Science.gov

Sample records for high-pressure superconducting polymorph

  1. Magnetic and Superconducting Materials at High Pressures

    SciTech Connect

    Struzhkin, Viktor V.

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  2. Superconductivity in the metallic elements at high pressures

    NASA Astrophysics Data System (ADS)

    Hamlin, J. J.

    2015-07-01

    Although the highest superconducting critical temperature, Tc , found in an elemental solid at ambient pressure is 9.2 K (niobium), under the application of ultra-high pressures, several elements exhibit Tc values near or above 20 K. This review includes a survey of the occurrence and understanding of pressure-induced superconductivity in the subset of elements that are metallic at ambient pressure. A particular focus is directed towards those elements that display the highest superconducting critical temperatures or exhibit substantial increases in Tc with pressure. A separate article in this issue by Shimizu will cover pressure-induced superconductivity in elements that are insulating at ambient pressure.

  3. Superconductive sodalite-like clathrate calcium hydride at high pressures.

    PubMed

    Wang, Hui; Tse, John S; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-04-24

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H(2) fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH(6) a body-centered cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H(2) of electrons donated by Ca forming an "H(4)" unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH(6). A superconducting critical temperature (T(c)) of 220-235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far.

  4. Superconductive sodalite-like clathrate calcium hydride at high pressures

    PubMed Central

    Wang, Hui; Tse, John S.; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centered cubic structure with hydrogen that forms unusual “sodalite” cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming an “H4” unit as the building block in the construction of the three-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone center. The resultant dynamic Jahn–Teller effect helps to enhance electron–phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220–235 K at 150 GPa obtained from the solution of the Eliashberg equations is the highest among all hydrides studied thus far. PMID:22492976

  5. Nitrous Oxide at High Pressure and Temperature: any Silica-like Polymorphs at High Pressure?

    NASA Astrophysics Data System (ADS)

    Iota, V.; Yoo, C.; Cynn, H.

    2001-12-01

    The crystal structures and phase stabilities of both four and six-fold silicon dioxide (SiO2) polymorphs are fundamental to the Earth's mineral physics and chemistry. The recent discovery of extended-solid phases of carbon dioxide (structurally similar to SiO2 polymorphs), offer a tantalizing new concept of mineral and geo-chemistry, considering the richness of oxygen, carbon, and silicon in the Earth's mantle and crust. In this study, we ask if nitrous oxide (N2O), an isoelectronic molecular analog to CO2, forms similar SiO2-like polymorphs at high pressures and temperatures. Our results based on in-situ and ex-situ Raman and X-ray diffraction measurements indicate that N2O indeed behaves similarly to CO2 at relatively low temperatures below 1000 K at high pressures up to 100 GPa. However, at higher temperatures, we find no transition to a polymeric phase of N2O. Instead, it disproportionates into a novel ionic phase of NO2 dimer (NO+NO3-) and N2. In this paper, we will discuss about the systematic of the phase diagrams of these triatomics, CO2 and N2O, in comparison with the polymorphs of SiO2, the Earth most abundant mineral.

  6. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  7. Theoretical compressibilities of high-pressure ZnTe polymorphs

    NASA Astrophysics Data System (ADS)

    Franco, R.; Mori-Sánchez, P.; Recio, J. M.; Pandey, R.

    2003-11-01

    We report the results of a theoretical study of structural, electronic, and pressure-induced phase transition properties in ZnTe. Total energies of several high-pressure polymorphs are calculated using the density functional theory (DFT) formalism under the nonlocal approximation. Thermal effects are included by means of a nonempirical Debye-like model. In agreement with optical absorption data, the lowest direct gap of the zinc blende polymorph is found to follow a nonlinear pressure dependence that turns into linear behavior when expressed in terms of the decrease in the lattice parameter. The pressure stability ranges of cubic (zinc blende and rocksalt), trigonal (cinnabar), and orthorhombic (Cmcm) polymorphs are computed at static and room temperature conditions. Our calculations agree with the experimental and theoretical reported zinc blende →cinnabar→Cmcm pressure-induced phase sequence. Linear and bulk compressibilities are evaluated for the four polymorphs and reveal an anisotropic behavior of the cinnabar structure, which contrasts with the cubiclike compression of its shortest Zn-Te bonds. The qualitative trend shows a crystal that becomes relatively less compressible in the high-pressure phases.

  8. Superconductivity of lithium-doped hydrogen under high pressure.

    PubMed

    Xie, Yu; Li, Quan; Oganov, Artem R; Wang, Hui

    2014-02-01

    The high-pressure lattice dynamics and superconductivity of newly proposed lithium hydrides (LiH2, LiH6 and LiH8) have been extensively studied using density functional theory. The application of the Allen-Dynes modified McMillan equation and electron-phonon coupling calculations show that LiH6 and LiH8 are superconductors with critical temperatures (T(c)) of 38 K at 150 GPa for LiH6 and 31 K at 100 GPa for LiH8, while LiH2 is not a superconductor. The T(c) of LiH6 increases rapidly with pressure and reaches 82 K at 300 GPa due to enhancement of the electron-phonon coupling and the increased density of states at the Fermi level, while the T(c) of LiH8 remains almost constant.

  9. Elasticity of Mantle Minerals and their High-Pressure Polymorphs at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Liebermann, R. C.; Li, B.; Kung, J.; Weidner, D. J.

    2002-12-01

    In his 1952 paper, Francis Birch concluded "New phases are required to account for the high elasticity of the deeper part of the mantle (below 900 km), and it is suggested that, beginning at about 200 to 300 km, there is a gradual shift toward high-pressure modifications of the ferro-magnesian silicates, probably close-packed oxides, with the transition complete at about 800 to 900 km." In the subsequent quarter century, experimental evidence for such transitions to high-pressure polymorphs emerged in laboratories around the world, most notably in those of Akimoto in Japan and Ringwood in Australia; these studies confirmed the existence of stable silicate phases with the wadsleyite, ringwoodite, majorite, ilmenite [now akimotoite], and perovskite structures. In the 1970s and 1980s, single crystal and polycrystalline specimens of these high-pressure phases were synthesized, thereby enabling studies of their elastic properties in the laboratory at ambient conditions [see Brillouin studies of the Weidner and Basssett laboratories, and ultrasonic studies by Mizutani and Fujisawa in Japan and Liebermann and colleagues in Australia]. This work often started with experiments on crystal chemical analogues of mantle silicates, following the original suggestions of Goldschmidt and Bernal in the 1930s (repeated by Birch in 1952), and then moved on to the real mantle compositions. Prior to 1988, most of these acoustic experiments were conducted versus presssure at room temperature or versus temperature at room presssure; these conditions fell far short of those achieved in the Earth's mantle. Substantial progress has been made in the past decade, making it feasible to perform acoustic experiments at conditions approaching those for the transition zone (at depths greater than 400 km); this progress has been achieved in many laboratories, including those at the University of Washington, Geophysical Laboratory, Bayreuth Geoinstitut, Nagoya University, Australian National

  10. Reinvestigation of high pressure polymorphism in hafnium metal

    SciTech Connect

    Pandey, K. K. Sharma, Surinder M.; Gyanchandani, Jyoti; Dey, G. K.; Somayazulu, M.; Sikka, S. K.

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o} = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  11. Evidence of polymorphic transformations of Sn under high pressure

    NASA Astrophysics Data System (ADS)

    Jing, Qiu-Min; Cao, Yu-Hong; Zhang, Yi; Li, Shou-Rui; He, Qiang; Hou, Qi-Yue; Liu, Sheng-Gang; Liu, Lei; Bi, Yan; Geng, Hua-Yun; Wu, Qiang

    2016-12-01

    The high-pressure polymorphs and structural transformation of Sn were experimentally investigated using angle-dispersive synchrotron x-ray diffraction up to 108.9 GPa. The results show that at least at 12.8 GPa β-Sn→bct structure transformation was completed and no two-phase coexistence was found. By using a long-wavelength x-ray, we resolved the diffraction peaks splitting and discovered the formation of a new distorted orthorhombic structure bco from the bct structure at 31.8 GPa. The variation of the lattice parameters and their ratios with pressure further validate the observation of the bco polymorph. The bcc structure appears at 40.9 GPa and coexists with the bco phase throughout a wide pressure range of 40.9 GPa-73.1 GPa. Above 73.1 GPa, only the bcc polymorph is observed. The systematically experimental investigation confirms the phase transition sequence of Sn as β-Sn→bct→bco→bco+bcc→bcc upon compression to 108.9 GPa at room temperature. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304294 and 11274281) and the Science Fund from the National Laboratory of Shock Wave and Detonation Physics of China (Grant Nos. 9140C670201140C67281 and 9140C670102150C67288).

  12. Water in Olivine and its High-Pressure Polymorphs

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Jacobsen, S. D.; Bina, C. R.; Reichart, P.; Moser, M.; Dollinger, G.; Hauri, E. H.

    2014-12-01

    Theory and high-pressure experiments imply a significant water storage capacity of nominally anhydrous minerals (NAMs), such as olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. The presence of water, dissolved as OH into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. The first direct evidence for hydration of the transition zone has recently been reported by Pearson et al. (2014) and Schmandt et al. (2014). Knowledge of absolute water contents in NAMs is essential for modeling the Earth's interior water cycle. To take advantage of IR spectroscopy as highly sensitive water quantification tool, mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry (SIMS), Raman spectroscopy or proton-proton(pp)-scattering. Broad beam pp-scattering has been performed on double-polished mm-sized mineral platelets (Thomas et al. 2008), but until recently analysis was not feasible for smaller samples synthetized in high-pressure apparati. Here we present first results from pp-scattering microscopy studies on μm-sized single crystals of hydrous olivine, wadsleyite and ringwoodite, which were synthesized at various pressure-temperature conditions in a multi-anvil press. The method allows us to quantify 3D distributions of atomic hydrogen in μm dimensions. These self-calibrating measurements were carried out at the nuclear microprobe SNAKE at the Munich tandem accelerator lab using a 25 MeV proton microbeam. We provide hydrogen depth-profiles, hydrogen maps and H2O concentrations. Pp-scattering data and results from independent Raman and SIMS analyses are in good agreement. Water contents for a set of high-pressure polymorphs with varying Fe-concentrations range from 0

  13. Superconducting high-pressure phases composed of hydrogen and iodine

    DOE PAGES

    Shamp, Andrew; Zurek, Eva

    2015-09-25

    Evolutionary structure searches predict three new phases of iodine polyhydrides stable under pressure. Insulating P1-H5I, consisting of zigzag chains of (HI) δ+ and H 2 molecules, is stable between 30-90 GPa. Cmcm-H2I and P6/mmm-H4I are found on the 100, 150 and 200 GPa convex hulls. These two phases are good metals, even at 1 atm, because they consist of monoatomic lattices of iodine. At 100 GPa the superconducting transition temperature, Tc, of H2I and H4I are estimated to be 7.8 and 17.5 K, respectively. Lastly, the increase in Tc relative to elemental iodine results from a larger ωlog from themore » light mass of hydrogen, and an enhanced from modes containing H/I and H/H vibrations.« less

  14. Superconducting state in bromium halide at high pressure

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Zemła, T. P.; Szczȩśniak, D.

    2016-08-01

    The thermodynamic properties of the superconducting state in bromium halide (HBr) compound have been analyzed in the framework of the Eliashberg formalism. In particular, for the range of the pressure (p) from 140 GPa to 200 GPa, it has been shown that the critical temperature increases significantly: TC(p) ∈ < 28.8 , 55.1 > K, whereas the Coulomb pseudopotential (μ⋆) is equal to 0.1. Together with the increase of p, the values of the thermodynamic parameters such as: the ratio of the energy gap at the temperature of zero Kelvin to the critical temperature (RΔ ≡ 2 Δ (0) /kB TC), the ratio of the specific heat jump at the critical temperature to the electronic specific heat of the normal state (RC ≡ ΔC (TC) /CN (TC)), and the ratio related to the thermodynamic critical field (RH ≡TC CN (TC) / HC2 (0)) increasingly deviate from the predictions of the BCS model: RΔ(p) ∈ < 3.79 , 4.05 >, RC(p) ∈ < 1.94 , 2.27 >, and RH(p) ∈ < 0.157 , 0.147 >. It should be noted that the increase of μ⋆ visibly lowers TC and significantly reduces the difference between the results of the Eliashberg and BCS theory.

  15. Superconducting high-pressure phases composed of hydrogen and iodine

    SciTech Connect

    Shamp, Andrew; Zurek, Eva

    2015-09-25

    Evolutionary structure searches predict three new phases of iodine polyhydrides stable under pressure. Insulating P1-H5I, consisting of zigzag chains of (HI) δ+ and H 2 molecules, is stable between 30-90 GPa. Cmcm-H2I and P6/mmm-H4I are found on the 100, 150 and 200 GPa convex hulls. These two phases are good metals, even at 1 atm, because they consist of monoatomic lattices of iodine. At 100 GPa the superconducting transition temperature, Tc, of H2I and H4I are estimated to be 7.8 and 17.5 K, respectively. Lastly, the increase in Tc relative to elemental iodine results from a larger ωlog from the light mass of hydrogen, and an enhanced from modes containing H/I and H/H vibrations.

  16. Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing

    SciTech Connect

    Tajima, Tsuyoshi

    2016-06-30

    This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.

  17. Anomalous anisotropic compression behavior of superconducting CrAs under high pressure

    PubMed Central

    Yu, Zhenhai; Wu, Wei; Hu, Qingyang; Zhao, Jinggeng; Li, Chunyu; Yang, Ke; Cheng, Jinguang; Luo, Jianlin; Wang, Lin; Mao, Ho-kwang

    2015-01-01

    CrAs was observed to possess the bulk superconductivity under high-pressure conditions. To understand the superconducting mechanism and explore the correlation between the structure and superconductivity, the high-pressure structural evolution of CrAs was investigated using the angle-dispersive X-ray diffraction (XRD) method. The structure of CrAs remains stable up to 1.8 GPa, whereas the lattice parameters exhibit anomalous compression behaviors. With increasing pressure, the lattice parameters a and c both demonstrate a nonmonotonic change, and the lattice parameter b undergoes a rapid contraction at ∼0.18−0.35 GPa, which suggests that a pressure-induced isostructural phase transition occurs in CrAs. Above the phase transition pressure, the axial compressibilities of CrAs present remarkable anisotropy. A schematic band model was used to address the anomalous compression behavior of CrAs. The present results shed light on the structural and related electronic responses to high pressure, which play a key role toward understanding the superconductivity of CrAs. PMID:26627230

  18. Superconductivity of high-pressure phases of S and Se to 230 GPa

    NASA Astrophysics Data System (ADS)

    Struzhkin, Viktor; Gregoryanz, Eugene; Timofeev, Yuri; Eremets, Mikhail; Mao, Ho-Kwang; Hemley, Russell

    2000-03-01

    We have investigated in detail the superconducting state of sulfur in its β-Po phase from 160 to 230 GPa. The superconducting Tc is close to 17 K from 160 to 200 GPa, and drops to 15 K at 230 GPa. Similar behavior was predicted recently [1] from ab initio LDA calculations. The high value of Tc in the β-Po phase is consistent with electon-phonon coupling mechanism with reasonably strong electron-phonon coupling (λ=0.76), and with the standard value of the Morel-Anderson pseudopotential μ^*=0.11 [1]. Our measurements in Se at high pressures indicate superconductivity from 17 to 23 GPa, which apparently has not been previously reported. We relate this behavior to the occurence of new metastable phase in Se which can be observed on decompression from 30 GPa at low temperatures. The results for Tc in Se at higher pressures will be also presented. We will also discuss the similiarities in high-pressure induced superconductivity of chalcogen family members: S, Se, and Te. ^1 Sven P. Rudin and Amy Y. Liu, Phys. Rev. Lett. 83, 3049 (1999).

  19. Origin of the critical temperature discontinuity in superconducting sulfur under high pressure

    NASA Astrophysics Data System (ADS)

    Monni, M.; Bernardini, F.; Sanna, A.; Profeta, G.; Massidda, S.

    2017-02-01

    Elemental sulfur shows a superconducting phase at high pressure (above 100 GPa), with critical temperatures that rise up to 20 K [Phys. Rev. B 65, 064504 (2002), 10.1103/PhysRevB.65.064504; Nature (London) 525, 73 (2015), 10.1038/nature14964] and presenting a jump at about 160 GPa, close to a structural phase transition to the β -Po phase. In this work we present a theoretical and fully ab initio characterization of sulfur based on superconducting density functional theory (SCDFT), focusing in the pressure range from 100 to 200 GPa. Calculations result in very good agreement with available experiments and point out that the origin of the critical temperature discontinuity is not related to the structural phase transition but induced by an electronic Lifshitz transition. This brings a strongly (interband) coupled electron pocket available for the superconducting condensation.

  20. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    NASA Astrophysics Data System (ADS)

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-07-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib.

  1. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    PubMed Central

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-01-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593

  2. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-03-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.

  3. Novel superconductivity in metallic SnH(4) under high pressure.

    PubMed

    Tse, J S; Yao, Y; Tanaka, K

    2007-03-16

    From first-principles calculations, a high-pressure metallic phase of SnH(4) with a novel layered structure intercalated by "H(2)" units is revealed. This structure is stable at pressure between 70 and 160 GPa. A remarkable feature of this structure is the presence of soft modes in the phonon band structure induced by Fermi surface nesting and Kohn anomalies that lead to very strong electron-phonon coupling. The application of the Allen-Dynes modified McMillan equation with the calculated electron-phonon coupling parameter lambda shows that a superconducting critical temperature close to 80 K can be achieved at 120 GPa.

  4. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Flores Livas, Jose; Amsler, Maximilian; Sanna, Antonio; Heil, Christoph; Boeri, Lilia; Profeta, Gianni; Wolverton, Crhis; Goedecker, Stefan; Gross, E. K. U.

    Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (Tc) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work the phase diagram of PHn (n = 1 , 2 , 3 , 4 , 5 , 6) was extensively explored by means of ab initio crystal structure prediction methods. The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1 , 2 , 3 display Tc's comparable to experiments, it remains questionable if the measured values of Tc can be fully attributed to a phase-pure compound of PHn. This work was done within the NCCR MARVEL project.

  5. High-pressure crystal structures and superconductivity of Stannane (SnH4).

    PubMed

    Gao, Guoying; Oganov, Artem R; Li, Peifang; Li, Zhenwei; Wang, Hui; Cui, Tian; Ma, Yanming; Bergara, Aitor; Lyakhov, Andriy O; Iitaka, Toshiaki; Zou, Guangtian

    2010-01-26

    There is great interest in the exploration of hydrogen-rich compounds upon strong compression where they can become superconductors. Stannane (SnH(4)) has been proposed to be a potential high-temperature superconductor under pressure, but its high-pressure crystal structures, fundamental for the understanding of superconductivity, remain unsolved. Using an ab initio evolutionary algorithm for crystal structure prediction, we propose the existence of two unique high-pressure metallic phases having space groups Ama2 and P6(3)/mmc, which both contain hexagonal layers of Sn atoms and semimolecular (perhydride) H(2) units. Enthalpy calculations reveal that the Ama2 and P6(3)/mmc structures are stable at 96-180 GPa and above 180 GPa, respectively, while below 96 GPa SnH(4) is unstable with respect to elemental decomposition. The application of the Allen-Dynes modified McMillan equation reveals high superconducting temperatures of 15-22 K for the Ama2 phase at 120 GPa and 52-62 K for the P6(3)/mmc phase at 200 GPa.

  6. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Amsler, Maximilian; Heil, Christoph; Sanna, Antonio; Boeri, Lilia; Profeta, Gianni; Wolverton, Chris; Goedecker, Stefan; Gross, E. K. U.

    2016-01-01

    Hydrogen-rich compounds have been extensively studied both theoretically and experimentally in the quest for novel high-temperature superconductors. Reports on sulfur hydride attaining metallicity under pressure and exhibiting superconductivity at temperatures as high as 200 K have spurred an intense search for room-temperature superconductors in hydride materials. Recently, compressed phosphine was reported to metallize at pressures above 45 GPa, reaching a superconducting transition temperature (TC) of 100 K at 200 GPa. However, neither the exact composition nor the crystal structure of the superconducting phase have been conclusively determined. In this work, the phase diagram of PHn (n =1 ,2 ,3 ,4 ,5 ,6 ) was extensively explored by means of ab initio crystal structure predictions using the minima hopping method (MHM). The results do not support the existence of thermodynamically stable PHn compounds, which exhibit a tendency for elemental decomposition at high pressure even when vibrational contributions to the free energies are taken into account. Although the lowest energy phases of PH1 ,2 ,3 display TC's comparable to experiments, it remains uncertain if the measured values of TC can be fully attributed to a phase-pure compound of PHn.

  7. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.

    PubMed

    Drozdov, A P; Eremets, M I; Troyan, I A; Ksenofontov, V; Shylin, S I

    2015-09-03

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  8. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

    NASA Astrophysics Data System (ADS)

    Drozdov, A. P.; Eremets, M. I.; Troyan, I. A.; Ksenofontov, V.; Shylin, S. I.

    2015-09-01

    A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the

  9. Novel superconducting skutterudite-type phosphorus nitride at high pressure from first-principles calculations.

    PubMed

    Raza, Zamaan; Errea, Ion; Oganov, Artem R; Saitta, A Marco

    2014-07-30

    State of the art variable composition structure prediction based on density functional theory demonstrates that two new stoichiometries of PN, PN3 and PN2, become viable at high pressure. PN3 has a skutterudite-like Immm structure and is metastable with positive phonon frequencies at pressures between 10 and 100 GPa. PN3 is metallic and is the first reported nitrogen-based skutterudite. Its metallicity arises from nitrogen p-states which delocalise across N4 rings characteristic of skutterudites, and it becomes a good electron-phonon superconductor at 10 GPa, with a Tc of around 18 K. The superconductivity arises from strongly enhanced electron-phonon coupling at lower pressures, originating primarily from soft collective P-N phonon modes. The PN2 phase is an insulator with P2/m symmetry and is stable at pressures in excess of 200 GPa.

  10. Isotope effect in the superconducting high-pressure simple cubic phase of calcium from first principles

    NASA Astrophysics Data System (ADS)

    Errea, Ion; Rousseau, Bruno; Bergara, Aitor

    2012-06-01

    It has been recently shown [I. Errea, B. Rousseau, and A. Bergara, Phys. Rev. Lett. 106, 165501 (2011)] that the phonons of the high-pressure simple cubic phase of calcium are stabilized by strong quantum anharmonic effects. This was obtained by a fully ab initio implementation of the self-consistent harmonic approximation including explicitly anharmonic coefficients up to fourth order. The renormalized anharmonic phonons make possible to estimate the superconducting transition temperature in this system, and a sharp agreement with experiments is found. In this work, this analysis is extended in order to study the effect of anharmonicity in the isotope effect. According to our calculations, despite the huge anharmonicity in the system, the isotope coefficient is predicted to be 0.45, close to the 0.5 value expected for a harmonic BCS superconductor.

  11. Novel superconducting skutterudite-type phosphorus nitride at high pressure from first-principles calculations

    PubMed Central

    Raza, Zamaan; Errea, Ion; Oganov, Artem R.; Saitta, A. Marco

    2014-01-01

    State of the art variable composition structure prediction based on density functional theory demonstrates that two new stoichiometries of PN, PN3 and PN2, become viable at high pressure. PN3 has a skutterudite-like Immm structure and is metastable with positive phonon frequencies at pressures between 10 and 100 GPa. PN3 is metallic and is the first reported nitrogen-based skutterudite. Its metallicity arises from nitrogen p-states which delocalise across N4 rings characteristic of skutterudites, and it becomes a good electron-phonon superconductor at 10 GPa, with a Tc of around 18 K. The superconductivity arises from strongly enhanced electron-phonon coupling at lower pressures, originating primarily from soft collective P-N phonon modes. The PN2 phase is an insulator with P2/m symmetry and is stable at pressures in excess of 200 GPa. PMID:25074347

  12. Combined crystal structure prediction and high-pressure crystallization in rational pharmaceutical polymorph screening

    PubMed Central

    Neumann, M. A.; van de Streek, J.; Fabbiani, F. P. A.; Hidber, P.; Grassmann, O.

    2015-01-01

    Organic molecules, such as pharmaceuticals, agro-chemicals and pigments, frequently form several crystal polymorphs with different physicochemical properties. Finding polymorphs has long been a purely experimental game of trial-and-error. Here we utilize in silico polymorph screening in combination with rationally planned crystallization experiments to study the polymorphism of the pharmaceutical compound Dalcetrapib, with 10 torsional degrees of freedom one of the most flexible molecules ever studied computationally. The experimental crystal polymorphs are found at the bottom of the calculated lattice energy landscape, and two predicted structures are identified as candidates for a missing, thermodynamically more stable polymorph. Pressure-dependent stability calculations suggested high pressure as a means to bring these polymorphs into existence. Subsequently, one of them could indeed be crystallized in the 0.02 to 0.50 GPa pressure range and was found to be metastable at ambient pressure, effectively derisking the appearance of a more stable polymorph during late-stage development of Dalcetrapib. PMID:26198974

  13. Structure, stability, and superconductivity of new Xe-H compounds under high pressure.

    PubMed

    Yan, Xiaozhen; Chen, Yangmei; Kuang, Xiaoyu; Xiang, Shikai

    2015-09-28

    Application of high pressure can substantially enhance the chemical reactivity of xenon and has recently extended the Xe-compounds to unexpected elements such as Fe and H. Using unbiased structure searching techniques combined with first-principles calculations, we predict novel compounds of stable XeH2 and XeH4, and metastable XeH, XeH3, XeH5, XeH6, XeH7, and XeH8 under high pressure. Rather than van der Waals complexes, these are weakly covalent or ionic compounds stabilized by a pressure-induced increase in charge transfer from Xe to H atoms. The calculated electronic structures with hybrid exchange-correlation functionals reveal that only XeH and XeH2 are metalized under 300 GPa. For the metallic XeH and XeH2 at certain pressures, the superconducting critical temperatures are finally studied, by using Allen-Dynes modified McMillan equation combined with the calculated electron-phonon coupling parameter.

  14. Structure, stability, and superconductivity of new Xe-H compounds under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhen; Chen, Yangmei; Kuang, Xiaoyu; Xiang, Shikai

    2015-09-01

    Application of high pressure can substantially enhance the chemical reactivity of xenon and has recently extended the Xe-compounds to unexpected elements such as Fe and H. Using unbiased structure searching techniques combined with first-principles calculations, we predict novel compounds of stable XeH2 and XeH4, and metastable XeH, XeH3, XeH5, XeH6, XeH7, and XeH8 under high pressure. Rather than van der Waals complexes, these are weakly covalent or ionic compounds stabilized by a pressure-induced increase in charge transfer from Xe to H atoms. The calculated electronic structures with hybrid exchange-correlation functionals reveal that only XeH and XeH2 are metalized under 300 GPa. For the metallic XeH and XeH2 at certain pressures, the superconducting critical temperatures are finally studied, by using Allen-Dynes modified McMillan equation combined with the calculated electron-phonon coupling parameter.

  15. Structure, stability, and superconductivity of new Xe–H compounds under high pressure

    SciTech Connect

    Yan, Xiaozhen; Chen, Yangmei; Kuang, Xiaoyu; Xiang, Shikai

    2015-09-28

    Application of high pressure can substantially enhance the chemical reactivity of xenon and has recently extended the Xe-compounds to unexpected elements such as Fe and H. Using unbiased structure searching techniques combined with first-principles calculations, we predict novel compounds of stable XeH{sub 2} and XeH{sub 4}, and metastable XeH, XeH{sub 3}, XeH{sub 5}, XeH{sub 6}, XeH{sub 7}, and XeH{sub 8} under high pressure. Rather than van der Waals complexes, these are weakly covalent or ionic compounds stabilized by a pressure-induced increase in charge transfer from Xe to H atoms. The calculated electronic structures with hybrid exchange-correlation functionals reveal that only XeH and XeH{sub 2} are metalized under 300 GPa. For the metallic XeH and XeH{sub 2} at certain pressures, the superconducting critical temperatures are finally studied, by using Allen-Dynes modified McMillan equation combined with the calculated electron-phonon coupling parameter.

  16. Thermodynamic investigations of high-pressure superconducting state in CaLi2 at 45 GPa

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Szczȩśniak, D.

    2012-05-01

    The thermodynamic properties of the high-pressure superconducting phase in CaLi2 have been studied. A pressure value of 45 GPa has been chosen, at which the critical temperature reaches the maximum (TC=12.9 K). The following results have been obtained. (i) The critical temperature cannot be calculated using the classical analytical formulas (McMillan or Allen-Dynes). (ii) The critical value of the Coulomb pseudopotential is high: μC⋆=0.23. Generalizing the results, the function μC⋆(p) has a high value (μC⋆(p)>0.15) in practically the entire pressure range from 28 to 60 GPa. (iii) The remaining fundamental thermodynamic parameters differ from the Bardeen, Cooper, and Schrieffer (BCS) values. In particular, the zero-temperature energy gap to the critical temperature: R1≡2Δ(0)/kBTC=3.95; the ratio of the specific heat for superconducting (CS) and the normal (CN) state: R2≡(CS(TC)-CN(TC))/CN(TC)=2.01; and the parameter connected with the zero-temperature thermodynamic critical field: R3=TCCN(TC)/HC2(0)=0.158. Finally, it has been shown that the value of the electronic effective mass is high: me⋆/me>2.

  17. Structures of the metallic and superconducting high pressure phases of solid CS2

    PubMed Central

    Zarifi, Niloofar; Liu, Hanyu; Tse, John S.

    2015-01-01

    First principles structural prediction and molecular dynamics (MD) calculations have been performed to examine the structures responsible for the recently reported metallic and superconducting phases of highly compressed CS2. The low pressure experimental molecular crystal structure was found to be metastable and transformed into a disordered structure above 10 GPa. At 60 GPa, the predicted low energy structures show molecular CS2 is separated into C and S dominant regions. A crystalline structure with the P21/m symmetry was found to be most stable from 60 to 120 GPa. The structure is formed from alternate layers of hexagonal C rings and S 2D-square-nets linked by C-S bonds. A non-crystalline structure with similar features structure is also predicted by MD calculations. Electron-phonon coupling calculations show this crystalline phase is superconductive. Contrary to the suggestions made from the experiments, no magnetism was found in all predicted low enthalpy high pressure structures. Moreover, the theoretical results do not support the proposal on the existence of hypervalent 6-coordinated carbon at 120 GPa. PMID:25982346

  18. Structures of the metallic and superconducting high pressure phases of solid CS2.

    PubMed

    Zarifi, Niloofar; Liu, Hanyu; Tse, John S

    2015-05-18

    First principles structural prediction and molecular dynamics (MD) calculations have been performed to examine the structures responsible for the recently reported metallic and superconducting phases of highly compressed CS2. The low pressure experimental molecular crystal structure was found to be metastable and transformed into a disordered structure above 10 GPa. At 60 GPa, the predicted low energy structures show molecular CS2 is separated into C and S dominant regions. A crystalline structure with the P21/m symmetry was found to be most stable from 60 to 120 GPa. The structure is formed from alternate layers of hexagonal C rings and S 2D-square-nets linked by C-S bonds. A non-crystalline structure with similar features structure is also predicted by MD calculations. Electron-phonon coupling calculations show this crystalline phase is superconductive. Contrary to the suggestions made from the experiments, no magnetism was found in all predicted low enthalpy high pressure structures. Moreover, the theoretical results do not support the proposal on the existence of hypervalent 6-coordinated carbon at 120 GPa.

  19. High pressure effects on the superconductivity in rare-earth-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Uhoya, Walter; Cargill, Daniel; Gofryk, Krzysztof; Tsoi, Georgiy M.; Vohra, Yogesh K.; Sefat, Athena S.; Weir, S. T.

    2014-01-01

    High pressure superconductivity in a rare-earth-doped Ca0.86Pr0.14Fe2As2 single-crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using the designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low-temperature X-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ∼51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 122 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ∼ 48 K and the other starts at Tc2 ∼ 16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure and low-temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure.

  20. Structure and stability of several high-pressure crystalline polymorphs of silica

    NASA Astrophysics Data System (ADS)

    Tse, John S.; Klug, Dennis D.; Allan, Douglas C.

    1995-06-01

    The structure and stability of several proposed high-pressure crystalline polymorphs of silica have been studied with a first-principles pseudopotential total-energy method within the local-density approximation. The monoclinic I2/a phase predicted recently from molecular-dynamics calculations on highly compressed amorphous silica or α quartz [J.S. Tse, D.D. Klug, and Y. LePage, Phys. Rev. Lett. 69, 3647 (1992)] is shown to be energetically competitive with the well-known stishovite structure and is substantially lower in energy than the cubic fluorite Pa3¯ structure up to 170 GPa. The results are in full accordance with previous molecular-dynamics calculations thus confirming that the empirical potential proposed by van Beest et al. is applicable to the study of the structure and dynamics of high-pressure phases of silica.

  1. High-Pressure Polymorphism of 1,1-Diamino-2,2-dinitroethene (FOX-7)

    NASA Astrophysics Data System (ADS)

    Dreger, Zbigniew; Tao, Yuchuan; Gupta, Yogendra

    2015-06-01

    Understanding the polymorphic response of energetic crystals is important for understanding their initiation and reactive behavior. Here, we report on the high-pressure polymorphism of the energetic crystal FOX-7 [C2(NO2)2(NH2)2]; the low sensitivity to initiation has attracted considerable research interest in this crystal. Micro-Raman spectroscopy and synchrotron x-ray diffraction measurements were used to gain insight into the mechanisms of polymorphic transformations, and their role in the high-pressure structural stability of FOX-7. Experiments were performed on single crystals compressed statically to 40 GPa (Raman) and to 12 GPa (x-ray). Two instances of spectral changes were detected at 2 and 4.5 GPa with Raman spectroscopy. Different experimental approaches, including isotope substitution (H/D), nonhydrostatic compression and laser radiation were used to understand the molecular processes associated with the observed spectral changes. The x-ray diffraction results demonstrated that the same space group, P21/n, is maintained to 4.5 GPa, the β angle reduces to almost 900, and the crystal shows anisotropic compression. Preliminary structure refinement results indicate that changes at 2 GPa can result from the amino groups twist out of the molecular plane. The structural changes at 4.5 GPa indicate the reconstructive character of the phase transition at this pressure. Work supported by DOE/NNSA and ONR.

  2. High-pressure synthesis and superconductivity of a new binary barium germanide BaGe3.

    PubMed

    Fukuoka, Hiroshi; Tomomitsu, Yusuke; Inumaru, Kei

    2011-07-04

    A new binary barium germanide BaGe(3) was prepared by high-pressure and high-temperature reactions using a Kawai type multi-anvil press. It crystallizes in a hexagonal unit cell with a = 6.814(1) Å, c = 5.027(8) Å, and V = 202.2(5) Å(3) (the space group P6(3)/mmc, No. 194). The unit cell contains two layers along the c axis composed of Ba atoms and Ge(3) triangular units. The triangular units stack along the c axis to form 1D columns in which the adjacent Ge(3) units turn to opposite directions. The columns, therefore, can be described as the face-sharing stacking of elongated Ge(6) octahedra. Each Ba atom is surrounded by six columns. BaGe(3) is metallic and shows superconductivity at 4.0 K. The band structure calculations revealed that there are four conduction bands mainly composed of Ge 4p and Ba 5d orbitals. From Fermi surface analysis, we confirmed that three of them have a large contribution of Ge 4pz orbitals in the vicinity of the Fermi level and show a simple 1D appearance. The remaining one contains Ge 4px, 4py, and Ba 5d contributions and shows a 2D property.

  3. Thermoelastic properties of ice VII and its high-pressure polymorphs

    NASA Astrophysics Data System (ADS)

    Asahara, Y.; Hirose, K.; Ohishi, Y.; Hirao, N.; Murakami, M.

    2010-12-01

    Ice VII is one of the high pressure polymorph of solid H2O. At room temperature, compressed liquid water transforms to tetragonal ice VI at 1.05 GPa and with further compression, ice VI transforms to cubic ice VII at 2.1 GPa. Ice VII consists of a body-centred cubic (bcc) lattice of oxygen and each oxygen atom covalently bonded to two hydrogen atoms occupying two of four tetrahedral sites. The bcc-framework of oxygen is stable at least up to 170 GPa at room temperature; however, it has been suggested that there are several phase transitions related to changes of a hydrogen bonding state. Phase relation and thermoelastic properties of these dense ices are important knowledge to understand the structure and dynamics of interior of icy planets and satellites. We conducted acoustic velocity measurements in polycrystalline ice to clarify the thermoelastic properties of bcc-structured ice at high pressures. Acoustic velocities in polycrystalline H2O ice have been measured at room temperature and a pressure range of 6-60 GPa using a Brillouin scattering method. Synchrotron x-ray diffraction measurements were also conducted simultaneously with the Brillouin scattering measurements at a pressure range of 40-60 GPa. Obtained elastic moduli of high-pressure ice indicate that bcc-structured ice undergoes two transitions related to a change in the hydrogen bonding state at approximately 40 GPa and 58 GPa, i.e. transitions of ice VII to the pretransitional state of ice VII at 40 GPa and to the dynamically disordered ice X at 58 GPa, respectively. This observation is consistent with previous spectroscopic studies as well as the x-ray diffraction studies. Present result implies that the transition from ice VII to the dynamically disordered ice X is accompanied by a discontinuous change of several thermodynamic properties of ice. The elasticity difference between ice VII and the dynamically disordered ice X may affect the dynamics of impacted icy satellites and the interiors of

  4. HP-MoO2: A High-Pressure Polymorph of Molybdenum Dioxide.

    PubMed

    Lüdtke, Tobias; Wiedemann, Dennis; Efthimiopoulos, Ilias; Becker, Nils; Seidel, Stefan; Janka, Oliver; Pöttgen, Rainer; Dronskowski, Richard; Koch-Müller, Monika; Lerch, Martin

    2017-02-20

    High-pressure molybdenum dioxide (HP-MoO2) was synthesized using a multianvil press at 18 GPa and 1073 K, as motivated by previous first-principles calculations. The crystal structure was determined by single-crystal X-ray diffraction. The new polymorph crystallizes isotypically to HP-WO2 in the orthorhombic crystal system in space group Pnma and was found to be diamagnetic. Theoretical investigations using structure optimization at density-functional theory (DFT) level indicate a transition pressure of 5 GPa at 0 K and identify the new compound as slightly metastable at ambient pressure with respect to the thermodynamically stable monoclinic MoO2 (α-MoO2; ΔEm = 2.2 kJ·mol(-1)).

