Science.gov

Sample records for high-priority waste streams

  1. Waste minimization/pollution prevention study of high-priority waste streams

    SciTech Connect

    Ogle, R.B.

    1994-03-01

    Although waste minimization has been practiced by the Metals and Ceramics (M&C) Division in the past, the effort has not been uniform or formalized. To establish the groundwork for continuous improvement, the Division Director initiated a more formalized waste minimization and pollution prevention program. Formalization of the division`s pollution prevention efforts in fiscal year (FY) 1993 was initiated by a more concerted effort to determine the status of waste generation from division activities. The goal for this effort was to reduce or minimize the wastes identified as having the greatest impact on human health, the environment, and costs. Two broad categories of division wastes were identified as solid/liquid wastes and those relating to energy use (primarily electricity and steam). This report presents information on the nonradioactive solid and liquid wastes generated by division activities. More specifically, the information presented was generated by teams of M&C staff members empowered by the Division Director to study specific waste streams.

  2. Iron Phosphate Glasses for Vitrifying DOE High Priority Nuclear Wastes

    SciTech Connect

    Kim, C.W.; Day, D.E.

    2004-03-29

    Iron phosphate glasses have been studied as an alternative glass for vitrifying Department of Energy (DOE) high priority wastes. The high priority wastes were the Low Activity Waste (LAW) and the High Level Waste (HLW) with high chrome content stored at Hanford, WA, and the Sodium Bearing Waste (SBW) stored at the Idaho National Engineering and Environmental Laboratory. These wastes were recommended by Tanks Focus Area since they were expected to require special attention when vitrified in borosilicate glasses. All three of these wastes have been successfully vitrified in iron phosphate glasses at waste loadings ranging from a low of 32 wt% for the high sulfate LAW to 40 wt% for the SBW to a high of 75 wt% for the high chrome HLW. In addition to these desirable high waste loadings, the iron phosphate glasses were easily melted, typically between 950 and 1200 C, in less than 4 hours in commercial refractory oxide containers. It is noteworthy that the chemical durability of both glassy and deliberately crystallized iron phosphate wasteforms not only met, but significantly exceeded, all current DOE chemical durability requirements as measured by the Product Consistency Test (PCT) and Vapor Hydration Test (VHT). The high waste loading, low melting temperature, rapid furnace throughput (short melting time) and their outstanding chemical durability could significantly accelerate the clean up effort and reduce the time and cost of vitrifying these high priority wastes.

  3. Citrus waste stream utilization

    USDA-ARS?s Scientific Manuscript database

    Waste streams, generated during fruit processing, consist of solid fruit residues in addition to liquid waste streams from washing operations which must be handled in an environmentally acceptable manner. Unsound fruit from packing houses are usually sent off to be processed for juice and the solid ...

  4. Rechanneling the waste stream

    SciTech Connect

    Goldstein, G

    1989-08-01

    Like energy, garbage can be changed into different forms, but it can never be wholly destroyed. Whether it is burned, buried, or recycled, some residue will always remain. The purpose of waste management goes beyond more disposal to the more difficult task of ensuring that the authors and their habitat sustain the least possible damage from the masses of things they discard every day. The article is divided into the following areas: Recycling: An elusive ideal; A lucrative waste stream; Making plastics a resource; Turning waste into power; Recovery the continental way; Solid fuel; Ash: The final product.

  5. TSA waste stream and final waste form composition

    SciTech Connect

    Grandy, J.D.; Eddy, T.L.; Anderson, G.L.

    1993-01-01

    A final vitrified waste form composition, based upon the chemical compositions of the input waste streams, is recommended for the transuranic-contaminated waste stored at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The quantities of waste are large with a considerable uncertainty in the distribution of various waste materials. It is therefore impractical to mix the input waste streams into an ``average`` transuranic-contaminated waste. As a result, waste stream input to a melter could vary widely in composition, with the potential of affecting the composition and properties of the final waste form. This work examines the extent of the variation in the input waste streams, as well as the final waste form under conditions of adding different amounts of soil. Five prominent Rocky Flats Plant 740 waste streams are considered, as well as nonspecial metals and the ``average`` transuranic-contaminated waste streams. The metals waste stream is the most extreme variation and results indicate that if an average of approximately 60 wt% of the mixture is soil, the final waste form will be predominantly silica, alumina, alkaline earth oxides, and iron oxide. This composition will have consistent properties in the final waste form, including high leach resistance, irrespective of the variation in waste stream. For other waste streams, much less or no soil could be required to yield a leach resistant waste form but with varying properties.

  6. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  7. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation.

    PubMed

    Ayalon, O; Avnimelech, Y; Shechter, M

    2001-05-01

    The increased concern about environmental problems caused by inadequate waste management, as well as the concern about global warming, promotes actions toward a sustainable management of the organic fraction of the waste. Landfills, the most common means to dispose of municipal solid waste (MSW), lead to the conversion of the organic waste to biogas, containing about 50% methane, a very active greenhouse gas (GHG). One unit of methane has a global warming potential of 21 computed for a 100-year horizon or 56 computed for 20 years. The waste sector in Israel contributes 13% of total greenhouse gases (GHG) emissions for a time horizon of 100 years (for a time horizon of 20 years, the waste sector contribution equals to more than 25% of total GHG emissions). The ultimate goal is to minimize the amount of methane (CH4) by converting it to CO2. This can be achieved by physicochemical means (e.g., landfill gas flare, incineration) or by biological processes (e.g., composting, anaerobic digestion). Since the waste in Israel has a high organic material content, it was found that the most cost-effective means to treat the degradable organic components is by aerobic composting (investment of less than US$ 10 to reduce emission of one ton CO2 equivalent per year). Another benefit of this technology is the ability to implement it within a short period. The suggested approach, which should be implemented especially in developing countries, could reduce a significant amount of GHG at relatively low cost and short time. The development of a national policy for proper waste treatment can be a significant means to abate GHG emissions in the short term, enabling a gain in time to develop other means for the long run. In addition, the use of CO2 quotas will credit the waste sector and will promote profitable proper waste management.

  8. Method for recovering metal from waste stream

    SciTech Connect

    Greenberg, B.

    1991-09-10

    This patent describes a method for recovering metal from a waste stream to render the waste stream suitable for discharge. It comprises passing a waste stream comprised of heavy metal salts in dilute solution into a cathode chamber of an anion exchange membrane delineated electrolytic cell, wherein the metals are selected from the group having a standard reduction potential more negative than that of hydrogen in the electromotive force series and the heavy metal ion concentration of the solution is less than about 10,000 parts per million of dissolved material; subjecting the waste stream to high current density electrolysis at up to about 25 volts to enhance the controlled regular formation of a noncompressible metal hydrous oxide crystalline precipitate in the cathode chamber; separating the precipitate from the waste stream; and splitting the clarified liquid waste stream so that a portion of the clarified liquid waste stream is discharged and a portion is returned downstream for commingling with the metal ion-containing waste stream for further treatment.

  9. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  10. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  11. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Commingling of waste streams. 434.61... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams...

  12. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Commingling of waste streams. 434.61... STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams from...

  13. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Commingling of waste streams. 434.61... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams...

  14. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Commingling of waste streams. 434.61... PERFORMANCE STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams...

  15. 40 CFR 434.61 - Commingling of waste streams.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Commingling of waste streams. 434.61... STANDARDS Miscellaneous Provisions § 434.61 Commingling of waste streams. Where waste streams from any facility covered by this part are combined for treatment or discharge with waste streams from another...

  16. Operational Waste Stream Assumption for TSLCC Estimates

    SciTech Connect

    S. Gillespie

    2000-09-01

    This document provides the background and basis for the operational waste stream used in the 2000 Total System Life Cycle Cost (TSLCC) estimate for the Civilian Radioactive Waste Management System (CRWMS). This document has been developed in accordance with its Development Plan (CRWMS M&O 2000a), and AP-3.11Q, ''Technical Reports''.

  17. Managing and Transforming Waste Streams – A Tool for Communities

    EPA Pesticide Factsheets

    The Managing and Transforming Waste Streams Tool features 100 policy and program options communities can pursue to increase rates of recycling, composting, waste reduction, and materials reuse across waste stream generators.

  18. Potential metal recovery from waste streams

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Plumlee, Geoffrey S.; Budahn, James R.; Bleiwas, Donald I.

    2015-01-01

    Waste stream’ is a general term that describes the total flow of waste from homes, businesses, industrial facilities, and institutions that are recycled, burned or isolated from the environment in landfills or other types of storage, or dissipated into the environment. The recovery and reuse of chemical elements from waste streams have the potential to decrease U.S. reliance on primary resources and imports, and to lessen unwanted dispersion of some potentially harmful elements into the environment. Additional benefits might include reducing disposal or treatment costs and decreasing the risk of future environmental liabilities for waste generators. Elemental chemistry and mineralogical residences of the elements are poorly documented for many types of waste streams.

  19. New Waste Calcining Facility (NWCF) Waste Streams

    SciTech Connect

    K. E. Archibald

    1999-08-01

    This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

  20. Hydrothermal carbonization of municipal waste streams.

    PubMed

    Berge, Nicole D; Ro, Kyoung S; Mao, Jingdong; Flora, Joseph R V; Chappell, Mark A; Bae, Sunyoung

    2011-07-01

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass such as wood, with an emphasis on nanostructure generation. There has been little work exploring the carbonization of complex waste streams or of utilizing HTC as a sustainable waste management technique. The objectives of this study were to evaluate the environmental implications associated with the carbonization of representative municipal waste streams (including gas and liquid products), to evaluate the physical, chemical, and thermal properties of the produced hydrochar, and to determine carbonization energetics associated with each waste stream. Results from batch carbonization experiments indicate 49-75% of the initially present carbon is retained within the char, while 20-37% and 2-11% of the carbon is transferred to the liquid- and gas-phases, respectively. The composition of the produced hydrochar suggests both dehydration and decarboxylation occur during carbonization, resulting in structures with high aromaticities. Process energetics suggest feedstock carbonization is exothermic.

  1. Analysis of Chemical Technology Division waste streams

    SciTech Connect

    Abraham, T.J.; Donaldson, T.L.; Walker, A.B.; Cummins, R.L.; Reeves, M.E.; Hylton, T.D.

    1990-07-01

    This document is a summary of the sources, quantities, and characteristics of the wastes generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory. The major contributors of hazardous, mixed, and radioactive wastes in the CTD as of the writing of this document were the Chemical Development Section, the Isotopes Section, and the Process Development Section. The objectives of this report are to identify the sources and the summarize the quantities and characteristics of hazardous, mixed, gaseous, and solid and liquid radioactive wastes that are generated by the Chemical Technology Division (CTD) of the Oak Ridge National Laboratory (ORNL). This study was performed in support of the CTD waste-reduction program -- the goals of which are to reduce both the volume and hazard level of the waste generated by the division. Prior to the initiation of any specific waste-reduction projects, an understanding of the overall waste-generation system of CTD must be developed. Therefore, the general approach taken in this study is that of an overall CTD waste-systems analysis, which is a detailed presentation of the generation points and general characteristics of each waste stream in CTD. The goal of this analysis is to identify the primary waste generators in the division and determine the most beneficial areas to initiate waste-reduction projects. 4 refs., 4 figs., 13 tabs.

  2. Radioactive Waste Streams: Waste Classification for Disposal

    DTIC Science & Technology

    2006-12-13

    are different. CRS-5 Figure 1. Comparison of Radioactive Wastes CRS-6 8 69 pressurized water reactors ( PWR ) and 35 boiling water reactors (BWR): U.S...designed 1,000-megawatt pressurized-water reactor ( PWR ) operates with 100 metric tons of nuclear fuel. During refueling, approximately one- third of the...in the range of hundreds-of-thousand of years. The short-lived radionuclide table includes tritium (hydrogen-3), cobalt-60, nickel-63, CRS-18 39 U.S

  3. High priority tank sampling and analysis report

    SciTech Connect

    Brown, T.M.

    1998-03-05

    In July 1993, the Defense Nuclear Facilities Safety Board (DNFSB) transmitted Recommendation 93-5 (Conway 1993) to the US Department of Energy (DOE). Recommendation 93-5 noted that there was insufficient tank waste technical information and the pace to obtain it was too slow to ensure that Hanford Site wastes could be safely stored, that associated operations could be conducted safely, and that future disposal data requirements could be met. In May 1996, the DOE issued Revision 1 of the Recommendation 93-5 Implementation Plan (DOE-RL 1996). The Implementation Plan revision presented a modified approach to achieve the original plan`s objectives. The approach concentrated on actions necessary to ensure that wastes can be safely stored, that operations can be safely conducted, and that timely characterization information for the tank waste Disposal Program could be obtained. The Implementation Plan proposed 28 High Priority tanks, which, if sampled and analyzed, were expected to provide information to answer questions regarding safety and disposal issues. The High Priority tank list was originally developed in Section 9.0 of the Tank Waste Characterization Basis (Brown et al. 1995) by integrating the needs of the various safety and disposal programs. The High Priority tank list represents a set of tanks that were expected to provide the highest information return for characterization resources expended. The High Priority tanks were selected for near-term core sampling and were not expected to be the only tanks that would provide meaningful information. Sampling and analysis of non-High Priority tanks also could be used to provide scientific and technical data to confirm assumptions, calibrate models, and measure safety related phenomenological characteristics of the waste. When the sampling and analysis results of the High Priority and other tanks were reviewed, it was expected that a series of questions should be answered allowing key decisions to be made. The first

  4. Hydrothermal carbonization of municipal waste streams

    USDA-ARS?s Scientific Manuscript database

    Hydrothermal carbonization (HTC) is a novel thermal conversion process that can be used to convert municipal waste streams into sterilized, value-added hydrochar. HTC has been mostly applied and studied on a limited number of feedstocks, ranging from pure substances to slightly more complex biomass ...

  5. Electrochemical/Pyrometallurgical Waste Stream Processing and Waste Form Fabrication

    SciTech Connect

    Steven Frank; Hwan Seo Park; Yung Zun Cho; William Ebert; Brian Riley

    2015-07-01

    This report summarizes treatment and waste form options being evaluated for waste streams resulting from the electrochemical/pyrometallurgical (pyro ) processing of used oxide nuclear fuel. The technologies that are described are South Korean (Republic of Korea – ROK) and United States of America (US) ‘centric’ in the approach to treating pyroprocessing wastes and are based on the decade long collaborations between US and ROK researchers. Some of the general and advanced technologies described in this report will be demonstrated during the Integrated Recycle Test (IRT) to be conducted as a part of the Joint Fuel Cycle Study (JFCS) collaboration between US Department of Energy (DOE) and ROK national laboratories. The JFCS means to specifically address and evaluated the technological, economic, and safe guard issues associated with the treatment of used nuclear fuel by pyroprocessing. The IRT will involve the processing of commercial, used oxide fuel to recover uranium and transuranics. The recovered transuranics will then be fabricated into metallic fuel and irradiated to transmutate, or burn the transuranic elements to shorter lived radionuclides. In addition, the various process streams will be evaluated and tested for fission product removal, electrolytic salt recycle, minimization of actinide loss to waste streams and waste form fabrication and characterization. This report specifically addresses the production and testing of those waste forms to demonstrate their compatibility with treatment options and suitability for disposal.

  6. Baseline Glass Development for Combined Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-06-29

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.[1] Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.[2-5] Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  7. Actinide removal from nitric acid waste streams

    SciTech Connect

    Muscatello, A.C.; Navratil, J.D.

    1986-01-01

    Actinide separations research at the Rocky Flats Plant (RFP) has found ways to significantly improve plutonium secondary recovery and americium removal from nitric acid waste streams generated by plutonium purification operations. Capacity and breakthrough studies show anion exchange with Dowex 1x4 (50 to 100 mesh) to be superior for secondary recovery of plutonium. Extraction chromatography with TOPO(tri-n-octyl-phosphine oxide) on XAD-4 removes the final traces of plutonium, including hydrolytic polymer. Partial neutralization and solid supported liquid membrane transfer removes americium for sorption on discardable inorganic ion exchangers, potentially allowing for non-TRU waste disposal.

  8. Flax Processing: Use of Waste Streams for Profit

    USDA-ARS?s Scientific Manuscript database

    The waste streams generated by flax fiber processing represent potential sources of value-added co-products that can enhance profits and provide direct economic support for the flax industry. These waste streams include the dust, shive, retting wash water, and waste cellulose. Fatty alcohols (polico...

  9. Analysis of an organization's waste stream.

    PubMed

    Hayne, A N; Peoples, L T

    1993-02-01

    The steps involved in conducting a waste stream analysis for a health care organization have been described. The development of a corporate position on the organization's stewardship of its environment can be the major result of such an analysis. This position would communicate to the community the organization's commitment to the environment and would be used as policy guiding corporate decisions that affect the environment. As a result of the corporate policy, a health system waste management program could be developed. This program would consist of standardized policies and procedures, educational requirements for employees, roles and responsibilities' defined in job descriptions, public education programs, recycling programs, and capital equipment acquisition. Additionally, such a program would promote economies of scale. A waste stream analysis is only as good as the information it contains. Making it of sufficient priority within the organization ensures that adequate time and personnel are allocated to complete the analysis in a precise manner. A well completed analysis is a major component of the larger issue of an organization's responsibility to its environment.

  10. Formulation and Analysis of Compliant Grouted Waste Forms for SHINE Waste Streams

    SciTech Connect

    Ebert, William; Pereira, Candido; Heltemes, Thad A.; Youker, Amanda; Makarashvili, Vakhtang; Vandegrift, George F.

    2014-01-01

    Optional grouted waste forms were formulated for waste streams generated during the production of 99Mo to be compliant with low-level radioactive waste regulations. The amounts and dose rates of the various waste form materials that would be generated annually were estimated and used to determine the effects of various waste processing options, such as the of number irradiation cycles between uranium recovery operations, different combinations of waste streams, and removal of Pu, Cs, and Sr from waste streams for separate disposition (which is not evaluated in this report). These calculations indicate that Class C-compliant grouted waste forms can be produced for all waste streams. More frequent uranium recovery results in the generation of more chemical waste, but this is balanced by the fact that waste forms for those waste streams can accommodate higher waste loadings, such that similar amounts of grouted waste forms are required regardless of the recovery schedule. Similar amounts of grouted waste form are likewise needed for the individual and combined waste streams. Removing Pu, Cs, and Sr from waste streams lowers the waste form dose significantly at times beyond about 1 year after irradiation, which may benefit handling and transport. Although these calculations should be revised after experimentally optimizing the grout formulations and waste loadings, they provide initial guidance for process development.

  11. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  12. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  13. Waste stream recycling: Its effect on water quality

    SciTech Connect

    Cornwell, D.A. ); Lee, R.G. )

    1994-11-01

    Waste streams recycled to the influent of a water treatment plant typically contain contaminants at concentrations that are of concern. These contaminants may include giardia and Cryptosporidium, trihalomethanes, manganese, and assimilable organic carbon. This research shows that proper management--treatment, equalization, and monitoring--of the waste streams can render them suitable for recycling in many situations.

  14. Regulatory framework for the thermal treatment of various waste streams.

    PubMed

    Lee, C C; Huffman, G L; Mao, Y L

    2000-08-28

    Since 1990, regulations and standards have changed considerably. This article is an update of the regulatory requirements for the thermal treatment of various waste streams. The waste categories covered, along with the laws they are governed under, include: Hazardous waste under Subtitle C of the Resource Conservation and Recovery Act (RCRA) and under the Clean Air Act; municipal solid waste under Subtitle D of the RCRA; medical waste under Subtitle J of the RCRA; Superfund waste under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA); toxic waste under the Toxic Substances Control Act (TSCA); and sludge waste under the Clean Water Act (CWA).

  15. Using Financial Incentives to Manage the Solid Waste Stream.

    ERIC Educational Resources Information Center

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  16. Using Financial Incentives to Manage the Solid Waste Stream.

    ERIC Educational Resources Information Center

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  17. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  18. Waste Form Development for the Solidification of PDCF/MOX Liquid Waste Streams

    SciTech Connect

    COZZI, ALEX

    2004-02-18

    At the Savannah River Site, part of the Department of Energy's nuclear materials complex located in South Carolina, cementation has been selected as the solidification method for high-alpha and low-activity waste streams generated in the planned plutonium disposition facilities. A Waste Solidification Building (WSB) that will be used to treat and solidify three radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility) and the Mixed Oxide Fuel Fabrication Facility is in the preliminary design stage. The WSB is expected to treat a transuranic (TRU) waste stream composed primarily of americium and two low-level waste (LLW) streams. The acidic wastes will be concentrated in the WSB evaporator and neutralized in a cement head tank prior to solidification. A series of TRU mixes were prepared to produce waste forms exhibiting a range of processing and cured properties. The LLW mixes were prepared using the premix from the preferred TRU waste form. All of the waste forms tested passed the Toxicity Characteristic Leaching Procedure. After processing in the WSB, current plans are to dispose of the solidified TRU waste at the Waste Isolation Pilot Plant in New Mexico and the solidified LLW waste at an approved low-level waste disposal facility.

  19. Characterization of waste streams on the Oak Ridge Reservation

    SciTech Connect

    Rivera, A.L.; Osborne-Lee, I.W.; Jackson, A.M.; Butcher, B.T. Jr.; Van Cleve, J.E. Jr.

    1987-01-01

    The Oak Ridge Reservation (ORR) plants generate solid low-level waste (LLW) that must be disposed of or stored on-site. The available disposal capacity of the current sites is projected to be fully utilized during the next decade. An LLW disposal strategy has been developed by the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program as a framework for bringing new, regulator-approved disposal capacity to the ORR. An increasing level of waste stream characterization will be needed to maintain the ability to effectively manage solid LLW by the facilities on the ORR under the new regulatory scenario. In this paper, current practices for solid LLW stream characterization, segregation, and certification are described. In addition, the waste stream characterization requirements for segregation and certification under the LLWDDD Program strategy are also examined. 6 refs., 3 figs., 4 tabs.

  20. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...

  1. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...

  2. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    SciTech Connect

    Soukup, J.D.; Erpenbeck, G.J.

    1995-12-31

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection.

