and CHAMP satellite gravity mission. The Earth's geopotential model data in terms of normalized spherical harmonic coefficients were taken from the web-site of the International Centre for Global Earth Models (ICGEM) in Potsdam. Theory: Accuracy and resolution estimation of global Earth's gravity field models is based on the analysis of degree variances of geopotential coefficients and their errors. During investigations for analyzing models were obtained dependences of approximation errors for gravity anomalies on the spherical harmonic expansion of the geopotential, relative errors of geopotential's spherical harmonic coefficients, degree variances for geopotential coefficients, and error variances of potential coefficients obtained from gravity anomalies. Delphi 7-based software developed by authors was used for the analysis of global Earth's gravity field models. Experience: The results of investigations show that spherical harmonic coefficients of all matched. Diagrams of degree variances for spherical harmonic coefficients and their errors bring us to the conclusion that the degree variances of most models equal to their error variances for a degree less than that declared by developers. The accuracy of normalized spherical harmonic coefficients of geopotential models is estimated as 10-9. This value characterizes both inherent errors of models, and the difference of coefficients in various models, as well as a scale poor predicted instability of the geopotential, and resolution. Furthermore, we compared the gravity anomalies computed by models with those
NASA Technical Reports Server (NTRS)
Pavlis, Erricos C.
1992-01-01
Accurate knowledge of the gravity field is a firm requirement in any study of Planet Earth. Space techniques have so far demonstrated their superiority in the global mapping of the gravity field based on ground tracking and altimeter data mostly. Numerical and analytical simulation studies of the upcoming geophysically relevant missions that will most likely carry GPS receivers, indicate significant improvements in the accuracy as well as the resolution of the gravity field. TOPEX will improve by some two orders of magnitude the long wavelength part (to degree about 20), while GP-B will contribute in the long as well as medium wavelength part of the spectrum (up to degree about 60). The gradiometer measurements on ARISTOTELES will contribute in the medium and short wavelength regions (from degree 30 up); GPS tracking of the spacecraft though will provide additional information for the long wavelength gravity and will help resolve it to accuracies comparable to those obtained from GP-B. With the mean rms coefficient error per degree kept below 10 exp -10, geophysical signals such as the post-glacial rebound, tidal variations, and secular and periodic variations of the zonal field rise above the noise level and become readily observable processes.
NASA Astrophysics Data System (ADS)
Pavlis, Erricos C.
Accurate knowledge of the gravity field is a firm requirement in any study of Planet Earth. Space techniques have so far demonstrated their superiority in the global mapping of the gravity field based on ground tracking and altimeter data mostly. Numerical and analytical simulation studies of the upcoming geophysically relevant missions that will most likely carry GPS receivers, indicate significant improvements in the accuracy as well as the resolution of the gravity field. TOPEX will improve by some two orders of magnitude the long wavelength part (to degree about 20), while GP-B will contribute in the long as well as medium wavelength part of the spectrum (up to degree about 60). The gradiometer measurements on ARISTOTELES will contribute in the medium and short wavelength regions (from degree 30 up); GPS tracking of the spacecraft though will provide additional information for the long wavelength gravity and will help resolve it to accuracies comparable to those obtained from GP-B. With the mean rms coefficient error per degree kept below 10 exp -10, geophysical signals such as the post-glacial rebound, tidal variations, and secular and periodic variations of the zonal field rise above the noise level and become readily observable processes.
NASA Technical Reports Server (NTRS)
Pavlis, Erricos C.
1992-01-01
Accurate knowledge of the gravity field is a firm requirement in any study of Planet Earth. Space techniques have so far demonstrated their superiority in the global mapping of the gravity field based on ground tracking and altimeter data mostly. Numerical and analytical simulation studies of the upcoming geophysically relevant missions that will most likely carry GPS receivers, indicate significant improvements in the accuracy as well as the resolution of the gravity field. TOPEX will improve by some two orders of magnitude the long wavelength part (to degree about 20), while GP-B will contribute in the long as well as medium wavelength part of the spectrum (up to degree about 60). The gradiometer measurements on ARISTOTELES will contribute in the medium and short wavelength regions (from degree 30 up); GPS tracking of the spacecraft though will provide additional information for the long wavelength gravity and will help resolve it to accuracies comparable to those obtained from GP-B. With the mean rms coefficient error per degree kept below 10 exp -10, geophysical signals such as the post-glacial rebound, tidal variations, and secular and periodic variations of the zonal field rise above the noise level and become readily observable processes.
Terrestrial Gravity Fluctuations
NASA Astrophysics Data System (ADS)
Harms, Jan
2015-12-01
terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.
Terrestrial Gravity Fluctuations.
Harms, Jan
2015-01-01
terrestrial gravity fluctuations will have great impact on the future development of GW detectors and high-precision gravimetry in general, and many open questions need to be answered still as emphasized in this article.
Dark energy cosmology with tachyon field in teleparallel gravity
Motavalli, H. Akbarieh, A. Rezaei; Nasiry, M.
2016-07-15
We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.
Dark energy cosmology with tachyon field in teleparallel gravity
NASA Astrophysics Data System (ADS)
Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.
2016-07-01
We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.
New Views of Earth's Gravity Field from GRACE
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2
Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.
Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).
In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity
Earth's gravity field mapping requirements and concept. [using a supercooled gravity gradiometer
NASA Technical Reports Server (NTRS)
Vonbun, F. O.; Kahn, W. D.
1981-01-01
A future sensor is considered for mapping the Earth's gravity field to meet future scientific and practical requirements for earth and oceanic dynamics. These are approximately + or - 0.1 to 10 mgal over a block size of about 50 km and over land and an ocean geoid to 1 to 2 cm over a distance of about 50 km. To achieve these values requires a gravity gradiometer with a sensitivity of approximately 10 to the -4 power EU in a circular polar orbiting spacecraft with an orbital altitude ranging 160 km to 180 km.
Field-theoretical formulation of Regge–Teitelboim gravity
Sheykin, A. A. Paston, S. A.
2016-12-15
Theory of gravity is considered in the Regge–Teitelboim approach in which the pseudo-Rimannian space is treated as a surface isometrically embedded in an ambient Minkowski space of higher dimension. This approach is formulated in terms of a field theory in which the original pseudo-Rimannian space is defined by the field constant-value surfaces. The symmetry properties of the proposed theory are investigated, and possible structure of the field-theoretical Lagrangian is discussed.
High-Precision Pulse Generator
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2011-01-01
A document discusses a pulse generator with subnanosecond resolution implemented with a low-cost field-programmable gate array (FPGA) at low power levels. The method used exploits the fast carry chains of certain FPGAs. Prototypes have been built and tested in both Actel AX and Xilinx Virtex 4 technologies. In-flight calibration or control can be performed by using a similar and related technique as a time interval measurement circuit by measuring a period of the stable oscillator, as the delays through the fast carry chains will vary as a result of manufacturing variances as well as the result of environmental conditions (voltage, aging, temperature, and radiation).
Reduction of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Pail, Roland; Hauk, Markus; Daras, Ilias; Murböck, Michael; Purkhauser, Anna
2016-04-01
-line satellite pair. The second one follows the so-called GETRIS concept, assuming a high-precision inter-satellite link between high-flying GEO and/or GNSS satellites and an ensemble of low Earth orbiters (LEOs). As a further aspect of this work, possible correlations between a dedicated ocean tide co-parameterization with other parameters (Wiese, empirical accelerations, etc.) and their impact on the gravity solution shall be analysed in detail.
Higher derivative gravity: Field equation as the equation of state
NASA Astrophysics Data System (ADS)
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Alternative methods to smooth the Earth's gravity field
NASA Technical Reports Server (NTRS)
Jekeli, C.
1981-01-01
Convolutions on the sphere with corresponding convolution theorems are developed for one and two dimensional functions. Some of these results are used in a study of isotropic smoothing operators or filters. Well known filters in Fourier spectral analysis, such as the rectangular, Gaussian, and Hanning filters, are adapted for data on a sphere. The low-pass filter most often used on gravity data is the rectangular (or Pellinen) filter. However, its spectrum has relatively large sidelobes; and therefore, this filter passes a considerable part of the upper end of the gravity spectrum. The spherical adaptations of the Gaussian and Hanning filters are more efficient in suppressing the high-frequency components of the gravity field since their frequency response functions are strongly field since their frequency response functions are strongly tapered at the high frequencies with no, or small, sidelobes. Formulas are given for practical implementation of these new filters.
Gravity field and internal structure of Mercury from MESSENGER.
Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H
2012-04-13
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
A dynamic model of Venus's gravity field
NASA Technical Reports Server (NTRS)
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
Gravity field fine structure estimation techniques for a spaceborne gravity gradiometer
NASA Technical Reports Server (NTRS)
Kahn, W. D.; Englar, T. S., Jr.
1987-01-01
Use of standard estimation techniques to recover geopotential fine structure from gradiometer data requires the adjustment of small subsets of parameters while constraining others to their a priori values in order to minimize the computational load. Here, gravitational anomalies are selected as a parametrization of the gravity field which permits such an approach. Techniques coupled with numerical results for a spaceborne gravity gradiometer mission simulation are described which demonstrate that if a satellite is in a polar/circular orbit at an altitude of 160 km, 1 deg mean free air gravity anomalies can be recovered to an accuracy of 0.4 mgal, where 1 mgal = 0.001 cm/sq s.
An Analysis of Gravity-Field Estimation Based on Intersatellite Dual-1-Way Biased Ranging
NASA Technical Reports Server (NTRS)
Thomas, J. B.
1999-01-01
The GRACE (Gravity Recovery And Climate Experiment) mission is designed to make global, highly accurate measurements of the Earth's gravity field with high spatial resolution. Ancillary GPS occultation measurements are also to be carried out for atmospheric monitoring. In the dual-1-way biased ranging of this mission, the range between two satellites separated by 100 to 200 km in nearly polar, coplanar, circular orbits, is measured to very high precision, to within an additive constant, through the exchange of K- and Ka-band sinusoidal signals. Such biased ranging data, along with GPS L-band range and phase data, can be processed and fit over successive multiday intervals to obtain accurate estimates of the Earth's gravity field. This report approximately models and analyzes this process, from the generation of the RF signals at the two satellites through the extraction of the geopotential. The steps include generation of the transmitted signals, processing the received signals to extract high-rate baseband phase, carrying out a dual-1-way combination of baseband phase to extract high-rate biased range for each band, combining K- and Ka-band ranges to correct for the ionosphere effect, and processing the resulting high-rate biased range values to extract three types of reduced-rate observables: biased range, range rate and range acceleration. The version of dual-1-way biased ranging developed by this report improves upon previous versions in a number of ways: highly accurate satellite-timetag corrections derived from concurrent GPS data, better baseband phase extraction using highly digital processing, highly accurate USO-rate calibration derived from concurrent GPS data, an improved method for extracting high-rate biased range from baseband phase, improved filtering for extracting reduced- rate observables from high-rate biased range, and parallel extraction of three observable types.
Collapse of charged scalar field in dilaton gravity
Borkowska, Anna; Rogatko, Marek; Moderski, Rafal
2011-04-15
We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.
Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.
Laxon, S; McAdoo, D
1994-07-29
The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.
Gravity field models derived from Swarm GPS data
NASA Astrophysics Data System (ADS)
Teixeira da Encarnação, João; Arnold, Daniel; Bezděk, Aleš; Dahle, Christoph; Doornbos, Eelco; van den IJssel, Jose; Jäggi, Adrian; Mayer-Gürr, Torsten; Sebera, Josef; Visser, Pieter; Zehentner, Norbert
2017-04-01
The Swarm satellites, with primary mission to measure Earth's Magnetic Field, continue to provide high-quality hl-SST data. We use these data to derive the time-varying gravity field of the Earth up to Spherical Harmonic degree and order 12, on a monthly basis since December 2013. We combine the gravity field solutions computed with the data of all three satellites, as provided by a number of institutes, namely at the Astronomical Institute (ASU) of the Czech Academy of Sciences (Bezděk et al., 2016), the Astronomical Institute of the University of Bern (AIUB, Jäggi et al., 2016) and the Institute of Geodesy (IfG) of the Graz University of Technology (Zehentner et al., 2015) and demonstrate that this uninterrupted time series of gravity field models are in good agreement with the temporal variations observed by the GRACE satellites. Therefore, these data can be used to study large-scale mass changes globally, e.g. i) in the context of low-latency applications, such as the European Gravity Service for Improved Emergency Management project (http://egsiem.eu), ii) in those months where GRACE solutions are not available, and iii) as an important source of independent information for mitigating the GRACE/GRACE Follow-On gap.
The Estimation of the Earth’s Gravity Field.
1986-06-01
technique of the satellite-to-satellite tracking for direct measurement of the earth’s gravity field originated in the Apollo program. Muller and Sjogren ...recovery of 5" mean gravity anomales in local areas from ATS-6/GEOS-3 satellite to satellite range rate observations. J. Geophys. Res. Vol., 84, No. B12 ...and OSU/DGSS Report No. 352 (full report). AFGL-TR-84-0042 AD-A145799. Muller, P.M. and W.L. Sjogren (1968). Mascons: lunar mass concentrations
Spontaneous growth of vector fields in gravity
NASA Astrophysics Data System (ADS)
Ramazanoǧlu, Fethi M.
2017-09-01
We show that the spontaneous scalarization scenario in scalar-tensor theories is a specific case of a more general phenomenon. The key fact is that the instability causing the spontaneous growth in scalars is due to the nonminimal coupling in the theory, and not related to the nature of the scalar. Another field with the same form of coupling undergoes spontaneous growth as well. We explicitly demonstrate this idea for vectors, naming it "spontaneous vectorization", and study spherically symmetric neutron stars in such a theory. We also comment on other tensor fields the idea can be applied, naming the general mechanism "spontaneous tensorization."
Rhea gravity field and interior modeling from Cassini data analysis
NASA Astrophysics Data System (ADS)
Tortora, Paolo; Zannoni, Marco; Hemingway, Doug; Nimmo, Francis; Jacobson, Robert A.; Iess, Luciano; Parisi, Marzia
2016-01-01
During its tour of the Saturn system, Cassini performed two close flybys of Rhea dedicated to gravity investigations, the first in November 2005 and the second in March 2013. This paper presents an estimation of Rhea's fully unconstrained quadrupole gravity field obtained from a joint multi-arc analysis of the two Cassini flybys. Our best estimates of the main gravity quadrupole unnormalized coefficients are J2 × 106 = 946.0 ± 13.9, C22 × 106 = 242.1 ± 4.0 (uncertainties are 1-σ). Their resulting ratio is J2/C22 = 3.91 ± 0.10, statistically not compatible (at a 5-σ level) with the theoretical value of 10/3, predicted for a hydrostatic satellite in slow, synchronous rotation around a planet. Therefore, it is not possible to infer the moment of inertia factor directly using the Radau-Darwin approximation. The observed excess J2 (gravity oblateness) was investigated using a combined analysis of gravity and topography, under different plausible geophysical assumptions. The observed gravity is consistent with that generated by the observed shape for an undifferentiated (uniform density) body. However, because the surface is more likely to be water ice, a two-layer model may be a better approximation. In this case, and assuming a mantle density of 920 kg/m3, some 1-3 km of excess core oblateness is consistent with the observed gravity. A wide range of moments of inertia is allowed, but models with low moments of inertia (i.e., more differentiation) require greater magnitudes of excess core topography to satisfy the observations.
GRACE gravity field recovery using refined acceleration approach
NASA Astrophysics Data System (ADS)
Li, Zhao; van Dam, Tonie; Weigelt, Matthias
2017-04-01
Since 2002, the GRACE mission has yielded monthly gravity field solutions with such a high level of quality that we have been able to observe so many changes to the Earth mass system. Based on GRACE L1B observations, a number of official monthly gravity field models have been developed and published using different methods, e.g. the CSR RL05, JPL RL05, and GFZ RL05 are being computed by a dynamic approach, the ITSG and Tongji GRACE are generated using what is known as the short-arc approach, the AIUB models are computed using celestial mechanics approach, and the DMT-1 model is calculated by means of an acceleration approach. Different from the DMT-1 model, which links the gravity field parameters directly to the bias-corrected range measurements at three adjacent epochs, in this work we present an alternative acceleration approach which connects range accelerations and velocity differences to the gradient of the gravitational potential. Due to the fact that GPS derived velocity difference is provided at a lower precision, we must reduce this approach to residual quantities using an a priori gravity field which allows us to subsequently neglect the residual velocity difference term. We find that this assumption would cause a problem in the low-degree gravity field coefficient, particularly for degree 2 and also from degree 16 to 26. To solve this problem, we present a new way of handling the residual velocity difference term, that is to treat this residual velocity difference term as unknown but estimable quantity, as it depends on the unknown residual gravity field parameters and initial conditions. In other word, we regard the kinematic orbit position vectors as pseudo observations, and the corrections of orbits are estimated together with both the geopotential coefficients and the accelerometer scale/bias by using a weighted least square adjustment. The new approach is therefore a refinement of the existing approach but offers a better approximation to reality
On the gravity field processing of next generation satellite gravity missions
NASA Astrophysics Data System (ADS)
Daras, Ilias; Pail, Roland
2016-04-01
Dedicated gravity field missions delivering observations for a period longer than 16 years have drastically contributed in improving our knowledge of mass transport processes in the Earth system. At the same time, they have left a precious heritage for the design of next generation satellite gravity missions to be launched in the mid-term future. Main subject of this study is the gravity field processing of future Low-Low Satellite-to-Satellite Tracking (LL-SST) missions. We perform assessment of the contribution of all error sources and develop methods for reducing their effect at the level of gravity field processing. Advances in metrology of sensors such as the inter-satellite ranging instrument, may raise the demands for processing accuracy. We show that gravity field processing with double precision may be a limiting factor for exploiting the nm-level accuracy of a laser interferometer that future missions are expected to carry. An enhanced numerical precision processing scheme is proposed instead, where double and quadruple precision is used in different parts of the processing chain. It is demonstrated that processing with enhanced precision can efficiently handle laser measurements and take full advantage of their accuracy, while keeping the computational times within reasonable levels (Daras, 2015). However, error sources of considerably larger impact are expected to affect future missions, with the accelerometer instrument noise and temporal aliasing effects being the most significant ones. The effect of time-correlated noise such as the one present in accelerometer measurements can be efficiently handled by frequency dependent data weighting. Residual time series that contain the effect of system errors and propagated accelerometer and laser noise, is considered as a noise realization with stationary stochastic properties. The weight matrix is constructed from the auto-correlation functions of these residuals. Applying the weight matrix to a noise case
Perturbative quantum gravity in double field theory
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Barbero-Immirzi field in canonical formalism of pure gravity
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Mercuri, Simone
2009-04-01
The Barbero-Immirzi (BI) parameter is promoted to a field and a canonical analysis is performed when it is coupled with a Nieh-Yan topological invariant. It is shown that, in the effective theory, the BI field is a canonical pseudoscalar minimally coupled with gravity. This framework is argued to be more natural than the one of the usual Holst action. Potential consequences in relation with inflation and the quantum theory are briefly discussed.
The Martian: Examining Human Physical Judgments across Virtual Gravity Fields.
Ye, Tian; Qi, Siyuan; Kubricht, James; Zhu, Yixin; Lu, Hongjing; Zhu, Song-Chun
2017-04-01
This paper examines how humans adapt to novel physical situations with unknown gravitational acceleration in immersive virtual environments. We designed four virtual reality experiments with different tasks for participants to complete: strike a ball to hit a target, trigger a ball to hit a target, predict the landing location of a projectile, and estimate the flight duration of a projectile. The first two experiments compared human behavior in the virtual environment with real-world performance reported in the literature. The last two experiments aimed to test the human ability to adapt to novel gravity fields by measuring their performance in trajectory prediction and time estimation tasks. The experiment results show that: 1) based on brief observation of a projectile's initial trajectory, humans are accurate at predicting the landing location even under novel gravity fields, and 2) humans' time estimation in a familiar earth environment fluctuates around the ground truth flight duration, although the time estimation in unknown gravity fields indicates a bias toward earth's gravity.
The gravity field observations and products at IGFS
NASA Astrophysics Data System (ADS)
Barzaghi, Riccardo; Vergos, George; Bonvalot, Sylvain; Barthelmes, Franz; Reguzzoni, Mirko; Wziontek, Hartmut; Kelly, Kevin
2017-04-01
The International Gravity Field Service (IGFS) is a service of the International Association of Geodesy (IAG) that was established in 2003 at the IAG/IUGG General Assembly in Sapporo (Japan). This service aims at coordinating the actions of the IAG services related to the Earth gravity field, i.e. the Bureau Gravimétrique International (BGI), the International Service for the Geoid (ISG), the International Geodynamics and Earth Tides Service (IGETS), the International Center for Global Earth Models (ICGEM) and the International Digital Elevation Model Service (IDEMS). Also, via its Central Bureau hosted at the Aristotle University of Thessaloniki (Greece), IGFS provides a link to the Global Geodetic Observing System (GGOS) bureaus in order to communicate their requirements and recommendations to the IGFS-Centers. In this work, a presentation is given on the recent activities of the service, namely those related to the contributions to the implementation of: the International Height Reference System/Frame; the Global Geodetic Reference System/Frame; the new Global Absolute Gravity Reference System/Frame. Particularly, the impact that these activities have in improving the estimation of the Earth's gravity field, either at global and local scale, is highlighted also in the framework of GGOS.
Dirac fields in loop quantum gravity and big bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Das, Rupam; Scherrer, Robert J.
2008-04-01
Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.
Dirac fields in loop quantum gravity and big bang nucleosynthesis
Bojowald, Martin; Das, Rupam; Scherrer, Robert J.
2008-04-15
Big bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of big bang nucleosynthesis, to place bounds on these corrections and especially the patch size of discrete quantum gravity states.
Properties of the gravity fields of terrestrial planets
NASA Technical Reports Server (NTRS)
Kaula, William M.
1992-01-01
The properties of the gravity fields of the earth, Mars, and Venus, as expressed by spherical harmonic coefficients, are examined, using the harmonic expansions of the respective planetary topographies reported by Balmino et al. (1973), Bills and Ferrari (1978), and Bills and Kobrick (1985). The items examined include the spectral magnitudes and slopes of the gravity coefficients; the correlations between gravity and topography; and the correlations among different gravity harmonics, expressed by axiality and angularity. It was found that Venus differs from the other two planets in its great apparent depths of compensation, indicating a tectonics dominated by a stiff upper mantle. In addition, Venus has less activity deep in the mantle than do earth or Mars. Mars is marked by large gravity irregularities, as well as by their axial symmetry on a global scale. Although earth is probably the most peculiar planet, spherical harmonics do not bring out its varied characteristics. It is clearly a more active planet than Venus, with activity deep in the mantle. The lower magnitude of its higher harmonics is considered to be due to water recycled to the upper mantle.
The negative gravity field over the 85 deg E ridge
NASA Technical Reports Server (NTRS)
Liu, C.-S.; Curray, J. R.; Sandwell, D. T.
1982-01-01
Two north-south ridges in the basement topography of the Bay of Bengal may be observed on an isopach map at 85 and at 90 deg E. Free-air gravity anomaly profiles across the region show a strong gravity low (about -60 mGal) over the 85 deg E ridge, and a gravity high over the other. Using a simple two-stage loading model, the negative gravity anomaly over the 85 deg E ridge is explained as a direct consequence of sediment loading, and the flexural rigidity of the lithosphere when the ridge was formed is estimated to have been about 180 times less than the flexural rigidity during the sediment loading. An approximate relationship between flexural rigidity and crustal age shows that the 85 deg E ridge was formed on relatively young lithosphere, 5-15 million years old, and that it was buried when the lithosphere was 40-80 million years old. The alteration of the gravity field by a thick layer of sediments may occur in other large sedimentary basins or along continental margins.
Classifying linearly shielded modified gravity models in effective field theory.
Lombriser, Lucas; Taylor, Andy
2015-01-23
We study the model space generated by the time-dependent operator coefficients in the effective field theory of the cosmological background evolution and perturbations of modified gravity and dark energy models. We identify three classes of modified gravity models that reduce to Newtonian gravity on the small scales of linear theory. These general classes contain enough freedom to simultaneously admit a matching of the concordance model background expansion history. In particular, there exists a large model space that mimics the concordance model on all linear quasistatic subhorizon scales as well as in the background evolution. Such models also exist when restricting the theory space to operators introduced in Horndeski scalar-tensor gravity. We emphasize that whereas the partially shielded scenarios might be of interest to study in connection with tensions between large and small scale data, with conventional cosmological probes, the ability to distinguish the fully shielded scenarios from the concordance model on near-horizon scales will remain limited by cosmic variance. Novel tests of the large-scale structure remedying this deficiency and accounting for the full covariant nature of the alternative gravitational theories, however, might yield further insights on gravity in this regime.
Gravitational constant in multiple field gravity
Abedi, Habib; Abbassi, Amir M. E-mail: amabasi@khayam.ut.ac.ir
2015-05-01
In the present study, we consider general form of the Lagrangian f(R, φ{sup I}, X) , that is a function of the Ricci scalar, multiple scalar fields and non-canonical kinetic terms. We obtain the effective Newton's constant deep inside the Hubble radius. We use Jordan and Einstein frames, and study the conservation of energy-momentum tensor.
New isostatic model of the lithosphere and gravity field
NASA Astrophysics Data System (ADS)
Kaban, M. K.; Schwintzer, P.; Reigber, Ch.
2003-04-01
A new global model of the isostatic gravity field based on the up-to-date data sets is computed in terms of gravity and geoid. The initial gravity field model is improved using the new CHAMP data. For a construction of the isostatic model of the lithosphere we use the latest compilation of crustal data. Globally this is the CRUST2.0 model, which is supplemented by detailed original data for large parts of North America and North Eurasia. The long-wavelengths of the computed isostatic anomalies up to spherical harmonic degree 20 reflect deep density heterogeneities and the influence of mantle convection through the dynamic topography. The signal contribution of the isostatically balanced lithosphere to the observed gravity or geoid is still significant also for the long-wavelengths: -30- +60 mGal and -15- +40 m peak-to-peak, respectively. Generally the long-wavelength isostaticaly reduced gravity field has much less correlation with the lithosphere patterns than the observed field. This demonstrates that the long-wavelength isostatic gravity field is more appropriate for a modelling of mantle convection than the observed one. The smaller scale isostatic anomalies (wavelengths less than 2000 km) on the other hand are highly sensitive to the quality of the input data used for their computation. To a large extent they reflect internal crustal density inhomogeneities, not included in the isostatic compensation scheme, and uncertainties in the initial crustal data. Thus, small-scale isostatic anomalies may not be always interpreted as a measure of the disturbances of isostatic balance of the lithosphere. Instead we suggest to compute for the smaller scale spectral part the non-isostatic residual topography. The initial crust - upper mantle density model is corrected by gravity inversion in a least squares adjustment. Then, the residual (unbalanced) topography computed with the corrected density distribution represents the isostatic state of the lithosphere. The maximum
The Mercury Gravity Field after the MESSENGER Low-Altitude Gravity Campaign
NASA Astrophysics Data System (ADS)
Mazarico, E.; Genova, A.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.; Solomon, S. C.
2014-12-01
NASA's MESSENGER spacecraft has collected more than 3.5 years of X-band radio tracking data in orbit around the planet Mercury. During its one-year primary mission, which started in March 2011, MESSENGER was in an eccentric, near-polar orbit of 12-hour period, and the periapsis altitude was actively maintained between 200 and 500 km. For its extended mission, the orbit period was reduced to 8 hours. As the orbit naturally evolved, in large part due to the third-body gravitational perturbation of the Sun, the periapsis altitude reached a maximum of ~450 km in March 2013 and then began to decrease. An ambitious end of mission was designed to use the remaining fuel to delay impact and to observe the northern hemisphere for nearly a year at periapsis altitudes lower than 200 km, including four intervals of exceptionally low altitude (25-100 km). Periapsis passages are visible from Earth only for two of these intervals, in August and October 2014. These new data, the lowest-altitude radio tracking measurements to be acquired by MESSENGER, prompt an updated solution for the gravity field of Mercury. In preparation for acquisition of the low-altitude (<100 km) data, we have reprocessed tracking data through 14 July 2014. These data already provide good coverage below 200 km over most longitudes. A preliminary gravity solution to degree and order 50 shows stronger gravity anomalies near the periapsis latitudes than in the most recent global solution, HgM005. To best capture the shorter-wavelength signals expected from the lowest-altitude passes, we are estimating a large number of local surface anomalies (arranged on a 1°x1° grid) in addition to a harmonic field. We are also using the resulting gravity anomalies to update crustal thickness models and to explore the implications for gravity anomalies over basins and topographic rises and the modes of compensation of these features.
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; Matsuyama, Isamu; Melosh, H. Jay; McGovern, Patrick J.; Nimmo, Francis; Phillips, Roger J.; Solomon, Sean C.; Taylor, G. Jeffrey; Watkins, Michael M.; Wieczorek, Mark A.; Williams, James G.; Jansen, Johanna C.; Johnson, Brandon C.; Keane, James T.; Mazarico, Erwan; Miljkovic, Katarina; Park, Ryan S.; Soderblom, Jason M.; Yuan, Dah-Ning
2016-01-01
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission.
Zuber, Maria T; Smith, David E; Neumann, Gregory A; Goossens, Sander; Andrews-Hanna, Jeffrey C; Head, James W; Kiefer, Walter S; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Matsuyama, Isamu; Melosh, H Jay; McGovern, Patrick J; Nimmo, Francis; Phillips, Roger J; Solomon, Sean C; Taylor, G Jeffrey; Watkins, Michael M; Wieczorek, Mark A; Williams, James G; Jansen, Johanna C; Johnson, Brandon C; Keane, James T; Mazarico, Erwan; Miljković, Katarina; Park, Ryan S; Soderblom, Jason M; Yuan, Dah-Ning
2016-10-28
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 ± 0.2) × 10(6) km(3) of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission
NASA Astrophysics Data System (ADS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.; Matsuyama, Isamu; Melosh, H. Jay; McGovern, Patrick J.; Nimmo, Francis; Phillips, Roger J.; Solomon, Sean C.; Taylor, G. Jeffrey; Watkins, Michael M.; Wieczorek, Mark A.; Williams, James G.; Jansen, Johanna C.; Johnson, Brandon C.; Keane, James T.; Mazarico, Erwan; Miljković, Katarina; Park, Ryan S.; Soderblom, Jason M.; Yuan, Dah-Ning
2016-10-01
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 ± 0.2) × 106 km3 of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin’s maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale’s three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
Rapid 3-D forward modeling of gravity and gravity gradient tensor fields
NASA Astrophysics Data System (ADS)
Longwei, C.; Dai, S.; Zhang, Q.
2014-12-01
Three-dimensional inversion are the key process in gravity exploration. In the commonly used scheme of inversion, the subsurface of the earth is usually divided into many small prism blocks (or grids) with variable density values. A key task in gravity inversion is to calculate the composite fields (gravity and gravity gradient tensor) generated by all these grids, this is known as forward modeling. In general forward modeling is memory-demanding and time-consuming. One scheme to rapidly calculate the fields is to implement it in Fourier domain and use fast Fourier transform algorithm. The advantage of the Fourier domain method is, obviously, much faster. However, the intrinsic edge effect of the Fourier domain method degrades the precision of the calculated fields. We have developed an innovative scheme to directly calculate the fields in spatial domain. There are two key points in this scheme. One key point is spatial discretization. Spatial convolution formula is discretized using an approach similar to normal difference method. A key idea during discretization is to use the analytical formula of a cubic prism, and this makes the resultant discrete formula have clear physical meaning: it embodies the superposition principle of the fields and is the exact formula to calculate the fields generated by all grids. The discretization only requires the grids have the same dimension in horizontal directions, and grids in different layers may have different dimension in vertical direction, and this offers more flexibility for inversion. Another key point is discrete convolution calculation. We invoke a high efficient two-dimensional discrete convolution algorithm, and it guarantees both time-saving and memory-saving. Its memory cost has the same order as the number of grids. Numerical test result shows that for a model with a dimension of 1000x1000x201 grids, it takes about 300s to calculate the fields on 1000x1000 field points in a personal computer with 3.4-GHz CPU
NASA Technical Reports Server (NTRS)
Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.
2015-01-01
We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.
Satellite laser ranging and gravity field modeling accuracy
NASA Technical Reports Server (NTRS)
Rosborough, George W.
1990-01-01
Gravitational field mismodeling procedures errors in the estimated orbital motion of near Earth satellites. This effect is studied using a linear perturbation approach following the analysis of Kaula. The perturbations in the orbital position as defined by either orbital elements or Cartesian components are determined. From these perturbations it is possible to ascertain the expected signal due to gravitational mismodeling that would be present in station-to-satellite laser ranging measurements. This expected signal has been estimated for the case of the Lageos satellite and using the predicted uncertainties of the GEM-T1 and GEM-T2 gravity field models. The results indicate that observable signal still exists in the laser range residuals given the current accuracy of the range measurements and the accuracy of the gravity field models.