  5. High-pressure superconducting phase diagram of 6Li: Isotope effects in dense lithium

    PubMed Central

    Schaeffer, Anne Marie; Temple, Scott R.; Bishop, Jasmine K.; Deemyad, Shanti

    2015-01-01

    We measured the superconducting transition temperature of 6Li between 16 and 26 GPa, and report the lightest system to exhibit superconductivity to date. The superconducting phase diagram of 6Li is compared with that of 7Li through simultaneous measurement in a diamond anvil cell (DAC). Below 21 GPa, Li exhibits a direct (the superconducting coefficient, α, Tc∝M−α, is positive), but unusually large isotope effect, whereas between 21 and 26 GPa, lithium shows an inverse superconducting isotope effect. The unusual dependence of the superconducting phase diagram of lithium on its atomic mass opens up the question of whether the lattice quantum dynamic effects dominate the low-temperature properties of dense lithium. PMID:25538300

  6. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    DOE PAGES

    Bishop, M. M.; Chellappa, R. S.; Liu, Z.; ...

    2014-05-07

    Here, 1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and β → γ (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → δ (~210 °C),more » with the δ phase being stable up to ~251 degree C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 degree C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa..« less

  7. High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene

    SciTech Connect

    Bishop, M. M.; Chellappa, R. S.; Liu, Z.; Preston, D. N.; Sandstrom, M. M.; Dattelbaum, D. M.; Vohra, Y. K.; Velisavljevic, N.

    2014-05-07

    Here, 1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and β → γ (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → δ (~210 °C), with the δ phase being stable up to ~251 degree C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 degree C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa..

  8. High-pressure infrared and Raman studies of polymorphism in pharmaceutical compounds: Spironolactone, Forms I and II

    NASA Astrophysics Data System (ADS)

    Pisegna, Gisia L.; Gilson, Denis F. R.; Butler, Ian S.

    2014-12-01

    The infrared and Raman spectra of the two polymorphic forms, I and II, of the synthetic steroid spironolactone (C24H32O4S) have been examined under high pressures up to about 50 kbar with the aid of a diamond-anvil cell. While the differences in peak wavenumbers between the two polymorphs are small, the difference in the pressure dependence is dramatic. Both forms undergo structural transformations under pressure, but over different pressure ranges.

  9. High-pressure phases of group-II difluorides: Polymorphism and superionicity

    NASA Astrophysics Data System (ADS)

    Nelson, Joseph R.; Needs, Richard J.; Pickard, Chris J.

    2017-02-01

    We investigate the high-pressure behavior of beryllium, magnesium, and calcium difluorides using ab initio random structure searching and density functional theory (DFT) calculations, over the pressure range 0 -70 GPa. Beryllium fluoride exhibits extensive polymorphism at low pressures, and we find two new phases for this compound—the silica moganite and CaCl2 structures—which are stable over the wide pressure range 12 -57 GPa. For magnesium fluoride, our searching results show that the orthorhombic "O-I" TiO2 structure (P b c a ,Z =8 ) is stable for this compound between 40 and 44 GPa. Our searches find no new phases at the static-lattice level for calcium difluoride between 0 and 70 GPa; however, a phase with P 6 ¯2 m symmetry is close to stability over this pressure range, and our calculations predict that this phase is stabilized at high temperature. The P 6 ¯2 m structure exhibits an unstable phonon mode at large volumes which may signal a transition to a superionic state at high temperatures. The group-II difluorides are isoelectronic to a number of other AB2-type compounds such as SiO2 and TiO2, and we discuss our results in light of these similarities.

  10. High temperature superconductivity in sulfur and selenium hydrides at high pressure

    NASA Astrophysics Data System (ADS)

    Flores-Livas, José A.; Sanna, Antonio; Gross, E. K. U.

    2016-03-01

    Due to its low atomic mass, hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of the record superconducting critical temperature of 203 K in a hydrogen-sulfur compound at 160 GPa of pressure [A.P. Drozdov, M.I. Eremets, I.A. Troyan, arXiv:1412.0460; [cond-mat.supr-con] (2014); A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015)], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we investigate the phase diagram and the superconducting properties of the H-S systems by means of minima hopping method for structure prediction and density functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict H3Se to exceed 120 K superconductivity at 100 GPa. We show that both H3Se and H3S, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties. Supplementary material in the form of one pdf file available from the Journal web page at: http://dx.doi.org/10.1140/epjb/e2016-70020-0

  11. New type of possible high-pressure polymorphism in NiAs minerals in planetary cores

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Nisar, Jawad; Ahuja, Rajeev; Tkachev, Sergey; Prakapenka, Vitali B.

    2013-02-01

    The nickel arsenide (B81) and related crystal structures are among the most important crystallographic arrangements assumed by Fe and Ni compounds with light elements such as Si, O, S, and P, expected to be present in planetary cores. Despite the simple structure, some of these materials like troilite (FeS) exhibit complex phase diagrams and rich polymorphism, involving significant changes in interatomic bonding and physical properties. NiP ( oP16) represents one of the two principal structure distortions found in the nickel arsenide family and is characterized by P-P bonding interactions that lead to the formation of P2 dimers. In the current study, the single-crystal synchrotron X-ray diffraction technique, aided by first principles density functional theory (DFT) calculations, has been applied to examine the compression behavior of NiP up to 30 GPa. Two new reversible displacive phase transitions leading to orthorhombic high-pressure phases with Pearson symbols oP40 and oC24 were found to occur at approximately 8.5 and 25.0 GPa, respectively. The oP40 phase has the primitive Pnma space group with unit cell a = 4.7729(5) Å, b = 16.6619(12) Å, and c = 5.8071(8) Å at 16.3(1) GPa and is a superstructure of the ambient oP16 phase with multiplicity of 2.5. The oC24 phase has the acentric Cmc21 space group with unit cell a = 9.695(6) Å, b = 5.7101(9) Å, and c = 4.7438(6) Å at 28.5(1) GPa and is a superstructure of the oP16 phase with multiplicity of 1.5. DFT calculations fully support the observed sequence of phase transitions. The two new phases constitute logical next stages of P sublattice polymerization, in which the dilution of the P3 units, introduced in the first high-pressure phase, decreases, leading to compositions of Ni20(P3)4(P2)4 and Ni12(P3)4, and provide important clues to understanding of phase relations and transformation pathways in the NiAs family.

  12. A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source.

    PubMed

    Kunz, Martin; MacDowell, Alastair A; Caldwell, Wendel A; Cambie, Daniella; Celestre, Richard S; Domning, Edward E; Duarte, Robert M; Gleason, Arianna E; Glossinger, James M; Kelez, Nicholas; Plate, David W; Yu, Tony; Zaug, Joeseph M; Padmore, Howard A; Jeanloz, Raymond; Alivisatos, A Paul; Clark, Simon M

    2005-09-01

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 T superconducting bending magnet (superbend). Useful X-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness-preserving optics of the beamline. These optics are comprised of a plane parabola collimating mirror, followed by a Kohzu monochromator vessel with Si(111) crystals (E/DeltaE approximately equal 7000) and W/B4C multilayers (E/DeltaE approximately equal 100), and then a toroidal focusing mirror with variable focusing distance. The experimental enclosure contains an automated beam-positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detector (CCD or image-plate detector). Future developments aim at the installation of a second endstation dedicated to in situ laser heating and a dedicated high-pressure single-crystal station, applying both monochromatic and polychromatic techniques.

  13. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction andspectroscopy using diamond anvil high-pressure cells has been built atthe Advanced Light Source on Beamline 12.2.2. This beamline benefits fromthe hard X-radiation generated by a 6 Tesla superconducting bendingmagnet (superbend). Useful x-ray flux is available between 5 keV and 35keV. The radiation is transferred from the superbend to the experimentalenclosure by the brightness preserving optics of the beamline. Theseoptics are comprised of: a plane parabola collimating mirror (M1),followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE ~;7000) and a W/B4C multilayers (E/DE ~; 100), and then a toroidal focusingmirror (M2) with variable focusing distance. The experimental enclosurecontains an automated beam positioning system, a set of slits, ionchambers, the sample positioning goniometry and area detectors (CCD orimage-plate detector). Future developments aim at the installation of asecond end station dedicated for in situ laser-heating on one hand and adedicated high-pressure single-crystal station, applying bothmonochromatic as well as polychromatic techniques.

  14. A BEAMLINE FOR HIGH PRESSURE STUDIES AT THE ADVANCED LIGHT SOURCE WITH A SUPERCONDUCTING BENDING MAGNET AS THE SOURCE

    SciTech Connect

    Kunz, M; MacDowell, A A; Caldwell, W A; Cambie, D; Celestre, R S; Domning, E E; Duarte, R M; Gleason, A; Glossinger, J; Kelez, N; Plate, D W; Yu, T; Zaug, J M; Padmore, H A; Jeanloz, R; Alivisatos, A P; Clark, S M

    2005-04-19

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/{Delta}E {approx} 7000) and a W/B{sub 4}C multilayer (E/{Delta}E {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  15. A Beamline for High-Pressure Studies at the Advanced Light Sourcewith a Superconducting Bending Magnet as the Source

    SciTech Connect

    Kunz, Martin; MacDowell, Alastair A.; Caldwell, Wendel A.; Cambie, Daniella; Celestre, Richard S.; Domning, Edward E.; Duarte,Robert M.; Gleason, Arianna E.; Glossinger, James M.; Kelez, Nicholas; Plate, David W.; Yu, Tony; Zaug, Joeseph M.; Padmore, Howard A.; Jeanloz,Raymond; Alivisatos, A. Paul; Clark, Simon M.

    2005-06-30

    A new facility for high-pressure diffraction and spectroscopy using diamond anvil high-pressure cells has been built at the Advanced Light Source on Beamline 12.2.2. This beamline benefits from the hard X-radiation generated by a 6 Tesla superconducting bending magnet (superbend). Useful x-ray flux is available between 5 keV and 35 keV. The radiation is transferred from the superbend to the experimental enclosure by the brightness preserving optics of the beamline. These optics are comprised of: a plane parabola collimating mirror (M1), followed by a Kohzu monochromator vessel with a Si(111) crystals (E/DE {approx}7000) and a W/B4C multilayers (E/DE {approx} 100), and then a toroidal focusing mirror (M2) with variable focusing distance. The experimental enclosure contains an automated beam positioning system, a set of slits, ion chambers, the sample positioning goniometry and area detectors (CCD or image-plate detector). Future developments aim at the installation of a second end station dedicated for in situ laser-heating on one hand and a dedicated high-pressure single-crystal station, applying both monochromatic as well as polychromatic techniques.

  16. Structural studies on a high-pressure polymorph of NaYSi 2O 6

    NASA Astrophysics Data System (ADS)

    Kahlenberg, Volker; Konzett, Jürgen; Kaindl, Reinhard

    2007-06-01

    High-pressure synthesis experiments in the system Na 2O-Y 2O 3-SiO 2 revealed the existence of a previously unknown polymorph of NaYSi 2O 6 or Na 3Y 3[Si 3O 9] 2 which was quenched from 3.0 GPa and 1000 °C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi 2O 6 crystallizes in the centrosymmetric space group C2/ c with 12 formula units per cell ( a=8.2131(9) Å, b=10.3983(14) Å, c=17.6542(21) Å, β=100.804(9)°, V=1481.0(3) Å 3, R(| F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si 3O 9] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up ( U) or down ( D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed.

  17. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe.

    PubMed

    Sun, J P; Matsuura, K; Ye, G Z; Mizukami, Y; Shimozawa, M; Matsubayashi, K; Yamashita, M; Watashige, T; Kasahara, S; Matsuda, Y; Yan, J-Q; Sales, B C; Uwatoko, Y; Cheng, J-G; Shibauchi, T

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.

  18. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    SciTech Connect

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; Mizukami, Y.; Shimozawa, M.; Matsubayashi, K.; Yamashita, M.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Yan, J. -Q.; Sales, B. C.; Uwatoko, Y.; Cheng, J. -G.; Shibauchi, T.

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (Tc ≤ 38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. In conclusion, the obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.

  19. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    DOE PAGES

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; ...

    2016-07-19

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (Tc ≤ 38.3 K) accompanies a suppression of magnetic order,more » demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. In conclusion, the obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.« less

  20. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    NASA Astrophysics Data System (ADS)

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; Mizukami, Y.; Shimozawa, M.; Matsubayashi, K.; Yamashita, M.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Yan, J.-Q.; Sales, B. C.; Uwatoko, Y.; Cheng, J.-G.; Shibauchi, T.

    2016-07-01

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ~15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ~6 GPa the sudden enhancement of superconductivity (Tc<=38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates.

  1. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe

    PubMed Central

    Sun, J. P.; Matsuura, K.; Ye, G. Z.; Mizukami, Y.; Shimozawa, M.; Matsubayashi, K.; Yamashita, M.; Watashige, T.; Kasahara, S.; Matsuda, Y.; Yan, J. -Q.; Sales, B. C.; Uwatoko, Y.; Cheng, J. -G.; Shibauchi, T.

    2016-01-01

    The coexistence and competition between superconductivity and electronic orders, such as spin or charge density waves, have been a central issue in high transition-temperature (Tc) superconductors. Unlike other iron-based superconductors, FeSe exhibits nematic ordering without magnetism whose relationship with its superconductivity remains unclear. Moreover, a pressure-induced fourfold increase of Tc has been reported, which poses a profound mystery. Here we report high-pressure magnetotransport measurements in FeSe up to ∼15 GPa, which uncover the dome shape of magnetic phase superseding the nematic order. Above ∼6 GPa the sudden enhancement of superconductivity (Tc≤38.3 K) accompanies a suppression of magnetic order, demonstrating their competing nature with very similar energy scales. Above the magnetic dome, we find anomalous transport properties suggesting a possible pseudogap formation, whereas linear-in-temperature resistivity is observed in the normal states of the high-Tc phase above 6 GPa. The obtained phase diagram highlights unique features of FeSe among iron-based superconductors, but bears some resemblance to that of high-Tc cuprates. PMID:27431724

  2. Superconductivity in ordered LiBe alloy under high pressure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Chen, Changbo; Wu, Baojia

    2012-01-01

    The electronic, vibrational, and superconducting properties of LiBe alloy in the P2 1/m structure under pressure have been investigated using first-principles calculations. The calculated electron-phonon coupling (EPC) of LiBe with both linear response theory and the rigid muffin-tin approximation suggested that pairing electrons are mainly mediated by the Li low-lying phonon vibrations, and the increase of the Li EPC matrix element with pressure is responsible for the increased EPC parameter λ. The application of the Allen-Dynes modified McMillan equation reveals high superconducting critical temperatures of 15.2 K at 80 GPa and 18.4 K at 100 GPa for P2 1/m LiBe.

  3. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, W.J.; Geballe, T.H.; Maple, M.B.

    1990-03-13

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures is disclosed. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80--100 K to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. 9 figs.

  4. Dynamic high pressure process for fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Geballe, Theodore H.; Maple, M. Brian

    1990-01-01

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures. The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80.degree.-100.degree. K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

  5. The High Pressure Superconductivity of CaLi2 Compound: The Thermodynamic Properties

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, R.; Durajski, A. P.; Pach, P. W.

    2013-06-01

    The thermodynamic properties of the superconducting state in CaLi2 at 60 GPa have been described in the paper. The numerical analysis has been carried out in the framework of the Eliashberg formalism. It has been shown that: (i) the critical value of the Coulomb pseudopotential is equal to 0.20, which corresponds to the value of 1795 meV for the Coulomb potential; (ii) the critical temperature ( T C ) cannot be correctly calculated by using the Allen-Dynes (AD) formula; (iii) the dimensionless ratios: TCCN (TC )/H2C (0 ), ( C S ( T C )- C N ( T C ))/ C N ( T C ) and 2Δ(0)/ k B T C take the non-BCS values: 0.157, 1.78 and 3.85, respectively. The symbol C N represents the specific heat in the normal state, C S denotes the specific heat in the superconducting state, H C (0) is the thermodynamic critical field near the temperature of zero Kelvin, and Δ(0) is the order parameter; (iv) the ratio of the electron effective mass (m^{star}e) to the electron band mass ( m e ) assumes a high value, in the whole range of the temperature, where the superconducting state exists. The maximum of m^{star}e/me is equal to 2.15 for T= T C .

  6. Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity.

    PubMed

    Yamanaka, Shoji

    2010-02-28

    Compounds with cage-like structures of elemental silicon and carbon are comparatively reviewed. Barium containing silicon clathrate compounds isomorphous with type I gas hydrates were prepared using high pressure and high temperature (HPHT) conditions, and found to become superconductors. The application of HPHT conditions to Zintl binary silicides have produced a number of silicon-rich cage-like structures including new clathrate structures; most of them are superconductors. Carbon analogs of silicon clathrates can be prepared by 3D polymerization of C(60) under HPHT conditions, which are new allotropes of carbon with expanded framework structures. The crystal chemistry and characteristic properties of some related compounds are also reviewed.

  7. A first-principles study on new high-pressure metastable polymorphs of MoO2

    NASA Astrophysics Data System (ADS)

    Becker, Nils; Dronskowski, Richard

    2016-05-01

    The pressure-dependence of the stabilities of several MoO2 phases has been investigated by density-functional theory (GGA/PBE/PAW). Out of a set of 15 MX2 structures, the [SnO2(II)], [α-PbO2], and a modified rutile structure type were identified as possible metastable MoO2 polymorphs based on the analysis of thermodynamic properties and dynamic stability. High-pressure calculations suggest an orthorhombic TiO2 structure, dubbed [ortho-TiO2], as a high-pressure polymorph at around 25 GPa. Furthermore, we find that the previously reported rutile-type MoO2 may be understood as a modified rutile type similar to the [VO2] structure.

  8. High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Katayama, Y.; Kulikova, L. F.; Lityagina, L. V.; Nikolaev, N. A.

    2014-01-01

    At normal pressure, the As2S3 compound is the most stable equilibrium modification with unique layered structure. The possibility of high-pressure polymorphism of this substance remains questionable. Our research showed that the As2S3 substance was metastable under pressures P > 6 GPa decomposing into two high-pressure phases: As2S3 → AsS2 + AsS. New AsS2 phase can be conserved in the single crystalline form in metastable state at room pressure up to its melting temperature (470 K). This modification has the layered structure with P1211 monoclinic symmetry group; the unit-cell values are a = 7.916(2) Å, b = 9.937(2) Å, c = 7.118(1) Å, β = 106.41° ( Z = 8, density 3.44 g/cm3). Along with the recently studied AsS high-pressure modification, the new AsS2 phase suggests that high pressure polymorphism is a very powerful tool to create new layered-structure phases with "wrong" stoichiometry.

  9. Superconductivity and crystal structure of high-pressure phases in V-Ru-H system

    NASA Astrophysics Data System (ADS)

    Animonov, V. Ye.; Belash, I. T.; Ponyatovskiy, Ye. G.; Rashchupkin, V. I.; Romanenko, I. M.

    1987-10-01

    In the search for materials which, upon hydrogenation, form phase with higher superconductor transition temperature, V-Ru alloys were selected for study. Specimens were produced by mixing electrolytic powder of each metal into three batches with 10, 18, 33 atom percent. respectively, compacting the mixtures under a pressure of 20 kbar at room temperature, and then sintering them in an induction furnace in an argon atmosphere. The compacts were annealed at 1200 C in vacuum (10 to the -6 torr) for 24 h then cooled in the furnace. The specimens of three alloys, now containing 10, 18.5., 34+0.4 atom percent Ru, respectively, were hydrogenated in an H2 atmosphere at 300 C under pressures up to 70 kbar for 24 h and then quenched under pressure to about -180 C. The hydrogen content was then determined accurately within 5 percent, from the amount of H2 evolving during thermal decomposition at 500 C. The superconducting transition temperature was measured by the inductive method. The results reveal formation of a phase with the atomic hydrogen-to-metal ratio H:Me approx = 1 and an f.c.c. metal sublattice in the V sub 90 Ru sub 10-H alloy, only this phase being superconductive at temperatures T greater than or = 2K with a 0.3 K wide transition range.

  10. Development of density-functional theory for a plasmon-assisted superconducting state: application to lithium under high pressures.

    PubMed

    Akashi, Ryosuke; Arita, Ryotaro

    2013-08-02

    We extend the density-functional theory for superconductors (SCDFT) to take account of the dynamical structure of the screened Coulomb interaction. We construct an exchange-correlation kernel in the SCDFT gap equation on the basis of the random-phase approximation, where electronic collective excitations such as plasmons are properly treated. Through an application to fcc lithium under high pressures, we demonstrate that our new kernel gives higher transition temperatures (T(c)) when the plasmon and phonon cooperatively mediate pairing and it improves the agreement between the calculated and experimentally observed T(c). The present formalism opens the door to nonempirical studies on unconventional electron mechanisms of superconductivity based on density-functional theory.

  11. FAST TRACK COMMUNICATION: Single crystals of superconducting SmFeAsO1-xFy grown at high pressure

    NASA Astrophysics Data System (ADS)

    Zhigadlo, N. D.; Katrych, S.; Bukowski, Z.; Weyeneth, S.; Puzniak, R.; Karpinski, J.

    2008-08-01

    Single crystals of SmFeAsO1-xFy of a size up to 120 × 100 µm2 have been grown from NaCl/KCl flux at a pressure of 30 kbar and temperature of 1350-1450 °C using the cubic anvil high-pressure technique. The superconducting transition temperature of the obtained single crystals varies between 45 and 53 K. Obtained crystals are characterized by a full diamagnetic response in low magnetic fields and by a high critical current density in high magnetic fields. Structural refinement has been performed on the single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO1-xFy at 1302 °C.

  12. A first-principles study on new high-pressure metastable polymorphs of MoO{sub 2}

    SciTech Connect

    Becker, Nils; Dronskowski, Richard

    2016-05-15

    The pressure-dependence of the stabilities of several MoO{sub 2} phases has been investigated by density-functional theory (GGA/PBE/PAW). Out of a set of 15 MX{sub 2} structures, the [SnO{sub 2}(II)], [α-PbO{sub 2}], and a modified rutile structure type were identified as possible metastable MoO{sub 2} polymorphs based on the analysis of thermodynamic properties and dynamic stability. High-pressure calculations suggest an orthorhombic TiO{sub 2} structure, dubbed [ortho-TiO{sub 2}], as a high-pressure polymorph at around 25 GPa. Furthermore, we find that the previously reported rutile-type MoO{sub 2} may be understood as a modified rutile type similar to the [VO{sub 2}] structure. - Graphical abstract: First-principles electronic structure and thermochemical calculations reveal four structure candidates as possible metastable polymorphs of MoO{sub 2}. Most promising is a distorted rutile-type similar to the known [VO{sub 2}] structure. An orthorhombic polymorph is proposed as a high-pressure polymorph. Display Omitted - Highlights: • Three possible metastable structure candidates for MoO{sub 2}. • Undistorted rutile type is improbable, a new distorted rutile-type MoO{sub 2} was suggested. • Orthorhombic phase of MoO{sub 2} (ortho-TiO{sub 2} type) should form at 25 GPa. • ab initio thermochemical data provided for MoO{sub 2}.

  13. Metallization and superconductivity of BeH2 under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Ziwei; Yao, Yansun; Zhu, Li; Liu, Hanyu; Iitaka, Toshiaki; Wang, Hui; Ma, Yanming

    2014-03-01

    Pressure-induced metallization and potential superconductivity of BeH2 has been a topic of interest. In the present study, we extensively explored the crystal structures of BeH2 in a wide pressure range of 0-300 GPa using an unbiased structure searching method coupled with first-principles density functional calculations. A series of pressure-induced structural transformations are predicted for BeH2, as Ibam (α phase) → P-3m1 (phase II) → R-3m (phase III) → Cmcm (phase IV). Calculated pressures of phase transition are 25, 140, and 202 GPa, respectively. The phase II is isostructural to the well-known 1T structure of transition metal dichalcogenides, which is composed of covalent bonded BeH2 slabs stacked along the perpendicular direction by van der Waals forces. The phase III is constructed by the same BeH2 slabs, but differs from the phase II in the stacking sequence. The α phase, phase II, and phase III all have insulating electronic states while their band gaps decrease as pressure increases. We predicted that BeH2 reaches a metallic state by a III → IV phase transition, instead of a direct band gap closure in phase III. The phase IV has a three-dimensional extended Be-H network formed by edge-sharing BeH8 polyhedrons with delocalized electrons. Electron-phonon coupling calculations implemented using linear response theory on the metallic BeH2 predict a large electron-phonon coupling parameter of 0.63, leading to an estimation of superconducting transition temperature (Tc) of ˜38 K at 250 GPa.

  14. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.

    2017-01-01

    First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.

  15. Band structure, Fermi surface, superconductivity, and resistivity of actinium under high pressure

    SciTech Connect

    Dakshinamoorthy, M.; Iyakutti, K.

    1984-12-15

    The electronic band structures of fcc actinium (Ac) have been calculated for a wide range of pressures by reducing the unit-cell volume from 1.0V/sub 0/ to 0.5V/sub 0/ with use of the relativistic augmented-plane-wave method. The density of states and Fermi-surface cross sections corresponding to various volumes are obtained. Calculations for the band-structure-related quantities such as electron-phonon mass enhancement factor lambda, superconducting transition temperature T/sub c/, and resistivity rho corresponding to different volumes are performed. It is seen that T/sub c/ increases with pressure, i.e., with decreasing volume. A new empirical relation for the volume dependence of T/sub c/ is proposed and its validity is checked using the T/sub c/ values obtained from the above band-structure results. The resistivity rho first increases with increasing pressure (i.e., with decreasing volume) and then decreases for higher pressures (i.e., for smaller volumes).

  16. Monoclinic high-pressure polymorph of AlOOH predicted from first principles

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Hermann, Andreas; Wang, Yanchao; Ma, Yanming

    2016-12-01

    Aluminum oxide hydroxide, AlOOH, is a prototypical hydrous mineral in the geonomy. The study of the high-pressure phase evolution of AlOOH is of fundamental importance in helping to understand the role of hydrous minerals in the water storage and transport in Earth, as in other planets. Here, we have systematically investigated the high-pressure phase diagram of AlOOH up to 550 GPa using the efficient crystal structure analysis by particle swarm optimization (CALYPSO) algorithm in conjunction with first principles calculations. We predict a peculiar monoclinic phase (space group P 21/c , 16 atoms/cell, Z =4 ) as the most stable phase for AlOOH above 340 GPa. The occurrence of this new phase results in the breakup of symmetric linear O-H-O hydrogen bonds into asymmetric, bent O-H-O linkages and in sevenfold coordinated metal cations. The new P 21/c phase turns out to be a universal high-pressure phase in group 13 oxide hydroxides, and stable for both compressed GaOOH and InOOH. The formation of the new phase in all compounds is favored by volume reduction due to denser packing.

  17. Synthesis and magnetic properties of the high-pressure scheelite-type GdCrO{sub 4} polymorph

    SciTech Connect

    Dos santos-Garcia, A.J.; Climent-Pascual, E.; Gallardo-Amores, J.M.; Rabie, M.G.; Doi, Y.; Romero de Paz, J.; Beuneu, B.

    2012-10-15

    The scheelite-type polymorph of GdCrO{sub 4} has been obtained from the corresponding zircon-type compound under high pressure and temperature conditions, namely 4 GPa and 803 K. The crystal structure has been determined by X-ray powder diffraction. This GdCrO{sub 4} scheelite crystallizes in a tetragonal symmetry with space group I4{sub 1}/a (No. 88, Z=4), a=5.0501(1) A, c=11.4533(2) A and V=292.099(7) A{sup 3}. The thermal decomposition leads to the formation of the zircon-polymorph as intermediate phase at 773 K to end in the corresponding GdCrO{sub 3} distorted perovskite-structure at higher temperatures. Magnetic susceptibility and magnetization measurements suggest the existence of long-range antiferromagnetic interactions which have been also confirmed from specific heat measurements. Neutron powder diffraction data reveal the simultaneous antiferromagnetic Gd{sup 3+} and Cr{sup 5+} ordering in the scheelite-type GdCrO{sub 4} with a T{sub N}{approx}20 K. The magnetic propagation vector was found to be k=(0 0 0). Combined with group theory analysis, the best neutron powder diffraction fit was obtained with a collinear antiferromagnetic coupling in which the m{sub Cr{sup 5}{sup +}} and m{sub Gd{sup 3}{sup +}} magnetic moments are confined in the tetragonal basal plane according to the mixed representation {Gamma}{sub 6} Circled-Plus {Gamma}{sub 8}. Thermal decomposition of the GdCrO{sub 4} high pressure polymorph, from the scheelite-type through the zircon-type structure as intermediate to end in the GdCrO{sub 3} perovskite. Highlights: Black-Right-Pointing-Pointer New high pressure GdCrO{sub 4} polymorph crystallizing in the scheelite type structure. Black-Right-Pointing-Pointer It is an antiferromagnet with a metamagnetic transition at low magnetic fields. Black-Right-Pointing-Pointer We have determined its magnetic structure from powder neutron diffraction data. Black-Right-Pointing-Pointer Otherwise, the room pressure zircon-polymorph is a ferromagnet

  18. Hydrogen bond symmetrization and superconducting phase of HBr and HCl under high pressure: An ab initio study.

    PubMed

    Duan, Defang; Tian, Fubo; He, Zhi; Meng, Xing; Wang, Liancheng; Chen, Changbo; Zhao, Xiusong; Liu, Bingbing; Cui, Tian

    2010-08-21

    Ab initio calculations are performed to probe the hydrogen bonding, structural, and superconducting behaviors of HBr and HCl under high pressure. The calculated results show that the hydrogen bond symmetrization (Cmc2(1)-->Cmcm transition) of HBr and HCl occurs at 25 and 40 GPa, respectively, which can be attributed to the symmetry stretching A(1) mode softening. After hydrogen bond symmetrization, a pressure-induced soft transverse acoustic phonon mode of Cmcm phase is identified and a unique metallic phase with monoclinic structure of P2(1)/m (4 molecules/cell) for both compounds is revealed by ab initio phonon calculations. This phase preserves the symmetric hydrogen bond and is stable in the pressure range from 134 to 196 GPa for HBr and above 233 GPa for HCl, while HBr is predicted to decompose into Br(2)+H(2) above 196 GPa. Perturbative linear-response calculations predict that the phase P2(1)/m is a superconductor with T(c) of 27-34 K for HBr at 160 GPa and 9-14 K for HCl at 280 GPa.

  19. High-pressure--high-temperature polymorphism in ta: resolving an ongoing experimental controversy.

    PubMed

    Burakovsky, L; Chen, S P; Preston, D L; Belonoshko, A B; Rosengren, A; Mikhaylushkin, A S; Simak, S I; Moriarty, J A

    2010-06-25

    Phase diagrams of refractory metals remain essentially unknown. Moreover, there is an ongoing controversy over the high-pressure melting temperatures of these metals: results of diamond anvil cell (DAC) and shock wave experiments differ by at least a factor of 2. From an extensive ab initio study on tantalum we discovered that the body-centered cubic phase, its physical phase at ambient conditions, transforms to another solid phase, possibly hexagonal omega phase, at high temperature. Hence the sample motion observed in DAC experiments is very likely not due to melting but internal stresses accompanying a solid-solid transformation, and thermal stresses associated with laser heating.

  20. High-pressure polymorphs of ZnCO3: Evolutionary crystal structure prediction

    PubMed Central

    Bouibes, A.; Zaoui, A.

    2014-01-01

    The high-pressure behavior of zinc carbonate ZnCO3 has been investigated using universal structure prediction method together with the density functional theory. In order to explore all possible structures under pressure, separate calculations at high pressure are done here with increasing number of formula units in the unit cell. Two pressures induced phase transitions were considered. The first one occurs at 78 GPa and the second one at 121 GPa. The most stable ZnCO3 at ambient condition corresponds to the space group R-3c (phase I), which is in favorable agreement with experiment. The structure with C2/m space group (phase II) becomes stable between 78 GPa and 121 GPa. Finally, the structure with the space group P212121 (phase III) becomes the most stable when the pressure achieves 121 GPa. Some mechanical properties of R-3c structure were –additionally- calculated and compared with the experimental and previous theoretical data. The resulting behaviors support our findings and confirm the obtained phase transition. Besides, from the analysis of the electronic charge density it comes that at 78 GPa, new bond between oxygen and zinc is formed, what is likely the main cause behind the phase transition. PMID:24894072

  1. High-pressure polymorphism of the electrochemically active organic molecule tetrahydroxy-p-benzoquinone

    NASA Astrophysics Data System (ADS)

    Ciezak-Jenkins, Jennifer A.

    2016-09-01

    The structural and chemical response of tetrahydroxy-p-benzoquinone to isothermal compression to near 20 GPa have been studied using powder x-ray diffraction and vibrational spectroscopy. Compression beyond 11.5 GPa resulted in the appearance of several new peaks in the x-ray patterns, changes in the peak distribution and intensities, as well as the disappearance of features observed at lower pressures, which when coupled with concomitant changes in the infrared spectrum are indicative of a phase transition. Further analysis of the infrared spectra suggest this phase transition results in an increase in the anharmonicity of the system. Raman spectroscopic experiments indicate the high-pressure phase to be highly photosensitive and easily polymerized.

  2. High-pressure polymorphism of Pb F2 to 75 GPa

    NASA Astrophysics Data System (ADS)

    Stan, Camelia V.; Dutta, Rajkrishna; White, Claire E.; Prakapenka, Vitali; Duffy, Thomas S.

    2016-07-01

    Lead fluoride, Pb F2 , was investigated experimentally in the laser-heated diamond anvil cell by x-ray diffraction to pressures of 75 GPa at room temperature and to 64.5 GPa and 2430 K, as well as through first-principles density functional theory calculations up to 70 GPa. During room temperature compression, no discontinuous changes in the x-ray diffraction pattern or volume were observed, but the lattice parameters displayed highly anomalous trends between 10-22 GPa with enhanced compressibility along the a direction and reduced or even negative compressibility along b and c . Theoretical calculations of valence electron densities at 22 GPa showed that α -Pb F2 underwent a pressure-induced isosymmetric phase transition to a postcotunnite C o2Si structure and also revealed the detailed atomic rearrangements associated with the development of an extra Pb-F bond in the high-pressure phase. Our x-ray results and theoretical calculations are consistent with an isosymmetric phase transition smoothly occurring over 10-22 GPa rather than abruptly as previously suggested. The characteristic values for the cell constants a /c and (a +c )/b , which are used to distinguish among cotunnite-, C o2Si -, and N i2In -type phases, require modification based on our results. An equation of state fit yields a bulk modulus, K0, of 72(3) GPa for the cotunnite-type, and an ambient-pressure volume, V0, of 182 (2 ) Å3 , and K0=81 (4 ) GPa for the C o2Si -type phase when fixing the pressure derivative of the bulk modulus, K0 '=4 . Upon heating above 1200 K at pressures at or above 25.9 GPa, Pb F2 partially transformed to the hexagonal N i2In -type phase but wholly or partially reverted back to C o2Si -type phase upon temperature quench. From 43-65 GPa, nearly complete transformation to the N i2In -type Pb F2 was observed at high temperature, but the material partially transformed back to the orthorhombic phase upon temperature quench. Our results show that high-pressure behavior of Pb F

  3. Local structure, stripe pinning, and superconductivity in La1.875Ba0.125CuO4 at high pressure

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Hücker, M.; Gu, G. D.; Tranquada, J. M.; Haskel, D.

    2013-08-01

    The interplay between stripe correlations, local structure, and superconductivity in La1.875Ba0.125CuO4 is studied with concomitant polarized x-ray absorption fine structure (XAFS) and x-ray diffraction measurements at high pressure. Long-range order of the CuO6 octahedral tilt pattern that pins charge-stripe order vanishes at a pressure-induced structural transition (P=1.8 GPa at T=5 K). Diffraction shows that static charge stripe and associated octahedral tilt correlations which survive in the high-pressure phase are effectively suppressed above 3.5 GPa. In contrast, XAFS analysis shows that instantaneous local correlations of the characteristic octahedral tilt pattern remain robust to at least 5 GPa. The decreasing local tilt angle is well correlated with a gradual increase in the superconducting transition temperature, suggesting that orientational pinning of charge correlations can survive the loss of static stripe order.

  4. New insights into the high-pressure polymorphism of SiO[subscript 2] cristobalite

    SciTech Connect

    Dera, Przemyslaw; Lazarz, John D.; Prakapenka, Vitali B.; Barkley, Madison; Downs, Robert T.

    2016-07-29

    Single-crystal X-ray diffraction experiments with SiO{sub 2} {alpha}-cristobalite reveal that the well-known reversible displacive phase transition to cristobalite-II, which occurs at approximately 1.8 GPa, can be suppressed by rapid pressure increase, leading to an overpressurized metastable state, persisting to pressure as high as 10 GPa. In another, slow pressure increase experiment, the monoclinic high-pressure phase-II was observed to form at {approx}1.8 GPa, in agreement with earlier in situ studies, and its crystal structure has been unambiguously determined. Single-crystal data have been used to refine the structure models of both phases over the range of pressure up to the threshold of formation of cristobalite X-I at {approx}12 GPa, providing important constraints on the feasibility of the two competing silica densification models proposed in the literature, based on quantum mechanical calculations. Preliminary diffraction data obtained for cristobalite X-I reveal a monoclinic unit cell that contradicts the currently assumed model.

  5. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure

    PubMed Central

    Bai, Jaeil; Zeng, Xiao Cheng

    2012-01-01

    A distinctive physical property of bulk water is its rich solid-state phase behavior, which includes 15 crystalline (ice I–ice XIV) and at least 3 glassy forms of water, namely, low-density amorphous, high-density amorphous, and very-high-density amorphous (VHDA). Nanoscale confinement adds a new physical variable that can result in a wealth of new quasi-2D phases of ice and amorphous ice. Previous computer simulations have revealed that when water is confined between two flat hydrophobic plates about 7–9 Å apart, numerous bilayer (BL) ices (or polymorphs) can arise [e.g., BL-hexagonal ice (BL-ice I)]. Indeed, growth of the BL-ice I through vapor deposition on graphene/Pt(111) substrate has been achieved experimentally. Herein, we report computer simulation evidence of pressure-induced amorphization from BL-ice I to BL-amorphous and then to BL-VHDA2 at 250 K and 3 GPa. In particular, BL-VHDA2 can transform into BL-VHDA1 via decompression from 3 to 1.5 GPa at 250 K. This phenomenon of 2D polyamorphic transition is akin to the pressure-induced amorphization in 3D ice (e.g., from hexagonal ice to HDA and then to VHDA via isobaric annealing). Moreover, when the BL-ice I is compressed instantly to 6 GPa, a new very-high-density BL ice is formed. This new phase of BL ice can be viewed as an array of square ice nanotubes. Insights obtained from pressure-induced amorphization and crystallization of confined water offer a guide with which to seek a thermodynamic path to grow a new form of methane clathrate whose BL ice framework exhibits the Archimedean 4⋅82 (square-octagon) pattern. PMID:23236178

  6. New high-pressure polymorph of In2S3 with defect Th3P4-type structure

    NASA Astrophysics Data System (ADS)

    Lai, Xiaojing; Zhu, Feng; Wu, Ye; Huang, Rong; Wu, Xiang; Zhang, Qian; Yang, Ke; Qin, Shan

    2014-02-01

    The high pressure behavior of β-In2S3 (I41/amd and Z=16) has been studied by in situ synchrotron radiation X-ray diffraction combined with diamond anvil cell up to 71.7 GPa. Three pressure-induced phase transitions are evidenced at ~6.6 GPa, ~11.1 GPa at room temperature and 35.6 GPa after the high-temperature annealing using a portable laser heating system. The new polymorph of In2S3 at 35.6 GPa is assigned to the denser cubic defect Th3P4 structure (I4bar3d and Z=5.333), whose unit-cell parameters are a=7.557(1) Å and V=431.6(2) Å3. The Th3P4-type phase can be stable at least up to 71.7 GPa and cannot be preserved at ambient pressure. The pressure-volume relationship is well described by the second-order Birch-Murnaghan Equation of State, which yields B0=63(3) GPa and B0‧=4 (fixed) for the β-In2S3 phase and B0=87(3) GPa and B0‧=4 (fixed) for the defect Th3P4-type phase respectively.