  3. Pectin content and composition from different food waste streams.

    PubMed

    Müller-Maatsch, Judith; Bencivenni, Mariangela; Caligiani, Augusta; Tedeschi, Tullia; Bruggeman, Geert; Bosch, Montse; Petrusan, Janos; Van Droogenbroeck, Bart; Elst, Kathy; Sforza, Stefano

    2016-06-15

    In the present paper, 26 food waste streams were selected according to their exploitation potential and investigated in terms of pectin content. The isolated pectin, subdivided into calcium bound and alkaline extractable pectin, was fully characterized in terms of uronic acid and other sugar composition, methylation and acetylation degree. It was shown that many waste streams can be a valuable source of pectin, but also that pectin structures present a huge structural diversity, resulting in a broad range of pectin structures. These can have different physicochemical and biological properties, which are useful in a wide range of applications. Even if the data could not cover all the possible batch by batch and country variabilities, to date this represents the most complete pectin characterization from food waste streams ever reported in the literature with a homogeneous methodology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. High-temperature waste-heat-stream selection and characterization

    SciTech Connect

    Wikoff, P.M.; Wiggins, D.J.; Tallman, R.L.; Forkel, C.E.

    1983-08-01

    Four types of industrial high-temperature, corrosive waste heat streams are selected that could yield significant energy savings if improved heat recovery systems were available. These waste heat streams are the flue gases from steel soaking pits, steel reheat furnaces, aluminum remelt furnaces, and glass melting furnaces. Available information on the temperature, pressure, flow, and composition of these flue gases is given. Also reviewed are analyses of corrosion products and fouling deposits resulting from the interaction of these flue gases with materials in flues and heat recovery systems.

  5. Waste streams in a typical crewed space habitat: An update

    NASA Technical Reports Server (NTRS)

    Golub, M. A.; Wydeven, T.

    1992-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, was updated. This report augments that compilation by the inclusion of the following new data: those data uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears, and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwasher water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants, and dust generation. This report also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom.

  6. Waste streams in a crewed space habitat II.

    PubMed

    Golub, M A; Wydeven, T

    1992-01-01

    A compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat, reported in a prior NASA Technical Memorandum and a related journal article, has been updated. This paper augments that compilation by the inclusion of the following new data: those uncovered since completion of the prior report; those obtained from Soviet literature relevant to life support issues; and those for various minor human body wastes not presented previously (saliva, flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen), but included here for purposes of completeness. These waste streams complement those discussed previously: toilet waste (urine, feces, etc.), hygiene water (laundry, shower/handwash, dishwash water and cleansing agents), trash, humidity condensate, perspiration and respiration water, trace contaminants and dust generation. This paper also reproduces the latest information on the environmental control and life support system design parameters for Space Station Freedom.

  7. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  8. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  9. Metal Poisons for Criticality in Waste Streams

    SciTech Connect

    Williamson, T.G.; Goslen, A.Q.

    1996-06-26

    Many of the wastes from processing fissile materials contain metals which may serve as nuclear criticality poisons. It would be advantageous to the criticality evaluation of these wastes to demonstrate that the poisons remain with the fissile materials and to demonstrate an always safe poison-to-fissile ratio. The first task, demonstrating that the materials stay together, is the job of the chemist, the second, calculating an always safe ratio, is an object of this paper.

  10. Modelling animal waste pathogen transport from agricultural land to streams

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod K.; Soupir, Michelle L.; Ikenberry, Charles

    2014-03-01

    The transport of animal waste pathogens from crop land to streams can potentially elevate pathogen levels in stream water. Applying animal manure into crop land as fertilizers is a common practice in developing as well as in developed countries. Manure application into the crop land, however, can cause potential human health. To control pathogen levels in ambient water bodies such as streams, improving our understanding of pathogen transport at farm scale as well as at watershed scale is required. To understand the impacts of crop land receiving animal waste as fertilizers on stream's pathogen levels, here we investigate pathogen indicator transport at watershed scale. We exploited watershed scale hydrological model to estimate the transport of pathogens from the crop land to streams. Pathogen indicator levels (i.e., E. coli levels) in the stream water were predicted. With certain assumptions, model results are reasonable. This study can be used as guidelines for developing the models for calculating the impacts of crop land's animal manure on stream water.

  11. The determination of critical nuclides in PWR waste streams

    SciTech Connect

    De Goeyse, A.

    1993-12-31

    The safety studies concerning the final disposal of low- and intermediate-level radioactive waste take into consideration a series of long-lived radionuclides. The problem the producers have to cope with comes from the fact that those nuclides, which are mainly (pure) {beta} emitters or {alpha} emitters, cannot be measured by a direct current method such as gamma scanning. Their determination involves sophisticated radiochemical techniques which are difficult to implement by a producer on a routine basis for normal production waste. A current method for the determination of those nuclides in the waste streams produced by a nuclear power reactor consists in applying correlation factors or scaling factors between those critical nuclides and so called key radionuclides, which can be easily measured and are representative for the occurrence of activation products and fission products in the waste streams. In order to identify and define those correlation factors, ONDRAF/NIRAS, has subcontracted, in agreement with the waste producer (ELECTRABEL), a complete study to the engineering company BELGATOM (BA) for the different waste streams produced by the seven Belgian PWR plants.

  12. Electrochemical and photochemical treatment of aqueous waste streams

    SciTech Connect

    Farmer, J.C.; Pekala, R.W.; Wang, F.T.; Fix, D.V.; Volpe, A.M.; Dietrich, D.D.; Siegel, W.H.; Carley, J.F.

    1996-03-01

    Carbon aerogel electrodes have been used to remove NH{sub 4}ClO{sub 4} and heavy metals from aqueous waste streams. Photochemical oixdation with H{sub 2}O{sub 2} has been used to destroy organic contamination and is proposed as a means of avoiding the fouling of carbon aerogel electrodes.

  13. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...

  14. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon(DOC) and dissolved oxygen (DO), and other parameters in 17 small streams of the South Fork Broad River watershed on a monthly basis for 15 months. Here we present estimates of the amounts of organic waste input to these wate...

  15. Redesigning Urban Carbon Cycles: from Waste Stream to Commodity

    NASA Astrophysics Data System (ADS)

    Brabander, D. J.; Fitzstevens, M. G.

    2013-12-01

    While there has been extensive research on the global scale to quantify the fluxes and reservoirs of carbon for predictive climate change models, comparably little attention has been focused on carbon cycles in the built environment. The current management of urban carbon cycles presents a major irony: while cities produce tremendous fluxes of organic carbon waste, their populations are dependent on imported carbon because most urban have limited access to locally sourced carbon. The persistence of outdated management schemes is in part due to the fact that reimagining the handling of urban carbon waste streams requires a transdisciplinary approach. Since the end of the 19th century, U.S. cities have generally relied on the same three options for managing organic carbon waste streams: burn it, bury it, or dilute it. These options still underpin the framework for today's design and management strategies for handling urban carbon waste. We contend that urban carbon management systems for the 21st century need to be scalable, must acknowledge how climate modulates the biogeochemical cycling of urban carbon, and should carefully factor local political and cultural values. Urban waste carbon is a complex matrix ranging from wastewater biosolids to municipal compost. Our first goal in designing targeted and efficient urban carbon management schemes has been examining approaches for categorizing and geochemically fingerprinting these matrices. To date we have used a combination of major and trace element ratio analysis and bulk matrix characteristics, such as pH, density, and loss on ignition, to feed multivariable statistical analysis in order to identify variables that are effective tracers for each waste stream. This approach was initially developed for Boston, MA, US, in the context of identifying components of municipal compost streams that were responsible for increasing the lead inventory in the final product to concentrations that no longer permitted its use in

  16. Biodegradation testing of solidified low-level waste streams

    SciTech Connect

    Piciulo, P.L.; Shea, C.E.; Barletta, R.E.

    1985-05-01

    The NRC Technical Position on Waste Form (TP) specifies that waste should be resistant to biodegradation. The methods recommended in the TP for testing resistance to fungi, ASTM G21, and for testing resistance to bacteria, ASTM G22, were carried out on several types of solidified simulated wastes, and the effect of microbial activity on the mechanical strength of the materials tested was examined. The tests are believed to be sufficient for distinguishing between materials that are susceptible to biodegradation and those that are not. It is concluded that failure of these tests should not be regarded of itself as an indication that the waste form will biodegrade to an extent that the form does not meet the stability requirements of 10 CFR Part 61. In the case of failure of ASTM G21 or ASTM G22 or both, it is recommended that additional data be supplied by the waste generator to demonstrate the resistance of the waste form to microbial degradation. To produce a data base on the applicability of the biodegradation tests, the following simulated laboratory-scale waste forms were prepared and tested: boric acid and sodium sulfate evaporator bottoms, mixed-bed bead resins and powdered resins each solidified in asphalt, cement, and vinyl ester-styrene. Cement solidified wastes supported neither fungal nor bacterial growth. Of the asphalt solidified wastes, only the forms of boric acid evaporator bottoms did not support fungal growth. Bacteria grew on all of the asphalt solidified wastes. Cleaning the surface of these waste forms did not affect bacterial growth and had a limited effect on the fungal growth. Only vinyl esterstyrene solidified sodium sulfate evaporator bottoms showed viable fungi cultures, but surface cleaning with solvents eliminated fungal growth in subsequent testing. Some forms of all the waste streams solidified in vinyl ester-styrene showed viable bacteria cultures. 13 refs., 12 tabs.

  17. Metal poisons for criticality in waste streams

    SciTech Connect

    Williamson, T.G.; Goslen, A.Q.

    1996-12-31

    Many of the wastes from processing fissile materials contain metals that may serve as neutron poisons. It would be advantageous to the criticality evaluation of these wastes to demonstrate that the poisons remain with the fissile materials and to demonstrate an always safe poison-to-fissile ratio. The first task, demonstrating that the materials stay together, is the job of the chemist; the second, calculating an always safe ratio, is an object of this paper. In an earlier study, the authors demonstrated safe ratios for iron, manganese, and chromium oxides to {sup 235}U. In these studies, the Hansen-Roach 16-group cross sections were used with the Savannah River site code HRXN. Multiplication factors were computed, and safe ratios were defined such that the adjusted neutron multiplication factors (k values) were <0.95. These safe weight ratios were Fe:{sup 235}U - 77:1; Mn:{sup 235}U - 30:1; and Cr:{sup 235}U - 52:1. Palmer has shown that for certain mixtures of aluminum, iron, and zirconium with {sup 235}U, the computed infinite multiplication factors may differ by as much as 20% with different cross sections and processing systems. Parks et al. have further studied these mixtures and state, {open_quotes}...these metal/uranium mixtures are very sensitive to the metal cross-section data in the intermediate-energy range and the processing methods that are used.{close_quotes} They conclude with a call for more experimental data. The purpose of this study is to reexamine earlier work with cross sections and processing codes used at Westinghouse Savannah River Company today. This study will focus on {sup 235}U mixtures with iron, manganese and chromium. Sodium will be included in the list of poisons because it is abundant in many of the waste materials.

  18. Future radioactive liquid waste streams study

    SciTech Connect

    Rey, A.S.

    1993-11-01

    This study provides design planning information for the Radioactive Liquid Waste Treatment Facility (RLWTF). Predictions of estimated quantities of Radioactive Liquid Waste (RLW) and radioactivity levels of RLW to be generated are provided. This information will help assure that the new treatment facility is designed with the capacity to treat generated RLW during the years of operation. The proposed startup date for the RLWTF is estimated to be between 2002 and 2005, and the life span of the facility is estimated to be 40 years. The policies and requirements driving the replacement of the current RLW treatment facility are reviewed. Historical and current status of RLW generation at Los Alamos National Laboratory are provided. Laboratory Managers were interviewed to obtain their insights into future RLW activities at Los Alamos that might affect the amount of RLW generated at the Lab. Interviews, trends, and investigation data are analyzed and used to create scenarios. These scenarios form the basis for the predictions of future RLW generation and the level of RLW treatment capacity which will be needed at LANL.

  19. Innovative waste stream analysis process for a utilities environmental laboratory

    SciTech Connect

    Stone, K.; Scherer, M.D.

    1997-08-01

    Compliance with government regulations for a vast multitude of chemical wastes streams can be a difficult undertaking. Under 40 CFR 261.11, a person who generates a solid waste must first determine if the waste is a hazardous waste to determine proper disposal. A common sense approach to meeting this requirement for a utility environmental laboratory has been developed at the Colorado Springs Utilities, Department of Water Resources, Environmental Quality Laboratory (EQL). The Colorado Springs Utilities, Water Resources Department, Environmental Quality Laboratory (EQL) operates a 10,000 square foot state-of-the-art laboratory facility. The EQL is a complete utilities environmental laboratory that conducts compliance analyses, process control analyses, and general environmental analyses. The EQL also provides inter-departmental analytical support analyses including polychlorinated biphenyl (PCB) transformer gas analysis for the electric department, hazard analyses for the Fire Department`s Haz-mat Unit, and compressor oil analyses for the Gas Department. The EQL has an excellent record of quality performance and is the only municipally owned laboratory in Colorado with Class 100 Clean Room capability. The EQL developed an innovative waste stream analysis process for its laboratory operations.

  20. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    SciTech Connect

    Arnold, P.

    2012-10-31

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams.

  1. Waste streams in a crewed space habitat. II

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore

    1992-01-01

    An update is presented of a compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat which was reported in the NASA Technical Memorandum. New topics under consideration include data obtained from Soviet literature on life support issues and data on various minor human body wastes not presented previously (saliva, Flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen). Attention is also given to the latest information on the environmental control and life support system design parameters for SSF.

  2. Waste streams in a crewed space habitat. II

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Wydeven, Theodore

    1992-01-01

    An update is presented of a compilation of generation rates and chemical compositions of potential waste streams in a typical crewed space habitat which was reported in the NASA Technical Memorandum. New topics under consideration include data obtained from Soviet literature on life support issues and data on various minor human body wastes not presented previously (saliva, Flatus, hair, finger- and toenails, dried skin and skin secretions, tears and semen). Attention is also given to the latest information on the environmental control and life support system design parameters for SSF.

  3. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  4. Organic waste compounds as contaminants in Milwaukee-area streams

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.

    2015-09-22

    Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.

  5. Separation of technetium from nuclear waste stream simulants. Final report

    SciTech Connect

    Strauss, S.H.

    1995-09-11

    The author studied liquid anion exchangers, such as Aliquat-336 nitrate, various pyridinium nitrates, and related salts, so that they may be applied toward a specific process for extracting (partitioning) and recovering {sup 99}TcO{sub 4}{sup {minus}} from nuclear waste streams. Many of the waste streams are caustic and contain a variety of other ions. For this reason, the author studied waste stream simulants that are caustic and contain appropriate concentrations of selected, relevant ions. Methods of measuring the performance of the exchangers and extractant systems included contact experiments. Batch contact experiments were used to determine the forward and reverse extraction parameters as a function of temperature, contact time, phase ratio, concentration, solvent (diluent), and other physical properties. They were also used for stability and competition studies. Specifically, the author investigated the solvent extraction behavior of salts of perrhenate (ReO{sub 4}{sup {minus}}), a stable (non-radioactive) chemical surrogate for {sup 99}TcO{sub 4}{sup {minus}}. Results are discussed for alternate organic solvents; metalloporphyrins, ferrocenes, and N-cetyl pyridium nitrate as alternate extractant salts; electroactive polymers; and recovery of ReO{sub 4}{sup {minus}} and TcO{sub 4}{sup {minus}}.

  6. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL2A

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This hazardous waste determination report (Report) describes the process and information used on the Hanford Site to determine that waste stream number NPFPDLZA, consisting of 30 containers of contact-handled transuranic debris waste, is not hazardous waste regulated by the Resource Conservation and Recovery Act (RCRA) or the New Mexico Hazardous Waste Act. For a waste to be hazardous under these statutes, the waste either must be specifically listed as a hazardous waste, or exhibit one or more of the characteristics of a hazardous waste, Le., ignitability, corrosivity, reactivity, or toxicity. Waste stream NPFPDLZA was generated, packaged, and placed into storage between 1993 and 1997. Extensive knowledge of the waste generating process, facility operational history, and administrative controls and operating procedures in effect at the time of generation, supported the initial nonhazardous waste determination. Because of the extent and reliability of information pertaining to this waste type, and the total volume of waste in the debris matrix parameter category, the Hanford Site is focusing initial efforts on this and similar waste streams for the first shipment to the Waste Isolation Pilot Plant (WIPP). RCRA regulations authorize hazardous waste determinations to be made either by using approved sampling and analysis methods or by applying knowledge of the waste in light of the materials or the process(es) used. This latter approach typically is referred to as process knowledge. The Transuranic Waste Characterization Quality Assurance Program Plan (CAO-94-1010) for WIPP refers to acceptable knowledge in essentially the same terms; acceptable knowledge as used throughout this Report is synonymous with the term process knowledge. The 30 containers addressed in this Report were characterized by the following methods: Acceptable knowledge; Nondestructive examination using real-time radiography; Visual examination; and Headspace gas sampling and analysis. The initial

  7. Recovery of acetic acid from waste streams by extractive distillation.

    PubMed

    Demiral, H; Yildirim, M Ercengiz

    2003-01-01

    Wastes have been considered to be a serious worldwide environmental problem in recent years. Because of increasing pollution, these wastes should be treated. However, industrial wastes can contain a number of valuable organic components. Recovery of these components is important economically. Using conventional distillation techniques, the separation of acetic acid and water is both impractical and uneconomical, because it often requires large number of trays and a high reflux ratio. In practice special techniques are used depending on the concentration of acetic acid. Between 30 and 70% (w/w) acetic acid contents, extractive distillation was suggested. Extractive distillation is a multicomponent-rectification method similar in purpose to azeotropic distillation. In extractive distillation, to a binary mixture which is difficult or impossible to separate by ordinary means, a third component termed an entrainer is added which alters the relative volatility of the original constituents, thus permitting the separation. In our department acetic acid is used as a solvent during the obtaining of cobalt(III) acetate from cobalt(II) acetate by an electrochemical method. After the operation, the remaining waste contains acetic acid. In thiswork, acetic acid which has been found in this waste was recovered by extractive distillation. Adiponitrile and sulfolane were used as high boiling solvents and the effects of solvent feed rate/solution feed rate ratio and type were investigated. According to the experimental results, it was seem that the recovery of acetic acid from waste streams is possible by extractive distillation.

  8. Composting: Dirty riches. [Composting organic wastes from the municiple solid waste stream

    SciTech Connect

    Sachs, A.

    1993-08-01

    Up to three-quarters of municiple solid waste (MSW) is organic, readily biodegradable material, such as food, leaves, and paper. If this waste were allowed to root properly, the solid waste crisis would be less serious. However, rotting isn't easy in a tightly packed mountain of garbage at a typical landfill. The last few years have at least established composing as a rising green industry, especially in the most populous regions of the developed world. However, the variety of composting programs is too inefficient to divert any more than a tiny fraction of the compostable waste stream away from landfills and incinerators. This article discusses the problems of mixed municiple solid wastes and composting organic wastes, and possible solutions.

  9. High Priority Infant Tracking Project. Final Report.

    ERIC Educational Resources Information Center

    Biro, Patricia J.; And Others

    The study compared the effectiveness of the Washington State High Priority Infant Tracking Project in maintaining high risk infants in continuing health care, determining health and developmental outcomes, and surveying the use of community resources with other state tracking projects. The project identifies infants during the first 30 days of…

  10. High Priority Infant Tracking Project. Final Report.

    ERIC Educational Resources Information Center

    Biro, Patricia J.; And Others

    The study compared the effectiveness of the Washington State High Priority Infant Tracking Project in maintaining high risk infants in continuing health care, determining health and developmental outcomes, and surveying the use of community resources with other state tracking projects. The project identifies infants during the first 30 days of…

  11. Using benchmarking to minimize common DOE waste streams. Volume 1, Methodology and liquid photographic waste

    SciTech Connect

    Levin, V.

    1994-04-01

    Finding innovative ways to reduce waste streams generated at Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. This report examines the usefulness of benchmarking as a waste minimization tool, specifically regarding common waste streams at DOE sites. A team of process experts from a variety of sites, a project leader, and benchmarking consultants completed the project with management support provided by the Waste Minimization Division EM-352. Using a 12-step benchmarking process, the team examined current waste minimization processes for liquid photographic waste used at their sites and used telephone and written questionnaires to find ``best-in-class`` industrv partners willing to share information about their best waste minimization techniques and technologies through a site visit. Eastman Kodak Co., and Johnson Space Center/National Aeronautics and Space Administration (NASA) agreed to be partners. The site visits yielded strategies for source reduction, recycle/recovery of components, regeneration/reuse of solutions, and treatment of residuals, as well as best management practices. An additional benefit of the work was the opportunity for DOE process experts to network and exchange ideas with their peers at similar sites.

  12. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-01-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne's process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  13. Production of degradable polymers from food-waste streams

    SciTech Connect

    Tsai, S.P.: Coleman, R.D.; Bonsignore, P.V.; Moon, S.H.

    1992-07-01

    In the United States, billions of pounds of cheese whey permeate and approximately 10 billion pounds of potatoes processed each year are typically discarded or sold as cattle feed at $3{endash}6/ton; moreover, the transportation required for these means of disposal can be expensive. As a potential solution to this economic and environmental problem, Argonne National Laboratory is developing technology that: Biologically converts existing food-processing waste streams into lactic acid and uses lactic acid for making environmentally safe, degradable polylactic acid (PLA) and modified PLA plastics and coatings. An Argonne process for biologically converting high-carbohydrate food waste will not only help to solve a waste problem for the food industry, but will also save energy and be economically attractive. Although the initial substrate for Argonne`s process development is potato by-product, the process can be adapted to convert other food wastes, as well as corn starch, to lactic acid. Proprietary technology for biologically converting greater than 90% of the starch in potato wastes to glucose has been developed. Glucose and other products of starch hydrolysis are subsequently fermented by bacteria that produce lactic acid. The lactic acid is recovered, concentrated, and further purified to a polymer-grade product.

  14. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, R.E.