Gravity Fields of the Moon Derived from GRAIL Primary and Extended Mission Data (Invited)
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B.; Chinn, D. S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2013-12-01
The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012, for the primary mission and from August 30, 2012 to December 14, 2012 for the extended mission and endgame. During both mission phases, the twin spacecraft acquired highly precise Ka-band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data from altitudes of 2.3 to 98.2 km above the lunar surface. We have processed the GRAIL data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program and used the supercomputers of the NASA Center for Climate Simulation (NCCS) at NASA GSFC to accumulate the SRIF arrays and derive the geopotential solutions. During the extended mission, the spacecraft orbits were maintained at a mean altitude of ~23 km, compared to ~50 km during the primary mission. In addition, from December 7 to December 14, 2012, data were acquired from a mean altitude of 11.5 km. With these data, we have derived solutions in spherical harmonics to degree 900. The new gravity solutions show improved correlations with LOLA-derived topography to very high degree and order and resolve many lunar features in the geopotential with a resolution of less than 15 km. We discuss the methods we used for the processing of the GRAIL data, and evaluate these solutions with respect to the derived power spectra, Bouguer anomalies, and fits with independent data (such as from the low-altitude phase of the Lunar Prospector mission).
High precision modeling for fundamental physics experiments
NASA Astrophysics Data System (ADS)
Rievers, Benny; Nesemann, Leo; Costea, Adrian; Andres, Michael; Stephan, Ernst P.; Laemmerzahl, Claus
With growing experimental accuracies and high precision requirements for fundamental physics space missions the needs for accurate numerical modeling techniques are increasing. Motivated by the challenge of length stability in cavities and optical resonators we propose the develop-ment of a high precision modeling tool for the simulation of thermomechanical effects up to a numerical precision of 10-20 . Exemplary calculations for simplified test cases demonstrate the general feasibility of high precision calculations and point out the high complexity of the task. A tool for high precision analysis of complex geometries will have to use new data types, advanced FE solver routines and implement new methods for the evaluation of numerical precision.
Time-variable gravity fields from satellite tracking
NASA Astrophysics Data System (ADS)
Bettadpur, Srinivas; Cheng, Minkang; Ries, John
2014-05-01
At the University of Texas Center for Space Research (CSR), we routinely deliver time-series of Earth's gravity field variations, some of it spanning more than two decades. These time-series are derived - in a consistent manner - from satellite laser ranging (SLR) data, from low-Earth orbiters tracked using GPS, and from low-low satellite to satellite tracking data from GRACE. In this paper, we review the information content in the gravity field time-series derived from each of these methods. We provide a comparison of the time-series at the decadal and annual time-scales, and identify the spatial modes of variability that are well or poorly estimated by each of the observing systems. The results have important bearing on the prospects of extending GRACE time-variable gravity time-series in the event of gaps between dedicated gravity missions, and for extending the time-series into the past. Support for this research from joint NASA/DLR GRACE mission, the NASA MEASURs program, and the NASA ROSES/GRACE Science Team is gratefully acknowledged.
Examination of Biological Effects of Magnetic Field Concealed by Gravity
NASA Astrophysics Data System (ADS)
Yamashita, M.; Tomita-Yokotani, K.; Hashimoto, H.; Nakamura, T.
Response of biological systems against combined environment of zero-gravity and zero-magnetic field should be examined as the baseline to investigate biological effects of magnetic field that might be concealed by gravity. Space offers unique opportunities to conduct such study because long term microgravity is available for the scientific use. However, magnetic environment has been neither well controlled nor documented both in space and ground based experiments. Biological specimen is exposed to the various magnetic field of Earth during the revolutions in orbit. The profile of magnetic field varying in time depends on the orbital parameters and attitude of the space platform. Furthermore, the onboard 1 G control group is subjected to centrifugation spinning where magnetic field varies differently from the microgravity experiment group. It can not be accepted as the 1 G control in terms of magnetic environment. We propose experiment set up to shield exotic magnetic field experienced in orbiting space experiment platform. Thin film of amorphous metal or alloys has shielding capability, and is feasible to implement for space experimentation. In order to simulate zero-gravity and zero-magnetic field on ground, we developed a 3D- clinostat that equips a magnetic shielding layer for specimen. In order to evaluate effects of normal magnetic field of Earth, steady magnetic field is induced at the site of specimen inside the shield layer either in orbit or on 3D-clinostat. To fill the matrix of experimental design, 1 G control under the magnetic shielded condition, and 1 G control that is exposed to the normal field should be taken. Degree of magnetic shielding magnitude required for plant studies and other issues were examined by the preliminary experiments using a 3D-clinostat for the studies of etiolated seedlings.
The Gravity Field of Enceladus from the three Cassini Flybys
NASA Astrophysics Data System (ADS)
Iess, L.; Parisi, M.; Ducci, M.; Jacobson, R. A.; Armstrong, J. W.; Asmar, S. W.; Lunine, J. I.; Stevenson, D. J.; Tortora, P.
2013-12-01
The Cassini spacecraft carried out gravity measurements of the small Saturnian moon Enceladus during three close flybys on April 28, 2010, November 30, 2010 and May 2, 2012 (designated E9, E12 and E19), at the low altitudes of 100, 48 and 70 km to maximize the accelerations exerted by the moon on the spacecraft. The goals of these observations were the determination of the gravitational quadrupole and the search for a North-South asymmetry in the gravity field, controlled primarily by the spherical harmonic coefficient C30. The estimation of Enceladus' gravity field is especially complex because of the small surface gravity (0.11 m/s2), the short duration of the gravitational interaction and the small number of available flybys. In addition to the gravitational accelerations, the spacecraft was also subject to small but non-negligible drag when it flew through the plume emitted from the south pole of the satellite. This effect occurred during the two south polar flybys E9 and E19. The inclusion of these non-gravitational accelerations proved to be crucial to attain a stable solution for the gravity field. Our estimation relied entirely on precise range rate measurements enabled by a coherent, two-way, microwave link at X-band (7.2-8.4 GHz). Measurement accuracies of 10 micron/s at 60 s integration times were attained under favorable conditions, thanks also to an advanced tropospheric calibration system. The data were fitted using the MONTE orbit determination code, recently developed by JPL for deep space navigation. In addition to the satellite degree 2 gravity field and C30, the solution included the state vector of the spacecraft (one for each flyby) and corrections to the mass and the initial orbital elements of Enceladus. The effect of the drag in E9 and E19 was modeled either as an unknown, impulsive, vectorial delta-V at closest approach, or by using density profiles from models of the plume and solving for the aerodynamic coefficient of the spacecraft. Both
High Precision Rovibrational Spectroscopy of OH+
NASA Astrophysics Data System (ADS)
Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; Müller, Holger S. P.; McCall, Benjamin J.
2016-02-01
The molecular ion OH+ has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH+. The ions were produced in a water cooled discharge of O2, H2, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a 3Σ- linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.
NASA Astrophysics Data System (ADS)
Flechtner, Frank; Neumayer, Karl Hans; Kusche, Jürgen; Schäfer, Wolfgang; Sohl, Frank
2008-10-01
A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment - Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2-3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth-Moon system.
NASA Technical Reports Server (NTRS)
Colombo, Oscar L. (Editor)
1992-01-01
This symposium on space and airborne techniques for measuring gravity fields, and related theory, contains papers on gravity modeling of Mars and Venus at NASA/GSFC, an integrated laser Doppler method for measuring planetary gravity fields, observed temporal variations in the earth's gravity field from 16-year Starlette orbit analysis, high-resolution gravity models combining terrestrial and satellite data, the effect of water vapor corrections for satellite altimeter measurements of the geoid, and laboratory demonstrations of superconducting gravity and inertial sensors for space and airborne gravity measurements. Other papers are on airborne gravity measurements over the Kelvin Seamount; the accuracy of GPS-derived acceleration from moving platform tests; airborne gravimetry, altimetry, and GPS navigation errors; controlling common mode stabilization errors in airborne gravity gradiometry, GPS/INS gravity measurements in space and on a balloon, and Walsh-Fourier series expansion of the earth's gravitational potential.
Electric Field Effect on Bubble Detachment in Variable Gravity Environment
NASA Technical Reports Server (NTRS)
Iacona, Estelle; Herman, Cila; Chang, Shinan
2003-01-01
The subject of the present study, the process of bubble detachment from an orifice in a plane surface, shows some resemblance to bubble departure in boiling. Because of the high heat transfer coefficients associated with phase change processes, boiling is utilized in many industrial operations and is an attractive solution to cooling problems in aerospace engineering. In terrestrial conditions, buoyancy is responsible for bubble removal from the surface. In space, the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling remain attached at the surface. As a result, the amount of heat removed from the heated surface can decrease considerably. The use of electric fields is proposed to control bubble behavior and help bubble removal from the surface on which they form. The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Bubble cycle life were visualized in terrestrial conditions and for several reduced gravity levels. Bubble volume, dimensions and contact angle at detachment were measured and analyzed for different parameters as gravity level and electric field magnitude. Situations were considered with uniform or non-uni form electric field. Results show that these parameters significantly affect bubble behavior, shape, volume and dimensions.
Investigating High Field Gravity using Astrophysical Techniques
Bloom, Elliott D.; /SLAC
2008-02-01
The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and
Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.
Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning
2013-02-08
Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.
Aristoteles - An ESA mission to study the earth's gravity field
NASA Astrophysics Data System (ADS)
Lambeck, K.
In preparing for its first Solid-Earth Program, ESA has studied a satellite concept for a mission dedicated to the precise determination of the earth's geopotential (gravitational and magnetic) fields. Data from such a mission are expected to make substantial contributions to a number of research and applications fields in solid-earth geophysics, oceanography and global-change monitoring. The impact of a high-resolution gravity-field mission on studies of the various earth-science problems is assessed. The current state of our knowledge in this area is discussed and the ability of low-orbit satellite gradiometry to contribute to their solution is demonstrated.
Jupiter gravity field estimated from the first two Juno orbits
NASA Astrophysics Data System (ADS)
Folkner, W. M.; Iess, L.; Anderson, J. D.; Asmar, S. W.; Buccino, D. R.; Durante, D.; Feldman, M.; Gomez Casajus, L.; Gregnanin, M.; Milani, A.; Parisi, M.; Park, R. S.; Serra, D.; Tommei, G.; Tortora, P.; Zannoni, M.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.
2017-05-01
The combination of the Doppler data from the first two Juno science orbits provides an improved estimate of the gravity field of Jupiter, crucial for interior modeling of giant planets. The low-degree spherical harmonic coefficients, especially J4 and J6, are determined with accuracies better than previously published by a factor of 5 or more. In addition, the independent estimates of the Jovian gravity field, obtained by the orbits separately, agree within uncertainties, pointing to a good stability of the solution. The degree 2 sectoral and tesseral coefficients, C2,1, S2,1, C2,2, and S2,2, were determined to be statistically zero as expected for a fluid planet in equilibrium.
The power of weak-field GR gravity
NASA Astrophysics Data System (ADS)
Cooperstock, F. I.
2016-10-01
While general relativity (GR) is our premier theory of gravity, galactic dynamics from the outset has been studied with Newtonian gravity (NG), guided by the long-held belief in the idea of the “Newtonian-limit” of GR. This maintains that when the gravitational field is weak and the velocities are nonrelativistic, NG is the appropriate theory, apart from small corrections at best (such as in GPS tracking). However, there are simple examples of phenomena where there is no NG counterpart. We present a particularly simple new example of the stark difference that NG and weak-field GR exhibit for a modified van Stockum source, which speaks to the flat galactic rotation curve problem. We note that the linear GR compatibility equation in the literature is incomplete. Its completion is vital for our case, leading to a stark contrast between GR and NG for totally flat van Stockum rotation curves.
Domain decomposition methods in FVM approach to gravity field modelling.
NASA Astrophysics Data System (ADS)
Macák, Marek
2017-04-01
The finite volume method (FVM) as a numerical method can be straightforwardly implemented for global or local gravity field modelling. This discretization method solves the geodetic boundary value problems in a space domain. In order to obtain precise numerical solutions, it usually requires very refined discretization leading to large-scale parallel computations. To optimize such computations, we present a special class of numerical techniques that are based on a physical decomposition of the global solution domain. The domain decomposition (DD) methods like the Multiplicative Schwarz Method and Additive Schwarz Method are very efficient methods for solving partial differential equations. We briefly present their mathematical formulations and we test their efficiency. Presented numerical experiments are dealing with gravity field modelling. Since there is no need to solve special interface problems between neighbouring subdomains, in our applications we use the overlapping DD methods.
High precision spectroscopy and imaging in THz frequency range
NASA Astrophysics Data System (ADS)
Vaks, Vladimir L.
2014-03-01
Application of microwave methods for development of the THz frequency range has resulted in elaboration of high precision THz spectrometers based on nonstationary effects. The spectrometers characteristics (spectral resolution and sensitivity) meet the requirements for high precision analysis. The gas analyzers, based on the high precision spectrometers, have been successfully applied for analytical investigations of gas impurities in high pure substances. These investigations can be carried out both in absorption cell and in reactor. The devices can be used for ecological monitoring, detecting the components of chemical weapons and explosive in the atmosphere. The great field of THz investigations is the medicine application. Using the THz spectrometers developed one can detect markers for some diseases in exhaled air.
Chaos in Non-Abelian Gauge Fields, Gravity and Cosmology
NASA Astrophysics Data System (ADS)
Matinyan, S. G.
2002-12-01
This talk describes the evolution of studies of chaos in Yang-Mills fields, gravity, and cosmology. The main subject is a BKL regime near the singularity t = 0 and its survival in higher dimensions and in string theory. We also describe the recent progress in the search for particle-like solutions of the Einstein-Yang-Mills system (monopoles and dyons), colored black holes and the problem of their stability.
Computation of the gravity field and its gradient: Some applications
NASA Astrophysics Data System (ADS)
Dubey, C. P.; Tiwari, V. M.
2016-03-01
New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to gravimetry and its application in subsurface exploration. Several efforts have been made to provide a thorough understanding of the complex properties of the gravity gradient tensor and its mathematical formulations to compute GGT. However, there is not much open source software available. Understanding of the tensor properties leads to important guidelines in the development of real three dimensional geological models. We present a MATLAB computational algorithm to calculate the gravity field and full gravity gradient tensor for an undulated surface followed by regular geometries like an infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a rectangular lamina or conglomerations of such bodies and the results are compared with responses using professional software based on different computational schemes. Real subsurface geometries of complex geological structures of interest are approximated through arrangements of vertical rectangular laminas. The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.
High Precision Isotopic Reference Material Program
NASA Astrophysics Data System (ADS)
Mann, J. L.; Vocke, R. D.
2007-12-01
Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.
Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes
NASA Astrophysics Data System (ADS)
Schenkel, Alexander
2012-10-01
The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that these theories have an improved behaviour at short distances, i.e. in the ultraviolet. In part three we study homomorphisms between and connections on noncommutative vector bundles. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of bimodules is clarified. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.
Planetary Gravity Fields and Their Impact on a Spacecraft Trajectory
NASA Technical Reports Server (NTRS)
Weinwurm, G.; Weber, R.
2005-01-01
The present work touches an interdisciplinary aspect of space exploration: the improvement of spacecraft navigation by means of enhanced planetary interior model derivation. The better the bodies in our solar system are known and modelled, the more accurately (and safely) a spacecraft can be navigated. In addition, the information about the internal structure of a planet, moon or any other planetary body can be used in arguments for different theories of solar system evolution. The focus of the work lies in a new approach for modelling the gravity field of small planetary bodies: the implementation of complex ellipsoidal coordinates (figure 1, [4]) for irregularly shaped bodies that cannot be represented well by a straightforward spheroidal approach. In order to carry out the required calculations the computer programme GRASP (Gravity Field of a Planetary Body and its Influence on a Spacecraft Trajectory) has been developed [5]. The programme furthermore allows deriving the impact of the body s gravity field on a spacecraft trajectory and thus permits predictions for future space mission flybys.
The gravity field of the Saturnian satellites Enceladus and Dione
NASA Astrophysics Data System (ADS)
Iess, L.; Jacobson, R.; Ducci, M.; Stevenson, D. J.; Lunine, J. I.; Armstrong, J. W.; Asmar, S.; Racioppa, P.; Rappaport, N. J.; Tortora, P.
2012-12-01
Enceladus and Dione are the innermost moons of the Saturnian system visited by the spacecraft Cassini for gravity investigations. The small surface gravity (0.11 and 0.23 m/s2 respectively for Enceladus and Dione), the short duration of the gravitational interaction and the small number of available flybys (three for Enceladus and just one for Dione) make the determination of their gravity field particularly challenging. In spite of these limitations, we have measured the low degree gravity field of both satellites with sufficient accuracy to draw preliminary geophysical conclusions. The estimation relied primarily on precise range rate data, whose accuracy reached 10 micron/s at 60 s integration times under favorable conditions. In order to disentangle the effects of the spacecraft orbit, the satellite orbit and the satellite gravity, tracking coverage is required not only across closest approach, but also days before and after the flyby. The dynamical model used for the fits includes all relevant gravitational perturbations and the main non-gravitational accelerations (Cassini RTG's anisotropic thermal emission, solar radiation pressure). In addition to the gravity field coefficients a correction to the orbit of the spacecraft and the satellites was also estimated. The first and so far only Dione's flyby with tracking at closest approach occurred on December 12, 2011, at an altitude of 99 km. (A second gravity flyby is scheduled in 2015.) Although the low solar elongation angle caused a significant increase of the plasma noise in Doppler data, the low spacecraft altitude at closest approach and the otherwise favorable geometry allowed an estimation of the harmonic coefficients J2 and C22 to a relative accuracy below 2%. We have produced, in addition to an unconstrained estimate, a second solution where the quadrupole field is constrained by the requirement of hydrostaticity. Doppler residuals are unbiased and consistent with the expected noise in both cases. When
Combination of monthly gravity field solutions from different processing centers
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2015-04-01
Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the
Consolidated science requirements for a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Floberghagen, Rune; Haagmans, Roger; Horwath, Martin; LaBrecque, John; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert
2014-05-01
As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), science requirements for a next generation gravity field mission (beyond GRACE-FO) shall be defined and consolidated. A consolidation of the user requirements is required, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). For this purpose, the science requirements shall be accorded by the different user groups, i.e. hydrology, ocean, cryosphere, solid Earth and atmosphere, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. This initiative shall mainly concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which will be held in September 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.
Wormholes, emergent gauge fields, and the weak gravity conjecture
Harlow, Daniel
2016-01-20
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the ormhole dual to the thermo field double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. Here, I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. Furthermore, this contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.
Wormholes, emergent gauge fields, and the weak gravity conjecture
Harlow, Daniel
2016-01-20
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the ormhole dual to the thermo field double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. Here, I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. Imore » also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. Furthermore, this contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.« less
The Gravity Field of Titan From Four Cassini Flybys
NASA Astrophysics Data System (ADS)
Rappaport, N. J.; Jacobson, R. A.; Iess, L.; Racioppa, P.; Armstrong, J. W.; Asmar, S. W.; Stevenson, D. J.; Tortora, P.; di Benedetto, M.; Graziani, A.; Meriggiola, R.
2008-12-01
Doppler tracking of the Cassini spacecraft across four flybys has been used for a preliminary determination of Titan's gravity field. The flybys occurred on February 27, 2006, December 28, 2006, June 29, 2007 and July 31, 2008, with closest approach altitudes between 1300 and 2100 km. X- and Ka-band Doppler data from each flyby have been combined in a multi-arc solution for the Stokes coefficients up to degree-3. The dynamical models employed in the data fit were limited to the static component of the gravity field and did not include eccentricity tides. Tidal variations of the quadrupole coefficients are expected at a level of a few percents if the surface hides an internal ocean, and are therefore accessible to Cassini measurements. As the flybys were evenly distributed about pericenter and apocenter of Titan's orbit, the current analysis provides a good representation of the static component of the quadrupole field. In one setup, Titan's ephemerides were also updated, leading to improved determination of the satellite's orbit and gravitational parameter (GM). The measured gravity field is dominated by a large, nearly hydrostatic, quadrupole component, consistent with an equilibrium response to the perturbations due to rotation and Saturn gravity gradient. The magnitude of the degree-3 coefficients accounts for about 1-3% of the overall field, with significant gravity disturbances (at a level of 2-5 mgal) over broad regions of the surface. The corresponding peak-to-peak geoid height variations amount to a few tens of meters. The ellipsoidal reference surface shows variations among the axes of a few hundred meters. The near hydrostaticity of Titan justifies the application of Radau-Darwin equilibrium theory, which provides the fluid Love number and the average moment of inertia. The latter is consistent with a partial, but not full, differentiation of the interior. This work was partly conducted at the Jet Propulsion Laboratory, California Institute of Technology
Mars gravity field based on a short-arc technique
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Lorell, J.; Wong, L.; Downs, W.
1975-01-01
The magnitudes of 92 surface mass points at designated locations were estimated from the radio tracking data of the Mariner Mars 1971 (M9) orbiter. This result is the first mass point model of a global field. The derived surface mass distribution correlates positively with the visible topography. The Hellas basin contains a mass deficiency, in contrast to some of the lunar basins which contain mass excesses. The Mars gravity field represented by the four parameters of an optimally located mass point (superimposed on an oblate spheroid) has third- and fourth-degree harmonics comparable to those of the complete model.
Noncommutative scalar field minimally coupled to nonsymmetric gravity
Kouadik, S.; Sefai, D.
2012-06-27
We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.
Gravity Field and Internal Structure of Mercury from MESSENGER
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc;
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
Gravity Field and Internal Structure of Mercury from MESSENGER
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; Johnson, Catherine L.; Torrence, Mark H.; Perry, Mark E.; Rowlands, David D.; Goossens, Sander; Head, James W.; Taylor, Anthony H.
2012-01-01
Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.
The gravity field of Mars: results from Mars Global Surveyor.
Smith, D E; Sjogren, W L; Tyler, G L; Balmino, G; Lemoine, F G; Konopliv, A S
1999-10-01
Observations of the gravity field of Mars reveal a planet that has responded differently in its northern and southern hemispheres to major impacts and volcanic processes. The rough, elevated southern hemisphere has a relatively featureless gravitational signature indicating a state of near-isostatic compensation, whereas the smooth, low northern plains display a wider range of gravitational anomalies that indicates a thinner but stronger surface layer than in the south. The northern hemisphere shows evidence for buried impact basins, although none large enough to explain the hemispheric elevation difference. The gravitational potential signature of Tharsis is approximately axisymmetric and contains the Tharsis Montes but not the Olympus Mons or Alba Patera volcanoes. The gravity signature of Valles Marineris extends into Chryse and provides an estimate of material removed by early fluvial activity.
Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera
NASA Technical Reports Server (NTRS)
Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.
2011-01-01
Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.
Inversion of Gravity and Magnetic Field Data for Tyrrhena Patera
NASA Technical Reports Server (NTRS)
Milbury, C.; Schubert, G.; Raymond, C. A.; Smrekar, S. E.
2011-01-01
Tyrrhena Patera is located to the southeast/northeast of the Isidis/Hellas impact basin. It was geologically active into the Late Amazonian, although the main edifice was formed in the Noachian(approximately 3.7-4.0 Ga). Tyrrhena Patera and the surrounding area contain gravity and magnetic anomalies that appear to be correlated. The results presented here are for the anomalies 1a and 1b (closest to Tyrrhena Patera), however other anomalies in this region have been modeled and will be presented at the conference.The Mars Global Surveyor (MGS) free-air gravity signature of Tyrrhena Patera has been studied by Kiefer, who inferred the existence of an extinct magma chamber below it. The magnetic signature has been mapped by Lillis R. J. et al., who compared electron reflectometer data, analogous to the total magnetic field, for Syrtis Major and Tyrrhena Patera and argued for demagnetization of both volcanoes.
Action and entanglement in gravity and field theory.
Neiman, Yasha
2013-12-27
In nongravitational quantum field theory, the entanglement entropy across a surface depends on the short-distance regularization. Quantum gravity should not require such regularization, and it has been conjectured that the entanglement entropy there is always given by the black hole entropy formula evaluated on the entangling surface. We show that these statements have precise classical counterparts at the level of the action. Specifically, we point out that the action can have a nonadditive imaginary part. In gravity, the latter is fixed by the black hole entropy formula, while in nongravitating theories it is arbitrary. From these classical facts, the entanglement entropy conjecture follows by heuristically applying the relation between actions and wave functions.
Gravitomagnetic effects in quadratic gravity with a scalar field
NASA Astrophysics Data System (ADS)
Finch, Andrew; Said, Jackson Levi
2016-10-01
The two gravitomagnetic effects which influence bodies orbiting around a gravitational source are the geodetic effect and the Lense-Thirring effect. The former describes the precession angle of the axis of a spinning gyroscope while in orbit around a nonrotating gravitational source whereas the latter provides a correction for this angle in the case of a spinning source. In this paper we derive the relevant equations in quadratic gravity and relate them to their equivalents in general relativity. Starting with an investigation into Kepler's third law in quadratic gravity with a scalar field, the effects of an axisymmetric and rotating gravitational source on an orbiting body in a circular, equatorial orbit are introduced.
Wormholes, emergent gauge fields, and the weak gravity conjecture
NASA Astrophysics Data System (ADS)
Harlow, Daniel
2016-01-01
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the wormhole dual to the thermofield double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. I also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. This contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.
Report of the panel on geopotential fields: Gravity field, section 8
NASA Technical Reports Server (NTRS)
Anderson, Allen Joel; Kaula, William M.; Lazarewics, Andrew R.; Lefebvre, Michel; Phillips, Roger J.; Rapp, Richard H.; Rummel, Reinhard F.; Smith, David E.; Tapley, Byron D.; Zlotnick, Victor
1991-01-01
The objective of the Geopotential Panel was to develop a program of data acquisition and model development for the Earth's gravity and magnetic fields that meet the basic science requirements of the solid Earth and ocean studies. Presented here are the requirements for gravity information and models through the end of the century, the present status of our knowledge, data acquisition techniques, and an outline of a program to meet the requirements.
NASA Astrophysics Data System (ADS)
Hardman, K. S.; Everitt, P. J.; McDonald, G. D.; Manju, P.; Wigley, P. B.; Sooriyabandara, M. A.; Kuhn, C. C. N.; Debs, J. E.; Close, J. D.; Robins, N. P.
2016-09-01
A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5 ×1 06 atom F =1 spinor condensate of 87Rb is released into free fall for up to 750 ms and probed with a T =130 ms Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states |mf=1 ,0 ,-1 ⟩, facilitating a simultaneous measurement of the acceleration due to gravity with a 1000 run precision of Δ g /g =1.45 ×10-9 and the magnetic field gradient to a precision of 120 pT /m .
Gravity, Topography, and Magnetic Field of Mercury from Messenger
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.;
2012-01-01
On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe
The role of topography in geodetic gravity field modelling
NASA Technical Reports Server (NTRS)
Forsberg, R.; Sideris, M. G.
1989-01-01
Masses associated with the topography, bathymetry, and its isostatic compensation are a dominant source of gravity field variations, especially at shorter wavelengths. On global scales the topographic/isostatic effects are also significant, except for the lowest harmonics. In practice, though, global effects need not be taken into account as such effects are included in the coefficients of the geopotential reference fields. On local scales, the short-wavelength gravity variations due to the topography may, in rugged terrain, be an order of magnitude larger than other effects. In such cases, explicit or implicit terrain reduction procedures are mandatory in order to obtain good prediction results. Such effects may be computed by space-domain integration or by fast Fourier transformation (FFT) methods. Numerical examples are given for areas of the Canadian Rockies. In principle, good knowledge of the topographic densities is required to produce the smoothest residual field. Densities may be determined from sample measurements or by gravimetric means, but both are somewhat troublesome methods in practice. The use of a standard density, e.g., 2.67 g/cu cm, may often yield satisfactory results and may be put within a consistent theoretical framework. The independence of density assumptions is the key point of the classical Molodensky approach to the geodetic boundary value problem. The Molodensky solutions take into account that land gravity field observations are done on a non-level surface. Molodensky's problem may be solved by integral expansions or more effective FFT methods, but the solution should not be intermixed with the use of terrain reductions. The methods are actually complimentary and may both be required in order to obtain the smoothest possible signal, least prone to aliasing and other effects coming from sparse data coverage, typical of rugged topography.
NASA Astrophysics Data System (ADS)
Wu, Yihao; Zhou, Hao; Zhong, Bo; Luo, Zhicai
2017-08-01
A regional approach using Poisson wavelets is applied for gravity field recovery using the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) gravity gradient tensor, heterogeneous gravimetry data, and altimetry measurements. The added value to the regional model introduced by GOCE data is validated and quantified. The performances of the solutions modeled with different diagonal components of GOCE data and their combinations are investigated. Numerical experiments in a region in Europe show that the effects introduced by GOCE data demonstrate long-wavelength patterns on the centimeter scale in terms of quasi-geoid heights, which may allow reducing the remaining long-wavelength errors in ground-based data, and improve the regional model. The accuracy of the gravimetric quasi-geoid computed with a combination of three diagonal components is improved by 0.6 cm (0.5 cm) in the Netherlands (Belgium) compared to that derived from gravimetry and altimetry data alone, when GOCO05s is used as the reference model. Moreover, the added value from GOCE data reduces the mean values of the misfit between the gravimetric solution and GPS/leveling data. Performances of different components and their combinations are not identical, and the solution with vertical gradients is best when a single component is used. The incorporation of multiple components shows further improvements, and the combination of three components best fits the local GPS/leveling data. Further comparison shows that our solution is the highest quality and may be substituted for existing models for engineering purposes and geophysical investigations over the target area.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2013-04-02
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High-Precision Photometry with the RCT
NASA Astrophysics Data System (ADS)
Everett, M.; Howell, S.; Davis, D.; McGruder, C. H., III; Gelderman, R.; Guinan, E.; Mattox, J. R.; Walter, D. K.
2003-05-01
We plan to conduct a high-precision photometric search for transitting extra-solar planets using the refurbished 1.3 m (50 inch) Robotically-Controlled Telescope (RCT) at Kitt Peak. The photometric capabilities and extra-solar planet search strategy for the RCT are discussed. Refurbishment of the RCT has been made possible by NASA grant NAG58762.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
High precision measurements in crustal dynamic studies
NASA Technical Reports Server (NTRS)
Wyatt, F.; Berger, J.
1984-01-01
The development of high-precision instrumentation for monitoring benchmark stability and evaluating coseismic strain and tilt signals is reviewed. Laser strainmeter and tilt observations are presented. Examples of coseismic deformation in several geographic locations are given. Evidence suggests that the Earth undergoes elastic response to abrupt faulting.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2005-03-08
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
High precision, rapid laser hole drilling
Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.
2007-03-20
A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.
Quantum field theory and gravity in causal sets
NASA Astrophysics Data System (ADS)
Sverdlov, Roman M.
Causal set is a model of space time that allows to reconcile discreteness and manifest relativistic invariance. This is done by viewing space time as finite, partially ordered set. The elements of the set are viewed as points of space time, or events; the partial ordering between them is viewed as causal relations. It has been shown that, in discrete scenario, the information about causal relations between events can, indeed, approximate the metric. The goal of this thesis is to introduce matter fields and their Lagrangians into causal set context. This is a two step process. The first step is to re-define gauge fields, gravity, and distances in such a way that no reference to Lorentz index is made. This is done by defining gauge fields as two-point real valued functions, and gravitational field as causal structure itself. Once the above is done, Lagrangians have to be defined in a way that they don't refer to Lorentzian indices either. This is done by introducing a notion of type 1 and type 2 Lagrangian generators, coupled with respective machinery that "translates" each generator into corresponding Lagrangian. The fields that are subject to these generators are, respectively, defined as type 1 and type 2. The main difference between two kinds of fields is the prediction of different behavior in different dimensions of type 2 fields. However, despite our inability to travel to different dimensions, gravity was shown to be type 2 based on the erroneous predictions of its 4-dimensional behavior if it was viewed as type 1. However, no erroneous predictions are made if non-gravitational fields are viewed as either type 1 or type 2, thus the nature of the latter is still an open question. Finally, an attempt was made to provide interpretation of quantum mechanics that would allow to limit fluctuations of causal structure to allow some topological background. However, due to its controversial nature, it is placed in the Appendix.