  7. Structural studies on a high-pressure polymorph of NaYSi{sub 2}O{sub 6}

    SciTech Connect

    Kahlenberg, Volker Konzett, Juergen; Kaindl, Reinhard

    2007-06-15

    High-pressure synthesis experiments in the system Na{sub 2}O-Y{sub 2}O{sub 3}-SiO{sub 2} revealed the existence of a previously unknown polymorph of NaYSi{sub 2}O{sub 6} or Na{sub 3}Y{sub 3}[Si{sub 3}O{sub 9}]{sub 2} which was quenched from 3.0 GPa and 1000 deg. C. Structural investigations on this modification have been performed using single-crystal X-ray diffraction data collected at ambient conditions. Furthermore, unpolarized micro-Raman spectra have been obtained from single-crystal material. The high-P modification of NaYSi{sub 2}O{sub 6} crystallizes in the centrosymmetric space group C2/c with 12 formula units per cell (a=8.2131(9) A, b=10.3983(14) A, c=17.6542(21) A, {beta}=100.804(9){sup o}, V=1481.0(3) A{sup 3}, R(|F|)=0.033 for 1142 independent observed reflections) and belongs to the group of cyclo-silicates. Basic building units are isolated three-membered [Si{sub 3}O{sub 9}] rings located in layers parallel to (010). Within a single layer the rings are concentrated in strings parallel to [100]. The sequence of directedness of up (U) or down (D) pointing tetrahedra of a single ring is UUU or DDD, respectively. Stacking of the layers parallel to b results in the formation of a three-dimensional structure in which yttrium and sodium cations are incorporated for charge compensation. In more detail, four non-tetrahedral cation positions can be differentiated which are coordinated by 6 and 8 oxygen ligands. Refinements of the site occupancies did not reveal any indication for mixed Na-Y populations on these positions. Finally, several geometrical parameters of rings occurring in cyclo-trisilicate structures have been compiled and are discussed. - Graphical abstract: Projection of the whole structure of high-P NaYSi{sub 2}O{sub 6} parallel to [100].

  8. High-pressure synthesis of superconducting La(1.7)Ca(1.3)Cu2O(y)

    NASA Astrophysics Data System (ADS)

    Okai, Bin

    1991-02-01

    The high-pressure (6 GPa) synthesis of La(1.7)Ca(1.3)Cu2O(y) and La(1.7)Sr(1.3)Cu2O(y) compounds with an Sr3Ti2O7 structure is reported. The compound La(1.7)Ca(1.3)Cu2O(y) is shown to be a superconductor, with the transition temperature of 70 K. With an increase in oxygen supply during the synthesis of this compound, the transition temperature changes to 75 K. The compound La(1.7)Sr(1.3)Cu2O(y) has remained nonsuperconducting down to 4 K.

  9. Predicted Suppression of the Superconducting Transition of New High-Pressure Yttrium Phases with Increasing Pressure from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Hu, Qing-Miao; Yang, Rui

    2012-10-01

    Structure searches for new high-pressure phases of Y metal have been performed by using evolutionary algorithms in conjunction with a first-principles, pseudopotential plane-wave method based on density functional theory. The oF16-Fddd and hP3-P3121 phases are predicted to be energetically favorable at pressures over 97 GPa. These two phases are shown to be dynamically stable by computing their phonon dispersions. We thus propose that oF16-Fddd and hP3-P3121 are the most probable crystal structures Y may take in the 97-206 GPa range. The superconducting critical temperatures (Tc) of the new phases are estimated using the Allen-Dynes formula. The Tc is predicted to decrease with increasing pressure over about 100 GPa, in sharp contrast to its observed monotonic increase under lower pressure. The electronic origins of the stabilities of the proposed high-pressure phases have also been investigated.

  10. Superconductivity in LaT(M)BN and La3T(M2)B2N3 (T(M) = transition metal) synthesized under high pressure.

    PubMed

    Imamura, Naoki; Mizoguchi, Hiroshi; Hosono, Hideo

    2012-02-08

    Various layered boronitrides (LaN)(n)(T(M2)B(2)) (T(M) = transition metal; n = 2, 3) have been prepared using a high-pressure synthesis technique in which an inverse α-PbO-type T(M2)B(2) layer is separated by two or three rock salt-type LaN layers and these layers are connected through linear (BN) units. The electronic states of the distinguishing (BN) unit and intermediate rock salt-type LaN layer are discussed on the basis of density functional theory calculations. Bulk superconductivity has been found in LaNiBN (T(c) ≈ 4.1 K), CaNiBN (T(c) ≈ 2.2 K), and LaPtBN (T(c) ≈ 6.7 K), where the Fermi level E(F) is located in the bands composed of the T(M)(d)-B(2p) antibonding state and the main T(M)(d) band resides well below E(F). The non-superconductive T(M)-based compounds exhibit Pauli paramagnetic behavior, in which the highly itinerant nature of the electrons caused by strong T(M)(d)-B(2p) covalent bonding suppresses the long-range magnetic ordering.

  11. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

    NASA Astrophysics Data System (ADS)

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.; Miletich, Ronald; Dera, Przemyslaw

    2016-09-01

    Three isotypic crystals, SiO2 (α-cristobalite), ɛ-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5-2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.

  12. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

    DOE PAGES

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.; ...

    2016-05-31

    Three isotypic crystals, SiO2 (α-cristobalite), ε-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression drivenphase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high pressure γ-phase of beryllium hydroxide and compare it with the high pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c =more » 7.0599(7) Å, to the high pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.« less

  13. High-pressure polymorphism of Fe[subscript 2]P and its implications for meteorites and Earth's core

    SciTech Connect

    Dera, P.; Lavina, B.; Borkowski, L.A.; Prakapenka, V.B.; Sutton, S.R.; Rivers, M.L.; Downs, R.T.; Boctor, N.Z.; Prewitt, C.T.

    2008-05-19

    Minerals with composition (Fe,Ni){sub 2}P, are rare, though important accessory phases in iron and chondritic meteorites. The occurrence of these minerals in meteorites is believed to originate either from the equilibrium condensation of protoplanetary materials in solar nebulae or from the later accretion and condensation processes in the cores of parent bodies. Fe-Ni phosphides are considered a possible candidate for a minor phase present in the Earth's core, and at least partially responsible for the observed density deficit with respect to pure iron. We report results of high-pressure high-temperature X-ray diffraction experiments with synthetic barringerite (Fe{sub 2}P) up to 40 GPa and 1400 K. A new phase transition to the Co{sub 2}Si-type structure has been found at 8.0 GPa, upon heating. The high-pressure phase can be metastably quenched to ambient conditions at room temperature, and then, if heated again, transforms back to barringerite, providing an important constraint on the thermodynamic history of meteorite.

  14. Synthesis and high (pressure, temperature) stability of ZnTiO3 polymorphs studied by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Bernert, T.; Ruiz-Fuertes, J.; Bayarjargal, L.; Winkler, B.

    2015-05-01

    The phase-purity of ilmenite-type ZnTiO3 prepared by the ceramic method was investigated in dependence of the conditions during ball milling. The previously proposed addition of 2 ml ethanol to the starting materials led to a significant contamination of the product phase after a subsequent sintering process at 1073 K. However, by omitting ethanol this synthesis route led to a phase-pure sample of ZnTiO3 as confirmed by X-ray powder diffraction and Raman spectroscopy. High-temperature high-pressure experiments gave an ilmenite-type to perovskite-type phase boundary with a slope of dT/dP∼-135 K GPa-1 crossing ambient temperature conditions at ∼ 24 GPa in good agreement with previous calculations. Room-temperature high-pressure Raman spectroscopy experiments have shown the stability of the ilmenite-type phase up to a pressure of at least 38.5 GPa, the highest pressure applied in this study, indicating the presence of a kinetic barrier in this phase transition. The synthesis of ferroelectric LiNbO3-type ZnTiO3 was confirmed by second harmonic generation.

  15. Investigation of polymorphism for amorphous and semi-crystalline poly (-ethylene terephthalate-) using high-pressure Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Ko, Young-Ho; Ahart, Muhtar; Ko, Jae-Hyeon; Song, Jonghyun

    2017-02-01

    High-pressure Brillouin spectroscopy was applied to clarify quantitatively the physical and mechanical differences of a polymer with distinct structures consisting of the same elements. The pressure dependences of elastic properties, Young's modulus, the shear modulus, the bulk modulus, and Poisson's ratio for an amorphous poly (-ethylene terephthalate-) [(-PET-)] and a semi-crystalline PET were compared for pressures up to 11 GPa. A collapse of the free volume for the two PETs was ascertained at the different values of the pressure with different slopes for the elastic properties, Young's modulus, the shear modulus, and the bulk modulus. Although the Poisson's ratios of a semi-crystalline PET increased linearly with increasing pressure, those of an amorphous PET were almost constant. The P-V equation of state (EOS) for an amorphous PET was also determined, and isothermal bulk moduli extracted from the Birch-Murnaghan and the Vinet EOSs were 6.3 ± 0.2 GPa and 6.7 ± 0.1 GPa, respectively.

  16. Experimental Investigation of Magnetic Superconducting, and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures Using Designer Diamond Anvils

    SciTech Connect

    Maple, M. Brian

    2005-09-13

    Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made

  17. Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

    SciTech Connect

    Shelton, Hannah; Barkley, Madison C.; Downs, Robert T.; Miletich, Ronald; Dera, Przemyslaw

    2016-05-31

    Three isotypic crystals, SiO2 (α-cristobalite), ε-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression drivenphase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high pressure γ-phase of beryllium hydroxide and compare it with the high pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.

  18. Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.

    PubMed

    Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V

    2016-01-13

    Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.

  19. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Denoual, C.

    2016-07-01

    A thermodynamically consistent framework for combining nonlinear elastoplasticity and multivariant phase-field theory is formulated at large strains. In accordance with the Clausius-Duhem inequality, the Helmholtz free energy and time-dependent constitutive relations give rise to displacive driving forces for pressure-induced martensitic phase transitions in materials. Inelastic forces are obtained by using a representation of the energy landscape that involves the concept of reaction pathways with respect to the point group symmetry operations of crystal lattices. On the other hand, additional elastic forces are derived for the most general case of large strains and rotations, as well as nonlinear, anisotropic, and different elastic pressure-dependent properties of phases. The phase-field formalism coupled with finite elastoplastic deformations is implemented into a three-dimensional Lagrangian finite element approach and is applied to analyze the iron body-centered cubic (α-Fe) into hexagonal close-packed (ɛ-Fe) phase transitions under high hydrostatic compression. The simulations exhibit the major role played by the plastic deformation in the morphological and microstructure evolution processes. Due to the strong long-range elastic interactions between variants without plasticity, a forward α → ɛ transition is energetically unfavorable and remains incomplete. However, plastic dissipation releases considerably the stored strain energy, leading to the α ↔ ɛ ↔α‧ (forward and reverse) polymorphic phase transformations with an unexpected selection of variants.

  20. Polytypism, polymorphism, and superconductivity in TaSe(2-x)Te(x).

    PubMed

    Luo, Huixia; Xie, Weiwei; Tao, Jing; Inoue, Hiroyuki; Gyenis, András; Krizan, Jason W; Yazdani, Ali; Zhu, Yimei; Cava, Robert Joseph

    2015-03-17

    Polymorphism in materials often leads to significantly different physical properties--the rutile and anatase polymorphs of TiO2 are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer-stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivity of TaSe2, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access two stable polytypes and two stable polymorphs in the TaSe(2-x)Te(x) solid solution and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. The reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of Tc on subtle differences in the characteristics of the single layers present or from a surprising effect of the layer-stacking sequence on electronic properties that are typically expected to be dominated by the properties of a single layer in materials of this kind.

  1. Polytypism, polymorphism, and superconductivity in TaSe2−xTex

    PubMed Central

    Luo, Huixia; Xie, Weiwei; Tao, Jing; Inoue, Hiroyuki; Gyenis, András; Krizan, Jason W.; Yazdani, Ali; Zhu, Yimei; Cava, Robert Joseph

    2015-01-01

    Polymorphism in materials often leads to significantly different physical properties—the rutile and anatase polymorphs of TiO2 are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer-stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivity of TaSe2, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access two stable polytypes and two stable polymorphs in the TaSe2−xTex solid solution and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. The reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of Tc on subtle differences in the characteristics of the single layers present or from a surprising effect of the layer-stacking sequence on electronic properties that are typically expected to be dominated by the properties of a single layer in materials of this kind. PMID:25737540

  2. Exploring the high-pressure behavior of the three known polymorphs of BiPO{sub 4}: Discovery of a new polymorph

    SciTech Connect

    Errandonea, D. García-Domene, B.; Santamaría-Perez, D.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S. N.; Tyagi, A. K.; Popescu, C.

    2015-03-14

    We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.

  3. Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph

    NASA Astrophysics Data System (ADS)

    Errandonea, D.; Gomis, O.; Santamaría-Perez, D.; García-Domene, B.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S. N.; Tyagi, A. K.; Popescu, C.

    2015-03-01

    We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2-0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous application of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO4. Room-temperature pressure-volume equations of state are reported. BiPO4 was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO4. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO4. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.

  4. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Merlini, M.; Hanfland, M.; Crichton, W. A.

    2012-06-01

    Calcite, CaCO3, undergoes several high pressure phase transitions. We report here the crystal structure determination of the CaCO3-III and CaCO3-VI high-pressure polymorphs obtained by single-crystal synchrotron X-ray diffraction. This new technical development at synchrotron beamlines currently affords the possibility of collecting single-crystal data suitable for structure determination in-situ at non-ambient conditions, even after multiphase transitions. CaCO3-III, observed in the pressure range 2.5-15 GPa, is triclinic, and it presents two closely related structural modifications, one, CaCO3-III, with 50 atoms in the unit cell [a=6.281(1) Å, b=7.507(2) Å, c=12.516(3) Å, α=93.76(2)°, β=98.95(2)°, γ=106.49(2)°, V=555.26(20) Å3 at 2.8 GPa], the second, CaCO3-IIIb, with 20 atoms [a=6.144(3) Å, b=6.3715(14) Å, c=6.3759(15) Å, α= 93.84(2)°, β=107.34(3)°, γ=107.16(3)°, V=224.33(13) Å3 at 3.1 GPa]. Different pressure-time experimental paths can stabilise one or the other polymorph. Both structures are characterised by the presence of non-coplanar CO3 groups. The densities of CaCO3-III (2.99 g/cm3 at 2.8 GPa) and CaCO3-IIIb (2.96 g/cm3 at 3.1 GPa) are lower than aragonite, in agreement with the currently accepted view of aragonite as the thermodynamically stable Ca-carbonate phase at these pressures. The presence of different cation sites, with variable volume and coordination number (7-9), suggests however that these structures have the potential to accommodate cations with different sizes without introducing major structural strain. Indeed, this structure can be adopted by natural Ca-rich carbonates, which often exhibit compositions deviating from pure calcite. Mg-calcites are found both in nature (Frezzotti et al., 2011) and in experimental syntheses at conditions corresponding to deep subduction environments (Poli et al., 2009). At these conditions, the low pressure rhombohedral calcite structure is most unlikely to be stable, and, at the same

  5. High-pressure polymorphic transformation of rutile to alpha-PbO2-type TiO2 at {011}R twin boundaries.

    PubMed

    Meng, D W; Wu, X L; Sun, F; Huang, L W; Liu, F; Han, Y J; Zheng, J P; Meng, X; Mason, R

    2008-01-01

    The presence of nano-scale lamellae of the alpha-PbO2-type polymorph of TiO2 sandwiched between twinned rutile inclusions in jadeite has been confirmed by electron diffraction and high-resolution transmission electron microscopy, backed up by image simulation techniques, from ultrahigh-pressure jadeite quartzite at Shuanghe in the Dabie Mountains, China. The crystal structure is orthorhombic with lattice parameters a=4.58 A, b=5.42 A, c=5.02 A and space group Pbcn. A three-dimensional structural model has been constructed for the rutile to alpha-PbO2-type TiO2 phase transformation based on high-resolution electron microscopic images. Computer image simulation and structural model analysis reveal that rutile {011}R twin interface is a basic structural unit of alpha-PbO2-type TiO2. Nucleation of alpha-PbO2-type TiO2 lamellae 1-2 nm thick is caused by the displacement of one half of the titanium cations within the {011}R twin slab. This displacement reduces the Ti-O-Ti distance and is favored by high pressure.

  6. Polymorphism control of superconductivity and magnetism in Cs(3)C(60) close to the Mott transition.

    PubMed

    Ganin, Alexey Y; Takabayashi, Yasuhiro; Jeglic, Peter; Arcon, Denis; Potocnik, Anton; Baker, Peter J; Ohishi, Yasuo; McDonald, Martin T; Tzirakis, Manolis D; McLennan, Alec; Darling, George R; Takata, Masaki; Rosseinsky, Matthew J; Prassides, Kosmas

    2010-07-08

    The crystal structure of a solid controls the interactions between the electronically active units and thus its electronic properties. In the high-temperature superconducting copper oxides, only one spatial arrangement of the electronically active Cu(2+) units-a two-dimensional square lattice-is available to study the competition between the cooperative electronic states of magnetic order and superconductivity. Crystals of the spherical molecular C(60)(3-) anion support both superconductivity and magnetism but can consist of fundamentally distinct three-dimensional arrangements of the anions. Superconductivity in the A(3)C(60) (A = alkali metal) fullerides has been exclusively associated with face-centred cubic (f.c.c.) packing of C(60)(3-) (refs 2, 3), but recently the most expanded (and thus having the highest superconducting transition temperature, T(c); ref. 4) composition Cs(3)C(60) has been isolated as a body-centred cubic (b.c.c.) packing, which supports both superconductivity and magnetic order. Here we isolate the f.c.c. polymorph of Cs(3)C(60) to show how the spatial arrangement of the electronically active units controls the competing superconducting and magnetic electronic ground states. Unlike all the other f.c.c. A(3)C(60) fullerides, f.c.c. Cs(3)C(60) is not a superconductor but a magnetic insulator at ambient pressure, and becomes superconducting under pressure. The magnetic ordering occurs at an order of magnitude lower temperature in the geometrically frustrated f.c.c. polymorph (Néel temperature T(N) = 2.2 K) than in the b.c.c.-based packing (T(N) = 46 K). The different lattice packings of C(60)(3-) change T(c) from 38 K in b.c.c. Cs(3)C(60) to 35 K in f.c.c. Cs(3)C(60) (the highest found in the f.c.c. A(3)C(60) family). The existence of two superconducting packings of the same electronically active unit reveals that T(c) scales universally in a structure-independent dome-like relationship with proximity to the Mott metal-insulator transition

  7. Publisher's Note: High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressure [Phys. Rev. B 91 , 060508(R) (2015)

    DOE PAGES

    Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...

    2015-03-09

    Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe2As2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature Tc finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum Tc and reversal of pressure dependence at this pressure. Upon applying higher pressures, this Tc is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phase transition into a collapsed tetragonalmore » phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe2As2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-Tc superconductivity in iron pnictide superconductors.« less

  8. Effect of atomic disorder and Ce doping on superconductivity of Ca3Rh4Sn13: Electric transport properties under high pressure

    DOE PAGES

    Ślebarski, A.; Goraus, J.; Maśka, M. M.; ...

    2016-06-13

    Here, we report the observation of a superconducting state below ~8 K coexistent with a spin-glass state caused by atomic disorder in Ce substituted Ca3Rh4Sn13. Measurements of specific heat, resistivity, and magnetism reveal the existence of inhomogeneous superconductivity in samples doped with Ce with superconducting critical temperatures Tc higher than those observed in the parent compound. For Ca3Rh4Sn13, the negative value of the change in resistivity ρ with pressure P, dρ/dP correlates well with the calculated decrease in the density of states (DOS) at the Fermi energy with P. In conclusion, based on band-structure calculations performed under pressure, we demonstratemore » how the change in DOS would affect Tc of Ca3Rh4Sn13 under negative lattice pressure in samples that are strongly defected by quenching.« less

  9. High pressure rinsing system comparison

    SciTech Connect

    D. Sertore; M. Fusetti; P. Michelato; Carlo Pagani; Toshiyasu Higo; Jin-Seok Hong; K. Saito; G. Ciovati; T. Rothgeb

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  10. Anharmonic enhancement of superconductivity in metallic molecular Cmca  -  4 hydrogen at high pressure: a first-principles study.

    PubMed

    Borinaga, Miguel; Riego, P; Leonardo, A; Calandra, Matteo; Mauri, Francesco; Bergara, Aitor; Errea, Ion

    2016-12-14

    First-principles calculations based on density-functional theory including anharmonicity within the variational stochastic self-consistent harmonic approximation are applied to understand how the quantum character of the proton affects the candidate metallic molecular Cmca  -  4 structure of hydrogen in the 400-450 GPa pressure range, where metallization of hydrogen is expected to occur. Anharmonic effects, which become crucial due to the zero-point motion, have a large impact on the hydrogen molecules by increasing the intramolecular distance by approximately a 6%. This induces two new electron pockets at the Fermi surface opening new scattering channels for the electron-phonon interaction. Consequently, the electron-phonon coupling constant and the superconducting critical temperature are approximately doubled by anharmonicity and Cmca  -  4 hydrogen becomes a superconductor above 200 K in all the studied pressure range. Contrary to many superconducting hydrides, where anharmoncity tends to lower the superconducting critical temperature, our results show that it can enhance superconductivity in molecular hydrogen.

  11. Anharmonic enhancement of superconductivity in metallic molecular Cmca  -  4 hydrogen at high pressure: a first-principles study

    NASA Astrophysics Data System (ADS)

    Borinaga, Miguel; Riego, P.; Leonardo, A.; Calandra, Matteo; Mauri, Francesco; Bergara, Aitor; Errea, Ion

    2016-12-01

    First-principles calculations based on density-functional theory including anharmonicity within the variational stochastic self-consistent harmonic approximation are applied to understand how the quantum character of the proton affects the candidate metallic molecular Cmca  -  4 structure of hydrogen in the 400-450 GPa pressure range, where metallization of hydrogen is expected to occur. Anharmonic effects, which become crucial due to the zero-point motion, have a large impact on the hydrogen molecules by increasing the intramolecular distance by approximately a 6%. This induces two new electron pockets at the Fermi surface opening new scattering channels for the electron-phonon interaction. Consequently, the electron-phonon coupling constant and the superconducting critical temperature are approximately doubled by anharmonicity and Cmca  -  4 hydrogen becomes a superconductor above 200 K in all the studied pressure range. Contrary to many superconducting hydrides, where anharmoncity tends to lower the superconducting critical temperature, our results show that it can enhance superconductivity in molecular hydrogen.

  12. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity.

    PubMed

    Zaliznyak, Igor; Savici, Andrei T; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    2015-08-18

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an "11" iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is tuned toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe(1-x)(S,Se)(x). We have thus discovered the remarkable physics of competing spin-liquid polymorphs in a correlated electron system approaching superconductivity. Our results facilitate an understanding of large swaths of recent experimental data in unconventional superconductors. In particular, the phase with lower C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity for forming electronic nematic states which have been observed experimentally, in cuprate and iron-based superconductors alike.

  13. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  14. Electrical Transport Experiments at High Pressure

    SciTech Connect

    Weir, S

    2009-02-11

    High-pressure electrical measurements have a long history of use in the study of materials under ultra-high pressures. In recent years, electrical transport experiments have played a key role in the study of many interesting high pressure phenomena including pressure-induced superconductivity, insulator-to-metal transitions, and quantum critical behavior. High-pressure electrical transport experiments also play an important function in geophysics and the study of the Earth's interior. Besides electrical conductivity measurements, electrical transport experiments also encompass techniques for the study of the optoelectronic and thermoelectric properties of materials under high pressures. In addition, electrical transport techniques, i.e., the ability to extend electrically conductive wires from outside instrumentation into the high pressure sample chamber have been utilized to perform other types of experiments as well, such as high-pressure magnetic susceptibility and de Haas-van Alphen Fermi surface experiments. Finally, electrical transport techniques have also been utilized for delivering significant amounts of electrical power to high pressure samples, for the purpose of performing high-pressure and -temperature experiments. Thus, not only do high-pressure electrical transport experiments provide much interesting and valuable data on the physical properties of materials extreme compression, but the underlying high-pressure electrical transport techniques can be used in a number of ways to develop additional diagnostic techniques and to advance high pressure capabilities.

  15. Evidence of superconductivity on the border of quasi-2D ferromagnetism in Ca2RuO4 at high pressure.

    PubMed

    Alireza, Patricia Lebre; Nakamura, Fumihiko; Goh, Swee Kuan; Maeno, Yoshiteru; Nakatsuji, Satoru; Ko, Yuen Ting Chris; Sutherland, Michael; Julian, Stephen; Lonzarich, Gilbert George

    2010-02-10

    The layered perovskite Ca(2)RuO(4) is a spin-one Mott insulator at ambient pressure and exhibits metallic ferromagnetism at least up to ∼ 80 kbar with a maximum Curie temperature of 28 K. Above ∼ 90 and up to 140 kbar, the highest pressure reached, the resistivity and ac susceptibility show pronounced downturns below ∼ 0.4 K in applied magnetic fields of up to ∼ 10 mT. This indicates that our specimens of Ca(2)RuO(4) are weakly superconducting on the border of a quasi-2D ferromagnetic state.

  16. High Temperature Superconductivity at High Pressures for H3 Six P(1 - x) , H3 Px S(1 - x) and H3 Clx S(1 - x)

    NASA Astrophysics Data System (ADS)

    Papaconstantopoulos, Dimitrios; Fan, Fudong; Mehl, Michael

    Recent experimental and computational works have established the occurrence of superconducting temperatures,Tc, around 200K at corresponding 200GPa pressures in hydrogen-based sulfur compounds. In this work we have investigated the effects of phosphorus and chlorine substitutions of sulfur on Tc, as well as the effect of hydrogen vacancies. In addition, we have explored the superconductivity-relevant parameters in the H3SixP(1-x) system. In executing this work we have used the virtual-crystal-approximation and performed a systematic set of LAPW calculations for many different concentrations of the sulfur component. From the densities of states and the scattering phase-shifts at the Fermi level, we calculated electron-ion matrix elements and estimated the electron-phonon coupling constants for different concentrations as well as Tc. We find that the high values of Tc correlate with the position of the Fermi level with respect to peaks(van Hove singularities) in the density of electronic states of these materials. US Department of Energy.

  17. The New Superconductor tP-SrPd2Bi2: Structural Polymorphism and Superconductivity in Intermetallics.

    PubMed

    Xie, Weiwei; Seibel, Elizabeth M; Cava, Robert J

    2016-04-04

    We consider a system where structural polymorphism suggests the possible existence of superconductivity through the implied structural instability. SrPd2Bi2 has two polymorphs, which can be controlled by the synthesis temperature: a tetragonal form (CaBe2Ge2-type) and a monoclinic form (BaAu2Sb2-type). Although the crystallographic difference between the two forms may, at first, seem trivial, we show that tetragonal SrPd2Bi2 is superconducting at 2.0 K, whereas monoclinic SrPd2Bi2 is not. We rationalize this finding and place it in context with other 1-2-2 phases.

  18. Correlation between superconductivity and structural properties under high pressure of iron pnictide superconductor Ce[subscript 0.6]Y[subscript 0.4]FeAsO[subscript 0.8]F[subscript 0.2

    SciTech Connect

    Kanagaraj, M.; Arumugam, S.; Kumar, Ravhi S.; Selvan, N.R. Tamil; Muthu, S. Esakki; Prakash, J.; Thakur, Gohil S.; Yoshino, H.; Murata, K.; Matsubayashi, K.; Uwatoko, Y.; Sinogeikin, S.; Cornelius, Andrew; Ganguli, A.K.; Zhao, Yusheng

    2012-02-28

    We report here the pressure dependence of the electrical resistivity and magnetic susceptibility of polycrystalline Ce{sub 0.6}Y{sub 0.4}FeAsO{sub 0.8}F{sub 0.2} superconductor in the temperature range 4 K to 300 K up to 8 GPa. In-situ high pressure-low temperature x-ray diffraction was performed at 8 K up to 32 GPa using synchrotron x-rays with helium pressure medium. The results show that the applied pressure slightly increases the T{sub c} up to 1 GPa and then it decreases on further pressure increase. The reduction of superconducting transition temperature occurs with a transition to a collapsed tetragonal phase and may be associated with a possible valence change of Ce.

  19. Polymorphism and Superconductivity in Bilayer Molecular Metals (CNB-EDT-TTF)4I3.

    PubMed

    Rabaça, Sandra; Oliveira, Sandrina; Santos, Isabel C; Gama, Vasco; Belo, Dulce; Lopes, Elsa B; Canadell, Enric; Almeida, Manuel

    2016-10-17

    Electrocrystallization from solutions of the dissymmetrical ET derivative cyanobenzene-ethylenedithio-tetrathiafulvalene (CNB-EDT-TTF) in the presence of triiodide I3(-) affords two different polymorphs (β″ and κ) with the composition (CNB-EDT-TTF)4I3, both with a bilayer structure of the donors. These polymorphs differ in the packing patterns (β″- and κ-type) of the donor molecules in each layer, in both cases with bifurcated C-N···H interactions effectively coupling head-to-head donor molecules between layer pairs. Two β″ polymorphs can be obtained with different degrees of anionic ordering. In one disordered phase, β″d, with a smaller unit cell, the triiodide anions are disordered over two possible positions in a channel between the donor bilayers, while in the ordered phase, β″o, the triiodide anions occupy only one of those positions in this channel, leading to the doubling of the unit cell in the layer plane. These results for β″ phases contrast with the κ polymorph previously reported, for which weaker disorder of the triiodide anions, over two possible orientations with 94 and 6% occupation factors, was observed. While the β″ polymorphs remains metallic down to 1.5 K with a ρ300K/ρ4K resistivity ratio of 250, the κ polymorph presents a much smaller resistivity ratio in the range of 4-10 and superconductivity with an onset temperature of 3.5 K.

  20. Experimental Investigation of Magnetic, Superconducting, and other Phase Transitions in novel F-Electron Materials at Ultra-high Pressures - Final Progress Report

    SciTech Connect

    Maple, Brian; Jeffires, Jason

    2006-07-28

    This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementation of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).

  1. High-pressure synthesis and superconducting properties of the oxychloride superconductor (Sr,Ca)3Cu2O4+δCl2-y

    NASA Astrophysics Data System (ADS)

    Jin, C.-Q.; Puzniak, R.; Zhao, Z.-X.; Wu, X.-J.; Tatsuski, T.; Tamura, T.; Adachi, S.; Tanabe, K.; Yamauchi, H.; Tanaka, S.

    2000-01-01

    Chlorine-containing (Sr,Ca)3Cu2O4+δCl2-y superconductors have been synthesized at 5.0 GPa and ~1000 °C. The double-[CuO2] layered compound crystallizes into (La,Sr)2CaCu2O6 structure with Cl residing at the apical anion site relative to the [CuO2] plane. The critical transition temperature Tc 80 K has been achieved in these superconductors. The Sr2.3Ca0.7Cu2O4+δCl1.3 superconductor was studied in terms of irreversibility field Hirr and intragrain critical current density Ic. It is found that the irreversibility field of the superconductor can be described by the power law dependence (1-T/Tc)n, with n~2. The reduced Hirr(T/Tc) line is positioned between those of YBa2Cu3O7 and Bi2Sr2CaCu2O8 in the H-T plane, close to HgBa2CaCu2O6+δ. The critical current density Jc(T) was extracted from the Bean critical-state model and showed a smooth temperature dependence. No significant difference was found for the general behavior of Hirr(T) and Jc(T) of (Sr,Ca)3Cu2O4+δCl2-y from those of oxide high-Tc superconducting cuprates (HTSC). The off-plane space remains the important parameter to evaluate interlayer coupling of the oxyhalide HTSC, which is consistent with oxide HTSC. The results suggest the potential application capability of the oxyhalide superconductors even though the off-plane block is composed of oxyhalide instead of the routine oxides.

  2. Detection of high-pressure silica polymorphs in whole-rock samples from a meteor crater, Arizona, impact sample using solid-state silicon-29 nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, W.-H.; Kirkpatrick, R. J.; Vergo, N.; McHone, J.; Emilsson, T. I.; Oldfield, E.

    1986-03-01

    High-resolution solid-state silicon-29 nuclear magnetic resonance spectroscopy using "magic-angle" sample-spinning can readily detect the presence of the high pressure silica polymorphs coesite and stishovite in whole-rock samples from a Meteor Crater Arizona, impact sample, and yields accurate coesite/stishovite ratios. Such determinations are being carried out by partially suppressing (saturating) intense quartz signals (which have long spinlattice relaxation times) by means of short experimental recycle-times. This method enhances the signal-to-noise ratios of coesite and stishovite (which have relatively short spin-lattice relaxation times). For the sample examined, the coesite/stishovite ratio is about 27.

  3. Superconductivity

    DTIC Science & Technology

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  4. Superconductivity

    NASA Astrophysics Data System (ADS)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  5. Synchrotron Infrared Spectroscopy of Synthetic Na(NaMg)Mg5Si8O22(OH)2 up to 30 GPa: Insight on a New High-Pressure Amphibole Polymorph

    SciTech Connect

    Iezzi,G.; Liu, Z.; Ventura, G.

    2006-01-01

    This paper describes a high-pressure synchrotron infrared (IR) spectroscopy study of the synthetic amphibole Na(NaMg)Mg{sub 5}Si{sub 8}O{sub 22}(OH){sub 2}. This compound has P21/m symmetry at room conditions; its IR OH-stretching spectrum consists of two main bands at 3743 and 3715 cm{sup -1}, which are assigned to the two symmetrically independent O-H groups in the P structure (sample 403, Iezzi et al. 2004a). For increasing pressure, both bands shift toward higher frequency, suggesting a shortening of the O-H bond. In addition, the two bands progressively merge to give a single, symmetric and broad absorption band at 20-22 GPa. This behavior suggests that at 20-22 GPa there is a unique O-H group in the structure, indicative of a C-lattice type. The IR data thus show that the examined sample undergoes a P21/m {leftrightarrow} C2/m phase-transition at that pressure. Upon release of pressure, the initial two-band pattern is immediately recovered indicating that the pressure-induced phase-transition is reversible, as already observed for the same kind of transition induced by temperature. By analogy with structurally related pyroxenes, and taking into account the possible crystal structural topologies of amphiboles, we suggest that the C2/m polymorph stable at high pressure is characterized by fully kinked double-chains.

  6. High-pressure microfluidics

    NASA Astrophysics Data System (ADS)

    Hjort, K.

    2015-03-01

    When using appropriate materials and microfabrication techniques, with the small dimensions the mechanical stability of microstructured devices allows for processes at high pressures without loss in safety. The largest area of applications has been demonstrated in green chemistry and bioprocesses, where extraction, synthesis and analyses often excel at high densities and high temperatures. This is accessible through high pressures. Capillary chemistry has been used since long but, just like in low-pressure applications, there are several potential advantages in using microfluidic platforms, e.g., planar isothermal set-ups, large local variations in geometries, dense form factors, small dead volumes and precisely positioned microstructures for control of reactions, catalysis, mixing and separation. Other potential applications are in, e.g., microhydraulics, exploration, gas driven vehicles, and high-pressure science. From a review of the state-of-art and frontiers of high pressure microfluidics, the focus will be on different solutions demonstrated for microfluidic handling at high pressures and challenges that remain.

  7. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  8. High Pressure Biomass Gasification

    SciTech Connect

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  9. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  10. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  11. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  12. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  13. Metallic Re-Re bond formation in different MRe 2O 6 ( Mdbnd Fe, Co, Ni) rutile-like polymorphs: The role of temperature in high-pressure synthesis

    NASA Astrophysics Data System (ADS)

    Mikhailova, D.; Ehrenberg, H.; Oswald, S.; Trots, D.; Brey, G.; Fuess, H.

    2009-02-01

    Different polymorphs of MRe 2O 6 ( Mdbnd Fe, Co, Ni) with rutile-like structures were prepared using high-pressure high-temperature synthesis. For syntheses temperatures higher than ˜1573 K, tetragonal rutile-type structures ( P4 2/ mnm) with a statistical distribution of M- and Re-atoms on the metal position in the structure were observed for all three compounds, whereas rutile-like structures with orthorhombic or monoclinic symmetry, partially ordered M- and Re-ions on different sites and metallic Re-Re-bonds within Re 2O 10-pairs were found for CoRe 2O 6 and NiRe 2O 6 at a synthesis temperature of 1473 K. According to the XPS measurements, a mixture of Re +4/Re +6 and M2+/ M3+ is present in both structural modifications of CoRe 2O 6 and NiRe 2O 6. The low-temperature forms contain more Re +4 and M 3+ than the high-temperature forms. Tetragonal and monoclinic modifications of NiRe 2O 6 order with a ferromagnetic component at ˜24 K, whereas tetragonal and orthorhombic CoRe 2O 6 show two magnetic transitions: below ˜17.5 and 27 K for the tetragonal and below 18 and 67 K for the orthorhombic phase. Tetragonal FeRe 2O 6 is antiferromagnetic below 123 K.

  14. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  15. High-Pressure Polymorph of Iron.