    2001-01-31

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  15. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  16. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  17. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  18. Treatability study of Tank E-3-1 waste: mixed waste stream SR-W049

    SciTech Connect

    Langton, C.A.

    1997-08-21

    Treatability studies were conducted for tank E-3-1 waste which was previously characterized in WSRC-RP-87-0078. The waste was determined to be mixed waste because it displayed the characteristic of metal toxicity for Hg and Cr and was also contaminated with low levels of radionuclides. Two types of treatments for qualifying this waste suitable for land disposal were evaluated: ion exchange and stabilization with hydraulic materials (portland cement, slag and magnesium phosphate cement). These treatments were selected for testing because: (1) Both treatments can be carried out as in-drum processes., (2) Cement stabilization is the RCRA/LDR best developed available technology (BDAT) for Hg (less than 280 mg/L) and for Cr., and (3) Ion exchange via Mag-Sep is a promising alternative technology for in drum treatment of liquid wastes displaying metal toxicity. Cement stabilization of the E-3-1 material ( supernate and settled solids) resulted in waste forms which passed the TCLP test for both Hg and Cr. However, the ion exchange resins tested were ineffective in removing the Hg from this waste stream. Consequently, cement stabilization is recommended for a treatment of the five drums of the actual waste.

  19. Disposal Analysis of I-129 Bearing Waste Streams at the Intermediate Level Vault

    SciTech Connect

    Collard, L.B.

    2001-01-25

    This report examines the effects of new waste-specific sorption characteristics reported for I-129 bearing wastes on inventory limits in the Intermediate Level Vault (ILV). Inventory limits are described based on the revised performance assessment model using the waste-specific Kd's. Results are compared with inventory projections of waste streams for the next ten years.

  20. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    SciTech Connect

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-07-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  1. Using benchmarking to minimize common DOE waste streams: Volume 5. Office paper waste

    SciTech Connect

    Levin, V.

    1995-10-01

    Finding innovative ways to reduce waste streams generated at US Department of Energy (DOE) sites by 50% by the year 2000 is a challenge for DOE`s waste minimization efforts. A team composed of members from several DOE facilities used the quality tool known as benchmarking to improve waste minimization efforts. First the team examined office waste generation and handling processes at their sites. Then team members developed telephone and written questionnaires to help identify potential ``best-in-class`` industry partners willing to share information about their best waste minimization techniques and technologies. The team identified two benchmarking partners, NIKE, Inc., in Beaverton, Oregon, and Microsoft, Inc., in Redmond, Washington. Both companies have proactive, employee-driven environmental issues programs. Both companies report strong employee involvement, management commitment, and readily available markets for recyclable materials such as white paper and nonwhite assorted paper. The availability of markets, the initiative and cooperation of employees, and management support are the main enablers for their programs. At both companies, recycling and waste reduction programs often cut across traditional corporate divisions such as procurement, janitorial services, environmental compliance, grounds maintenance, cafeteria operations, surplus sales, and shipping and receiving. These companies exhibited good cooperation between these functions to design and implement recycling and waste reduction programs.

  2. Landfill taxes and Enhanced Waste Management: Combining valuable practices with respect to future waste streams.

    PubMed

    Hoogmartens, Rob; Eyckmans, Johan; Van Passel, Steven

    2016-09-01

    Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against €50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource-efficient, circular economy in Europe.

  3. Biological treatment of habitation waste streams using full scale MABRs

    NASA Astrophysics Data System (ADS)

    Jackson, William; Barta, Daniel J.; Morse, Audra; Christenson, Dylan; Sevanthi, Ritesh

    Recycling waste water is a critical step to support sustainable long term habitation in space. Water is one of the largest contributors to life support requirements. In closed loop life support systems, membrane aerated biological reactors (MABRs) can reduce the dissolved organic carbon (DOC) and ammonia (NH3) concentration as well as decrease the pH, leading to a more stable solution with less potential to support biological growth or promote carryover of unionized ammonia as well as producing a higher quality brine. Over the last three years we have operated 3 full size MABRs ( 120L) treating a habitation type waste stream composed of urine, hygiene, and laundry water. The reactors varied in the specific surface area (260, 200, and 150 m2/m3) available for biofilm growth and gas transfer. The liquid side system was continually monitored for pH, TDS, and DO, and the influent and effluent monitored daily for DOC, TN, NOx, and NH4. The gas side system was continuously monitored for O2, CO2, and N2O in the effluent gas as well as pressure and flow rates. These systems have all demonstrated greater than 90% DOC reductions and ammonium conversion rates of 50-70% over a range of loading rates with effluent pH from 5-7.5. We have evaluated. In addition, to evaluating the impact of loading rates (10-70 l/d) we have also evaluated the impact of forced hibernation, the use of pure O2 on performance, the impact of pressurize operation to prevent de-gassing of N2 and to promote higher O2 transfer and a discontinuous feeding cycle to allow integration with desalination. Our analysis includes quantification of consumables (power and O2), waste products such as CO2 and N2O as well as solids production. Our results support the use of biological reactors to treat habitation waste streams as an alternative to the use of pretreatment and desalination alone.

  4. Method for the removal of carbon or carbon compounds from a waste stream

    SciTech Connect

    Urban, P.

    1983-05-17

    A method for the removal of carbon or carbon compounds from a waste stream generated in an unsupported slurry catalyst process utilized for the hydroconversion of heavy hydrocarbonaceous black oil which stream comprises vanadium sulfide, nickel sulfide and carbon or carbon compounds is disclosed. The carbon or carbon compound is removed by contacting the waste stream with sulfur dioxide at oxidizing conditions to yield a solid residue which contains metal sulfides.

  5. Biological removal of carbon disulfide from waste air streams

    SciTech Connect

    Hugler, W.; Acosta, C.; Revah, S.

    1999-09-30

    A pilot-scale biological control system for the treatment of 3,400 m{sup 3} h{sup {minus}1} of a gaseous stream containing up to 7.8 g CS{sub 2} m{sup {minus}3} and trace amounts of hydrogen sulfide (H{sub 2}S) was installed in a cellulose sponge manufacturing facility. The objective was to demonstrate the capability of the process to attain sustained removal efficiencies of 90% for CS{sub 2} and 99% for H{sub 2}S. The system consisted of two sequential biotrickling reactors, which had been previously inoculated with an adapted microbial consortium. During the pilot test, stable removal efficiency and elimination capacity of +90% and 220g CS{sub 2} m{sup {minus}3} h{sup {minus}1}, respectively, were attained with an empty bed residence time (EBTR) of 33 seconds for a period of several weeks. Efficiencies greater than 99% were always obtained for H{sub 2}S. Based on the results, the system was determined to be an effective process to remediate waste air streams containing reduced sulfur compounds generated at cellulose sponge facilities.

  6. Assessment of plasma gasification of high caloric waste streams.

    PubMed

    Lemmens, Bert; Elslander, Helmut; Vanderreydt, Ive; Peys, Kurt; Diels, Ludo; Oosterlinck, Michel; Joos, Marc

    2007-01-01

    Plasma gasification is an innovative technology for transforming high calorific waste streams into a valuable synthesis gas and a vitrified slag by means of a thermal plasma. A test program has been set up to evaluate the feasibility of plasma gasification and the impact of this process on the environment. RDF (refuse derived fuel) from carpet and textile waste was selected as feed material for semi-pilot gasification tests. The aim of the tests was: (1) to evaluate the technical feasibility of making a stable synthesis gas; (2) to characterize the composition of this synthesis gas; (3) to define a suitable after-treatment configuration for purification of the syngas and (4) to characterize the stability of the slag, i.e., its resistance to leaching for use as a secondary building material. The tests illustrate that plasma gasification can result in a suitable syngas quality and a slag, characterized by an acceptable leachability. Based on the test results, a further scale-up of this technology will be prepared and validation tests run.

  7. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  8. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  9. Recovery of valuable agricultural materials from various industrial and municipal waste streams

    SciTech Connect

    Steele, R.B.

    1995-12-31

    Many agriculturally beneficial materials can be recovered from industrial and municipal waste streams. Processes for conversion of waste by-products as diverse as treated Class A sewage sludge, waste wallboard, fly ash, and synthetic (FGD) gypsum into fertilizers, fillers and amendments are presented.

  10. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  11. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  12. Generation rates and chemical compositions of waste streams in a typical crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Golub, Morton A.

    1990-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  13. Feasibility Study – Using a Solar Evaporator to Reduce the Metalworking Fluid (MWF) Waste Stream

    SciTech Connect

    Lazarus, Lloyd

    2008-12-03

    A solar evaporator was designed, built, and operated to reduce the water-based metalworking fluid waste stream. The evaporator was setup in Waste Management’s barrel lot inside one of the confinement areas. The unit processed three batches of waste fluid during the prototype testing. Initial tests removed 13% of the fluid waste stream. Subsequent modifications to the collector improved the rate to almost 20% per week. Evaluation of the risk during operation showed that even a small spill when associated with precipitation, and the unit placement within a confinement area, gave it the potential to contaminate more fluid that what it could save.

  14. Process, product, and waste-stream monitoring with fiber optics

    SciTech Connect

    Milanovich, F.P.; Hirschfeld, T.

    1983-10-10

    Fiber optic technology, motivated by communications and defense applications, has advanced significantly the past ten years. In particular, advances have been made in visible radiation transmission efficiency with concurrent reductions in fiber size, weight, and cost. Researchers at the Lawrence Livermore National Laboratory (LLNL) coupled these advances in fiber optic technology with analytical fluorescence analysis to establish a new technology - remote fiber fluorimetry (RFF). Laser-based RFF offers the potential to measure and monitor from one central and remote laboratory, on-line, and in near real time, trace (ppM) to substantial (g/L) concentrations of selected chemical species in typical process, product, and waste streams. The fluorimeter consists of a fluorescence or Raman spectrometer; unique coupling optics that separates input excitation (laser) radiation from return (fluorescence) radiation; a fiber optic cable; and an optrode - a terminal that interfaces the fiber to the measurement point, which is designed to respond quantitatively to a particular chemical species. At LLNL, research is underway into optrodes that measure pressure, temperature, and pH and those that detect and quantify various actinides, sulfates, inorganic chloride, hydrogen sulfide, aldehydes, and alcohols.

  15. Potential Applicability of Assembled Chemical Weapons Assessment Technologies to RCRA Waste Streams and Contaminated Media (PDF)

    EPA Pesticide Factsheets

    This report provides an evaluation of the potential applicability of Assembled Chemical Weapons Assessment (ACWA) technologies to RCRA waste streams and contaminated media found at RCRA and Superfund sites.

  16. Characterization and monitoring of 300 Area facility liquid waste streams during 1994 and 1995

    SciTech Connect

    Thompson, C.J.; Ballinger, M.Y.; Damberg, E.G.; Riley, R.G.

    1997-07-01

    Pacific Northwest National Laboratory`s Facility Effluent Management Program characterized and monitored liquid waste streams from 300 Area buildings that are owned by the US Department of Energy and are operated by Pacific Northwest National Laboratory. The purpose of these measurements was to determine whether the waste streams would meet administrative controls that were put in place by the operators of the 300 Area Treated Effluent Disposal Facility. This report summarizes the data obtained between March 1994 and September 1995 on the following waters: liquid waste streams from Buildings 306, 320, 324, 325, 326, 327, 331, and 3,720; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe).

  17. Waste Stream Analysis of Two United States Army Dining Facilities

    DTIC Science & Technology

    1993-01-01

    after other nonfood waste volume was collapsed. The composition of service food waste was moisture (70.81%); carbohydrate (16.47%); fat (6.43%); protein...165 Moisture content .......................... 166 Protein composition ....................... 166 Nonfood Waste...weight per meal at other institutional settings. (6) to report and compare the nutrient composition and moisture content of service food waste at both

  18. Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

  19. Pervaporation process and use in treating waste stream from glycol dehydrator

    DOEpatents

    Kaschemekat, Jurgen; Baker, Richard W.

    1994-01-01

    Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

  20. Sequestering agents for the removal of actinides from waste streams

    SciTech Connect

    Raymond, K.N.; White, D.J.; Xu, Jide; Mohs, T.R.

    1997-10-01

    The goal of this project is to take a biomimetic approach toward developing new separation technologies for the removal of radioactive elements from contaminated DOE sites. To achieve this objective, the authors are investigating the fundamental chemistry of naturally occurring, highly specific metal ion sequestering agents and developing them into liquid/liquid and solid supported actinide extraction agents. Nature produces sideophores (e.g., Enterobactin and Desferrioxamine B) to selectivity sequester Lewis acidic metal ions, in particular Fe(III), from its surroundings. These chelating agents typically use multiple catechols or hydroxamic acids to form polydentate ligands that chelate the metal ion forming very stable complexes. The authors are investigating and developing analogous molecules into selective chelators targeting actinide(IV) ions, which display similar properties to Fe(III). By taking advantage of differences in charge, preferred coordination number, and pH stability range, the transition from nature to actinide sequestering agents has been applied to the development of new and highly selective actinide extraction technologies. Additionally, the authors have shown that these chelating ligands are versatile ligands for chelating U(VI). In particular, they have been studying their coordination chemistry and fundamental interactions with the uranyl ion [UO{sub 2}]{sup 2+}, the dominant form of uranium found in aqueous media. With an understanding of this chemistry, and results obtained from in vivo uranium sequestration studies, it should be possible to apply these actinide(IV) extraction technologies to the development of new extraction agents for the removal of uranium from waste streams.

  1. Report on the High Priority Location Stipend Program.

    ERIC Educational Resources Information Center

    Fitzgerald, Cyndy T.

    The High Priority Location Stipend Program (HPLSP) provides monetary incentives to staff assigned to work at school sites designated as high priority locations. HPLSP was first implemented in the Dade County Public Schools, Florida, during the 1982-83 school year. The purposes of this study were to determine the impact of HPLSP on: (1) staff…

  2. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  3. Recovery of bromine from waste gas-phase hydrogen bromide streams using an electrolytic membrane

    SciTech Connect

    Wauters, C.N; Winnick, J.

    1996-09-01

    An electrochemical cell is used to demonstrate a significant improvement in the recovery of bromine (Br{sub 2}) from waste gas-phase hydrogen bromide (HBr) streams. The continuous process operates at 300 C and utilizes reticulated vitreous carbon gas-diffusion electrodes, a molten (Li{sub 0.575}K{sub 0.133}Cs{sub 0.292})Br electrolyte, and borosilicate glass fiber membrane. HBr is simultaneously electrolytically decomposed and separated into a hydrogen enriched waste stream and pure anhydrous Br{sub 2} product stream. Simulated industrial waste streams containing HBr, nitrogen, water vapor, and organic compounds have been tested. These results include removals of greater than 90% and current densities approaching 1.0 A/cm{sup 2}.

  4. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    SciTech Connect

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.; Serne, R. Jeffrey; Icenhower, Jonathan P.; Scheele, Randall D.; Um, Wooyong; Qafoku, Nikolla

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidification treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.

  5. ERM 593 Applied Project_Guidance for Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System_Final_05-05-15

    SciTech Connect

    Elicio, Andy U.

    2015-05-05

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform a review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.

  6. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand.

  7. Hazardous Waste Code Determinations for the First/Second Stage Sludge Waste Stream (IDCs 001, 002, 800)

    SciTech Connect

    Arbon, Rodney Edward

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream.

  8. A supported polymeric liquid membrane process for removal of carboxylic acids from a waste stream

    SciTech Connect

    Ho, S.V.

    1999-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. The authors have developed a new class of membrane called supported polymeric liquid membranes that are capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid. The process has shown treatment feasibility for several types of aqueous waste streams. This paper describes the laboratory development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids and nitric acid.

  9. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange

    SciTech Connect

    Lee, V.E.

    1991-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy's Innovative Concept Program. The fifteen innovations were presented at the fifth Innovative Concepts Fair, held in Washington, DC, on April 25-26, 1991. The concepts in this year's fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept's economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes; Volume 1 addresses innovations for mining and metals remediation that can reduce or use waste streams, and Volume 2 addresses general industrial innovations that can reduce or use waste streams. Individual papers have been cataloged separately.

  10. Depolymerization of the waste polymers in municipal solid waste streams using induction-coupled plasma technology

    NASA Astrophysics Data System (ADS)

    Guddeti, Ravikishan Reddy

    2000-10-01

    A significant, valuable percentage of today's municipal solid waste stream consists of polymeric materials, for which almost no economic recycling technology currently exists. This polymeric waste is incinerated, landfilled or recycled via downgraded usage. Thermal plasma treatment is a potentially viable means of recycling these materials by converting them back into monomers or into other useful compounds. The technical, laboratory scale, feasibility of using an induction-coupled RF plasma [ICP] heated reactor for this purpose has been demonstrated in the present study. Polyethylene [PE], polypropylene [PP] and polyethylene terephthalate [PET], the model polymers chosen for the study, were injected axially through the center of an ICP torch. 68% of PE, 78% of PP and 75% of PET were converted into gaseous products. Ethylene and propylene were the primary gaseous products of decomposition of the former two polymers and acetylene was the primary product of the depolymerization of PET. The amount of propylene obtained in PE depolymerization was significantly higher than anticipated and was believed to be due to beta-scission reactions occurring at the high plasma temperatures. Statistical design of experiments was used to determine the influence of individual variables. Analysis of results showed that plasma plate power, central gas flow rate, probe gas flow rate, powder feed rate and the interaction between the quench gas flow rate and power input were the key process parameters affecting the yield of monomer in the product gas stream. Depolymerization of a PE + PP mixture yielded concentrations of propylene and ethylene close to those predicted from weighting the concentrations of products from the individual polymers. 75.5 wt.% of the mixture was converted into monomers. TEM analysis of the carbon residues collected from different locations of the reactor indicated the formation of some novel carbon structures, including carbon nanotubes. The presence of these

  11. The Rocky Flats Plant Waste Stream and Residue Identification and Characterization Program (WSRIC): Progress and achievements

    SciTech Connect

    Ideker, V.L.; Doyle, G.M.

    1994-02-01

    The Waste Stream and Residue Identification and Characterization (WSRIC) Program, as described in the WSRIC Program Description delineates the process knowledge used to identify and characterize currently-generated waste from approximately 5404 waste streams originating from 576 processes in 288 buildings at Rocky Flats Plant (RFP). Annual updates to the WSRIC documents are required by the Federal Facilities Compliance Agreement between the US Department of Energy, the Colorado Department of Health and the Environmental Protection Agency. Accurate determination and characterization of waste is a crucial component in RFP`s waste management strategy to assure compliance with Resource Conservation and Recovery Act (RCRA) storage and treatment requirements, as well as disposal acceptance criteria. The WSRIC Program was rebaselined in September 1992, and serves as the linchpin for documenting process knowledge in RFP`s RCRA operating record. Enhancements to the WSRIC include strengthening the waste characterization rationale, expanding WSRIC training for waste generators, and incorporating analytical information into the WSRIC building books. These enhancements will improve credibility with the regulators and increase waste generators` understanding of the basis for credible waste characterizations.

  12. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1993-01-01

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average. individual particle sizes of approximately 40 manometers.

  13. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, D.J.

    1995-03-07

    A liquid-liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers. 2 figs.

  14. Method for extracting metals from aqueous waste streams for long term storage

    DOEpatents

    Chaiko, David J.

    1995-01-01

    A liquid--liquid extraction method for removing metals and hydrous metal colloids from waste streams is provided wherein said waste streams are contacted with a solvent system containing a water-in-oil microemulsion wherein the inverted micelles contain the extracted metal. A silicon alkoxide, either alone or in combination with other metal alkoxide compounds is added to the water-in-oil microemulsion, thereby allowing encapsulation of the extracted metal within a silicon oxide network. Lastly, the now-encapsulated metal is precipitated from the water-in-oil microemulsion phase to yield aggregates of metal-silicate particles having average individual particle sizes of approximately 40 nanometers.

  15. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  16. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.

    PubMed

    Torrance, Keith W; Keenan, Helen E; Hursthouse, Andrew S; Stirling, David

    2010-01-01

    The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900 mgL(-1). Lapping slurries had much lower dissolved arsenic (< 90 mgL(-1)) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15 mgL(-1). All three waste streams are classified as hazardous waste, based on their solids content and dissolved arsenic levels and treatment is required before discharge or disposal. It is calculated that as much as 93% of material is discarded through the entire GaAs device manufacturing process, with limited recycling. Although gallium can be economically recovered from waste slurries, there is little incentive to recover arsenic, which is mostly landfilled. Options for treating GaAs processing waste streams are reviewed and some recommendations made for handling the waste. Therefore, although the quantities of hazardous waste generated are miniscule in comparison to other industries, sustainable manufacturing practices are needed to minimize the environmental impact of GaAs semiconductor device fabrication.

  17. Radiological characterization of the nuclear waste streams of the Belgian nuclear research centre SCK.CEN

    SciTech Connect

    Maris, Patrick; Cornelissen, Rene; Bruggeman, Michel

    2007-07-01

    The radiological characterization of nuclear wastes of a research centre is difficult seen the many different processes that generate waste. Since these wastes may contain radionuclides relevant for the disposal option, the nuclide content and activity have to be known. Considering the fact that some wastes are generated only in minor quantities, complex approaches, involving sampling and successive analysis are not justified. Basic physical models can generally be applied to estimate activity ratios, from which the radionuclide inventory can be determined by non-destructive assay on waste-packages. This article discusses waste streams at the Belgian Nuclear Research Centre SCK.CEN and explains how nuclide inventories and activity are determined. The physical models, used to derive activity ratios, and other simple approaches are discussed. (authors)

  18. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    SciTech Connect

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on the liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.

  19. Recycling ferrous and nonferrous waste streams with FASTMET

    NASA Astrophysics Data System (ADS)

    McClelland, James M.; Metius, Gary E.

    2003-08-01

    In metals processing, residue streams are routinely generated containing recoverable metallic compounds. These metallics represent both valuable materials and potential disposal problems to the producer. Midrex, primarily involved in ferrous conversion for many years, has developed a variety of new processing techniques for ferrous and non-ferrous recovery. The processing technologies involve either shaft or rotary hearth furnaces, and can be both hydrocarbon or coal based. Recent developments have included conversion studies for ferrous and non-ferrous residual streams that are energy efficient and environmentally friendly. The technologies to be presented, predominantly coal based, include FASTMET®, FASTMELT®, and Itmk3®.