Raffai, Peter; Szeifert, Gabor; Matone, Luca; Bartos, Imre; Marka, Zsuzsa; Aso, Yoichi; Ricci, Fulvio; Marka, Szabolcs
2011-10-15
We present an experimental opportunity for the future to measure possible violations to Newton's 1/r{sup 2} law in the 0.1-10 m range using dynamic gravity field generators (DFG) and taking advantage of the exceptional sensitivity of modern interferometric techniques. The placement of a DFG in proximity to one of the interferometer's suspended test masses generates a change in the local gravitational field that can be measured at a high signal to noise ratio. The use of multiple DFGs in a null-experiment configuration allows us to test composition-independent non-Newtonian gravity significantly beyond the present limits. Advanced and third-generation gravitational-wave detectors are representing the state-of-the-art in interferometric distance measurement today, therefore, we illustrate the method through their sensitivity to emphasize the possible scientific reach. Nevertheless, it is expected that due to the technical details of gravitational-wave detectors, DFGs shall likely require dedicated custom-configured interferometry. However, the sensitivity measure we derive is a solid baseline indicating that it is feasible to consider probing orders of magnitude into the pristine parameter well beyond the present experimental limits significantly cutting into the theoretical parameter space.
High-precision gravimetric survey in support of lunar laser ranging at Haleakala, Maui, 1976 - 1978
NASA Technical Reports Server (NTRS)
Schenck, B. E.; Laurila, S. H.
1978-01-01
The planning, observations and adjustment of high-precision gravity survey networks established on the islands of Maui and Oahu as part of the geodetic-geophysical program in support of lunar laser ranging at Haleakala, Maui, Hawaii are described. The gravity survey networks include 43 independently measured gravity differences along the gravity calibration line from Kahului Airport to the summit of Mt. Haleakala, together with some key points close to tidal gauges on Maui, and 40 gravity differences within metropolitan Honolulu. The results of the 1976-1978 survey are compared with surveys made in 1961 and in 1964-1965. All final gravity values are given in the system of the international gravity standardization net 1971 (IGSN 71); values are obtained by subtracting 14.57 mgal from the Potsdam value at the gravity base station at the Hickam Air Force Base, Honolulu.
Gravity Field, Topography, and Interior Structure of Amalthea
NASA Astrophysics Data System (ADS)
Anderson, J. D.; Anabtawi, A.; Jacobson, R. A.; Johnson, T. V.; Lau, E. L.; Moore, W. B.; Schubert, G.; Taylor, A. H.; Thomas, P. C.; Weinwurm, G.
2002-12-01
A close Galileo flyby of Jupiter's inner moon Amalthea (JV) occurred on 5 November 2002. The final aimpoint was selected by the Galileo Radio Science Team on 5 July 2002. The closest approach distance for the selected aimpoint was 221 km from the center of mass, the latitude was - 45.23 Deg and the west longitude was 266.41 Deg (IAU/IAG/COSPAR cartographic coordinate system). In order to achieve an acceptable impact probability (0.15%), and yet fly close to Amalthea, the trajectory was selected from a class of trajectories running parallel to Amalthea's long axis. The Deep Space Network (DSN) had the capability to generate continuous coherent radio Doppler data during the flyby. Such data can be inverted to obtain information on Amalthea's gravity field. Amalthea is irregular and neither a triaxial ellipsoid nor an equilibrium body. It has a volume of about 2.4 x 106 km3, and its best-fit ellipsoid has dimensions 131x73x67 km. Its mass can be determined from the 2002 flyby, and in combination with the volume, a density can be obtained accurate to about 5%, where the error is dominated by the volume uncertainty. Similarly, gravity coefficients (Cnm Snm) can be detected up to fourth degree and order, and the second degree field (quadrupole) can be measured. Topography data are available from Voyager imaging and from images taken with Galileo's solid state imaging system at various times between February and June 1997. By combining the gravity and topography data, new information can be obtained on Amalthea's interior. For example if the gravity coefficients agree with those calculated from the topography, assuming constant density, we can conclude that Amalthea is homogeneous. On the other hand, if the gravity coefficients are smaller than predicted from topography, we can conclude that there is a concentration of mass toward Amalthea's center. We are presenting preliminary pre-publication results at the Fall meeting. This work was sponsored by the Galileo Project
The determination of Dione's gravity field after four Cassini flybys
NASA Astrophysics Data System (ADS)
Zannoni, Marco; Tortora, Paolo; Iess, Luciano; Jacobson, Robert A.; Armstrong, John W.; Asmar, Sami W.
2015-04-01
We present the expected accuracy in the determination of Dione's gravity field obtained through numerical simulations of all radio science flybys currently planned in the entire Cassini mission. During its tour of the Saturn system, Cassini already performed two flybys of Dione dedicated to the determination of its mass and gravity field, in October 2005 and December 2011, respectively. Two additional radio science flybys are planned in June 2015 and August 2015. The analysis of the Doppler data acquired during the closest approach of the second flyby allowed the first estimation of Dione's J2 and C22 but, given the limited amount of data, their estimation has a large correlation and cannot be considered fully reliable. Here we infer the expected final accuracy in the determination of Dione's J2 and C22 by combining the available results from the already performed experiments with numerical simulations of future flybys. The main observables considered in the analysis are two-way and three-way Doppler data obtained from the frequency shift of a highly stable microwave carrier between the spacecraft and the stations of NASA's Deep Space Network. White Gaussian noise was added to the simulated data, with a constant standard deviation for each tracking pass, obtained from an accurate noise budget of the Cassini mission. For the two flybys to be carried out in 2015, we consider a continuous coverage during +/-18 hours around the closest approach, plus one tracking pass 36 hours before and after it. The data analysis is carried out using a global, multi-arc fit, and comparing the independent solutions obtained from each flyby and different multi-arc solutions. The analysis of all four flybys is expected to provide the best, unconstrained, reliable estimation of the full quadrupole gravity field of Dione.
Paramagnetic Liquid Bridge in a Gravity-Compensating Magnetic Field
NASA Technical Reports Server (NTRS)
Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles
1999-01-01
Magnetic levitation was used to stabilize cylindrical columns of a paramagnetic liquid in air between two solid supports. The maximum achievable length to diameter ratio R(sub max) was approx. (3.10 +/- 0.07), very close to the Rayleigh-Plateau limit of pi. For smaller R, the stability of the column was measured as a function of the Bond number, which could be continuously varied by adjusting the strength of the magnetic field. Liquid bridges supported by two solid surfaces have been attracting scientific attention since the time of Rayleigh and Plateau. For a cylindrical bridge of length L and diameter d, it was shown theoretically that in zero gravity the maximum slenderness ratio R (identically = L/d) is pi. The stability and ultimate collapse of such bridges is of interest because of their importance in a number of industrial processes and their potential for low gravity applications. In the presence of gravity, however, the cylindrical shape of an axisymmetric bridge tends to deform, limiting its stability and decreasing the maximum achievable value of R. Theoretical studies have discussed the stability and possible shapes of axisymmetric bridges. Experiments typically are performed in either a Plateau tank, in which the bridge is surrounded by a density-matched immiscible fluid, or in a space-borne microgravity environment. It has been shown, for example, that the stability limit R can be pushed beyond pi by using flow stabilization, by acoustic radiation pressure, or by forming columns in the presence of an axial electric field. In this work, magnetic levitation was used to simulate a low gravity environment and create quasi-cylindrical liquid columns in air. Use of a magnetic field permits us to continuously vary the Bond number B identically equal to (g)(rho)d(exp 2)/4(sigma), where g is the gravitational acceleration, rho is the density of the liquid, and sigma is the surface tension of the liquid in air. The dimensionless Bond number represents the
Gravity field data products from the ARISTOTELES mission.
NASA Astrophysics Data System (ADS)
Balmino, G.
1991-12-01
The ARISTOTELES mission will bring a wealth of homogeneous information about the Earth gravity field enabling new direct and inverse modeling of geophysical structures at various scales, yielding a reference geoid surface of great quality for oceanographic studies, leading to global models of high resolution for versatile applications and in particular precise orbit determination of artificial satellites. The author's purpose is to review the different types of measurements involved in these investigations, the various levels of processing and how they can be phased with the scientific activities, and the expected products. Also, some general schemes are proposed along which the different tasks can be undertaken.
Mercury's Gravity Field from BepiColombo MORE experiment
NASA Astrophysics Data System (ADS)
Marabucci, M.; Genova, A.; Iess, L.
2012-04-01
The Mercury Orbiter Radioscience Experiment (MORE) is one of the main instruments on board the BepiColombo Mercury Planetary Orbiter (MPO), designed to provide an accurate estimation of Mercury's gravity field by means of highly stable, multi-frequency radio links in X and Ka band. The state-of-the-art microwave equipment enables simultaneous two-way links in X/X (7.2 GHz uplink/8.4 GHz downlink), X/Ka (7.2/32.5 GHz) and Ka/Ka band (34/32.5 GHz), providing range rate accuracies of 3 micron/s (at 1000 s integration time) at nearly all elongation angles. Range observables accurate to 20 cm (two-way) will be attained using a novel, wideband (24 Mcps) ranging system, based upon a pseudo-noise modulation scheme. The multifrequency link, adopted for the first time by the Cassini mission to Saturn [1,2], allows a nearly complete cancellation of the plasma noise both in Doppler and range measurements and hence an accurate determination of Mercury's gravity field and ephemerides. The orbit determination of spacecraft in deep space is generally carried out by means of batch filters, for recovering the trajectory and the model parameters (i.e. gravity field coefficients). The complexity of Mercury's environment penalizes strongly the accuracy of the orbit determination because of the non-gravitational perturbations, such as the solar radiation pressure. Although the non-gravitational accelerations of the MPO will be measured by a highly sensitive accelerometer (the Italian Spring Accelerometer, ISA), a classical, global batch filter proved to be inadequate for precise orbit propagation due to numerical instabilities. Therefore, a different approach has been devised, where the information accumulated previously is exploited in a batch-sequential filter. This paper reports on a new set of numerical simulations carried out with this strategy. The simulation setup takes into account the latest changes in the spacecraft design, the mission profile and the tracking system. We
Quantum theory of fields and origin of gravity
Gliner, E.B.
1986-05-01
The unification of the quantum theory of fields and general relativity is supposed possible on the basis of Sakharov's hypothesis that gravity results from variations in vacuum fluctuations. It is shown that under very general conditions this hypothesis leads to Riemannian geometry of the world-lines of free particle motion. The origin of causal spacetime relations is discussed as the problem complementary to that of the source of geometry. This involves an interpretation of the EPR experiment and supports the idea that spacetime relations in microphysics result from adjusting quantum processes to the causality of macroscopic participators.
Electromagnetic field and cylindrical compact objects in modified gravity
NASA Astrophysics Data System (ADS)
Yousaf, Z.; Bhatti, M. Zaeem ul Haq
2016-05-01
In this paper, we have investigated the role of different fluid parameters particularly electromagnetic field and f(R) corrections on the evolution of cylindrical compact object. We have explored the modified field equations, kinematical quantities and dynamical equations. An expression for the mass function has been found in comparison with the Misner-Sharp formalism in modified gravity, after which different mass-radius diagrams are drawn. The coupled dynamical transport equation have been formulated to discuss the role of thermoinertial effects on the inertial mass density of the cylindrical relativistic interior. Finally, we have presented a framework, according to which all possible solutions of the metric f(R)-Maxwell field equations coupled with static fluid can be written through set of scalar functions. It is found that modified gravity induced by Lagrangians f(R) = αR2, f(R) = αR2 - βR and f(R)=α R^2-β R/1+γ R are likely to host more massive cylindrical compact objects with smaller radii as compared to general relativity.
Linear connections with a propagating spin-3 field in gravity
Baekler, Peter; Boulanger, Nicolas; Hehl, Friedrich W.
2006-12-15
We show that Fronsdal's Lagrangian for a free massless spin-3 gauge field in Minkowski spacetime is contained in a general Yang-Mills-like Lagrangian of metric-affine gravity (MAG), the gauge theory of the general affine group in the presence of a metric. Because of the geometric character of MAG, this can best be seen by using Vasiliev's frame formalism for higher-spin gauge fields in which the spin-3 frame is identified with the tracefree nonmetricity one-form associated with the shear generators of GL(n,R). Furthermore, for specific gravitational gauge models in the framework of full nonlinear MAG, exact solutions are constructed, featuring propagating massless and massive spin-3 fields.
Fugacity and concentration gradients in a gravity field
NASA Technical Reports Server (NTRS)
May, C. E.
1986-01-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Fugacity and concentration gradients in a gravity field
NASA Astrophysics Data System (ADS)
May, C. E.
1986-07-01
Equations are reviewed which show that at equilibrium fugacity and concentration gradients can exist in gravitational fields. At equilibrium, the logarithm of the ratio of the fugacities of a species at two different locations in a gravitational field is proportional to the difference in the heights of the two locations and the molecular weight of the species. An analogous relation holds for the concentration ratios in a multicomponent system. The ratio is calculated for a variety of examples. The kinetics for the general process are derived, and the time required to approach equilibrium is calculated for several systems. The following special topics are discussed: ionic solutions, polymers, multiphase systems, hydrostatic pressure, osmotic pressure, and solubility gradients in a gravity field.
Determination of Enceladus' gravity field from Cassini radio science data
NASA Astrophysics Data System (ADS)
Parisi, Marzia; Iess, Luciano; Ducci, Marco
2014-05-01
In May 2012 the Cassini spacecraft completed its last gravity flyby of Saturn's moon Enceladus (identified as E19 in the sequence), following E9 in April 2010 and E12 in November 2010. The multiarc analysis of the gravity data collected during these low-altitude encounters has produced a stable solution for the gravity field of Enceladus, leading to compelling inferences and implications on the interior structure, but also raising new questions on the evolution of this small but yet fascinating icy body. The gravitational signature of the satellite was detected by means of precise Doppler tracking of the Cassini spacecraft around closest approach (±3h) of the three flybys. Cassini tracking system exploits both X/X and X/Ka links, with accuracies that range between 0.02 - 0.09 mm/s at 60 s integration time. Range-rate measurements were processed into a multi-arc least square filter so as to attain a solution for the quadrupole field of Enceladus and its degree-3 zonal harmonic J3, the most important indication of hemispherical asymmetries. In addition to these crucial parameters, corrections to the estimated orbits of Cassini and Enceladus were applied. The inclusion in the dynamical model of the neutral particle drag exerted by Enceladus south polar plumes (1) is essential for a satisfactory orbital fit. The results of the analysis show that Enceladus is indeed characterized by a predominant quadrupole term, with its J2/C22 ratio being that of a body not in hydrostatic equilibrium. The estimate of tesseral degree-2 coefficients (C21, S21 and C22), being statistically close to 0 (at a 3-σ level), imply that the adopted rotational model for the satellite is consistent with the observed gravity field. Furthermore, the estimated value for J3 turned out to be statistically significant (although only about 1/50 of J2) and pointing at a significant hemispherical asymmetry that is consistent with the presence of a regional sea at depth. References (1) C.C. Porco et al
Portable high precision pressure transducer system
NASA Astrophysics Data System (ADS)
Piper, T. C.; Morgan, J. P.; Marchant, N. J.; Bolton, S. M.
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank is presented. Since the response of the pressure transducer is temperature sensitive, it is continually housed in a battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on-board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display.
Portable high precision pressure transducer system
Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.
1994-01-01
A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.
Portable high precision pressure transducer system
Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.
1994-04-26
A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.
High precision neutron inelastic cross section measurements
NASA Astrophysics Data System (ADS)
Olacel, A.; Belloni, F.; Borcea, C.; Boromiza, M.; Dessagne, Ph.; Henning, G.; Kerveno, M.; Negret, A.; Nyman, M.; Pirovano, E.; Plompen, A.
2017-06-01
High precision neutron inelastic scattering cross section data are very important for the development of the new generation of nuclear reactors (Gen IV). Our experiments, performed using the GELINA neutron source and the GAINS spectrometer of the European Commission Joint Research Center, Geel, produce highly reliable and precise cross section data. We will present the details of the setup and the data analysis technique allowing production of such unique results, and we will show examples of two experimental results.
High-precision arithmetic in mathematical physics
Bailey, David H.; Borwein, Jonathan M.
2015-05-12
For many scientific calculations, particularly those involving empirical data, IEEE 32-bit floating-point arithmetic produces results of sufficient accuracy, while for other applications IEEE 64-bit floating-point is more appropriate. But for some very demanding applications, even higher levels of precision are often required. Furthermore, this article discusses the challenge of high-precision computation, in the context of mathematical physics, and highlights what facilities are required to support future computation, in light of emerging developments in computer architecture.
A Revolution in Mars Topography and Gravity and Magnetic Fields
NASA Technical Reports Server (NTRS)
Smith, David E.
2002-01-01
Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.
A Revolution in Mars Topography and Gravity and Magnetic Fields
NASA Technical Reports Server (NTRS)
Smith, David E.
2002-01-01
Since the arrival of the Mars Global Surveyor (MGS) at Mars in September 1997 and the subsequent beginning of observations of the planet there has been a constant stream of surprises and puzzling observations that have kept scientists looking at new 'out of the box' explanations. Observations of the shape and topography have shown a planet with one hemisphere, the southern, several kilometers higher than the north and a northern hemisphere that is so flat and smooth in places that it's difficult to imagine it was not once the bottom of an ocean. And yet the ocean idea presents some enormous difficulties. The measurements of gravity derived from the tracking of MGS have shown that several Mars volcanoes are enormous positive gravity anomalies much larger than we see on Earth and revealed small errors in the orbit of Mars and or Earth. And the magnetic field is found to be composed of a number of extremely large crustal anomalies; but as far as can be ascertained there is no main dipole field such as we have on Earth. Understanding these diverse observations and placing them in the sequence of the evolution of the planet will be a long, challenging but rewarding task.
The use of high-resolution terrain data in gravity field prediction
NASA Technical Reports Server (NTRS)
Groten, E.; Becker, M.; Euler, H.-J.; Hausch, W.; Kling, TH.
1989-01-01
Different types of gravity prediction methods for local and regional gravity evaluation are developed, tested, and compared. Four different test areas were particularly selected in view of different prediction requirements. Also different parts of the spectrum of the gravity field were considered.
Entropy of Egypt's virtual water trade gravity field
NASA Astrophysics Data System (ADS)
Karakatsanis, Georgios; Bierbach, Sandra
2016-04-01
's 20 trading partner countries, for a time frame from 1995 to 2013. The calculations -implemented for each country and each crop- display a network that illustrates the gravity of virtual water trade. It is then possible for us to model the entropy of Egypt's virtual water trade gravity field, via the statistical examination of its spatial fragmentation or continuity for each traded crop and for each water footprint type. Hence, with the distribution's entropy we may conduct a targeted analysis on the comparative advantages of the Egyptian agriculture. Keywords: entropy, virtual water trade, gravity model, agricultural trade, water footprint, water subsidies, comparative advantage References 1. Antonelli, Marta and Martina Sartori (2014), Unfolding the potential of the Virtual Water concept. What is still under debate?, MPRA Paper No. 60501, http://mpra.ub.uni-muenchen.de/60501/ 2. Fracasso, Andrea (2014), A gravity model of virtual water trade, Ecological Economics, Vol. 108, p. 215-228 3. Fracasso, Andrea; Martina Sartori and Stefano Schiavo (2014), Determinants of virtual water flows in the Mediterranean, MPRA Paper No. 60500, https://mpra.ub.uni-muenchen.de/60500/ 4. Yang, H. et al. (2006), Virtual water trade: An assessment of water use efficiency in the international food trade, Hydrology and Earth System Sciences 10, p. 443-454
Vector field models of modified gravity and the dark sector
Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.
2010-05-15
We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.
Modified f( R, T) gravity theory and scalar field cosmology
NASA Astrophysics Data System (ADS)
Singh, Vijay; Singh, C. P.
2015-03-01
In this paper, we explore the behaviors of scalar field in modified f( R, T) gravity theory within the framework of a flat Friedmann-Robertson-Walker cosmological model. The universe is assumed to be filled with two non-interacting matter sources, scalar field (normal or phantom) with scalar potential and matter contribution due to f( R, T) action. We first explore a model where the potential is a constant, and the universe evolves as a de Sitter type. This model is compatible with phantom scalar field only which gives fine tuning with the recent observations. The model exhibits a wide variety of early time physical phenomena that eventually behaves like a cosmological constant at late times. The model shows transition from decelerated to accelerated expansion of the universe. We also explore a model where the scalar field potential and the scale factor evolve exponentially as a scalar field. This model is compatible with normal scalar field only and describes transition from inflationary to the decelerated phase at early times and quintessence to phantom phase at late times. We constraint our results with the recent observational data and find that some values of parameters are consistent with SNe Ia and H( z)+SNe Ia data to describe accelerated expansion only whereas some one give decelerated and accelerated expansions with H( z), WMAP7 and WMAP7+BAO+ H( z) observational data.
Antarctic marine gravity field from high-density satellite altimetry
NASA Technical Reports Server (NTRS)
Sandwell, David T.
1992-01-01
High-density (about 2-km profile spacing) Geosat/GM altimetry profiles were obtained for Antarctic waters (6-deg S to 72 deg S) and converted to vertical gravity gradient, using Laplace's equation to directly calculate gravity gradient from vertical deflection grids and Fourier analysis to construct gravity anomalies from two vertical deflection grids. The resultant gravity grids have resolution and accuracy comparable to shipboard gravity profiles. The obtained gravity maps display many interesting and previously uncharted features, such as a propagating rift wake and a large 'leaky transform' along the Pacific-Antarctic Rise.
Singular boundary method for global gravity field modelling
NASA Astrophysics Data System (ADS)
Cunderlik, Robert
2014-05-01
The singular boundary method (SBM) and method of fundamental solutions (MFS) are meshless boundary collocation techniques that use the fundamental solution of a governing partial differential equation (e.g. the Laplace equation) as their basis functions. They have been developed to avoid singular numerical integration as well as mesh generation in the traditional boundary element method (BEM). SBM have been proposed to overcome a main drawback of MFS - its controversial fictitious boundary outside the domain. The key idea of SBM is to introduce a concept of the origin intensity factors that isolate singularities of the fundamental solution and its derivatives using some appropriate regularization techniques. Consequently, the source points can be placed directly on the real boundary and coincide with the collocation nodes. In this study we deal with SBM applied for high-resolution global gravity field modelling. The first numerical experiment presents a numerical solution to the fixed gravimetric boundary value problem. The achieved results are compared with the numerical solutions obtained by MFS or the direct BEM indicating efficiency of all methods. In the second numerical experiments, SBM is used to derive the geopotential and its first derivatives from the Tzz components of the gravity disturbing tensor observed by the GOCE satellite mission. A determination of the origin intensity factors allows to evaluate the disturbing potential and gravity disturbances directly on the Earth's surface where the source points are located. To achieve high-resolution numerical solutions, the large-scale parallel computations are performed on the cluster with 1TB of the distributed memory and an iterative elimination of far zones' contributions is applied.
Cardiopulmonary Resuscitation in Lunar and Martian Gravity Fields
NASA Technical Reports Server (NTRS)
Sarkar, Subhajit
2004-01-01
Cardiopulmonary resuscitation is required training for all astronauts. No studies thus far have investigated how chest compressions may be affected in lunar and Martian gravities. Therefore a theoretical quantitative study was performed. The maximum downward force an unrestrained person can apply is mg N (g(sub Earth) = 9.78 ms(sup -2), g(sub moon) = 1.63 ms(sup -2), g(sub Mars) = 3.69 ms(sup -2). Tsitlik et a1 (Critical Care Medicine, 1983) described the human sternal elastic force-displacement relationship (compliance) by: F = betaD(sub s) + gammaD(sub s)(sup 2) (beta = 54.9 plus or minus 29.4 Ncm(sup -1) and gamma = 10.8 plus or minus 4.1 Ncm(sup -2)). Maximum forces in the 3 gravitational fields produced by 76 kg (US population mean), 41 kg and 93 kg (masses derived from the limits for astronaut height), produced solutions for compression depth using Tsitlik equations for chests of: mean compliance (beta = 54.9, gamma = 10.8), low compliance (beta = 84.3, gamma = 14.9) and high compliance (beta = 25.5, gamma = 6.7). The mass for minimum adequate adult compression, 3.8 cm (AHA guidelines), was also calculated. 76 kg compresses the mean compliance chest by: Earth, 6.1 cm, Mars, 3.2 cm, Moon, 1.7 cm. In lunar gravity, the high compliance chest is compressed only 3.2 cm by 93 kg, 120 kg being required for 3.8 cm. In Martian gravity, on the mean chest, 93 kg compresses 3.6 cm; 99 kg is required for 3.8 cm. On Mars, the high compliance chest is compressed 4.8 cm with 76 kg, 5.5 cm with 93 kg, with 52 kg required for 3.8 cm.
GRAIL - A Microwave Ranging Instrument to Map Out the Lunar Gravity Field
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Wang, Rabi T.; Klipstein, William M.
2010-01-01
Gravity Recovery and Interior Laboratory, or GRAIL, is a NASA mission to map out the gravity field of the moon to an unprecedented level of detail. The instrument for this mission is based on GRACE (Gravity Recovery and Climate Experiment), an earth-orbiting mission currently mapping out the gravity field of the earth. This paper will describe the similarities and differences between these two instruments with a focus on the microwave ranging measurements used to determine the gravity parameters and the testbed built at Jet Propulsion Laboratory to demonstrate micron level ranging capability. The onboard ultrastable oscillator and RF instruments will be described and noise contributions discussed.
Cold Atom Interferometers Used in Space (CAIUS) for Measuring the Earth's Gravity Field
NASA Astrophysics Data System (ADS)
Carraz, Olivier; Siemes, Christian; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi
2016-08-01
The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.
GRAIL - A Microwave Ranging Instrument to Map Out the Lunar Gravity Field
NASA Technical Reports Server (NTRS)
Enzer, Daphna G.; Wang, Rabi T.; Klipstein, William M.
2010-01-01
Gravity Recovery and Interior Laboratory, or GRAIL, is a NASA mission to map out the gravity field of the moon to an unprecedented level of detail. The instrument for this mission is based on GRACE (Gravity Recovery and Climate Experiment), an earth-orbiting mission currently mapping out the gravity field of the earth. This paper will describe the similarities and differences between these two instruments with a focus on the microwave ranging measurements used to determine the gravity parameters and the testbed built at Jet Propulsion Laboratory to demonstrate micron level ranging capability. The onboard ultrastable oscillator and RF instruments will be described and noise contributions discussed.
Next Generation Gravity Mission: a Step Forward in the Earth's Gravity Field Determination
NASA Astrophysics Data System (ADS)
Silvestrin, P.; Aguirre, M.; Massotti, L.; Cesare, S.
2009-04-01
This paper concerns with the "System Support to Laser Interferometry Tracking Technology Development for Gravity Field Monitoring" study of the European Space Agency, a mission study for monitoring the variations of Earth's gravity field at high resolution (up to harmonic degree 200) over a long time period (>5 years). The mission exploits the use of a heterodyne laser interferometer for the high-resolution measurement of the displacement between two satellites flying at low altitude (around 325 km). More in details, employing a formation of two co-orbiting satellites at 10 km relative distance, a resolution of about 1 nm rms is needed in the inter-satellite distance measurement, and the non gravitational accelerations must be measured with a resolution of about 10-10 m/s2 rms to achieve geoid height variation rate error equal to 0.1 mm/year at degree 200. Starting from the geophysical phenomena to be investigated, a detailed derivation of the mission requirements on the orbit, satellite formation and control, measurement instruments (laser interferometer and accelerometer) was performed using analytical models and numerical simulations, and the satellite GNC (Guidance, Navigation & Control) was approached through different techniques. A possible solution for the optical metrology suitable for the realization of a Next-Generation Gravimetric Mission has been identified, designed, breadboarded and tested to a level of detail sufficient to assess its feasibility. The main elements of this optical metrology are: 1) a Michelson-type heterodyne laser interferometer for measuring the distance variation between the retro-reflectors installed on two satellites. The innovative feature of the interferometer consists in chopping the laser beam with a frequency related to the satellite distance. This enables its proper functioning with a retro-reflector placed at large distances (around 10 km) from the source; 2) an optical device consisting of three small telescopes endowed
Generation of magnetic fields in Einstein-aether gravity
NASA Astrophysics Data System (ADS)
Saga, Shohei; Shiraishi, Maresuke; Ichiki, Kiyotomo; Sugiyama, Naoshi
2013-05-01
Recently the lower bounds of the intergalactic magnetic fields 10-16˜10-20G are set by gamma-ray observations while it is unlikely to generate such large scale magnetic fields through astrophysical processes. It is known that large scale magnetic fields could be generated if there exist cosmological vector-mode perturbations in the primordial plasma. The vector mode, however, has only a decaying solution in general relativity if the plasma consists of perfect fluids. In order to investigate a possible mechanism of magnetogenesis in the primordial plasma, here we consider cosmological perturbations in the Einstein-aether gravity model, in which the aether field can act as a new source of vector metric perturbations. The vector metric perturbations induce the velocity difference between baryons and photons which then generate magnetic fields. This velocity difference arises from effects at the second order in the tight-coupling approximation. We estimate the angular power spectra of temperature and B-mode polarization of the cosmic microwave background anisotropies in this model and put a rough constraint on the aether field parameters from latest observations. We then estimate the power spectrum of associated magnetic fields around the recombination epoch within this limit. It is found that the spectrum has a characteristic peak at k=0.1hMpc-1, and at that scale the amplitude can be as large as B˜10-22G where the upper bound comes from cosmic microwave background temperature anisotropies. The magnetic fields with this amplitude can be seeds of large scale magnetic fields observed today if the sufficient dynamo mechanism takes place. Analytic interpretation for the power spectra is also given.
Self-accelerating massive gravity: Time for field fluctuations
NASA Astrophysics Data System (ADS)
Wyman, Mark; Hu, Wayne; Gratia, Pierre
2013-04-01
The ghost-free theory of massive gravity has exact solutions where the effective stress energy generated by the graviton mass term is a cosmological constant for any isotropic metric. Since they are exact, these solutions mimic a cosmological constant in the presence of any matter-induced isotropic metric perturbation. In the Stückelberg formulation, this stress energy is carried entirely by the spatial Stückelberg field. We show that any stress energy carried by fluctuations in the spatial field away from the exact solution always decays away in an expanding universe. However, the dynamics of the spatial Stückelberg field perturbation depend on the background temporal Stückelberg field, which is equivalent to the unitary gauge time coordinate. This dependence resolves an apparent conflict in the existing literature by showing that there is a special unitary time choice for which the field dynamics and energy density perturbations vanish identically. In general, the isotropic system has a single dynamical degree of freedom requiring two sets of initial data; however, only one of these initial data choices will affect the observable metric. Finally, we construct cosmological solutions with a well-defined perturbative initial value formulation and comment on alternate solutions that evolve to singularities.
Dark energy or modified gravity? An effective field theory approach
Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu
2013-08-01
We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.
Performance of FFT methods in local gravity field modelling
NASA Technical Reports Server (NTRS)
Forsberg, Rene; Solheim, Dag
1989-01-01
Fast Fourier transform (FFT) methods provide a fast and efficient means of processing large amounts of gravity or geoid data in local gravity field modelling. The FFT methods, however, has a number of theoretical and practical limitations, especially the use of flat-earth approximation, and the requirements for gridded data. In spite of this the method often yields excellent results in practice when compared to other more rigorous (and computationally expensive) methods, such as least-squares collocation. The good performance of the FFT methods illustrate that the theoretical approximations are offset by the capability of taking into account more data in larger areas, especially important for geoid predictions. For best results good data gridding algorithms are essential. In practice truncated collocation approaches may be used. For large areas at high latitudes the gridding must be done using suitable map projections such as UTM, to avoid trivial errors caused by the meridian convergence. The FFT methods are compared to ground truth data in New Mexico (xi, eta from delta g), Scandinavia (N from delta g, the geoid fits to 15 cm over 2000 km), and areas of the Atlantic (delta g from satellite altimetry using Wiener filtering). In all cases the FFT methods yields results comparable or superior to other methods.
The Effect of Gravity Fields on Cellular Gene Expression
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie
1999-01-01
Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24
The Effect of Gravity Fields on Cellular Gene Expression
NASA Technical Reports Server (NTRS)
Hughes-Fulford, Millie
1999-01-01
Early theoretical analysis predicted that microgravity effects on the isolated cell would be minuscule at the subcellular level; however, these speculations have not proven true in the real world. Astronauts experience a significant bone and muscle loss in as little as 2 weeks of spaceflight and changes are seen at the cellular level soon after exposure to microgravity. Changes in biological systems may be primarily due to the lack of gravity and the resulting loss of mechanical stress on tissues and cells. Recent ground and flight studies examining the effects of gravity or mechanical stress on cells demonstrate marked changes in gene expression when relatively small changes in mechanical forces or gravity fields were made. Several immediate early genes (IEG) like c-fos and c-myc are induced by mechanical stimulation within minutes. In contrast, several investigators report that the absence of mechanical forces during space flight result in decreased sera response element (SRE) activity and attenuation of expression of IEGs such as c-fos, c-jun and cox-2 mRNAs. Clearly, these early changes in gene expression may have long term consequences on mechanically sensitive cells. In our early studies on STS-56, we reported four major changes in the osteoblast; 1) prostaglandin synthesis in flight, 2) changes in cellular morphology, 3) altered actin cytoskeleton and 4) reduced osteoblast growth after four days exposure to microgravity. Initially, it was believed that changes in fibronectin (FN) RNA, FN protein synthesis or subsequent FN matrix formation might account for the changes in cytoskeleton and/ or reduction of growth. However our recent studies on Biorack (STS-76, STS-81 and STS-84), using ground and in-flight 1-G controls, demonstrated that fibronectin synthesis and matrix formation were normal in microgravity. In addition, in our most recent Biorack paper, our laboratory has documented that relative protein synthesis and mRNA synthesis are not changed after 24
High precision detector robot arm system
Shu, Deming; Chu, Yong
2017-01-31
A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.