    PubMed

    Takahashi, T; Bassett, W A

    1964-07-31

    An x-ray diffraction study of iron under pressure has shown that alpha-iron (body-centered cubic) transforms to hexagonal-close-packing (designated epsilon-iron) at 130 kb, room temperature. The volume change for the transformation is -0.20 +/- 0.03 cm2/ mole. The slope for the gamma-epsilon phase boundary has been calculated to be 2 +/- 1 degrees C/kb. The molar volume of iron decreases from 7.10 cm3/mole (density = 7.85 g/cm(3)) at room pressure to 6.10 +/- 0.08 cm(3)/mole (density = 9.1 +/- 0.1 g/cm(3)) at 200 kb and room temperature. The extrapolation of the gamma-epsilon phase boundary, consistent with shock wave data, suggests that it may have an influence on the properties of the earth's core.

  16. Is sodium a superconductor under high pressure?

    PubMed

    Tutchton, Roxanne; Chen, Xiaojia; Wu, Zhigang

    2017-01-07

    Superconductivity has been predicted or measured for most alkali metals under high pressure, but the computed critical temperature (Tc) of sodium (Na) at the face-centered cubic (fcc) phase is vanishingly low. Here we report a thorough, first-principles investigation of superconductivity in Na under pressures up to 260 GPa, where the metal-to-insulator transition occurs. Linear-response calculations and density functional perturbation theory were employed to evaluate phonon distributions and the electron-phonon coupling for bcc, fcc, cI16, and tI19 Na. Our results indicate that the maximum electron-phonon coupling parameter, λ, is 0.5 for the cI16 phase, corresponding to a theoretical peak in the critical temperature at Tc≈1.2 K. When pressure decreases or increases from 130 GPa, Tc drops quickly. This is mainly due to the lack of p-d hybridization in Na even at 260 GPa. Since current methods based on the Eliashberg and McMillian formalisms tend to overestimate the Tc (especially the peak values) of alkali metals, we conclude that under high pressure-before the metal-to-insulator transition at 260 GPa-superconductivity in Na is very weak, if it is measurable at all.

  17. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  18. High pressure mechanical seal

    NASA Technical Reports Server (NTRS)

    Babel, Henry W. (Inventor); Fuson, Phillip L. (Inventor); Chickles, Colin D. (Inventor); Jones, Cherie A. (Inventor); Anderson, Raymond H. (Inventor)

    1995-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting, prior to swaging the fitting onto the tube. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, nickel, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After swaging, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as meaured using the Helium leak test.

  19. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  20. Chromium at High Pressure

    NASA Astrophysics Data System (ADS)

    Jaramillo, Rafael

    2012-02-01

    Chromium has long served as the archetype of spin density wave magnetism. Recently, Jaramillo and collaborators have shown that Cr also serves as an archetype of magnetic quantum criticality. Using a combination of x-ray diffraction and electrical transport measurements at high pressures and cryogenic temperatures in a diamond anvil cell, they have demonstrated that the N'eel transition (TN) can be continuously suppressed to zero, with no sign of a concurrent structural transition. The order parameter undergoes a broad regime of exponential suppression, consistent with the weak coupling paradigm, before deviating from a BCS-like ground state within a narrow but accessible quantum critical regime. The quantum criticality is characterized by mean field scaling of TN and non mean field scaling of the transport coefficients, which points to a fluctuation-induced reconstruction of the critical Fermi surface. A comparison between pressure and chemical doping as means to suppress TN sheds light on different routes to the quantum critical point and the relevance of Fermi surface nesting and disorder at this quantum phase transition. The work by Jaramillo et al. is broadly relevant to the study of magnetic quantum criticality in a physically pure and theoretically tractable system that balances elements of weak and strong coupling. [4pt] [1] R. Jaramillo, Y. Feng, J. Wang & T. F. Rosenbaum. Signatures of quantum criticality in pure Cr at high pressure. Proc. Natl. Acad. Sci. USA 107, 13631 (2010). [0pt] [2] R. Jaramillo, Y. Feng, J. C. Lang, Z. Islam, G. Srajer, P. B. Littlewood, D. B. McWhan & T. F. Rosenbaum. Breakdown of the Bardeen-Cooper-Schrieffer ground state at a quantum phase transition. Nature 459, 405 (2009).

  1. Publisher's Note: High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressure [Phys. Rev. B 91 , 060508(R) (2015)

    SciTech Connect

    Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; Wang, Xiangfeng; Wang, Limin; Cynn, Hyunchae; Weir, Samuel T.; Jeffries, Jason R.; Paglione, Johnpierre

    2015-03-09

    Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe2As2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature Tc finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum Tc and reversal of pressure dependence at this pressure. Upon applying higher pressures, this Tc is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phase transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe2As2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-Tc superconductivity in iron pnictide superconductors.

  2. [High Pressure Gas Tanks

    NASA Technical Reports Server (NTRS)

    Quintana, Rolando

    2002-01-01

    Four high-pressure gas tanks, the basis of this study, were especially made by a private contractor and tested before being delivered to NASA Kennedy Space Center. In order to insure 100% reliability of each individual tank the staff at KSC decided to again submit the four tanks under more rigorous tests. These tests were conducted during a period from April 10 through May 8 at KSC. This application further validates the predictive safety model for accident prevention and system failure in the testing of four high-pressure gas tanks at Kennedy Space Center, called Continuous Hazard Tracking and Failure Prediction Methodology (CHTFPM). It is apparent from the variety of barriers available for a hazard control that some barriers will be more successful than others in providing protection. In order to complete the Barrier Analysis of the system, a Task Analysis and a Biomechanical Study were performed to establish the relationship between the degree of biomechanical non-conformities and the anomalies found within the system on particular joints of the body. This relationship was possible to obtain by conducting a Regression Analysis to the previously generated data. From the information derived the body segment with the lowest percentage of non-conformities was the neck flexion with 46.7%. Intense analysis of the system was conducted including Preliminary Hazard Analysis (PHA), Failure Mode and Effect Analysis (FMEA), and Barrier Analysis. These analyses resulted in the identification of occurrences of conditions, which may be becoming hazardous in the given system. These conditions, known as dendritics, may become hazards and could result in an accident, system malfunction, or unacceptable risk conditions. A total of 56 possible dendritics were identified. Work sampling was performed to observe the occurrence each dendritic. The out of control points generated from a Weighted c control chart along with a Pareto analysis indicate that the dendritics "Personnel not

  3. High pressure capillary connector

    DOEpatents

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  4. Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+δ made superconducting by high-pressure oxygen annealing

    DOE PAGES

    Hu, Hefei; Zhu, Yimei; Shi, Xiaoya; ...

    2014-10-28

    Superconductivity with Tc = 53.5 K has been induced in a large La₁.₉Ca₁.₁Cu₂O₆ (La-2126) single crystal by annealing in a high partial-pressure of oxygen at 1200°C. Using transmission electron microscopy (TEM) techniques, we show that a secondary Ca-doped La₂CuO₄ (La-214) phase, not present in the as-grown crystal, appears as a coherent “intergrowth” as a consequence of the annealing. A corresponding secondary superconducting transition near 13 K is evident in the magnetization measurement. In this study, electron energy loss spectroscopy (EELS) reveals a pre-edge peak at the O K edge in the superconducting La-2126 phase, which is absent in the as-grownmore » crystal, confirming the hole-doping by interstitial oxygen.« less

  5. Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6 +δ made superconducting by high-pressure oxygen annealing

    NASA Astrophysics Data System (ADS)

    Hu, Hefei; Zhu, Yimei; Shi, Xiaoya; Li, Qiang; Zhong, Ruidan; Schneeloch, John A.; Gu, Genda; Tranquada, John M.; Billinge, Simon J. L.

    2014-10-01

    Superconductivity with Tc=53.5 K has been induced in a large La1.9Ca1.1Cu2O6 (La-2126) single crystal by annealing in a high partial pressure of oxygen at 1200 °C. Using transmission electron microscopy techniques, we show that a secondary Ca-doped La2CuO4 (La-214) phase, not present in the as-grown crystal, appears as a coherent intergrowthlike defect as a consequence of the annealing. A corresponding secondary superconducting transition near 13 K is evident in the magnetization measurement. Electron energy-loss spectroscopy reveals a pre-edge peak at the O-K edge in the superconducting La-2126 phase, which is absent in the as-grown crystal, confirming the hole doping by interstitial oxygen.

  6. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  7. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  8. Effect of atomic disorder and Ce doping on superconductivity of Ca3Rh4Sn13: Electric transport properties under high pressure

    SciTech Connect

    Ślebarski, A.; Goraus, J.; Maśka, M. M.; Witas, P.; Fijałkowski, M.; Wolowiec, C. T.; Fang, Y.; Maple, M. B.

    2016-06-13

    Here, we report the observation of a superconducting state below ~8 K coexistent with a spin-glass state caused by atomic disorder in Ce substituted Ca3Rh4Sn13. Measurements of specific heat, resistivity, and magnetism reveal the existence of inhomogeneous superconductivity in samples doped with Ce with superconducting critical temperatures Tc higher than those observed in the parent compound. For Ca3Rh4Sn13, the negative value of the change in resistivity ρ with pressure P, dρ/dP correlates well with the calculated decrease in the density of states (DOS) at the Fermi energy with P. In conclusion, based on band-structure calculations performed under pressure, we demonstrate how the change in DOS would affect Tc of Ca3Rh4Sn13 under negative lattice pressure in samples that are strongly defected by quenching.

  9. Very high-pressure orogenic garnet peridotites

    PubMed Central

    Liou, J. G.; Zhang, R. Y.; Ernst, W. G.

    2007-01-01

    Mantle-derived garnet peridotites are a minor component in many very high-pressure metamorphic terranes that formed during continental subduction and collision. Some of these mantle rocks contain trace amounts of zircon and micrometer-sized inclusions. The constituent minerals exhibit pre- and postsubduction microstructures, including polymorphic transformation and mineral exsolution. Experimental, mineralogical, petrochemical, and geochronological characterizations using novel techniques with high spatial, temporal, and energy resolutions are resulting in unexpected discoveries of new phases, providing better constraints on deep mantle processes. PMID:17519341

  10. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  11. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  12. Development of high pressure gas cells at ISIS

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Done, R.; Goodway, C. M.; Kibble, M. G.; Evans, B.; Bowden, Z. A.

    2012-02-01

    High-pressure research is one of the fastest-growing areas of natural science, and one that attracts as diverse communities as those of physics, bio-physics, chemistry, materials science and earth science. In condensed matter physics there are a number of highly topical areas, such as quantum criticality, pressure-induced superconductivity or non-Fermi liquid behaviour, where pressure is a fundamental parameter. Reliable, safe and user-friendly high pressure gas handling systems with gas pressures up to 1GPa should make a significant impact on the range of science possible. The ISIS facility is participating in the NMI3 FP7 sample environment project supported by the European Commission which includes high pressure gas cell development. In this paper the progress in designing, manufacturing and testing a new generation of high pressure gas cells for neutron scattering experiments is discussed.

  13. High-temperature superconductivity at high pressures for H3SixP1-x, H3PxS1-x, and H3ClxS1-x

    NASA Astrophysics Data System (ADS)

    Fan, F.; Papaconstantopoulos, D. A.; Mehl, M. J.; Klein, B. M.

    2016-12-01

    Recent experimental and computational works have established the occurrence of superconducting temperatures, Tc, near 200 K when the pressure is close to 200 GPa in hydrogen-based sulfur compounds. In this work we investigate the effects of phosphorus and chlorine substitutions of sulfur on Tc, as well as the effect of hydrogen vacancies. In addition, we explore the superconductivity-relevant parameters in the H3SixP1-x system. In executing this work we used the virtual crystal approximation and performed a systematic set of linearized augmented plane wave calculations (LAPW) for many different concentrations of the sulfur component. From the densities of states and the scattering phase shifts at the Fermi level, we calculated electron-ion matrix elements and estimated the electron-phonon coupling constants for different concentrations, as well as Tc. We find that the highest value of Tc=197 K corresponds to a phosphorus concentration of x=0.15, or 8.85 valence electrons in a H3P0.15S0.85 alloy. From a detailed analysis of the results given by a Gaspari-Gyorffy (GG) determination of the Hopfield parameter, we identify the role of each term in the GG equation that produce the maximum Tc. In addition, we present a non-orthogonal tight-binding parameterization of the band structure of H3S which fits very well with the LAPW results.

  14. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  15. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1992-01-01

    The construction of the high pressure gas phase fermentation system has been completed. Photographs of the various components of the system are presented, along with an operating procedure for the equipment.

  16. High-Pressure Vibrational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pogson, Mark

    1987-09-01

    Available from UMI in association with The British Library. Requires signed TDF. The study of solids at high pressure and variable temperature enables development of accurate interatomic potential functions over wide ranges of interatomic distances. A review of the main models used in the determination of these potentials is given in Chapter one. A discussion of phonon frequency as a variable physical parameter reflecting the interatomic potential is given. A high pressure Raman study of inorganic salts of the types MSCN, (M = K,Rb,Cs & NH_4^+ ) and MNO_2, (M = K,Na) has been completed. The studies have revealed two new phases in KNO_2 and one new phase in NaNO _2 at high pressure. The accurate phonon shift data have enabled the determination of the pure and biphasic stability regions of the phases of KNO _2. A discussion of the B1, B2 relationship of univalent nitrites is also given. In the series of thiocyanates studied new phases have been found in all four materials. In both the potassium and rubidium salts two new phases have been detected, and in the ceasium salt one new phase has been detected, all at high pressure, from accurate phonon shift data. These transitions are discussed in terms of second-order mechanisms with space groups suggested for all phases, based on Landau's theory of second-order phase transitions. In the ammonium salt one new phase has been detected. This new phase transition has been interpreted as a second-order transition. The series of molecular crystals CH_3 HgX, (X = Cl,Br & I) has been studied at high pressure and at variable temperature. In Chapter five, their phase behaviour at high pressure is detailed along with the pressure dependencies of their phonon frequencies. In the chloride and the bromide two new phases have been detected. In the bromide one has been detected at high temperature and one at high pressure, and latter being interpreted as the stopping of the methyl rotation. In the chloride one phase has been found at

  17. Stable Lithium Argon compounds under high pressure

    PubMed Central

    Li, Xiaofeng; Hermann, Andreas; Peng, Feng; Lv, Jian; Wang, Yanchao; Wang, Hui; Ma, Yanming

    2015-01-01

    High pressure can fundamentally alter the bonding patterns of chemical elements. Its effects include stimulating elements thought to be “inactive” to form unexpectedly stable compounds with unusual chemical and physical properties. Here, using an unbiased structure search method based on CALYPSO methodology and density functional total energy calculations, the phase stabilities and crystal structures of Li−Ar compounds are systematically investigated at high pressure up to 300 GPa. Two unexpected LimArn compounds (LiAr and Li3Ar) are predicted to be stable above 112 GPa and 119 GPa, respectively. A detailed analysis of the electronic structure of LiAr and Li3Ar shows that Ar in these compounds attracts electrons and thus behaves as an oxidizing agent. This is markedly different from the hitherto established chemical reactivity of Ar. Moreover, we predict that the P4/mmm phase of Li3Ar has a superconducting transition temperature of 17.6 K at 120 GPa. PMID:26582083

  18. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  19. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  20. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  1. Nanomaterials under high-pressure.

    PubMed

    San-Miguel, Alfonso

    2006-10-01

    The use of high-pressure for the study and elaboration of homogeneous nanostructures is critically reviewed. Size effects, the interaction between nanostructures and guest species or the interaction of the nanosystem with the pressure transmitting medium are emphasized. Phase diagrams and the possibilities opened by the combination of pressure and temperature for the elaboration of new nanomaterials is underlined through the examination of three different systems: nanocrystals, nano-cage materials which include fullerites and group-14 clathrates, and single wall nanotubes. This tutorial review is addressed to scientist seeking an introduction or a panoramic view of the study of nanomaterials under high-pressure.

  2. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    Construction of the high pressure gas phase fermentation system is nearing completion. All non-explosion proof components will be housed separately in a gas-monitored plexiglas cabinet. A gas-monitoring system has been designed to ensure the safety of the operations in case of small or large accidental gas releases. Preliminary experiments investigating the effects of high pressure on Clostridium 1jungdahlii have shown that growth and CO uptake are not negatively affected and CO uptake by an increased total pressure of 100 psig at a syngas partial pressure of 10 psig.

  3. High pressure paint gun injuries.

    PubMed

    Booth, C M

    1977-11-19

    Despite their use for the past 20 years the dangers of injuries from high pressure paint guns are not widely known. Two cases treated incorrectly through ignorance in our casualty department resulted in amputation of digits. Paint solvents are far moe damaging than paint of grease injection. All cases should be treated urgently by an experienced surgeon as fairly extensive surgery may be needed.

  4. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  5. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  6. High-pressure optical studies

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure experimentation may concern intrinsically high pressure phenomena, or it may be used to gain a better understanding of states or processes at one atmosphere. The latter application is probably more prevelant in condensed matter physics. Under this second rubric one may either use high pressure to perturb various electronic energy levels and from this pressure tuning characterize states or processes, or one can use pressure to change a macroscopic parameter in a controlled way, then measure the effect on some molecular property. In this paper, the pressure tuning aspect is emphasized, with a lesser discussion of macroscopic - molecular relationships. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand modification at one atmosphere. Photochromic crystals change color upon irradiation due to occupation of a metastable ground state. In thermochromic crystals, raising the temperature accomplishes the same results. For a group of molecular crystals (anils) at high pressure, the metastable state can be occupied at room temperature. The relative displacement of the energy levels at high pressure also inhibits the optical process. Effects on luminescence intensity are shown to be consistent. In the area of microscopic - molecular relationships, the effect of viscosity and dielectric properties on rates of non-radiative (thermal) and radiative emission, and on peak energy for luminescence is demonstrated. For systems which can emit from either of two excited states depending on the interaction with the environment, the effect of rigidity of the medium on the rate of rearrangement of the excited state is shown.

  7. High-pressure injection injuries.

    PubMed

    Neal, N C; Burke, F D

    1991-11-01

    A retrospective review of the 11 patients attending the Hand Unit at the Derbyshire Royal Infirmary over the last 5 years with high-pressure injection injuries is presented. The machines and materials that cause these injuries are outlined and the methods of treatment and rehabilitation are described in detail. The study demonstrates the morbidity of high-pressure injection injuries, particularly those inflicted by paint spray guns, and highlights a frequent delay between injury and decompression of the injured part. We wish to emphasize the importance of early diagnosis, referral, exploration and rehabilitation to ensure an optimal outcome, and to point out that failure to refer early is becoming an increasing focus of negligence claims.

  8. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  9. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  11. Electron-Phonon Coupling and Superconducting Critical Temperature of the YIr2Si2 and LaIr2Si2 High-Temperature Polymorphs from First-Principles

    NASA Astrophysics Data System (ADS)

    Billington, David; Nickau, Simon A. C.; Farley, Tom; Ward, Jack R.; Sperring, Rosie F.; Millichamp, Thomas E.; Ernsting, David; Dugdale, Stephen B.

    2014-04-01

    Ab initio calculations of the electronic structure and lattice-vibrational properties were performed on the superconducting high-temperature polymorphs of YIr2Si2 and LaIr2Si2. The electron-phonon coupling constants λep were found to be 0.61 and 0.56 for YIr2Si2 and LaIr2Si2, respectively. The superconducting critical temperatures estimated from the Allen-Dynes formula agree well with the available experimental data and indicate that the superconductivity in these compounds can be explained by intermediate strength electron-phonon coupling.

  12. Electrochemical studies at high pressure

    SciTech Connect

    Cruanes, M.T.

    1993-01-01

    This research has dealt with the development and application of a methodology that permits electrochemical measurements at high pressure. The initial efforts focused on the design and construction of an electrochemical cell functional at hydrostatic pressures as high as 10 kbar. This cell was equipped with an Ag/AgCl/KCl (0.1M) reference electrode which provides reliable control of the potential at all pressures. The potential of this reference electrode can be considered to be constant with pressure. Measurements of formal potentials (E[degrees][prime]) of several transition-metal complexes vs the Ag/AgCl electrode rendered volumes of reactions whose magnitudes support the prediction of the negligible pressure dependence of the reference electrode. The main systems that have been investigated at high pressure are surface-modified electrodes. The author studied the effect of compression on the dynamics of charge transport in quaternized poly(4-vinylpyridine) (QPVP) films placed on gold electrodes, loaded with potassium ferricyanide, and equilibrated in potassium nitrate. Pressure accomplished the continuous change in the structure of the polymer network. This change causes a pronounced restriction in the propagation of charge and in the motion of mass. This high-pressure methodology has also allowed the spatial characterization of electron transfer events taking place between a gold electrode and ferrocene molecules covalently attached to the end of 1-undodecanethiol chains self-assembled on the electrode surface. The volumes of reaction and activation for the oxidation process are both positive, indicating that a volume expansion is associated with the formation of ferricinium. A model is proposed in which the creation of a vacancy in the self-assembled monolayer, for the accommodation of the ferricinium ion or a charge-compensating anion, is coupled with the electron transfer step.

  13. Improved high pressure turbine shroud

    NASA Technical Reports Server (NTRS)

    Bessen, I. I.; Rigney, D. V.; Schwab, R. C.

    1977-01-01

    A new high pressure turbine shroud material has been developed from the consolidation of prealloyed powders of Ni, Cr, Al and Y. The new material, a filler for cast turbine shroud body segments, is called Genaseal. The development followed the identification of oxidation resistance as the primary cause of prior shroud deterioration, since conversion to oxides reduces erosion resistance and increases spalling under thermal cycled engine conditions. The NICrAlY composition was selected in preference to NIAL and FeCRALY alloys, and was formulated to a prescribed density range that offers suitable erosion resistance, thermal conductivity and elastic modulus for improved behavior as a shroud.

  14. Electokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic system having no moving parts for converting electric potential to hydraulic force and for manipulating fluids. Electro-osmotic flow is used to provide a valve and means to compress a fluid or gas in a capillary-based system. By electro-osmotically moving an electrolyte between a first position opening communication between a fluid inlet and outlet and a second position closing communication between the fluid inlet and outlet the system can be configured as a valve. The system can also be used to generate forces as large as 2500 psi that can be used to compress a fluid, either a liquid or a gas.

  15. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  16. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  17. High-pressure phase transition in {gamma}-hexanitrohexaazaisowurtzitane

    SciTech Connect

    Russell, T.P.; Miller, P.J.; Piermarini, G.J.; Block, S.

    1992-06-25

    FTIR, EDXD, and PLM; data for a new high-pressure polymorph, {zeta}-HNIW, which is formed from {gamma}-HNIW at 0.7 +/- 0.05 GPa and room temperature. The {gamma}-{zeta} transformation is rapid and reversible in single crystals in a hydrostatic pressure transmitting medium, but the {zeta} form could not be retrieved to ambient conditions. 12 refs., 6 figs., 2 tabs.

  18. Steam Oxidation at High Pressure

    SciTech Connect

    Holcomb, Gordon R.; Carney, Casey

    2013-07-19

    A first high pressure test was completed: 293 hr at 267 bar and 670{degrees}C; A parallel 1 bar test was done for comparison; Mass gains were higher for all alloys at 267 bar than at 1 bar; Longer term exposures, over a range of temperatures and pressures, are planned to provide information as to the commercial implications of pressure effects; The planned tests are at a higher combination of temperatures and pressures than in the existing literature. A comparison was made with longer-term literature data: The short term exposures are largely consistent with the longer-term corrosion literature; Ferritic steels--no consistent pressure effect; Austenitic steels--fine grain alloys less able to maintain protective chromia scale as pressure increases; Ni-base alloys--more mass gains above 105 bar than below. Not based on many data points.

  19. High pressure synthesis gas fermentation

    SciTech Connect

    Not Available

    1991-01-01

    The purpose of this research project is to build and test a pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system will be procured or fabricated and assembled in our laboratory. This system will then be used to determine the effects of high pressure on growth and ethanol production by clostridium ljungdahlii. The limits of cell concentration and mass transport relationships will be found in continuous stirred tank reactor and immobilized cell reactors. The minimum retention times and reactor volumes will be found for ethanol production in these reactors. Retention times of a few seconds are expected to result from these experiments. 2 figs., 2 tabs.

  20. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  1. High Pressure Electrolyzer System Evaluation

    NASA Technical Reports Server (NTRS)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  2. Investigation Into The Effectiveness of The JLAB High Pressure Rinse System

    SciTech Connect

    John Mammosser; Timothy Rothgeb; Tong Wang; Andy Wu

    2003-05-01

    As part of a study to reduce field emission in Superconducting radio frequency cavities, an investigation into the effectiveness of the Jefferson Lab's High Pressure Rinse (HPR) system is underway. This paper describes discoveries from this investigation, the procedural changes made during this investigation, current vertical test results and further plans for improvements and monitoring.

  3. High-Pressure Lightweight Thrusters

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  4. High Pressure XANES studies on Mn dopeHigh Pressure XANES studies on Mn doped Bi2 Te3

    NASA Astrophysics Data System (ADS)

    Light, Brian; Kumar, Ravhi; Baker, Jason; Dharmalingam, Prabhakaran; Park, Changyong; Unlv Team; Hpcat; Carnegie Institute Of Washington Collaboration

    Bi2Te3, Bi2Se3, and Sb2Te3 are narrow band-gap semiconductors have been extensively studied along with their alloys due to their promising technological applications as thermoelectric materials. More recently pressure induced superconductivity and structural transition have been observed in these materials around 7 GPa [1, 2]. Here we have performed high pressure x-ray near edge spectroscopy (XANES) measurements at Bi L-III edge on Mn (0.1) doped Bi2Te3 samples to understand the variation of the Bi valence across the pressure induced superconductivity regime. We have inferred notable changes in the Bi valence at high pressure conditions. The results will be discussed in detail. Work at the University of Nevada Las Vegas (ALC) is funded by U.S. Department of Energy Award DE-SC0001928. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH1135.

  5. Elastomers Compatible With High-Pressure Oxygen

    NASA Technical Reports Server (NTRS)

    Martin, Jon W.

    1987-01-01

    Compatibility increased by fluorination. Report describes experiments aimed at improving compatibility of some fluorinated elastomers with high-pressure oxygen. Such elastomers needed for seals, gaskets, and positive-expulsion devices used with high-pressure oxygen. Oxygen - compatibility tests carried out on five elastomers chosen on the basis of literature survey.

  6. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2016-07-12

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  7. NETL- High-Pressure Combustion Research Facility

    SciTech Connect

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  8. Method of producing a high pressure gas

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  9. CARS Diagnostics of High Pressure Combustion.

    DTIC Science & Technology

    1982-11-01

    e) 8. CONTRACT OR GRANT NUMBER(e) J. H. Stufflebeam t JDAAG29- 79-C-0008J %A,, Shirley R,,. Hall 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10...also the work in N2 at elevated tem- perature up to 30 atmospheres. John H. Stufflebeam continued the high pressure CARS work under the contract...Spectroscopy, Bordeaux, France, September 1982. 12. J. H. Stufflebeam , J. F. Verdieck, and R. J. Hall: CARS Diagnostics of High Pressure and

  10. Ultra High Pressure (UHP) Technology (BRIEFING SLIDES)

    DTIC Science & Technology

    2008-08-25

    AFRL-RX-TY-TP-2008-4600 POSTPRINT ULTRA HIGH PRESSURE ( UHP ) TECHNOLOGY (BRIEFING SLIDES) Patrick D. Sullivan Air Force Research...Since the discovery of the unprecedented effectiveness of 1500 psi Ultra High Pressure ( UHP ) technology in September of 2002 , AFRL scientists and... engineers have sought to increase Aircraft Rescue Fire Fighting (ARFF) performance by moving to higher flow rates to obtain greater throw distance and

  11. Multicomponent fuel vaporization at high pressures.

    SciTech Connect

    Torres, D. J.; O'Rourke, P. J.

    2002-01-01

    We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

  12. Manufacturing Diamond Under Very High Pressure

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The apparatus includes a reaction cell wherein a controlled static pressure as high as 20 GPa and a controlled temperature as high as 5,000 C can be maintained.

  13. Hypervalent Iodine with Linear Chain at High Pressure

    PubMed Central

    Wei, Shubo; Wang, Jianyun; Deng, Shiyu; Zhang, Shoutao; Li, Quan

    2015-01-01

    Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current results show that CsI3 with space group of Pm-3n is thermodynamically stable under high pressure. Hypervalence phenomenon of iodine atoms in Pm-3n CsI3 with endless linear chain type structure appears under high pressure, which is in sharp contrast to the conventional understanding. Our study further reveals that Pm-3n CsI3 is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI3 at 10 GPa which is much lower than that of CsI (180 GPa). Our findings represent a significant step toward the understanding of the behavior of iodine compounds at extreme conditions. PMID:26399899

  14. Hypervalent Iodine with Linear Chain at High Pressure

    NASA Astrophysics Data System (ADS)

    Wei, Shubo; Wang, Jianyun; Deng, Shiyu; Zhang, Shoutao; Li, Quan

    2015-09-01

    Iodine is an element of fascinating chemical complexity, and numerous hypervalent iodine compounds reveal vital value of applications in organic synthesis. Investigation of the synthesis and application of new type of hypervalent iodine compound has extremely significant meaning. Here, the formation of CsIn (n > 1) compounds is predicted up to 200 GPa using an effective algorithm. The current results show that CsI3 with space group of Pm-3n is thermodynamically stable under high pressure. Hypervalence phenomenon of iodine atoms in Pm-3n CsI3 with endless linear chain type structure appears under high pressure, which is in sharp contrast to the conventional understanding. Our study further reveals that Pm-3n CsI3 is a metallic phase with several energy bands crossing Fermi-surface, and the pressure creates a peculiar reverse electron donation from iodine to cesium. The electron-phonon coupling calculations have proposed superconductive potential of the metallic Pm-3n CsI3 at 10 GPa which is much lower than that of CsI (180 GPa). Our findings represent a significant step toward the understanding of the behavior of iodine compounds at extreme conditions.

  15. High-pressure layered structure of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Naghavi, S. Shahab; Crespo, Yanier; MartoÅák, Roman; Tosatti, Erio

    2015-06-01

    Solid CS2 is superficially similar to CO2, with the same C m c a molecular crystal structure at low pressures, which has suggested similar phases also at high pressures. We carried out an extensive first-principles evolutionary search in order to identify the zero-temperature lowest-enthalpy structures of CS2 for increasing pressure up to 200 GPa. Surprisingly, the molecular C m c a phase does not evolve into β -cristobalite as in CO2 but transforms instead into phases HP2 and HP1, both recently described in high-pressure SiS2. HP1 in particular, with a wide stability range, is a layered P 21/c structure characterized by pairs of edge-sharing tetrahedra and is theoretically more robust than all other CS2 phases discussed so far. Its predicted Raman spectrum and pair correlation function agree with experiment better than those of β -cristobalite, and further differences are predicted between their respective IR spectra. The band gap of HP1-CS2 is calculated to close under pressure, yielding an insulator-metal transition near 50 GPa, in agreement with experimental observations. However, the metallic density of states remains modest above this pressure, suggesting a different origin for the reported superconductivity.

  16. Thermal Transport at Static High-Pressures

    NASA Astrophysics Data System (ADS)

    Pangilinan, G. I.; Ladouceur, H. D.; Russell, T. P.

    2000-03-01

    Static properties and dynamic processes at high pressures and high temperatures are critically dependent on thermal properties of materials. Measurements of thermal properties at high pressures have only slowly developed through the years. Here we present a novel method, utilizing gem anvil cells, to measure specific heat, thermal conductivity and thermal diffusivity. The method involves launching a thermal wave in a sample. Subsequently, a localized sensor measures the temporal behavior of the temperature at a fixed point downstream in the material. A pulsed laser is used to deliver the heating pulse, while time-resolved fluorescence from a ruby sphere is used to measure the temperature. The thermal properties are inferred from the temporal behavior of the temperature and the heat conduction equations with appropriate boundary conditions. The thermal properties of table salt (NaCl) are obtained using this method. Impact to current and future high-pressure research, including materials science and geophysics will be addressed.

  17. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  18. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  19. Curved and conformal high-pressure vessel

    SciTech Connect

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    2016-10-25

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.

  20. Hydrogen at high pressure and temperatures

    SciTech Connect

    Nellis, W J

    1999-09-30

    Hydrogen at high pressures and temperatures is challenging scientifically and has many real and potential applications. Minimum metallic conductivity of fluid hydrogen is observed at 140 GPa and 2600 K, based on electrical conductivity measurements to 180 GPa (1.8 Mbar), tenfold compression, and 3000 K obtained dynamically with a two-stage light-gas gun. Conditions up to 300 GPa, sixfold compression, and 30,000 K have been achieved in laser-driven Hugoniot experiments. Implications of these results for the interior of Jupiter, inertial confinement fusion, and possible uses of metastable solid hydrogen, if the metallic fluid could be quenched from high pressure, are discussed.

  1. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  2. Superelastic carbon spheres under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  3. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  4. High-Pressure Induced New Phases and Properties in Typical Molecular Systems

    NASA Astrophysics Data System (ADS)

    Cui, Tian

    2013-06-01

    High pressure introduces new phases by the rearrangement of atoms and reconfigurations of electronic states in materials, often with new physical and chemical phenomena. Study of the new phases in typical molecular systems under high pressure is an interesting subject, such as energy storage materials of solid hydrogen and polymeric nitrogen, hydrogen-rich compound with high-Tc superconductivity under high pressure, high pressure induced metallization of hydrogen, etc. High-pressure structures and pressure-induced phase transitions in the typical molecular solids, such as solid iodine, CHBr3, N2/CN, HBr/HCl, hydrogen-rich compounds (H2S, ZrH2, AsH3, BaReH9, etc.), and group IVA hydrides (Si2H6, Ge2H6, Sn2H6, etc.) are investigated extensively by means of first-principles density functional theory and extensive prediction strategies (molecular dynamics simulation, simulated annealing, soft mode phase transition, random structure-searching method and evolutionary methodology etc.). The new structures and new properties derived from pressure-induced phase transitions in these typical molecular systems have been observed. It is showed that high pressure provides a path for producing new materials with new properties.

  5. Growth of Sr2CuO3+ δ superconductor single crystals at high pressure

    NASA Astrophysics Data System (ADS)

    Liang, Wen; Liu, QingQing; Liu, Liang; Kakeshita, Teruhisa; Uchida, Shinichi; Jin, ChangQing

    2013-04-01

    We have successfully synthesized Sr2CuO3+ δ single crystals under high pressure and high temperature for the first time. The structure analysis show that this material crystallizes into tetragonal structure isostructural La2CuO4 with single CuO2 plane. The magnetic susceptibility as well as resistance measurements indicates that the bulk superconductivity with the critical transition temperature 37 K is achieved in the crystal.

  6. High Pressure Inactivation of HAV within Mussels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  7. Hurricane risk mitigation - High Pressure Gas Facility

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.

  8. High Pressure Solution Kinetics of Metal Complexes.

    ERIC Educational Resources Information Center

    Suvachittanont, Surapong

    1983-01-01

    Describes use of activation volumes derived from the effect of pressure reaction rates in aiding the understanding of reaction mechanism. Topics discussed include determination and interpretation of activation volumes, high pressure equipment/techniques, and application of activation volumes in mechanistic elucidation of several inorganic…

  9. Feedthrough Seal For High-Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Williams, R.; Mullins, O.; Smith, D.; Teasley, G.

    1984-01-01

    Combination of ceramic and plastic withstands many depressurizations. Stack of washers surrounds leadthrough electrode. Under pressure washers expand to fill leadthrough hole in high-pressure vessel. Seal thus formed withstands 20 or more pressurization/depressurization cycles. Seal composed of neoprene, polytetrafluoroethylene, nylon and high-purity, high-density commercial alumina ceramic.

  10. Small, high-pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  11. Advanced Diagnostics for High Pressure Spray Combustion.

    SciTech Connect

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  12. Elasticity of orthoenstatite at high-pressure

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Chen, B.; Zhao, J.; Yan, J.

    2011-12-01

    Orthoenstatite is an abundant yet complex mineral in Earth's upper mantle. Despite its abundance, the properties of orthopyroxene at high pressure remain ambiguous (e.g., Zhang et al. 2011; Jahn 2008; Kung et al. 2004). We explored select properties of a synthetic powdered orthoenstatite (Mg0.8757Fe0.13)2Si2O6 sample by X-ray diffraction (XRD) and nuclear resonance inelastic X-ray scattering (NRIXS) as a function of pressure in a neon pressure medium at 300 K. The XRD measurements were carried out at beamline 12.2.2 of the Advanced Light Source (Berkeley, CA), and the sample was studied up to 34 GPa. NRIXS measurements were carried out at sector 3ID-B of the Advanced Photon Source (Chicago, IL) in the pressure range of 3 to 17 GPa. From the raw NRIXS data, the partial phonon density of states (DOS) was derived (e.g., Sturhahn 2004). The volume (or pressure) dependence of several properties, such as the Lamb-Mössbauer factor, mean force constant, specific heat, vibrational entropy, and vibrational kinetic energy were determined from the DOS. We will discuss our results from these combined studies and the implications for Earth's upper mantle. References Zhang, D., J.M. Jackson, W. Sturhahn, and Y. Xiao (2011): Local structure variations observed in orthoenstatite at high-pressures. American Mineralogist, in press. Jahn, S. (2008) High-pressure phase transitions in MgSiO3 orthoenstatite studied by atomistic computer simulation. American Mineralogist, 93(4), 528-532. Kung, J., Li, B., Uchida, T., Wang, Y., Neuville, D., and Liebermann, R. (2004) In situ measurements of sound velocities and densities across the orthopyroxene high-pressure clinopyroxene transition in MgSiO3 at high pressure. Physics of the Earth and Planetary Interiors, 147(1), 27-44. Sturhahn, W. (2004): Nuclear Resonant Spectroscopy. J. Phys. Condens. Matter, 16, S497-S530.

  13. REVIEWS OF TOPICAL PROBLEMS: Properties of high pressure phases in metal-hydrogen systems

    NASA Astrophysics Data System (ADS)

    Ponyatovskiĭ, E. G.; Antonov, Vladimir E.; Belash, I. T.

    1982-08-01

    The development of high-pressure technology has in recent years permitted obtaining extensive new information on the properties of hydrides of group VI-VIII transition metals. In this review, the experimental procedures for compressing macroscopic quantities of hydrogen to record high pressures, phase transitions, and structures of new high-pressure phases in Me-H systems are briefly described. Special attention is devoted to the magnetic properties of solid solutions of hydrogen in 3d metals and their alloys, whose study has yielded definite conclusions concerning the effect of hydrogen on the band structure and exchange interaction in these materials. The role of structural instabilities in the formation of superconducting properties of hydrogen solutions in 4d metal alloys based on palladium is examined.

  14. Distortions and Stabilization of Simple Cubic Calcium at High Pressure and Low Temperature

    SciTech Connect

    Veith, Alison A.