  20. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 kilometers) of the South Fork Broad River waters...

  1. BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...

  2. POTENTIAL IMPACTS OF ORGANIC WASTES ON SMALL STREAM WATER QUALITY

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. Our monthly monitoring results showed a strong inverse relationship betwe...

  3. POTENTIAL IMPACTS OF ORGANIC WASTES ON SMALL STREAM WATER QUALITY

    EPA Science Inventory

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. Our monthly monitoring results showed a strong inverse relationship betwe...

  4. BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...

  5. ORGANIC WASTE CONTAMINATION INDICATORS IN SMALL GEORGIA PIEDMONT STREAMS

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 kilometers) of the South Fork Broad River waters...

  6. Selection and Evaluation of Chemical Indicators for Waste Stream Identification

    NASA Astrophysics Data System (ADS)

    DeVita, W. M.; Hall, J.

    2015-12-01

    Human and animal wastes pose a threat to the quality of groundwater, surface water and drinking water. This is especially of concern for private and public water supplies in agricultural areas of Wisconsin where land spreading of livestock waste occurs on thin soils overlaying fractured bedrock. Current microbial source tracking (MST) methods for source identification requires the use of polymerase chain reaction (PCR) techniques. Due to cost, these tests are often not an option for homeowners, municipalities or state agencies with limited resources. The Water and Environmental Analysis Laboratory sought to develop chemical methods to provide lower cost processes to determine sources of fecal waste using fecal sterols, pharmaceuticals (human and veterinary) and human care/use products in ground and surface waters using solid phase extraction combined with triple quadrupole mass spectrometry. The two separate techniques allow for the detection of fecal sterol and other chemical markers in the sub part per billion-range. Fecal sterol ratios from published sources were used to evaluate drinking water samples and wastewater from onsite waste treatment systems and municipal wastewater treatment plants. Pharmaceuticals and personal care products indicative of human waste included: acetaminophen, caffeine, carbamazepine, cotinine, paraxanthine, sulfamethoxazole, and the artificial sweeteners; acesulfame, saccharin, and sucralose. The bovine antibiotic sulfamethazine was also targeted. Well water samples with suspected fecal contamination were analyzed for fecal sterols and PPCPs. Results were compared to traditional MST results from the Wisconsin State Laboratory of Hygiene. Chemical indicators were found in 6 of 11 drinking water samples, and 5 of 11 were in support of MST results. Lack of detection of chemical indicators in samples contaminated with fecal waste supports the need for confirmatory methods and advancement of chemical indicator detection technologies.

  7. Dealing with emerging waste streams: used tyre assessment in Thailand using material flow analysis.

    PubMed

    Jacob, Paul; Kashyap, Prakriti; Suparat, Tasawan; Visvanathan, Chettiyappan

    2014-09-01

    Increasing urbanisation and automobile use have given rise to an increase in global tyre waste generation. A tyre becomes waste once it wears out and is no longer fit for its original purpose, and is thus in its end-of-life state. Unlike in developed countries, where waste tyre management has already become a significant issue, it is rarely a priority waste stream in developing countries. Hence, a large quantity of waste tyres ends up either in the open environment or in landfill. In Thailand, waste tyre management is in its infancy, with increased tyre production and wider use of vehicles, but low levels of recycling, leaving scope for more appropriate policies, plans and strategies to increase waste tyre recycling. This article describes the journey of waste tyres in Thailand in terms of recycling and recovery, and disposal. Material flow analysis was used as a tool to quantify the flows and accumulation of waste tyres in Thailand in 2012. The study revealed that, in Thailand in 2012, waste tyre management was still biased towards destructive technologies (48.9%), rather than material recovery involving rubber reclamation, retreading tyres and whole and shredded tyre applications (6.7%). Despite having both economic and environmental benefits, 44.4% of used tyres in 2012 were dumped in the open environment, and the remaining 0.05% in landfills. © The Author(s) 2014.

  8. Electrochemical and Photochemical Treatment of Aqueous Waste Streams

    DTIC Science & Technology

    1996-01-01

    PAGES 6 Aerogel, Electrochemical treatment, Photochemical waste treatment, SERDP 16. PRICE CODE N/A 17. SECURITY CLASSIFICATION 18. SECURITY 19...Lawrence Livermore National Laboratory 7000 East Avenue Livermore, California 94550 (510)423-6574 ABSTRACT from sea water and 0.1 M KNO3 . This electrolytic

  9. Strategic plan for the US Department of Energy Nuclear Weapons Complex Polymer Waste Stream

    SciTech Connect

    Swartz, W.E. Jr.

    1991-08-08

    This plan addresses the objectives and implementation strategy for the US Department of Energy (DOE) Nuclear Weapons Complex (NWC) Polymer Waste Stream (PWS) program through FY 1996. The purpose of the plan is to develop a comprehensive hazard/waste minimization program for PWS projects. The overall focus of the strategy is directed toward hazard/waste minimization for PWS processes. This involves the elimination/minimization of processes and materials that result in potential exposure of the work force to hazardous materials during the production of nuclear weapons and pose a threat to the environment by the potential release of toxic or environmentally harmful materials. The Department of Energy established the Waste Minimization Management Group (WMMG) in August 1990. The WMMG was given the mission of establishing and coordinating a comprehensive program which would minimize waste and hazards in the production of weapons within the NWC.

  10. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    SciTech Connect

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of both the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.

  11. Production of lactic acid and fungal biomass by Rhizopus fungi from food processing waste streams.

    PubMed

    Jin, Bo; Yin, Pinghe; Ma, Yihong; Zhao, Ling

    2005-12-01

    This study proposed a novel waste utilization bioprocess for production of lactic acid and fungal biomass from waste streams by fungal species of Rhizopus arrhizus 36017 and R. oryzae 2062. The lactic acid and fungal biomass were produced in a single-stage simultaneous saccharification and fermentation process using potato, corn, wheat and pineapple waste streams as production media. R. arrhizus 36017 gave a high lactic acid yield up to 0.94-0.97 g/g of starch or sugars associated with 4-5 g/l of fungal biomass produced, while 17-19 g/l fungal biomass with a lactic acid yield of 0.65-0.76 g/g was produced by the R. oryzae 2062 in 36-48 h fermentation. Supplementation of 2 g/l of ammonium sulfate, yeast extract and peptone stimulated an increase in 8-15% lactic acid yield and 10-20% fungal biomass.

  12. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    SciTech Connect

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  13. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  14. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Unit operations used to treat process and/or waste streams at nuclear power plants. [R

    SciTech Connect

    Godbee, H.W.; Kibbey, A.H.

    1980-01-01

    Estimates are given of the annual amounts of each generic type of LLW (i.e., Government and commerical (fuel cycle and non-fuel cycle)) that is generated at LWR plants. Many different chemical engineering unit operations used to treat process and/or waste streams at LWR plants include adsorption, evaporation, calcination, centrifugation, compaction, crystallization, drying, filtration, incineration, reverse osmosis, and solidification of waste residues. The treatment of these various streams and the secondary wet solid wastes thus generated is described. The various treatment options for concentrates or solid wet wastes, and for dry wastes are discussed. Among the dry waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting and shredding. Organic materials (liquids (e.g., oils or solvents) and/or solids), could be incinerated in most cases. The filter sludges, spent resins, and concentrated liquids (e.g., evaporator concentrates) are usually solidified in cement, or urea-formaldehyde or unsaturated polyester resins prior to burial. Incinerator ashes can also be incorporated in these binding agents. Asphalt has not yet been used. This paper presents a brief survey of operational experience at LWRs with various unit operations, including a short discussion of problems and some observations on recent trends.

  16. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production.

    PubMed

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad; Ali, Nadeem; Ali, Shahid; Rashid, Muhammad Imtiaz; Ismail, Iqbal Mohammad Ibrahim; Koller, Martin

    2017-09-01

    The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co-products biodiesel (0.97 €/L) and MBM (350 €/t), respectively. The effect of fluctuating market prices for offal materials, biodiesel, and MBM on the final PHA production cost as well as the investment payback time have been evaluated. Depending on the current market situation, the calculated investment payback time varies from 3.25 to 4.5years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  18. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  19. New Innovations in Highly Ion Specific Media for Recalcitrant Waste stream Radioisotopes

    SciTech Connect

    Denton, M. S.; Wilson, J.; Ahrendt, M.; Bostick, W. D.; DeSilva, F.; Meyers, P.

    2006-07-01

    Specialty ion specific media were examined and developed for, not only pre- and post-outage waste streams, but also for very difficult outage waste streams. This work was carried out on first surrogate waste streams, then laboratory samples of actual waste streams, and, finally, actual on-site waste streams. This study was particularly focused on PWR wastewaters such as Floor Drain Tank (FDT), Boron Waste Storage Tank (BWST), and Waste Treatment Tank (WTT, or discharge tank). Over the last half decade, or so, treatment technologies have so greatly improved and discharge levels have become so low, that certain particularly problematic isotopes, recalcitrant to current treatment skids, are all that remain prior to discharge. In reality, they have always been present, but overshadowed by the more prevalent and higher activity isotopes. Such recalcitrants include cobalt, especially Co 58 [both ionic/soluble (total dissolved solids, TDS) and colloidal (total suspended solids, TSS)] and antimony (Sb). The former is present in most FDT and BWST wastewaters, while the Sb is primarily present in BWST waste streams. The reasons Co 58 can be elusive to granulated activated carbon (GAC), ultrafiltration (UF) and ion exchange (IX) demineralizers is that it forms submicron colloids as well as has a tendency to form metal complexes with chelating agents (e.g., ethylene diamine tetraacetic acid, or EDTA). Such colloids and non-charged complexes will pass through the entire treatment skid. Antimony (Sb) on the other hand, has little or no ionic charge, and will, likewise, pass through both the filtration and de-min skids into the discharge tanks. While the latter will sometimes (the anionic vs. the cationic or neutral species) be removed on the anion bed(s), it will slough off (snow-plow effect) when a higher affinity anion (iodine slugs, etc.) comes along; thus causing effluents not meeting discharge criteria. The answer to these problems found in this study, during an actual

  20. Independent review of inappropriate identification, storage and treatment methods of polychlorinated biphenyl waste streams

    SciTech Connect

    1997-07-01

    The purpose of the review was to evaluate incidents involving the inappropriate identification, storage, and treatment methods associated with polychlorinated biphenyl (PCB) waste streams originating from the V-tank system at the Test Area North (TAN). The team was instructed to perform a comprehensive review of Lockheed Martin Idaho Technologies Company (LMITCO`s) compliance programs related to these incidents to assess the adequacy and effectiveness of the management program in all respects including: adequacy of the waste management program in meeting all LMITCO requirements and regulations; adequacy of policies, plans, and procedures in addressing and implementing all federal and state requirements and regulations; and compliance status of LMITCO, LMITCO contract team members, and LMITCO contract/team member subcontractor personnel with established PCB management policies, plans, and procedures. The V-Tanks are part of an intermediate waste disposal system and are located at the Technical Support Facility (TSF) at TAN at the Idaho National Engineering and Environmental Laboratory (INEEL). The IRT evaluated how a waste was characterized, managed, and information was documented; however, they did not take control of wastes or ensure followup was performed on all waste streams that may have been generated from the V-Tanks. The team has also subsequently learned that the Environmental Restoration (ER) program is revising the plans for the decontamination and decommissioning of the intermediate waste disposal system based on new information listed and PCB wastes. The team has not reviewed those in-process changes. The source of PCB in the V-Tank is suspected to be a spill of hydraulic fluid in 1968.

  1. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.

    PubMed

    Mockos, Gregory R; Smith, William A; Loge, Frank J; Thompson, David N

    2008-03-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste-activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25 degrees C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  2. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  3. Grout formulation for disposal of low-level and hazardous waste streams containing fluoride

    DOEpatents

    McDaniel, E.W.; Sams, T.L.; Tallent, O.K.

    1987-06-02

    A composition and related process for disposal of hazardous waste streams containing fluoride in cement-based materials is disclosed. the presence of fluoride in cement-based materials is disclosed. The presence of fluoride in waste materials acts as a set retarder and as a result, prevents cement-based grouts from setting. This problem is overcome by the present invention wherein calcium hydroxide is incorporated into the dry-solid portion of the grout mix. The calcium hydroxide renders the fluoride insoluble, allowing the grout to set up and immobilize all hazardous constituents of concern. 4 tabs.

  4. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., {sup 108m}Ag, {sup 93}Mo, {sup 36}Cl, {sup 10}Be, {sup 113m}Cd, {sup 121m}Sn, {sup 126}Sn, {sup 93m}Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., {sup 14}C, {sup 129}I, and {sup 99}Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC`s understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  5. Low-level radioactive waste from nuclear power generating stations: Characterization, classification and assessment of activated metals and waste streams

    SciTech Connect

    Thomas, V.W.; Robertson, D.E.; Thomas, C.W.

    1993-02-01

    Since the enactment of 10 CFR Part 61, additional difficult-to-measure long-lived radionuclides, not specified in Tables 1 2 of Part 61, have been identified (e.g., [sup 108m]Ag, [sup 93]Mo, [sup 36]Cl, [sup 10]Be, [sup 113m]Cd, [sup 121m]Sn, [sup 126]Sn, [sup 93m]Nb) that may be of concern in certain types of waste. These nuclides are primarily associated with activated metal and perhaps other nuclear power low-level waste (LLW) being sent to disposal facilities. The concentration of a radionuclide in waste materials is normally determined by direct measurement or by indirect calculational methods, such as using a scaling factor to relate inferred concentration of a difficult-to-measure radionuclide to another that is easily measured. The total disposal site inventory of certain difficult-to-measure radionuclides (e.g., [sup 14]C, [sup 129]I, and [sup 99]Tc) often control the total quantities of radioactive waste permitted in LLW burial facilities. Overly conservative scaling factors based on lower limits of detection (LLD), often used in the nuclear power industry to estimate these controlling nuclides, could lead to premature closure of a disposal facility. Samples of LLW (Class B and C activated metals [AM] and other waste streams) are being collected from operating nuclear power stations and analyzed for radionuclides covered in 10 CFR Part 61 and the additional difficult-to-measure radionuclides. This analysis will enhance the NRC's understanding of the distribution and projected quantities of radionuclides within AM and LLW streams from commercial nuclear power stations. This research will also provide radiological characterization of AM specimens for others to use in leach-rate and lysimeter experiments to determine nuclide releases and subsequent movement in natural soil environments.

  6. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  7. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  8. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  9. Separation of Metal Ions from Liquid Waste Streams

    SciTech Connect

    Glasgow, D. G.; Kennel, E. B.

    2004-12-01

    A unique mechanism was verified for removing uranium from continuously flowing aqueous solutions on a carbon nanofiber electrode with a bias voltage of -0.9 volts (dc versus Ag/AgC1). Uranium concentration was reduced from 100 ppm in the inlet feed to below 1 ppm in a single pass. Cell sizes of 1 cm, 2 inch and 4 inch evaluated during this program were all found to electrosorb uranium from an aqueous stream. The 4 inch cell performed well at uranium concentrations of 1000 ppm. Normally, ordinary electrolysis is not an option for removing uranyl ions because the electrodeposition potential is higher than the dissociation voltage of water. Thus, the ability to electrosorb uranium with greater than 99% effectiveness is a surprising result. In addition, the process was found to be reversible, so that the uranium can be released in a highly concentrated form. In addition to verifying the effectiveness of the system on bench top scale, a regeneration protocol was developed, consisting of passing a 0.1 M KNO{sub3}, solution at a pH of 2.0 and an applied potential of +1.0 V (dc versus Ag/AgC1) which resulted in a measured regeneration of 70% of the electrosorbed uranium. Other experiments studied the effect of pH on electrosorption and desorption, establishing a range of pH for both processes. Finally, it was found that, for an inlet solution of 100 ppm, the carbon nanofiber electrodes were able to electrosorb an amount of uranium in excess of 60% of the electrode mass.

  10. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    SciTech Connect

    Not Available

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  11. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    PubMed

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Results of Toxicity Studies Conducted on Outfall X-08 and Its Contributing Waste Streams, November 1999 - June 2000

    SciTech Connect

    Specht, W.L.

    2000-06-28

    This interim report summarizes the results of toxicity tests, Toxicity Identification Evaluations, and chemical analyses that have been conducted on SRS's NPDES Outfall X-08 and its contributing waste streams between November 1999 and June 2000.

  13. Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams

    SciTech Connect

    Abitz, R.J.

    1996-12-31

    Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are added and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.

  14. Characterization and monitoring of 300 Area Facility liquid waste streams: Status report

    SciTech Connect

    Manke, K.L.; Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Ikenberry, A.S.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.

    1994-09-01

    This report summarizes the results of characterizing and monitoring the following sources during a portion of this year: liquid waste streams from Buildings 331, 320, and 3720; treated and untreated Columbia River water; and water at the confluence of the waste streams (that is, end-of-pipe). Characterization and monitoring data were evaluated for samples collected between March 22 and June 21, 1994, and subsequently analyzed for hazardous chemicals, radioactivity, and general parameters. Except for bis(2-ethylhexyl)phthalate, concentrations of chemicals detected and parameters measured at end-of-pipe were below the US Environmental Protection Agency existing and proposed drinking water standards. The source of the chemicals, except bis(2-ethylhexyl)phthalate, is not currently known. The bis(2-ethylhexyl)phthalate is probably an artifact of the plastic tubing used in the early stages of the sampling program. This practice was stopped. Concentrations and clearance times for contaminants at end-of-pipe depended strongly on source concentration at the facility release point, waste stream flow rates, dispersion, and the mechanical action of sumps. When present, the action of sumps had the greatest impact on contaminant clearance times. In the absence of sump activity, dispersion and flow rate were the controlling factors.

  15. Synthesis of dawsonite: a method to treat the etching waste streams of the aluminium anodising industry.

    PubMed

    Alvarez-Ayuso, E; Nugteren, H W

    2005-05-01

    Synthesis of dawsonite was studied as a way to deal with the etching waste streams of the aluminium anodising industry in order to reduce the emissions to the environment and also to recover useful and marketable mineral resource materials. The process of synthesis was carried out using two different waste streams arising from the etching section of an anodising process when a cascade rinsing system is employed, the spent etching bath solution (132 g/l of Al and 151 g/l of Na), and the first stage effluent from the cascade rinsing system (67 g/l of Al and 71 g/l of Na). The synthesis of dawsonite was studied as a function of NaHCO3/Al molar ratio (1-10), crystallization temperature (30-150 degrees C), and reaction time (2-48 h) using supersaturated NaHCO3 solutions. A NaHCO3/Al molar ratio of 3 was optimal to obtain dawsonite as a single phase, and a reaction time of 24 h and high crystallization temperature (150 degrees C) to improve its crystallinity. The mineral characterisation was performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and differential thermal analysis (DTA), all of which indicated characteristics typical of the desired compound. Almost 100% of the aluminium initially present in the etching waste streams was recovered in the form of dawsonite when the appropriate conditions for its synthesis were used.

  16. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  17. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    NASA Astrophysics Data System (ADS)

    Ortega, Luis H.; Kaminski, Michael D.; Zeng, Zuotao; Cunnane, James

    2013-07-01

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 103 kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  18. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    None, None

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  19. REDWC Waste Stream Matrix Waste Treatment, Disposition and Container Selection Criteria

    SciTech Connect

    Fischer, R P

    2007-03-30

    There are 3 types of REWDC container types listed. Type 1 is used for long term storage of conditions waste. It's made of steel and it's a 55-gallon galvanized drum with a 90 mil HDPE liner. Type 2 is used for solid waste, point of generation and short term storage. It can be made of steel or poly. They come in 2-gallon, 5-gallon, 30-gallon, and 55-gallon drums used with 4 mil polyethylene liner. Type 3 is used for liquid waste. It can be made of steel or poly. It comes in 2-gallon, 5-gallon, 30-gallon, or 55-gallon drums. They have a closed head.

  20. Process Control for Simultaneous Vitrification of Two Mixed Waste Streams in the Transportable Vitrification System

    SciTech Connect

    Cozzi, A.D.; Jantzen, C.M.; Brown, K.G.; Cicero-Herman, C.

    1998-05-01

    Two highly variable mixed (radioactive and hazardous) waste sludges were simultaneously vitrified in an EnVitCo Transportable Vitrification System (TVS) deployed at the Oak Ridge Reservation. The TVS was the result of a cooperative effort between the Westinghouse Savannah River Company and EnVitCo to design and build a transportable melter capable of vitrifying a variety of mixed low level wastes.The two waste streams for the demonstration were the dried B and C Pond sludges at the K-25 site and waste water sludge produced in the Central Neutralization Facility from treatment of incinerator blowdown. Large variations occurred in the sodium, calcium, silicon, phosphorus, fluorine and iron content of the co- blended waste sludges: these elements have a significant effect on the process ability and performance of the final glass product. The waste sludges were highly reduced due to organics added during processing, coal-pile runoff (coal and sulfides), and other organics, including wood chips. A batch-by-batch process control model was developed to control glass viscosity, liquidus, and reduction/oxidation, assuming that the melter behaved as a Continuously Stirred Tank Reactor.

  1. Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review.