Cosmology from group field theory formalism for quantum gravity.
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2013-07-19
We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.
New space missions for mapping the Earth's gravity field
NASA Astrophysics Data System (ADS)
Balmino, Georges
The knowledge of the gravity field of the Earth and of an associated reference surface of altitudes (the geoid) is necessary for geodesy, for improving theories of the physics of the planet interior and for modeling the ocean circulation in absolute. This knowledge comes from several observing techniques but, although it benefited from the artificial satellite approach, it remains incomplete and erroneous in places. Within a reasonable future, a substantial improvement can only come from new space techniques. Thanks to the intense lobbying by the concerned geoscientists, the coming decade will see the advent of three techniques already proposed in the seventies and to be implemented by different space agencies; these are the CHAMP, GRACE and GOCE missions.
Gravity field, shape, and moment of inertia of Titan.
Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W
2010-03-12
Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.
Mars Gravity Field: Combined Viking and Mariner 9 Results
NASA Technical Reports Server (NTRS)
Gapcynski, J. P.; Tolson, R. H.; Michael, W. H., Jr.
1977-01-01
A Martian gravity field of sixth degree and order has been determined from an analysis of a combination of Viking and Mariner 9 spacecraft Doppler tracking data. A short-arc technique utilizing approximately 4 hours of data centered at periapsis was used, and the data covered 16 arcs from Mariner 9 and 17 arcs from the Viking orbiters. The data were selected so as to obtain a uniform distribution of periapsis longitudes over the surface of Mars, and both S band and X band data were used where possible to eliminate charged particle effects. Inclusion of the Viking data arcs altered the Martian geoid features, as defined by previous short-arc analysis techniques of Mariner 9 data, by about 80 m in the southern hemisphere and about 140 m in the northern hemisphere.
Research about the high precision temperature measurement
NASA Astrophysics Data System (ADS)
Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.
2012-12-01
High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.
Kalman Filtered Daily GRACE Gravity Field Solutions in Near Real-Time- First Steps
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Mayer-Gurr, Torsten
2016-08-01
As part of the EGSIEM (European Gravity Service for Improved Emergency Management) project, a technology demonstrator for a near real-time (NRT) gravity field service will be established. In preparation of the operational phase, several aspects of the daily gravity field processing chain at Graz University of Technology have been inspected in order to improve the gravity field solutions and move towards NRT. The effect of these adaptions is investigated by comparison with post-processing and forward-only filtered solutions and evaluated using in-situ data.
Gravity field improvement using GPS data from Topex/Poseidon - A covariance analysis
NASA Technical Reports Server (NTRS)
Bertiger, Willy I.; Wu, J. T.; Wu, Sien C.
1990-01-01
A covariance analysis is performed using a realistic scenario for processing 10 days of GPS data, to obtain the expected improvement to the GEM-T2 gravity field. The gravity bin technique has been refined to compute the covariance matrix associated with the spherical harmonic gravity field. It is shown that the GPS data from one ten-day arc of Topex/Poseidon with no a priori can improve medium degree and order (3-26) sigmas for the parameters in the GEM-T2 gravity field by more than an order of magnitude.
NASA Astrophysics Data System (ADS)
Galanti, E.; Finocchiaro, S.; Kaspi, Y.; Iess, L.
2013-12-01
The upcoming high precision measurements of the Juno flybys around Jupiter, have the potential of improving the estimation of Jupiter's gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be over a limited latitudinal and longitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially with regards to the Jovian wind structure and its depth at high latitudes. In this work we propose a new iterative method for the estimation of the Jupiter gravity field, using the Juno expected measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model together with an optimization procedure is used to obtain an initial solution of the gravitational moments. As upper limit constraints, the model applies the gravity harmonics obtained from a thermal wind model in which the winds are assumed to penetrate barotropicaly along the direction of the spin axis. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an adjoint optimization method, the optimal penetration depth of the winds is computed. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an uncertainties estimate, to be used as constraints for a new calculation of the gravity field. We test this method for several cases, some with zonal harmonics only, and some with the full gravity field including longitudinal variations that include the tesseral harmonics as well. The results show that using this method some of the gravitational moments are fitted better to the 'observed' ones, mainly due to the fact that the thermal wind model is taking into consideration the wind structure and depth
Propagation of acoustic pulses in random gravity wave fields
NASA Astrophysics Data System (ADS)
Millet, Christophe; de La Camara, Alvaro; Lott, François
2015-11-01
A linear solution modeling the interaction between an incoming acoustic wave and a randomly perturbed atmosphere is developed, using the normal mode method. The wave mode structure is determined by a sound speed profile that is confining. The environmental uncertainty is described by a stochastic field obtained with a multiwave stochastic parameterization of gravity waves (GW). Using the propagating modes of the unperturbed atmosphere, the wave propagation problem is reduced to solving a system of ordinary differential equations. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime. In this regime, the coupling between the acoustic pulse and the randomly perturbed waveguides is weak and the propagation distance must be large enough for the wave to experience significant scattering. A general expression for the pressure far-field is derived in terms of saddle-point contributions. The saddle-points are obtained from a WKB approximation of the vertical eigenvalue problem. We present preliminary results that show how statistics of the transmitted signal are related to some eigenvalues and how an ``optimal'' GW field can trigger large deviations in the acoustic signals. The present model is used to explain the variability of infrasound signals.
The use of satellites in gravity field determination and model adjustment
NASA Astrophysics Data System (ADS)
Visser, Petrus Nicolaas Anna Maria
1992-06-01
Methods to improve gravity field models of the Earth with available data from satellite observations are proposed and discussed. In principle, all types of satellite observations mentioned give information of the satellite orbit perturbations and in conjunction the Earth's gravity field, because the satellite orbits are affected most by the Earth's gravity field. Therefore, two subjects are addressed: representation forms of the gravity field of the Earth and the theory of satellite orbit perturbations. An analytical orbit perturbation theory is presented and shown to be sufficiently accurate for describing satellite orbit perturbations if certain conditions are fulfilled. Gravity field adjustment experiments using the analytical orbit perturbation theory are discussed using real satellite observations. These observations consisted of Seasat laser range measurements and crossover differences, and of Geosat altimeter measurements and crossover differences. A look into the future, particularly relating to the ARISTOTELES (Applications and Research Involving Space Techniques for the Observation of the Earth's field from Low Earth Orbit Spacecraft) mission, is given.
Three dimensional gravity field modelling of the Chicxulub impact crater
NASA Astrophysics Data System (ADS)
Hildebrand, A.; Millar, J.; Pilkington, M.; Lawton, D.
2003-04-01
Three dimensional gravity field modeling of the Chicxulub crater’s gravity field has refined our working structural model [e.g. 1, 2], and differs somewhat from the results of [3]. The 3D gravity model establishes that the central uplift is within reach of scientific drilling. The 3D gravity modeling method employed is that of [4]. Modelling results particularly reveal the crater’s central structures. The central uplift is a twin peaked structural high with vergence towards the southwest as previously indicated by 2D models [1] and consistent with seismic refraction results [5]. An arm extends towards the northeast, in contrast to the steep gradients that bound the central uplift to the southwest. The width of the uplift at 4 km depth is ~45 km broadening to ~60 km at 5 km depth consistent with 2D modeling. The central uplift rises into the melt sheet to ~2 km depth in contrast to the results of [4] where a top of ~4 km was obtained. However, as refraction results [5] independently constrain the central uplift width and the central uplift density contrast is limited (+0.11gcm-3 here), this is probably a realistic result. The shape of the modeled central uplift is radically different from that advocated by [6] who, based on seismic refraction results, proposed a cup-shaped central uplift (concave top) with a top at ~3 km depth, but of similar width. This interpretation requires substantial departure from density velocity proportionality, and we doubt that the central uplift has an annular top. The filling of the CDC, which we interpret as melt, is revealed as a body slightly elongated in a NE-SW sense with a size consistent with previous 2D model results. With the density contrast measured from the top of the melt sheet, its base lies near ~4 km is obtained consistent with the result of [4]. This depth is dependent upon the density contrast used (-0.15 g/cc), however, and all the mass deficiency need not be melt. The derived melt volume is 1.5 X 104 km3
Receiver Clock Modelling for GPS-only Gravity Field Recovery from GRACE
NASA Astrophysics Data System (ADS)
Orliac, E.; Jaeggi, A.; Dach, R.; Weinbach, U.; Schoen, S.
2012-04-01
Previous results from the authors [1, 2] show that for stations connected to highly stable clocks (H-Maser), kinematic Precise Point Positioning (PPP) solutions for the height component can be highly improved. A reduction of up to 70% of the standard deviation of the kinematic position could be observed if the receiver clock is modelled with a second order polynomial instead of estimating independent epoch-wise clock corrections. Although those initial results are very promising, the applicability of such an approach is rather limited since very stable clocks are hardly portable. The only "truly" kinematic objects carrying a GPS receiver connected to a stable clock are the two GRACE satellites. In this paper we investigate the impact of the deterministic modelling of the receiver clocks in the determination of kinematic positions for the two GRACE satellites. Solutions from both contributing institutions, namely the Astronomical Institute of University of Bern and the Institut für Erdmessung of Leibniz Universität Hannover are considered. Comparisons with standard kinematic and reduced-dynamic orbit solutions will be provided and technical aspects discussed. Finally, based on one month of data, gravity fields from all kinematic solutions are derived and compared. [1] Orliac, E., R. Dach, D. Voithenleitner, U. Hugentobler, K. Wang, M. Rothacher, and D. Svehla (2011). Clock Modeling for GNSS Applications, AGU Fall Meeting 2011, San Francisco, USA, December 5-9, 2011. [2] Weinbach, U., and S. Schön (2011). GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP, J. Adv. Space Res., 47(2):229-238 DOI: 10.1016/j.asr.2010.06.031.
Towards strong field tests of beyond Horndeski gravity theories
NASA Astrophysics Data System (ADS)
Sakstein, Jeremy; Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo
2017-03-01
Theories of gravity in the beyond Horndeski class encompass a wide range of scalar-tensor theories that will be tested on cosmological scales over the coming decade. In this work, we investigate the possibility of testing them in the strong field regime by looking at the properties of compact objects—neutron, hyperon, and quark stars—embedded in an asymptotically de Sitter space-time, for a specific subclass of theories. We extend previous works to include slow rotation and find a relation between the dimensionless moment of inertia (I ¯ =I c2/GNM3 ) and the compactness C =GNM /R c2 (an I ¯-C relation), independent of the equation of state, that is reminiscent of but distinct from the general relativity prediction. Several of our equations of state contain hyperons and free quarks, allowing us to revisit the hyperon puzzle. We find that the maximum mass of hyperon stars can be larger than 2 M⊙ for small values of the beyond Horndeski parameter, thus providing a resolution of the hyperon puzzle based on modified gravity. Moreover, stable quark stars exist when hyperonic stars are unstable, which means that the phase transition from hyperon to quark stars is predicted just as in general relativity (GR), albeit with larger quark star masses. Two important and potentially observable consequences of some of the theories we consider are the existence of neutron stars in a range of masses significantly higher than in GR and I ¯-C relations that differ from their GR counterparts. In the former case, we find objects that, if observed, could not be accounted for in GR because they violate the usual GR causality condition. We end by discussing several difficult technical issues that remain to be addressed in order to reach more realistic predictions that may be tested using gravitational wave searches or neutron star observations.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
High precision tracking method for solar telescopes
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Yang, Yunfei; Feng, Song; Ji, Kanfan; Lin, Jiaben; Zeng, Zhen; Wang, Bingxiang
2016-07-01
A high-precision real-time tracking method for solar telescopes was introduced in this paper based on the barycenter of full-disk solar images algorithm. To make sure the calculation was accurate and reliable, a series of strictly logic limits were set, such as setting gray threshold, judging the displacement of the barycenter and measuring the deviation from a perfect disk. A closed-loop control system was designed in the method. We located the barycenter of the full-disk images which recorded by large array CCD image sensor in real time and eliminate noise caused by bad weather, such as clouds and fog. The displacement of the barycenter was analyzed and transferred into control signal drove the motor to adjust the axis of telescope. An Ethernet interface was also provided for remote control. In the observation, the precision of this new method was better than 1″/30 minutes.
High precision radial velocities with GIANO spectra
NASA Astrophysics Data System (ADS)
Carleo, I.; Sanna, N.; Gratton, R.; Benatti, S.; Bonavita, M.; Oliva, E.; Origlia, L.; Desidera, S.; Claudi, R.; Sissa, E.
2016-06-01
Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 μm) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H-magnitudes: for H ˜ 5 we obtain an rms scatter of ˜ 10 m s-1, while for H ˜ 9 the standard deviation increases to ˜ 50 ÷ 80 m s-1. The corresponding theoretical error expectations are ˜ 4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.
Mars gravity field via the short data arcs
NASA Technical Reports Server (NTRS)
Sjogren, W. L.; Lorell, J.; Reinbold, S. J.; Wimberly, R. N.
1973-01-01
Short arc reduction of satellite Mars tracking data shows that: (1) There is one large gravity high covering the region of Nix Olympica and the three peaks to the east (about 110 deg longitude). It has an amplitude of 50 milligals at 2200-km altitude and implies a surface mass anomaly times greater than any on earth; (2) there are no large negative gravity anomalies comparable to the positive; and (3) the large 3000-km canyon seems to originate in a gravity high and end in a gravity low.
Ensemble prediction and intercomparison analysis of GRACE time-variable gravity field models
NASA Astrophysics Data System (ADS)
Sakumura, C.; Bettadpur, S.; Bruinsma, S.
2014-03-01
Precise measurements of the Earth's time-varying gravitational field from the NASA/Deutsches Zentrum für Luft- und Raumfahrt Gravity Recovery and Climate Experiment (GRACE) mission allow unprecedented tracking of the transport of mass across and underneath the surface of the Earth and give insight into secular, seasonal, and subseasonal variations in the global water supply. Several groups produce these estimates, and while the various gravity fields are similar, differences in processing strategies and tuning parameters result in solutions with regionally specific variations and error patterns. This study examined the spatial, temporal, and spectral variations between the different gravity field products and developed an ensemble gravity field solution from the products of four such analysis centers. The solutions were found to lie within a certain analysis scatter regardless of the local relative water height variation, and the ensemble model is clearly seen to reduce the noise in the gravity field solutions within the available scatter of the solutions.
Unification of gravity and quantum field theory from extended noncommutative geometry
NASA Astrophysics Data System (ADS)
Yu, Hefu; Ma, Bo-Qiang
2017-02-01
We make biframe and quaternion extensions on the noncommutative geometry, and construct the biframe spacetime for the unification of gravity and quantum field theory (QFT). The extended geometry distinguishes between the ordinary spacetime based on the frame bundle and an extra non-coordinate spacetime based on the biframe bundle constructed by our extensions. The ordinary spacetime frame is globally flat and plays the role as the spacetime frame in which the fields of the Standard Model are defined. The non-coordinate frame is locally flat and is the gravity spacetime frame. The field defined in both frames of such “flat” biframe spacetime can be quantized and plays the role as the gravity field which couples with all the fields to connect the gravity effect with the Standard Model. Thus, we provide a geometric paradigm in which gravity and QFT can be unified.
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1988-01-01
A series of fluid dynamical experiments in variable viscosity fluid have been made and are in progress to study: (1) the onset of small scale convection relative to lithosphere growth rate; (2) the influence of paired fracture zones in modulating the horizontal scale of small scale convection; (3) the influence of the mantle vertical viscosity structure on determing the mode of small scale convection; and (4) the 3-D and temporal evolution of flows beneath a high viscosity lid. These experiments extend and amplify the present experimental work that has produced small scale convection beneath a downward-moving solidification front. Rapid growth of a high viscosity lid stifles the early onset of convection such that convection only begins once the lithosphere is older than a certain minimum age. The interplay of this convection with both the structure of the lithosphere and mantle provide a fertile field of investigation into the origin of geoid, gravity, and topographic anomalies in the central Pacific. These highly correlated fields of intermediate wavelength (approximately 200 to 2000 km), but not the larger wavelengths. It is the ultimate, dynamic origin of this class of anomalies that is sought in this investigation.
Gravity capillary waves in fluid layers under normal electric fields.
Papageorgiou, Demetrios T; Petropoulos, Peter G; Vanden-Broeck, Jean-Marc
2005-11-01
We study the formation and dynamics of interfacial waves on a perfect dielectric ideal fluid layer of finite depth, wetting a solid wall, when the region above the fluid is hydrodynamically passive but has constant permittivity, for example, air. The wall is held at a constant electric potential and a second electrode having a different potential is placed parallel to the wall and infinitely far from it. In the unperturbed state the interface is flat and the normal horizontally uniform electric field is piecewise constant in the liquid and air. We derive a system of long wave nonlinear evolution equations valid for interfacial amplitudes as large as the unperturbed layer depth and which retain gravity, surface tension and electric field effects. It is shown that for given physical parameters there exists a critical value of the voltage potential difference between electrodes, below which the system is dispersive and above which a band of unstable waves is possible centered around a finite wavenumber. In the former case nonlinear traveling waves are calculated and their stability is studied, while in the latter case the instability leads to thinning of the layer with the interface touching down in finite time. A similarity solution of the second kind is found to be dominant near the singularity, and the scaling exponents are determined using analysis and computations.
Testing strong-field gravity with tidal Love numbers
NASA Astrophysics Data System (ADS)
Cardoso, Vitor; Franzin, Edgardo; Maselli, Andrea; Pani, Paolo; Raposo, Guilherme
2017-04-01
The tidal Love numbers (TLNs) encode the deformability of a self-gravitating object immersed in a tidal environment and depend significantly both on the object's internal structure and on the dynamics of the gravitational field. An intriguing result in classical general relativity is the vanishing of the TLNs of black holes. We extend this result in three ways, aiming at testing the nature of compact objects: (i) we compute the TLNs of exotic compact objects, including different families of boson stars, gravastars, wormholes, and other toy models for quantum corrections at the horizon scale. In the black-hole limit, we find a universal logarithmic dependence of the TLNs on the location of the surface. (ii) We compute the TLNs of black holes beyond vacuum general relativity, including Einstein-Maxwell, Brans-Dicke, and Chern-Simons gravity. (iii) We assess the ability of present and future gravitational-wave detectors to measure the TLNs of these objects, including the first analysis of TLNs with LISA. Both LIGO, ET, and LISA can impose interesting constraints on boson stars, while LISA is able to probe even extremely compact objects. We argue that the TLNs provide a smoking gun of new physics at the horizon scale and that future gravitational-wave measurements of the TLNs in a binary inspiral provide a novel way to test black holes and general relativity in the strong-field regime.
The Weak Field Limit of Higher Order Gravity
NASA Astrophysics Data System (ADS)
Stabile, Arturo
2008-09-01
The Higher Order Theories of Gravity - f(R, R_{alphabeta}R(alphabeta) ) - theory, where R is the Ricci scalar, R_{alphabeta} is the Ricci tensor and f is any analytic function - have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies and other relevant astrophysical phenomena. It is a crucial point testing these alternative theories in the so called weak field and newtonian limit of a f(R, R_{alphabeta}R(alphabeta) ) - theory. With this "perturbation technique" it is possible to find spherically symmetric solutions and compare them with the ones of General Relativity. On both approaches we found a modification of General Relativity: the behaviour of gravitational potential presents a modification Yukawa - like in the newtonian case and a massive propagation in the weak field case. When the modification of the theory is removed (i.e. f(R, R_{alphabeta}R(alphabeta) ) = R, Hilbert - Einstein lagrangian) we find the usual outcomes of General Relativity. Also the Noether symmetries technique has been investigated to find some time independent spherically symmetric solutions.
Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun
2014-06-01
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
Clear and measurable signature of modified gravity in the galaxy velocity field.
Hellwing, Wojciech A; Barreira, Alexandre; Frenk, Carlos S; Li, Baojiu; Cole, Shaun
2014-06-06
The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v_{12} are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ_{12}(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.
Moon Exploration from "apollo" Magnetic and Gravity Field Data
NASA Astrophysics Data System (ADS)
Kharitonov, Andrey
Recently, the great value is given to various researches of the Moon, as nearest nature satellite of the Earth, because there is preparation for forthcoming starts on the Moon of the American, European, Russian, Chinese, Indian new Orbiters and Landers. Designing of International Lu-nar bases is planned also. Therefore, in the near future the series of the questions connected with placing of International Lunar bases which coordinates substantially should to be connected with heterogeneity of the internal structure of the Moon can become especially interesting. If in the Moon it will be possible to find large congestions of water ice and those chemical elements which stocks in the Earth are limited this area of the Moon can become perspective for Inter-national Lunar bases. To solve a question of research of the deep structure of the Moon in the locations of International Lunar bases, competently, without excessive expenses for start new various under the form of the Lunar orbit of automatic space vehicles (polar, equatorial, inclined to the rotation axis) and their altitude of flight, which also not always were connected with investigation programs of measured fields (video observation, radio-frequency sounding, mag-netic, gravity), is possible if already from the available information of space vehicles APOLLO, SMART1, KAGUYA, LCROSS, LRO, CHANDRAYAAN-1, CHANG'E-1 it will be possible to analyse simultaneously some various fields, at different altitudes of measuring over the surface (20-300 km) of the Moon. The experimental data of the radial component magnetic field and gravity field the Moon measured at different altitudes, in its equatorial part have been analysed for the research of the deep structure of the Moon. This data has been received as a result of start of space vehicles -APOLLO-15 and APOLLO-16 (USA), and also the Russian space vehicles "LUNOHOD". Authors had been used the data of a magnetic field of the Moon at flight altitude 160, 100, 75, 30, 0 km
Multidimensional Image Analysis for High Precision Radiation Therapy.
Arimura, Hidetaka; Soufi, Mazen; Haekal, Mohammad
2017-01-01
High precision radiation therapy (HPRT) has been improved by utilizing conventional image engineering technologies. However, different frameworks are necessary for further improvement of HPRT. This review paper attempted to define the multidimensional image and what multidimensional image analysis is, which may be feasible for increasing the accuracy of HPRT. A number of researches in radiation therapy field have been introduced to understand the multidimensional image analysis. Multidimensional image analysis could greatly assist clinical staffs in radiation therapy planning, treatment, and prediction of treatment outcomes.
Strategies for high-precision Global Positioning System orbit determination
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Border, James S.
1987-01-01
Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
MOND as the weak field limit of an extended metric theory of gravity with torsion
NASA Astrophysics Data System (ADS)
Barrientos, E.; Mendoza, S.
2017-08-01
In this article we construct a relativistic extended metric theory of gravity, for which its weak field limit reduces to the non-relativistic MOdified Newtonian Dynamics regime of gravity. The theory is fully covariant and local. The way to achieve this is by introducing torsion in the description of gravity as well as with the addition of a particular function of the matter Lagrangian into the gravitational action.
Recent results on modelling the spatial and temporal structure of the Earth's gravity field.
Moore, P; Zhang, Q; Alothman, A
2006-04-15
The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission.
Periodic orbits around areostationary points in the Martian gravity field
NASA Astrophysics Data System (ADS)
Liu, Xiao-Dong; Baoyin, Hexi; Ma, Xing-Rui
2012-05-01
This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.
The Gravity Field and Interior Structure of Enceladus
NASA Astrophysics Data System (ADS)
Iess, L.; Stevenson, D. J.; Parisi, M.; Hemingway, D.; Jacobson, R. A.; Lunine, J. I.; Nimmo, F.; Armstrong, J. W.; Asmar, S. W.; Ducci, M.; Tortora, P.
2014-04-01
The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50°. The estimated values for the largest quadrupole harmonic coefficients (106J2 = 5435.2 ± 34.9, 106C22 = 1549.8 ± 15.6, 1σ) and their ratio (J2/C22 = 3.51 ± 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR2, where M is the mass and R is the radius, suggesting a differentiated body with a low-density core.
The gravity field and interior structure of Enceladus.
Iess, L; Stevenson, D J; Parisi, M; Hemingway, D; Jacobson, R A; Lunine, J I; Nimmo, F; Armstrong, J W; Asmar, S W; Ducci, M; Tortora, P
2014-04-04
The small and active Saturnian moon Enceladus is one of the primary targets of the Cassini mission. We determined the quadrupole gravity field of Enceladus and its hemispherical asymmetry using Doppler data from three spacecraft flybys. Our results indicate the presence of a negative mass anomaly in the south-polar region, largely compensated by a positive subsurface anomaly compatible with the presence of a regional subsurface sea at depths of 30 to 40 kilometers and extending up to south latitudes of about 50°. The estimated values for the largest quadrupole harmonic coefficients (10(6)J2 = 5435.2 ± 34.9, 10(6)C22 = 1549.8 ± 15.6, 1σ) and their ratio (J2/C22 = 3.51 ± 0.05) indicate that the body deviates mildly from hydrostatic equilibrium. The moment of inertia is around 0.335MR(2), where M is the mass and R is the radius, suggesting a differentiated body with a low-density core.
Constraining Jupiter's internal flows using Juno magnetic and gravity measurements
NASA Astrophysics Data System (ADS)
Galanti, E.; Cao, H.; Kaspi, Y.
2017-08-01
Deciphering the flow below the cloud-level of Jupiter remains a critical milestone in understanding Jupiter's internal structure and dynamics. The expected high-precision Juno measurements of both the gravity field and the magnetic field might help to reach this goal. Here we propose a method that combines both fields to constrain the depth-dependent flow field inside Jupiter. This method is based on a mean-field electrodynamic balance that relates the flow field to the anomalous magnetic field, and geostrophic balance that relates the flow field to the anomalous gravity field. We find that the flow field has two distinct regions of influence: an upper region in which the flow affects mostly the gravity field and a lower region in which the flow affects mostly the magnetic field. An optimization procedure allows to reach a unified flow structure that is consistent with both the gravity and the magnetic fields.
Highly Parallel, High-Precision Numerical Integration
Bailey, David H.; Borwein, Jonathan M.
2005-04-22
This paper describes a scheme for rapidly computing numerical values of definite integrals to very high accuracy, ranging from ordinary machine precision to hundreds or thousands of digits, even for functions with singularities or infinite derivatives at endpoints. Such a scheme is of interest not only in computational physics and computational chemistry, but also in experimental mathematics, where high-precision numerical values of definite integrals can be used to numerically discover new identities. This paper discusses techniques for a parallel implementation of this scheme, then presents performance results for 1-D and 2-D test suites. Results are also given for a certain problem from mathematical physics, which features a difficult singularity, confirming a conjecture to 20,000 digit accuracy. The performance rate for this latter calculation on 1024 CPUs is 690 Gflop/s. We believe that this and one other 20,000-digit integral evaluation that we report are the highest-precision non-trivial numerical integrations performed to date.
High precision laser photometer for laser optics
NASA Astrophysics Data System (ADS)
Zhao, Yuan'an; Hu, Guohang; Cao, Zhen; Liu, Shijie; Zhu, Meiping; Shao, Jianda
2017-06-01
Development of laser systems requires optical components with high performance, and a high-precision double-beam laser photometer was designed and established to measure the optical performance at 1064nm. Double beam design and lock-in technique was applied to decrease the impact of light energy instability and electric noise. Pairs of samples were placed symmetrically to eliminate beam displacement, and laser scattering imaging technique was applied to determine the influence of surface defect on the optical performance. Based on the above techniques, transmittance and reflection of pairs of optics were obtained, and the measurement precision was improved to 0.06%. Different types of optical loss, such as total loss, volume loss, residual reflection and surface scattering loss, were obtained from the transmittance and reflection measurement of samples with different thickness. Comparison of optical performance of the test points with and without surface defects, the influence of surface defects on optical performance was determined. The optical performance of Nd-glass at 1064nm were measured as an example. Different types of optical loss and the influence of surface defects on the optical loss was determined.
High precision innovative micropump for artificial pancreas
NASA Astrophysics Data System (ADS)
Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.
2014-03-01
The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.
High Precision Spectroscopy of Neutral Beryllium-9
NASA Astrophysics Data System (ADS)
Lau, Chui Yu; Williams, Will
2015-05-01
We report on the progress of high precision spectroscopy of the 2s2p singlet and triplet states in beryllium-9. Our goal is to improve the experimental precision on the energy levels of the 2s2p triplet J = 0, 1, and 2 states by a factor of 500, 100, and 500 respectively in order to delineate various theoretical predictions. The goal for the 2s2p singlet (J = 1) state is to improve the experimental precision on the energy level by a factor of 600 as a test of quantum electrodynamics. Our experimental setup consists of an oven capable of 1400 C that produces a collimated beam of neutral beryllium-9. The triplet states are probed with a 455 nm ECDL stabilized to a tellurium-210 line. The singlet state is probed with 235nm light from a frequency quadrupled titanium sapphire laser, where the frequency doubled light at 470 nm is stabilized to another tellurium-210 line. We also present our progress on improving the absolute accuracy of our frequency reference by using an ultrastable/low drift fiber coupled cavity.
High-precision laser machining of ceramics
NASA Astrophysics Data System (ADS)
Toenshoff, Hans K.; von Alvensleben, Ferdinand; Graumann, Christoph; Willmann, Guido
1998-09-01
The increasing demand for highly developed ceramic materials for various applications calls for innovative machining technologies yielding high accuracy and efficiency. Associated problems with conventional, i.e. mechanical methods, are unacceptable tool wear as well as force induced damages on ceramic components. Furthermore, the established grinding techniques often meet their limits if accurate complex 2D or 3D structures are required. In contrast to insufficient mechanical processes, UV-laser precision machining of ceramics offers not only a valuable technological alternative but a considerable economical aspect as well. In particular, excimer lasers provide a multitude of advantages for applications in high precision and micro technology. Within the UV wavelength range and pulses emitted in the nano-second region, minimal thermal effects on ceramics and polymers are observed. Thus, the ablation geometry can be controlled precisely in the lateral and vertical directions. In this paper, the excimer laser machining technology developed at the Laser Zentrum Hannover is explained. Representing current and future industrial applications, examinations concerning the precision cutting of alumina (Al2O3), and HF-composite materials, the ablation of ferrite ceramics for precision inductors and the structuring of SiC sealing and bearing rings are presented.
The delineation and interpretation of the earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, Bruce D.
1989-01-01
In an attempt to understand the mechanical interaction of a growing lithosphere containing fracture zones with small and large scale mantle convection, which gives rise to geoid anomalies in oceanic regions, a series of fluid dynamical experiments is in progress to investigate: (1) the influence of lithosphere structure, fluid depth and viscosity field on the onset, scale, and evolution of sublithospheric convection; (2) the role of this convection in determining the rate of growth of lithosphere, especially in light of the flattening of the lithosphere bathymetry and heat flow at late times; and (3) combining the results of both numerical and laboratory experiments to decide the dominate factors in producing geoid anomalies in oceanic regions through the thermo-mechanical interaction of the lithosphere and subjacent mantle. The clear existence of small scale convection associated with a downward propagating solidification front (i.e., the lithosphere) and a larger scale flow associated with a discontinuous upward heat flux (i.e., a fracture zone) has been shown. The flows exist simultaneously and each may have a significant role in deciding the thermal evolution of the lithosphere and in understanding the relation of shallow mantle convection to deep mantle convection. This overall process is reflected in the geoid, gravity, and topographic anomalies in the north-central Pacific. These highly correlated fields of intermediate wavelength (approx. 200 to 2000 km) show isostatic compensation by a thin lithosphere for shorter (less than or equal to approx. 500 km), but not the longer, wavelengths. The ultimate, dynamic origin of this class of anomalies is being investigated.
The mass, gravity field, and ephemeris of Mercury
NASA Technical Reports Server (NTRS)
Anderson, John D.; Esposito, Pasquale B.; Lau, Eunice L.; Trager, Gayle B.; Colombo, Giuseppe
1987-01-01
In the present gravity analysis of Mariner 10/Deep Space Network radio Doppler and range data for Mercury encounters in March 1974 and March 1975, a combined least-squares fit to the Doppler data has determined two second-degree gravity harmonics that are referred to a 2439-km equatorial radius. It is noted that the 1-sigma error limits on the gravity results encompass the possibility that harmonics other than J2 and C22 significantly differ from zero. The Deep Space Network radio range data obtained with Mariner 10 are primarily applicable to such improvements of Mercury's ephemeris as the more precise determination of perihelion precession.