    2012-04-18

    Ca-III, the first superconducting calcium phase under pressure, was identified as simple-cubic (sc) by previous X-ray diffraction (XRD) experiments. In contrast, all previous theoretical calculations showed that sc had a higher enthalpy than many proposed structures and had an imaginary (unstable) phonon branch. By using our newly developed submicrometer high-pressure single-crystal XRD, cryogenic high-pressure XRD, and theoretical calculations, we demonstrate that Ca-III is neither exactly sc nor any of the lower-enthalpy phases, but sustains the sc-like, primitive unit by a rhombohedral distortion at 300 K and a monoclinic distortion below 30 K. This surprising discovery reveals a scenario that the high-pressure structure of calcium does not go to the zero-temperature global enthalpy minimum but is dictated by high-temperature anharmonicity and low-temperature metastability fine-tuned with phonon stability at the local minimum.

  15. Understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates

    NASA Technical Reports Server (NTRS)

    Etters, R. D.

    1985-01-01

    Work directed toward understanding the high pressure properties of molecular solids and molecular surfaces deposited on hetrogeneous substrates is reported. The motivation, apart from expanding our basic knowledge about these systems, was to understand and predict the properties of new materials synthesized at high pressure, including pressure induced metallic and superconducting states. As a consequence, information about the states of matter of the Jovian planets and their satellites, which are natural high pressure laboratories was also provided. The work on molecular surfaces and finite two and three dimensional clusters of atoms and molecules was connected with the composition and behavior of planetary atmospheres and on the processes involved in forming surface layers, which is vital to the development of composite materials and microcircuitry.

  16. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature

    SciTech Connect

    Mao, Wendy L.; Wang, Lin; Ding, Yang; Yang, Wenge; Liu, Wenjun; Kim, Duck Young; Luo, Wei; Ahuja, R.; Meng, Yue; Sinogeikin, Stanislav V.; Shu, Jinfu; Mao, Ho-kwang

    2010-06-01

    Ca-III, the first superconducting calcium phase under pressure, was identified as simple-cubic (sc) by previous X-ray diffraction (XRD) experiments. In contrast, all previous theoretical calculations showed that sc had a higher enthalpy than many proposed structures and had an imaginary (unstable) phonon branch. By using our newly developed submicrometer high-pressure single-crystal XRD, cryogenic high-pressure XRD, and theoretical calculations, we demonstrate that Ca-III is neither exactly sc nor any of the lower-enthalpy phases, but sustains the sc-like, primitive unit by a rhombohedral distortion at 300 K and a monoclinic distortion below 30 K. This surprising discovery reveals a scenario that the high-pressure structure of calcium does not go to the zero-temperature global enthalpy minimum but is dictated by high-temperature anharmonicity and low-temperature metastability fine-tuned with phonon stability at the local minimum.

  17. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    PubMed Central

    Bi, Wenli; Zhao, Jiyong; Lin, Jung-Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    A new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability. PMID:25931094

  18. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    DOE PAGES

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; ...

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technicalmore » development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.« less

  19. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature.

    PubMed

    Bi, Wenli; Zhao, Jiyong; Lin, Jung-Fu; Jia, Quanjie; Hu, Michael Y; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E Ercan

    2015-05-01

    A new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal-insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu(57)Fe2As2 at high pressure and low temperature were derived by using this new capability.

  20. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature.

    PubMed

    Mao, Wendy L; Wang, Lin; Ding, Yang; Yang, Wenge; Liu, Wenjun; Kim, Duck Young; Luo, Wei; Ahuja, Rajeev; Meng, Yue; Sinogeikin, Stas; Shu, Jinfu; Mao, Ho-kwang

    2010-06-01

    Ca-III, the first superconducting calcium phase under pressure, was identified as simple-cubic (sc) by previous X-ray diffraction (XRD) experiments. In contrast, all previous theoretical calculations showed that sc had a higher enthalpy than many proposed structures and had an imaginary (unstable) phonon branch. By using our newly developed submicrometer high-pressure single-crystal XRD, cryogenic high-pressure XRD, and theoretical calculations, we demonstrate that Ca-III is neither exactly sc nor any of the lower-enthalpy phases, but sustains the sc-like, primitive unit by a rhombohedral distortion at 300 K and a monoclinic distortion below 30 K. This surprising discovery reveals a scenario that the high-pressure structure of calcium does not go to the zero-temperature global enthalpy minimum but is dictated by high-temperature anharmonicity and low-temperature metastability fine-tuned with phonon stability at the local minimum.

  1. Instrument for high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures

    NASA Astrophysics Data System (ADS)

    Koyama, K.; Hane, S.; Kamishima, K.; Goto, T.

    1998-08-01

    An instrument has been developed for the first time that makes high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures. The instrument consists of an extraction-type magnetometer, a nonmagnetic high pressure clamp cell and a 20 T superconducting magnet with a 3He refrigerator and is able to precisely measure the magnetization of weakly magnetic materials. TiCu alloy with 3 wt % Ti is employed as a nonmagnetic material with high mechanical strength for the high pressure clamp cell. This apparatus can be used in the pressure range 0⩽P⩽13 kbar, the field range 0⩽H⩽200 kOe and the temperature range 0.5⩽T⩽4.2 K. The resolution of the instrument is estimated to be ±0.002 emu. For demonstrating the ability of the instrument, the experimental results on a heavy fermion antiferromagnet Ce7Ni3 is presented.

  2. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2017-02-01

    Conventional superconductors are described well by the Bardeen – Cooper – Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature Tc. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at Tc = 200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

  3. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2016-11-01

    Conventional superconductors are described well by the Bardeen - Cooper - Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature T_c. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at T_c=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high T_c superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing T_c to room temperature are also discussed.

  4. High-pressure synthesis of mesoporous stishovite: potential applications in mineral physics

    NASA Astrophysics Data System (ADS)

    Stagno, Vincenzo; Mandal, Manik; Landskron, Kai; Fei, Yingwei

    2015-06-01

    Recently, we have described a successful synthesis route to obtain mesoporous quartz and its high-pressure polymorph coesite by nanocasting at high pressure using periodic mesostructured precursors, such as SBA-16 and FDU-12/carbon composite as starting materials. Periodic mesoporous high-pressure silica polymorphs are of particular interest as they combine transport properties and physical properties such as hardness that potentially enable the industrial use of these materials. In addition, synthesis of mesoporous crystalline silica phases can allow more detailed geology-related studies such as water/mineral interaction, dissolution/crystallization rate and the surface contribution to the associated thermodynamic stability (free energy and enthalpy) of the various polymorphs and their crossover. Here, we present results of synthesis of mesoporous stishovite from cubic large-pore periodic mesoporous silica LP-FDU-12/C composite as precursor with an fcc lattice. We describe the synthesis procedure using multi-anvil apparatus at 9 GPa (about 90,000 atm) and temperature of 500 °C. The synthetic mesoporous stishovite is, then, characterized by wide and small-angle X-ray diffraction, scanning/transmission electron microscopy and gas adsorption. Results show that this new material is characterized by accessible mesopores with wide pore size distribution, surface area of ~45 m2/g and volume of pores of ~0.15 cm3/g. Results from gas adsorption indicate that both porosity and permeability are retained at the high pressures of synthesis but with weak periodic order of the pores.

  5. High Pressure Synthesis and properties of (Ca,Pr)Fe2As2

    NASA Astrophysics Data System (ADS)

    Drye, Tyler; Taufour, Valentin; Kaluarachchi, Udhara; Ran, Sheng; Canfield, Paul; Paglione, Johnpierre

    2014-03-01

    Despite impressively high superconducting transition temperatures approaching 50 K, superconductivity in rare earth-doped CaFe2As2 appears to only involve a small volume fraction as determined by shielding fraction. In addition, the amount of Pr that can be doped into the system via ambient pressure flux synthesis is limited to <15%, due to a width of formation limitation. We report a study using high-pressure flux growth to substitute higher levels of Pr approaching 40% concentration. The superconducting properties of the resultant crystals are presented, including chemical composition, resistivity, and magnetization measurements. The final result is a complete phase diagram for the Pr-doped CaFe2As2 system. Work supported by an ICAM Junior Scientist Travel Award and an AFOSR MURI grant.

  6. High pressure studies of potassium perchlorate

    SciTech Connect

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-07-29

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 hv→ KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. As a result, we present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  7. High pressure injection injuries: an overview.

    PubMed

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  8. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  9. Novel chemistry of matter under high pressure

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng

    2015-03-01

    The periodicity of the elements and the non-reactivity of the inner-shell electrons are two related principles of chemistry, rooted in the atomic shell structure. Within compounds, Group I elements, for example, invariably assume the +1 oxidation state, and their chemical properties differ completely from those of the p-block elements. These general rules govern our understanding of chemical structures and reactions. Using first principles calculations, we demonstrate that under high pressure, the above doctrines can be broken. We show that both the inner shell electrons and the outer shell empty orbitals of Cs and other elements can involve in chemical reactions. Furthermore, we show that the quantized orbitals of the enclosed interstitial space may play the same role as atomic orbitals, an unprecedented view that led us to a unified theory for the recently observed high-pressure electride phenomenon.

  10. Sample injector for high pressure liquid chromatography

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  11. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  12. High pressure studies of potassium perchlorate

    DOE PAGES

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; ...

    2016-07-29

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 hv→ KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. As a result, we present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregatemore » at high pressure.« less

  13. (High-pressure structural studies of promethium)

    SciTech Connect

    Haire, R.G.

    1988-11-15

    The primary object of the foreign travel was to carry out collaborative high-pressure structural studies at the European Institute for Transuranium Elements (EITU), Karlsruhe, Federal Republic of Germany. These studies reestablished previous collaborative investigations by ORNL and EITU that have been very productive scientifically during the past few years. The study during the present travel period was limited to a structural study of promethium metal under pressure.

  14. Modeling High Pressure Micro Hollow Cathode Discharges

    DTIC Science & Technology

    2007-11-02

    calculations in glow discharge in argon and neon . A Monte Carlo simulation of the ions and Grant 033083 – Final report 7 the fast neutrals generated...in high pressure xenon or in rare gas mixtures containing xenon are of interest in the context of UV and VUV generation. Numerical experiments on...The shape of the calculated characteristic is similar to those measured by Schoenbach et al1 in argon and by Moselhy and Schoenbach9 in xenon . There

  15. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  16. Small, high pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Warren, D. J.

    1980-01-01

    A high pressure, low capacity, liquid hydrogen turbopump was designed, fabricated, and tested. The design configuration of the turbopump is summarized and the results of the analytical and test efforts are presented. Approaches used to pin point the cause of poor suction performance with the original design are described and performance data are included with an axial inlet design which results in excellent suction capability.

  17. Exotic stable cesium polynitrides at high pressure

    PubMed Central

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-01-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44− anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure. PMID:26581175

  18. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  19. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  20. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  1. High pressure synthesis gas conversion. Final report

    SciTech Connect

    Not Available

    1993-05-01

    The purpose of this research project is to build and test a high pressure fermentation system for the production of ethanol from synthesis gas. The fermenters, pumps, controls, and analytical system were procured or fabricated and assembled in our laboratory. This system was then used to determine the effects of high pressure on growth and ethanol production by Clostridium ljungdahlii. The limits of cell concentration and mass transport relationships were found in CSTR and immobilized cell reactors (ICR). The minimum retention times and reactor volumes were found for ethanol production in these reactors. A maximum operating pressure of 150 psig has been shown to be possible for C. ljungdahlli with the medium of Phillips et al. This medium was developed for atmospheric pressure operation in the CSTR to yield maximum ethanol concentrations and thus is not best for operation at elevated pressures. It is recommended that a medium development study be performed for C. ljungdahlii at increased pressure. Cell concentration, gas conversion and product concentration profiles were presented for C. ljungdahlii as a function of gas flow rate, the variable which affects bacterium performance the most. This pressure was chosen as a representative pressure over the 0--150 psig operating pressure range for the bacterium. Increased pressure negatively affected ethanol productivity probably due to the fact that medium composition was designed for atmospheric pressure operation. Medium development at increased pressure is necessary for high pressure development of the system.

  2. Introduction to High-Pressure Science

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw

    To a common person pressure is just one of the parameters that describe a thermodynamic state. We all hear about it in everyday weather forecasts, and most of us do not associate it with anything particularly unique. Probably the most intuitive idea of the effect of high-pressure comes from movies, where submarine sinking to the bottom of the ocean is gradually crushed by the surrounding water, until its hull implodes. Why, then hundreds of scientists throughout the world spent their lifelong careers studying high-pressure phenomena? Despite all the developments in experimental technologies and instrumentation, modern scientist has very few tools that allow him or her to "grab" two atoms and bring them, in a very controllable way, closer together. Being able to achieve this task means the ability to directly probe interatomic interaction potentials and can cause transformations as dramatic as turning of a common gas into solid metal. Before the reader delves into more advanced topics described later in this book, this introductory chapter aims to explain several elementary, but extremely important concepts in high-pressure science. We will start with a brief discussion of laboratory devices used to produce pressure, address the issue of hydrostaticity, elastic and plastic compression, and will conclude with a short discussion of unique effects of anisotropic stress.

  3. Exotic stable cesium polynitrides at high pressure

    DOE PAGES

    Peng, Feng; Han, Yunxia; Liu, Hanyu; ...

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N∞). Polymeric chainsmore » of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  4. High pressure effects in anaesthesia and narcosis.

    PubMed

    Wlodarczyk, Agnieszka; McMillan, Paul F; Greenfield, Susan A

    2006-10-01

    There is growing interest in determining the effects of high pressure on biological functions. Studies of brain processes under hyperbaric conditions can give a unique insight into phenomena such as nitrogen narcosis, inert gas anaesthesia, and pressure reversal of the effects of anaesthetic and narcotic agents. Such research may shed light on the action of anaesthetics, which remains poorly understood, and on the nature of consciousness itself. Various studies have established the behavioural response of organisms to hyperbaric conditions, in the presence or absence of anaesthetic agents. At the molecular level, X-ray crystallography has been used to investigate the incorporation of species like Xe in hydrophobic pockets within model ion channels that may account for pressure effects on neuronal transmission. New magnetic resonance imaging techniques are providing tomographic three-dimensional images that detail brain structure and function, and that can be correlated with behavioural studies and psychological test results. Such whole organ techniques are linked to the molecular scale via voltage-sensitive dye (VSD) imaging studies on brain slices that provide time-resolved images of the dynamic formation and interconnection of inter-neuronal complexes. The VSD experiments are readily adapted to in situ studies under high pressure conditions. In this tutorial review we review the current state of knowledge of hyperbaric effects on brain processes: anaesthesia and narcosis, recent studies at the molecular level via protein crystallography at high pressure in a Xe atmosphere, and we also present some preliminary results of VSD imaging of brain slices under hyperbaric conditions.

  5. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  6. Water solubility in pyrope at high pressures

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Karato, S.-

    2006-12-01

    To address how much water is stored within the Earth's mantle, we need to understand the water solubility in the nominally anhydrous minerals. Much is known about olivine and pyroxene. Garnet is another important component, approaching 40% by volume in the transition zone. Only two studies on water solubility in pyrope at high-pressures exist which contradict each other. Lu and Keppler (1997) observed increase in water solubility in a natural pyrope up to 200 ppm wt of water, till 10 GPa. They concluded that the proton is located in the interstitial site. Withers et al. (1998) on the contrary, observed increasing water content in Mg-rich pyrope till 6 GPa, then sudden decrease of water, beyond detection, at 7 GPa. Based on infrared spectra, Withers et al. (1998), concluded hydrogarnet (Si^{4+} replaced by 4H+ to form O4H4) substitution in synthetic magnesium rich pyrope. They argued that at high pressure owing to larger volume, hydrogarnet substitution is unstable and water is expelled out of garnet. In transition zone conditions, however, majorite garnet seems to contain around 600-700 ppm wt of water (Bolfan-Casanova et al. 2000; Katayama et al. 2003). The cause for such discrepancy is not clear and whether garnet could store a significant amount of water at mantle condition is unconstrained. In order to understand the solubility mechanism of water in pyrope at high-pressure, we have conducted high- pressure experiments on naturally occurring single crystals of pyrope garnet (from Arizona, Aines and Rossman, 1984). To ascertain water-saturated conditions, we use olivine single-crystal as an internal standard. Preliminary results indicate that natural pyrope is capable of dissolving water at high-pressures, however, water preferentially enters olivine than in pyrope. We are undertaking systematic study to estimate the solubility of water in pyrope as a function of pressure. This will enable us to develop solubility models to understand the defect mechanisms

  7. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  8. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The...

  9. Superconductivity in diamond.

    PubMed

    Ekimov, E A; Sidorov, V A; Bauer, E D; Mel'nik, N N; Curro, N J; Thompson, J D; Stishov, S M

    2004-04-01

    Diamond is an electrical insulator well known for its exceptional hardness. It also conducts heat even more effectively than copper, and can withstand very high electric fields. With these physical properties, diamond is attractive for electronic applications, particularly when charge carriers are introduced (by chemical doping) into the system. Boron has one less electron than carbon and, because of its small atomic radius, boron is relatively easily incorporated into diamond; as boron acts as a charge acceptor, the resulting diamond is effectively hole-doped. Here we report the discovery of superconductivity in boron-doped diamond synthesized at high pressure (nearly 100,000 atmospheres) and temperature (2,500-2,800 K). Electrical resistivity, magnetic susceptibility, specific heat and field-dependent resistance measurements show that boron-doped diamond is a bulk, type-II superconductor below the superconducting transition temperature T(c) approximately 4 K; superconductivity survives in a magnetic field up to Hc2(0) > or = 3.5 T. The discovery of superconductivity in diamond-structured carbon suggests that Si and Ge, which also form in the diamond structure, may similarly exhibit superconductivity under the appropriate conditions.

  10. Exotic stable cesium polynitrides at high pressure

    SciTech Connect

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  11. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction

  12. Efficient High Pressure MixtureState Equations

    NASA Technical Reports Server (NTRS)

    Harstad, K. G.; Miller, R. S.; Bellan, J.

    1996-01-01

    A method is presented for an accurate noniterative, computationally efficient calculation of high pressure fluid mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above 1 bar and temperatures above 100 K are addressed. The method is based on curve fitting an effective reference state relative to departure funcitons formed using the Peng-Robinson cubic state equation. Fit parameters for H(sub 2), O(sub 2), N(sub 2), propane, n-heptane and methanol are given.

  13. High pressure luminescence probes in polymers

    SciTech Connect

    Drickamer, H.G.

    1980-01-01

    High pressure luminescence has proved to be a very powerful tool for characterizing crystalline solids and liquids. Two problems involving glassy polymers are analyzed. In the first problem the excited states of azulene and its derivatives are used to probe intermolecular interactions in PMMA and PS. In the second problem the change in emission intensity with pressure from two excimer states of polyvinylcarbazole as a pure polymer and in dilute solution in polystyrene (PS), polymethylmethacrylate (PMMA) and polyisoliutylene (PIB) is studied. The relative emission from the two states depends strongly on the possibility for motion of polymer segments. The observations are related to the proximity to the glass transition.

  14. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  15. High-Pressure Oxygen Test Evaluations

    NASA Technical Reports Server (NTRS)

    Schwinghamer, R. J.; Key, C. F.

    1974-01-01

    The relevance of impact sensitivity testing to the development of the space shuttle main engine is discussed in the light of the special requirements for the engine. The background and history of the evolution of liquid and gaseous oxygen testing techniques and philosophy is discussed also. The parameters critical to reliable testing are treated in considerable detail, and test apparatus and procedures are described and discussed. Materials threshold sensitivity determination procedures are considered and a decision logic diagram for sensitivity threshold determination was plotted. Finally, high-pressure materials sensitivity test data are given for selected metallic and nonmetallic materials.

  16. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  17. Submarine High Pressure Dehydrator Performance Test

    DTIC Science & Technology

    1988-06-07

    Hatala of September 1985. Prepared for NAVSEA 05N under contract number N00024-33-C-2111. 13. General Dynamics Corporation, High Pressure Air Filtration...Cooling Water Pump Gear Ratio ............... 4:1 Cooling Water Pump Full Load Speed .......... 3500 rpm Water Pump TDH @ 3400 RPM & 15 GPM...Temperature Monitor Thomas A. Edison, Inc. 12-1/2" x 7-1/4" x 9" 25 lbs. Motor Electro Dynamic 2𔄁-1/16" x 2𔃾-1/4" x 2𔃻-1/4" 1150 lbs. S Pressure

  18. A picosecond high pressure gas switch

    SciTech Connect

    Cravey, W.R.; Poulsen, P.P.; Pincosy, P.A.

    1992-06-01

    Work is being done to develop a high pressure gas switch (HPGS) with picosecond risetimes for UWB applications. Pulse risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at high pressures and higher electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With these high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized on the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with lab data.

  19. High Pressure Hydrogen from First Principles

    NASA Astrophysics Data System (ADS)

    Morales, M. A.

    2014-12-01

    Typical approximations employed in first-principles simulations of high-pressure hydrogen involve the neglect of nuclear quantum effects (NQE) and the approximate treatment of electronic exchange and correlation, typically through a density functional theory (DFT) formulation. In this talk I'll present a detailed analysis of the influence of these approximations on the phase diagram of high-pressure hydrogen, with the goal of identifying the predictive capabilities of current methods and, at the same time, making accurate predictions in this important regime. We use a path integral formulation combined with density functional theory, which allows us to incorporate NQEs in a direct and controllable way. In addition, we use state-of-the-art quantum Monte Carlo calculations to benchmark the accuracy of more approximate mean-field electronic structure calculations based on DFT, and we use GW and hybrid DFT to calculate the optical properties of the solid and liquid phases near metallization. We present accurate predictions of the metal-insulator transition on the solid, including structural and optical properties of the molecular phase. This work was supported by the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by LDRD Grant No. 13-LW-004.

  20. High pressure turbomachinery ground test facility

    NASA Technical Reports Server (NTRS)

    Scheuermann, Patrick E.

    1992-01-01

    Turbomachinery test facilities are at present scarce to non-existent world-wide. The turbomachinery test facility at Stennis Space Center will provide for advanced development and research and development capabilities for liquid hydrogen/liquid oxygen propellant rocket engine components. The facility will provide ultra-high pressure via gas generators to deliver the needed turbine drive on various turbomachinery. State of the art process control systems will provide the vital pressure, temperature and flow requirements during tests. These systems will better control adverse transient conditions during start-up and shutdown, and by using advanced control theory, as well as incorporate test article health monitoring. Also, digital data acquisition systems will obtain high frequency (up to 20 KHz) and low frequency (up to 1 KHz) data during the test. Pressures of up to 15,000 psi will be generated to pressurize high pressure tanks supplying cryogens to various test article inlets thus pushing turbopump materials and manufacturing processes to their limits. By planning for future projects the test facility will be easily adaptable to multi-program test configurations over a range of thermodynamic positions.

  1. Stability of xenon oxides at high pressures.

    PubMed

    Zhu, Qiang; Jung, Daniel Y; Oganov, Artem R; Glass, Colin W; Gatti, Carlo; Lyakhov, Andriy O

    2013-01-01

    Xenon, which is quite inert under ambient conditions, may become reactive under pressure. The possibility of the formation of stable xenon oxides and silicates in the interior of the Earth could explain the atmospheric missing xenon paradox. Using an ab initio evolutionary algorithm, we predict the existence of thermodynamically stable Xe-O compounds at high pressures (XeO, XeO(2) and XeO(3) become stable at pressures above 83, 102 and 114 GPa, respectively). Our calculations indicate large charge transfer in these oxides, suggesting that large electronegativity difference and high pressure are the key factors favouring the formation of xenon compounds. However, xenon compounds cannot exist in the Earth's mantle: xenon oxides are unstable in equilibrium with the metallic iron occurring in the lower mantle, and xenon silicates are predicted to decompose spontaneously at all mantle pressures (<136 GPa). However, it is possible that xenon atoms may be retained at defects in mantle silicates and oxides.

  2. Pressure-induced non-superconducting phase of β-Na0.33V2O5 and the mechanism of high-pressure phase transitions in β-Na0.33V2O5 and β-Li0.33V2O5 at room temperature

    NASA Astrophysics Data System (ADS)

    Grzechnik, A.; Ueda, Y.; Yamauchi, T.; Hanfland, M.; Hering, P.; Potapkin, V.; Friese, K.

    2016-01-01

    The crystal structure of β-Na0.33V2O5 (C2/m, Z  =  6) has been studied on compression to 19 GPa at room temperature using synchrotron single-crystal diffraction in a diamond anvil cell. The vanadate bronze undergoes a phase transition to a non-superconducting phase at about 12 GPa due to changes of polyhedral connectivities in the vanadate framework and due to ordering of the Na+ cations. This novel structure (Cm, Z  =  6) is interpreted as an intermediate stage in the sequence of pressure-induced transformations in the β-A 0.33V2O5 bronzes (A: Li, Na) at room temperature. This study reveals the close relation between the loss of the two-leg ladder V-V system and non-superconducting state of the β-A 0.33V2O5 materials.

  3. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  4. (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods - a review.

    PubMed

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work.

  5. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    SciTech Connect

    Xiao, Y. M. Chow, P.; Boman, G.; Bai, L. G.; Rod, E.; Bommannavar, A.; Kenney-Benson, C.; Sinogeikin, S.; Shen, G. Y.

    2015-07-15

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  6. Urea and deuterium mixtures at high pressures

    SciTech Connect

    Donnelly, M. Husband, R. J.; Frantzana, A. D.; Loveday, J. S.; Bull, C. L.; Klotz, S.

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  7. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  8. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  9. Structural behaviour of YGa under high pressure

    SciTech Connect

    Sekar, M. Shekar, N. V. Chandra Sahu, P. Ch.; Babu, R.

    2014-04-24

    High pressure X-ray diffraction studies on rare-earth gallide YGa was carried up to a pressure of ∼ 33 GPa using rotating anode x-ray source in an angle dispersive mode. YGa exhibits CrB (B33) type orthorhombic structure (space group Cmcm) at ambient pressure. It undergoes a reversible structural phase transition from orthorhombic to tetragonal structure at ∼ 8.8 GPa. Both the phases coexist up to the highest pressure studied. The zero pressure bulk modulus and its derivative for parent phase have been estimated to be B{sub o} = 60 ± 3 GPa, B{sub o}' = 4.6 ± 1.5.

  10. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  11. Synthesis of sodium polyhydrides at high pressures

    DOE PAGES

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; ...

    2016-07-28

    Archetypal ionic NaH is the only known compound of sodium and hydrogen. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. Moreover, we combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formationmore » of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.« less

  12. Ceramic high pressure gas path seal

    NASA Technical Reports Server (NTRS)

    Liotta, G. C.

    1987-01-01

    Stage 1 ceramic shrouds (high pressure turbine gas path seal) were developed for the GE T700 turbine helicopter engine under the Army/NASA Contract NAS3-23174. This contract successfully proved the viability and benefits of a Stage 1 ceramic shroud for production application. Stage 1 ceramic shrouds were proven by extensive component and engine testing. This Stage 1 ceramic shroud, plasma sprayed ceramic (ZrOs-BY2O3) and bond coating (NiCrAlY) onto a cast metal backing, offers significant engine performance improvement. Due to the ceramic coating, the amount of cooling air required is reduced 20% resulting in a 0.5% increase in horsepower and a 0.3% decrease in specific fuel consumption. This is accomplished with a component which is lower in cost than the current production shroud. Stage 1 ceramic shrouds will be introduced into field service in late 1987.

  13. Synthesis of sodium polyhydrides at high pressures

    NASA Astrophysics Data System (ADS)

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-Kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  14. Model of current enhancement at high pressure

    SciTech Connect

    Yu, S.S.; Melendez, R.E.

    1983-04-05

    A model is proposed to account for the phenomenon of net current enhancement at high pressures recently observed on the Experimental Test Accelerator. The proposed mechanism involves energetic secondary electrons (delta rays) which are pushed forward by the self-magnetic field of the electron beam. For high current beams, the forward delta ray current can build up to a significant fraction of the beam current. Analytic calculations of the steady-state solution as well as the rate of buildup of the delta ray current are presented in this paper. In addition, numerical results from a nonlocal Boltzmann code, NUTS, are presented. The analytic and numerical results have many features which are in qualitative agreement with the experiments, but quantitative discrepancies still exist.

  15. High Pressure Quick Disconnect Particle Impact Tests

    NASA Technical Reports Server (NTRS)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  16. High pressure study of acetophenone azine

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Ding, Z. J.; Zhang, Z. M.

    2009-02-01

    High pressure Raman spectra of acetophenone azine (APA) have been measured up to 17.7 GPa with a diamond anvil cell. Two crystalline-to-crystalline phase transformations are found at pressures about 3.6 and 5.8 GPa. A disappearance of external modes and the C-H vibration at pressures higher than 8.7 GPa suggests that the sample undergoes a phase transition to amorphous or orientationally disordered (plastic) state, and the amorphization was completed at about 12.1 GPa. The disordered state is unstable and, then, a polymerization transformation reaction occurs with a further pressure increase. After the pressure has been released, the polymerization state can remain at the ambient condition, indicating that the virgin crystalline state is not recovered. The results show that the phenomenon underlying the pressure induced phase transition of APA may involve profound changes in the coordination environments of the symmetric aromatic azine.

  17. High pressure chemistry of substituted acetylenes

    SciTech Connect

    Chellappa, Raja; Dattelbaum, Dana; Sheffield, Stephen; Robbins, David

    2011-01-25

    High pressure in situ synchrotron x-ray diffraction experiments were performed on substituted polyacetylenes: tert-butyl acetylene [TBA: (CH{sub 3}){sub 3}-C{triple_bond}CH] and ethynyl trimethylsilane [ETMS: (CH{sub 3}){sub 3}-Si{triple_bond}CH] to investigate pressure-induced chemical reactions. The starting samples were the low temperature crystalline phases which persisted metastably at room temperature and polymerized beyond 11 GPa and 26 GPa for TBA and ETMS respectively. These reaction onset pressures are considerably higher than what we observed in the shockwave studies (6.1 GPa for TBA and 6.6 GPa for ETMS). Interestingly, in the case of ETMS, it was observed with fluid ETMS as starting sample, reacts to form a semi-crystalline polymer (crystalline domains corresponding to the low-T phase) at pressures less than {approx}2 GPa. Further characterization using vibrational spectroscopy is in progress.

  18. Synthesis of sodium polyhydrides at high pressures

    SciTech Connect

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-07-28

    Archetypal ionic NaH is the only known compound of sodium and hydrogen. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. Moreover, we combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials.

  19. Safety improvements in high pressure thermal machines

    SciTech Connect

    Otters, J.L.

    1988-02-09

    In a thermal machine of the type including a machine body having a main axis extending between a thermal end and a work end, a working fluid at relatively high pressure in a working fluid chamber defined in the body and a displacer element reciprocable within the chamber for subjecting the fluid to a thermodynamic cycle in cooperation with a reciprocable work piston, the improvement is described comprising outer shell means enclosing the machine body for maintaining a substantially sealed atmosphere about the machine body, and diffuser means arranged between the machine body and the outer shell means for diffusing a shock wave traveling towards the outer shell means resulting from explosive failure of the machine body and for shielding the outer shell means against fragments projected upon such failure.

  20. Synthesis of sodium polyhydrides at high pressures

    PubMed Central

    Struzhkin, Viktor V.; Kim, Duck Young; Stavrou, Elissaios; Muramatsu, Takaki; Mao, Ho-kwang; Pickard, Chris J.; Needs, Richard J.; Prakapenka, Vitali B.; Goncharov, Alexander F.

    2016-01-01

    The only known compound of sodium and hydrogen is archetypal ionic NaH. Application of high pressure is known to promote states with higher atomic coordination, but extensive searches for polyhydrides with unusual stoichiometry have had only limited success in spite of several theoretical predictions. Here we report the first observation of the formation of polyhydrides of Na (NaH3 and NaH7) above 40 GPa and 2,000 K. We combine synchrotron X-ray diffraction and Raman spectroscopy in a laser-heated diamond anvil cell and theoretical random structure searching, which both agree on the stable structures and compositions. Our results support the formation of multicenter bonding in a material with unusual stoichiometry. These results are applicable to the design of new energetic solids and high-temperature superconductors based on hydrogen-rich materials. PMID:27464650

  1. High-pressure coal fuel processor development

    SciTech Connect

    Greenhalgh, M.L.

    1992-11-01

    The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

  2. Topaz and Kyanite Luminescence Under High Pressure

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Williams, Q. C.

    2014-12-01

    The luminescence spectra of Cr3+ in heat-treated topaz Al2SiO4(OH,F)2 and natural kyanite Al2SiO5 were measured from 650 - 800 nm in a hydrostatic environment up to pressures of 15 GPa. The R1 and R2 peaks of topaz shift at average rates of 0.30 nm/GPa and 0.22 nm/GPa, respectively, implying that the deformation of the Cr3+ octahedra increases with pressure. Three peaks are fit under each R line of topaz at both room and high pressure, and these peaks are associated with different Al sites into which the Cr substitutes. The shift of the R lines in topaz under pressure is remarkably linear, which appears to be a general feature of many Cr3+-bearing oxides: the underlying cause of this linearity may lie in anharmonic coupling with lattice vibrations. In this context, we also characterize the frequency shifts of two vibronic peaks within topaz. The R1 and R2 peaks of kyanite shift at 0.37 nm/GPa and 0.88 nm/GPa respectively. Two peaks are fit under R1 and three peaks are fit under R2 of kyanite at both room and high pressure; this result is also consistent with three different Cr3+ sites in this material. The R lines in kyanite are notably optically anisotropic, depending strongly on crystallographic orientation: this is most strongly manifested in the R2 peak. The Cr3+ luminescence in these materials provides a sensitive probe of pressure-dependent shifts in the local geometry of the Al-sites in these materials, which are analyzed in the context of previous single-crystal x-ray diffraction measurements.

  3. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    PubMed Central

    Saleh, Gabriele; Oganov, Artem R.

    2016-01-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed. PMID:27580525

  4. Novel Stable Compounds in the C-H-O Ternary System at High Pressure

    NASA Astrophysics Data System (ADS)

    Saleh, Gabriele; Oganov, Artem R.

    2016-09-01

    The chemistry of the elements is heavily altered by high pressure, with stabilization of many new and often unexpected compounds, the emergence of which can profoundly change models of planetary interiors, where high pressure reigns. The C-H-O system is one of the most important planet-forming systems, but its high-pressure chemistry is not well known. Here, using state-of-the-art variable-composition evolutionary searches combined with quantum-mechanical calculations, we explore the C-H-O system at pressures up to 400 GPa. Besides uncovering new stable polymorphs of high-pressure elements and known molecules, we predicted the formation of new compounds. A 2CH4:3H2 inclusion compound forms at low pressure and remains stable up to 215 GPa. Carbonic acid (H2CO3), highly unstable at ambient conditions, was predicted to form exothermically at mild pressure (about 1 GPa). As pressure rises, it polymerizes and, above 314 GPa, reacts with water to form orthocarbonic acid (H4CO4). This unexpected high-pressure chemistry is rationalized by analyzing charge density and electron localization function distributions, and implications for general chemistry and planetary science are also discussed.

  5. Combined experimental and computational study of high-pressure behavior of triphenylene

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Miao; Zhong, Guo-Hua; Zhang, Jiang; Huang, Qiao-Wei; Goncharov, Alexander F.; Lin, Hai-Qing; Chen, Xiao-Jia

    2016-05-01

    We have performed measurements of Raman scattering, synchrotron x-ray diffraction, and visible transmission spectroscopy combined with density functional theory calculations to study the pressure effect on solid triphenylene. The spectroscopic results demonstrate substantial change of the molecular configuration at 1.4 GPa from the abrupt change of splitting, disappearance, and appearance of some modes. The structure of triphenylene is found be to stable at high pressures without any evidence of structural transition from the x-ray diffraction patterns. The obtained lattice parameters show a good agreement between experiments and calculations. The obtained band gap systematically decreases with increasing pressure. With the application of pressure, the molecular planes become more and more parallel relative to each other. The theoretical calculations indicate that this organic compound becomes metallic at 180 GPa, fueling the hope for the possible realization of superconductivity at high pressure.

  6. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  7. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  8. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  9. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  10. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of...

  11. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure pump shall comply with the 3-A Sanitary Standard for Homogenizers and Pumps of the Plunger Type. ... 7 Agriculture 3 2011-01-01 2011-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of...

  12. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure pump shall comply with the 3-A Sanitary Standard for Homogenizers and Pumps of the Plunger Type. ... 7 Agriculture 3 2014-01-01 2014-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of...

  13. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure pump shall comply with the 3-A Sanitary Standard for Homogenizers and Pumps of the Plunger Type. ... 7 Agriculture 3 2012-01-01 2012-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of...

  14. 77 FR 37712 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of the... following notification of preliminary determinations by Commerce that imports of high pressure...

  15. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  16. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  17. Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride

    SciTech Connect

    Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

  18. Electrical resistance of SrFeO2 at ultra high pressure

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masayoshi; Kagayama, Tomoko; Shimizu, Katsuya; Kageyama, Hiroshi

    2015-03-01

    SrFeO2 shows antiferromagnetic and insulating order at ambient pressure. The crystal structure of SrFeO2 has 2-dementional FeO2 plate and is interested in because this is common structure of high temperature superconductor. SrFeO2 has M-I, magnetic and spin transition with applying pressure. If magnetism disappears and metallization occurs with applying pressure, SrFeO2 may show superconductivity because of the crystal structure, so we measured electrical resistance at high pressure up to 150 GPa and low temperature down to 100 mK.