    PubMed

    De Steur, Hans; Wesana, Joshua; Dora, Manoj K; Pearce, Darian; Gellynck, Xavier

    2016-12-01

    The interest to reduce food losses and wastes has grown considerably in order to guarantee adequate food for the fast growing population. A systematic review was used to show the potential of Value Stream Mapping (VSM) not only to identify and reduce food losses and wastes, but also as a way to establish links with nutrient retention in supply chains. The review compiled literature from 24 studies that applied VSM in the agri-food industry. Primary production, processing, storage, food service and/or consumption were identified as susceptible hotspots for losses and wastes. Results further revealed discarding and nutrient loss, most especially at the processing level, as the main forms of loss/waste in food, which were adapted to four out of seven lean manufacturing wastes (i.e. defect, unnecessary inventory, overproduction and inappropriate processing). This paper presents the state of the art of applying lean manufacturing practices in the agri-food industry by identifying lead time as the most applicable performance indicator. VSM was also found to be compatible with other lean tools such as Just-In-Time and 5S which are continuous improvement strategies, as well as simulation modelling that enhances adoption. In order to ensure successful application of lean practices aimed at minimizing food or nutrient losses and wastes, multi-stakeholder collaboration along the entire food supply chain is indispensable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Use Of Stream Analyzer For Solubility Predictions Of Selected Hanford Tank Waste

    SciTech Connect

    Pierson, Kayla; Belsher, Jeremy; Ho, Quynh-dao

    2012-11-02

    The Hanford Tank Waste Operations Simulator (HTWOS) models the mission to manage, retrieve, treat and vitrify Hanford waste for long-term storage and disposal. HTWOS is a dynamic, flowsheet, mass balance model of waste retrieval and treatment activities. It is used to evaluate the impact of changes on long-term mission planning. The project is to create and evaluate the integrated solubility model (ISM). The ISM is a first step in improving the chemistry basis in HTWOS. On principal the ISM is better than the current HTWOS solubility. ISM solids predictions match the experimental data well, with a few exceptions. ISM predictions are consistent with Stream Analyzer predictions except for chromium. HTWOS is producing more realistic results with the ISM.

  3. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    SciTech Connect

    Lunsford, G.F.

    2001-01-24

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  4. A new side stream process for easily degradable industrial waste waters to avoid sludge bulking.

    PubMed

    Wandl, G; Matsché, N; Bayer, H

    2004-01-01

    A new treatment scheme for the treatment of easily biodegradable industrial waste waters has been developed. The side stream treatment of dairy waste water with the excess sludge from the domestic treatment line of the regional treatment plant Bad Vöslau has been operated successfully for a period of three years during which the industrial load stemming from the dairy increased from 800 kg COD/d to 2,500 kg COD/d with peak loads up to 5,000 kg/d. Despite of the increased load to the treatment plant the total aeration tank volume had not been increased. This treatment is performed in an existing aeration tank of the WWTP (V = 1,800 m3) which is now used as contact tank for the combined aeration of dairy waste water and excess sludge from the domestic treatment line (volume aeration tank = 15,000 m3). In this tank the easily degradable substrate from the industrial waste is mainly adsorbed to the biological sludge and after a mechanical dewatering transferred to the anaerobic digester where it yields in an increased gas production. The filtrate of the dewatering process is completely free from biodegradable material and can without danger of bulking be fed to the aeration tank of the domestic treatment line. The new process has proven to be extremely flexible since already now daily peak loads exceeding the design load by more then 60% could be treated in the plant without any problems. Compared to other alternatives for the dairy waste water treatment that were investigated during this study, the new side stream process is very advantageous. No other pre-treatment process for industrial waste water could have been operated under comparable loading conditions without severe operating problems.

  5. Phosphorus recovery potential from a waste stream with high organic and nutrient contents via struvite precipitation.

    PubMed

    Karabegovic, L; Uldal, M; Werker, A; Morgan-Sagastume, F

    2013-01-01

    Recovery of NH4(+)-N and PO(3-)-P via struvite precipitation (SP) was evaluated from liquor of thermally pretreated waste activated sludge, containing high levels of nutrients (1500 mg NH4(+)-N/L and 650 mg PO(3-)-P/L), organics (45.5 g COD/L) and suspended solids (3.5 g TSS/L), with reference to anaerobically digested sludge centrate. In a series of jar tests, the order of pH adjustment and chemical addition were first tested for the digested sludge centrate. The effects of MgCl2 and MgO, as Mg2+ sources, on SP were evaluated in both waste streams. Up to 80% of the dissolved PO4(3-)-P was recovered using MgO (pH = 9.2) from the pretreated sludge liquor and more than 86% of NH4(+)-N from the digested sludge centrate (pH = 8.0-8.5) regardless of the Mg2+ source used. NH4(+)-N recovery from digested sludge centrate required the addition of alkali, Mg2+ source and PO4(3-)-P, making the process less viable. The precipitates contained mostly struvite and some levels of Ca2+, Fe2+ and other Mg2+ phosphates. The levels of solids, inorganics and organics in the waste streams influenced SP, specifically struvite crystal formation and settleability in the pretreated sludge liquor, which suggests that the applicability of SP for nutrient recovery from complex waste streams requires case-by-case testing, and process optimization.

  6. Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron

    SciTech Connect

    Darab, John; Amonette, Alexandra; Burke, Deborah; Orr, Robert; Ponder, Sherman; Schrick, Bettina; Mallouk, Thomas; Lukens, Wayne; Caulder, Dana; Shuh, David

    2007-07-11

    The application of nanoparticles of predominantly zerovalent iron (nanoiron), either unsupported or supported, to the separation and reduction of pertechnetate anions (TcO4-) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams in general, the research discussed here was directed at two specific potential applications at the U.S. Department of Energy's Hanford Site: (1) the direct removal of pertechnetate from highly alkaline solutions, typical of those found in Hanford tank waste, and (2) the removal of dilute pertechnetate from near-neutral solutions, typical of the eluate streams from commercial organic ion-exchange resins that may be used to remediate Hanford tank wastes. It was envisioned that both applications would involve the subsequent encapsulation of the loaded sorbent material into a separate waste form. A high surface area (>200 M2/g) base-stable, nanocrystalline zirconia was used as a support for nanoiron for tests with highly alkaline solutions, while a silica gel support was used for tests with near-neutral solutions. It was shown that after 24 h of contact time, the high surface area zirconia supported nanoiron sorbent removed about 50percent (K-d = 370 L/kg) of the pertechnetate from a pH 14 tank waste simulant containing 0.51 mM TCO4- and large concentrations of Na+, OH-, NO3-, and CO32- for a phase ratio of 360 L simulant per kg of sorbent. It was also shown that after 18 h of contact time, the silica-supported nanoiron removed>95percent pertechnetate from a neutral pH eluate simulant containing 0.076 mM TcO4_ for a phase ratio of 290 L/kg. It was determined that in all cases, nanoiron reduced the Tc(VII) to Tc(IV), or possibly to Tc(V), through a redox reaction. Finally, it was demonstrated that a mixture of 20 mass percent of the solid reaction products obtained from contacting zirconia- supported nanoiron with an alkaline

  7. Removal of Pertechnetate From Simulated Nuclear Waste Streams Using Supported Zerovalent Iron

    SciTech Connect

    Darab, J.G.; Amonette, A.B.; Burke, D.S.D.; Orr, R.D.; Ponder, S.M.; Schrick, B.; Mallouk, T.E.; Lukens, W.W.; Caulder, D.L.; Shuh, D.K.

    2009-06-02

    The application of nanoparticles of predominantly zerovalent iron (nanoiron), either unsupported or supported, to the separation and reduction of pertechnetate anions (TcO{sub 4{sup -}}) from complex waste mixtures was investigated as an alternative approach to current waste-processing schemes. Although applicable to pertechnetate-containing waste streams in general, the research discussed here was directed at two specific potential applications at the U.S. Department of Energy's Hanford Site: (1) the direct removal of pertechnetate from highly alkaline solutions, typical of those found in Hanford tank waste, and (2) the removal of dilute pertechnetate from near-neutral solutions, typical of the eluate streams from commercial organic ion-exchange resins that may be used to remediate Hanford tank wastes. It was envisioned that both applications would involve the subsequent encapsulation of the loaded sorbent material into a separate waste form. A high surface area (>200 m{sup 2}/g) base-stable, nanocrystalline zirconia was used as a support for nanoiron for tests with highly alkaline solutions, while a silica gel support was used for tests with near-neutral solutions. It was shown that after 24 h of contact time, the high surface area zirconia supported nanoiron sorbent removed about 50% (K{sub d} = 370 L/kg) of the pertechnetate from a pH 14 tank waste simulant containing 0.51 mM TcO{sub 4{sup -}} and large concentrations of Na{sup +}, OH{sup -}, NO{sub 3{sup -}}, and CO{sub 3{sup 2-}} for a phase ratio of 360 L simulant per kg of sorbent. It was also shown that after 18 h of contact time, the silica-supported nanoiron removed >95% pertechnetate from a neutral pH eluate simulant containing 0.076 mM TcO{sub 4{sup -}} for a phase ratio of 290 L/kg. It was determined that in all cases, nanoiron reduced the Tc(VII) to Tc(IV), or possibly to Tc(V), through a redox reaction. Finally, it was demonstrated that a mixture of 20 mass % of the solid reaction products obtained

  8. Hanford Site Hazardous waste determination report for transuranic debris waste streams NPFPDL1A, NPFPDL1B, NPFPDL1C and NPFPDL1D

    SciTech Connect

    WINTERHALDER, J.A.

    1999-09-29

    This Hazardous Waste Determination Report is intended to satisfy the terms of a Memorandum of Agreement (Agreement signed on June 16, 1999) between the U.S. Department of Energy and the New Mexico Environment Department. The Agreement pertains to the exchange of information before a final decision is made on the Waste Isolation Pilot Plant application for a permit under the ''New Mexico Hazardous Waste Act''. The Agreement will terminate upon the effective date of a final ''New Mexico Hazardous Waste Act'' permit for the Waste Isolation Pilot Plant. In keeping with the principles and terms of the Agreement, this report describes the waste stream data and information compilation process, and the physical and chemical analyses that the U.S. Department of Energy has performed on selected containers of transuranic debris waste to confirm that the waste is nonhazardous (non-mixed). This also summarizes the testing and analytical results that support the conclusion that the selected transuranic debris waste is not hazardous and thus, not subject to regulation under the ''Resource Conservation and Recovery Act'' or the ''New Mexico Hazardous Waste Act''. This report will be submitted to the New Mexico Environment Department no later than 45 days before the first shipment of waste from the Hanford Site to the Waste Isolation Pilot Plant, unless the parties mutually agree in writing to a shorter time. The 52 containers of transuranic debris waste addressed in this report were generated, packaged, and placed into storage between 1995 and 1997. Based on reviews of administrative documents, operating procedures, waste records, generator certifications, and personnel interviews, this transuranic debris waste was determined to be nonhazardous. This determination is supported by the data derived from nondestructive examination, confirmatory visual examination, and the results of container headspace gas sampling and analysis. Therefore, it is concluded that this transuranic debris

  9. PAPER STUDY EVALUATIONS OF THE INTRODUCTION OF SMALL COLUMN ION EXCHANGE WASTE STREAMS TO THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-06-29

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb{sub 2}O{sub 5}, TiO{sub 2}, and ZrO{sub 2}, to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is

  10. Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls

    SciTech Connect

    Belue, A; Fischer, R P

    2007-01-08

    In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES&H Policies of LLNL'', in the ES&H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existing environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for reduction.

  11. Extraction and reductive stripping of pertechnetate from spent nuclear fuel waste streams.

    SciTech Connect

    Shkrob, I.; Marin, T.; Stepinski, D.; Vandegrift, G.; Muntean, J.; Dietz, M.

    2011-01-01

    An approach directed at rapid sequestration and disposal of technetium-99 from UREX (uranium extraction) liquid waste streams is presented. This stream is generated during reprocessing of light-water-reactor spent fuel to recycle the actinides and separate fission products for waste disposal. U and Tc are co-extracted from a nitric acid solution using tri-n-butylphosphate in dodecane, so that Tc(VII) is present in the strip solution after the actinide separations. The goal is to separate uranyl from the pertechnetate in this U-Tc stream and then sequester Tc in the metallic form. Our approach is based on reductive stripping of pertechnetate either from aqueous solution (for column extractions) or organic solvents (for liquid-liquid extractions). In both of these methods, metallic zinc in the presence of formic acid serves as a reducing agent, and {sup 99}Tc is recovered as a co-precipitate of Zn(II) hydroxide and hydrous Tc(IV) oxide, with a Zn:Tc ratio between 1:1 and 2:1 mol/mol. This solid residue can be reduced to a Zn-Tc alloy by high temperature (500-700 C) hydrogenation, and the resulting heterophase alloy can be added to a metallic Fe-Zr-Mo waste form that is processed at 1600 C, with subsequent loss of Zn by evaporation. Alternatively, Zn and Tc can be separated and {sup 99}Tc sequestered as NH{sub 4}TcO{sub 4} for further reduction to Tc(0) metal. The aqueous Zn reduction process removes {approx}90% of {sup 99}Tc per cycle. The nonaqueous Zn reduction in 1:1 methanol-formic acid removes 60-70% of {sup 99}Tc per cycle, depending on the extracting agent (such as a tetraalkylammonium nitrate). The extracting agent is recycled in the process. The pertechnetate is extracted from the aqueous phase into 1,2-dichloroethane, which is removed by evaporation and reused. The residue is either calcined and steam reformed to Tc(0) or processed by the nonaqueous Zn reduction method. These methods can be used not only to remove the pertechnetate from the U-Tc product

  12. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    SciTech Connect

    Delva, Laurens Ragaert, Kim Cardon, Ludwig

    2015-12-17

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  13. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    NASA Astrophysics Data System (ADS)

    Delva, Laurens; Ragaert, Kim; Cardon, Ludwig

    2015-12-01

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  14. Decanting of Neutralized H-Canyon Unirradiated Nuclear Material High Activity Waste Streams

    SciTech Connect

    BRONIKOWSKI, MICHAELG.

    2004-08-05

    An option to dispose of the High Activity Waste (HAW) stream from the processing of unirradiated materials directly to Saltstone is being evaluated to conserve High Level Waste (HLW) tank farm space and to reduce the future production of HLW glass logs. To meet the Saltstone Waste Acceptance Criteria (WAC), decanting the supernate from precipitated solids was proposed to reduce mercury and radionuclide levels in the waste. Only the caustic supernate will then be sent to Saltstone. Verification that the Saltstone WAC will be met has involved a series of laboratory studies using surrogate and actual HAW solutions from H-Canyon. The initial experiment involved addition of sodium hydroxide (NaOH) to a surrogate HAW test solution and subsequent decanting of the supernate away from the precipitated solids. The chemical composition of the surrogate solution was based on a composition defined from analyses of actual HAW solutions generated during dissolution of unirradiated nuclear materials in H-Canyon [1]. Results from testing the surrogate HAW solution were reported in Reference [2]. Information obtained from the surrogate test solution study was used to define additional experiments on actual HAW solutions obtained from H-Canyon. These experiments were conducted with samples from three different batches of HAW solutions. The first and third HAW samples (HAW No.1 and HAW No.3 solutions) contained the centrifuge filter cake material from a gelatin strike that is periodically added to the waste stream. The second HAW sample (HAW No.2 solution) did not contain filter cake material. Monosodium titanate (MST) was added to the HAW No.2 and HAW No.3 solutions after addition of NaOH was complete and before the settling step. The addition of MST was to improve the decontamination of alpha and beta emitters (primarily plutonium and strontium) from the supernate. The addition of excess NaOH and the addition of MST were expected to result in sufficient alpha and beta

  15. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    SciTech Connect

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  16. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    SciTech Connect

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate salt feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.

  17. Case studies of six high priority DOD installations

    SciTech Connect

    1994-11-01

    This is a supplement to the report entitled Environmental Cleanup: Too Many High Priority Sites Impede DOD`s Program. It provides six installation case studies addressing issues including the status of the restoration program, the cost of cleanup to date and projected costs, the cleanup options considered, the option selected, expected completion, and the applicable cleanup standards. The case studies also provide installation specific information on reasons installation was listed on the NPL, the regulatory process, cooperation between the installation and the regulatory agencies, staffing at the installations and the regulatory agencies, and the process for funding the cleanup.

  18. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    PubMed

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources.

  19. Ion chromatographic determination of trace hydroxylamine in waste streams generated by a pharmaceutical reaction process.

    PubMed

    Fernando, Peter N; Egwu, Ignatius N; Hussain, Mumtaz S

    2002-05-17

    Hydroxylamine is a key raw material used in a synthetic drug process at Pharmacia. Since hydroxylamine is harmful to microorganisms, concentrations above 5 ppm could interfere with the biological sewage plant performance. This necessitated the development of a sensitive analytical method for detecting low levels of hydroxylamine in the waste streams generated from the pharmaceutical process. The present report describes a cation-exchange chromatographic method coupled with pulsed amperometric detection at a gold electrode for trace analysis of hydroxylamine. This method was evaluated by generating data on the parameters of specificity, precision, linearity, recovery and sensitivity.

  20. Sorbent Testing For Solidification of Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect

    Bickford, J.; Taylor, P.

    2007-07-01

    The U.S. Department of Energy (DOE) tasked MSE Technology Applications, Inc. (MSE) to evaluate sorbents identified by Oak Ridge National Laboratory (ORNL) to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at ORNL. REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both organic and aqueous waste streams are discharged from REDC. The organic waste is generated from the plutonium/uranium extraction (Purex), Cleanex, and Pubex processes. The Purex waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. MSE had also been tasked to test a grouting formula for the aqueous waste stream that includes radioactive shielding material. The aqueous waste is a mixture of the raffinate streams from the various extraction processes plus the caustic solution that is used to dissolve the aluminum cladding from the irradiated targets. (authors)

  1. Chemical and biological systems for treating waste streams contaminated with high explosives

    SciTech Connect

    Knezovich, J.P.; Daniels, J.L.; Stenstrom, M.K.; Heilmann, H.M.

    1995-11-01

    The removal of high explosives (HIE) from ordnance is being accomplished via washout steamout procedures. Because large volumes of waste water are generated by these processes, safe and efficient methods must be developed for their treatment. Activated carbon can be used to efficiently remove HE from aqueous waste streams, but carbon that is laden with HE constitutes a hazardous solid waste. Although conventional treatment methods (i.e., incineration, open burning) are available, they may not be in compliance with existing or future environmental regulations. New and cost-effective methods are therefore required for the elimination of this solid waste. We are developing and demonstrating coupled chemical and biological systems for the safe and economical treatment of HE-laden activated carbon. We have developed a completely engineered treatment system to accomplish this objective and have been operating a pilot treatment system at the Pantex Plant in Amarillo, TX. In this system, HE- contaminated waste water is treated first by activated-carbon adsorption columns. The HE sorbed to carbon is subsequently recovered via heated solvent elution or by base hydrolysis. The HE- or hydrolysate-laden fluid is then treated using a denitrifying culture of microorganisms, which converts the HE or hydrolysate byproducts to less hazardous endproducts. With these methods, the treated carbon can either be re-used or disposed as a nonhazardous waste. This strategy, which has been shown to be effective for the regeneration of carbon and the degradation of RDX and HMX, will be applicable to other energetic chemicals sorbed to activated carbon.

  2. Development of a Certified Low-Level Waste Stream from Analytical Laboratory Operations at Lawrence Livermore National Laboratory

    SciTech Connect

    Gaylord, R F; Drake, J A; Gallagher, P J

    2005-01-14

    Chemistry and Materials Science Environmental Services (CES) is LLNL's on-site environmental analytical laboratory, analyzing approximately 2500 samples annually generally for waste characterization purposes. Due to the lack of process knowledge for analyzed samples, the waste produced by CES has traditionally been characterized on a ''worst-case'' basis as RCRA-hazardous mixed waste. By instituting rigorous ''up-front'' waste characterization, including segregation of acutely/extremely hazardous materials, utilizing regulatory exemptions, and developing a novel radiological characterization strategy, CES was able to receive approval for a certified LLW waste stream, adequately characterized for disposal at the Nevada Test Site. In the 10 months of operating history, CES has diverted 33% of its waste (by mass) from mixed to LLW. This will result in significant cost savings and reduction in waste re-handling/personnel exposure.

  3. Effects of livestock wastes on small illinois streams: Lower Kaskaskia river basin and upper little wabash river basins, summer 1991

    SciTech Connect

    Hite, R.L.; Bickers, C.A.; King, M.M.; Brockamp, D.W.

    1992-07-01

    In early 1991, the Illinois Environmental Protection Agency (IEPA) initiated an investigation to evaluate livestock waste runoff in southern Illinois. The primary objectives of this survey were to document stream quality impairments caused by livestock waste runoff, and ultimately, the need for better waste management practices, waste management systems, and funding for such systems. Information provided by Soil Conservation Service (SCS) and IEPA Agricultural staff identified an area in Clinton and Bond Counties in the Kaskaskia River basin and several upper Little Wabash River basin tributaries in Effingham and Cumberland Counties as candidate project areas.

  4. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho. [Waste mixtures of hazardous materials and low-level radioactive wastes or transuranic wastes

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

  5. 25 CFR 170.205 - What is an IRR High Priority Project (IRRHPP)?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is an IRR High Priority Project (IRRHPP)? 170.205... RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Irr High Priority Project (irrhpp) § 170.205 What is an IRR High Priority Project (IRRHPP)? (a) The IRRHPP is a special funding pool that...

  6. 25 CFR 170.205 - What is an IRR High Priority Project (IRRHPP)?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What is an IRR High Priority Project (IRRHPP)? 170.205... RESERVATION ROADS PROGRAM Indian Reservation Roads Program Funding Irr High Priority Project (irrhpp) § 170.205 What is an IRR High Priority Project (IRRHPP)? (a) The IRRHPP is a special funding pool that...

  7. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  8. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor.

    PubMed

    Abtahi, Mehrnoosh; Naddafi, Kazem; Mesdaghinia, Alireza; Yaghmaeian, Kamyar; Nabizadeh, Ramin; Jaafarzadeh, Nematollah; Rastkari, Noushin; Nazmara, Shahrokh; Saeedi, Reza

    2014-01-09

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34-359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner.

  9. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    SciTech Connect

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim; Meng, Xianzhi; Stoklosa, Ryan J.; Bhalla, Aditya; Hodge, David B.; Yuan, Joshua S.; Ragauskas, Arthur J.

    2017-01-01

    The bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719T. Here we show using 31P-NMR, HPAEC-PAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (~70–300 g mol-1) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L-1 and accumulated 42.1% in oils based on cell dry weight after 48 h.

  10. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    SciTech Connect

    Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels.