Gravity Field Recovery from the Cartwheel Formation by the Semi-analytical Approach
NASA Astrophysics Data System (ADS)
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico; Zhong, Min; Zhou, Zebing
2016-04-01
Past and current gravimetric satellite missions have contributed drastically to our knowledge of the Earth's gravity field. Nevertheless, several geoscience disciplines push for even higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure. With respect to other methods, one significant advantage of the semi-analytical approach is its effective pre-mission error assessment for gravity field missions. The semi-analytical approach builds a linear analytical relationship between the Fourier spectrum of the observables and the spherical harmonic spectrum of the gravity field. The spectral link between observables and gravity field parameters is given by the transfer coefficients, which constitutes the observation model. In connection with a stochastic model, it can be used for pre-mission error assessment of gravity field mission. The cartwheel formation is formed by two satellites on elliptic orbits in the same plane. The time dependent ranging will be considered in the transfer coefficients via convolution including the series expansion of the eccentricity functions. The transfer coefficients are applied to assess the error patterns, which are caused by different orientation of the cartwheel for range-rate and range acceleration. This work will present the isotropy and magnitude of the formal errors of the gravity field coefficients, for different orientations of the cartwheel.
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
NASA Astrophysics Data System (ADS)
Bertone, S.; Arnold, D.; Jäggi, A.; Beutler, G.; Mervart, L.
2015-10-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory [1]) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment)mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth [2]. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we dis- cuss our latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software.
Monolithic interferometer for high precision radial velocity measurements
NASA Astrophysics Data System (ADS)
Wan, Xiaoke; Ge, Jian; Wang, Ji; Lee, Brian
2009-08-01
In high precision radial velocity (RV) measurements for extrasolar planets searching and studies, a stable wide field Michelson interferometer is very critical in Exoplanet Tracker (ET) instruments. Adopting a new design, monolithic interferometers are homogenous and continuous in thermal expansion, and field compensation and thermal compensation are both satisfied. Interferometer design and fabrication are decrypted in details. In performance evaluations, field angle is typically 22° and thermal sensitivity is typically -1.7 x 10-6/°C, which corresponds to ~500 m/s /°C in RV scale. In interferometer stability monitoring using a wavelength stabilized laser source, phase shift data was continuously recorded for nearly seven days. Appling a frequent calibration every 30 minutes as in typical star observations, the interferometer instability contributes less than 1.4 m/s in RV error, in a conservative estimation.
The measurement of surface gravity
NASA Technical Reports Server (NTRS)
Harrison, J. C.; Lacoste, L. J. B.
1978-01-01
LaCoste and Romberg G and D gravity meters are normally employed when attempting high precision measurement of gravity differences on land. The capabilities and limitations of these instruments are discussed.
The Earth's gravity field from satellite geodesy - a 30 year adventure.
NASA Astrophysics Data System (ADS)
Rapp, R. H.
1991-12-01
The first information on the Earth's gravitational field from artificial satellite observations was published in 1958. The next years have seen a dramatic improvement in the resolution and accuracy of the series representation of the Earth's gravity field. The improvements have taken place slowly taking advantage of improved measurement accuracy and the increasing number of satellites. The proposed ARISTOTELES mission would provide the opportunity to take a significant leap in improving our knowledge of the Earth's gravity field.
Chiba, Takeshi; Yamaguchi, Masahide E-mail: gucci@phys.aoyama.ac.jp
2009-01-15
As an extension of our previous study, we derive slow-roll conditions for multiple scalar fields which are non-minimally coupled with gravity and for generalized gravity theories of the form f({phi}, R). We provide simple formulae of the spectral indices of scalar/tensor perturbations in terms of the slow-roll parameters.
Revision of geodetic parameters. [determination of earth's gravity field with laser data
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.; Williamson, M. R.
1975-01-01
Laser data from nine satellites and 12 stations are combined with surface-gravity data to obtain spherical harmonics representing the geopotential complete through degree and order 18. This laser-data-only solution provides a reasonable improvement to the gravity field.
A 10 km-resolution synthetic Venus gravity field model based on topography
NASA Astrophysics Data System (ADS)
Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.
2015-02-01
A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.
Gravity fields of the terrestrial planets - Long-wavelength anomalies and tectonics
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Lambeck, K.
1980-01-01
The paper discusses the gravity and topography data available for four terrestrial planets (earth, moon, Mars, and Venus), with particular emphasis on drawing inferences regarding the relationship of long-wavelength anomalies to tectonics. The discussion covers statistical analyses of global planetary gravity fields, relationship of gravity anomalies to elastic and viscoelastic models, relationship of gravity anomalies to convection models, finite strength, and isostasy (or the state of isostatic compensation). The cases of the earth and the moon are discussed in some detail. A summary of comparative planetology is presented.
Topographic/isostatic evaluation of new-generation GOCE gravity field models
NASA Astrophysics Data System (ADS)
Hirt, C.; Kuhn, M.; Featherstone, W. E.; GöTtl, F.
2012-05-01
We use gravity implied by the Earth's rock-equivalent topography (RET) and modeled isostatic compensation masses to evaluate the new global gravity field models (GGMs) from European Space Agency (ESA)'s Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite gravimetry mission. The topography is now reasonably well-known over most of the Earth's landmasses, and also where conventional GGM evaluation is prohibitive due to the lack (or unavailability) of ground-truth gravity data. We construct a spherical harmonic representation of Earth's RET to derive band-limited topography-implied gravity, and test the somewhat simplistic Airy/Heiskanen and Pratt/Hayford hypotheses of isostatic compensation, but which did not improve the agreement between gravity from the uncompensated RET and GOCE. The third-generation GOCE GGMs (based on 12 months of space gravimetry) resolve the Earth's gravity field effectively up to spherical harmonic degree ˜200-220 (˜90-100 km resolution). Such scales could not be resolved from satellites before GOCE. From the three different GOCE processing philosophies currently in use by ESA, the time-wise and direct approaches exhibit the highest sensitivity to short-scale gravity recovery, being better than the space-wise approach. Our topography-implied gravity comparisons bring evidence of improvements from GOCE to gravity field knowledge over the Himalayas, Africa, the Andes, Papua New Guinea and Antarctic regions. In attenuated form, GOCE captures topography-implied gravity signals up to degree ˜250 (˜80 km resolution), suggesting that other signals (originating, e.g., from the crust-mantle boundary and buried loads) are captured as well, which might now improve our knowledge on the Earth's lithosphere structure at previously unresolved spatial scales.
NASA Technical Reports Server (NTRS)
Barriot, J. P.; Balmino, G.
1992-01-01
A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.
NASA Astrophysics Data System (ADS)
Barriot, J. P.; Balmino, G.
1992-09-01
A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.
Dipole magnetic field of neutron stars in f(R) gravity
NASA Astrophysics Data System (ADS)
Bakirova, Elizat; Folomeev, Vladimir
2016-10-01
The structure of an interior dipole magnetic field of neutron stars in f( R) gravity is considered. For this purpose, the perturbative approaches are used when both the deviations from general relativity and the deformations of spherically symmetric configurations associated with the presence of the magnetic field are assumed to be small. Solutions are constructed which describe relativistic, spherically symmetric configurations consisting of a gravitating magnetized perfect fluid modeled by a realistic equation of state. Comparing configurations from general relativity and modified gravity, we reveal possible differences in the structure of the magnetic field which occur in considering neutron stars in modified gravity.
High precision optical surface metrology using deflectometry
NASA Astrophysics Data System (ADS)
Huang, Run
Software Configurable Optical Test System (SCOTS) developed at University of Arizona is a highly efficient optical metrology technique based on the principle of deflectometry, which can achieve comparable accuracy with interferometry but with low-cost hardware. In a SCOTS test, an LCD display is used to generate structured light pattern to illuminate the test optics and the reflected light is captured by a digital camera. The surface slope of test optics is determined by triangulation of the display pixels, test optics, and the camera. The surface shape is obtained by the integration of the slopes. Comparing to interferometry, which has long served as an accurate non-contact optical metrology technology, SCOTS overcomes the limitation of dynamic range and sensitivity to environment. It is able to achieve high dynamic range slope measurement without requiring null optics. In this dissertation, the sensitivity and performance of the test system have been analyzed comprehensively. Sophisticated calibrations of system components have been investigated and implemented in different metrology projects to push this technology to a higher accuracy including low-order terms. A compact on-axis SCOTS system lowered the testing geometry sensitivity in the metrology of 1-meter highly aspheric secondary mirror of Large Binocular Telescope. Sub-nm accuracy was achieved in testing a high precision elliptical X-ray mirror by using reference calibration. A well-calibrated SCOTS was successfully constructed and is, at the time of writing this dissertation, being used to provide surface metrology feedback for the fabrication of the primary mirror of Daniel K. Inouye Solar Telescope which is a 4-meter off-axis parabola with more than 8 mm aspherical departure.
Fiber Scrambling for High Precision Spectrographs
NASA Astrophysics Data System (ADS)
Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.
2011-05-01
The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.
Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery
NASA Astrophysics Data System (ADS)
Dahle, C.; Arnold, D.; Jäggi, A.
2017-06-01
The Swarm mission consists of three identical satellites equipped with GPS receivers and orbiting in near-polar low Earth orbits. Thus, they can be used to determine the Earth's gravity field by means of high-low satellite-to-satellite tracking (hl-SST). However, first results by several groups have revealed systematic errors both in precise science orbits and resulting gravity field solutions which are caused by ionospheric disturbances affecting the quality of Swarm GPS observations. Looking at gravity field solutions, the errors lead to systematic artefacts located in two bands north and south of the geomagnetic equator. In order to reduce these artefacts, erroneous GPS observations can be identified and rejected before orbit and gravity field processing, but this may also lead to slight degradations of orbit and low degree gravity field coefficient quality. Since the problems were believed to be receiver-specific, the GPS tracking loop bandwidths onboard Swarm have been widened several times starting in May 2015. The influence of these tracking loop updates on Swarm orbits and, particularly, gravity field solutions is investigated in this work. The main findings are that the first updates increasing the bandwidth from 0.25 Hz to 0.5 Hz help to significantly improve the quality of Swarm gravity fields and that the improvements are even larger than those achieved by GPS data rejection. It is also shown that these improvements are indeed due to an improved quality of GPS observations around the geomagnetic equator, and not due to missing observations in these regions. As the ionospheric activity is rather low in the most recent months, the effect of the tracking loop updates in summer 2016 cannot be properly assessed yet. Nevertheless, the quality of Swarm gravity field solutions has already improved after the first updates which is especially beneficial in view of filling the upcoming gap between the GRACE and GRACE Follow-on missions with hl-SST gravity products.
Bubble Detachment in Variable Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Chang, Shinan; Iacona, Estelle
2002-01-01
The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.
Bubble Detachment in Variable Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Chang, Shinan; Iacona, Estelle
2002-01-01
The objective of the research is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Situations were considered with both uniform and nonuniform electric fields. Bubble formation and detachment were visualized in terrestrial gravity as well as for several levels of reduced gravity (lunar, martian and microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angles at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment in an initially uniform electric field was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. The results of the study indicate that the level of gravity and the electric field magnitude significantly affect bubble behavior as well as shape, volume and dimensions.
Effective field theory of gravity for extended objects
Goldberger, Walter D.; Rothstein, Ira Z.
2006-05-15
Using effective field theory (EFT) methods we present a Lagrangian formalism which describes the dynamics of nonrelativistic extended objects coupled to gravity. The formalism is relevant to understanding the gravitational radiation power spectra emitted by binary star systems, an important class of candidate signals for gravitational wave observatories such as LIGO or VIRGO. The EFT allows for a clean separation of the three relevant scales: r{sub s}, the size of the compact objects, r, the orbital radius, and r/v, the wavelength of the physical radiation (where the velocity v is the expansion parameter). In the EFT, radiation is systematically included in the v expansion without the need to separate integrals into near zones and radiation zones. Using the EFT, we show that the renormalization of ultraviolet divergences which arise at v{sup 6} in post-Newtonian (PN) calculations requires the presence of two nonminimal worldline gravitational couplings linear in the Ricci curvature. However, these operators can be removed by a redefinition of the metric tensor, so that the divergences arising at v{sup 6} have no physically observable effect. Because in the EFT finite size features are encoded in the coefficients of nonminimal couplings, this implies a simple proof of the decoupling of internal structure for spinless objects to at least order v{sup 6}. Neglecting absorptive effects, we find that the power counting rules of the EFT indicate that the next set of short distance operators, which are quadratic in the curvature and are associated with tidal deformations, does not play a role until order v{sup 10}. These operators, which encapsulate finite size properties of the sources, have coefficients that can be fixed by a matching calculation. By including the most general set of such operators, the EFT allows one to work within a point-particle theory to arbitrary orders in v.
Particle drift in the field of internal gravity wave
NASA Astrophysics Data System (ADS)
Grinshpun, S. A.; Redcoborody, Yu. N.; Kravchuk, S. G.; Zadorozhnii, V. I.; Zhdanov, V. I.
2000-08-01
Similarly to an acoustic wave, an internal gravity wave (IGW) can cause the drift of a dispersed component in a two-component system, e.g. in a hydrosol or an aerosol. The IGW-caused particle drift may play a significance role in many natural processes occurring in very large water reservoirs or air volumes and thus is of interest for atmospheric and oceanic research. The analytical and numerical calculations of the IGW-caused particle drift motion were performed in this study for the following two sets of conditions: (i) propagating IGW in a horizontal infinite waveguide and (ii) standing IGW in a rectangular resonator. It was shown that particles concentrate in certain areas of an IGW field as a result of their migration. When IGW is propagating in an infinite waveguide, the particle drift causes the vertical stratification and horizontal unidirectional motion. The particle size affects the shape of the particle trajectories and the vertical component of the drift velocity in an infinite waveguide. In contrast, the shape of trajectories in the IGW rectangular resonator is not affected by the particle size and IGW intensity. The IGW-caused particle drift was shown to result in purification of a two-component system or in its "structurization" (the formation of purified areas of the fluid alternating with the areas loaded with particles). These effects were found to be low energy consuming: ∼10 J/m3 of liquid. However, the particle migration in the infinite waveguide and rectangular resonator is a very slow process, and the time needed for an efficient purification of a fluid increases quickly with the decrease of particle size. The particle coagulation is expected to significantly accelerate the fluid purification. Another way to reduce this characteristic time is proposed through utilizing the horizontal component of the particle drift in the semi-infinite IGW waveguide.
On the existence of neutral directions of the normal gravity field
NASA Astrophysics Data System (ADS)
Manoussakis, Gerassimos; Milas, Paraskevas
2014-03-01
A neutral direction of a gravity field is a direction along which the components of the gravity vector remain locally unchanged. A neutral point is a point at which there exists a neutral direction. This research will focus on the neutral directions for the normal gravity vector. The necessary condition for the existence of neutral directions at an arbitrary point P above the ellipsoid is that the determinant of the E¨otv¨os matrix must be equal to zero. The slopes of these directions depend on the value of the principal curvatures and the curvature of the plumbline. In all cases the neutral directions lie on the meridian plane at point P. An interesting case is when the vertical gradient of normal gravity is equal to zero. Finally in the last two paragraphs we show that neutral points are not isolated in the three dimensional space and give a numerical example for the case of a spherical gravity field.
Aerodynamic window for high precision laser drilling
NASA Astrophysics Data System (ADS)
Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth
2007-05-01
High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the
Thermal design and flight validation for high precision camera
NASA Astrophysics Data System (ADS)
Meng, Henghui; Sun, Lixia; Zhang, Chuanqiang; Geng, Liyin
2015-10-01
High precision camera, designed for advanced optical system, with a wide field of vision, high resolution and fast response, has a wild range of applications. As the main payload for spacecraft, the optical remote sensor is mounted exposed to the space, which means it should have a reliable optical performance in harsh space environment during lifetime. Because of the special optical characteristic, imaging path should be accurate, and less thermal deformation for the optical parts is required in the working process, so the high precision camera has a high level requirement for temperature. High resolution space camera is generally required to own the capability of adapting to space thermal environments. The flexible satellite's change of rolling attitude affects the temperature distribution of the camera and makes a difference to optical performance. The thermal control design of space camera is presented, and analysis the temperature data in orbit to prove the thermal design correct. It is proved that the rolling attitude has more influence on outer parts and less influence on inner parts, and active thermal control can weaken the influence of rolling attitude.
High precision wavelength meter with Fabry-Perot optics
NASA Astrophysics Data System (ADS)
Konishi, N.; Suzuki, T.; Taira, Y.; Kato, H.; Kasuya, T.
1981-07-01
A high precision wavelength meter in the visible is described, which is based on a Fabry-Perot interferometer with several etalons of different resolution. The interference fringe pattern projected on a photo-diode array detector is computationally processed to give a stepwise refinement of the wavelength value to any adjusted accuracy. The present model intends to provide digital and real-time values of high precision wavelength for dye-laser spectroscopy, and to serve as a monitor or as a pilot for wavelength control of a dye-laser source of nanosecond pulses. The model is, therefore, designed with particular emphasis on its short-pulse capability and on-line mode of operation as well as on its high sensitivity and resolution. Some arrangements of essential necessity are involved therein, such as to avoid an errorneous wavelength readout for a noisy incidence of pulsed field. The ultimate accuracy of wavelength measurement is prescribed by the resolving power of the thickest etalon employed. As applied to the pulsed source, the model determines the wavelength to the accuracy of ±one part in 107 for even a single shot nanosecond incidence of a fraction of μJ energy. The design and performance are described in connection to pulsed dye-laser incidence.
Spectral analysis of the full gravity tensor
NASA Astrophysics Data System (ADS)
Rummel, R.; van Gelderen, M.
1992-10-01
It is shown that, when the five independent components of the gravity tensor are grouped into (Gamma-zz), (Gamma-xz, Gamma-yz), and (Gamma-xx - Gamma-yy, 2Gamma-xy) sets and expanded into an infinite series of pure-spin spherical harmonic tensors, it is possible to derive simple eigenvalue connections between these three sets and the spherical harmonic expansion of the gravity potential. The three eigenvalues are (n + 1)(n + 2), -(n + 2) sq rt of n(n + 1), and sq rt of (n - 1)n(n + 1)(n + 2). The joint ESA and NASA Aristoteles mission is designed to measure with high precision the tensor components Gamma-zz, Gamma-yz, and Gamma-yy, which will make it possible to determine the global gravity field in six months time with a high precision.
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data
NASA Astrophysics Data System (ADS)
Konopliv, Alex S.; Park, Ryan S.; Folkner, William M.
2016-08-01
The Mars gravity field resolution is mostly determined by the lower altitude Mars Reconnaissance Orbiter (MRO) tracking data. With nearly four years of additional MRO and Mars Odyssey tracking data since the last JPL released gravity field MRO110C and lander tracking from the MER Opportunity Rover, the gravity field and orientation of Mars have been improved. The new field, MRO120D, extends the maximum spherical harmonic degree slightly to 120, improves the determination of the higher degree coefficients as demonstrated by improved correlation with topography and reduces the uncertainty in the corresponding Mars orientation parameters by up to a factor of two versus previously combined gravity and orientation solutions. The new precession solution is ψ˙ = - 7608.3 ± 2.1 mas / yr and is consistent with previous results but with a reduced uncertainty by 40%. The Love number solution, k2 = 0.169 ± 0.006, also shows a similar result to previous studies.
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
On axionic field ranges, loopholes and the weak gravity conjecture
Brown, Jon; Cottrell, William; Shiu, Gary; ...
2016-04-05
Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
On axionic field ranges, loopholes and the weak gravity conjecture
Brown, Jon; Cottrell, William; Shiu, Gary; Soler, Pablo
2016-04-05
Here, we clarify some aspects of the impact that the Weak Gravity Conjecture has on models of (generalized) natural inflation. In particular we address certain technical and conceptual concerns recently raised regarding the stringent constraints and conclusions found in our previous work. We also point out the difficulties faced by attempts to evade these constraints. Furthermore, these new considerations improve the understanding of the quantum gravity constraints we found and further support the conclusion that it remains challenging for axions to drive natural inflation.
Precise measurement of gravity variations during a total solar eclipse
NASA Astrophysics Data System (ADS)
Wang, Qian-Shen; Yang, Xin-She; Wu, Chuan-Zhen; Guo, Hong-Gang; Liu, Hong-Chen; Hua, Chang-Chai
2000-08-01
The variations of gravity were measured with a high precision LaCoste-Romberg D gravimeter during a total solar eclipse to investigate the effect of a solar eclipse on the gravitational field. The observed anomaly (7.0+/-2.7)×10-8 m/s2during the eclipse implies that there may be a shielding property of gravitation.
Hardman, K S; Everitt, P J; McDonald, G D; Manju, P; Wigley, P B; Sooriyabandara, M A; Kuhn, C C N; Debs, J E; Close, J D; Robins, N P
2016-09-23
A Bose-Einstein condensate is used as an atomic source for a high precision sensor. A 5×10^{6} atom F=1 spinor condensate of ^{87}Rb is released into free fall for up to 750 ms and probed with a T=130 ms Mach-Zehnder atom interferometer based on Bragg transitions. The Bragg interferometer simultaneously addresses the three magnetic states |m_{f}=1,0,-1⟩, facilitating a simultaneous measurement of the acceleration due to gravity with a 1000 run precision of Δg/g=1.45×10^{-9} and the magnetic field gradient to a precision of 120 pT/m.
Status of GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Beutler, Gerhard; Jäggi, Adrian; Bock, Heike; Mervart, Leos; Meyer, Ulrich; Bertone, Stefano
To determine the gravity field of the Moon, the NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the Earth orbiting GRACE (Gravity Recovery and Climate Experiment) mission. The use of ultra-precise inter-satellite Ka-band ranging observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field with unprecedented resolution on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach. Ka-band range-rate (KBRR) observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degrees n≤ 200, also arc- and satellite-specific parameters, like initial state vectors and pseudo-stochastic pulses, are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. In addition, especially for the data of the primary mission phase, it is essential to estimate time bias parameters for the KBRR observations. We compare our results from the nominal mission phase with the official Level 2 gravity field models first released in October 2013. Our results demonstrate that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields and when replacing sophisticated models of non-gravitational accelerations by appropriately spaced and constrained pseudo-stochastic pulses. Yet, the usage of preprocessed position data as pseudo observations is not fully satisfying and is potentially
High-precision ground-based photometry of exoplanets
NASA Astrophysics Data System (ADS)
de Mooij, Ernst J. W.; Jayawardhana, Ray
2013-04-01
High-precision photometry of transiting exoplanet systems has contributed significantly to our understanding of the properties of their atmospheres. The best targets are the bright exoplanet systems, for which the high number of photons allow very high signal-to-noise ratios. Most of the current instruments are not optimised for these high-precision measurements, either they have a large read-out overhead to reduce the readnoise and/or their field-of-view is limited, preventing simultaneous observations of both the target and a reference star. Recently we have proposed a new wide-field imager for the Observatoir de Mont-Megantic optimised for these bright systems (PI: Jayawardhana). The instruments has a dual beam design and a field-of-view of 17' by 17'. The cameras have a read-out time of 2 seconds, significantly reducing read-out overheads. Over the past years we have obtained significant experience with how to reach the high precision required for the characterisation of exoplanet atmospheres. Based on our experience we provide the following advice:
Triyanta; Zen, F. P.; Supardi; Wardaya, A. Y.
2010-12-23
Gauge theory, under the framework of quantum field theory, has successfully described three fundamental interactions: electromagnetic, weak, and strong interactions. Problems of describing the gravitational interaction in a similar manner has not been satisfied yet until now. Teleparallel gravity (TG) is one proposal describing gravitational field as a gauge field. This theory is quite new and it is equivalent to Einstein's general relativity. But as gravitational field in TG is expressed by torsion, rather than curvature, it gives an alternative framework for solving problems on gravity. This paper will present solution of the dynamical equation of abelian vector fields under the framework of TG in the Bianchi type I spacetime.
Effect of gravity and electric field on shape and surface tension of drops
NASA Astrophysics Data System (ADS)
Bateni, A.; Ababneh, A.; Elliott, J. A. W.; Neumann, A. W.; Amirfazli, A.
Experimental work was performed in reduced gravity conditions using a novel methodology to investigate the effect of external forces, i.e., gravity and electric field, on shape and surface tension of drops. The new methodology, called axisymmetric drop-shape analysis - electric fields (ADSA-EF), can generate numerical drop profiles as a function of surface tension, at any given gravity and/or electric field. When an image of an experimental drop is available, ADSA-EF can calculate the true value of the surface tension by matching the numerical profiles with the shape of the experimental drop, taking the surface tension as an adjustable parameter. ADSA-EF is a novel technique, which can be employed to predict and simulate drop shapes in the electric field, determine the effect of external fields on surface tensions, or measure surface tensions in reduced gravity conditions, where other drop-shape techniques are not applicable. The results of the reduced gravity experiment suggested that the electric field significantly increases the surface tension of water. No significant effect of gravity on surface tension was detected.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
Latest Moon gravity field solutions from GRAIL data using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Bertone, Stefano; Arnold, Daniel; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos; Meyer, Ulrich
2016-04-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. In this presentation we discuss the latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese GNSS Software. We recently presented our solutions up to d/o 200, where KBRR observations and position data (GNI1B products) were used to solve for the lunar gravity field parameters in a generalized orbit determination problem. As a further extension of our processing, the GNI1B positions are now replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field. Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least-squares adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit determination process. We present our latest results in the orbit determination of GRAIL over the primary mission phase (PM, March-May 2012) and our first lunar gravity fields based on Doppler and KBRR observations. We compare all of our results from the PM with the most recent lunar gravity field models released by other groups, as well as their consistency with topography-induced gravity.
Gravity Driven Universe: Energy from a Unified Field
NASA Astrophysics Data System (ADS)
Masters, Roy
2012-10-01
One way or another, whether push or pull, we know for sure that gravity is omnidirectional with identical mathematics. With PULL, gravity can be seen as as a property of matter. If so something is wrong. The Moon, lifting the tides twice-daily, should have fallen into orbital decay, with Earth having pulled it down eons ago. It is puzzling that physicists are not troubled by the fact that the Moon not only insists on forever lifting the tides, but, adding insult to injury, keeps moving it about 4 cm further away from Earth each year. Now if instead, we consider gravity as driven by an omnidirectional pressure--a PUSH force, another possibility arises. We can consider that it is mysteriously infusing energy into the Earth-Moon system, sustaining the Moon's orbit with the appearance of raising the tides and actually pushing it away from Earth. Here we can show push and pull, while being identical in their mathematics, have different outcomes. With push, gravity is a property of the universe. If this is true, then gravitation is flowing from an everlasting source, and the Earth/Moon system is one example of many other vacuum energy machines in the universe.
GRAIL gravity field determination using the Celestial Mechanics Approach - status report
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Bertone, Stefano; Jäggi, Adrian; Beutler, Gerhard; Mervart, Leos
2015-04-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment) mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software. Currently, KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degree n = 200, also arc-specific parameters like initial state vectors and appropriately spaced empirical parameters (pseudo-stochastic pulses and empirical accelerations) are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational forces. In this respect, we present our advances towards a more realistic model of solar radiation pressure using empirical accelerations in appropriate directions. We compare our results from the nominal and from the extended mission phase with the most recent lunar gravity field models released by other groups, as well as their consistency with topography-induced gravity. We show that the lunar gravity field can be recovered with a high quality by adapting the Celestial Mechanics Approach, even when using pre-GRAIL or pre-SELENE gravity field models as a priori fields. As a further extension of our processing, the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar
The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data
NASA Technical Reports Server (NTRS)
Konopliv, Alexander S.; Sjogren, William L.
1995-01-01
This report summarizes the current JPL efforts of generating a Mars gravity field from Viking 1 and 2 and Mariner 9 Doppler tracking data. The Mars 50c solution is a complete gravity field to degree and order 50 with solutions as well for the gravitational mass of Mars, Phobos, and Deimos. The constants and models used to obtain the solution are given and the method for determining the gravity field is presented. The gravity field is compared to the best current gravity GMM1 of Goddard Space Flight Center.
ARISTOTELES: A European approach for an Earth gravity field recovery mission
NASA Astrophysics Data System (ADS)
Benz, R.; Faulks, H.; Langemann, M.
1989-06-01
Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.
ARISTOTELES: A European approach for an Earth gravity field recovery mission
NASA Technical Reports Server (NTRS)
Benz, R.; Faulks, H.; Langemann, M.
1989-01-01
Under contract of the European Space Agency a system study for a spaceborne gravity field recovery mission was performed, covering as a secondary mission objective geodetic point positioning in the cm range as well. It was demonstrated that under the given programmatic constraints including dual launch and a very tight development schedule, a six months gravity field mission in a 200 km near polar, dawn-dusk orbit is adequate to determine gravity anomalies to better than 5 mgal with a spatial resolution of 100 x 100 km half wavelength. This will enable scientists to determine improved spherical harmonic coefficients of the Earth gravity field equation to the order and degree of 180 or better.
Gravity survey of marine field: Case study for Silurian reef exploration
Heigold, P.C.; Whitaker, S.T. )
1989-08-01
A gravity survey conducted over and around Marine field in southwestern Illinois has been used as an example to show how measurement of the local gravity field can aid in the search for Silurian reefs in the Illinois basin. Acquisition parameters for gravity surveys over Silurian reefs should be calculated beforehand from simple models of the reef based on estimates of density contrasts, depths, and size. Residual and derivative mapping techniques generally enhance gravity anomalies and enable more accurate portrayals of the structural relief on buried reefs. The second vertical derivative map of the residual Bouguer gravity anomaly surface at Marine field compares very well with the structure of the reef as mapped from subsurface data. This study indicates that similar mapping techniques could be effective on other reefs throughout the Illinois basin. Although gravity mapping methods are potentially powerful exploration tools in themselves, the writers believe that their proper role is as a part of a more comprehensive exploration approach. Gravity surveys can be used effectively as an initial exploration method in reef-prone areas to define smaller, prospect-size areas in which more intensive exploration techniques can subsequently be focused.
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
NASA Technical Reports Server (NTRS)
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
The latest GrazLGM lunar gravity field model: developments in the framework of project GRAZIL
NASA Astrophysics Data System (ADS)
Klinger, B.; Wirnsberger, H.; Mayer-Gürr, T.; Krauss, S.
2016-12-01
Project GRAZIL aims at recovering a high-accurate lunar gravity field based on the measurements collected by the Gravity Recovery and Interior Laboratory (GRAIL) mission. In order to achieve this objective we perform dynamic precise orbit determination from radio science observations (Doppler range-rates) in combination with the analysis of inter-satellite Ka-band ranging (KBR) observations. For gravity field recovery, we apply an integral equation approach using short orbital arcs (1 hour).We present our latest lunar gravity field model, derived from data collected during primary (March 1 to May 29, 2012) and extended (August 30 to December 14, 2012) mission phase.The extended mission phase improved the resolution due to a lower average altitude (23 km) of the spacecraft. As a result, the latest gravity field shows improvements especially in the shorter wavelengths compared to its predecessor GrazLGM300c.In this contribution we focus on the stepwise improvements of our gravity field solutions, achieved by a refinement of our processing strategy (e.g. incorporation of non-gravitational accelerations, covariance estimation, inclusion of extended mission data) in conjunction with an increase of the spectral resolution. We validate our results against prior GrazLGM models and recent GRAIL models computed at NASA-GSFC and NASA-JPL.
GRAIL Gravity Field Determination Using the Celestial Mechanics Approach - Status Report
NASA Astrophysics Data System (ADS)
Bertone, S.; Arnold, D.; Jaeggi, A.; Beutler, G.; Bock, H.; Meyer, U.; Mervart, L.
2014-12-01
The NASA mission GRAIL (Gravity Recovery And Interior Laboratory) inherits its concept from the GRACE (Gravity Recovery And Climate Experiment) mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data aquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is crucial to improve the understanding of its internal structure and thermal evolution. In this presentation we discuss GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese Software. Currently KBRR observations and position data (GNI1B products) are used to solve for the lunar gravity field parameters in a generalized orbit determination problem. Apart from normalized spherical harmonic coefficients up to degree n = 200, also arc-specific parameters like initial state vectors and empirical parameters (pseudo-stochastic pulses or piecewise constant accelerations) are set up as common parameters for all measurement types. The latter shall compensate for imperfect models of non-gravitational accelerations, e.g., caused by solar radiation pressure. We compare our results from the nominal and from the extended mission phase with the official level 4 gravity field models released in April 2014. As a further extension of our processing the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field using the Celestial Mechanics Approach and we present the currently achieved status of the DSN data modeling in the Bernese Software.
Near real-time GRACE gravity field solutions for hydrological monitoring applications
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas
2016-04-01
Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.
NASA Astrophysics Data System (ADS)
Braitenberg, C. F.; Pivetta, T.; Mariani, P.