  19. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  20. Nucleation and droplet growth at high pressure

    NASA Astrophysics Data System (ADS)

    Luijten, Carlo Cornelis Maria

    Homogeneous nucleation, the first stage of droplet formation in the absence of foreign particles, usually takes place in the presence of one or more supercritical carrier gases. The present work aimed at a systematic investigation of the effects of carrier gas pressure on nucleation and droplet growth. Using the so-called nucleation pulse method, nucleation and droplet growth can be separated in time, which facilitates quantitative study of these processes using Constant Angle Mie Scattering and light extinction. The method was implemented in a modified shock tube, using gas dynamic principles to create the pulse. In this way, nucleation and growth rates were measured as a function of temperature, pressure, and composition. Composition measurement at high pressure was achieved along two different routes. Water vapour concentrations were determined using a commercial humidity sensor, after calibration with total pressure as an independent parameter. Gas chromatography was used to determine hydrocarbon concentrations, after pressure reduction of the mixture over a thermostatic capillary tube. Using the above analysis techniques, nucleation and droplet growth experiments were performed for several vapour-gas mixtures, at pressures between 1 and 40 bar. Mixtures with a varying degree of interaction were selected, to allow for a systematic investigation of carrier gas influence. Besides these binary mixtures, the first quantitative nucleation and growth rates for- multicomponent-natural gas were obtained. Theoretical models for both nucleation and droplet growth were adapted to take into account the presence of a carrier gas, under condition of small carrier gas solubility. The main effects involved are the increase of saturated vapour density and decrease of surface tension with pressure. On the basis of our experiments, these effects were demonstrated to play important and counteracting roles in high pressure nucleation. Using Density Functional Theory, both effects

  1. Crystal structures at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  2. High-pressure phase behavior of SrCO3: an experimental and computational Raman scattering study

    NASA Astrophysics Data System (ADS)

    Biedermann, Nicole; Speziale, Sergio; Winkler, Björn; Reichmann, Hans Josef; Koch-Müller, Monika; Heide, Gerhard

    2016-11-01

    The high-pressure phase behavior of strontianite (SrCO3) was both experimentally and theoretically investigated by Raman spectroscopy up to 78 GPa in a diamond anvil cell and density functional theory-based calculations. Our study shows a phase transition between 23.7 and 26.8 GPa during compression from space group Pmcn to post-aragonite SrCO3, which is accompanied by significant changes in the vibrational spectrum. The excellent agreement between the observed and computed Raman frequencies and intensities implies that the high-pressure polymorph has space group Pmmn and contributes to resolving an existing disagreement concerning the correct space group symmetry of this high-pressure polymorph. It is shown that the transition pressure from the aragonite to a post-aragonite phase increases linearly with decreasing cation radius for (Ca, Sr, Ba, Pb) carbonates.

  3. High pressure waterjet cutting industrial needs survey

    NASA Astrophysics Data System (ADS)

    Klavuhn, John; Baker, Bruce

    1989-08-01

    The results are presented of a survey conducted by personnel of the National Center for Excellence in Metalworking Technology (NCEMT) to assess the industrial needs in high pressure water jet cutting (WJC) technology. Survey forms were mailed to approximately 1400 individuals obtained from three mailing lists. The respondents included approximately 200 individuals associated with a variety of industries: 12 percent were WJC equipment suppliers, 40 percent were WJC users, and 48 percent were neither suppliers nor users. The survey addressed five specific areas of WJC technology: research and development, standards, systems, new products, and training and service. Results show that the need having the highest priority is the establishment of a database on WJC that contains the cutting parameters for a wide range of materials. Associated with this objective is the expressed need for an independent demonstration and test center for testing, data generation and operator training. A further need was found for establishing organized efforts in hardware development and research in mechanisms of cutting.

  4. Picosecond High Pressure Gas Switch experiment

    SciTech Connect

    Cravey, W.R.; Freytag, E.K.; Goerz, D.A.; Poulsen, P.; Pincosy, P.A.

    1993-08-01

    A high Pressure Gas Switch has been developed and tested at LLNL. Risetimes on the order of 200 picoseconds have been observed at 1 kHz prf and 1 atmosphere pressures. Calculations show that switching closure times on the order of tens of picoseconds can be achieved at higher pressures and electric fields. A voltage hold-off of 1 MV/cm has been measured at 10 atmospheres and several MV/cm appears possible with the HPGS. With such high electric field levels, energy storage of tens of Joules in a reasonably sized package is achievable. Initial HPGS performance has been characterized using the WASP pulse generator at LLNL. A detailed description of the switch used for initial testing is given. Switch recovery times of 1-ms have been measured at 1 atmosphere. Data on the switching uniformity, voltage hold-off recovery, and pulse repeatability, is presented. In addition, a physics switch model is described and results are compared with experimental data. Modifications made to the WASP HV pulser in order to drive the HPGS will also be discussed. Recovery times of less than 1 ms were recorded without gas flow in the switch chambers. Low pressure synthetic air was used as the switch dielectric. Longer recovery times were required when it was necessary to over-voltage the switch.

  5. Raman Study of SWNT Under High Pressure

    NASA Astrophysics Data System (ADS)

    Venkateswaran, U.; Rao, A. M.; Richter, E.; Eklund, P. C.; Smalley, R. E.

    1998-03-01

    A gasketed Merrill-Bassett-type diamond anvil cell was used for high pressure Raman measurements at room temperature. A 4:1 methanol-ethanol mixture served as the pressure transmitting medium. The radial mode (denoted as R, occuring at 186 cm-1 at 1 bar) and tangential modes (designated T_1, T_2, and T_3, located, respectively, at 1550, 1567, and 1593 cm-1 at 1 bar) were recorded for several representative pressures. With increasing pressure, both the R and T modes shift to higher frequencies with gradual weakening of intensity and broadening of linewidth. The radial mode disappears around ~ 2 GPa whereas the tangential modes, albeit weak in intensity, persist until 5.2 GPa. The decrease in Raman intensity under pressure can be attributed to a loss of resonance, since the strong Raman signals observed at ambient pressure have been interpreted as due a resonance with the electronic bands [1]. The R and T mode frequencies are fit to quadratic function of pressure i.e., ω=ω(0)+aP+bP^2 where `a' represents the linear pressure shift of the mode frequency which is proportional to the mode Gruneisen parameter. The linear pressure coefficient for the R mode is found to be nearly twice that of the high frequency T mode. A. M. Rao et al., Science 275, 187, 1997

  6. High pressure FAST of nanocrystalline barium titanate

    DOE PAGES

    Fraga, Martin B.; Delplanque, Jean -Pierre; Yang, Nancy; ...

    2016-06-01

    Here, this work studies the microstructural evolution of nanocrystalline (<1 µm) barium titanate (BaTiO3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain >100 nm BaTiO3 compacts. Using FAST, two commercial ~50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an area coverage ofmore » 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required—otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 °C, were 99.5% dense and had a grain size of 90±24 nm. These are unprecedented results for commercial BaTiO3 powders or any starting powder of 50 nm particle size—other authors have used 16 nm lab-produced powder to obtain similar results.« less

  7. High pressure FAST of nanocrystalline barium titanate

    SciTech Connect

    Fraga, Martin B.; Delplanque, Jean -Pierre; Yang, Nancy; Lavernia, Enrique J.; Monson, Todd C.

    2016-06-01

    Here, this work studies the microstructural evolution of nanocrystalline (<1 µm) barium titanate (BaTiO3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain >100 nm BaTiO3 compacts. Using FAST, two commercial ~50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an area coverage of 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required—otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 °C, were 99.5% dense and had a grain size of 90±24 nm. These are unprecedented results for commercial BaTiO3 powders or any starting powder of 50 nm particle size—other authors have used 16 nm lab-produced powder to obtain similar results.

  8. Stable xenon nitride at high pressures

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Wang, Yanchao; Wang, Hui; Zhang, Yunwei; Ma, Yanming

    2015-09-01

    Nitrides in many ways are fascinating since they often appear as superconductors, high-energy density, and hard materials. Though there exist a large variety of nitrides, noble gas nitrides are missing in nature. Pursuit of noble gas nitrides has therefore become the subject of topical interests, but remains as a great challenge since molecular nitrogen (N2, a major form of nitrogen) and noble gases are both inert systems and do not interact at normal conditions. We show through a first-principles swarm-structure search that high pressure enables a direct interaction of N2 and xenon (Xe) above 146 GPa. The resultant Xe nitride has a peculiar stoichiometry of XeN6, possessing a high-energy density of approximately 2.4 kJg -1, rivaling that of the modern explosives. Structurally, XeN6 is intriguing with the appearance of chaired N6 hexagons and unusually high 12-coordination of Xe bonded with N. Our work opens up the possibility of achieving Xe nitride with superior high-energy density whose formation is long sought as impossible.

  9. Dissociation of methane under high pressure.

    PubMed

    Gao, Guoying; Oganov, Artem R; Ma, Yanming; Wang, Hui; Li, Peifang; Li, Yinwei; Iitaka, Toshiaki; Zou, Guangtian

    2010-10-14

    Methane is an extremely important energy source with a great abundance in nature and plays a significant role in planetary physics, being one of the major constituents of giant planets Uranus and Neptune. The stable crystal forms of methane under extreme conditions are of great fundamental interest. Using the ab initio evolutionary algorithm for crystal structure prediction, we found three novel insulating molecular structures with P2(1)2(1)2(1), Pnma, and Cmcm space groups. Remarkably, under high pressure, methane becomes unstable and dissociates into ethane (C(2)H(6)) at 95 GPa, butane (C(4)H(10)) at 158 GPa, and further, carbon (diamond) and hydrogen above 287 GPa at zero temperature. We have computed the pressure-temperature phase diagram, which sheds light into the seemingly conflicting observations of the unusually low formation pressure of diamond at high temperature and the failure of experimental observation of dissociation at room temperature. Our results support the idea of diamond formation in the interiors of giant planets such as Neptune.

  10. Stable magnesium peroxide at high pressure

    PubMed Central

    Lobanov, Sergey S.; Zhu, Qiang; Holtgrewe, Nicholas; Prescher, Clemens; Prakapenka, Vitali B.; Oganov, Artem R.; Goncharov, Alexander F.

    2015-01-01

    Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under reduced condition of the Earth’s lower mantle. However, in exoplanets oxygen may be a more abundant constituent. Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 96 GPa and T = 2150 K with the formation of I4/mcm MgO2. Raman spectroscopy detects the presence of a peroxide ion (O22−) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may be present together or instead of MgO in rocky mantles and rocky planetary cores under highly oxidized conditions. PMID:26323635

  11. Amorphous boron nitride at high pressure

    NASA Astrophysics Data System (ADS)

    Durandurdu, Murat

    2016-06-01

    The pressure-induced phase transformation in hexagonal boron nitrite and amorphous boron nitrite is studied using ab initio molecular dynamics simulations. The hexagonal-to-wurtzite phase transformation is successfully reproduced in the simulation with a transformation mechanism similar to one suggested in experiment. Amorphous boron nitrite, on the other hand, gradually transforms to a high-density amorphous phase with the application of pressure. This phase transformation is irreversible because a densified amorphous state having both sp3 and sp2 bonds is recovered upon pressure release. The high-density amorphous state mainly consists of sp3 bonds and its local structure is quite similar to recently proposed intermediate boron nitrite phases, in particular tetragonal structure (P42/mnm), rather than the known the wurtzite or cubic boron nitrite due to the existence of four membered rings and edge sharing connectivity. On the basis of this finding we propose that amorphous boron nitrite might be best candidate as a starting structure to synthesize the intermediate phase(s) at high pressure and temperature (probably below 800 °C) conditions.

  12. High-pressure promoted combustion chamber

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A. (Inventor); Stoltzfus, Joel M. (Inventor)

    1991-01-01

    In the preferred embodiment of the promoted combusiton chamber disclosed herein, a thick-walled tubular body that is capable of withstanding extreme pressures is arranged with removable upper and lower end closures to provide access to the chamber for dependently supporting a test sample of a material being evaluated in the chamber. To facilitate the real-time analysis of a test sample, several pressure-tight viewing ports capable of withstanding the simulated environmental conditions are arranged in the walls of the tubular body for observing the test sample during the course of the test. A replaceable heat-resistant tubular member and replaceable flame-resistant internal liners are arranged to be fitted inside of the chamber for protecting the interior wall surfaces of the combustion chamber during the evaluation tests. Inlet and outlet ports are provided for admitting high-pressure gases into the chamber as needed for performing dynamic analyses of the test sample during the course of an evaluation test.

  13. Structures of xenon oxides at high pressures

    NASA Astrophysics Data System (ADS)

    Worth, Nicholas; Pickard, Chris; Needs, Richard; Dewaele, Agnes; Loubeyre, Paul; Mezouar, Mohamed

    2014-03-01

    For many years, it was believed that noble gases such as xenon were entirely inert. It was only in 1962 that Bartlett first synthesized a compound of xenon. Since then, a number of other xenon compounds, including oxides, have been synthesized. Xenon oxides are unstable under ambient conditions but have been predicted to stabilize under high pressure. Here we present the results of a combined theoretical and experimental study of xenon oxides at pressures of 80-100 GPa. We have synthesized new xenon oxides at these pressures and they have been characterized with X-ray diffraction and Raman spectroscopy. Calculations were performed with a density-functional theory framework. We have used the ab-initio random structure searching (AIRSS) method together with a data-mining technique to determine the stable compounds in the xenon-oxygen system in this pressure range. We have calculated structural and optical properties of these phases, and a good match between theoretical and experimental results has been obtained. Funding for computational research provided by the engineering and physical sciences research council (EPSRC; UK). Computing resources provided by Cambridge HPC and HECToR. X-ray diffraction experiments performed at ESRF.

  14. High-pressure transformations in xenon hydrates

    PubMed Central

    Sanloup, Chrystèle; Mao, Ho-kwang; Hemley, Russell J.

    2002-01-01

    A high-pressure investigation of the Xe⋅H2O chemical system was conducted by using diamond-anvil cell techniques combined with in situ Raman spectroscopy, synchrotron x-ray diffraction, and laser heating. Structure I xenon clathrate was observed to be stable up to 1.8 GPa, at which pressure it transforms to a new Xe clathrate phase stable up to 2.5 GPa before breaking down to ice VII plus solid xenon. The bulk modulus and structure of both phases were determined: 9 ± 1 GPa for Xe clathrate A with structure I (cubic, a = 11.595 ± 0.003 Å, V = 1,558.9 ± 1.2 Å3 at 1.1 GPa) and 45 ± 5 GPa for Xe clathrate B (tetragonal, a = 8.320 ± 0.004 Å, c = 10.287 ± 0.007 Å, V = 712.1 ± 1.2 Å3 at 2.2 GPa). The extended pressure stability field of Xe clathrate structure I (A) and the discovery of a second Xe clathrate (B) above 1.8 GPa have implications for xenon in terrestrial and planetary interiors. PMID:11756690

  15. High-pressure Raman study of Terephthalonitrile

    NASA Astrophysics Data System (ADS)

    Li, DongFei; Zhang, KeWei; Song, MingXing; Zhai, NaiCui; Sun, ChengLin; Li, HaiBo

    2017-02-01

    The in situ high-pressure Raman spectra of Terephthalonitrile (TPN) have been investigated from ambient to 12.6 GPa at room temperature. All the fundamental vibrational modes of TPN at ambient were assigned based on the first-principle calculations. A detailed Raman spectroscopy analysis revealed that TPN underwent a phase transition at 5.3 GPa. The frequencies of the TPN Raman peaks increase with increasing the pressure which can be attributed to the reduction in the interatomic distances and the escalation of effective force constants. The intensity of the C-C-C ring-out-plane deformation mode increases gradually as the frequency remains almost constant during the compression which can be explained by the existence of π-π interactions in TPN molecules. Additionally, the pressure-induced structural changes of TPN on the Fermi resonance between the C ≡ N out-of-plane vibration mode and the C - CN out-of-plane vibration mode have been analyzed.

  16. High pressure phase transitions in lawsonite at simultaneous high pressure and temperature: A single crystal study

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.

    2015-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.

  17. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  18. Cobalt ferrite nanoparticles under high pressure

    SciTech Connect

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V.; Errandonea, D.

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  19. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  20. Transient High-Pressure Fuel Injection

    NASA Astrophysics Data System (ADS)

    Jarrahbashi, Dorrin

    Break-up and atomization of liquid fuel jet during transient injection process has a significant effect on the Diesel engine combustion efficiency and pollution. The mechanisms responsible for liquid jet instability and break-up at high pressure, during the transient start-up and steady mass flux periods, has been investigated using Navier-Stokes and level-set computations. Via post-processing, the role of vorticity dynamics is examined and shown to reveal crucial new insights. An unsteady, axisymmetric full-jet case is solved. Then, a less computationally intensive case is studied with a segment of the jet core undergoing temporal instability; agreement with the full-jet calculation is satisfactory justifying the segment analysis for three-dimensional computation. The results for surface-shape development are in agreement with experimental observations and other three-dimensional computations; the initial, axisymmetric waves at the jet surface created by Kelvin-Helmholtz instability distort to cone shapes; next, three-dimensional character develops through an azimuthal instability that leads to the creation of streamwise vorticity, lobe shapes on the cones, and formation of liquid ligaments which extend from lobes on the cones. The cause of this azimuthal instability has been widely described as a Rayleigh-Taylor instability. However, additional and sometimes more important causes are identified here. Counter-rotating, streamwise vortices within and around the ligaments show a relationship in the instability behavior for jets flowing into like-density fluid; thus, density difference cannot explain fully the three-dimensional instability as previously suggested. Furthermore, the formation of ligaments that eventually break into droplets and the formation of streamwise vorticity are caused by the same vortical dynamics. Waviness is identified on the ligaments which should result in droplet formation. The nonlinear development of the shorter azimuthal waves and

  1. Material Composite Behavior Under High-Pressure

    NASA Astrophysics Data System (ADS)

    Conil, N.; Kavner, A.

    2004-12-01

    In situ x-ray diffraction techniques under relevant pressure and temperature conditions provide unique information about phase stability, elasticity and deformation behavior of Earth materials. Often samples consist of a calibrated standard intermixed with the material of interest. Accurate measurements of equation of state are based on two assumptions: that the equation of state of the calibrant is known precisely, and that the pressures of these two materials are the same. However, except under strict conditions of hydrostaticity, pressures are not necessary equal. To provide a detailed examination of the pressure relationship in the diamond anvil cell sample chamber, we analyzed two standard materials mixed together in a controlled geometry. Our samples consisted of unidirectional Al2O3 ceramic fibers ( ˜ 1μ m diameter) distributed in an Al metal matrix. This was ideal because both materials are existing high-pressure standards and the oxide/metal mixture is similar to many experiments. We conducted room temperature radial x-ray diffraction experiments using a diamond anvil cell at the X17C beamline at National Synchrotron Light Source. We studied two different fiber orientations with respect to the diamond anvil cell compression axis: one with fibers oriented vertically and the second, horizontally. In each case we measured the d-spacing of lattice planes as a function of rotation angle between principle stress axes and diffraction geometry. From these data, we calculated pressure and supported differential stress of both Al and Al2O3. We found that geometry plays an important role in determining the relative pressure and strength behavior of the two materials. At comparable pressures, in the vertical fibers case, PAl ˜ 8.7 GPa, PAl2O3 ˜ 10.2 GPa and in the horizontal fibers case, PAl ˜ 9.6 GPa when PAl2O3 ˜ 10.2 GPa. Thus, when the fibers are oriented vertically, aluminum pressure is always smaller than alumina pressure; whereas in the horizontal case

  2. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  3. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  4. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  5. The Mechanism of High Pressure Oxidations of Aliphatic Acids.

    DTIC Science & Technology

    ACETIC ACID , *OXIDATION), (*CARBOXYLIC ACIDS, OXIDATION), CHROMIUM ALLOYS, REACTION KINETICS, COPPER ALLOYS, NICKEL ALLOYS, TEMPERATURE, HIGH PRESSURE, CATALYSTS, GAS CHROMATOGRAPHY, VOLUMETRIC ANALYSIS, THESES

  6. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    SciTech Connect

    Yoo, Choong-Shik

    2006-01-27

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid. With modern advances in high-pressure technologies, it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varing temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carboncarbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high pressures and

  7. Distortions and stabilization of simple-cubic calcium at high pressure and low temperature

    PubMed Central

    Mao, Wendy L.; Wang, Lin; Ding, Yang; Yang, Wenge; Liu, Wenjun; Kim, Duck Young; Luo, Wei; Ahuja, Rajeev; Meng, Yue; Sinogeikin, Stas; Shu, Jinfu; Mao, Ho-kwang

    2010-01-01

    Ca-III, the first superconducting calcium phase under pressure, was identified as simple-cubic (sc) by previous X-ray diffraction (XRD) experiments. In contrast, all previous theoretical calculations showed that sc had a higher enthalpy than many proposed structures and had an imaginary (unstable) phonon branch. By using our newly developed submicrometer high-pressure single-crystal XRD, cryogenic high-pressure XRD, and theoretical calculations, we demonstrate that Ca-III is neither exactly sc nor any of the lower-enthalpy phases, but sustains the sc-like, primitive unit by a rhombohedral distortion at 300 K and a monoclinic distortion below 30 K. This surprising discovery reveals a scenario that the high-pressure structure of calcium does not go to the zero-temperature global enthalpy minimum but is dictated by high-temperature anharmonicity and low-temperature metastability fine-tuned with phonon stability at the local minimum. PMID:20479266

  8. Nuclear resonant inelastic X-ray scattering at high pressure and low temperature

    SciTech Connect

    Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; Jia, Quanjie; Hu, Michael Y.; Jin, Changqing; Ferry, Richard; Yang, Wenge; Struzhkin, Viktor; Alp, E. Ercan

    2015-01-01

    In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu57Fe2As2 at high pressure and low temperature were derived by using this new capability.

  9. Chromium incorporation into TiO{sub 2} at high pressure

    SciTech Connect

    Escudero, Alberto; Langenhorst, Falko

    2012-06-15

    Chromium incorporation into TiO{sub 2} up to 3 GPa at 1300 Degree-Sign C and 900 Degree-Sign C has been studied by XRD as well as TEM. A CaCl{sub 2} type TiO{sub 2} polymorph has been observed in the quenched samples from high pressure. Two different mechanisms of solubility occur in the recovered samples. Chromium replaces titanium on normal octahedral sites but it also occupies interstitial octahedral sites, especially in the samples recovered from higher pressures. Interstitial chromium is responsible for an orthorhombic distortion of the TiO{sub 2} rutile structure in the quenched samples and gives rise to a (1 1 0) twinned CaCl{sub 2}-structured polymorph. This phase is very likely the result of temperature quench at high pressure. The formation of this phase is directly related to the chromium content of the TiO{sub 2} grains. Chromium solubility in TiO{sub 2} increases with increasing the synthesis pressure. TiO{sub 2} is able to accommodate up to 15.3 wt% Cr{sub 2}O{sub 3} at 3 GPa and 1300 Degree-Sign C, compared to 5.7 wt% at atmospheric pressure at the same temperature. - Graphical abstract: Microstructure consisting of twins domains of recovered Cr-doped CaCl{sub 2} type TiO{sub 2} grains synthesised at high pressure. Highlights: Black-Right-Pointing-Pointer Chromium solubility in TiO{sub 2} increases at high pressure. Black-Right-Pointing-Pointer Chromium occupies substitutional and interstitial positions in the rutile structure. Black-Right-Pointing-Pointer Interstitial chromium causes a decrease of the rutile symmetry. Black-Right-Pointing-Pointer An orthorhombic CaCl{sub 2} type structure is observed in the quenched samples.

  10. CARS Diagnostics of High Pressure Combustion - 2. Measurements of NO, H2O and High Pressure Flames

    DTIC Science & Technology

    1985-12-01

    R85-956328-F CARS DIAGNOSTICS OF r HIGH PRESSURE COMBUSTION -I MEASUREMENTS OF NO, H 0 AND HIGH PRESSURE FLAMES Final Report J.H. Stufflebeam DTIC I7...High Pressure Flames Final Report ~ 5%~ J. H. Stufflebeam J. A. Shirley December 1985 𔃿** U. S. Army Research Office Contract: DAAG29-83-C-OOO1...ClaIiation, CARS Diagnostics of High Pressure Combustion II 12. PERSONAL AUTHOR(S) Stufflebeam , 7. H., ShirleyJA 113a. TYPE OF REPORT 13b. TIME COVERED

  11. Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification

    NASA Astrophysics Data System (ADS)

    Efthimiopoulos, I.; Jahn, S.; Kuras, A.; Schade, U.; Koch-Müller, M.

    2017-02-01

    A combined high-pressure mid-infrared absorption and Raman spectroscopy study on a natural CaMg0.98Fe0.02(CO3)2 dolomite sample was performed both at ambient and high temperatures. A pressure-temperature phase diagram was constructed for all the reported dolomite ambient- and high-pressure polymorphs. In addition, a local distortion of the ambient-pressure dolomite structure was identified close to 11 GPa, just before the transition toward the first known high-pressure phase. All the Clausius-Clapeyron slopes are found to be positive with similar magnitudes. Complementary first-principles calculations suggest a metastable nature of the high-pressure dolomite polymorphs. Finally, theoretical spectroscopy is used to interpret and discuss the observed changes in the measured vibrational spectra.

  12. High-pressure studies of analogs with applications to materials science and geoscience

    NASA Astrophysics Data System (ADS)

    Stan, Camelia Veronica

    Analog materials can provide insights to understanding inaccessible phase transitions and novel material properties. The work presented here examines both structural and chemical variation of analogs in order to probe the physics and chemistry of materials at high pressure and temperature conditions. The experiments reported here used the diamond anvil cell to achieve pressures up to 1.5 Mbar and temperatures as high as 2500 K, in conjunction with synchrotron x-ray diffraction and Raman spectroscopy. The work is divided into three major projects. Polymorphism in AX2-type compounds was explored using PbF 2 as an archetype for phases with highly coordinated cations. These materials are of interest due to their potential technical applications and, in the case of SiO2, their geophysical relevance. Compression studies at room temperature revealed an unusual isosymmetric phase transition in PbF 2, and the combination of experimental and theoretical approaches explored the mechanism of the phase transformation that had hitherto not been understood. High-pressure-temperature experiments led to the discovery of a new phase transition in this material, thus furthering our understanding of phase transformation pathways in AX2 materials. Garnets are important compounds in geoscience and materials science. The high-pressure behavior of Y3Fe5O12 has been controversial due to conflicting reports regarding its high-pressure polymorphs. Here I show that the high-pressure phase is a perovskite with a (Y0.75Fe0.25)FeO3 composition. In addition, I also identify a spin transition in the octahedral Fe3+ site at 45-51 GPa. Comparison with other perovskite-structured orthoferrites shows that the volume discontinuity associated with the spin transition is controlled by the size of the cation occupying the distorted dodecahedral site. Silicate perovskites and post-perovskites are the dominant mineral phases in the Earth's lower mantle. The effect of incorporation of Fe 2+ on the perovskite

  13. High-pressure synthesis and physical properties of new iron (nickel)-based superconductors

    NASA Astrophysics Data System (ADS)

    Shirage, P. M.; Miyazawa, K.; Ishikado, M.; Kihou, K.; Lee, C. H.; Takeshita, N.; Matsuhata, H.; Kumai, R.; Tomioka, Y.; Ito, T.; Kito, H.; Eisaki, H.; Shamoto, S.; Iyo, A.

    2009-05-01

    We have utilized a high-pressure (HP) technique to synthesize a series of newly-discovered iron (nickel)-based superconductors. For the LnFeAsO-based superconductors ( Ln = lanthanide), we show that the introduction of oxygen (O)-deficiency in the LnO layers, which is achievable only through HP process, is an effective way to dope electron carriers into the system, which results in yielding the superconducting transition temperature ( T c) comparable with those for F-substituted counterpart. The effect of O-deficiency, variation of Ln ions, and the external pressure on T c are examined. All the experimental data indicate strong correlation between the crystal structure and the superconductivity of the oxypnictide superconductors. Upper critical field measurement on single crystalline sample of PrFeAsO 1-y shows the superconducting anisotropy of 5, which is smaller than cuprates. We also demonstrate that HP technique is applicable for the so-called ‘122’ systems, by showing the results on polycrystalline (Ca, Na)Fe 2As 2, (Ba, K)Fe 2As 2, as well as single crystal BaNi 2P 2 samples.

  14. An occurrence of metastable cristobalite in high-pressure garnet Granulite

    USGS Publications Warehouse

    Darling, R.S.; Chou, I.-Ming; Bodnar, R.J.

    1997-01-01

    High-pressure (0.8 gigapascals) granulite facies garnet from Gore Mountain, New York, hosts multiple solid inclusions containing the low- pressure silica polymorph cristobalite along with albite and minor ilmenite. Identification of cristobalite is based on Raman spectra, electron microprobe analysis, and microthermometric measurements on the ??/?? phase transformation. The cristobalite plus albite inclusions may have originated as small, trapped samples of hydrous sodium-aluminum-siliceous melt. Diffusive loss of water from these inclusions under isothermal, isochoric conditions may have resulted in a large enough internal pressure decrease to promote the metastable crystallization of cristobalite.

  15. High Pressure Inactivation of Food-borne Viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past half dozen years or so, the USDA Seafood Safety laboratory has endeavored to evaluate the potential of high pressure processing (HPP) for inactivation of food-borne viruses. As a commercial food technology, high pressure processing is highly advantageous because it can inactivate path...

  16. 6. Fire Protection (high pressure), view to the east. Located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Fire Protection (high pressure), view to the east. Located on the pipe floor between Unit 3 and Unit 4, the high pressure CO2 tanks are connected to the generator barrel of all four units. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  17. 15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. PROCESSES IN THIS MODULE OCCURRED UNDER HIGH PRESSURES AND TEMPERATURES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  18. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  19. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  20. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  1. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  2. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of...

  3. 76 FR 38697 - High Pressure Steel Cylinders From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading 7311... pressure steel cylinders from China. Accordingly, effective May 11, 2011, the Commission...

  4. Vacuum Surface Flashover And High Pressure Gas Streamers

    DTIC Science & Technology

    1997-06-01

    Optical Emission Characteristics of Polycrystalline Diamond During Surface Flashover in Vacuum ," 1996 IEEE 1~ International Symposium on... VACUUM SURFACE FLASHOVER AND HIGH PRESSURE GAS STREAMERS J. M. Elizondo, M. L. Krogh, D. Smith, D. Stoltz, and S. N. Wright AlliedSignal Federal...breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial

  5. Superconducting Materials

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After working with Lewis Research Center and Jet Propulsion Laboratory, Superconducting Technologies, Inc. (STI) adapted NASA requirements and refined its own standard production recipe. STI uses high temperature superconducting (HTS) materials in its basic products: high quality thin films, circuits and components. Applications include microwave circuits for radar to reduce interference.

  6. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  7. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  8. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  9. Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+δ made superconducting by high-pressure oxygen annealing

    SciTech Connect

    Hu, Hefei; Zhu, Yimei; Shi, Xiaoya; Li, Qiang; Zhong, Ruidan; Schneeloch, John A.; Gu, Genda; Tranquada, John M.; Billinge, Simon J. L.

    2014-10-28

    Superconductivity with Tc = 53.5 K has been induced in a large La₁.₉Ca₁.₁Cu₂O₆ (La-2126) single crystal by annealing in a high partial-pressure of oxygen at 1200°C. Using transmission electron microscopy (TEM) techniques, we show that a secondary Ca-doped La₂CuO₄ (La-214) phase, not present in the as-grown crystal, appears as a coherent “intergrowth” as a consequence of the annealing. A corresponding secondary superconducting transition near 13 K is evident in the magnetization measurement. In this study, electron energy loss spectroscopy (EELS) reveals a pre-edge peak at the O K edge in the superconducting La-2126 phase, which is absent in the as-grown crystal, confirming the hole-doping by interstitial oxygen.

  10. High-pressure magic angle spinning nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg 2SiO 4) reacted with supercritical CO 2 and H 2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  11. High-pressure magic angle spinning nuclear magnetic resonance.

    PubMed

    Hoyt, David W; Turcu, Romulus V F; Sears, Jesse A; Rosso, Kevin M; Burton, Sarah D; Felmy, Andrew R; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. As an application example, in situ(13)C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg(2)SiO(4)) reacted with supercritical CO(2) and H(2)O at 150 bar and 50°C are reported, with relevance to geological sequestration of carbon dioxide.

  12. High-pressure magic angle spinning nuclear magnetic resonance

    SciTech Connect

    Hoyt, David W.; Turcu, Romulus V. F.; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Felmy, Andrew R.; Hu, Jian Zhi

    2011-10-01

    A high-pressure magic angle spinning (MAS) NMR capability, consisting of a reusable high-pressure MAS rotor, a high-pressure rotor loading/reaction chamber for in situ sealing and re-opening of the high-pressure MAS rotor, and a MAS probe with a localized RF coil for background signal suppression, is reported. The unusual technical challenges associated with development of a reusable high-pressure MAS rotor are addressed in part by modifying standard ceramics for the rotor sleeve by abrading the internal surface at both ends of the cylinder. In this way, not only is the advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other removable plastic sealing mechanisms/components and O-rings can be mounted to create the desired high-pressure seal. Using this strategy, sealed internal pressures exceeding 150 bars have been achieved and sustained under ambient external pressure with minimal loss of pressure for 72 h. Finally, as an application example, in situ13C MAS NMR studies of mineral carbonation reaction intermediates and final products of forsterite (Mg2SiO4) reacted with supercritical CO2 and H2O at 150 bar and 50 °C are reported, with relevance to geological sequestration of carbon dioxide.

  13. Molecular dynamics simulation of solvated protein at high pressure.

    PubMed

    Kitchen, D B; Reed, L H; Levy, R M

    1992-10-20

    We have completed a molecular dynamics simulation of protein (bovine pancreatic trypsin inhibitor, BPTI) in solution at high pressure (10 kbar). The structural and energetic effects of the application of high pressure to solvated protein are analyzed by comparing the results of the high-pressure simulation with a corresponding simulation at low pressure. The volume of the simulation cell containing one protein molecule plus 2943 water molecules decreases by 24.7% at high pressure. This corresponds to a compressibility for the protein solution of beta = 1.8 x 10(-2) kbar-1. The compressibility of the protein is estimated to be about one-tenth that of bulk water, while the protein hydration layer water is found to have a greater compressibility as compared to the bulk, especially for water associated with hydrophobic groups. The radius of gyration of BPTI decreases by 2% and there is a one third decrease in the protein backbone atomic fluctuations at high pressure. We have analyzed pressure effects on the hydration energy of the protein. The total hydration energy is slightly (4%) more favorable at high pressure even though the surface accessibility of the protein has decreased by a corresponding amount. Large pressure-induced changes in the structure of the hydration shell are observed. Overall, the solvation shell waters appear more ordered at high pressure; the pressure-induced ordering is greatest for nonpolar surface groups. We do not observe evidence of pressure-induced unfolding of the protein over the 100-ps duration of the high-pressure simulation. This is consistent with the results of high-pressure optical experiments on BPTI.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Osmium Metal Studied under High Pressure and Nonhydrostatic Stress

    SciTech Connect

    Weinberger,M.; Tolbert, S.; Kavner, A.

    2008-01-01

    Interest in osmium as an ultra-incompressible material and as an analog for the behavior of iron at high pressure has inspired recent studies of its mechanical properties. We have measured elastic and plastic deformation of Os metal at high pressures using in situ high pressure x-ray diffraction in the radial geometry. We show that Os has the highest yield strength observed for any pure metal, supporting up to 10 GPa at a pressure of 26 GPa. Furthermore, our data indicate changes in the nonhydrostatic apparent c/a ratio and clear lattice preferred orientation effects at pressures above 15 GPa.

  15. High-pressure saline washing of allografts reduces bacterial contamination.

    PubMed

    Hirn, M Y; Salmela, P M; Vuento, R E

    2001-02-01

    60 fresh-frozen bone allografts were contaminated on the operating room floor. No bacterial growth was detected in 5 of them after contamination. The remaining 55 grafts had positive bacterial cultures and were processed with three methods: soaking in saline, soaking in antibiotic solution or washing by high-pressure saline. After high-pressure lavage, the cultures were negative in three fourths of the contaminated allografts. The corresponding figures after soaking grafts in saline and antibiotic solution were one tenth and two tenths, respectively. High-pressure saline cleansing of allografts can be recommended because it improves safety by reducing the superficial bacterial bioburden.

  16. Investigation of High-Pressure Hydraulic Vortex Rate Sensor

    DTIC Science & Technology

    stability - augmentation system . The feasibility of low-pressure fluid stabilization systems was demonstrated. The primary component that requires development for implementation in a high pressure system is the vortex rate sensor. The high-pressure hydraulic vortex rate sensor has an on-board built-in supply of hydraulic fluid which is used in the primary hydro-mechanical flight control of the vehicle. A small amount of hydraulic fluid under high pressure can be diverted from the main system to the vortex rate sensor, used to perform a sensing function, and

  17. Safety analysis of high pressure gasous fuel container punctures

    SciTech Connect

    Swain, M.R.

    1995-09-01

    The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.

  18. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGES

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; ...

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  19. Irraditation-Induced Stabilization of Zircon (ZrSiO4) at High Pressure

    SciTech Connect

    Lang,M.; Zhang, F.; Lian, J.; Trautmann, C.; Neumann, R.; Ewing, R.

    2008-01-01

    Zircon (ZrSiO4), the most important accessory mineral in the Earth's crust, transforms under high pressure to reidite, a scheelite-structured polymorph. Recently, reidite was found in association with meteorite impact structures. Here, we show that the zircon-to-reidite transition, and thus the amount of reidite produced during high-pressure events, strongly depends on the microstructure of the initial zircon. Our results clearly demonstrate that radiation damage, present in natural zircon due to radioactive decay, dramatically modifies the phase stability of crystalline zircon at high pressure. By simulating this radiation damage with ion beams, we show that zircon, pre-irradiated with 1.47-GeV Xe ions, formed only minor amounts of reidite up to 36GPa; whereas, an unirradiated zircon was almost completely transformed to reidite under the same conditions. By means of Raman scattering, X-ray diffraction, and transmission electron microscopy, we confirmed that the stability field of the irradiated zircon is expanded to higher pressures as a result of the interplay between pressure, ion beam-induced amorphization, and the formation of nanoscale damage domains. These results provide insight into the formation-conditions of reidite in nature and illustrate how pressure-induced phase transitions may be affected by defects, in this case those caused by radioactive decay.

  20. Equations of state of ice VI and ice VII at high pressure and high temperature

    SciTech Connect

    Bezacier, Lucile; Hanfland, Michael; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Hervé; Daniel, Isabelle

    2014-09-14

    High-pressure H{sub 2}O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H{sub 2}O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V{sub 0} = 14.17(2) cm{sup 3} mol{sup −1}, K{sub 0} = 14.05(23) GPa, and α{sub 0} = 14.6(14) × 10{sup −5} K{sup −1} for ice VI and V{sub 0} = 12.49(1) cm{sup 3} mol{sup −1}, K{sub 0} = 20.15(16) GPa, and α{sub 0} = 11.6(5) × 10{sup −5} K{sup −1} for ice VII.

  1. High Pressure Phase-Transformation Induced Texture Evolution and Strengthening in Zirconium Metal: Experiment and Modeling

    PubMed Central

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-01-01

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation. PMID:26218405

  2. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    SciTech Connect

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  3. Equations of state of ice VI and ice VII at high pressure and high temperature.

    PubMed

    Bezacier, Lucile; Journaux, Baptiste; Perrillat, Jean-Philippe; Cardon, Hervé; Hanfland, Michael; Daniel, Isabelle

    2014-09-14

    High-pressure H2O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H2O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V0 = 14.17(2) cm(3) mol(-1), K0 = 14.05(23) GPa, and α0 = 14.6(14) × 10(-5) K(-1) for ice VI and V0 = 12.49(1) cm(3) mol(-1), K0 = 20.15(16) GPa, and α0 = 11.6(5) × 10(-5) K(-1) for ice VII.