  11. Approaches for the treatment of waste streams of the aluminium anodising industry.

    PubMed

    Alvarez-Ayuso, E

    2009-05-30

    The aluminium anodising industry is an important industrial sector that invariably generates great amounts of different waste streams. Classical and especially new-developing technologies dealing with them are reviewed. Innovative methods are mainly based on engineering geochemical processes, looking for the recovery of resource materials and the reduction of emissions to the environment. These represent a promising alternative to the classical method (neutralisation process and anodising mud disposal) which is an end-of-pipe solution. Among the treatments recently proposed, there are the use of anodising mud in the manufacture of refractory bodies, and the synthesis of useful minerals from the wastewaters arising from the etching, anodising and brightening processes. The viability of the application of such methods in the treatment of waste streams of the aluminium anodising industry is discussed, pointing out the main shortcomings and benefits of each of them. For those methods appearing environmentally friendly the process cost and the actual marketability of the final products should be determinant on their near future applicability.

  12. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    DOE PAGES

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim; ...

    2017-01-13

    We present the bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719T . Here we show using 31P-NMR, HPAECPAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (70 300 gmore » mol1 ) lignin degradation products thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less

  13. Conversion of corn stover alkaline pre-treatment waste streams into biodiesel via Rhodococci

    DOE PAGES

    Le, Rosemary K.; Wells Jr., Tyrone; Das, Parthapratim; ...

    2017-01-01

    The bioconversion of second-generation cellulosic ethanol waste streams into biodiesel via oleaginous bacteria is a novel optimization strategy for biorefineries with substantial potential for rapid development. In this study, one- and two-stage alkali/alkali-peroxide pretreatment waste streams of corn stover were separately implemented as feedstocks in 96 h batch reactor fermentations with wild-type Rhodococcus opacus PD 630, R. opacus DSM 1069, and R. jostii DSM 44719T. Here we show using 31P-NMR, HPAEC-PAD, and SEC analyses, that the more rigorous and chemically-efficient two-stage chemical pretreatment effluent provided higher concentrations of solubilized glucose and lower molecular weight (~70–300 g mol-1) lignin degradation productsmore » thereby enabling improved cellular density, viability, and oleaginicity in each respective strain. The most significant yields were by R. opacus PD 630, which converted 6.2% of organic content with a maximal total lipid production of 1.3 g L-1 and accumulated 42.1% in oils based on cell dry weight after 48 h.« less

  14. Impacts of Fire and Mass Wasting on Channel Morphology and Stream Temperature in Mountain Rivers of Central Idaho

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Buffington, J. M.; Rieman, B. E.; Luce, C. H.; McKean, J.

    2004-12-01

    Debris flows and hyperconcentrated flows immediately impact streams by changing channel morphology, grain size, sediment storage and transport, amount of incision, riparian vegetation, large woody debris dynamics, and extirpating fish, amphibian, and insect populations. In central Idaho, these disturbances are commonly triggered by intense thunderstorms or rain-on-snow events, and are exacerbated by wildfires which alter basin hydrology and sediment supply by removing vegetation and creating hydrophobic soils. While the immediate effect of these flows is dramatic, the time to recovery of the physical habitat is poorly understood and the long-term significance of these disturbances to aquatic organisms is unknown. Stream temperature is a key variable of stream ecosystems and has been shown to control the distribution of salmonids in our study area of the Idaho Batholith. Previous research in 10 recently disturbed streams shows a systematic increase in stream temperature across three stream types representing progressively greater disturbance: undisturbed; burned; and those impacted by both fire and mass-wasting events. Here, we test the hypothesis that the observed pattern of warming is due to increased solar radiation loading caused by wider, shallower streams and the removal of vegetative shade by fires and mass-wasting events. We examine channel conditions across several treatment classes (undisturbed, post-fire debris flow, debris flow without fire) and time since disturbance (1964 to present). In 32 streams, 200-600 meter reaches were surveyed and upstream and downstream temperatures were monitored throughout the summer, the solar load was estimated as a function of shading (measured with hemispherical photo analysis), stream width and depth, and average velocity estimated with salt tracers. Preliminary results indicate that while recent disturbances (1995-2003) significantly increase the solar load and stream temperatures, older disturbances (1964) are similar

  15. Economic and environmental characterization of an evolving Li-ion battery waste stream.

    PubMed

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W; Bailey, Chelsea; Ganter, Matthew J; Landi, Brian J

    2014-03-15

    While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used. For example, manganese-spinel and iron phosphate cathode batteries have potential material values 73% and 79% less than cobalt cathode batteries, respectively. A majority of the potentially recoverable value resides in the base metals contained in the cathode; this increases disassembly cost and time as this is the last portion of the battery taken apart. A great deal of compositional variability exists, even within the same cathode chemistry, due to differences between manufacturers with coefficient of variation up to 37% for some base metals. Cathode changes over time will result in a heavily co-mingled waste stream, further complicating waste management and recycling processes. These results aim to inform disposal, collection, and take-back policies being proposed currently that affect waste management infrastructure as well as guide future deployment of novel recycling techniques.

  16. DM100 AND DM1200 MELTER TESTING WITH HIGH WASTE LOADING GLASS FORMULATIONS FOR HANFORD HIGH-ALUMINUM HLW STREAMS

    SciTech Connect

    KRUGER AA; MATLACK KS; KOT WK; PEGG IL; JOSEPH I

    2009-12-30

    This Test Plan describes work to support the development and testing of high waste loading glass formulations that achieve high glass melting rates for Hanford high aluminum high level waste (HLW). In particular, the present testing is designed to evaluate the effect of using low activity waste (LAW) waste streams as a source of sodium in place ofchemical additives, sugar or cellulose as a reductant, boehmite as an aluminum source, and further enhancements to waste processing rate while meeting all processing and product quality requirements. The work will include preparation and characterization of crucible melts in support of subsequent DuraMelter 100 (DM 100) tests designed to examine the effects of enhanced glass formulations, glass processing temperature, incorporation of the LAW waste stream as a sodium source, type of organic reductant, and feed solids content on waste processing rate and product quality. Also included is a confirmatory test on the HLW Pilot Melter (DM1200) with a composition selected from those tested on the DM100. This work builds on previous work performed at the Vitreous State Laboratory (VSL) for Department of Energy's (DOE's) Office of River Protection (ORP) to increase waste loading and processing rates for high-iron HLW waste streams as well as previous tests conducted for ORP on the same waste composition. This Test Plan is prepared in response to an ORP-supplied statement of work. It is currently estimated that the number of HLW canisters to be produced in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is about 12,500. This estimate is based upon the inventory ofthe tank wastes, the anticipated performance of the sludge treatment processes, and current understanding of the capability of the borosilicate glass waste form. The WTP HLW melter design, unlike earlier DOE melter designs, incorporates an active glass bubbler system. The bubblers create active glass pool convection and thereby improve heat transfer and

  17. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    SciTech Connect

    Lunsford, G.F.

    1999-08-23

    Since beginning operations in 1954, the Department of Energy's Savannah River Site FB-Line conducted atomic energy defense activities consistent with the listing in Section 10101(3) of the Nuclear Waste Policy Act of 1982. The facility mission was to process and convert dilute plutonium solution into highly purified weapons grade plutonium metal. As a result of various activities conducted in support of the mission (e.g., operation, maintenance, repair, clean up, and facility modifications), the facility generated transuranic waste. This document, along with referenced supporting documents, provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration,equipment, process operations, and waste management practices.

  18. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 4, Site specific---Ohio through South Carolina

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance Act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provides site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes at the following five Ohio facilities: Battelle Columbus Laboratories; Fernald Environmental Management Project; Mound Plant; Portsmouth Gaseous Diffusion Plant; and RMI, Titanium Company.

  19. Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant.

    PubMed

    Pittmann, T; Steinmetz, H

    2014-09-01

    This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Challenges of scaling-up PHA production from waste streams. A review.

    PubMed

    Rodriguez-Perez, Santiago; Serrano, Antonio; Pantión, Alba A; Alonso-Fariñas, Bernabé

    2017-10-05

    The search for new materials that replace fossil fuel-based plastics has been focused on biopolymers with similar physicochemical properties to fossil fuel-based plastics, such as Polyhydroxyalkanoates (PHA). The present paper reviews the challenges of scaling-up PHA production from waste streams during the period from 2014 to 2016, focusing on the feasibility of the alternatives and the most promising alternatives to its scaling-up. The reviewed research studies mainly focus on reducing costs or obtaining more valuable polymers. In the future, the integration of PHA production into processes such as wastewater treatment plants, hydrogen production or biodiesel factories could enhance its implementation at industrial scale. Copyright © 2017. Published by Elsevier Ltd.

  1. Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams

    DOEpatents

    Spiegel, Ella F.; Sammells, Anthony F.

    2001-01-01

    Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.

  2. Sediment toxicity and ecological risk of trace metals from streams surrounding a municipal solid waste landfill.

    PubMed

    Sayadi, M H; Rezaei, M R; Rezaei, A

    2015-05-01

    The present study is an attempt to assess the pollution intensity and corresponding ecological risk of heavy metals such as Cd, Ni, Pb, Cu, Zn and Cr using various indices like geo-accumulation index, concentration factor, pollution loading and ecological risk index. In all 21 surface sediments samples were collected from the stream flowing around the solid waste disposal landfill of Qayen city in southeastern Iran. Although Igeo values for Cd varied greatly, sites 18-21 with class 5 show heavy loads of Cd (values between 4.13 and 4.45). PLI values (3.37-12.89) clearly suggest strong contamination with respect to the measured metals. This study clearly indicates that the contamination risk in the downstream reservoir is much higher than upstream sites due to transfer and accumulation of leached metals from upstream to downstream.

  3. Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria.

    PubMed

    Heitkamp, M A; Camel, V; Reuter, T J; Adams, W J

    1990-10-01

    Microbiological analyses of activated sludge reactors after repeated exposure to 100 mg of p-nitrophenol (PNP) per liter resulted in the isolation of three Pseudomonas species able to utilize PNP as a sole source of carbon and energy. Cell suspensions of the three Pseudomonas sp., designated PNP1, PNP2, and PNP3, mineralized 70, 60, and 45% of a 70-mg/liter dose of PNP in 24, 48, and 96 h, respectively. Mass-balance analyses of PNP residues for all three cultures showed that undegraded PNP was less than 1% (less than 50 micrograms); volatile metabolites, less than 1%; cell residues, 8.4 to 14.9%; and water-soluble metabolites, 1.2 to 6.7%. A mixed culture of all three PNP-degrading Pseudomonas sp. was immobilized by adsorption onto diatomaceous earth biocarrier in a 1.75-liter Plexiglas column. The column was aerated and exposed to a synthetic waste stream containing 629 to 2,513 mg of PNP per liter at flow rates of 2 to 15 ml/min. Chemical loading studies showed that the threshold concentration for acute toxicity of PNP to the immobilized bacteria was 2,100 to 2,500 mg/liter. Further studies at PNP concentrations of 1,200 to 1,800 mg/liter showed that greater than 99 and 91 to 99% removal of PNP was achieved by immobilized bacteria at flow rates of 10 and 12 ml/min, respectively. These values represent hydraulic retention times of 48 to 58 min and PNP removal rates of 0.99 to 1.1 mg/h per g of biocarrier at 25 degrees C under optimal conditions. This study shows the successful use of immobilized bacteria technology to remove high concentrations of PNP from aqueous waste streams.

  4. Strong and Optically Transparent Films Prepared Using Cellulosic Solid Residue Recovered from Cellulose Nanocrystals Production Waste Stream

    Treesearch

    Qianqian Wang; J.Y. Zhu; John M. Considine

    2013-01-01

    We used a new cellulosic material, cellulosic solid residue (CSR), to produce cellulose nanofibrils (CNF) for potential high value applications. Cellulose nanofibrils (CNF) were produced from CSR recovered from the hydrolysates (waste stream) of acid hydrolysis of a bleached Eucalyptus kraft pulp (BEP) to produce nanocrystals (CNC). Acid hydrolysis greatly facilitated...

  5. Sampling and Sensing Systems for High Priority Analytes

    SciTech Connect

    Brinker, C.Jeffrey; Frye-Mason, Gregory C.; Kottenstette, Richard J.; Lewis, Patrick R.; Sasaki, Darryl Y.; Sellinger, Alan

    1999-04-01

    This reports summarizes the results from a Laboratory Directed Research and Development effort to develop selective coastings for detecting high priority analytes (HPAs), such as chemical warfare (CW) agents and their precursors, in the presence of common interferents. Accomplishments during this project included synthesis and testing of new derivatized sol-gel coatings for surface acoustic wave sensors (SAWs). Surfactant modified and fluoroalcohol derivatized sol-gel oxides were coated onto SAW devices and tested with volatile organic compounds (VOCs). Theses modified sol-gel coatings improved SAW sensitivity to DMMP by over three orders of magnitude when compared to standard polymeric oatings such as polyisobutylene and by over two orders of magnitude compared with polymers tailor made for enhanced sensitivity to phosphonates. SAW sensors coated with these materials exhibit highly sensitive reversible behavior at elevated temperatures (>90 degree C), possibly leading to low detection levels for semivolatile analytes while remaining insensitive to volatile organic interferants. Additionally, we have investigated the use of reactive polymers for detection of volatile and reactive CW agent precursors (Chemical Weapons Convention Schedule 3 Agents) such as phosphouous oxychloride (POCl(3)). The results obtained in this study find that sensitive and selective responses can be obtained for Schedule 3 agents using commercially available polymers and chemical guidelines from solution phase chemistry.

  6. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste.

    PubMed

    Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr(2+) ions from an aqueous phase. The encapsulation of the Sr(2+) using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

  7. Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.

    PubMed

    Alimahmoodi, Mahmood; Mulligan, Catherine N

    2011-01-01

    The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Biological technologies for the removal of sulfur containing compounds from waste streams: bioreactors and microbial characteristics.

    PubMed

    Li, Lin; Zhang, Jingying; Lin, Jian; Liu, Junxin

    2015-10-01

    Waste gases containing sulfur compounds, such as hydrogen sulfide, sulfur dioxide, thioethers, and mercaptan, produced and emitted from industrial processes, wastewater treatment, and landfill waste may cause undesirable issues in adjacent areas and contribute to atmospheric pollution. Their control has been an area of concern and research for many years. As alternative to conventional physicochemical air pollution control technologies, biological treatment processes which can transform sulfur compounds to harmless products by microbial activity, have gained in popularity due to their efficiency, cost-effectiveness and environmental acceptability. This paper provides an overview of the current biological techniques used for the treatment of air streams contaminated with sulfur compounds as well as the advances made in the past year. The discussion focuses on bioreactor configuration and design, mechanism of operation, insights into the overall biological treatment process, and the characterization of the microbial species present in bioreactors, their populations and their interactions with the environment. Some bioreactor case studies are also introduced. Finally, the perspectives on future research and development needs in this research area were also highlighted.

  9. Separation of heavy metals from industrial waste streams by membrane separation technology

    SciTech Connect

    Yichu Huang; Koseoglu, S.S. . Engineering Biosciences Research Center)

    1993-01-01

    Industrial membrane technology is becoming increasingly attractive as a low-cost generic separation technique for volume reduction, recovery, and/or purification of the liquid phase and concentration and/or recovery of the contaminant or solute. It offers outstanding future potential in the reduction and/or recycling of hazardous pollutants from waste streams. Membrane separation technology may include: (1) commercial processes such as electrodialysis, reverse osmosis, nanofiltration, and ultrafiltration and (2) the development of hybrid processes such as liquid membranes, Donnan dialysis, and membrane bioreactor technology. Membrane separation technology as applied to waste treatment/reduction and environmental engineering problems has several advantages over conventional treatment processes. In contrast to distillation and solvent extraction membrane separation is achieved without a phase change and use of expensive solvents. The advantages of this technology are (1) low energy requirements; (2) small volumes of retentate that need to be handled; (3) selective removal of pollutants with the use of complexing agents and biocatalysts or by membrane surface modification; (4) the possibility for achieving zero discharge'' with reuse of product water, binding media and target, compounds; (5) continuous operation; (6) modular design without significant size limitations; (7) discrete membrane barrier to ensure physical separation of contaminants; and (8) minimal labor requirement.

  10. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  11. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus.

    PubMed

    Laarhoven, Bob; Elissen, H J H; Temmink, H; Buisman, C J N

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml), 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin). With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates.

  12. Agar Sediment Test for Assessing the Suitability of Organic Waste Streams for Recovering Nutrients by the Aquatic Worm Lumbriculus variegatus

    PubMed Central

    Laarhoven, Bob; Elissen, H. J. H.; Temmink, H.; Buisman, C. J. N.

    2016-01-01

    An agar sediment test was developed to evaluate the suitability of organic waste streams from the food industry for recovering nutrients by the aquatic worm Lumbriculus variegatus (Lv). The effects of agar gel, sand, and food quantities in the sediment test on worm growth, reproduction, and water quality were studied. Agar gel addition ameliorated growth conditions by reducing food hydrolysis and altering sediment structure. Best results for combined reproduction and growth were obtained with 0.6% agar-gel (20 ml), 10 g. fine sand, 40 g. coarse sand, and 105 mg fish food (Tetramin). With agar gel, ingestion and growth is more the result of addition of food in its original quality. Final tests with secondary potato starch sludge and wheat bran demonstrated that this test is appropriate for the comparison of solid feedstuffs and suspended organic waste streams. This test method is expected to be suitable for organic waste studies using other sediment dwelling invertebrates. PMID:26937632

  13. An Active Queue Management for QoS Guarantee of the High Priority Service Class

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jong; Shim, Jae Chan; Kim, Hwa-Suk; Cho, Kee Seong; Choi, Seong Gon

    In this paper, we propose the active queue management mechanism (Active-WRED) for guaranteeing the quality of the high priority service class (VoIP or IPTV) in the multi-class traffic service environment. In the congestion situation, this mechanism increases the drop probability of the low priority traffic and reduces the drop probability of the high priority traffic; therefore it can guarantee the quality of the high priority service class from the poor quality by the packet loss.

  14. Quantities and characteristics of the contact-handled low-level mixed waste streams for the DOE complex

    SciTech Connect

    Huebner, T.L.; Wilson, J.M.; Ruhter, A.H.; Bonney, S.J.

    1994-08-01

    This report supports the Integrated Thermal Treatment System (ITTS) Study initiated by the Department of Energy (DOE) Office of Technology Development (EM-50), which is a system engineering assessment of a variety of mixed waste treatment process. The DOE generates and stores large quantities of mixed wastes that are contaminated with both chemically hazardous and radioactive species. The treatment of these mixed wastes requires meeting the standards established by the Environmental Protection Agency for the specific hazardous contaminants regulated under the Resource Conservation and Recovery Act while also providing adequate control of the radionuclides. The thrust of the study is to develop preconceptual designs and life-cycle cost estimates for integrated thermal treatment systems ranging from conventional incinerators, such as rotary kiln and controlled air systems, to more innovative but not yet established technologies, such as molten salt and molten metal waste destruction systems. Prior to this engineering activity, the physical and chemical characteristics of the DOE low-level mixed waste streams to be treated must be defined or estimated. This report describes efforts to estimate the DOE waste stream characteristics.

  15. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    PubMed

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  17. Sampling and analysis plan for sampling of liquid waste streams generated by 222-S Laboratory Complex operations

    SciTech Connect

    Benally, A.B.

    1997-08-14

    This Sampling and Analysis Plan (SAP) establishes the requirements and guidelines to be used by the Waste Management Federal Services of Hanford, Inc. personnel in characterizing liquid waste generated at the 222-S Laboratory Complex. The characterization process to verify the accuracy of process knowledge used for designation and subsequent management of wastes consists of three steps: to prepare the technical rationale and the appendix in accordance with the steps outlined in this SAP; to implement the SAP by sampling and analyzing the requested waste streams; and to compile the report and evaluate the findings to the objectives of this SAP. This SAP applies to portions of the 222-S Laboratory Complex defined as Generator under the Resource Conservation and Recovery Act (RCRA). Any portion of the 222-S Laboratory Complex that is defined or permitted under RCRA as a treatment, storage, or disposal (TSD) facility is excluded from this document. This SAP applies to the liquid waste generated in the 222-S Laboratory Complex. Because the analytical data obtained will be used to manage waste properly, including waste compatibility and waste designation, this SAP will provide directions for obtaining and maintaining the information as required by WAC173-303.

  18. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams. Revision 1

    SciTech Connect

    1996-09-01

    US DOE mixed low-level and mixed transuranic waste inventory was estimated at 181,000 cubic meters (about 2,000 waste streams). Treatability studies may be used as part of DOE`s mixed waste management program. Commercial treatability study suppliers have been identified that either have current capability in their own facilities or have access to licensed facilities. Numerous federal and state regulations, as well as DOE Order 5820.2A, impact the performance of treatability studies. Generators, transporters, and treatability study facilities are subject to regulation. From a mixed- waste standpoint, a key requirement is that the treatability study facility must have an NRC or state license that allows it to possess radioactive materials. From a RCRA perspective, the facility must support treatability study activities with the applicable plans, reports, and documentation. If PCBs are present in the waste, TSCA will also be an issue. CERCLA requirements may apply, and both DOE and NRC regulations will impact the transportation of DOE mixed waste to an off-site treatment facility. DOE waste managers will need to be cognizant of all applicable regulations as mixed-waste treatability study programs are initiated.

  19. Performance catalytic ozonation over the carbosieve in the removal of toluene from waste air stream.

    PubMed

    Samarghandi, Mohammad Reza; Babaee, Seyed Alireza; Ahmadian, Mohammad; Asgari, Ghorban; Ghorbani Shahna, Farshid; Poormohammadi, Ali

    2014-01-01

    Toluene is a volatile organic compound, one of 189 hazardous air pollutants (HAPs) and the most important pollutant found in most industries and indoor environments; owing to its adverse health, toluene must be treated before being released into the environment. In this research study, a continuous-flow system (including an air compressor, silica gel filters and activated charcoal, impinger, an ozone generation and a fixed bed reactor packed with the carbosieve in size 1.8-2.3 mm, specific surface: 972 m2/g,) was used. This glass reactor was 0.7 m in height; at a distance of 0.2 m from its bottom, a mesh plane was installed so as to hold the adsorbent. Moreover, 3 l/min oxygen passed through this system, 0.43 g/h ozone was prepared. The flow rate of waste airstream was 300 ml/min. The efficiency of this system for removal of toluene was compared under the same experimental conditions. Under similar conditions, performance of catalytic ozonation was better in toluene removal than that of ozonation and carbosieve alone. On average, increasing the removal efficiency was 45% at all concentrations. When carbosieve and ozone come together, their synergistic effects increased on toluene degradation. Catalytic ozonation is a suitable, high-efficient and available method for removing toluene from various concentrations of waste air stream. This process due to the short contact time, low energy consuming and making use of cheap catalysts can be used as a novel process for removing various concentrations of volatile organic compounds.