2011-12-01
The gravity satellite missions GRACE and GOCE have boosted the resolution of the global Earth gravity models (EGM), opening new possibilities of investigation. The EGMs must be distinguished in models based on pure satellite or mixed satellite-terrestrial observations. Satellite-only models are truly global, whereas satellite-terrestrial models have inhomogeneous quality, depending on availability and accuracy of the terrestrial data set. The advantage of the mixed models (e.g. EGM2008 by Pavlis et al. 2008) is their greater spatial resolution, reaching nominally 9 km, against the 80 km of the pure satellite models of satellite GOCE. The disadvantage is the geographically varying reliability due to problems in the terrestrial data, compiled from different measuring campaigns, using various acquisition methods, and different national geodetic reference systems. We present a method for quality assessment of the higher-resolution fields through the lower-resolution GOCE-field and apply it to northern Africa. We find that the errors locally are as great as 40 mGal, but can be flagged as "bad areas" by our method, leaving the "good areas" for reliable geophysical modeling and investigation. We analyze gravity and gravity gradients and their invariants over North-Central Africa derived from the EGM2008 and GOCE (e.g. Migliaccio et al., 2010) and quantify the resolution in terms of density variations associated to crustal thickness variations, rifts and magmatic underplating. We focus on the Benue rift and the Chad lineament, a 1300 km arcuate feature which links the Benue to the Tibesti Volcanic province. The existing seismological investigations are integrated to constrain the lithosphere structure in terms of seismic velocities, crustal thickness and top asthenosphere boundary, together with physical constraints based on thermal and isostatic considerations (McKenzie stretching model). Our modeling shows that the gravity signal can only be explained if the Benue rift
NASA Astrophysics Data System (ADS)
Erkan, K.; Jekeli, C.
2009-12-01
Today gravity and magnetic field measurements are acquired in grids with high resolution and accuracy. Magnetic field measurements have already been proven for superior accuracy and practicality. Modern gravity gradiometry instruments have boosted the practicality of gravity field measurements for many subsurface problems. As a result of this, advanced algorithms are needed for quantitative integration of the two fields for a specific subsurface problem. These fields are correlated by Poisson relation as a first order approximation. However, subsurface sources generally show large deviations from the ideal conditions; in this case a generalized Poisson relation may be proposed as a perturbation of the ideal conditions. In this study, we take advantage of the abstraction of the deformation theory between two metric fields, and implement it between the two geophysical fields. In this generalized approach, the different geophysical fields are loosely correlated by Poisson relation; so the calculated deformation reflects the deviations from ideal density/susceptibility relationships for the subsurface structure. The resulting deformation field can then be used for detection of a known target with an expected deformation field. The present method introduces a novel algorithm for integration of the gravity gradiometry and magnetic field data. In this method, the results can be directly interpreted without making individual density and magnetic susceptibility assumptions. The method also intrinsically overcomes the scale problem between the two potential fields.
Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO
NASA Astrophysics Data System (ADS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-04-01
The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri
Thermodynamics of charged rotating solutions in Brans-Dicke gravity with Born-Infeld field
NASA Astrophysics Data System (ADS)
Pakravan, J.; Takook, M. V.
2017-09-01
We derive new exact charged rotating solutions of (n+1)-dimensional Brans-Dicke theory in the presence of Born-Infeld field and investigated their properties. Because of the coupling between scalar field and curvature, the field equations cannot to be solved directly. Using a new conformal transformation, which transforms the Einstein-dilaton-Born-Infeld gravity Lagrangian to the Brans-Dicke-Born-Infeld gravity one, the field equations are solved. We also compute temperature, charge, mass, electric potential, and entropy; entropy, however, does not obey the area law. These quantities are invariant under conformal transformation and satisfy the first law of thermodynamics.
Thermodynamics of charged rotating solutions in Brans-Dicke gravity with Born-Infeld field
NASA Astrophysics Data System (ADS)
Pakravan, J.; Takook, M. V.
2017-07-01
We derive new exact charged rotating solutions of (n+1) -dimensional Brans-Dicke theory in the presence of Born-Infeld field and investigated their properties. Because of the coupling between scalar field and curvature, the field equations cannot to be solved directly. Using a new conformal transformation, which transforms the Einstein-dilaton-Born-Infeld gravity Lagrangian to the Brans-Dicke-Born-Infeld gravity one, the field equations are solved. We also compute temperature, charge, mass, electric potential, and entropy; entropy, however, does not obey the area law. These quantities are invariant under conformal transformation and satisfy the first law of thermodynamics.
NASA Astrophysics Data System (ADS)
Antunes, V.; Novello, M.
2017-04-01
In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.
Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)
NASA Technical Reports Server (NTRS)
Kim, Yeong E.; Braswell, W. Danny
1989-01-01
Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.
Neutron stars in a perturbative f(R) gravity model with strong magnetic fields
Cheoun, Myung-Ki; Deliduman, Cemsinan; Güngör, Can; Keleş, Vildan; Ryu, C.Y.; Kajino, Toshitaka; Mathews, Grant J. E-mail: cemsinan@msgsu.edu.tr E-mail: kelesvi@itu.edu.tr E-mail: kajino@nao.ac.jp
2013-10-01
In Kaluza-Klein electromagnetism it is natural to associate modified gravity with strong electromagnetic fields. Hence, in this paper we investigate the combined effects of a strong magnetic field and perturbative f(R) gravity on the structure of neutron stars. The effect of an interior strong magnetic field of about 10{sup 17−18} G on the equation of state is derived in the context of a quantum hadrodynamics (QHD) equation of state (EoS) including effects of the magnetic pressure and energy along with occupied Landau levels. Adopting a random orientation of interior field domains, we solve the modified spherically symmetric hydrostatic equilibrium equations derived for a gravity model with f(R) = R+αR{sup 2}. Effects of both the finite magnetic field and the modified gravity are detailed for various values of the magnetic field and the perturbation parameter α along with a discussion of their physical implications. We show that there exists a parameter space of the modified gravity and the magnetic field strength, in which even a soft equation of state can accommodate a large ( > 2 M{sub s}un) maximum neutron star mass.
Latest developments in lunar gravity field recovery within the project GRAZIL
NASA Astrophysics Data System (ADS)
Krauss, Sandro; Wirnsberger, Harald; Klinger, Beate; Mayer-Gürr, Torsten; Baur, Oliver
2016-04-01
The project GRAZIL addresses the highly accurate recovery of the lunar gravity field using intersatellite Ka-band ranging (KBR) measurements collected by the Lunar Gravity Ranging System (LGRS) of the Gravity Recovery And Interior Laboratory (GRAIL) mission. Dynamic precise orbit determination is an indispensable task in order to recover the lunar gravity field based on LGRS measurements. The concept of variational equations is adopted to determine the orbit of the two GRAIL satellites based on radio science data. In this contribution we focus on the S-band two-way Doppler data collected by the Deep Space Network. As far as lunar gravity field recovery is concerned, we apply an integral equation approach using short orbital arcs in the order of one hour. In this contribution special attention is given to the refinement of our processing strategy in conjunction with an increase of the spectral resolution. Based on these considerations we present the latest version of a lunar gravity field model developed in Graz which is based on KBR observations during the primary mission phase (March 1 to May 29, 2012). Our results are validated against GRAIL models computed at NASA-GSFC and NASA-JPL.
The metric on field space, functional renormalization, and metric–torsion quantum gravity
Reuter, Martin Schollmeyer, Gregor M.
2016-04-15
Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modified FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.
Experimental concept for examination of biological effects of magnetic field concealed by gravity.
Yamashita, M; Tomita-Yokotani, K; Hashimoto, H; Takai, M; Tsushima, M; Nakamura, T
2004-01-01
Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept.
Descendants constructed from matter field in Landau-Ginzburg theories coupled to topological gravity
NASA Astrophysics Data System (ADS)
Losev, A.
1993-05-01
It is argued that gravitational descendants in the theory of topological gravity coupled to topological Landau-Ginzburg theory (not necessarily conformal) can be constructed from matter fields alone (without metric fields and ghosts). In this sense topological gravity is “induced.” We discuss the mechanism of this effect (that turns out to be connected with K. Saito's higher residue pairing: Ki(σi(Φ1),Φ2)=K0(Φ1,Φ2)), and demonstrate how it works in a simplest nontrivial example: correlator on a sphere with four marked points. We also discuss some results on k-point correlators on a sphere. From the idea of “induced” topological gravity it follows that the theory of “pure” topological gravity (without topological matter) is equivalent to the “trivial” Landau-Ginzburg theory (with quadratic superpotential).
GRM - Observing the terrestrial gravity and magnetic fields in the 1990's
NASA Technical Reports Server (NTRS)
Taylor, P. T.; Keating, T.; Kahn, W. D.; Langel, R. A.; Smith, D. E.; Schnetzler, C. C.
1983-01-01
NASA is proposing to launch a new geopotential fields exploration system called the Geopotential Research Mission (GRM). Two spacecraft will be placed in a circular polar orbit at 160 km altitude. Distances between these satellites will vary from 100 to 600 km. Both scalar and vector magnetic fields will be measured by magnetometers mounted on a boom positioned in the forward direction on the lead satellite. Gravity data will be computed from the measured change in distance between the two spacecraft. This quantity, called the range-rate, will be determined from the varying frequency (Doppler shift) between transmitter and receiver on each satellite. Expected accuracies (at the one-sigma level) are: gravity field, 1.0 milliGal, 5 cm geoid height; magnetics, scalar field 2 nT, vector to 20 arcsec, both resolved to less than 100 km. With these more accurate and higher resolution data, it will be possible to investigate the earth's structure from the crust (with the shorter wavelength gravity and magnetic anomalies) through the mantle (from the intermediate wavelength gravity field) and into the core (using the longer wavelength gravity and magnetic fields).
Results of the gravity field interpretation in the Turčianska Kotlina Basin
NASA Astrophysics Data System (ADS)
Grinč, Michal; Bielik, Miroslav; Mojzeš, Andrej; Hók, Jozef
2010-01-01
The paper deals with the quantitative interpretation of the gravity field in the Turčianska Kotlina Basin. The interpretation was done by means of the application of the 2D density modelling method using the GM-SYS software. Geophysical constraints of the density models are represented by the existing geophysical measurements and interpretations. The Turčianska Kotlina Basin in the picture of the regional gravity field is characterized by the local gravity low with amplitude of about 12 mGal. The source of this gravity low is low density Tertiary sediments, which fill the basin. From the Tertiary sediments the Neogene sediments play dominant role in observed gravity, because their gravity effects are considerably larger in comparison with the gravity effects of the Paleogene sediments. The contacts between the Malá Fatra and Veľká Fatra Mts., and the Turčianska Kotlina Basin are characterized by the significant gravity gradients. They reflect tectonic contact between the basin and crystalline core mountains. In the Turčianska gravity low we can see along the Profile TK-AL three local gravity lows. The highest local gravity low is explained by the largest thickness of the Tertiary sediments. Another two local gravity lows are also characterised by thicker layers of the Tertiary sediments. Density models assume that the eastern (western) part of the basin basement is built by the Mesozoic (crystalline) rocks. In the central part of the Profile TK-BL the thick Paleogene sedimentary filling (more than 1 km) compensates the deepest part of the Pretertiary basement. Density model along the Profile TK-BL does not suggest a presence of the Paleogene sediments in the basin filling. It is also indicated that the Mesozoic rocks underlie the Tertiary sediments. The Pretertiary basement was interpreted in the depths from 0 km up to the 2 km. Note that all geological structures (blocks) are sliding from the East to the West. The dipping of the Malá Fatra Mts. is steeper
High-precision photometry for K2 Campaign 1
NASA Astrophysics Data System (ADS)
Huang, C. X.; Penev, K.; Hartman, J. D.; Bakos, G. Á.; Bhatti, W.; Domsa, I.; de Val-Borro, M.
2015-12-01
The two reaction wheel K2 mission promises and has delivered new discoveries in the stellar and exoplanet fields. However, due to the loss of accurate pointing, it also brings new challenges for the data reduction processes. In this paper, we describe a new reduction pipeline for extracting high-precision photometry from the K2 data set, and present public light curves for the K2 Campaign 1 target pixel data set. Key to our reduction is the derivation of global astrometric solutions from the target stamps, from which accurate centroids are passed on for high-precision photometry extraction. We extract target light curves for sources from a combined UCAC4 and EPIC catalogue - this includes not only primary targets of the K2 campaign 1, but also any other stars that happen to fall on the pixel stamps. We provide the raw light curves, and the products of various detrending processes aimed at removing different types of systematics. Our astrometric solutions achieve a median residual of ˜0.127 arcsec. For bright stars, our best 6.5 h precision for raw light curves is ˜20 parts per million (ppm). For our detrended light curves, the best 6.5 h precision achieved is ˜15 ppm. We show that our detrended light curves have fewer systematic effects (or trends, or red-noise) than light curves produced by other groups from the same observations. Example light curves of transiting planets and a Cepheid variable candidate, are also presented. We make all light curves public, including the raw and detrended photometry, at http://k2.hatsurveys.org.
Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science
NASA Technical Reports Server (NTRS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-01-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k(sub 2) Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k(sub 2) solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k(sub 2) of 0.1697 +/- 0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C(sub 30) and, for the first time, C 50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C(sub 30) for approximately 1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60-80) than previous solutions.
Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science
NASA Technical Reports Server (NTRS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-01-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.
Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science
NASA Astrophysics Data System (ADS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-07-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k2 of 0.1697 ± 0.0027 (3-σ). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C30 and, for the first time, C50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C30 for ∼1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics (l = 60-80) than previous solutions.
Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science
NASA Technical Reports Server (NTRS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-01-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k(sub 2) Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k(sub 2) solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k(sub 2) of 0.1697 +/- 0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C(sub 30) and, for the first time, C 50. Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C(sub 30) for approximately 1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60-80) than previous solutions.
Seasonal and Static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science
NASA Technical Reports Server (NTRS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-01-01
We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 60–80) than previous solutions.
Generation of High-Gravity Field and Application to Materials Science
NASA Astrophysics Data System (ADS)
Mashimo, T.
2008-02-01
Centrifugation of organic liquids and metals has been widely used in biochemistry field and metallurgy field, respectively. The high-gravity field was recently used for the preprocessing for sintering of composite materials. The sedimentation of atoms was recently realized in alloys and semiconductors under ultra-high gravitational field in 1 million G level. The possibility in use of high gravity has, day by day, increased. In this mini-symposium, the conventional and recent methods for materials processing for functionally graded materials, metastable composite materials, thin film, etc. using high-gravity in gas, liquids, solids and also in vacuum will be treated. In this paper, the history of ultracentrifuges is reviewed, and the applications to materials science is discussed.
Mars gravity field derived from Viking-1 and Viking-2 - The navigation result
NASA Technical Reports Server (NTRS)
Christensen, E. J.; Williams, B. G.
1978-01-01
Viking-1 and Viking-2 Doppler tracking data taken during orbit phases characterized by 1500 km subperiapse altitudes have provided a basis for a determination of the Martian gravity field. Navigation results show that the linear combination of short-arc gravity estimates is an acceptable technique for obtaining gravity models over multiple data arcs. An ensemble field composed of Viking data and Mariner-9 a priori retains the inherent local accuracy of its constituent fields. At the same time, the model can be made to be valid globally by careful weighting of a priori Mariner-9 data. The sixth degree and order model presented reduces the error concerning the change in period by more than an order of magnitude during the high altitude (1500 km) phases of the Viking mission. The resulting areoid deviates by no more than 150 m from the areoid produced by the a priori Mariner-9 field.
Discrete gravity as a topological field theory with light-like curvature defects
NASA Astrophysics Data System (ADS)
Wieland, Wolfgang
2017-05-01
I present a model of discrete gravity as a topological field theory with defects. The theory has no local degrees of freedom and the gravitational field is trivial everywhere except at a number of intersecting null surfaces. At these null surfaces, the gravitational field can be singular, representing a curvature defect propagating at the speed of light. The underlying action is local and it is studied in both its Lagrangian and Hamiltonian formulation. The canonically conjugate variables on the null surfaces are a spinor and a spinor-valued two-surface density, which are coupled to a topological field theory for the Lorentz connection in the bulk. I discuss the relevance of the model for non-perturbative approaches to quantum gravity, such as loop quantum gravity, where similar variables have recently appeared as well.
Advances in GRAIL Gravity Field Determination Using the Celestial Mechanics Approach
NASA Astrophysics Data System (ADS)
Bertone, S.; Arnold, D.; Jaeggi, A.; Beutler, G.; Mervart, L.
2015-12-01
The NASA mission GRAIL inherits its concept from the GRACE mission to determine the gravity field of the Moon. The use of inter-satellite Ka-band range-rate (KBRR) observations enables data acquisition even when the spacecraft are not tracked from the Earth. The data allows for a highly accurate estimation of the lunar gravity field on both sides of the Moon, which is leading to huge improvements in our understanding of its internal structure and thermal evolution. In this presentation we discuss the latest GRAIL-based lunar gravity fields generated with the Celestial Mechanics Approach using the Bernese GNSS Software. We present our recent solutions up to d/o 200, where KBRR observations and position data (GNI1B products) were used to solve for the lunar gravity field parameters in a generalized orbit determination problem. We detail our parametrization in terms of pseudo-stochastic pulses and empirical accelerations, which allows for high quality results even while using a simple model of non-gravitational forces and pre-GRAIL a priori fields. Moreover, we present our latest advances towards the computation of a lunar gravity field with improved spatial resolution.As a further extension of our processing, the GNI1B positions are replaced by the original Doppler observations of the Deep Space Network (DSN) to allow for a completely independent determination of the lunar gravity field. Based on Doppler data, we perform orbit determination by solving six initial orbital elements, dynamical parameters, and stochastic parameters in daily arcs using least squares-adjustment. The pseudo-stochastic parameters are estimated to absorb deficiencies in our dynamical modeling (e.g. due to non-gravitational forces). DSN Doppler and KBRR data are then used together with an appropriate weighting for a combined orbit determination process. We present our latest results in the orbit determination of GRAIL over the primary mission phase (PM, March-May 2012) and eventually present
The Dawn Gravity Investigation at Vesta and Ceres
NASA Technical Reports Server (NTRS)
Konopliv, A. S.; Asmar, S.W.; Bills, B. G.; Mastrodemos, N.; Park, R. S.; Raymond, C. A.; Smith, D. E.; Zuber, M. T.
2011-01-01
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn's framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.
On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.
Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects
NASA Astrophysics Data System (ADS)
Vigeesh, G.; Jackiewicz, J.; Steiner, O.
2017-02-01
Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high-β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.
Extending the GRACE Data Record with Gravity Field Solutions Based on a Single GRACE Satellite
NASA Astrophysics Data System (ADS)
McCullough, C.; Bettadpur, S. V.; Cheng, M.; Ries, J. C.
2015-12-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) has enabled unprecedented scientific discovery in a variety of physical Earth sciences. However, with the launch of GRACE Follow-On not taking place until 2017 and the declining health of the current GRACE satellites, it is necessary to cultivate the ability to estimate the Earth's gravity field without the full suite of GRACE measurements. Using a single GRACE satellite, equipped with an accelerometer and a GPS receiver, as well as a compliment of SLR satellites, large-scale features of the Earth's gravity field can be determined. While the accuracy of such solutions are noticeably degraded relative to the nominal GRACE product and smaller-scale features of the Earth's gravity field are impossible to discern without the use of GRACE's satellite-to-satellite (SST) tracking measurements, single satellite solutions do capture continental scale variations in the Earth's gravitational field. These large-scale variations can be used to track global trends such as polar ice loss and water storage, in the event of a gap between GRACE and GRACE Follow-On. In addition, the lessons learned from gravity field solutions computed using only GRACE GPS data provide valuable insight into the optimal combination of GPS data with SST for GRACE Follow-On and other future missions.
Gravity field of Jupiter’s moon Amalthea and the implication on a spacecraft trajectory
NASA Astrophysics Data System (ADS)
Weinwurm, Gudrun
2006-01-01
Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements of a three-axial ellipsoid in elliptic coordinates. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. The harmonic coefficients of Amalthea's gravity field have been derived up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers the impact on the trajectory of GALILEO was calculated and compared to existing Doppler data. Furthermore, predictions for future spacecraft flybys were derived. No two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise. Nevertheless, the generated gravity field models reflect the most likely interior structure of the moon and can be a basis for further exploration of the Jovian system.
The International Gravity Field Service (IGFS): Present Day Activities And Future Plans
NASA Astrophysics Data System (ADS)
Barzaghi, R.; Vergos, G. S.
2016-12-01
IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.
Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions.
Fujieda, S; Mori, Y; Nakazawa, A; Mogami, Y
2001-01-01
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field. c2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Effect of gravity field on the nonequilibrium/nonlinear chemical oscillation reactions
NASA Astrophysics Data System (ADS)
Fujieda, S.; Mori, Y.; Nakazawa, A.; Mogami, Y.
2001-01-01
Biological systems have evolved for a long time under the normal gravity. The Belousov-Zhabotinsky (BZ) reaction is a nonlinear chemical system far from the equilibrium that may be considered as a simplified chemical model of the biological systems so as to study the effect of gravity. The reaction solution is comprised of bromate in sulfuric acid as an oxidizing agent, 1,4-cyclohexanedione as an organic substrate, and ferroin as a metal catalyst. Chemical waves in the BZ reaction-diffusion system are visualized as blue and red patterns of ferriin and ferroin, respectively. After an improvement to the tubular reaction vessels in the experimental setup, the traveling velocity of chemical waves in aqueous solutions was measured in time series under normal gravity, microgravity, hyper-gravity, and normal gravity using the free-fall facility of JAMIC (Japan Microgravity Center), Hokkaido, Japan. Chemical patterns were collected as image data via CCD camera and analyzed by the software of NIH image after digitization. The estimated traveling velocity increased with increasing gravity as expected. It was clear experimentally that the traveling velocity of target patterns in reaction diffusion system was influenced by the effect of convection and correlated closely with the gravity field.
Aeromagnetic and Gravity Maps of the Central Marysvale Volcanic Field, Southwestern Utah
Campbell, David L.; Steven, Thomas A.; Cunningham, Charles G.; Rowley, Peter D.
1999-01-01
Gravity and aeromagnetic features in the Marysvale volcanic field result from the composite effects of many factors, including rock composition, style of magmatic emplacement, type and intensity of rock alteration, and effects of structural evolution. Densities and magnetic properties measured on a suite of rock samples from the Marysvale volcanic field differ in systematic ways. Generally, the measured densities, magnetic susceptibilities, and natural remanent magnetizations all increase with mafic index, but decrease with degree of alteration, and for tuffs, with degree of welding. Koenigsberger Q indices show no such systematic trends. The study area is divided into three geophysical domains. The northern domain is dominated by aeromagnetic lows that probably reflect reversed-polarity volcanic flows. There are no intermediate-sized magnetic highs in the northern domain that might reflect plutons. The northern domain has a decreasing-to-the-south gravity gradient that reflects the Pavant Range homocline. The central domain has gravity lows that reflect altered rocks in calderas and low-density plutons of the Marysvale volcanic field. Its aeromagnetic signatures consist of rounded highs that reflect plutons and birdseye patterns that reflect volcanic flows. In many places the birdseyes are attenuated, indicating that the flows there have been hydrothermally altered. We interpret the central domain to reflect an east-trending locus of plutons in the Marysvale volcanic field. The southern domain has intermediate gravity fields, indicating somewhat denser rocks there than in the central domain, and high-amplitude aeromagnetic birdseyes that reflect unaltered volcanic units. The southern domain contains no magnetic signatures that we interpret to reflect plutons. Basin-and-range tectonism has overprinted additional gravity features on the three domains. A deep gravity low follows the Sevier and Marysvale Valleys, reflecting grabens there. The gravity gradient in the
Stability of modulated-gravity-induced thermal convection in magnetic fields.
Li, B Q
2001-04-01
A stability analysis is presented of modulated-gravity-induced thermal convection in a heated fluid layer subject to an applied magnetic field. The nearest correction to the critical Rayleigh number for both single and multiple frequency oscillating-gravity components is obtained by solving the linearized magnetohydrodynamic equations using the small parameter perturbation technique. The correction depends on both the applied magnetic field and the oscillating frequency. In the absence of an applied magnetic field, the correction depends on the Prandtl number only when the exciting frequency is small. However, it asymptotically approaches zero as the frequency increases, with or without the presence of a magnetic field. The heated fluid layer is more stable with gravity modulation than with any type of wall temperature modulation. The difference becomes smaller with decreasing Prandtl number Pr. This finding is of critical importance in that ground-based experiments with appropriate wall temperature modulations may be conducted to simulate the oscillating-gravity effects on the onset of thermal convection in lower-Prandtl-number fluids. For conducting melts considered for microgravity applications, it is possible to apply an external magnetic field to further inhibit the onset of modulated-gravity-induced thermal convection. This effectiveness increases with the Hartmann number Ha. For large Ha, the nearest correction term R02 approximately Ha2 as the magnetic Prandtl number Pm<1. However, R02 approximately Ha(4/3) for Ha>1 and Pm>1, provided that Ha<0.5pi(Pm/Pr(3/2)), which is satisfied by a majority of space melt experiments. Thus, under normal laboratory conditions applied magnetic fields are more effective in stabilizing a conducting fluid subject to an oscillating-gravity field than one subject to a constant field. If Ha>0.5pi(Pm/Pr(3/2)), R02 approximately -Ha2 for Ha>1 and Pm>1 and the magnetic field becomes less effective in stabilizing thermal convection
Kinematic projective quantum states for loop quantum gravity coupled to tensor fields
NASA Astrophysics Data System (ADS)
Okołów, Andrzej
2017-04-01
We present a construction of kinematic quantum states for theories of tensor fields of an arbitrary sort. The construction is based on projective techniques by Kijowski. Applying projective quantum states for Loop Quantum Gravity (LQG) obtained by Lanéry and Thiemann we construct quantum states for LQG coupled to tensor fields.
High-precision positioning of radar scatterers
NASA Astrophysics Data System (ADS)
Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.
2016-05-01
Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.
NASA Astrophysics Data System (ADS)
Hatam Chavari, Yaghoub; Bayer, Roger; Djamour, Yahya; Vanicek, Petr
2010-05-01
In order to model the earth gravity field and its temporal variations, different gravity data with terrestrial, airborne and satellite gathered kinds are necessary. It is possible to recover by them the short, medium and long wavelengths of the gravity field respectively. Terrestrial gravity data, especially for the regions with highly variations, are useful for different purposes, i.e. to estimate the actual gravity range in the country, to extend the gravity calibration line, to study the isostasy status (Aboghasem et al., EGU10), to modify the numerical density models, to ameliorate the local geoid models, to prepare a background for geodynamical researches, and so on. The Multi-purpose Physical Geodesy and Geodynamics Network of Iran has recently established over Iran with 700 stations of 30' by 30' distribution (MPGGNI05, Hatam et al., EGU08). About 2000 precise relative gravity measurements gathered between the neighbour stations are prepared the possibility to compute the accurate, confident and homogeneous gravity values for the mentioned network. The MPGGNI is connected to the new 24-stations established national absolute gravity base network of Iran (NGBI09, Hatam et al., EGU09) to unify the reference system and to strengthen the accuracy and confident over the country. All 6 used relative gravimeters were regularly calibrated by the recently established tele cabin/ land national gravity calibration line (TC/L NGCLI, Hatam et al., EGU07). In addition, precise levelling measurements have tied the MPGGNI stations and have connected the new network to the existed national precise levelling network of Iran. Also, precise GPS measurements have been done at each station of MPGGNI with 24 hours duration. The MPGGNI can be understood typically as a precise gravity and GPS/Levelling network, and by repeating it, it is possible to model the changes of different components of the gravity field. In order to improve the precision of old gravity data, each station of
NASA Astrophysics Data System (ADS)
Zehentner, N.; Mayer-Gürr, T.; Mayrhofer, R.
2012-04-01
One method for gravity field determination is satellite-to-satellite tracking(SST) in high-low mode. Therefore GPS (Global Positioning System) observations are used to estimate precise orbit positions and these are then used to gain the desired information about the earth's gravity field. In this context several approaches exist. One of them is the so called acceleration approach. It is based on newton's second law of motion and relates accelerations of the satellite to the gravity gradient. An important part of this approach is to derive the accelerations from precise satellite positions. This is done by means of numerical differentiation. Different methods for the task of numerical differentiation, like for example polynomial interpolation or Newton-Gregory interpolation, were investigated. In particular the methods were investigated concerning their differing properties and their impacts on the resulting gravity field solutions. These examinations were carried out mostly in the frequency domain, because this can be directly related to the spectral content of a gravity field solution. In the framework of this project several closed-loop simulations were made to find the best suited differentiation scheme. Afterwards the findings were applied to real data of the GOCE satellite. The results of our simulations and of real data applications will be presented.
Release 3 of the GOCE-only Gravity Field Model Applying the Time-wise Method
NASA Astrophysics Data System (ADS)
Brockmann, J.; Pail, R.; Mayer-Gürr, T.; Hoeck, E.; Krasbutter, I.; Fecher, T.; Schuh, W.; Mayrhofer, R.
2011-12-01
The release 3 of the time-wise global GOCE-only gravity field model, which has been processed as part of the GOCE High-Level Processing Facility, is based on data of the full nominal mission operation phase from November 2009 to April 2011. The time-wise processing strategy is based on the solution of full normal equations, where gravity field information from precise kinematic orbits is combined with the analysis of the gravity gradients. Special emphasis is given to a realistic stochastic modelling of the individual contributions, facilitating the consistent combination. The optimum relative weights are derived from variance component estimation. In this contribution, this new solution is compared with the previous two releases, in order to evaluate the improvements due to a substantially larger amount of input data, as well as with external gravity field information. Additionally, a performance prediction of the achievable final accuracy of GOCE-only gravity field models, provided that the satellite stays healthy in orbit at least until the end of the extended mission phase (December 2012), will be presented, and possible mission scenarios after 2012 and their impact on the performance will be discussed.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
NASA Astrophysics Data System (ADS)
Mohammadi Mozaffar, M. R.; Mollabashi, A.; Sheikh-Jabbari, M. M.; Vahidinia, M. H.
2016-08-01
It is established that physical observables in local quantum field theories should be invariant under invertible field redefinitions. It is then expected that this statement should be true for the entanglement entropy and moreover that, via the gauge/gravity correspondence, the recipe for computing entanglement entropy holographically should also be invariant under local field redefinitions in the gravity side. We use this fact to fix the recipe for computing holographic entanglement entropy (HEE) for f (R ,Rμ ν) theories that could be mapped to Einstein gravity. An outcome of our prescription is that the surfaces that minimize the corresponding HEE functional for f (R ,Rμ ν) theories always have a vanishing trace of extrinsic curvature and that the HEE may be evaluated using the Wald entropy functional. We show that similar results follow from the FPS and Dong HEE functionals, for Einstein manifold backgrounds in f (R ,Rμ ν) theories.
Inversion of Gravity Fields From the Spacecraft Orbital Data Using an Adjoint Operator Approach
NASA Technical Reports Server (NTRS)
Ustinov, E. A.
1999-01-01
In perturbation approximation, the forward problem of orbital dynamics (equations with initial conditions) is linear with respect to variations of coordinates and/or velocities of the spacecraft and to corresponding variations of the gravity field in the models used. The linear operator adjoint to the linear operator of such forward problem turns out to be instrumental in inversion of differences between observed and predicted coordinates/velocities in terms of the updates of harmonics in the initial gravity field model. Based on this approach, the solution of resulting adjoint problem of orbital dynamics can be used to directly evaluate the matrix of partial derivatives of observable differences with respect to the gravity field harmonics. General discussion of the adjoint problem of orbital dynamics is given and an example of a mathematical formalism for the practical retrieval algorithm is presented.
The pattern of anomalous geomagnetic variation fields over the midcontinent gravity high
NASA Astrophysics Data System (ADS)
Prugger, Arnfinn F.; Woods, Dennis V.
1984-09-01
Magnetometer array data, collected by H. Porath and co-workers from the University of Texas at Dallas in the midwest United States during the fall of 1969, have been reanalyzed to further define the nature of the reported geomagnetic variation anomaly in the region of the midcontinent gravity high. Variation events with a wide range of horizontal source field polarization and frequency have been digitized from the original film records. These data have been used in a vertical-field response arrow (induction vector) analysis. The results indicate that there is no significant overall conductivity anomaly associated with the geologic structure causing the gravity feature. Rather, the pattern of anomalous variation fields is one of isolated anomalies at high frequency. These anomalies are coincident with postulated fault structures perpendicular to the gravity high lineament and with localized regions of high heat flow.
[Research under reduced gravity. Part II: experiments in variable gravitational fields].
Volkmann, D; Sievers, A
1992-03-01
Recently, the reduced gravitational field of space laboratories, rockets, or satellites in Earth orbits offers a gravitational field which is variable from 10(-4) g to 1 g by the use of centrifuges. Especially with plants, data concerning gravisensitivity are based on experiments with clinostats. First experiments in reduced gravitational fields, however, demonstrate the uncertainty of these results. Thus, the main task of gravitational biologists is to test the validity of results obtained with the aid of clinostats. On this basis it should be possible to find a common mechanism to explain the influence of gravity on organisms. Experiments under reduced gravity in sounding rockets provided new knowledge on the perception of the gravity stimulus in plant cells.