  4. High pressure low temperature studies on 1-2-2 iron-based superconductors using designer diamond cells

    DOE PAGES

    Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.; ...

    2013-01-01

    In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba0.5Sr0.5Fe2As2 and Ba(Fe0.9Ru0.1)2As2 samples are presented to 10 K and 41 GPa. The collapsed tetragonal phasemore » was observed at a pressure of 14 GPa in Ba0.5Sr0.5Fe2As2 at ambient temperature. The highest superconducting transition temperature in Ba0.5Sr0.5Fe2As2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.« less

  5. Quantum-mechanical simulation of MgAl2O4 under high pressure

    NASA Astrophysics Data System (ADS)

    Gracia, L.; Beltrán, A.; Andrés, J.; Franco, R.; Recio, J. M.

    2002-12-01

    The equations of state and phase diagrams of the cubic spinel and two high-pressure polymorphs of MgAl2O4 have been investigated up to 65 GPa using density functional theory, the space-filling polyhedral partition of the unit cell, and the static approximation. Energy-volume curves have been obtained for the spinel phase, the recently observed calcium ferrite-type and calcium titanite-type phases, and the MgO+α-Al2O3 mixture. Zero-pressure unit lengths and compressibilities are well described by the theoretical model, that predicts static bulk moduli about 215 GPa for all the high-pressure forms. Computed equations of state are also in good agreement with the most recent experimental data for all compounds and polymorphs considered. We do not find a continuous pressure-induced phase sequence but the static simulations predict that the oxide mixture, the ferrite phase, and the titanite phase become more stable than the spinel form at 15, 35, and 62 GPa, respectively. A microscopic analysis in terms of polyhedral and bond compressibilities leads to identify the ionic displacements accompanying the phase transformations and to an appealing interpretation of the spinel response to compression.

  6. High pressure-induced structural effects in plastic packaging

    NASA Astrophysics Data System (ADS)

    Richter, Tobias; Sterr, Julia; Jost, Verena; Langowski, Horst-Christian

    2010-12-01

    Today, flexible vacuum packages are predominantly used for products to be subjected to high pressure treatment. However, tray packages with a modified atmosphere are in demand, which provide a high failure rate with respect to gas and water vapour permeability and packaging integrity. Methods to follow permeation processes under high pressure were developed and used together with optical microscopy, confocal scanning laser microscopy, Raman spectroscopy and atomic force microscopy to identify the mechanisms for changes in permeability and damage to the packaging materials. Single film samples and pouch packages filled with model products were studied. Results indicate a reversible decrease in the coefficients of diffusion and permeation under the impact of high pressure, due to the compression of the polymeric bulk. Irreversible changes in the polymeric materials are associated with gases in the packaging head space, which cause high local temperatures and create damage due to rapid deliberation upon the pressure drop at the end of the high pressure cycle.

  7. 2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SOUTHEAST SIDE. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  8. 5. INTERIOR, TWO 5' X 6' HIGH PRESSURE EMERGENCY GATES, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. INTERIOR, TWO 5' X 6' HIGH PRESSURE EMERGENCY GATES, FOR BUREAU OF RECLAIMATION, WITH HYDRAULIC HOISTS, INSIDE OF MACHINE SHOP (CA 1930S). - Hardie-Tynes Manufacturing Company, Workshop, 800 Twenty-eighth Street North, Birmingham, Jefferson County, AL

  9. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Evaluation of high-pressure drilling fluid supply systems

    SciTech Connect

    McDonald, M.C.; Reichman, J.M.; Theimer, K.J.

    1981-10-01

    A study was undertaken to help determine the technical and economic feasibility of developing a high-pressure fluid-jet drilling system for the production of geothermal wells. Three system concepts were developed and analyzed in terms of costs, component availability, and required new-component development. These concepts included a single-conduit system that supplies the downhole cutting nozzles directly via surface-located high-pressure pumps; a single-conduit system utilizing low-pressure surface pumps to supply and operate a high-pressure downhole pump, which in turn supplies the cutting nozzles; and a dual-conduit system supplying surface-generated high-pressure fluid for cutting via one conduit and low-pressure scavenging fluid via the other. It is concluded that the single-conduit downhole pump system concept has the greatest potential for success in this application. 28 figures, 11 tables.

  11. 9. General view of engine between cylinders with high pressure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. General view of engine between cylinders with high pressure cylinder on left and low pressure cylinder on right. - Carnegie Steel-Ohio Works, Steam Engines, 912 Salt Springs Road, Youngstown, Mahoning County, OH

  12. High-pressure liquid chromatography of aromatic amines

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1979-01-01

    Analysis made on commercially available liquid chromatograph demonstrates high-pressure liquid chromatographic conditions for separation of approximately 50 aromatic amines ranging from simple aniline derivatives to complex multiring di- and tri-amines.

  13. High pressure working mode of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, H.; Popovici, C.

    1985-01-01

    The behavior of high pressure cathotrons is discussed. Methods of preheating either the gas or the cathode itself are detailed together with various geometries for the hollow cathode. Three special configurations were tested, and the results are analyzed.

  14. Detail view of valve mechanisms and goverenor on high pressure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of valve mechanisms and goverenor on high pressure stage engine of unit 43. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  15. Detail view of unit 43 with high pressure stage compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of unit 43 with high pressure stage compressor in left foreground. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  16. DETAIL VIEW OF UNIT #3 WITH HIGH PRESSURE STAGE COMPRESSOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF UNIT #3 WITH HIGH PRESSURE STAGE COMPRESSOR IN LEFT FOREGROUND. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  17. The Combustion of HMX. [burning rate at high pressures

    NASA Technical Reports Server (NTRS)

    Boggs, T. L.; Price, C. F.; Atwood, A. I.; Zurn, D. E.; Eisel, J. L.

    1980-01-01

    The burn rate of HMX was measured at high pressures (p more than 1000 psi). The self deflagration rate of HMX was determined from 1 atmosphere to 50,000 psi. The burning rate shows no significant slope breaks.

  18. Structural behaviour of niobium oxynitride under high pressure

    SciTech Connect

    Sharma, Bharat Bhooshan Poswal, H. K. Pandey, K. K. Sharma, Surinder M.; Yakhmi, J. V.; Ohashi, Y.; Kikkawa, S.

    2014-04-24

    High pressure investigation of niobium oxynitrides (NbN{sub 0.98}O{sub 0.02}) employing synchrotron based angle dispersive x-ray diffraction experiments was carried out in very fine pressure steps using membrane driven diamond anvil cell. Ambient cubic phase was found to be stable up to ∼18 GPa. At further high pressure cubic phase showed rhombohedral distortion.

  19. High-pressure injection injury of the finger

    PubMed Central

    Saraf, Sanjay

    2012-01-01

    The high-pressure injection injuries are unusual injuries and the extent of tissue damage is often under estimated. They represent potentially disabling forms of trauma and have disastrous effects on tissues if not treated promptly. We present a case of high pressure injection injury to the finger from lubricant oil. The patient presented late with necrosis of volar tissue of left index finger. The patient was aggressively managed in stages, with delayed flap cover, with satisfactory functional and aesthetic outcome. PMID:23325982

  20. Pulse plasma carburizing and high pressure gas quenching -- Industrial applications

    SciTech Connect

    Preisser, F.; Schnatbaum, F.

    1995-12-31

    Pulse plasma carburizing with high pressure gas quenching up to 20 bar is the newly developed case hardening process now available in production size equipment. The first part of results demonstrates the tremendous potential of high pressure gas quenching for successful hardening of case hardening steels. The second part opens a window to glance at the pulse plasma carburizing of complex shaped parts. Both processes improve economical data and performance of carburizing processes.

  1. High-pressure Raman spectroscopy of carbon onions and nanocapsules

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Liu, G. H.; Wang, X. M.; Fujita, T.; Xu, B. S.; Chen, M. W.

    2009-08-01

    We report high-pressure Raman spectra of carbon onions and nanocapsules investigated by diamond anvil cell experiments. The pressure coefficient and elastic behavior of carbon onions and nanocapsules are found to be very similar to those of multiwall carbon nanotubes. Additionally, detectable structure changes, particularly the collapse of the concentric graphite structure, cannot been seen at pressures as high as ˜20 GPa, demonstrating that carbon onions and nanocapsules have significant hardness and can sustain very high pressures.

  2. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    SciTech Connect

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG. The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.

  3. Nonmagnetic indenter-type high-pressure cell for magnetic measurements.

    PubMed

    Kobayashi, T C; Hidaka, H; Kotegawa, H; Fujiwara, K; Eremets, M I

    2007-02-01

    An indenter-type high-pressure cell has been developed for electric and magnetic measurements in low-temperature and high-magnetic-field environments. The maximum pressure achieved at low temperatures is more than 4.5 GPa, which is higher than that of a conventional piston-cylinder cell. The typical sample space at maximum pressure is 1.6 mm in diameter and approximately 0.7 mm in depth, and magnetic measurements such as ac-susceptibility and nuclear magnetic resonance can be performed using a miniature coil. All the components of the indenter cell are made of nonmagnetic materials that have enough thermal conductivity for low-temperature experiments using a 3He/4He dilution refrigerator. Another indenter-type cell designed for a commercial superconducting quantum interference device magnetometer is also reported.

  4. High-pressure crystallography of periodic and aperiodic crystals

    PubMed Central

    Hejny, Clivia; Minkov, Vasily S.

    2015-01-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium ‘High-Pressure Crystallography of Periodic and Aperiodic Crystals’ presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader’s interest in this topic. PMID:25866659

  5. Advances and synergy of high pressure sciences at synchrotron sources

    SciTech Connect

    Liu, H.; Ehm, L.; Duffy, T.; Crichton, W.; Aoki, K.

    2009-01-01

    Introductory overview to the special issue papers on high-pressure sciences and synchrotron radiation. High-pressure research in geosciences, materials science and condensed matter physics at synchrotron sources is experiencing growth and development through synergistic efforts around the world. A series of high-pressure science workshops were organized in 2008 to highlight these developments. One of these workshops, on 'Advances in high-pressure science using synchrotron X-rays', was held at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, USA, on 4 October 2008. This workshop was organized in honour of Drs Jingzhu Hu and Quanzhong Guo in celebration of their retirement after up to 18 years of dedicated service to the high-pressure community as beamline scientists at X17 of NSLS. Following this celebration of the often unheralded role of the beamline scientist, a special issue of the Journal of Synchrotron Radiation on Advances and Synergy of High-Pressure Sciences at Synchrotron Sources was proposed, and we were pleased to invite contributions from colleagues who participated in the workshop as well as others who are making similar efforts at synchrotron sources worldwide.

  6. High quality x-ray absorption spectroscopy measurements with long energy range at high pressure using diamond anvil cell

    SciTech Connect

    Hong, X.; Newville, M.; Prakapenka, V.B.; Rivers, M.L.; Sutton, S.R.

    2009-07-31

    We describe an approach for acquiring high quality x-ray absorption fine structure (XAFS) spectroscopy spectra with wide energy range at high pressure using diamond anvil cell (DAC). Overcoming the serious interference of diamond Bragg peaks is essential for combining XAFS and DAC techniques in high pressure research, yet an effective method to obtain accurate XAFS spectrum free from DAC induced glitches has been lacking. It was found that these glitches, whose energy positions are very sensitive to the relative orientation between DAC and incident x-ray beam, can be effectively eliminated using an iterative algorithm based on repeated measurements over a small angular range of DAC orientation, e.g., within {+-}3{sup o} relative to the x-ray beam direction. Demonstration XAFS spectra are reported for rutile-type GeO{sub 2} recorded by traditional ambient pressure and high pressure DAC methods, showing similar quality at 440 eV above the absorption edge. Accurate XAFS spectra of GeO{sub 2} glass were obtained at high pressure up to 53 GPa, providing important insight into the structural polymorphism of GeO{sub 2} glass at high pressure. This method is expected be applicable for in situ XAFS measurements using a diamond anvil cell up to ultrahigh pressures.

  7. High-pressure phases of a hydrogen-rich compound: Tetramethylgermane

    NASA Astrophysics Data System (ADS)

    Qin, Zhen-Xing; Zhang, Chao; Tang, Ling-Yun; Zhong, Guo-Hua; Lin, Hai-Qing; Chen, Xiao-Jia

    2012-11-01

    The vibrational and structural properties of a hydrogen-rich group IVa hydride, Ge(CH3)4, are studied by combining Raman spectroscopy and synchrotron x-ray diffraction measurements at room temperature and at pressures up to 30.2 GPa. Both techniques allow the obtaining of complementary information on the high-pressure behaviors and yield consistent phase transitions at 1.4 GPa for the liquid to solid and 3.0, 5.4, and 20.3 GPa for the solid to solid. The four high-pressure solid phases are identified to have the cubic, orthorhombic, monoclinic, and monoclinic crystal structures with space groups of Pa-3 for phase I, Pnma for phase II, P21/c for phase III, and P21 for phase IV, respectively. These transitions are suggested to result from the changes in the inter- and intramolecular bonding of this compound. The softening of some Raman modes on CH3 groups and their sudden disappearance indicate that Ge(CH3)4 might be an ideal compound to realize metallization and even high-temperature superconductivity at modest static pressure for laboratory capability.

  8. Structure and stability of hydrous minerals at high pressure

    NASA Technical Reports Server (NTRS)

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    1994-01-01

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  9. Structure and stability of hydrous minerals at high pressure

    NASA Astrophysics Data System (ADS)

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  10. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  11. Modulated structure and molecular dissociation of solid chlorine at high pressures

    NASA Astrophysics Data System (ADS)

    Li, Peifang; Gao, Guoying; Ma, Yanming

    2012-08-01

    Among diatomic molecular halogen solids, high pressure structures of solid chlorine (Cl2) remain elusive and least studied. We here report first-principles structural search on solid Cl2 at high pressures through our developed particle-swarm optimization algorithm. We successfully reproduced the known molecular Cmca phase (phase I) at low pressure and found that it remains stable up to a high pressure 142 GPa. At 150 GPa, our structural searches identified several energetically competitive, structurally similar, and modulated structures. Analysis of the structural results and their similarity with those in solid Br2 and I2, it was suggested that solid Cl2 adopts an incommensurate modulated structure with a modulation wave close to 2/7 in a narrow pressure range 142-157 GPa. Eventually, our simulations at >157 GPa were able to predict the molecular dissociation of solid Cl2 into monatomic phases having body centered orthorhombic (bco) and face-centered cubic (fcc) structures, respectively. One unique monatomic structural feature of solid Cl2 is the absence of intermediate body centered tetragonal (bct) structure during the bco → fcc transition, which however has been observed or theoretically predicted in solid Br2 and I2. Electron-phonon coupling calculations revealed that solid Cl2 becomes superconductors within bco and fcc phases possessing a highest superconducting temperature of 13.03 K at 380 GPa. We further probed the molecular Cmca → incommensurate phase transition mechanism and found that the softening of the Ag vibrational (rotational) Raman mode in the Cmca phase might be the driving force to initiate the transition.

  12. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  13. High pressure effects revisited for the cuprate superconductor family with highest critical temperature

    PubMed Central

    Yamamoto, Ayako; Takeshita, Nao; Terakura, Chieko; Tokura, Yoshinori

    2015-01-01

    How to enhance the superconducting critical temperature (Tc) has been a primary issue since the discovery of superconductivity. The highest Tc reported so far is 166 K in HgBa2Ca2Cu3O8+δ (Hg1223) at high pressure of 23 GPa, as determined with the reduction onset, but not zero, of resistivity. To clarify the possible condition of the real maximum Tc, it is worth revisiting the effects of pressure on Tc in the highest Tc family. Here we report a systematic study of the pressure dependence of Tc in HgBa2CaCu2O6+δ (Hg1212) and Hg1223 with the doping level from underdoped to overdoped. The Tc with zero resistivity is probed with a cubic-anvil-type apparatus that can produce hydrostatic pressures. Variation, not only increase but also decrease, of Tc in Hg1212 and Hg1223 with pressure strongly depends on the initial doping levels. In particular, we confirm a maximum Tc of 153 K at 22 GPa in slightly underdoped Hg1223. PMID:26619829

  14. Superconducting Memristors

    NASA Astrophysics Data System (ADS)

    Peotta, Sebastiano; Di Ventra, Massimiliano

    2014-09-01

    In his original work, Josephson predicted that a phase-dependent conductance should be present in superconducting tunnel junctions, an effect difficult to detect, mainly because it is hard to single it out from the usual nondissipative Josephson current. We propose a solution for this problem that consists of using different superconducting materials to realize the two junctions of a superconducting interferometer. According to the Ambegaokar-Baratoff relation the two junctions have different conductances if the critical currents are equal, thus the Josephson current can be suppressed by fixing the magnetic flux in the loop at half of a flux quantum without canceling the phase-dependent conductance. Our proposal can be used to study the phase-dependent conductance, an effect present in principle in all superconducting weak links. From the standpoint of nonlinear circuit theory, such a device is in fact an ideal memristor with possible applications to memories and neuromorphic computing in the framework of ultrafast and low-energy-consumption superconducting digital circuits.

  15. Causes of high pressure compressor deterioration in service

    NASA Technical Reports Server (NTRS)

    Richardson, J. H.; Sallee, G. P.; Smakula, F. K.

    1979-01-01

    The high mechanical reliability and low deterioration rate of the JT9D high-pressure compressor results in long utilization without exceeding engine operational limits. The increasing cost and decreasing supply of fuel have focused attention on the fuel burned implications of such high time use without refurbishment. The paper presents the results of JT9D high pressure compressor studies. The mechanical deterioration of the JT9D high-pressure compressor gaspath parts versus increasing service usage, documented from inspection of service parts, is presented and discussed including changes in airfoil roughness, blade length, airfoil contour and outer air seal trench characteristics. An estimate of the performance loss versus usage is related to each type of damage. The combined estimated high-pressure compressor performance loss for all mechanisms determined from part inspection is compared to historical engine test data to establish the validity of the predicted loss levels. The effect of cold section refurbishment on engine fuel consumption recovery and the results of an optimization study to determine the appropriate interval for high pressure compressor refurbishment are also reported.

  16. Hydrogen Storage in Mesoporous Materials under High Pressure

    NASA Astrophysics Data System (ADS)

    Weinberger, Michelle; Somayazulu, Maddury; Hemley, Russell

    2008-03-01

    To date, the materials considered best candidates for hydrogen storage fuel cells include activated carbon and metal organic frameworks. Both very high surface area activated carbon and MOF-5 have been shown to adsorb around 4.5 wt % of hydrogen gas at 78 K. We have investigated the fundamental structural response of these materials to high pressure, as well as their behavior at high pressure when packed with dense hydrogen. Further investigation of these materials at low temperatures while still at elevated pressures may in fact provide a route for recovery of these hydrogen-packed materials to near ambient conditions. Covalent organic frameworks offer the potential for even better hydrogen storage capacity. These materials have significantly lower densities than the MOF materials and offer a significantly larger number of adsorption sites. Diamond anvil cells are uniquely suited for the study of these materials, allowing in situ measurements at high pressure as well as at low temperatures. Using X-ray diffraction and Raman spectroscopy and Infrared Spectroscopy we probe the behavior of the hydrogen confined in these porous materials at high pressure by tracking changes in the in situ high pressure x-ray diffraction patterns and shifts in the hydrogen vibron peaks.

  17. Transport properties of silicate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Gaudio, S. J.; Clark, A. N.; O'Dwyer-Brown, L.

    2012-12-01

    It is well appreciated that the transport properties (e.g., diffusion, viscosity) of silicate melts are intimately linked by melt structure and the time scales of structural relaxation. These linkages have been explored exten-sively at low pressure, but our understanding is more limited for high-pressure conditions relevant to the Earth's deep interior. Transport property models based on free-volume, activation energy and/or configurational entropy have merits, but their validity in extrapolation is uncertain. Moreover, the structural implications at high pressure are conflicting and lack experimental support. We examine these issues and review theoretical efforts to model transport properties at high pressure, as well as, those constraints provided by laboratory experiments and simulations. We emphasis the need to consider the properties of melt not only for high-pressure superheated conditions, but also for supercooled conditions in the vicinity of the glass transition. For example, the time scales for density relaxation traversing the glass transition at high pressure can be monitored using in situ X-ray miroctomography/absorption and ex vivo by the Archimedes' method combined with spectroscopy. These approaches are amenable to both strong and fragile liquids. Taken together with superliquidus data, we can greatly improve the interpolation of melt properties within the melting interval for refractory mantle compositions.

  18. Enhancement of superconductivity near the ferromagnetic quantum critical point in UCoGe.

    PubMed

    Slooten, E; Naka, T; Gasparini, A; Huang, Y K; de Visser, A

    2009-08-28

    We report a high-pressure single crystal study of the superconducting ferromagnet UCoGe. Measurements of the ac susceptibility and resistivity under pressures up to 2.2 GPa show ferromagnetism is smoothly depressed and vanishes at a critical pressure p(c) = 1.4 GPa. Near the ferromagnetic critical point superconductivity is enhanced. Upper-critical field measurements under pressure show B(c2)(0) attains remarkably large values, which provides solid evidence for spin-triplet superconductivity over the whole pressure range. The obtained p-T phase diagram reveals superconductivity is closely connected to a ferromagnetic quantum-critical point hidden under the superconducting "dome."

  19. Superconducting magnets

    SciTech Connect

    Willen, E.; Dahl, P.; Herrera, J.

    1985-01-01

    This report provides a self-consistent description of a magnetic field in the aperture of a superconducting magnet and details how this field can be calculated in a magnet with cos theta current distribution in the coils. A description of an apparatus that can be used to measure the field uniformity in the aperture has been given. Finally, a detailed description of the magnet being developed for use in the Superconducting Super Collider is given. When this machine is built, it will be by far the largest application of superconductivity to date and promises to make possible the experimental discoveries needed to understand the basic laws of nature governing the world in which we live.

  20. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  1. Ultra-high pressure water jet: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The technologies being tested for concrete decontamination are targeted for alpha contamination. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  2. Deformation Twinning of a Silver Nanocrystal under High Pressure

    SciTech Connect

    Huang, Xiaojing; Yang, Wenge; Harder, Ross; Sun, Yugang; Liu, Ming; Chu, Yong S.; Robinson, Ian K.; Mao, Ho-kwang

    2015-11-01

    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials' microscopic morphology and alter their properties. Understanding a crystal's response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials.

  3. High-Pressure Gaseous Burner (HPGB) Facility Became Operational

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    2003-01-01

    A gas-fueled high-pressure combustion facility with optical access, developed over the last 3 years, is now collecting research data in a production mode. The High-Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique because it is the only continuous-flow, hydrogen-capable 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow s advanced aircraft engines. The facility provides optical access to the flame zone through four fused-silica optical windows, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enable the validation of numerical codes that simulate gas turbine combustors.

  4. Confinement of hydrogen at high pressure in carbon nanotubes

    DOEpatents

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  5. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  6. Experimental methods for phase equilibria at high pressures.

    PubMed

    Dohrn, Ralf; Fonseca, José M S; Peper, Stephanie

    2012-01-01

    Knowledge of high-pressure phase equilibria is crucial in many fields, e.g., for the design and optimization of high-pressure chemical and separation processes, carbon capture and storage, hydrate formation, applications of ionic liquids, and geological processes. This review presents the variety of methods to measure phase equilibria at high pressures and, following a classification, discusses the measurement principles, advantages, challenges, and error sources. Examples of application areas are given. A detailed knowledge and understanding of the different methods is fundamental not only for choosing the most suitable method for a certain task but also for the evaluation of experimental data. The discrepancy between the (sometimes low) true accuracy of published experimental data and the (high) accuracy claimed by authors is addressed. Some essential requirements for the generation of valuable experimental results are summarized.

  7. High-pressure cryogenic seals for pressure vessels

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1977-01-01

    This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.

  8. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B13N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  9. High pressure cosmochemistry applied to major planetary interiors: Experimental studies

    NASA Technical Reports Server (NTRS)

    Nicol, M. F.; Johnson, M.; Boone, S.

    1985-01-01

    The measurement of equilibria in binary fluid-solid systems in diamond anvil cells, represents a major advance of the art of high-pressure experimentation. Vibrational spectroscopy, direct visual observations, and X-ray diffraction crystallography of materials confined in externally heated cells are the primary experimental probes being used. Adiabats in these systems are being measured in order to constrain models of heat flow in these bodies and to detect phase transitions by thermal anomalies. Other studies are directed toward interpreting high pressure reactions in these systems that are suggested by shockwave measurements, and developing methods for reaching high temperatures and high pressures of planetary interest in diamond cells. The overall objective of this project is to determine the properties of the H2-He-H2O-HN3-CH4 system and related small-molecule systems that are needed to constrain theoretical models of the interiors of the major planets.

  10. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  11. High pressure common rail injection system modeling and control.

    PubMed

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC.

  12. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  13. Applications and development of high pressure PEM systems

    SciTech Connect

    Leonida, A; Militsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Many portable fuel cell applications require high pressure hydrogen, oxygen, or both. High pressure PEM systems that were originally designed and developed primarily for aerospace applications are being redesigned for use in portable applications. Historically, applications can be broken into weight sensitive and weight insensitive cell stack designs. Variants of the weight sensitive designs have been considered to refill oxygen bottles for space suits, to provide oxygen for space shuttle, to provide oxygen and/or reboost propellants to the space station, and to recharge oxygen bottles for commercial aviation. A long operating history has been generated for weight insensitive designs that serve as oxygen generators for submarines. Exciting future vehicle concepts and portable applications are enabled by carefully designing lightweight stacks which do not require additional pressure containment. These include high altitude long endurance solar rechargeable aircraft and airships, water refuelable spacecraft, and a variety of field portable systems. High pressure electrolyzers can refill compressed hydrogen storage tanks for fuel cell powered vehicles or portable fuel cells. Hamilton Standard has demonstrated many high pressure PEM water electrolyzer designs for a variety of applications. Electrolyzers with operational pressures up to 3000 psi (20.7 MPa) are currently used for US Navy submarine oxygen generators. An aerospace version has been demonstrated in the Integrated Propulsion Test Article (IPTA) program. Electrolyzers with operational pressures up to 6000 psi (41.4 MPa) have also been demonstrated in the High Pressure Oxygen Recharge System (HPORS). Onboard oxygen generator systems (OBOGS) that generate up to 2000 psi (13.8 MPa) oxygen and refill breathable oxygen tanks for commercial aviation have been designed and successfully demonstrated. Other hardware applications that require high pressure PEM devices are related to these proven applications.

  14. Experiment on wear behavior of high pressure gas seal faces

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Peng, Xudong; Bai, Shaoxian; Meng, Xiangkai; Li, Jiyun

    2014-11-01

    Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%-25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.

  15. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  16. Veterinary high pressure injection injuries with inoculations for larger animals.

    PubMed

    Couzens, G; Burke, F D

    1995-08-01

    Equipment used in the mass vaccination of farm stock is a source of high pressure injection injury. We present four cases due to chicken vaccine, and one due to pig vaccine. Unlike injuries caused by paint or oil guns the vaccination delivers a fixed volume. Although the vaccine is in a mineral oil carrier it appears to elicit little inflammatory reaction in a small dose. The outcome is related to the volume injected. In chicken vaccine the dose is small enough to allow conservative or minimally invasive management. The large volume in pig vaccine requires treatment as for conventional high pressure injection injuries.

  17. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  18. Very high pressure Moessbauer spectroscopy using diamond anvil cells

    SciTech Connect

    Pasternak, M.P.; Taylor, R.D.

    1988-01-01

    The technique of generating very high pressure by means of Diamond Anvil Cells (DAC) for Mossbauer Effect applications is outlined. A comprehensive description is presented of the principles of DAC, modification for the use in M/umlt o/ssbauer Spectroscopy (MS), the Merrill--Bassett and Bassett cells, of pressure measurements, of gasketing and collimation, and of hydrostatic media. Examples of /sup 151/Eu, /sup 119/Sn and /sup 129/I are given showing the feasibility of DAC applications in MS. Other isotopes with potential use for high pressure MS using DAC are suggested. 27 refs., 9 figs.

  19. Carbon Nanotubes as High-Pressure Cylinders and Nanoextruders

    NASA Astrophysics Data System (ADS)

    Sun, L.; Banhart, F.; Krasheninnikov, A. V.; Rodríguez-Manzo, J. A.; Terrones, M.; Ajayan, P. M.

    2006-05-01

    Closed-shell carbon nanostructures, such as carbon onions, have been shown to act as self-contracting high-pressure cells under electron irradiation. We report that controlled irradiation of multiwalled carbon nanotubes can cause large pressure buildup within the nanotube cores that can plastically deform, extrude, and break solid materials that are encapsulated inside the core. We further showed by atomistic simulations that the internal pressure inside nanotubes can reach values higher than 40 gigapascals. Nanotubes can thus be used as robust nanoscale jigs for extruding and deforming hard nanomaterials and for modifying their properties, as well as templates for the study of individual nanometer-sized crystals under high pressure.

  20. Recent Results on High-Pressure Axial Blowers

    NASA Technical Reports Server (NTRS)

    Eckert, B.

    1947-01-01

    Considerable progress has, in recent times, been attained in the development of the high-pressure axial blower by well-planned research. The efforts are directed toward improving the efficiencies, which are already high for the axial blower, and in particular the delivery pressure heads. For high pressures multistage arrangements are used. Of fundamental importance is the careful design of all structural parts of the blower that are subject to the effects of the flow. In the present report, several recent results and experiences are reported, which are based on results of German engine research.

  1. High pressure and Multiferroics materials. A happy marriage

    SciTech Connect

    Gilioli, Edmondo; Ehm, Lars

    2014-10-31

    We found that the community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Moreover, the in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities.

  2. High pressure and multiferroics materials: a happy marriage

    PubMed Central

    Gilioli, Edmondo; Ehm, Lars

    2014-01-01

    The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities. PMID:25485138

  3. Dehydration of planetary ices at high pressure; the role of analogue materials (Invited)

    NASA Astrophysics Data System (ADS)

    Fortes, A. D.

    2013-12-01

    Many planet-forming compounds become unstable with respect to their components under conditions of high pressure. In the Earth, for example, Mg2SiO4 breaks down to MgSiO3 + MgO at ~ 25 GPa, a pressure corresponding to the 670 km seismic discontinuity, with significance for the dynamics of convective flow in the mantle. A similar phenomenon occurs with many hydrate compounds thought to be major ';rock forming minerals' inside outer Solar System bodies, undoubtedly with important consequences for the structure and dynamics of icy worlds. It is well known that clathrates tend to form denser polymorphs with an incrementally greater concentration of the guest molecule, exsolving high-pressure phases of water ice in the process, or else (in the case of CO2), break down to entirely to their component molecular solids. My own recent work using high-pressure neutron powder diffraction has explored not only the behaviour of methane clathrates but also the exsolution of water from ammonia dihydrate and monohydrate, both of which break down eventually to ammonia hemihydrate + ice. In some cases, understanding the sequence of changes in both crystal structure and composition at high pressure is challenging, particularly when the starting materials have a complex crystal structure. Some years ago, I identified a high-pressure phase boundary where MgSO4.11H2O (meridianiite) appeared to break down to another hydrate and high-pressure ice VI. However, the powder diffraction pattern of the hydrate formed under these conditions resembled nothing encountered previously in my high-pressure studies of the next lowest hydrate, MgSO4.7H2O (epsomite). This led me to search for hydration states between 7 and 11 which might have escaped detection over several centuries of study of simple divalent metal sulfates. A wide-ranging systematic study of M2+X6+O4.nH2O compounds at low temperatures uncovered two new hydrates, an 8-hydrate and a 9-hydrate, the former occurring only in NiSO4 solutions

  4. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  5. Temperature effects for high pressure processing of Picornaviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigation of the effects of pre-pressurization temperature on the high pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus -1 (HPeV), was performed. For CAV9, an average 1.99 log10 greater inactivation was ...

  6. 3. SOUTHWEST REAR, WITH RAILROAD LINE AT RIGHT. HIGH PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTHWEST REAR, WITH RAILROAD LINE AT RIGHT. HIGH PRESSURE HELIUM STORAGE TANKS AT LEFT. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Helium Compression Plant, Test Area 1-115, intersection of Altair & Saturn Boulevards, Boron, Kern County, CA

  7. High-pressure injection injuries of the hand.

    PubMed

    Flotre, M

    1992-05-01

    Various types of high-pressure equipment, including airless paint sprayers, hydraulic apparatus and grease guns, are used in industry, in farming and in the home. Injection injuries from this equipment usually involve the hand and may initially appear benign. However, these injuries must be treated quickly and aggressively to prevent significant long-term disability.

  8. High pressure injection injuries: a serious occupational hazard.

    PubMed

    Mrvos, R; Dean, B S; Krenzelok, E P

    1987-01-01

    High pressure injection equipment such as airless paint sprayers, high pressure grease guns, and fuel injection apparatus constitute a serious safety hazard resulting in significant morbidity. These devices are capable of delivering contaminants such as paint, solvents, and grease at pressures ranging from 600-12,000 psi. This allows the substance to penetrate through a minute skin wound and to spread widely through fascial planes and tendon sheaths and to produce significant vascular compression and systemic toxicity. High pressure injection injuries frequently result in amputation. Fifty-five suspected high pressure injection injury cases were evaluated. Twenty were determined to be actual injection injuries from equipment producing pressures in the range of 1,500-12,000 psi. The injected contaminants included latex paint, mineral spirits, and concrete sealer. Fourteen injuries involved digits. Digital amputation was necessary in three patients. Hospital admissions averaged 6.5 days. Successful management of these cases involves awareness of the impending problem and rapid referral of the patient to an emergency department and to a competent orthopedic or plastic surgeon.

  9. Ultra-high pressure water jet: Baseline report

    SciTech Connect

    1997-07-31

    The ultra-high pressure waterjet technology was being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The ultra-high pressure waterjet technology acts as a cutting tool for the removal of surface substrates. The Husky{trademark} pump feeds water to a lance that directs the high pressure water at the surface to be removed. The safety and health evaluation during the testing demonstration focused on two main areas of exposure. These were dust and noise. The dust exposure was found to be minimal, which would be expected due to the wet environment inherent in the technology, but noise exposure was at a significant level. Further testing for noise is recommended because of the outdoor environment where the testing demonstration took place. In addition, other areas of concern found were arm-hand vibration, ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, fall hazards, slipping hazards, hazards associated with the high pressure water, and hazards associated with air pressure systems.

  10. Variable high pressure processing sensitivities for GII human noroviruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human norovirus (HuNoV) is the leading cause of foodborne diseases worldwide. High pressure processing (HPP) is one of the most promising non-thermal technologies for decontamination of viral pathogens in foods. However, the survival of HuNoVs by HPP is poorly understood because these viruses cann...

  11. High-pressure ignition plasma torch for aerospace testing facilities

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Kulikov, Yu M.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Son, E. E.

    2016-11-01

    The present paper discusses the issues of implementation of high-pressure ignition plasma torch in terms of discharge phenomena in compressed gases, dense nitrogen plasma properties and stable arcing power requirements. Contact ignition has been tested in a pressure range p = 1-25 bar and has proved to be a reliable solution for pilot arc burning.

  12. Reducing peanut allergens by high pressure combined with polyphenol oxidase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyphenol oxidase (PPO) has been shown to reduce major peanut allergens (Ara h 1 and Ara h 2). Because high pressure (HP) can increase enzyme activity, we postulated that further reduction of peanut allergens can be achieved through HP combined with PPO. Peanut extracts were treated with each of th...

  13. Rotordynamic stability problems and solutions in high pressure turbocompressors

    NASA Technical Reports Server (NTRS)

    Schmied, J.

    1989-01-01

    The stability of a high pressure compressor is investigated with special regard to the self-exciting effects in oil seals and labyrinths. It is shown how to stabilize a rotor in spite of these effects and even increase its stability with increasing pressure.

  14. Density functional theory investigation of sodium azide at high pressure

    NASA Astrophysics Data System (ADS)

    Steele, B. A.; Landerville, A. C.; Oleynik, I. I.

    2014-05-01

    High pressure experiments utilizing Raman spectroscopy indicate that the a phase of sodium azide undergoes a polymeric phase transition at high pressure. In this work, the structural and vibrational properties, including the first order Raman and infrared spectra, of the a phase of sodium azide are calculated using first-principles density functional theory up to 92 GPa. The equation of state of α NaN3 is obtained within the quasi-harmonic approximation at various temperatures. Each Raman-active mode blue shifts under compression whereas the doubly degenerate IR-active azide bending mode red-shifts under compression. However, at 70 GPa, the intensity of the Bu IR-active bending mode decreases substantially, and a new distorted azide bending lattice mode appears in the IR spectrum. In contrast to the bending mode, this new mode blue-shifts under compression. No new modes appear in the Raman spectra at high pressure, indicating that the changes in the Raman spectrum seen in experiment at high pressure are signs of new high nitrogen content structures, but not due to sodium azide.

  15. 26. VIEW OF PUMP ROOM, SHOWING PORTIONS OF HIGH PRESSURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF PUMP ROOM, SHOWING PORTIONS OF HIGH PRESSURE AIR SYSTEM AT LEFT AND CENTER AND OVERFLOW STORAGE TANK AT RIGHT, LOOKING NORTHWEST - U.S. Naval Submarine Base, New London Submarine Escape Training Tank, Albacore & Darter Roads, Groton, New London County, CT

  16. Detail view of unit 43 with high pressure stage compressor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of unit 43 with high pressure stage compressor in left foreground and low pressure stage compressor in right background. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  17. High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment

    NASA Technical Reports Server (NTRS)

    Herda, D. A.; Gross, R. S.

    1995-01-01

    The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.

  18. High pressure processing inactivates human norovirus within oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of raw bivalve mollusks can result in norovirus infection. One potential intervention for virus-contaminated shellfish is high pressure processing (HPP). Currently HPP is known to inactivate Vibrio bacteria, hepatitis A virus, and murine norovirus within oysters. To evaluate the potentia...

  19. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  20. Major vascular injury from high-pressure water jet.

    PubMed

    Harvey, R L; Ashley, D A; Yates, L; Dalton, M L; Solis, M M

    1996-01-01

    High-pressure water jets are used in industry as a cleaning and cutting tool. Penetrating injuries by these devices can produce minimal external evidence of extensive internal damage. We report a literature review and the case of a limb-threatening injury to the lower extremity caused by such a device.

  1. High-pressure applications in medicine and pharmacology

    NASA Astrophysics Data System (ADS)

    Silva, Jerson L.; Foguel, Debora; Suarez, Marisa; Gomes, Andre M. O.; Oliveira, Andréa C.