  20. Ammonia removal in food waste anaerobic digestion using a side-stream stripping process.

    PubMed

    Serna-Maza, A; Heaven, S; Banks, C J

    2014-01-01

    Three 35-L anaerobic digesters fed on source segregated food waste were coupled to side-stream ammonia stripping columns and operated semi-continuously over 300 days, with results in terms of performance and stability compared to those of a control digester without stripping. Biogas was used as the stripping medium, and the columns were operated under different conditions of temperature (55, 70, 85 °C), pH (unadjusted and pH 10), and RT (2-5 days). To reduce digester TAN concentrations to a useful level a high temperature (≥70 °C) and a pH of 10 were needed; under these conditions 48% of the TAN was removed over a 138-day period without any detrimental effects on digester performance. Other effects of the stripping process were an overall reduction in digestate organic nitrogen-containing fraction compared to the control and a recovery in the acetoclastic pathway when TAN concentration was 1770±20 mg kg(-1).

  1. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan.

    PubMed

    Lin, Angela Yu-Chen; Yu, Tsung-Hsien; Lin, Cheng-Fang

    2008-12-01

    This is a comprehensive study of the occurrence of antibiotics, hormones and other pharmaceuticals in water sites that have major potential for downstream environmental contamination. These include residential (hospitals, sewage treatment plants, and regional discharges), industrial (pharmaceutical production facilities), and agricultural (animal husbandries and aquacultures) waste streams. We assayed 23 Taiwanese water sites for 97 targeted compounds, of which a significant number were detected and quantified. The most frequently detected compounds were sulfamethoxazole, caffeine, acetaminophen, and ibuprofen, followed closely by cephalexin, ofloxacin, and diclofenac, which were detected in >91% of samples and found to have median (maximum) concentrations of 0.2 (5.8), 0.39 (24.0), 0.02 (100.4), 0.41 (14.5), 0.15 (31.4), 0.14 (13.6) and 0.083 (29.8) microg/L, respectively. Lincomycin and acetaminophen had high measured concentrations (>100 microg/L), and 35 other pharmaceuticals occurred at the microg/L level. These incidence and concentration results correlate well with published data for other worldwide locations, as well as with Taiwanese medication usage data, suggesting a human contamination source. Many pharmaceuticals also occurred at levels exceeding predicted no-effect concentrations (PNEC), warranting further investigation of their occurrence and fate in receiving waters, as well as the overall risks they pose for local ecosystems and human residents. The information provided here will also be useful for development of strategies for regulation and remediation.

  2. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream

    PubMed Central

    Barbosa-Pereira, Letricia; Pocheville, Ainara; Angulo, Inmaculada; Paseiro-Losada, Perfecto; Cruz, Jose M.

    2013-01-01

    The brewery industry generates waste that could be used to yield a natural extract containing bioactive phenolic compounds. We compared two methods of purifying the crude extract—solid-phase extraction (SPE) and supercritical fluid extraction (SFE)—with the aim of improving the quality of the final extract for potential use as safe food additive, functional food ingredient, or nutraceutical. The predominant fractions yielded by SPE were the most active, and the fraction eluted with 30% (v/v) of methanol displayed the highest antioxidant activity (0.20 g L−1), similar to that of BHA. The most active fraction yielded by SFE (EC50 of 0.23 g L−1) was obtained under the following conditions: temperature 40°C, pressure 140 bar, extraction time 30 minutes, ethanol (6%) as a modifier, and modifier flow 0.2 mL min−1. Finally, we found that SFE is the most suitable procedure for purifying the crude extracts and improves the organoleptic characteristics of the product: the final extract was odourless, did not contain solvent residues, and was not strongly coloured. Therefore, natural extracts obtained from the residual stream and purified by SFE can be used as natural antioxidants with potential applications in the food, cosmetic, and pharmaceutical industries. PMID:23762844

  3. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.

    1991-01-01

    The advanced flotation techniques, namely column flotation, have shown potential in obtaining a low ash, low pyritic sulfur fine size clean coal. The overall objective of this program is to evaluate applicability of an advanced flotation technique, 'Ken-Flote' column to recover clean coal with minimum mineral matter content at greater than 90 percent combustible recovery from two Illinois preparation plant waste streams. Column flotations tests were conducted on the flotation feed obtained from the Kerr-McGee Galatia and Ziegler No. 26 plants using three different bubble-generating devices: sparger, gas saver and foam jet. Each of these devices was tested with three different frothers and various column-operating variable to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. For the Galatia slurry, the column provided a clean coal containing 5 percent ash, 0.48 percent pyritic sulfur at combustible recovery averaging 90 percent. In other words, about 90 percent ash and about 75 percent pyritic sulfur rejection were attained for the Galatia slurry. Pilot plant studies on this slurry basically obtained results similar to the laboratory studies. For the Ziegler No. 26, slurry column flotation provided a clean coal containing about 5 percent ash, 0.44 percent pyritic sulfur at more than 90 percent combustible recovery. The ash and pyrite sulfur rejection was about 85 percent and 65 percent, respectively.

  4. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream.

    PubMed

    Mishra, Abhishek; Malik, Anushree

    2014-11-01

    The present study is targeted towards development of a three member fungal consortium for effective removal of metals [Cr(6+) and Cu(2+)] and dyes [AB and PO] from mixed waste streams. Initial studies using individual fungal strain showed that Aspergillus lentulus was best for Cu(2+) and AB removal, Aspergillus terreus for Cr(6+) removal whereas, Rhizopus oryzae was best for PO removal. Based on the complementary pollutant affinities and positive interactions, a consortium comprising all three strains was developed. Consortium removed 100% Cr(6+) and 81.60% Cu(2+) from metal mixture which was significantly higher than that achieved individually by A. lentulus (Cr(6+): 83.11%; Cu(2+): 67.32%), A. terreus (Cr(6+): 95.57%; Cu(2+): 65.77%) or R. oryzae (Cr(6+): 25.34%; Cu(2+): 30.20%). Further, 98.0% AB and 100.0% PO was removed after 48 h by the consortia. Unlike individual strains, consortium's performance was unaltered irrespective of the complexity of metal-dye mixtures, thereby establishing its superiority. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1991-01-01

    The overall objective of this program is to evaluate the application of an advanced physical separation technique, namely Ken-Flote'' column flotation to recover clean coal with minimum sulfur and ash content at greater than 90 percent combustible recovery from two Illinois coal preparation plant fine waste streams. This project will optimize various operating parameters with particular emphasis on fine bubble generating devices and reagent packages to enhance to rejection of liberated ash and pyritic sulfur. During this contract period, column flotation testing was conducted on the flotation feed slurry obtained from the Kerr-McGee Galatia Preparation Plant. The column flotation tests were conducted using three different bubble generating devices: static, gas saver and foam jet spargers. Each of these devices was tested with three different frothers and various column operating variables to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. In general, the column flotation provided a clean coal containing about 4--6 percent ash at combustible recovery ranging from 88 to 92 percent. 10 figs.

  6. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1990-01-01

    The overall objective of this program is to evaluate the application of an advanced physical separation technique, namely Ken-Flote column flotation to maximize BTU recovery with minimum product sulfur and ash content from two Illinois coal preparation plant fine waste streams. The project will optimize various operating parameters with particular emphasis on fine bubble generating devices and reagent packages to enhance the rejection of liberated ash and pyrite. During this contract period, samples were obtained from the Kerr-McGee Galatia Preparation Plant and characterized. Analysis of the flotation feed slurry indicate that a significant amount of pyrite is present in the 5 microns size range as free particles. The coal is hydrophobic in nature and optimum reagent addition is 0.75 lb/ton frother and 1.5 lb/ton fuel oil. The best flotation results were obtained near pH 6 for all frothers tested. Two ash depressants tested showed no significant improvement in ash rejection. A pyrite depressant was also tested which indicated improved pyrite rejection from 28 to 37 percent at a dosage of 5 lb/ton. Efforts are in progress to design a test matrix to determine optimum operating conditions for column flotation testing with this substrate. The test matrixes will be designed to investigate three different bubble generating mechanisms. The objective is to identify column operating variables that will provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. 10 figs., 1 tab.

  7. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... process fluids. (b) Waste that is contained in a segregated storm water sewer system. Waste Requirements ...

  8. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE`s mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

  9. Acceptable Knowledge Summary Report for Mixed TRU Waste Streams: SR-W026-221F-HET-A through D

    SciTech Connect

    Lunsford, G.F.

    2001-10-02

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for the heterogeneous debris mixed transuranic waste streams generated in the FB-Line after January 25, 1990 and before March 20, 1997.

  10. Novel selective surface flow (SSF{sup TM}) membranes for the recovery of hydrogren from waste gas streams. Final report

    SciTech Connect

    Anand, M.

    1995-08-01

    The waste streams are off-gas streams from various chemical/refinery operations. In Phase I, the architecture of the membrane and the separation device were defined and demonstrated. The system consists of a shell-and-tube separator in which the gas to be separated is fed to the tube side, the product is collected as high pressure effluent and the permeate constitutes the waste/fuel stream. Each tube, which has the membrane coated on the interior, does the separation. A multi- tube separator device containing 1 ft{sup 2} membrane area was built and tested. The engineering data were used for designing a process for hydrogen recovery from a fluid catalytic cracker off-gas stream. First-pass economics showed that overall cost for hydrogen production is reduced by 35% vs on-purpose production of hydrogen by steam- methane reforming. The hydrogen recovery process using the SSF membrane results in at least 15% energy reduction and significant decrease in CO{sub 2} and NO{sub x} emissions.

  11. Methodology of recent solid waste stream assessments and summary of current recycling endeavors at Lawrence Livermore National Laboratory (LLNL)

    SciTech Connect

    Wilson, K.

    1996-04-01

    Solid Waste Stream Assessments determine the components of given waste streams. An evaluation of findings allows components to be targeted for effective source reduction, reuse, or recycling. LLNL assessed 10% of its onsite dumpster locations (25 of 250). Dumpsters were selected based on location and surrounding facility use. Dumpster contents were sorted according to type into containers. The filled containers were weighed and photographed. The information was noted on field tabulation sheets. Dumpster locations, date of sort, sort categories, weight, and cubic yardage were entered into a database for review and tabulation. LLNL sorted approximately 7000 pounds of waste in each of the two assessments. A high incidence of cardboard (uncompacted) was present in most dumpsters. A high incidence of polystyrene was also present at dumpsters serving the LLNL cafeterias. Very little glass or aluminium was found. Enough waste paper was present to indicate that the paper recycling program needed increased employee awareness and a possible expansion. As a result of our assessments, LLNL has expanded its cardboard and paper recycling programs and implemented moving box and pallet reuse programs. LLNL is also studying a possible recycling program for cafeteria polystyrene and possible program expansions for magazine, newsprint, and glass recycling.

  12. Impact of Unconventional Shale Gas Waste Water Disposal on Surficial Streams

    NASA Astrophysics Data System (ADS)

    Cozzarelli, I.; Akob, D.; Mumford, A. C.

    2014-12-01

    The development of unconventional natural gas resources has been rapidly increasing in recent years, however, the environmental impacts and risks are not yet well understood. A single well can generate up to 5 million L of produced water (PW) consisting of a blend of the injected fluid and brine from a shale formation. With thousands of wells completed in the past decade, the scope of the challenge posed in the management of this wastewater becomes apparent. The USGS Toxic Substances Hydrology Program is studying both intentional and unintentional releases of PW and waste solids. One method for the disposal of PW is underground injection; we are assessing the potential risks of this method through an intensive, interdisciplinary study at an injection disposal facility in the Wolf Creek watershed in WV. Disposal of PW via injection begun in 2002, with over 5.5 mil. L of PW injected to date. The facility consists of the injection well, a tank farm, and two former holding ponds (remediated in early 2014) and is bordered by two small tributaries of Wolf Creek. Water and sediments were acquired from these streams in June 2014, including sites upstream, within, and downstream from the facility. We are analyzing aqueous and solid phase geochemistry, mineralogy, hydrocarbon content, microbial community composition, and potential toxicity. Field measurements indicated that conductivity downstream (416 μS/cm) was elevated in comparison to upstream (74 μS/cm) waters. Preliminary data indicated elevated Cl- (115 mg/L) and Br- (0.88 mg/L) concentrations downstream, compared to 0.88 mg/L Cl- and <0.03 mg/L Br- upstream of the facility. Because elevated TDS is a marker of PW, these data provide a first indication that PW from the facility is impacting nearby streams. In addition, total Fe concentrations downstream were 8.1 mg/L, far in excess of the 0.13 mg/L found upstream from the facility, suggesting the potential for microbial Fe cycling. We are conducting a broad suite of

  13. Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almaden Mining District, Spain

    USGS Publications Warehouse

    Gray, John E.; Hines, Mark E.; Higueras, Pablo L.; Adatto, Isaac; Lasorsa, Brenda K.

    2004-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in mine wastes, sediments, and water collected from the Almade??n District, Spain, the world's largest Hg producing region. Our data for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from the Almade??n area. Concentrations of Hg and methyl-Hg in mine waste, sediment, and water from Almade??n are among the highest found at Hg mines worldwide. Mine wastes from Almade??n contain highly elevated Hg concentrations, ranging from 160 to 34 000 ??g/g, and methyl-Hg varies from <0.20 to 3100 ng/g. Isotopic tracer methods indicate that mine wastes at one site (Almadenejos) exhibit unusually high rates of Hg-methylation, which correspond with mine wastes containing the highest methyl-Hg concentrations. Streamwater collected near the Almade??n mine is also contaminated, containing Hg as high as 13 000 ng/L and methyl-Hg as high as 30 ng/L; corresponding stream sediments contain Hg concentrations as high as 2300 ??g/g and methyl-Hg concentrations as high as 82 ng/g. Several streamwaters contain Hg concentrations in excess of the 1000 ng/L World Health Organization (WHO) drinking water standard. Methyl-Hg formation and degradation was rapid in mines wastes and stream sediments demonstrating the dynamic nature of Hg cycling. These data indicate substantial downstream transport of Hg from the Almade??n mine and significant conversion to methyl-Hg in the surface environment.

  14. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK.

    PubMed

    Rieuwerts, J S; Mighanetara, K; Braungardt, C B; Rollinson, G K; Pirrie, D; Azizi, F

    2014-02-15

    Mining generates large amounts of waste which may contain potentially toxic elements (PTE), which, if released into the wider environment, can cause air, water and soil pollution long after mining operations have ceased. The fate and toxicological impact of PTEs are determined by their partitioning and speciation and in this study, the concentrations and mineralogy of arsenic in mine wastes and stream sediments in a former metal mining area of the UK are investigated. Pseudo-total (aqua-regia extractable) arsenic concentrations in all samples from the mining area exceeded background and guideline values by 1-5 orders of magnitude, with a maximum concentration in mine wastes of 1.8×10(5)mgkg(-1) As and concentrations in stream sediments of up to 2.5×10(4)mgkg(-1) As, raising concerns over potential environmental impacts. Mineralogical analysis of the wastes and sediments was undertaken by scanning electron microscopy (SEM) and automated SEM-EDS based quantitative evaluation (QEMSCAN®). The main arsenic mineral in the mine waste was scorodite and this was significantly correlated with pseudo-total As concentrations and significantly inversely correlated with potentially mobile arsenic, as estimated from the sum of exchangeable, reducible and oxidisable arsenic fractions obtained from a sequential extraction procedure; these findings correspond with the low solubility of scorodite in acidic mine wastes. The work presented shows that the study area remains grossly polluted by historical mining and processing and illustrates the value of combining mineralogical data with acid and sequential extractions to increase our understanding of potential environmental threats.

  15. Recovery of fine coal from waste streams using advanced column flotation

    SciTech Connect

    Groppo, J.G.; Parekh, B.K. . Center for Applied Energy Research)

    1991-01-01

    The overall objective of this program is to evaluate the application of an advanced physical separation technique, namely Ken-Flote'' column flotation to recover clean coal with minimum sulfur and ash content at greater than 90 percent combustible recovery from two Illinois coal preparation plant fine waste streams. The project will optimize various operating parameters with particular emphasis on fine bubble generating devices and reagent packages to enhance the rejection of liberated ash and pyritic sulfur. During this contract period, column flotation testing was completed on the flotation feed slurry obtained from the Kerr-McGee Galatia Preparation Plant. The column flotation tests were conducted using three different bubble generating devices: Static, gas saver and foam jet spargers. Each of these devices was tested with three different frothers and various column operating variables to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. In general, the column flotation provided a clean coal containing about 4--6 percent ash at combustible recovery ranging from 88 to 92 percent while pyrite rejection was 70 to 75 percent. Flotation tests were also conducted on a slurry sample obtained from The Ziegler {number sign}26 Preparation Plant in Sesse, Illinois. Base-line flotation testing was completed using batch flotation to identify optimum reagent addition. Column flotation of the Ziegler slurry provided a clean coal containing 4--6 percent ash with a combustible recovery of 90--95 percent and pyrite rejection of 60--67 percent. Efforts are in progress in installing a 6-inc. I.D. pilot column at the Ziegler {number sign}26. 9 figs.

  16. Development of pervaporation to recover and reuse volatile organic compounds from industrial waste streams. Final report

    SciTech Connect

    Baker, R.W.; Athayde, A.L.; Daniels, R.; Le, M.; Pinnau, I.; Ly, J.H.; Wijmans, J.G.; Kaschemekat, J.H.; Helm, V.D.

    1997-03-01

    Objective was to demonstrate use of pervaporation, a new membrane technology, as an efficient, low-cost method of recovering dissolved volatile organic compounds (VOCs) from water and to commercialize this technology. MTR`s industrial commercialization partner, Hoechst Celanese, allowed the project to move rapidly with both demonstration work and precommercial business planning. However, in Dec. 1996 the technology was returned to MT. To date, two systems were sold: one for a wastewater application, the other for removing off flavors from soup stock. Two other customers did extensive field tests and are expected to purchase systems in 1997. This report describes the development of pervaporation membranes and modules at MT. A study was performed with these membrane modules to determine the parameters governing membrane performance. Laboratory data were integrated into the design of several pervaporation demonstration systems, which were operated in the laboratory and at field sites. Results of two of these field trials (benzene/toluene/ethylbenzene/xylenes removal from evaporator condensate water produced by a natural gas glycol dehydration unit at a PG&E gas processing plant, and chlorinated solvent removal from contaminated groundwater at Pinellas) are reported. Economic analysis shows that pervaporation is cheaper than steam stripping for treating water containing highly VOCs such as toluene or TCE up to flow rates of 100-200 gpm. For moderately VOCs such as acetone or methylene chloride, pervaporation is cheaper for streams < 10-20 gpm. Market studies suggest that by 2010 pervaporation will realize energy savings of 81x10{sup 12} Btu and waste reduction of 0.54x10{sup 6} tons VOCs; benefits include lower CO{sub 2} emissions because of less destruction of VOCs by incineration. Also, raw material costs for the chemical industry will be reduced with the recovered VOCs. Industries will be less likely to move overseas due to increased wastewater regulation in US.

  17. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    PubMed

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  18. Characterization of past and present waste streams from the 325 Radiochemistry Building

    SciTech Connect

    Pottmeyer, J.A.; Weyns-Rollosson, M.I.; Dicenso, K.D.; DeLorenzo, D.S.; Duncan, D.R.

    1993-12-01

    The purpose of this report is to characterize, as far as possible, the solid waste generated by the 325 Radiochemistry Building since its construction in 1953. Solid waste as defined in this document is any containerized or self-contained material that has been declared waste. This characterization is of particular interest in the planning of transuranic (TRU) waste retrieval operations including the Waste Receiving and Processing (WRAP) Facility. Westinghouse Hanford Company (Westinghouse Hanford) and Battelle Pacific Northwest Laboratory (PNL) activities at Building 325 have generated approximately 4.4% and 2.4%, respectively, of the total volume of TRU waste currently stored at the Hanford Site.

  19. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  20. Geotechnical/geochemical characterization of advanced coal process waste streams: Task 2

    SciTech Connect

    Moretti, C.J.; Olson, E.S.

    1992-09-01

    Successful disposal practices for solid wastes produced from advanced coal combustion and coal conversion processes must provide for efficient management of relatively large volumes of wastes in a cost-effective and environmentally safe manner. At present, most coal-utilization solid wastes are disposed of using various types of land-based systems, and it is probable that this disposal mode will continue to be widely used in the future for advanced process wastes. Proper design and operation of land-based disposal systems for coal combustion wastes normally require appropriate waste transfer, storage, and conditioning subsystems at the plant to prepare the waste for transport to an ultimate disposal site. Further, the overall waste management plan should include a by-product marketing program to minimize the amount of waste that will require disposal. In order to properly design and operate waste management systems for advanced coal-utilization processes, a fundamental understanding of the physical properties, chemical and mineral compositions, and leaching behaviors of the wastes is required. In order to gain information about the wastes produced by advanced coal-utilization processes, 55 waste samples from 16 different coal gasification, fluidized-bed coal combustion (FBC), and advanced flue gas scrubbing processes were collected. Thirty-four of these wastes were analyzed for their bulk chemical and mineral compositions and tested for a detailed set of disposal-related physical properties. The results of these waste characterizations are presented in this report. In addition to the waste characterization data, this report contains a discussion of potentially useful waste management practices for advanced coal utilization processes.