Time Lapse Gravity and Seismic Monitoring of CO2 Injection at the West Hastings Field, Texas
NASA Astrophysics Data System (ADS)
Ferguson, J. F.; Richards, T.; Klopping, F.; MacQueen, J.; Hosseini, S. A.
2015-12-01
Time lapse or 4D gravity and seismic reflection surveys are being conducted at the West Hastings Field near Houston, Texas to monitor the progress of CO2 injection. This Department of Energy supported CO2 sequestration experiment is conducted in conjunction with a Denbury Onshore, LLC tertiary recovery project. The reservoir is at a depth of 1.8 km in the Oligocene Frio sands and has been produced since the 1930s. Goals are an accounting and mapping of the injected CO2 and to determine if migration occurs along intra-reservoir faults. An integrated interpretation of the geophysical surveys will be made together with well logs and engineering data. Gravity monitoring of water versus gas replacement has been very successful, but liquid phase CO2 monitoring is problematic due to the smaller density contrast with respect to oil and water. This reservoir has a small volume to depth ratio and hence only a small gravity difference signal is expected on the surface. New borehole gravity technology introduced by Micro-g-Lacoste can make gravity measurements at near reservoir depths with a much higher signal to noise ratio. This method has been successfully evaluated on a simulation of the Hastings project. Field operations have been conducted for repeated surface and borehole gravity surveys beginning in 2013. The surface survey of 95 stations covers an area of 3 by 5 km and 22 borehole gravity logs are run in the interval above the Frio formation. 4D seismic reflection surveys are being made at 6 month intervals on the surface and in 3 VSP wells. CO2 injection into the targeted portion of the reservoir only began in early 2015 and monitoring will continue into 2017. To date only the baseline reservoir conditions have been assessed. The overall success of the gravity monitoring will not be determined until 2017.
Earth Science interpretations where GOCE improved the gravity field most: North Africa
NASA Astrophysics Data System (ADS)
Braitenberg, C.; Li, Y.; Pivetta, T.
2012-04-01
Our work is focused on the Solid Earth Science exploitation of the satellite mission GOCE. In Northern Africa the differences between the GOCE observations and the gravity field models that include terrestrial data, as EGM08, are one of the greatest worldwide. The differences are due to errors in, or lack of terrestrial data, and subsequent data infilling based on statistical assumptions. Therefore the analysis of the field in North Africa is particularly important, as the GOCE-observations and the derived third-generation products bring a safe improvement of the field. The usefulness of the gravity field is expressed in the improvement of the density inhomogeneities that are derived from it and by the newness of the conclusions regarding the tectonic or geodynamic interpretation. Beyond the first step of correlating the fields with the geologic lineaments and surface deposits (as e.g. for Africa Braitenberg et al., 2011) comes now the second step of modeling the density variations, starting from what is known already, and to determine what the novelties are which we recover with the GOCE-observations. This requires collecting the known information, assigning densities to the layers, calculating the gravity field and gradients and inverting the residuals formed by the difference between expected field and observations. Not indifferent is the choice of making the calculations at satellite observation height or at topography level, and has consequences on the adequateness of the computational software and lateral and depth extent of the model. We integrate known crustal layers as sediments and seismologic depths of the crust-mantle interface, where available, and determine the gravity residual. We discuss the residual in terms of the principal geological units and proceed to the inversion. The inverse problem of the gravity field being ill-posed, the solution depends on the model situations and constraints we choose to set. We set up the specific inversion
Validity of the "Laplace Swindle" in Calculation of Giant-Planet Gravity Fields
NASA Astrophysics Data System (ADS)
Hubbard, William B.
2014-11-01
Jupiter and Saturn have large rotation-induced distortions, providing an opportunity to constrain interior structure via precise measurement of external gravity. Anticipated high-precision gravity measurements close to the surfaces of Jupiter (Juno spacecraft) and Saturn (Cassini spacecraft), possibly detecting zonal harmonics to J10 and beyond, will place unprecedented requirements on gravitational modeling via the theory of figures (TOF). It is not widely appreciated that the traditional TOF employs a formally nonconvergent expansion attributed to Laplace. This suspect expansion is intimately related to the standard zonal harmonic (J-coefficient) expansion of the external gravity potential. It can be shown (Hubbard, Schubert, Kong, and Zhang: Icarus, in press) that both Jupiter and Saturn are in the domain where Laplace's "swindle" works exactly, or at least as well as necessary. More highly-distorted objects such as rapidly spinning asteroids may not be in this domain, however. I present a numerical test for the validity and precision of TOF via polar "audit points". I extend the audit-point test to objects rotating differentially on cylinders, obtaining zonal harmonics to J20 and beyond. Models with only low-order differential rotation do not exhibit dramatic effects in the shape of the zonal harmonic spectrum. However, a model with Jupiter-like zonal winds exhibits a break in the zonal harmonic spectrum above about J10, and generally follows the more shallow Kaula power rule at higher orders. This confirms an earlier result obtained by a different method (Hubbard: Icarus 137, 357-359, 1999).
Gravity field of Jupiter's moon Amalthea and the implication on a spacecraft trajectory
NASA Astrophysics Data System (ADS)
Weinwurm, G.; Weber, R.
Before its final plunge into Jupiter in September 2003, GALILEO made a last 'visit' to one of Jupiter's moons - Amalthea. This final flyby of the spacecraft's successful mission occurred on November 5, 2002. In order to analyse the spacecraft data with respect to Amalthea's gravity field, interior models of the moon had to be provided. The method used for this approach is based on the numerical integration of infinitesimal volume elements, which are calculated by the scale factors of a three-axial ellipsoid (elliptic coordinates). Within this routine the shape information of Amalthea can be included as well. To derive the gravity field coefficients of the body, the second method of Neumann was applied. Based on the spacecraft trajectory data provided by the Jet Propulsion Laboratory, GALILEO's velocity perturbations at closest approach could be calculated. We have derived the harmonic coefficients of Amalthea's gravity field up to degree and order six, for both homogeneous and reasonable heterogeneous cases. Founded on these numbers we calculated the impact on the trajectory of GALILEO, compared it to existing Doppler data and made predictions for future spacecraft flybys. Although no two-way Doppler-data was available during the flyby and the harmonic coefficients of the gravity field are buried in the one-way Doppler-noise, the gravity field models of Amalthea show the possible interior structure of the moon and can be a basis for further exploration of the Jovian system. In order to get valuable information about the gravity field of this tiny rocky moon, a much closer flyby than that of GALILEO should be anticipated. The above stated model approach can be used for any planetary body.
NASA Astrophysics Data System (ADS)
Pie, N.; Bettadpur, S. V.; Giuliani, S.
2016-12-01
The gravity missions GRACE (Gravity Recovery And Climate Experiment) and GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) have brought great improvements in the study of Earth Dynamic processes. Though they are very different in nature, the two missions provide very complementary gravity products, expressed in the form of spherical harmonic expansions. GOCE, a single satellite mission, relies on a very sensitive Electrostatic Gravity Gradiometer (EGG) composed of 6 accelerometers out of which 6 gravity gradients are computed. On the other hand, GRACE observations of the gravity field are based on a microwave ranging system between its two satellites. The complementarity of the two missions comes from the fact that GRACE gravity products have superior accuracy in the estimation of the low to medium degree terms, while GOCE prevails in the higher degrees. Several combination gravity fields already make use of this complementarity. However, detailed quality analysis of this products reveals characteristic errors in gravity fields resulting in North-South striations, or even small-scale bumpy patterns over the ocean. It is believed that the striations are likely to be attributed to the GRACE data at degree superior to 100 of the spherical harmonic expansion, while the bumpy pattern could be the results of non-optimal weighting at degrees where GRACE and GOCE's accuracy are commensurate. The focus of this study is to characterize the geoid error in GRACE+GOCE combination gravity models in the spatial domain and in the context of the determination of the Mean Dynamic Topography (MDT).
The effective field theory treatment of quantum gravity
Donoghue, John F.
2012-09-24
This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.
HIGH-PRECISION ASTROMETRY WITH A DIFFRACTIVE PUPIL TELESCOPE
Guyon, Olivier; Eisner, Josh A.; Angel, Roger; Woolf, Neville J.; Bendek, Eduardo A.; Milster, Thomas D.; Mark Ammons, S.; Shao, Michael; Shaklan, Stuart; Levine, Marie; Nemati, Bijan; Pitman, Joe; Woodruff, Robert A.; Belikov, Ruslan
2012-06-01
Astrometric detection and mass determination of Earth-mass exoplanets require sub-{mu}as accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must, however, overcome astrometric distortions, which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the star's immediate surroundings. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 deg{sup 2} field we adopt as a baseline design achieves 0.2 {mu}as single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-{mu}as astrometry without relying on the accurate pointing, external metrology, or high-stability hardware required with previously proposed high-precision astrometry concepts.
The Earth's gravity field from satellite geodesy: A 30 year adventure
NASA Astrophysics Data System (ADS)
Rapp, Richard H.
1991-12-01
The history of research in the Earth's gravity field from satellite geodesy is described and limitations of existing geopotential models are indicated. Although current solutions have made outstanding achievements, their limited accuracy restricts their use for some oceanographic applications. An example is discussed where there appears to be an incompatibility of the long wavelength geoid undulation obtained through satellite analysis with independent estimates that have become available. The future Aristoteles mission is seen as providing a significant leap in Earth gravity field knowledge improvement.
Mariner 9 celestial mechanics experiment - Gravity field and pole direction of Mars.
NASA Technical Reports Server (NTRS)
Lorell, J.; Born, G. H.; Christensen, E. J.; Jordan, J. F.; Laing, P. A.; Martin, W. L.; Sjogren, W. L.; Shapiro, I. I.; Reasenberg, R. D.; Slater, G. L.
1972-01-01
Analysis of the Mariner 9 radio-tracking data shows that the Martian gravity field is rougher than that of earth or the moon, and that the accepted direction of the Mars rotation axis is in error by about 0.5 deg. Contours of equivalent surface heights deduced from a sixth-degree solution for the Martian gravity field are presented. These contours represent the deviations from sphericity of a uniformly dense body with an external potential which is given by the first sixth-degree solution. In addition to Doppler observations, ranging or group-delay measurements have been made regularly since orbit insertion.
Thermodynamics of a field theory with an infrared fixed point from gauge/gravity duality
Alanen, J.; Kajantie, K.
2010-02-15
We use gauge/gravity duality to study the thermodynamics of a field theory with asymptotic freedom in the ultraviolet and a fixed point in the infrared. We find a high temperature quark-gluon phase and a low T conformal unparticle phase. The phase transition between the phases is of first order or continuous, depending on the ratio of the radii of asymptotic anti-de Sitter spaces at T=0 and T={infinity}. This is a prediction from a model of gauge/gravity duality, not yet verified on the field theory side.
Plasmon-graviton conversion in a magnetic field in TeV-scale gravity
NASA Astrophysics Data System (ADS)
Melkumova, E. Yu.
2012-01-01
Kaluza-Klein (KK) gravitons emission rates due to plasmon-graviton conversion in magnetic field are computed within the ADD model of TeV-scale gravity. Plasma is described in the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with $n$ compact extra dimensions is introduced within the linearized theory. Plasma collective effects enter through the two-point correlation function of the fluctuations of the energy-momentum tensor. The estimate for magnetic stars is presented leading to the lower limit of the D-dimensional Plank mass.
NASA Astrophysics Data System (ADS)
Milsom, John; Hall, Robert; Padmawidjaja, Tatang
1996-02-01
Classic ophiolites, as exemplified by the Troodos Massif in Cyprus and the Papuan Ultramafic Belt in eastern New Guinea, are large overthrust masses which are generally associated with large positive gravity anomalies. However, similar rocks occurring in extensive fragmented terranes which have also been described as ophiolitic do not produce large gravity effects. The eastern part of the island of Halmahera, in northeastern Indonesia, is an ophiolite of this latter type. On the two eastern arms of the island, a Mesozoic ophiolitic basement is overlain by, and imbricated with, Upper Cretaceous and Paleogene arc volcanic and sedimentary rocks. Bouguer gravity values are generally in the range +50 to +150 mGal and are characterised by steep local gradients indicative of shallow sources. The Bouguer gravity average suggests that the crust is at least 20 km thick, and it must be even thicker if a significant part of the anomalous gravity field is due to the presence of a cold and therefore dense, lithospheric slab within the asthenosphere, associated with the present-day subduction beneath Halmahera. The absence of any exposures of continental basement rocks or of quartzose sediments in eastern Halmahera suggests that these ophiolites have not been overthrust onto continental crust and that the thickening occurred in an intraoceanic island arc. The Paleogene arc was evidently characterised by volcanism occurring over an unusually wide area. In this it resembles the Izu-Bonin volcanic arc, which, like Halmahera, has been situated at the margin of the Philippine Sea Plate throughout its history. The gravity field of the Halmahera ophiolite is comparable with that of the Bonin volcanic arc, but there is no Halmahera parallel to the very high gravity fields recorded over the Bonin Islands forearc ridge. The equivalents of this part of the Paleogene arc may be represented by the ophiolitic complexes now distributed along the northern margin of the orogenic belt in New
Testing the master constraint programme for loop quantum gravity: V. Interacting field theories
NASA Astrophysics Data System (ADS)
Dittrich, B.; Thiemann, T.
2006-02-01
This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein Yang Mills theory and 2 + 1 gravity. Interestingly, while Yang Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity.
Magnetic and gravity anomaly patterns related to hydrocarbon fields in northern West Siberia
Piskarev, A.L.; Tchernyshev, M.Yu.
1997-05-01
A study of the features of gravity and magnetic fields in the vicinity of oil and gas reservoirs in West Siberia demonstrated a spatial relationship with the hydrocarbon deposits. The relevant magnetic and gravity anomalies cover approximately 900,000 km{sup 2} in northern West Siberia. Amplitude and frequency were investigated initially using double Fourier spectrum (DFS) analysis. This was followed by (1) application of transformations, filtering, and moving windows analysis; (2) compilation of maps of regional and local anomalies, and potential field derivatives; and (3) investigation of the distribution of parameters in areas of known deposits. Hydrocarbon deposits are located mostly at the slopes of positive regional gravity and magnetic anomalies which are interpreted as relating to deep riftogenic structures. At the same time, it is established that the location of hydrocarbon depositions coincides commonly with local gravity and magnetic minima generated by lows in basement density and magnetization. All known hydrocarbon deposits in northern West Siberia are in areas characterized by comparatively high gradients of constituent of gravity anomalies with a wavelength of about 90--100 km. These newly revealed links between reservoirs and potential field parameters may be a means to predict new discoveries in poorly explored territories and seas, primarily in Russia`s Arctic shelf.
The European Gravity Field 2002-2005 from GRACE and GGP Data
NASA Astrophysics Data System (ADS)
Crossley, D.; Hinderer, J.; Boy, J.; Wilmes, H.; Kroner, C.; Meurers, B.
2005-12-01
This paper continues the study of the European gravity field as determined simultaneously from the GGP network of superconducting gravimeters and from the GRACE satellites. The period of study is from August 2002 to 2005 (as data is available) and covers the region between Membach (eastern Belgium), Vienna, and Medicina (northern Italy); during the last year, station Bad Homburg in western Germany has been added to make a total of 7 stations. As in previous similar studies, we combine the gravity residuals from the ground stations to make a smoothed map of the gravity field every 15 days and compare it to the GRACE field snapshots over the same area. Comparisons are done using both EOF principal component analysis and MSSA for both data sets. We confirm the predominance of annual signals and also examine the trends in GRACE and ground absolute gravity measurements to find the limiting secular change detectable in the data. Our primary goal is to correlate both data sets with hydrological models using meteorologically driven snow and soil moisture estimates for Europe, as well as hydrological observations and GPS results at the gravity sites, where available. We show the relationship between the sign of the hydrology signal, separated into attraction and loading, and the local topography surrounding each station.
Too Fast to Measure: Network Adjustment of Rapidly Changing Gravity Fields
NASA Astrophysics Data System (ADS)
Kennedy, J.; Ferre, T. P. A.
2014-12-01
Measurements of spatially-variable gravity at the field scale are difficult; measurements of the time-varying field even more so. Every previous gravity survey using relative gravimeters—still the workhorse of gravity studies, despite their nearly 80 year history—has assumed a static gravity field during the course of a survey, which may last days to weeks. With recently-improved instrumentation, however, measurements of fields changing on the order of tens of nm/sec2 per day are now possible. In particular, the A-10 portable absolute gravimeter provides not only absolute control, but also the change in that control during the course of a survey. Using digitally-recording spring-based relative gravimeters (namely, the ZLS Burris meter and the Scintrex CG-5), with their more efficient data collection and lower drift than previous generations, many more data are collected in a day. We demonstrate a method for incorporating in the least-squares network adjustment of relative gravity data a relation between the rate of change of gravity, dg, and distance from an infiltration source, x. This relation accounts for the fact that gravity at stations adjacent to the infiltration source changes more rapidly than stations further away; if all measurements collected over several days are to be included in a single network-adjustment, consideration of this change is required. Two methods are used to simulate the dg(x) relation: a simple model where dg is a linear function of x, and a coupled-hydrogeophysical method where a groundwater flow model predicts the nonlinear spatial variation of dg. Then, the change in gravity between different, independently adjusted surveys is used to parameterize the groundwater model. Data from two recent field examples, an artificial recharge facility near Tucson, Arizona, USA, and from the 2014 Lower Colorado River pulse flow experiment, clearly show the need to account for gravity change during a survey; maximum rates of change for the two
NASA Astrophysics Data System (ADS)
Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.
2017-02-01
GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.
NASA Astrophysics Data System (ADS)
Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.
2017-09-01
GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.
Feasibility study to identify deep Earth signals in current and future gravity field missions
NASA Astrophysics Data System (ADS)
Ghelichkhan, S.; Murböck, M.; Pail, R.; Colli, L.; Bunge, H. P.
2016-12-01
Next generation gravity missions are expected to improve the accuracy of temporal Earth's gravity models significantly. Periodic signals and trends are related to mass redistributions in the Earth system and carry essential information on dynamic processes in the atmosphere, cryosphere, hydrosphere and the solid Earth. Gravity signals from the deep solid Earth are commonly thought to lie below the detection limit of satellite gravity missions, as one assumes them to have very small amplitudes and be restricted to the longest spatial and temporal scales. However, robust evidence from geologic records exists for episodes of very rapid uplift and subsidence events at regional scales, especially along passive continental margins. These uplift and subsidence events, which are inferred from regional seismic stratigraphy, landscape evolution studies, and the analysis of river profiles, result from flow in the underlying mantle and imply faster rates and smaller scales for the contribution of the solid Earth to the time-dependent gravity field. Here we exploit high resolution global mantle convection models capable of resolving fine scale mantle flow in conjunction with an innovative adjoint method. The adjoint method allows us to derive time trajectories for global mantle flow, thus providing first order estimates for temporal variations of gravity signals related to solid Earth. This is then analyzed with numerical low-low SST closed-loop simulations including GRACE-like observation noise. We find out that a Bender-type double pair mission scenario would be able to resolve the gravitational signal from deep mantle convection.
Feasibility study to identify deep Earth signals in current and future gravity field missions
NASA Astrophysics Data System (ADS)
Ghelichkhan, Siavash; Murböck, Michael; Colli, Lorenzo; Pail, Roland; Bunge, Hans-Peter
2017-04-01
Next generation gravity missions are expected to improve the accuracy of temporal Earth's gravity models significantly. Periodic signals and trends are related to mass redistributions in the Earth system and carry essential information on dynamic processes in the atmosphere, cryosphere, hydrosphere and the solid Earth. Gravity signals from the deep solid Earth are commonly thought to lie below the detection limit of satellite gravity missions, as one assumes them to have very small amplitudes and be restricted to the longest spatial and temporal scales. However, robust evidence from geologic records exists for episodes of very rapid uplift and subsidence events at regional scales, especially along passive continental margins. These uplift and subsidence events, which are inferred from regional seismic stratigraphy, landscape evolution studies, and the analysis of river profiles, result from flow in the underlying mantle and imply faster rates and smaller scales for the contribution of the solid Earth to the time-dependent gravity field. Here we exploit high resolution global mantle convection models capable of resolving fine scale mantle flow in conjunction with an innovative adjoint method. The adjoint method allows us to derive time trajectories for global mantle flow, thus providing first order estimates for temporal variations of gravity signals related to solid Earth. This is then analyzed with numerical low-low SST closed-loop simulations including GRACE-like observation noise. We find out that a Bender-type double pair mission scenario would be able to resolve the gravitational signal from deep mantle convection.
Antarctic Tectonics: Constraints From an ERS-1 Satellite Marine Gravity Field
McAdoo; Laxon
1997-04-25
A high-resolution gravity field of poorly charted and ice-covered ocean near West Antarctica, from the Ross Sea east to the Weddell Sea, has been derived with the use of satellite altimetry, including ERS-1 geodetic phase, wave-form data. This gravity field reveals regional tectonic fabric, such as gravity lineations, which are the expression of fracture zones left by early (65 to 83 million years ago) Pacific-Antarctic sea-floor spreading that separated the Campbell Plateau and New Zealand continent from West Antarctica. These lineations constrain plate motion history and confirm the hypothesis that Antarctica behaved as two distinct plates, separated from each other by an extensional Bellingshausen plate boundary active in the Amundsen Sea before about 61 million years ago.
High-precision dynamic orbit integration for spaceborne gravimetry
NASA Astrophysics Data System (ADS)
Ellmer, M.; Mayer-Gürr, T.
2016-12-01
Future gravity missions like GRACE Follow-On and beyond will deliver low-low satellite-to-satellite ranging measurements of much increased precision. To prepare for the new challenges and opportunities involved in processing this new data, it is necessary to perform a systematic review and re-evaluation of current algorithms and assumptions used in gravity field determination from GRACE data. In this context, this study investigates the computation of dynamic orbits from GRACE accelerometer measurements and background models, which are used at multiple steps in gravity recovery. They are, for example, used in computing linearised observation equations for the low-low satellite-to-satellite tracking instruments, or to evaluate potential models like static fields or dealiasing products. It is thus desirable for the precision at which the dynamic orbits are determined to surpass the precision of the ranging observations. We computed dynamic orbits for GRACE, both in a simple simulation and for real observational data. We observed the differences between successive iterations of orbit determination and used these as a benchmark for the quality of the orbit solution. We implemented a numerically stable orbit determination algorithm employing Encke's method, in which we use a novel reference trajectory determined through rigorous optimization. This reference trajectory was parameterised and computed using equinoctial elements to minimize orbit errors resulting from imprecision in the reference motion. We present the effects of these two optimizations on the dynamic orbits, and show that the resulting orbits are self-consistent to below the expected precision of the GRACE Follow-On ranging instruments.
On the model structure of the gravity field of Mars
NASA Astrophysics Data System (ADS)
Zharkov, V. N.; Gudkova, T. V.
2016-07-01
A discussion is presented about the constraints used in constructing a model for the internal structure of Mars. The most important fact is that the Martian chemical model proposed by Wänke and Dreibus (WD) has stood the test of time. This means that the chondritic ratio Fe/Si = 1.71 can be used as a constraint in constructing an interior structure model of the planet. Consideration is given to the constructing of the reference surface of Mars. It is concluded that the effectively hydrostatic-equilibrium model of Mars is well suited for this purpose. The areoid heights and gravity anomalies in the model of Mars are calculated. The results are shown in the figures (maps) and comments made. The results are compared with the similar data for the Earth. Mars deviates much more strongly from the hydrostatic equilibrium than the Earth. It is suggested that the average thickness of the Martian elastic lithosphere should exceed that of the Earth's continental lithosphere.
Recovery of the Earth's gravity field from formation-flying satellites: Temporal aliasing issues
NASA Astrophysics Data System (ADS)
Elsaka, Basem; Kusche, Juergen; Ilk, Karl-Heinz
2012-12-01
Temporal and mean gravity field models derived from the twin-satellite, leader-follower mission GRACE have provided a new type of information for Earth sciences. In this contribution, we study the potential of various alternative satellite formations for gravity field determination in the post-GRACE era in a simulation environment. In particular, the effects of spherical harmonic truncation and of temporal aliasing in the processing of gravity products from such future formations are investigated. Temporal aliasing is studied based on simulated observations of satellite formation flight (SFF) configurations and simulated errors in short-term background models for the non-tidal atmosphere, ocean masses and the continental water storage. We study the potential improvement of SFF gravity field solutions in terms of spherical harmonics truncation of up to degree/order 100. Furthermore, we simulate the recovery of the hydrological signal from various SFF configurations with and without the contamination of the aliasing errors, which were derived from model differences. We implement full-scale simulations for all scenarios to assess the quality of future gravity products in the form of spherical harmonic models. To this end, we create simulated measurements for four satellite configurations (known as pendulum, the radial Cartwheel, the LISA and the pendulum-3S) besides the GRACE-type configuration as a reference. All simulations are restricted to a time span of one month to limit computation costs. As expected, the gravity field products derived from future SFF configurations may surpass those obtained from GRACE in terms of isotropy of the gravity field. Our study provides detailed results for many scenarios ranging in terms of spherical harmonic truncation to up to 100 for mean and temporal solutions. Furthermore, we show that specific SFF configurations involving radial and cross-track information strengthen the recovery of the gravitational signal; in addition they
Liquid Droplet Dynamics in Gravity Compensating High Magnetic Field
NASA Technical Reports Server (NTRS)
Bojarevics, V.; Easter, S.; Pericleous, K.
2012-01-01
Numerical models are used to investigate behavior of liquid droplets suspended in high DC magnetic fields of various configurations providing microgravity-like conditions. Using a DC field it is possible to create conditions with laminar viscosity and heat transfer to measure viscosity, surface tension, electrical and thermal conductivities, and heat capacity of a liquid sample. The oscillations in a high DC magnetic field are quite different for an electrically conducting droplet, like liquid silicon or metal. The droplet behavior in a high magnetic field is the subject of investigation in this paper. At the high values of magnetic field some oscillation modes are damped quickly, while others are modified with a considerable shift of the oscillating droplet frequencies and the damping constants from the non-magnetic case.
Mars gravity field error analysis from simulated radio tracking of Mars Observer
Smith, D.E.; Lerch, F.J. ); Chan, J.C.; Chinn, D.S.; Iz, H.B.; Mallama, A.; Patel, G.B. )
1990-08-30
The Mars Observer (MO) Mission, in a near-polar orbit at 360-410 km altitude for nearly a 2-year observing period, will greatly improve our understanding of the geophysics of Mars, including its gravity field. To assess the expected improvement of the gravity field, the authors have conducted an error analysis based upon the mission plan for the Mars Observer radio tracking data from the Deep Space Network. Their results indicate that it should be possible to obtain a high-resolution model (spherical harmonics complete to degree and order 50 corresponding to a 200-km horizontal resolution) for the gravitational field of the planet. This model, in combination with topography from MO altimetry, should provide for an improved determination of the broad scale density structure and stress state of the Martian crust and upper mantle. The mathematical model for the error analysis is based on the representation of doppler tracking data as a function of the Martian gravity field in spherical harmonics, solar radiation pressure, atmospheric drag, angular momentum desaturation residual acceleration (AMDRA) effects, tracking station biases, and the MO orbit parameters. Two approaches are employed. In the first case, the error covariance matrix of the gravity model is estimated including the effects from all the nongravitational parameters (noise-only case). In the second case, the gravity recovery error is computed as above but includes unmodelled systematic effects from atmospheric drag, AMDRA, and solar radiation pressure (biased case). The error spectrum of gravity shows an order of magnitude of improvement over current knowledge based on doppler data precision from a single station of 0.3 mm s{sup {minus}1} noise for 1-min integration intervals during three 60-day periods.
High-precision Velocimetry Reveals δ Cephei's Secret Companion
NASA Astrophysics Data System (ADS)
Anderson, Richard I.; Sahlmann, Johannes; Holl, Berry; Eyer, Laurent
2015-08-01
The search for extra-solar planets has driven tremendous improvements in the precision of radial velocities measured with high-resolution echelle spectrographs. However, relatively few studies have as of yet exploited the present-day extreme (m/s) instrumental precision to study Cepheid variable stars.We have been observing the prototype of classical Cepheids, δ Cephei, since September 2011 using the HERMES spectrograph mounted to the Mercator telescope located at the Roque de los Muchachos Observatory on the island of La Palma. Being one of the most-studied variable stars, we originally chose δ Cephei as a maximum-precision reference for other Cepheids in our sample. To our great surprise however, we discovered a clear orbital signature in the homogeneous HERMES data. Adding in radial velocity data from the literature, we then determined δ Cephei's orbit (cf. Anderson et al. 2015, arXiv:1503.04116). The high orbital eccentricity (e=0.647) leads to close pericenter passages (rmin ~ 9.5 RδCep) which suggest an intriguing past that requires further study, since Cepheids are well-known magnifying glasses for stellar evolution (Kippenhahn & Weigert 1994). We furthermore determined a new parallax to δ Cephei (using Hipparcos data) that is in tension with previous estimates and shows that the orbit will have to be accounted for when measuring δ Cephei's parallax with Gaia.While some of our HERMES data are as precise as 9 m/s, we found correlated excess residuals when removing the reference pulsation model and orbital motion from the HERMES radial velocity data, leaving an RMS of 47 m/s. These higher-than-expected residuals are reminiscent of the "period-jitter" or "flickering" observed in high-precision photometry of Cepheids obtained with the Kepler and MOST satellites. This reveals a fortuitous synergy between variable stars studies and the field of exoplanet research and opens the window for a better understanding of Cepheid pulsations via high-precision
High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking
NASA Astrophysics Data System (ADS)
Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.
2016-12-01
wide dynamic range camera that provides a high precision solar position tracking signal as well as an image of the sky in the 45° field of view around the solar axis, which can be of great assistance in flagging data for cloud effects or other factors that might impact data quality.
A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration
Mark Zumberge
2011-09-30
Carbon dioxide gas (CO{sub 2}) is a byproduct of many wells that produce natural gas. Frequently the CO{sub 2} separated from the valuable fossil fuel gas is released into the atmosphere. This adds to the growing problem of the climatic consequences of greenhouse gas contamination. In the Sleipner North Sea natural gas production facility, the separated CO{sub 2} is injected into an underground saline aquifer to be forever sequestered. Monitoring the fate of such sequestered material is important - and difficult. Local change in Earth's gravity field over the injected gas is one way to detect the CO{sub 2} and track its migration within the reservoir over time. The density of the injected gas is less than that of the brine that becomes displaced from the pore space of the formation, leading to slight but detectable decrease in gravity observed on the seafloor above the reservoir. Using equipment developed at Scripps Institution of Oceanography, we have been monitoring gravity over the Sleipner CO{sub 2} sequestration reservoir since 2002. We surveyed the field in 2009 in a project jointly funded by a consortium of European oil and gas companies and the US Department of Energy. The value of gravity at some 30 benchmarks on the seafloor, emplaced at the beginning of the monitoring project, was observed in a week-long survey with a remotely operated vehicle. Three gravity meters were deployed on the benchmarks multiple times in a campaign-style survey, and the measured gravity values compared to those collected in earlier surveys. A clear signature in the map of gravity differences is well correlated with repeated seismic surveys.
Holographic conductivity in the massive gravity with power-law Maxwell field
NASA Astrophysics Data System (ADS)
Dehyadegari, A.; Kord Zangeneh, M.; Sheykhi, A.
2017-10-01
We obtain a new class of topological black hole solutions in (n + 1)-dimensional massive gravity in the presence of the power-Maxwell electrodynamics. We calculate the conserved and thermodynamic quantities of the system and show that the first law of thermodynamics is satisfied on the horizon. Then, we investigate the holographic conductivity for the four and five dimensional black brane solutions. For completeness, we study the holographic conductivity for both massless (m = 0) and massive (m ≠ 0) gravities with power-Maxwell field. The massless gravity enjoys translational symmetry whereas the massive gravity violates it. For massless gravity, we observe that the real part of conductivity, Re [ σ ], decreases as charge q increases when frequency ω tends to zero, while the imaginary part of conductivity, Im [ σ ], diverges as ω → 0. For the massive gravity, we find that Im [ σ ] is zero at ω = 0 and becomes larger as q increases (temperature decreases), which is in contrast to the massless gravity. It also has a maximum value for ω ≠ 0 which increases with increasing q (with fixed p) or increasing p (with fixed q) for (2 + 1)-dimensional dual system, where p is the power parameter of the power-law Maxwell field. Interestingly, we observe that in contrast to the massless case, Re [ σ ] has a maximum value at ω = 0 (known as the Drude peak) for p = (n + 1) / 4 (conformally invariant electrodynamics) and this maximum increases with increasing q. In this case (m ≠ 0) and for different values of p, the real and imaginary parts of the conductivity has a relative extremum for ω ≠ 0. Finally, we show that for high frequencies, the real part of the holographic conductivity have the power law behavior in terms of frequency, ωa where a ∝ (n + 1 - 4 p). Some similar behaviors for high frequencies in possible dual CFT systems have been reported in experimental observations.