    2004-04-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  2. 76 FR 33239 - High Pressure Steel Cylinders From the People's Republic of China; Initiation of Countervailing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China; Initiation...'') petition concerning imports of high pressure steel cylinders (``steel cylinders'') from the People's... Petitions for the Imposition of Antidumping and Countervailing Duties Against High Pressure Steel...

  3. 77 FR 37384 - High Pressure Steel Cylinders From the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China... duty order on high pressure steel cylinders (``steel cylinders'') from the People's Republic of China.... See High Pressure Steel Cylinders From the People's Republic of China: Final...

  4. Research on viscosity of metal at high pressure

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, F.; Ma, X.; Zhang, M.

    2016-11-01

    A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.

  5. Behavior of silver molybdate at high-pressure

    SciTech Connect

    Arora, A.K.; Nithya, R.; Misra, Sunasira; Yagi, Takehiko

    2012-12-15

    Behavior of cubic spinel phase of Ag{sub 2}MoO{sub 4} is investigated at high pressure using X-ray diffraction and Raman spectroscopy. The P-V data are fitted to a third order Birch-Murnaghan equation of state using a value of B{sub 0}=113 GPa and B Prime {sub 0}=4. The compound is also found to exhibit a phase transition around 5 GPa to a tetragonal structure and the two phases are found to coexist over a range of pressures. Raman spectra exhibit dramatic changes across the phase transition. Increase of X-ray background scattering and broadening of the Raman peaks associated with MoO{sub 4} tetrahedral ions in the high pressure phase suggest evolution of positional disorder. However, no evidence of pressure-induced amorphization was found up to 47 GPa. - Graphical abstract: Evolution of the integrated intensity of all the diffraction peaks between 12 and 18 degree 2{theta} as a function of pressure. The rapid decrease of the intensity suggests evolution of positional disorder in the high-pressure tetragonal phase. Highlights: Black-Right-Pointing-Pointer First in-situ X-ray diffraction and Raman study of cubic silver molybdate at high pressure. Black-Right-Pointing-Pointer Commencement of a structural transition to a tetragonal phase is found at 2.3 GPa. Black-Right-Pointing-Pointer The high-pressure phase is found to have positional disorder. Black-Right-Pointing-Pointer A bulk modulus of 113 GPa is obtained from the equation of state.

  6. High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics

    SciTech Connect

    Yoo, C

    2004-05-26

    Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high

  7. Ignition during hydrogen release from high pressure into the atmosphere

    NASA Astrophysics Data System (ADS)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  8. Metastable NaYF 4 fluorite at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Grzechnik, Andrzej; Bouvier, Pierre; Crichton, Wilson A.; Farina, Luca; Köhler, Jürgen

    2002-06-01

    High-pressure high-temperature behavior of metastable NaYF 4 fluorite (Fm 3¯m, Z=4), with the Na and Y atoms randomly distributed in the cationic sublattice, is studied with synchrotron angle-dispersive powder X-ray diffraction in diamond anvil (DAC) and large-volume Paris-Edinburgh cells and synthesis in a multi-anvil apparatus. The onset of a pressure-induced phase transition at room temperature takes place above 10 GPa as observed in DACs loaded with different hydrostatic and non-hydrostatic pressure media (nitrogen, paraffin oil, or ethanol:methanol media). In situ powder X-ray diffraction measurements in the Paris-Edinburgh cell and syntheses using the multi-anvil apparatus at high pressures and high temperatures show that the new polymorph is of the gagarinite-type (P6 3/m, Z=1) with partially ordered cations, the formula being Na 1.5Y 1.5F 6. This phase is structurally related to the Na 1.5Y 1.5F 6 modification (P 6¯, Z=1) stable at ambient conditions. At higher temperatures, the new pressure-induced hexagonal variant of NaYF 4 eventually decomposes into a non-stoichiometric gagarinite-like phase and yttrium fluoride YF 3 (Pnma, Z=4).

  9. High-pressure infrared sepctra of alpha-quartz, coesite, stishovite and silica glass

    NASA Technical Reports Server (NTRS)

    Williams, Q.; Hemley, R. J.; Kruger, M. B.; Jeanloz, R.

    1993-01-01

    High-pressure infrared absorption spectra of alpha-quatz, coesite, stishovite, and SiO2 glass are consistent with the primary compression mechanism of the initially tetrahedrally bonded phases being the bending of the Si-O-Si angle at pressures less than 10-20 GPa. At higher pressures, up to 40 GPa, we observe a decline in the intensity of the infrared SiO4 asymmetric-stretching vibrations of all three phases, with an increase in the relative amplitude between 700 and 900/cm. This change in intensities is attributed to an increase in the average coordination number of silicon through extreme distortion of tetrahedra. At pressures above approximately 20 GPa, the low-pressure crystalline polymorphs gradually become amorphous, and the infrared spectra provide evidence for an increase in silicon coordination in these high-density amorphous phases. The pressure-amorphized samples prepared from quartz and coesite differ structurally both from each other and from silica glass that has been compressed, and the high pressure spectra indicate that these materials are considerably more disordered than stishovite under comparable pressure conditions. Average mode Grueneisen parameters calculated for quartz, stishovite and fused silica from both infrared and Raman spectra are compatible with the corresponding thermodynamic value of the Grueneisen parameter, however, that of coesite is significantly discrepant.

  10. Phase Stability of Epsilon and Gamma Hniw (CL-20) at High-Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Gump, Jared C.; Stoltz, Chad A.; Peiris, Suhithi M.

    2007-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) is one of the few ingredients developed since World War II to be considered for transition to military use. Five polymorphs have been identified for CL-20 by FTIR measurements (α, β, γ, ɛ, ζ). As CL-20 is transitioned into munitions it will become necessary to predict its response under conditions of detonation, for performance evaluation. Such predictive modeling requires a phase diagram and basic thermodynamic properties of the various phases at high pressure and temperature. Therefore, the epsilon and gamma phases of CL-20 at static high-pressure and temperature were investigated using synchrotron angle-dispersive x-ray diffraction experiments. The samples were compressed and heated using diamond anvil cells (DAC). Pressures and temperatures achieved were around 5 GPa and 240 °C, respectively. The epsilon phase was stable to 6.3 GPa at ambient temperature. When heated at ambient pressure the epsilon phase was sustained to a temperature of 120 °C then underwent a transition to the gamma phase above 125 °C and then thermal decomposition occurred above 150 °C. Upon compression, the gamma phase underwent a phase transition at both ambient temperature and 140 °C. Pressure—volume data for the epsilon and gamma phase at ambient temperature and the epsilon phase at 75 °C were fit to the Birch-Murnaghan formalism to obtain isothermal equations of state.

  11. Exploring the Phase Diagram SiO2-CO2 at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Kavner, A.

    2015-12-01

    CO2 is an important volatile system relevant for planetary sciences and fundamental chemistry. Molecular CO2 has doubly bonded O=C=O units but high pressure-high temperature (HP-HT) studies have recently shown its transformation into a three-dimensional network of corner-linked [CO4] units analogous to the silica mineral polymorphs, through intermediate non-molecular phases. Here, we report P-V-T data on CO2-IV ice from time-of-flight neutron diffraction experiments, which allow determining the compressibility and thermal expansivity of this intermediate molecular-to-non-molecular phase.1 Aditionally, we have explored the SiO2-CO2 phase diagram and the potential formation of silicon carbonate compounds. New data obtained by laser-heating diamond-anvil experiments in CO2-filled microporous silica polymorphs will be shown. In particular, these HP-HT experiments explore the existence of potential CO2/SiO2 compounds with tetrahedrally-coordinated C/Si atoms by oxygens, which are predicted to be stable (or metastable) by state-of-the-art ab initio simulations.2,3 These theoretical predictions were supported by a recent study that reports the formation of a cristobalite-type Si0.4C0.6O2 solid solution at high-pressures and temperatures, which can be retained as a metastable solid down to ambient conditions.4 Entirely new families of structures could exist based on [CO4]4- units in various degrees of polymerisation, giving rise to a range of chain, sheet and framework solids like those found in silicate chemistry. References[1] S. Palaich et al., Am. Mineral. Submitted (2015) [2] A. Morales-Garcia et al., Theor. Chem. Acc. 132, 1308 (2013) [3] R. Zhou et al., Phys. Rev. X, 4, 011030 (2014) [4] M. Santoro et al. Nature Commun. 5, 3761 (2014)

  12. Synthetic chemistry with periodic mesostructures at high pressure.

    PubMed

    Mandal, Manik; Landskron, Kai

    2013-11-19

    Over the last two decades, researchers have studied extensively the synthesis of mesostructured materials, which could be useful for drug delivery, catalytic cracking of petroleum, or reinforced plastics, among other applications. However, until very recently researchers used only temperature as a thermodynamic variable for synthesis, completely neglecting pressure. In this Account, we show how pressure can affect the synthetic chemistry of periodic mesoporous structures with desirable effects. In its simplest application, pressure can crystallize the pore walls of periodic mesoporous silicas, which are difficult to crystallize otherwise. The motivation for the synthesis of periodic mesoporous silica materials (with pore sizes from 2 to 50 nm) 20 years ago was to replace the microporous zeolites (which have pore sizes of <2 nm) in petroleum cracking applications, because the larger pore size of mesoporous materials allows for faster transport of larger molecules. However, these mesoporous materials could not replace zeolite materials because they showed lower hydrothermal stability and lower catalytic activity. This reduced performance has been attributed to the amorphous nature of the mesoporous materials' channel walls. To address this problem, we developed the concept of "nanocasting at high pressure". Through this approach, we produced hitherto-unavailable, periodic mesostructured silicas with crystalline pore walls. In nanocasting, we compress a periodic mesostructured composite (e.g. a periodic mesoporous silica with carbon-filled pores) and subsequently heat it to induce the selective crystallization of one of the two phases. We attain the necessary high pressure for synthesis using piston-cylinder and multianvil apparatuses. Using periodic mesostructured silica/carbon nanocomposites as starting material, we have produced periodic mesoporous coesite and periodic mesoporous quartz. The quartz material is highly stable under harsh hydrothermal conditions (800

  13. Tellurium Hydrides at High Pressures: High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Hui; Zhang, Jurong; Liu, Hanyu; Zhang, Shoutao; Song, Hai-Feng; Yang, Guochun; Zhang, Lijun; Ma, Yanming

    2016-02-01

    Observation of high-temperature superconductivity in compressed sulfur hydrides has generated an irresistible wave of searches for new hydrogen-containing superconductors. We herein report the prediction of high-Tc superconductivity in tellurium hydrides stabilized at megabar pressures identified by first-principles calculations in combination with a swarm structure search. Although tellurium is isoelectronic to sulfur or selenium, its heavier atomic mass and weaker electronegativity makes tellurium hydrides fundamentally distinct from sulfur or selenium hydrides in stoichiometries, structures, and chemical bondings. We identify three metallic stoichiometries of H4Te , H5Te2 , and HTe3 , which are not predicted or known stable structures for sulfur or selenium hydrides. The two hydrogen-rich H4Te and H5Te2 phases are primarily ionic and contain exotic quasimolecular H2 and linear H3 units, respectively. Their high-Tc (e.g., 104 K for H4Te at 170 GPa) superconductivity originates from the strong electron-phonon couplings associated with intermediate-frequency H-derived wagging and bending modes, a superconducting mechanism which differs substantially with those in sulfur or selenium hydrides where the high-frequency H-stretching vibrations make considerable contributions.

  14. Advanced Synchrotron Techniques at High Pressure Collaborative Access Team (HPCAT)

    NASA Astrophysics Data System (ADS)

    Shen, G.; Sinogeikin, S. V.; Chow, P.; Kono, Y.; Meng, Y.; Park, C.; Popov, D.; Rod, E.; Smith, J.; Xiao, Y.; Mao, H.

    2012-12-01

    High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation for studies of structure and materials properties at extreme conditions.. HPCAT consists of four active independent beamlines performing a large range of various experiments at extreme conditions. 16BM-B beamline is dedicated to energy dispersive and white Laue X-ray diffraction. The majority of experiments are performed with a Paris-Edinburgh large volume press (to 7GPa and 2500K) and include amorphous and liquid structure measurement, white beam radiography, elastic sound wave velocity measurement of amorphous solid materials, with viscosity and density measurement of liquid being under development. 16BM-D is a monochromatic diffraction beamline for powder and single crystal diffraction at high pressure and high (resistive heating) / low (cryostats) temperature. The additional capabilities include high-resolution powder diffraction and x-ray absorption near edge structure (XANES) spectroscopy. The insertion device beamline of HPCAT has two undulators in canted mode (operating independently) and LN cooled Si monochromators capable of providing a large range of energies. 16IDB is a microdiffraction beamline mainly focusing on high-pressure powder and single crystal diffraction in DAC at high temperatures (double-sided laser heating and resistive heating) and low temperature (various cryostats). The modern instrumentation allows high-quality diffraction at megabar pressures from light element, fast experiments with pulsed laser heating, fast dynamic experiments with Pilatus detector, and so on. 16ID-D beamline is dedicated to x-ray scattering and spectroscopy research

  15. SUPERCONDUCTING PHOTOINJECTOR

    SciTech Connect

    BEN-ZVI,I.; BURRILL, A.; CALAGA, R.; CHANG, X.; GROVER, R.; GUPTA, R.; HAHN, H.; HAMMONS, L.; KAYRAN, D.; KEWISCH, J.; LAMBIASE, R.; LITVINENKO, V.; MCINTYRE, G.; NAIK, D.; PATE, D.; PHILLIPS, D.; POZDEYEV, E.; RAO, T.; SMEDLEY, J.; THAN, R.; TODD, R.; WEISS, D.; WU, Q.; ZALTSMAN, A.; ET AL.

    2007-08-26

    One of the frontiers in FEL science is that of high power. In order to reach power in the megawatt range, one requires a current of the order of one ampere with a reasonably good emittance. The superconducting laser-photocathode RF gun with a high quantum efficiency photocathode is the most natural candidate to provide this performance. The development of a 1/2 cell superconducting photoinjector designed to operate at up to a current of 0.5 amperes and beam energy of 2 MeV and its photocathode system are the subjects covered in this paper. The main issues are the photocathode and its insertion mechanism, the power coupling and High Order Mode damping. This technology is being developed at BNL for DOE nuclear physics applications such as electron cooling at high energy and electron ion colliders..

  16. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  17. High-Pressure Single-Crystal Neutron Scattering Study of Magnetic and Fe Vacancy Orders in (Tl,Rb)2 Fe4 Se5 Superconductor

    DOE PAGES

    Ye, Feng; Bao, Wei; Chi, Song-Xue; ...

    2014-12-01

    We investigate the magnetic and iron vacancy orders in superconducting (Tl,Rb)2Fe4Se5 single-crystals by using a high-pressure neutron diffraction technique. Similar to the temperature effect, the block antiferromagnetic order gradually decreases upon increasing pressure while the Fe vacancy superstructural order remains intact before its precipitous disappearance at the critical pressure Pc = 8.3 GPa. Combined with previously determined Pc for superconductivity, our phase diagram under pressure reveals the concurrence of the block AFM order, the √5 × √5 iron vacancy order and superconductivity for the 245 superconductor. Lastly, a synthesis of current experimental data in a coherent physical picture is attempted.

  18. High pressure low temperature studies on 1-2-2 iron-based superconductors using designer diamond cells

    SciTech Connect

    Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.; Mitchell, Jonathan, E.; Safa-Sefat, Athena; Weir, Samuel

    2013-01-01

    In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba0.5Sr0.5Fe2As2 and Ba(Fe0.9Ru0.1)2As2 samples are presented to 10 K and 41 GPa. The collapsed tetragonal phase was observed at a pressure of 14 GPa in Ba0.5Sr0.5Fe2As2 at ambient temperature. The highest superconducting transition temperature in Ba0.5Sr0.5Fe2As2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.

  19. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  20. Guest disorder and high pressure behavior of argon hydrates

    SciTech Connect

    Yang, L.; Tulk, C.A.; Klug, D.D.; Chakoumakos, B.C.; Ehm, L.; Molaison, J.J.; Parise, J.B.; Simonson, J.M.

    2010-03-29

    The structure of argon hydrate was studied at ambient pressure and low temperature, and between 1.7 and 4.2 GPa at 295 K. This analysis produced a single Ar guest atom, positionally disordered off-center in the large cages of sII. Above 1.7 GPa Ar clathrate transformed to a mixture of a body-centered orthorhombic filled-ice phase, which can be viewed as a polytype of ice-Ih, and high pressure forms of pure ice. The guest disorder is further substantiated by analysis of the guest to host ratio in this high pressure filled-ice structure. The bulk modulus of Ar filled-ice found to be 11.7 {+-} 0.4 GPa.

  1. Electronic Structure of Crystalline 4He at High Pressure

    SciTech Connect

    Mao, H.K.; Cai, Y.; Shirley, E.L.; Ding, Y.; Eng, P.; Chow, P.; Xiao, Y.; Shu, J.; Hemley, R.J.; Kao, C.C.; Mao, W.L.

    2010-10-29

    Using inelastic x-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium at 300 K. Helium has the widest known valence-conduction band gap of all materials a property whose high-pressure response has been inaccessible to direct measurements. We observed a rich electron excitation spectrum, including a cutoff edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined the electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  2. High-pressure synthesis and compressive behavior of tantalum nitrides

    SciTech Connect

    Yusa, Hitoshi Kawamura, Fumio; Taniguchi, Takashi; Hirao, Naohisa; Ohishi, Yasuo; Kikegawa, Takumi

    2014-03-14

    WC- and NaCl-type tantalum mononitrides and hexagonal Ta{sub 5}N{sub 6} were prepared at high pressure and temperature, and their compressive behaviors were examined using in situ high-pressure X-ray diffraction. Comparison of the formula volumes of the tantalum mononitrides indicated that the NaCl type was the densest phase. The P–V data showed that the WC-type structure had the highest bulk modulus value (K{sub 0} = 351(1) GPa). An analysis of the compression properties in terms of the crystallographic characteristics of the structures indicated that a prismatic polyhedral array with face-sharing connectivity was responsible for the incompressible nature of these tantalum nitrides.

  3. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  4. Large-Volume High-Pressure Mineral Physics in Japan

    NASA Astrophysics Data System (ADS)

    Liebermann, Robert C.; Prewitt, Charles T.; Weidner, Donald J.

    American high-pressure research with large sample volumes developed rapidly in the 1950s during the race to produce synthetic diamonds. At that time the piston cylinder, girdle (or belt), and tetrahedral anvil devices were invented. However, this development essentially stopped in the late 1950s, and while the diamond anvil cell has been used extensively in the United States with spectacular success for high-pressure experiments in small sample volumes, most of the significant technological advances in large-volume devices have taken place in Japan. Over the past 25 years, these technical advances have enabled a fourfold increase in pressure, with many important investigations of the chemical and physical properties of materials synthesized at high temperatures and pressures that cannot be duplicated with any apparatus currently available in the United States.

  5. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  6. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  7. High-pressure injection injuries to the hand.

    PubMed

    Hayes, C W; Pan, H C

    1982-12-01

    Analysis of 14 cases of high-pressure injection injury to the hand revealed that the mechanism of injury, the nature of the injected substance, the site of injection, delay in treatment, and treatment specifics all influence prognosis. Injuries from paint or spray guns appear to be the most devastating; injuries to digits are worse than those to the hand. Paint, thinners, and solvents cause great impairment. Delay in treatment likely compromises the outcome; steroids may be effective in some cases in reducing eventual impairment. Early recognition of the gravity of these wounds is important and early decompression, tetanus prophylaxis, antibiotics, and judicious steroid usage are advocated. Significant impairment results from many high-pressure injuries despite seemingly adequate treatment.

  8. High-Pressure Microscopy for Studying Molecular Motors.

    PubMed

    Nishiyama, Masayoshi

    2015-01-01

    Movement is a fundamental characteristic of all living things. This biogenic function is carried out by various nanometer-sized molecular machines. Molecular motor is a typical molecular machinery in which the characteristic features of proteins are integrated; these include enzymatic activity, energy conversion, molecular recognition and self-assembly. These biologically important reactions occur with the association of water molecules that surround the motors. Applied pressures can alter the intermolecular interactions between the motors and water. In this chapter we describe the development of a high-pressure microscope and a new motility assay that enables the visualization of the motility of molecular motors under conditions of high-pressure. Our results demonstrate that applied pressure dynamically changes the motility of molecular motors such as kinesin, F1-ATPase and bacterial flagellar motors.

  9. The therapeutic use of high-pressure oxygen.

    PubMed

    TRAPP, W G

    1963-02-16

    The therapeutic use of a high-pressure oxygen atmosphere is of current research interest. Accounts of this means of treatment have come mainly from Amsterdam and Glasgow, but also from the United States. Reports indicate its value in treatment of coronary artery disease, severe shock, cerebral vascular accidents, gangrene, infections, carbon monoxide poisoning and bowel infarction. Hyaline membrane disease responds dramatically. The treatment has demonstrated value in conjunction with the operation of heart-lung machines, for patients with severe injuries of the extremities where blood supply is impaired, and in the treatment of rest pain in ischemic limbs. Converted hospital autoclaves have been used as an inexpensive means of initiating research projects in this field. One American supplier already has orders for construction of eight high-pressure oxygen treatment tanks in U.S. centres.

  10. High pressure intensification of cassava resistant starch (RS3) yields.

    PubMed

    Lertwanawatana, Proyphon; Frazier, Richard A; Niranjan, Keshavan

    2015-08-15

    Cassava starch, typically, has resistant starch type 3 (RS3) content of 2.4%. This paper shows that the RS3 yields can be substantially enhanced by debranching cassava starch using pullulanase followed by high pressure or cyclic high-pressure annealing. RS3 yield of 41.3% was obtained when annealing was carried out at 400MPa/60°C for 15 min, whereas it took nearly 8h to obtain the same yield under conventional atmospheric annealing at 60°C. The yield of RS3 could be further significantly increased by annealing under 400 MPa/60°C pressure for 15 min followed by resting at atmospheric pressure for 3h 45 min, and repeating this cycle for up to six times. Microstructural surface analysis of the product under a scanning electron microscope showed an increasingly rigid density of the crystalline structure formed, confirming higher RS3 content.

  11. The high-pressure compressibility of B12P2

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Zhou, Mi; Wang, Haiyan; Ji, Cheng; Whiteley, C. E.; Edgar, J. H.; Liu, Haozhe; Ma, Yanzhang

    2017-03-01

    In situ high pressure synchrotron X-ray diffraction measurements were performed on icosahedral boron phosphide (B12P2) to 43.2 GPa. No structural phase transition occurs over this pressure range. The bulk modulus of B12P2 is KOT = 207 ± 7 GPa with pressure derivative of K'OT = 6.6 ± 0.8 . The structure is most compressible along the chain formed by phosphorus and boron atoms in the crystal structure. It is believed that the compressibility of boron-rich compounds at close to ambient pressure is determined by the boron icosahedral structure, while the inclusive atoms (both boron and non-boron) between the icosahedra determine the high-pressure compressibility and structure stability.

  12. High pressure as a probe of the solid state

    NASA Astrophysics Data System (ADS)

    Ruoff, Arthur L.

    1994-07-01

    It is a great pleasure and honor to receive the Percy Williams Bridgman Award. Henry Eyring, my Ph.D. advisor, instilled in me a desire to unravel the secrets of nature in the chemical and physical world. He continued what my mother had begun. From my father I learned the virtue and satisfaction of hard work. In reading Percy Bridgman's The Physics of High Pressure [1] after I came to Cornell, I became intrigued by the high-pressure variable, so I owe much to him. I received valuable assistance and encouragement from George Kennedy and Harry Drickamer (the first winner of the Bridgman Award) and later from Alvin Van Valkenburg (a co-inventor with three others of the diamond anvil cell). Most importantly, I received encouragement from my wife, Enid Seaton Ruoff, to carry out what is sometimes the arduous pursuit of science—a pursuit that involves long working hours—and I want especially to thank her.

  13. High pressure and Multiferroics materials. A happy marriage

    DOE PAGES

    Gilioli, Edmondo; Ehm, Lars

    2014-10-31

    We found that the community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Moreover, the in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties andmore » the coupling to structural instabilities.« less

  14. JT8D high pressure compressor performance improvement

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.

    1981-01-01

    An improved performance high pressure compressor with potential application to all models of the JT8D engine was designed. The concept consisted of a trenched abradable rubstrip which mates with the blade tips for each of the even rotor stages. This feature allows tip clearances to be set so blade tips run at or near the optimum radius relative to the flowpath wall, without the danger of damaging the blades during transients and maneuvers. The improved compressor demonstrated thrust specific fuel consumption and exhaust gas temperature improvements of 1.0 percent and at least 10 C over the takeoff and climb power range at sea level static conditions, compared to a bill-of-material high pressure compressor. Surge margin also improved 4 percentage points over the high power operating range. A thrust specific fuel consumption improvement of 0.7 percent at typical cruise conditions was calculated based on the sea level test results.

  15. JT8D high pressure compressor performance improvement

    SciTech Connect

    Gaffin, W.O.

    1981-11-01

    An improved performance high pressure compressor with potential application to all models of the JT8D engine was designed. The concept consisted of a trenched abradable rubstrip which mates with the blade tips for each of the even rotor stages. This feature allows tip clearances to be set so blade tips run at or near the optimum radius relative to the flowpath wall, without the danger of damaging the blades during transients and maneuvers. The improved compressor demonstrated thrust-specific fuel consumption and exhaust gas temperature improvements of 1.0% and at least 10/sup 0/C over the takeoff and climb power range at sea level static conditions, compared to a bill-of-material high pressure compressor. Surge margin also improved 4 percentage points over the high power operating range. A thrust-specific fuel consumption improvement of 0.7% at typical cruise conditions was calculated based on the sea level test results.

  16. Germination of vegetable seeds exposed to very high pressure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  17. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  18. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  19. High-pressure paint gun injection injury to the palm.

    PubMed

    Chaudhry, Sonia; Gould, Stephen; Gupta, Salil

    2013-08-01

    High-pressure injection injuries often have a misleadingly benign presentation. However, it is important to recognize the potential surgical urgency and long-term sequelae associated with these injuries. We present a case of paint gun injection to the palm and review the literature on high-pressure paint injection injuries. The 3 factors most important for the fate of the limb are material type, injection pressure, and injury site. The immediate use of antibiotics and tetanus prophylaxis, with or without steroids, is indicated. Urgent debridement in the operating room is imperative and can decompress the neurovascular structures and flexor tendon sheath by removing the irritating agents. Reported overall amputation rates have been as high as 30%.

  20. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  1. The effect of high pressure on nitrogen compounds of milk

    NASA Astrophysics Data System (ADS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-04-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, tconst. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, pconst. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration.

  2. Proposal for high pressure RF cavity test in the MTA

    SciTech Connect

    Yonehara, K.; /Fermilab

    2010-09-01

    In order to demonstrate the feasibility of high pressure hydrogen gas filled RF (HPRF) cavities for muon ionization cooling, an HPRF cavity must be tested with a high intensity charged beam. When an HPRF cavity is irradiated with an intense beam each incident particle generates about 1000 electrons and ions per cubic centimeter in a high pressure cavity via ionization. These ionization electrons are influenced by the RF field and the RF quality factor goes down. This Q factor reduction will be a problem with a multi bunch beam, e.g., a muon beam for a muon collider consists of a 12 to 20 bunch train beam with 5 ns timing gap. Thus, the RF field must recover in few nano seconds. We propose to use a 400 MeV proton beam in the MTA and measure a beam loading effect in the HPRF cavity and study the recovery mechanism of the RF field.

  3. The Calibrations of Space Shuttle Main Engines High Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Steward, Christopher S.

    1995-01-01

    Previously, high pressure transducers that were used on the Space Shuttles Main Engine (SSME) exhibited a severe drift after being tested on the SSME. The Experimental Testing Technology Division (ETTD) designed some new transducers that would not exhibit a severe drift over a short period of time. These transducers were calibrated at the Test Bed at Marshall Space Flight Center (MSFC). After the high pressure transducers were calibrated, the transducers were placed on the SSME and fired. The transducers were then sent to the NASA LaRC to be recalibrated. The main objectives of the recalibrations was to make sure that the transducers possessed the same qualities as they did before they were fired on the SSME. Other objectives of the project were to determine the stability of the transducers and to determine whether the transducers exhibited a severe drift.

  4. High pressure elasticity and thermal properties of depleted uranium

    NASA Astrophysics Data System (ADS)

    Jacobsen, M. K.; Velisavljevic, N.

    2016-04-01

    Studies of the phase diagram of uranium have revealed a wealth of high pressure and temperature phases. Under ambient conditions the crystal structure is well defined up to 100 gigapascals (GPa), but very little information on thermal conduction or elasticity is available over this same range. This work has applied ultrasonic interferometry to determine the elasticity, mechanical, and thermal properties of depleted uranium to 4.5 GPa. Results show general strengthening with applied load, including an overall increase in acoustic thermal conductivity. Further implications are discussed within. This work presents the first high pressure studies of the elasticity and thermal properties of depleted uranium metal and the first real-world application of a previously developed containment system for making such measurements.

  5. Energy efficient engine: High pressure turbine uncooled rig technology report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    Results obtained from testing five performance builds (three vane cascades and two rotating rigs of the Energy Efficient Engine uncooled rig have established the uncooled aerodynamic efficiency of the high-pressure turbine at 91.1 percent. This efficiency level was attained by increasing the rim speed and annulus area (AN(2)), and by increasing the turbine reaction level. The increase in AN(2) resulted in a performance improvement of 1.15 percent. At the design point pressure ratio, the increased reaction level rig demonstrated an efficiency of 91.1 percent. The results of this program have verified the aerodynamic design assumptions established for the Energy Efficient Engine high-pressure turbine component.

  6. Electrical Resistivity and Thermodynamic Properties of Iron Under High Pressure

    NASA Astrophysics Data System (ADS)

    Hieu, Ho Khac; Hai, Tran Thi; Hong, Nguyen Thi; Sang, Ngo Dinh; Tuyen, Nguyen Viet

    2017-03-01

    In this work, the electrical resistivity and thermodynamic properties of iron under high pressure have been investigated by using the semi-empirical approach. The recently well-established Grüneisen parameter expressions have been applied to derive the Debye frequency and temperature under compression. Using these results combined with the Bloch-Grüneisen law, the resistivity of iron has also been determined up to Earth's core pressures. We show that the electrical resistivity diminished gradually with pressure and saturates at high pressure. Our model gives low electrical resistivity values which are in agreement with the recent experimental measurements. The low resistivity may be attributed to the well-known resistivity saturation effect at high temperature, which was not considered in earlier models of core conductivity.

  7. Introduction to high-pressure bioscience and biotechnology.

    PubMed

    Bartlett, Douglas H

    2010-02-01

    The manipulation of biological materials using elevated pressure is providing an ever-growing number of opportunities in both the applied and basic sciences. Manipulation of pressure is a useful parameter for enhancing food quality and shelf life; inactivating microbes, viruses, prions, and deleterious enzymes; affecting recombinant protein production; controlling DNA hybridization; and improving vaccine preparation. In biophysics and biochemistry, pressure is used as a tool to study intermediates in protein folding, enzyme kinetics, macromolecular interactions, amyloid fibrous protein aggregation, lipid structural changes, and to discern the role of solvation and void volumes in these processes. Biologists, including many microbiologists, examine the utility and basis of pressure inactivation of cells and cellular processes, and conversely seek to discover how deep-sea life has evolved a preference for high-pressure environments. This introduction and the papers that follow provide information on the nature and promise of the highly interdisciplinary field of high-pressure bioscience and biotechnology (HPBB).

  8. High pressure ratio cryocooler with integral expander and heat exchanger

    NASA Astrophysics Data System (ADS)

    Crunkleton, J. A.; Smith, J. L., Jr.; Iwasa, Y.

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the high-pressure passage of the heat exchanger, and the low-pressure passage is formed by a thin tube over the OD of the cylinder. A solenoid-operated inlet valve admits 40 atm helium to the displacer-to-cylinder gap at room temperature, while the solenoid-operated exhaust valve operates at 4 atm. The single-stage cryocooler produces 1 W of refrigeration at 40 K without precooling and at 20 K with liquid nitrogen precooling.

  9. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.

    2014-05-01

    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  10. Ultra high pressure liquid chromatography for crude plant extract profiling.

    PubMed

    Eugster, Philippe J; Guillarme, Davy; Rudaz, Serge; Veuthey, Jean-Luc; Carrupt, Pierre-Alain; Wolfender, Jean-Luc

    2011-01-01

    Ultra high pressure liquid chromatography (UHPLC) systems operating at very high pressures and using sub-2 microm packing columns have allowed a remarkable decrease in analysis time and increase in peak capacity, sensitivity, and reproducibility compared to conventional HPLC. This technology has rapidly been widely accepted by the analytical community and is being gradually applied to various fields of plant analysis such as QC, profiling and fingerprinting, dereplication, and metabolomics. For many applications, an important improvement of the overall performances has been reported. In this review, the basic principles of UHPLC are summarized, and practical information on the type of columns used and phase chemistry available is provided. An overview of the latest applications to natural product analysis in complex mixtures is given, and the potential and limitations as well as some new trends in the development of UHPLC are discussed.

  11. High pressure extraction of phenolic compounds from citrus peels†

    NASA Astrophysics Data System (ADS)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.

    2014-10-01

    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  12. Strength coupling in mixed phases under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Xiaozhi; Dong, Haini; Sun, Guangai; Ren, Xiangting; He, Duanwei; Yang, Wenge

    2016-10-01

    The strength of a material can be altered by temperature, pressure, grain size, and orientation distributions. At the microscale, neighboring grains often play important roles in the elastic and plastic deformation process. By applying high pressure to a mixture of germanium and gold powder in the vicinity of the germanium phase transition pressure, we found that the deformation behavior of gold largely correlates with that of the surrounding germanium. The deviatoric strain and compressibility of Au behaves anomalously when Ge undergoes a diamond to β-tin structure transition, accompanying a large volume and strength drop. The results demonstrate that the intrinsic strength of a mixed phase could be largely controlled by the other surrounding phase, which is fundamentally important in understanding the deformation mechanism of multiphase materials, especially when one phase undergoes dramatic changes in strength under high pressure conditions.

  13. Calorimetric study of high-pressure polymorphs of MnSiO3

    NASA Astrophysics Data System (ADS)

    Akaogi, Masaki; Navrotsky, Alexandra

    1985-11-01

    With increasing pressure, MnSiO3 rhodonite stable at atmospheric pressure transforms to pyroxmangite, then to clinopyroxene and further to tetragonal garnet, which finally decomposes into MnO (rocksalt) plus SiO2 (stishovite). High temperature solution calorimetry of synthetic rhodonite, clinopyroxene and garnet forms of MnSiO3 was used to measure the enthalpies of these transitions. Δ H {974/0}for the rhodonite-clinopyroxene and Δ H {298/0}for the clinopyroxene-garnet transition are 520±490 and 8,270±590 cal/mol, respectively. The published data on the enthalpy of the rhodonite-pyroxmangite transition, phase equilibrium boundaries, compressibility and thermal expansion data are used to calculate entropy changes for the transitions. The enthalpy, entropy and volume changes are very small for all the transitions among rhodonite, pyroxmangite and clinopyroxene. The calculated boundary for the clinopyroxene-garnet transition is consistent with the published experimental results. The pyroxene-garnet transition in several materials, including MnSiO3, is characterized by a relatively small negative entropy change and large volume decrease, resulting in a small positive P T slope. The disproportionation of MnSiO3 garnet to MnO plus stishovite and of Mn2SiO4 olivine to garnet plus MnO are calculated to occur at about 17 18 and 14 15 GPa, respectively, at 1,000 1,500 K.

  14. Generation of high pressure and temperature by converging detonation waves

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Shukla, S. K.

    1987-07-01

    Generation of high pressure and temperature has various applications in defense. Several techniques, viz flying plate method, collapsing of linear, convergence of detonation waves in solid explosives, have been established in this connection. In this paper, converging detonation waves in solid explosives, where variable heat of detonation is being added to the front, are studied by using Whitham's characteristics rule. Results are compared with those reported elsewhere.

  15. High-pressure two temperature equations of state

    NASA Astrophysics Data System (ADS)

    Eliezer, S.

    1989-01-01

    A phenomenological approach is suggested for calculating two temperature equations of state at high pressures. The Thomas-Fermi Dirac model and the SESAME equation of state are used to calculate the electron contribution while the solid gas interpolation method is used for ions. An algorithm to calculate the first and higher moments of the charge distribution within the framework of the Thomas-Fermi-Dirac model is proposed.

  16. Determination of the SSME high pressure oxidizer turbopump bearing temperature

    NASA Technical Reports Server (NTRS)

    Naerheim, Y.; Stocker, P. J.; Lumsden, J. B.

    1988-01-01

    The SSME high pressure liquid oxygen turbopump (HPOTP) bearings sometimes wear and experience heating and oxidation of the ball and raceway surfaces. So far it has been impossible to measure the temperature of the bearings directly during operation of the turbopumps. However, a method was developed for determining the surface temperature of the bearings from the composition of the oxides using oxidation samples for calibration and Auger Electron Spectroscopy (AES) for chemical analysis.

  17. Survey of High-Pressure Effects in Solids.

    DTIC Science & Technology

    1979-11-01

    Target, and Optical Diagnostics ................................ 65 3.19. Rail Gun ............................................. 66 4.1. Tungsten Carbide ...displacement;5 𔄀 high-pressure x-ray diffraction using tungsten - carbide , boron- carbide , or diamond anvils and sodium chloride or aluminum markers to...used to study a number of other materials over the same pressure range. The cell consists of one tungsten - carbide anvil and one boron- carbide anvil

  18. ARFF Ultra High Pressure Fire Fighting Systems (Briefing Charts)

    DTIC Science & Technology

    2008-04-01

    dry chemical •20-30 gpm UHP with water and foam •LP handline hookup •Response to cargo aircraft engine fire •Pure water UHP alone would not extinguish...Air Force Research Laboratory has developed Ultra High Pressure ( UHP ) fire fighting as a method to reduce the amount of agent and extinguishment time...to demonstrate an overall reduction of agent usage to 28% of the amount required using conventional technology. UHP fire fighting is now fully

  19. High pressure system for 3-D study of elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Lokajicek, T.; Pros, Z.; Klima, K.

    2003-04-01

    New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This

  20. Studies in chemical physics through high-pressure luminescence

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    Energy transfer in chelates of Eu/sup 3 +/ with ligands (dibenzylmethane) was studied as a function of pressure. Rate of thermal dissipation of electronic excitation was correlated with viscosity and dielectric constant for indoles in a series of solvents, and with pressure for porphyrins. Effects of medium (dielectric constant, viscosity) on complexes were studied. Studies on 3-hydroxyflavone are also summarized. These studies show the power of high pressure luminescence as a tool in chemical physics. 11 figures. (DLC)