HIGH PRECISION ROVIBRATIONAL SPECTROSCOPY OF OH{sup +}
Markus, Charles R.; Hodges, James N.; Perry, Adam J.; Kocheril, G. Stephen; McCall, Benjamin J.; Müller, Holger S. P.
2016-02-01
The molecular ion OH{sup +} has long been known to be an important component of the interstellar medium. Its relative abundance can be used to indirectly measure cosmic ray ionization rates of hydrogen, and it is the first intermediate in the interstellar formation of water. To date, only a limited number of pure rotational transitions have been observed in the laboratory making it necessary to indirectly calculate rotational levels from high-precision rovibrational spectroscopy. We have remeasured 30 transitions in the fundamental band with MHz-level precision, in order to enable the prediction of a THz spectrum of OH{sup +}. The ions were produced in a water cooled discharge of O{sub 2}, H{sub 2}, and He, and the rovibrational transitions were measured with the technique Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy. These values have been included in a global fit of field free data to a {sup 3}Σ{sup −} linear molecule effective Hamiltonian to determine improved spectroscopic parameters which were used to predict the pure rotational transition frequencies.
Laser interferometric high-precision angle monitor for JASMINE
NASA Astrophysics Data System (ADS)
Niwa, Yoshito; Arai, Koji; Sakagami, Masaaki; Gouda, Naoteru; Kobayashi, Yukiyasu; Yamada, Yoshiyuki; Yano, Taihei
2006-06-01
The JASMINE instrument uses a beam combiner to observe two different fields of view separated by 99.5 degrees simultaneously. This angle is so-called basic angle. The basic angle of JASMINE should be stabilized and fluctuations of the basic angle should be monitored with the accuracy of 10 microarcsec in root-mean-square over the satellite revolution period of 5 hours. For this purpose, a high-precision interferometric laser metrogy system is employed. One of the available techniques for measuring the fluctuations of the basic angle is a method known as the wave front sensing using a Fabry-Perot type laser interferometer. This technique is to detect fluctuations of the basic angle as displacement of optical axis in the Fabry-Perot cavity. One of the advantages of the technique is that the sensor is made to be sensitive only to the relative fluctuations of the basic angle which the JASMINE wants to know and to be insensitive to the common one; in order to make the optical axis displacement caused by relative motion enhanced the Fabry-Perot cavity is formed by two mirrors which have long radius of curvature. To verify the principle of this idea, the experiment was performed using a 0.1m-length Fabry-Perot cavity with the mirror curvature of 20m. The mirrors of the cavity were artificially actuated in either relative way or common way and the resultant outputs from the sensor were compared.
Canonical Higgs fields from higher-dimensional gravity
NASA Astrophysics Data System (ADS)
Egeileh, Michel
2007-03-01
We consider the dimensional reduction of a gravitational field g in a multidimensional universe endowed with a simple action of a compact Lie group. It is known that when the group preserves g, this dimensional reduction leads in particular to scalar fields that correspond to an invariant metric on each orbit. We show that the action functionals of those fields (obtained from the reduction of Einstein's action) exhibit, in the hyperbolic case, polynomials of several variables having a degree less or equal to 6.
Orbit and Gravity Field Solutions from Swarm GPS Observations - First Result
NASA Astrophysics Data System (ADS)
Jaeggi, A.; Dahle, C.; Arnold, D.; Bock, H.; Flechtner, F.
2014-12-01
Although ESA's Earth Explorer Mission Swarm is primarily dedicated to measure the Earth's magnetic field, it may also serve as a gravity field mission. Equipped with GPS receivers, accelerometers, star-tracker assemblies and laser retro-reflectors, the three Swarm satellites are potentially capable to be used as a high-low satellite-to-satellite tracking (hl-SST) observing system, following the missions CHAMP (first single-satellite hl-SST mission), GRACE (twin-satellite mission with additional ultra-precise low-low SST and GOCE (single-satellite mission additionally equipped with a gradiometer). GRACE, dedicated to measure the time-variability of the gravity field, is the only mission still in orbit, but its lifetime will likely end before launch of its follow-on mission GRACE-FO in August 2017 primarily due to aging of the onboard batteries after meanwhile more than 12 years of operation. Swarm is probably a good candidate to provide time-variable gravity field solutions and to close a potential gap between GRACE and GRACE-FO. Consisting of three satellites, Swarm also offers to use inter-satellite GPS-derived baselines as additional observations. However, as of today it is not clear if such information will substantially improve the gravity field solutions. Nevertheless, the properties of the Swarm constellation with two lower satellites flying in a pendulum-like orbit and a slightly differently inclined third satellite at higher altitude still represent a unique observing system raising expectations at least compared to CHAMP derived time-variable gravity field solutions. Whatever processing method will be applied for Swarm gravity field recovery, its success strongly depends on the quality of the Swarm Level 1b data as well as the quality of the derived Swarm orbits. With first Level 1b data sets available since mid of May 2014 (excluding accelerometer data), first results for Swarm orbits and baselines, as well as Swarm gravity field solutions are presented
NASA Astrophysics Data System (ADS)
Kennedy, Jeffrey R.; Ferré, Ty P. A.
2016-02-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument-that is, non-linear drift and random tares-typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d-1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively
Exposure of biological preparations to radiofrequency electromagnetic fields under low gravity.
Jacquot, Jean Francois; le Bail, Jean-Luc; Bardet, Michel; Tabony, James
2010-11-01
There is interest as to whether the electromagnetic fields used in mobile radiotelephony might affect biological processes. Other weak fields such as gravity intervene in a number of physical and biological processes. Under appropriate in vitro conditions, the macroscopic self-organization of microtubules, a major cellular component, is triggered by gravity. We wished to investigate whether self-organization might also be affected by radiotelephone electromagnetic fields. Detecting a possible effect requires removing the obscuring effects triggered by gravity. A simple manner of doing this is by rotating the sample about the horizontal. However, if the external field does not also rotate with the sample, its possible effect might also be averaged down by rotation. Here, we describe an apparatus in which both the sample and an applied radiofrequency electromagnetic field (1.8 GHz) are stationary with respect to one another while undergoing horizontal rotation. The electromagnetic field profile within the apparatus has been measured and the apparatus tested by reproducing the in vitro behavior of microtubule preparations under conditions of weightlessness. Specific adsorption rates of electromagnetic energy within a sample are measured from the initial temperature rise the incident field causes. The apparatus can be readily adapted to expose samples to various other external fields and factors under conditions of weightlessness.
3D Gravity Field Modelling of the Lithosphere along the Dead Sea Transform (DESERT 2002)
NASA Astrophysics Data System (ADS)
Götze, H.-J.; Ebbing, J.; Schmidt, S.; Rykakov, M.; Hassouneh, M.; Hrahsha, M.; El-Kelani, R.; Desert Group
2003-04-01
From March to May 2002 a gravity field campaign has to be conducted in the area of Dead Sea Rift/Dead Sea Transform with regard to the isostatic state, the crustal density structure of the transform and the lithospheric rigidity in the Central Arava Valley (Jordan). Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), takes part in the interdisciplinary and international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local scale in the Arava valley and at regional scale along the DESERT seismic line. Station spacing in the area of the Arava valley was 100 - 300 m and in the nearest neighbourhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic studies, and geological mapping which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing density domains. In particular the "dip-curvature" reveal a clear course
Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform
NASA Astrophysics Data System (ADS)
Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.
2002-12-01
The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing
Shape, Mean Radius, Gravity Field and Interior Structure of Callisto
NASA Technical Reports Server (NTRS)
Anderson, J.; Jacobson, R.; McElrath, T.; Schubert, G.; Moore, W.; Thomas, P.
2000-01-01
Radio Doppler data generated by the Deep Space Network (DSN) from five encounters of the Galileo spacecraft with Callisto, Jupiter's outermost Galilean satellite, have been used to determine the quadrupole moments of the satellite's external gravitational field.
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Brane structure from a scalar field in general covariant Horava-Lifshitz gravity
NASA Astrophysics Data System (ADS)
Bazeia, D.; Brito, F. A.; Costa, F. G.
2015-02-01
In this paper we have considered the structure of the nonprojectable Horava-Melby-Thompson gravity to find braneworld scenarios. A relativistic scalar field is considered in the matter sector and we have shown how to reduce the equations of motion to first-order differential equations. In particular, we have studied thick brane solutions of both the dilatonic and Randall-Sundrum types.
Progress in the development of the GMM-2 gravity field model for Mars
NASA Technical Reports Server (NTRS)
Lemoine, F. G.; Smith, D. E.; Lerch, F. J.; Zuber, M. T.; Patel, G. B.
1994-01-01
Last year we published the GMM-1 (Goddard Mars Model-1) gravity model for Mars. We have completely re-analyzed the Viking and Mariner 9 tracking data in the development of the new field, designated GMM-2. The model is complete to degree and order 70. Various aspects of the model are discussed.
Jain, Bhuvnesh; Khoury, Justin
2010-07-15
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from {approx} kpc (galaxy scales) to {approx} Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages - we summarize these tests and discuss the interesting prospects for new tests in the coming decade.
NASA Astrophysics Data System (ADS)
Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.
2006-12-01
In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with
Cold Atom Interferometers Used In Space (CAIUS) for Measuring the Earth's Gravity Field
NASA Astrophysics Data System (ADS)
Carraz, O.; Luca, M.; Siemes, C.; Haagmans, R.; Silvestrin, P.
2016-12-01
In the past decades, it has been shown that atomic quantum sensors are a newly emerging technology that can be used for measuring the Earth's gravity field. There are two ways of making use of that technology: One is a gravity gradiometer concept and the other is in a low-low satellite-to-satellite ranging concept. Whereas classical accelerometers typically suffer from high noise at low frequencies, Cold Atom Interferometers are highly accurate over the entire frequency range. We recently proposed a concept using cold atom interferometers for measuring all diagonal elements of the gravity gradient tensor and the full spacecraft angular velocity in order to achieve better performance than the GOCE gradiometer over a larger part of the spectrum, with the ultimate goals of determining the fine structures in the gravity field better than today. This concept relies on a high common mode rejection, which relaxes the drag free control compare to GOCE mission, and benefits from a long interaction time with the free falling clouds of atoms due to the micro gravity environment in space as opposed to the 1-g environment on-ground. Other concept is also being studied in the frame of NGGM, which relies on the hybridization between quantum and classical techniques to improve the performance of accelerometers. This could be achieved as it is realized in frequency measurements where quartz oscillators are phase locked on atomic or optical clocks. This technique could correct the spectrally colored noise of the electrostatic accelerometers in the lower frequencies. In both cases, estimation of the Earth gravity field model from the instruments has to be evaluated taking into account different system parameters such as attitude control, altitude of the satellite, time duration of the mission, etc. Miniaturization, lower consumptions and upgrading Technical Readiness Level are the key engineering challenges that have to be faced for these space quantum technologie.
NASA Astrophysics Data System (ADS)
Wang, Gang; Jiang, Suhua; Li, Sanzhong; Zhang, Huixuan; Lei, Jianping; Gao, Song; Zhao, Feiyu
2017-06-01
To reveal the basement-involved faults and deep structures of the West Philippine Basin (WPB), the gravitational responses caused by these faults are observed and analyzed based on the latest spherical gravity model: WGM2012 Model. By mapping the free-air and Bouguer gravity anomalies, several main faults and some other linear structures are located and observed in the WPB. Then, by conducting a 2D discrete multi-scale wavelet decomposition, the Bouguer anomalies are decomposed into the first- to eighth-order detail and approximation fields (the first- to eighth-order Details and Approximations). The first- to third-order Details reflect detailed and localized geological information of the crust at different depths, and of which the higher-order reflects gravity field of the deeper depth. The first- to fourth-order Approximations represent the regional gravity fields at different depths of the crust, respectively. The fourth-order Approximation represents the regional gravity fluctuation caused by the density inhomogeneity of Moho interface. Therefore, taking the fourth-order Approximation as input, and adopting Parker-Oldenburg interactive inversion, We calculated the depth of Moho interface in the WPB. Results show that the Moho interface depth in the WPB ranges approximately from 8 to 12 km, indicating that there is typical oceanic crust in the basin. In the Urdaneta Plateau and the Benham Rise, the Moho interface depths are about 14 and 16 km, respectively, which provides a piece of evidence to support that the Banham Rise could be a transitional crust caused by a large igneous province. The second-order vertical derivative and the horizontal derivatives in direction 0° and 90° are computed based on the data of the third-order Detail, and most of the basement-involved faults and structures in the WPB, such as the Central Basin Fault Zone, the Gagua Ridge, the Luzon-Okinawa Fault Zone, and the Mindanao Fault Zone are interpreted by the gravity derivatives.
Research on high-precision hole measurement based on robot vision method
NASA Astrophysics Data System (ADS)
Song, Li-mei; Li, Da-peng; Qin, Ming-cui; Li, Zong-yan; Chang, Yu-lan; Xi, Jiang-tao
2014-09-01
A high-precision vision detection and measurement system using mobile robot is established for the industry field detection of motorcycle frame hole and its diameter measurement. The robot path planning method is researched, and the non-contact measurement method with high precision based on visual digital image edge extraction and hole spatial circle fitting is presented. The Canny operator is used to extract the edge of captured image, the Lagrange interpolation algorithm is utilized to determine the missing image edge points and calculate the centroid, and the least squares fitting method is adopted to fit the image edge points. Experimental results show that the system can be used for the high-precision real-time measurement of hole on motorcycle frame. The absolute standard deviation of the proposed method is 0.026 7 mm. The proposed method can not only improve the measurement speed and precision, but also reduce the measurement error.
Stable magnetic field gradient levitation of Xenopus laevis: toward low-gravity simulation.
Valles, J M; Lin, K; Denegre, J M; Mowry, K L
1997-08-01
We have levitated, for the first time, living biological specimens, embryos of the frog Xenopus laevis, using a large inhomogeneous magnetic field. The magnetic field/field gradient product required for levitation was 1430 kG2/cm, consistent with the embryo's susceptibility being dominated by the diamagnetism of water and protein. We show that unlike any other earth-based technique, magnetic field gradient levitation of embryos reduces the body forces and gravity-induced stresses on them. We discuss the use of large inhomogeneous magnetic fields as a probe for gravitationally sensitive phenomena in biological specimens.
NASA Astrophysics Data System (ADS)
Baulieu, Laurent
1996-02-01
We construct a framework which unifies in pairs the fields and anti-fields of the Batalin and Vilkovisky quantization method. We consider gauge theories of p-forms coupled to Yang-Mills fields. Our algorithm generates many topological models of the Chern-Simons type or of the Donaldson-Witten type. Some of these models can undergo a partial breaking of their topological symmetries. We investigate the properties of 2D gravity in the Batalin and Vilkovisky quantization scheme. We find a structure which satisfies the holomorphic factorization and also properties analogous to those existing in the topological theories of forms. New conformal fields are introduced with their invariant action.
Non-minimally coupled tachyon field in teleparallel gravity
Fazlpour, Behnaz; Banijamali, Ali E-mail: a.banijamali@nit.ac.ir
2015-04-01
We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.
Group field theory as the second quantization of loop quantum gravity
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2016-04-01
We construct a second quantized reformulation of canonical loop quantum gravity (LQG) at both kinematical and dynamical level, in terms of a Fock space of spin networks, and show in full generality that it leads directly to the group field theory (GFT) formalism. In particular, we show the correspondence between canonical LQG dynamics and GFT dynamics leading to a specific GFT model from any definition of quantum canonical dynamics of spin networks. We exemplify the correspondence of dynamics in the specific example of 3d quantum gravity. The correspondence between canonical LQG and covariant spin foam models is obtained via the GFT definition of the latter.
Measurement error analysis in determination of small-body gravity fields
NASA Technical Reports Server (NTRS)
Friedlander, A. L.; Davis, D. R.; Heppenheimer, T. A.
1974-01-01
We consider analytically the use of existing instrumentation in determining asteroid gravity fields from orbiting spacecraft. Asteroids (Eros as an example) are modeled as homogeneous triaxial ellipsoids, with gravitational potential given by a sperical-harmonic expansion. Mass concentrations are modeled as point masses. The character of spacecraft orbits about asteroids is discussed, along with detectibility of gravitational coefficients and of mass concentrations. A Kalman-filtering treatment of the observation process, for Eros as example, shows that using DSN tracking and onboard gravity gradiometry, radar altimetry, and celestial angle measurements, a single orbit yields asteroid mass to 0.03% and coefficients C20 to C44 to 1% accuracies.
Azimuthal dependence in the gravity field induced by recent and past cryospheric forcings
NASA Technical Reports Server (NTRS)
Yuen, David A.; Gasperini, Paolo; Sabadini, Roberto; Boschi, Enzo
1987-01-01
Present-day glacial activities and the current variability of the Antarctic ice volume can cause variations in the long-wavelength gravity field as a consequence of transient viscoelastic responses in the mantle. The azimuthal dependence of the secular variations of the gravitational potential are studied and it is found that the nonaxisymmetric contributions are more important for recent glacial retreats than for Pleistocene deglaciation. Changes in land-based ice covering Antarctica can be detected by monitoring satellite orbits and their sensitivity to variations in gravitational harmonic for degree l greater than 3. Resonances in satellite orbits may be useful for detecting these azimuthally-dependent gravity signals.
NASA Technical Reports Server (NTRS)
Lerche, I.; Low, B. C.
1980-01-01
The mechanical equilibrium of a cylinder of plasma suspended horizontally by magnetic fields in uniform gravity is examined. A set of exact solutions describing the equilibrium is derived assuming the plasma distribution to be cylindrically symmetric to obtain an exact force balance between plasma pressure, the Lorentz pressure, and gravity in space. The set of solutions considers a case of uniform temperature and cases where the temperature rises from zero at the center of the plasma cylinder to reach a constant asymptotic value outside the cylinder.
On the source of cross-grain lineations in the central Pacific gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, David C.; Sandwell, David T.
1989-01-01
The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.
On the source of cross-grain lineations in the central Pacific gravity field
NASA Technical Reports Server (NTRS)
Mcadoo, David C.; Sandwell, David T.
1989-01-01
The source of cross-grain lineations in marine gravity field observed in central Pacific was investigated by comparing multiple collinear gravity profiles from Geosat data with coincident bathymetry profiles, in the Fourier transform domain. Bathymetric data were collected by multibeam sonar systems operating from two research vessels, one in June-August 1985, the other in February and March 1987. The results of this analysis indicate that the lineations are superficial features that appear to result from a combination of subsurface and surface loads supported by a thin (2 km to 5 km) lithosphere.
Azimuthal dependence in the gravity field induced by recent and past cryospheric forcings
NASA Technical Reports Server (NTRS)
Yuen, David A.; Gasperini, Paolo; Sabadini, Roberto; Boschi, Enzo
1987-01-01
Present-day glacial activities and the current variability of the Antarctic ice volume can cause variations in the long-wavelength gravity field as a consequence of transient viscoelastic responses in the mantle. The azimuthal dependence of the secular variations of the gravitational potential are studied and it is found that the nonaxisymmetric contributions are more important for recent glacial retreats than for Pleistocene deglaciation. Changes in land-based ice covering Antarctica can be detected by monitoring satellite orbits and their sensitivity to variations in gravitational harmonic for degree l greater than 3. Resonances in satellite orbits may be useful for detecting these azimuthally-dependent gravity signals.
Efficient global gravity field determination from satellite-to-satellite tracking
NASA Astrophysics Data System (ADS)
Han, Shin-Chan
By the middle of this decade, measurements from the CHAMP (CHAllenging of Minisatellite Payload) and GRACE (Gravity Recovery And Climate Experiment) gravity mapping satellite missions are expected to provide a significant improvement in our knowledge of the Earth's mean gravity field and its temporal variation. For this research, new observation equations and efficient inversion method were developed and implemented for determination of the Earth's global gravity field using satellite measurements. On the basis of the energy conservation principle, in situ (on-orbit) and along track disturbing potential and potential difference observations were computed using data from accelerometer- and GPS receiver-equipped satellites, such as CHAMP and GRACE. The efficient iterative inversion method provided the exact estimates as well as an approximate, but very accurate error variance-covariance matrix of the least squares system for both satellite missions. The global disturbing potential observable computed using 16-days of CHAMP data was used to determine a 50 x 50 test gravity field solution (OSU02A) by employing a computationally efficient inversion technique based on conjugate gradient. An evaluation of the model using independent GPS/leveling heights and Arctic gravity data, and comparisons with existing gravity models, EGM96 and GRIM5C1, and new models, EIGEN1S and TEG4 which include CHAMP data, indicate that OSU02A is commensurate in geoid accuracy and, like other new models, it yields some improvement (10% better fit) in the polar region at wavelengths longer than 800 km. The annual variation of Earth's gravitational field was estimated from 1.5 years of CHAMP data and compared with other solutions from satellite laser ranging (SLR) analysis. Except the second zonal and third tesseral harmonics, others second and third degree coefficients were comparable to SLR solutions in terms of both phase and magnitude. The annual geoid change of 1 mm would be expected mostly
Complete gravity field of an ellipsoidal prism by Gauss-Legendre quadrature
NASA Astrophysics Data System (ADS)
Roussel, C.; Verdun, J.; Cali, J.; Masson, F.
2015-12-01
The increasing availability of geophysical models of the Earth's lithosphere and mantle has generated renewed interest in computation of theoretical gravity effects at global and regional scales. At the same time, the increasing availability of gravity gradient anomalies derived from satellite measurements, such as those provided by GOCE satellite, requires mathematical methods that directly model the gravity gradient anomalies in the same reference frame as GOCE gravity gradients. Our main purpose is to interpret these anomalies in terms of source and density distribution. Numerical integration methods for calculating gravity gradient values are generally based on a mass discretization obtained by decomposing the Earth's layers into a finite number of elementary solid bodies. In order to take into account the curvature of the Earth, spherical prisms or `tesseroids' have been established unequivocally as accurate computation tools for determining the gravitational effects of large-scale structures. The question which then arises from, is whether gravity calculation methods using spherical prisms remain valid when factoring in the ellipticity of the Earth. In the paper, we outline a comprehensive method to numerically compute the complete gravity field with the help of the Gauss-Legendre quadrature involving ellipsoidal shaped prisms. The assessment of this new method is conducted by comparison between the gravity gradient values of simple sources obtained by means of numerical and analytical calculations, respectively. A comparison of the gravity gradients obtained from PREM and LITHO1.0 models using spherical- and ellipsoidal-prism-based methods is also presented. Numerical results indicate that the error on gravity gradients, caused by the use of the spherical prism instead of its ellipsoidal counterpart to describe an ellipsoidally shaped Earth, is useful for a joint analysis with those deduced from GOCE satellite measurements. Provided that a suitable scaling
Consolidated science and user requirements for a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Pail, Roland; Bingham, Rory; Braitenberg, Carla; Eicker, Annette; Horwath, Martin; Longuevergne, Laurent; Panet, Isabelle; Rolstad-Denby, Cecile; Wouters, Bert
2015-04-01
In an internationally coordinated initiative among the main user communities of gravity field products the science and user requirements for a future gravity field mission constellation (beyond GRACE-FO) have been reviewed and defined. This activity was realized as a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics). After about one year of preparation, in a user workshop that was held in September 2014 consensus among the user communities of hydrology, ocean, cryosphere, solid Earth and atmosphere on consolidated science requirements could be achieved. The consolidation of the user requirements became necessary, because several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+). Based on limited number of mission scenarios which took also technical feasibility into account, a consolidated view on the science requirements among the international user communities was derived, research fields that could not be tackled by current gravity missions have been identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return has been evaluated. The resulting document shall form the basis for further programmatic and technological developments. In this contribution, the main results of this initiative will be presented. An overview of the specific requirements of the individual user groups, the consensus on consolidated requirements as well as the new research fields that have been identified during this process will be discussed.
Injector linac stability requirements for high precision experiments at MESA
NASA Astrophysics Data System (ADS)
Hug, F.; Heine, R.
2017-07-01
MESA is a recirculating superconducting accelerator under construction at Johannes Gutenberg-Universität Mainz. It will be used for high precision particle physics experiments in two different operation modes: external beam (EB) mode and energy recovery (ERL) mode. The operating beam current and energy in EB mode is 0.15 mA with polarized electrons at 155 MeV. In ERL mode an unpolarized beam of 1 mA at 105 MeV will be available. In a later construction stage of MESA the beam current in ERL-mode shall be upgraded to 10 mA. In order to achieve high beam stability and low energy spread in recirculating operation for external beam the acceleration in the main linac sections will be done on a certain phase with respect to the maximum of the accelerating field (off crest) while the return arcs provide longitudinal dispersion. On specific longitudinal working points this can result in a setting where any RF phase or magnitude jitters from main linac do not contribute to the resulting energy spread of the final beam at all. Then the resulting energy spread of the beam at the experiment is mostly determined by the beam properties provided by the injector linac. On the other hand the acceleration in ERL operation mode most likely needs to be done on crest of the accelerating field aiming for the highest efficiency in the energy recovering process albeit we are currently investigating different recirculation schemes for the ERL mode as well. Using on crest acceleration the achievable energy spread is determined by the longitudinal phase space properties behind the injector linac again but mostly by the bunch length of the beam injected to the main linac. Within this contribution we will investigate the requirements on the stability of the MESA injector linac MAMBO for achieving the experimental goals under both operating conditions.
Transport properties of droplet clusters in gravity-free fields
NASA Technical Reports Server (NTRS)
Brenner, Howard
1986-01-01
Clusters of liquid droplets are suspended in an atmosphere of saturated vapor and are subjected to an external force field. This system can be modeled as a continuum whose macroscopic properties may be determined by applying the generalized theory of Taylor dispersion.
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
Tracking by the GRAIL spacecraft has yielded a model of the gravitational field of the Orientale basin at 3-5-km horizontal resolution. The diameter of the basin excavation cavity closely matches that of the Inner Depression. A volume of at least (3.4 +/- 0.2) x10(exp 6) cu km of crustal material was removed and redistributed during basin formation; the outer edges of the zone of uplifted mantle slope downward and outward by 20deg-25deg. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be calculated from the observed structure to be between the diameters of the Inner Depression and Inner Rook ring. The model resolves distinctive structures of Orientale's three rings, including their azimuthal variations, and suggests the presence of faults that penetrate the crust. The crustal structure of Orientale provides constraints in the third dimension on models for the formation of multi-ring basins.
Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves.
Clamond, Didier
2012-04-13
The velocity and other fields of steady two-dimensional surface gravity waves in irrotational motion are investigated numerically. Only symmetric waves with one crest per wavelength are considered, i.e. Stokes waves of finite amplitude, but not the highest waves, nor subharmonic and superharmonic bifurcations of Stokes waves. The numerical results are analysed, and several conjectures are made about the velocity and acceleration fields.
Towards consolidated science requirements for a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Pail, R.; Braitenberg, C. F.; Eicker, A.; Floberghagen, R.; Forsberg, R.; Haagmans, R.; Horwath, M.; Kusche, J.; Labrecque, J. L.; Panet, I.; Rolstad Denby, C.; Schröter, J.; Wouters, B.
2013-12-01
As a joint initiative of the IAG (International Association of Geodesy) Sub-Commissions 2.3 and 2.6, the GGOS (Global Geodetic Observing System) Working Group on Satellite Missions, and the IUGG (International Union of Geodesy and Geophysics), we target on the consolidation of science requirements for a next generation gravity field mission (beyond GRACE-FO). Several future gravity field studies have resulted in quite different performance numbers as a target for a future gravity mission (2025+), and a consolidation within the different user groups is required, under the boundary condition of the technical feasibility of the mission concepts and before the background of double- and multi-pair formations. Therefore, this initiative shall concentrate on the consolidation of the science requirements, and should result in a document that can be used as a solid basis for further programmatic and technological developments. Based on limited number of realistic mission scenarios, a consolidated view on the science requirements within the international user communities shall be derived, research fields that could not be tackled by current gravity missions shall be identified, and the added value (qualitatively and quantitatively) of these scenarios with respect to science return shall be evaluated. The final science requirements shall be agreed upon during a workshop which is planned for the second half of 2014. In this contribution, the mission scenarios will be discussed and first results of the consolidation process will be presented.
Satellite orbit determination and gravity field recovery from satellite-to-satellite tracking
NASA Astrophysics Data System (ADS)
Wakker, K. F.; Ambrosius, B. A. C.; Leenman, H.
1989-07-01
Studies on satellite-to-satellite tracking (SST) with POPSAT (a geodetic satellite concept) and a ERS-class (Earth observation) satellite, a Satellite-to-Satellite Tracking (SST) gravity mission, and precise gravity field determination methods and mission requirements are reported. The first two studies primarily address the application of SST between the high altitude POPSAT and an ERS-class or GRM (Geopotential Research Mission) satellite to the orbit determination of the latter two satellites. Activities focussed on the determination of the tracking coverage of the lower altitude satellite by ground based tracking systems and by POPSAT, orbit determination error analysis and the determination of the surface forces acting on GRM. The third study surveys principles of SST, uncertainties of existing drag models, effects of direct luni-solar attraction and tides on orbit and the gravity gradient observable. Detailed ARISTOTELES (which replaced POPSAT) orbit determination error analyses were performed for various ground based tracking networks.
On the covariant formalism of the effective field theory of gravity and leading order corrections
NASA Astrophysics Data System (ADS)
Codello, Alessandro; Jain, Rajeev Kumar
2016-11-01
We construct the covariant effective field theory of gravity as an expansion in inverse powers of the Planck mass, identifying the leading and next-to-leading quantum corrections. We determine the form of the effective action for the cases of pure gravity with cosmological constant as well as gravity coupled to matter. By means of heat kernel methods we renormalize and compute the leading quantum corrections to quadratic order in a curvature expansion. The final effective action in our covariant formalism is generally non-local and can be readily used to understand the phenomenology on different spacetimes. In particular, we point out that on curved backgrounds the observable leading quantum gravitational effects are less suppressed than on Minkowski spacetime.
Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar.
Zhao, Ruocan; Dou, Xiankang; Sun, Dongsong; Xue, Xianghui; Zheng, Jun; Han, Yuli; Chen, Tingdi; Wang, Guocheng; Zhou, Yingjie
2016-03-21
Simultaneous wind and temperature measurements in stratosphere with high time-spatial resolution for gravity waves study are scarce. In this paper we perform wind field gravity waves cases in the stratosphere observed by a mobile Rayleigh Doppler lidar. This lidar system with both wind and temperature measurements were implemented for atmosphere gravity waves research in the altitude region 15-60 km. Observations were carried out for two periods of time: 3 months started from November 4, 2014 in Xinzhou, China (38.425°N,112.729°E) and 2 months started from October 7, 2015 in Jiuquan, China (39.741°N, 98.495°E) . The mesoscale fluctuations of the horizontal wind velocity and the two dimensional spectra analysis of these fluctuations show the presence of dominant oscillatory modes with wavelength of 4-14 km and period of around 10 hours in several cases. The simultaneous temperature observations make it possible to identify gravity wave cases from the relationships between different variables: temperature and horizontal wind. The observed cases demonstrate the Rayleigh Doppler Lidar's capacity to study gravity waves.
NASA Astrophysics Data System (ADS)
Willberg, Martin; Lieb, Verena; Pail, Roland; Schmidt, Michael
2017-04-01
The analysis of the Earth's gravity field plays an important role in various disciplines of geosciences. While modern satellite gravity missions make it possible to define a globally consistent geoid with centimeter accuracy and a spatial resolution of 80-100km, it stays a major challenge to consistently combine global low-resolution data with regional high-resolution gravity information. Therefore, a variety of different regional gravity field modelling methods have been established during the last decades. In our analysis, we investigate the spectral combination of heterogeneous gravity data within two different calculation methods: First, the statistical approach of Least Squares Collocation (LSC) which uses the covariance information of input and output data to result in a full variance-covariance matrix. Second, the Multi-Resolution Representation (MRR) based on spherical radial basis functions. The MRR combines a low-pass filtered global geopotential model with satellite gradiometer and/or terrestrial gravity data by means of band-pass filtering. We examine the theoretical concepts and the computational differences and similarities between both approaches. Through fast changing topography, mountains as well as oceanic regions, our study area in the South American Andes is challenging and perfectly suitable for this examination. The use of synthetic data in closed-loop tests enables us to a very detailed investigation of predicted and actual accuracies of geoid determination. Furthermore, we point out respective advantages and disadvantages and link them to the calculation concepts of the two methods. The results contribute to the project "Optimally combined regional geoid models for the realization of height systems in developing countries (ORG4heights)" and, thus, aim to finally integrate the regional solutions into a global vertical reference frame.
AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data
NASA Astrophysics Data System (ADS)
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-05-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the n