  1. Organic waste compounds in streams: Occurrence and aquatic toxicity in different stream compartments, flow regimes, and land uses in southeast Wisconsin, 2006–9

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Richards, Kevin D.; Geis, Steven W.; Magruder, Christopher

    2013-01-01

    An assessment of organic chemicals and aquatic toxicity in streams located near Milwaukee, Wisconsin, indicated high potential for adverse impacts on aquatic organisms that could be related to organic waste compounds (OWCs). OWCs used in agriculture, industry, and households make their way into surface waters through runoff, leaking septic-conveyance systems, regulated and unregulated discharges, and combined sewage overflows, among other sources. Many of these compounds are toxic at elevated concentrations and (or) known to have endocrine-disrupting potential, and often they occur as complex mixtures. There is still much to be learned about the chronic exposure effects of these compounds on aquatic populations. During 2006–9, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District (MMSD), conducted a study to determine the occurrence and potential toxicity of OWCs in different stream compartments and flow regimes for streams in the Milwaukee area. Samples were collected at 17 sites and analyzed for a suite of 69 OWCs. Three types of stream compartments were represented: water column, streambed pore water, and streambed sediment. Water-column samples were subdivided by flow regime into stormflow and base-flow samples. One or more compounds were detected in all 196 samples collected, and 64 of the 69 compounds were detected at least once. Base-flow samples had the lowest detection rates, with a median of 12 compounds detected per sample. Median detection rates for stormflow, pore-water, and sediment samples were more than double that of base-flow samples. Compounds with the highest detection rates include polycyclic aromatic hydrocarbons (PAHs), insecticides, herbicides, and dyes/pigments. Elevated occurrence and concentrations of some compounds were detected in samples from urban sites, as compared with more rural sites, especially during stormflow conditions. These include the PAHs and the domestic waste

  2. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  3. Gas Generation and Hold-Up in Hanford Waste Treatment Plant Process Streams Containing Anti-Foam Agent (AFA)

    SciTech Connect

    Arm, Stuart T.; Poloski, Adam P.; Stewart, Charles W.; Meyer, Perry A.; Kurath, Dean E.

    2007-06-29

    The Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify defense wastes stored at the DOE Hanford Site near Richland, Washington. Some of the WTP process streams are slurries that exhibit non-Newtonian rheological behavior. Such streams can accumulate hazardous quantities of thermally and radiolytically generated flammable gases. Experiments were performed in a bubble column to measure gas hold-up under various conditions to better understand flammable gas behavior in WTP processes. The two non-Newtonian slurries tested were kaolin-bentonite clay and a chemical surrogate of pretreated high-level waste (HLW) from Hanford Tank AZ-101. The addition of solutes, whether a salt or anti-foaming agent (AFA) decrease the bubble coalescence rate leading to smaller bubbles, lower bubble rise velocity and higher gas holdup. Gas holdup decreased with increasing yield stress and consistency. The impact of AFA on gas holdup in kaolin-bentonite clay was less than in simulated HLW, presumably because the AFA adsorbed onto the clay particles, rendering it unavailable to retard coalescence.

  4. Evaluation of Cyanex 923-coated magnetic particles for the extraction and separation of lanthanides and actinides from nuclear waste streams

    NASA Astrophysics Data System (ADS)

    Shaibu, B. S.; Reddy, M. L. P.; Bhattacharyya, A.; Manchanda, V. K.

    2006-06-01

    In the magnetically assisted chemical separation (MACS) process, tiny ferromagnetic particles coated with solvent extractant are used to selectively separate radionuclides and hazardous metals from aqueous waste streams. The contaminant-loaded particles are then recovered from the waste solutions using a magnetic field. The contaminants attached to the magnetic particles are subsequently removed using a small volume of stripping agent. In the present study, Cyanex 923 (trialkylphosphine oxide) coated magnetic particles (cross-linked polyacrylamide and acrylic acid entrapping charcoal and iron oxide, 1:1:1, particle size=1-60 μm) are being evaluated for the possible application in the extraction and separation of lanthanides and actinides from nuclear waste streams. The uptake behaviour of Th(IV), U(VI), Am(III) and Eu(III) from nitric acid solutions was investigated by batch studies. The effects of sorption kinetics, extractant and nitric acid concentrations on the uptake behaviour of metal ions were systematically studied. The influence of fission products (Cs(I), Sr(II)) and interfering ions including Fe(III), Cr(VI), Mg(II), Mn(II), and Al(III) were investigated. The recycling capacity of the extractant-coated magnetic particles was also evaluated.

  5. Preliminary results of sequential extraction experiments for selenium on mine waste and stream sediments from Vermont, Maine, and New Zealand

    USGS Publications Warehouse

    Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.

    2006-01-01

    We report the preliminary results of sequential partial dissolutions used to characterize the geochemical distribution of selenium in stream sediments, mine wastes, and flotation-mill tailings. In general, extraction schemes are designed to extract metals associated with operationally defined solid phases. Total Se concentrations and the mineralogy of the samples are also presented. Samples were obtained from the Elizabeth, Ely, and Pike Hill mines in Vermont, the Callahan mine in Maine, and the Martha mine in New Zealand. These data are presented here with minimal interpretation or discussion. Further analysis of the data will be presented elsewhere.

  6. Tellurite glass as a waste form for a simulated mixed chloride waste stream: Candidate materials selection and initial testing

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-02-02

    Tellurite glasses have been researched widely for the last 60 years since they were first introduced by Stanworth. These glasses have been primarily used in research applications as glass host materials for lasers and as non-linear optical materials, though many other uses exist in the literature. Tellurite glasses have long since been used as hosts for various, and even sometimes mixed, halogens (i.e., multiple chlorides or even chlorides and iodides). Thus, it was reasonable to expect that these types of glasses could be used as a waste form to immobilize a combination of mixed chlorides present in the electrochemical separations process involved with fuel separations and processing from nuclear reactors. Many of the properties related to waste forms (e.g., chemical durability, maximum chloride loading) for these materials are unknown and thus, in this study, several different types of tellurite glasses were made and their properties studied to determine if such a candidate waste form could be fabricated with these glasses. One of the formulations studied was a lead tellurite glass, which had a low sodium release and is on-par with high-level waste silicate glass waste forms.

  7. Sorbent Testing for the Solidification of Organic Process Waste streams from the Radiochemical Engineering Development Center at Oak Ridge National Laboratory

    SciTech Connect

    Bickford, J.; Foote, M.; Taylor, P.

    2008-07-01

    The U.S. Department of Energy (DOE) has tasked MSE Technology Applications, Inc. (MSE) with evaluating various sorbents to solidify the radioactive liquid organic waste from the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). REDC recovers and purifies heavy elements (berkelium, californium, einsteinium, and fermium) from irradiated targets for research and industrial applications. Both aqueous and organic waste streams are discharged from REDC. Organic waste is generated from the plutonium/uranium extraction (PUREX), Cleanex, and Pubex processes.1 The PUREX waste derives from an organic-aqueous isotope separation process for plutonium and uranium fission products, the Cleanex waste derives from the removal of fission products and other impurities from the americium/curium product, and the Pubex waste is derived from the separation process of plutonium from dissolved targets. An aqueous waste stream is also produced from these separation processes. MSE has been tasked to test a grouting formula for the aqueous waste stream that includes specially formulated radioactive shielding materials developed by Science and Technology Applications, LLC. This paper will focus on the sorbent testing work. Based on work performed at Savannah River Site (SRS) (Refs. 1, 2), ORNL tested and evaluated three sorbents capable of solidifying the PUREX, Pubex, and Cleanex waste streams and a composite of the three organic waste streams: Imbiber Beads{sup R} IMB230301 (Imbiber Beads), Nochar A610 Petro Bond, and Petroset II Granular{sup TM} (Petroset II-G). Surrogates of the PUREX, Pubex, Cleanex, and a composite organic waste were used for the bench-scale testing. Recommendations resulting from the ORNL testing included follow-on testing by MSE for two of the three sorbents: Nochar Petro Bond and Petroset II-G. MSE recommended that another clay sorbent, Organoclay BM-QT-199, be added to the test sequence. The sorbent/surrogate combinations

  8. Removal and recovery of metal ions from process and waste streams using polymer filtration

    SciTech Connect

    Jarvinen, G.D.; Smith, B.F.; Robison, T.W.; Kraus, K.M.; Thompson, J.A.

    1999-06-13

    Polymer Filtration (PF) is an innovative, selective metal removal technology. Chelating, water-soluble polymers are used to selectively bind the desired metal ions and ultrafiltration is used to concentrate the polymer-metal complex producing a permeate with low levels of the targeted metal ion. When applied to the treatment of industrial metal-bearing aqueous process streams, the permeate water can often be reused within the process and the metal ions reclaimed. This technology is applicable to many types of industrial aqueous streams with widely varying chemistries. Application of PF to aqueous streams from nuclear materials processing and electroplating operations will be described.

  9. The mass flow and proposed management of bisphenol A in selected Norwegian waste streams.

    PubMed

    Arp, Hans Peter H; Morin, Nicolas A O; Hale, Sarah E; Okkenhaug, Gudny; Breivik, Knut; Sparrevik, Magnus

    2017-02-01

    Current initiatives for waste-handling in a circular economy favor prevention and recycling over incineration or landfilling. However, the impact of such a transition on environmental emissions of contaminants like bisphenol A (BPA) during waste-handling is not fully understood. To address this, a material flow analysis (MFA) was constructed for selected waste categories in Norway, for which the amount recycled is expected to increase in the future; glass, vehicle, electronic, plastic and combustible waste. Combined, 92tons/y of BPA are disposed of via these waste categories in Norway, with 98.5% associated with plastic and electronic waste. During the model year 2011, the MFA showed that BPA in these waste categories was destroyed through incineration (60%), exported for recycling into new products (35%), stored in landfills (4%) or released into the environment (1%). Landfilling led to the greatest environmental emissions (up to 13% of landfilled BPA), and incinerating the smallest (0.001% of incinerated BPA). From modelling different waste management scenarios, the most effective way to reduce BPA emissions are to incinerate BPA-containing waste and avoid landfilling it. A comparison of environmental and human BPA concentrations with CoZMoMAN exposure model estimations suggested that waste emissions are an insignificant regional source. Nevertheless, from monitoring studies, landfill emissions can be a substantial local source of BPA. Regarding the transition to a circular economy, it is clear that disposing of less BPA-containing waste and less landfilling would lead to lower environmental emissions, but several uncertainties remain regarding emissions of BPA during recycling, particularly for paper and plastics. Future research should focus on the fate of BPA, as well as BPA alternatives, in emerging reuse and recycling processes, as part of the transition to a circular economy.

  10. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect

    Duncan, D R; Mayancsik, B A; Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  11. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect

    Duncan, D.R.; Mayancsik, B.A.; Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I.

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  12. Applying value stream mapping techniques to eliminate non-value-added waste for the procurement of endovascular stents.

    PubMed

    Teichgräber, Ulf K; de Bucourt, Maximilian

    2012-01-01

    OJECTIVES: To eliminate non-value-adding (NVA) waste for the procurement of endovascular stents in interventional radiology services by applying value stream mapping (VSM). The Lean manufacturing technique was used to analyze the process of material and information flow currently required to direct endovascular stents from external suppliers to patients. Based on a decision point analysis for the procurement of stents in the hospital, a present state VSM was drawn. After assessment of the current status VSM and progressive elimination of unnecessary NVA waste, a future state VSM was drawn. The current state VSM demonstrated that out of 13 processes for the procurement of stents only 2 processes were value-adding. Out of the NVA processes 5 processes were unnecessary NVA activities, which could be eliminated. The decision point analysis demonstrated that the procurement of stents was mainly a forecast driven push system. The future state VSM applies a pull inventory control system to trigger the movement of a unit after withdrawal by using a consignment stock. VSM is a visualization tool for the supply chain and value stream, based on the Toyota Production System and greatly assists in successfully implementing a Lean system. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Method for sequestering CO.sub.2 and SO.sub.2 utilizing a plurality of waste streams

    DOEpatents

    Soong, Yee; Allen, Douglas E.; Zhu, Chen

    2011-04-12

    A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO.sub.2 and SO.sub.2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes. The benefits of this integrated approach to coincidental treatment of multiple industrial waste byproduct streams include neutralization of caustic byproduct such as bauxite residue, thereby decreasing the risk associated with the long-term storage and potential environmental of storing caustic materials, decreasing or obviating the need for costly treatment of byproduct brines, thereby eliminating the need to purchase CaO or similar scrubber reagents typically required for SO.sub.2 treatment of such gasses, and directly using CO.sub.2 from flue gas to neutralize bauxite residue/brine mixtures, without the need for costly separation of CO.sub.2 from the industrial byproduct gas stream by processes such as liquid amine-based scrubbers.

  14. Spatial and taxonomic variation in trace element bioaccumulation in two herbivores from a coal combustion waste contaminated stream.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; Vaun McArthur, J

    2014-03-01

    Dissimilarities in habitat use, feeding habits, life histories, and physiology can result in syntopic aquatic taxa of similar trophic position bioaccumulating trace elements in vastly different patterns. We compared bioaccumulation in a clam, Corbicula fluminea and mayfly nymph Maccaffertium modestum from a coal combustion waste contaminated stream. Collection sites differed in distance to contaminant sources, incision, floodplain activity, and sources of flood event water and organic matter. Contaminants variably accumulated in both sediment and biofilm. Bioaccumulation differed between species and sites with C. fluminea accumulating higher concentrations of Hg, Cs, Sr, Se, As, Be, and Cu, but M. modestum higher Pb and V. Stable isotope analyses suggested both spatial and taxonomic differences in resource use with greater variability and overlap between species in the more physically disturbed site. The complex but essential interactions between organismal biology, divergence in resource use, and bioaccumulation as related to stream habitat requires further studies essential to understand impacts of metal pollution on stream systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs

    SciTech Connect

    Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

    2009-01-07

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine

  16. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect

    Wilson, K. L.

    1997-08-01

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  17. PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS

    EPA Science Inventory

    Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...

  18. PROCESS SIMULATION TOOLS FOR POLLUTION PREVENTION: NEW METHODS REDUCE THE MAGNITUDE OF WASTE STREAMS

    EPA Science Inventory

    Growing environmental concerns have spurred considerable interest in pollution prevention. In most instances, pollution prevention involves introducing radical changes to the design of processes so that waste generation is minimized. Process simulators can be effective tools in a...

  19. Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts.

    PubMed

    Silva, Veronica; Loredo, Jorge; Fernández-Martínez, Rodolfo; Larios, Raquel; Ordóñez, Almudena; Gómez, Belén; Rucandio, Isabel

    2014-10-01

    Tailings from abandoned mercury mines represent an important pollution source by metals and metalloids. Mercury mining in Asturias (north-western Spain) has been carried out since Roman times until the 1970s. Specific and non-specific arsenic minerals are present in the paragenesis of the Hg ore deposit. As a result of intensive mining operations, waste materials contain high concentrations of As, which can be geochemically dispersed throughout surrounding areas. Arsenic accumulation, mobility and availability in soils and sediments are strongly affected by the association of As with solid phases and granular size composition. The objective of this study was to examine phase associations of As in the fine grain size subsamples of mine wastes (La Soterraña mine site) and stream sediments heavily affected by acid mine drainage (Los Rueldos mine site). An arsenic-selective sequential procedure, which categorizes As content into seven phase associations, was applied. In spite of a higher As accumulation in the finest particle-size subsamples, As fractionation did not seem to depend on grain size since similar distribution profiles were obtained for the studied granulometric fractions. The presence of As was relatively low in the most mobile forms in both sites. As was predominantly linked to short-range ordered Fe oxyhydroxides, coprecipitated with Fe and partially with Al oxyhydroxides and associated with structural material in mine waste samples. As incorporated into short-range ordered Fe oxyhydroxides was the predominant fraction at sediment samples, representing more than 80% of total As.

  20. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  1. Development of a processing and treatment solution for a thoria waste stream

    SciTech Connect

    Anderson, Andy; Mitchell, Charles; Jenkins, Jon; Simmons, Richard

    2007-07-01

    Waste Management Technology Ltd (WMT) has developed the optimal process for immobilizing a solid waste contaminated with thorium dioxide (thoria). The physical and chemical characteristics of the waste present challenges to producing a wasteform acceptable for disposal. Also, high-energy radiation from thorium's decay progeny requires a treatment plant with shielding and remote handling facilities. Key points of the paper are as follows. 1. Treatment options were investigated and the best practicable means identified as intimate mixing of the waste with cementitious grout. 2. Samples were analysed for particle size and organic contamination. 3. Small-scale active mixes resulted in a single treatment formulation for all the waste. Leach tests confirmed that the organic material is adequately retained within the immobilised waste provided activated carbon is included in the formulation. 4. Active mixes at the two litre scale confirmed that the formulation is mixable and the product acceptable and consistent with expectations from the earlier work. 5. WMT is constructing a treatment plant at its Winfrith site, based on remote grouting in a 200 litre drum with a sacrificial mixer. Inactive full-scale trials with such 200 litre drums were carried out after selection of simulants with the appropriate physical properties. (authors)

  2. THOREX processing and zeolite transfer for high-level waste stream processing blending

    SciTech Connect

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services` (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility.

  3. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    SciTech Connect

    Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the

  4. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  5. Photocatalytic oxidation of gas-phase BTEX-contaminated waste streams

    SciTech Connect

    Gratson, D A; Nimlos, M R; Wolfrum, E J

    1995-03-01

    Researchers at the National Renewable Energy Laboratory (NREL) have been exploring heterogeneous photocatalytic oxidation (PCO) as a remediation technology for air streams contaminated with benzene, toluene, ethyl-benzene, and xylenes (BTEX). This research is a continuation of work performed on chlorinated organics. The photocatalytic oxidation of BTEX has been studied in the aqueous phase, however, a study by Turchi et al. showed a more economical system would involve stripping organic contaminants from the aqueous phase and treating the resulting gas stream. Another recent study by Turchi et al. indicated that PCO is cost competitive with such remediation technologies as activated carbon adsorption and catalytic incineration for some types of contaminated air streams. In this work we have examined the photocatalytic oxidation of benzene using ozone (0{sub 3}) as an additional oxidant. We varied the residence time in the PCO reactor, the initial concentration of the organic pollutant, and the initial ozone concentration in a single-pass reactor. Because aromatic hydrocarbons represent only a small fraction of the total hydrocarbons present in gasoline and other fuels, we also added octane to the reaction mixture to simulate the composition of air streams produced from soil-vapor-extraction or groundwater-stripping of sites contaminated with gasoline.

  6. BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...

  7. BIOGEOCHEMICAL INDICATORS OF ORGANIC WASTE CONTAMINATION IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    We monitored concentrations of nitrous oxide, methane, carbon dioxide, nutrients and other parameters (T, conductivity, dissolved oxygen, alkalinity, pH, DOC, DON, flow rate) in 17 headwater streams (watershed sizes from 0.5 to 3.4 km2) of the South Fork Broad River, Georgia wate...

  8. Review of treatment for hazardous-waste streams (Chapter 21). Book chapter

    SciTech Connect

    Grosse, D.W.

    1991-01-01

    The publication will examine some of the practices being used or considered for use at on-site or commercial hazardous waste treatment, storage and disposal facilities (TSDF). Options for managing hazardous wastes containing heavy metals and/or cyanide compounds involve conventional treatment processes, recycle/reuse applications and waste minimization. Some of the technologies to be reviewed in this section include: precipitation applications such as hydroxide (e.g. lime, magnesium and iron oxyhydroxide), sulfide and carbonate systems; reduction techniques employing chromium, mercury and selenium reducing agents; adsorption/selection techniques using activated carbon ion exchange and hydrous solids; stabilization/fixation with discussion on applications, interferences and landfill design; cyanide destruction, including chemical oxidation (e.g. alkaline chlorination, ozonation/photolysis), electrolytic decompostion and incineration; and pollution prevention measures such as source reduction, recycling and reuse. Each of these options will be described in terms of effectiveness of treatment in removing the hazardous constituents of interest and characterization of the generated treatment residuals or in the case of waste minimization practices, the degree to which the constituents of concern are eliminated at the point of waste generation.

  9. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  10. High-Priority Directions of Modernization of University Education in Innovational Society

    ERIC Educational Resources Information Center

    Sergeev, Nikolai

    2017-01-01

    Purpose: The purpose of this paper is to verify the offered hypothesis and to determine high-priority directions of modernization of university education in an innovational society by the example of modern Russia. Design/methodology/approach: During the empirical study of connection between university education and innovational development of…

  11. Water quality monitoring for high-priority water bodies in the Sonoran Desert network

    Treesearch

    Terry W. Sprouse; Robert M. Emanuel; Sara A. Strorrer

    2005-01-01

    This paper describes a network monitoring program for “high priority” water bodies in the Sonoran Desert Network of the National Park Service. Protocols were developed for monitoring selected waters for ten of the eleven parks in the Network. Park and network staff assisted in identifying potential locations of testing sites, local priorities, and how water quality...

  12. State Strategies to Improve Low-Performing Schools: California's High Priority Schools Grant Program

    ERIC Educational Resources Information Center

    Timar, Thomas B.; Chyu, Kris Kim

    2010-01-01

    Background: School accountability policies and high-stakes testing have created new demands on state policy makers to provide assistance to low-performing schools. California's response was the Immediate Intervention/Underperforming Schools Program (II/USP) and the High Priority School Grants Program (HPSGP). Objective/Research Question/Focus of…

  13. State Strategies to Improve Low-Performing Schools: California's High Priority School Grants Program

    ERIC Educational Resources Information Center

    Timar, Thomas; Rodriguez, Gloria; Simon, Virginia Adams; Ferrario, Kim; Kim, Kris

    2006-01-01

    Central to California's school accountability system are programs to engage low-performing schools in improvement efforts. One of these is the High Priority Schools Program (HPSGP), created by Assembly Bill 961 (Chapter 747, "Statutes of 2001") to provide funds to the lowest performing schools in the state. To be eligible for funding,…

  14. High-Priority Directions of Modernization of University Education in Innovational Society

    ERIC Educational Resources Information Center

    Sergeev, Nikolai

    2017-01-01

    Purpose: The purpose of this paper is to verify the offered hypothesis and to determine high-priority directions of modernization of university education in an innovational society by the example of modern Russia. Design/methodology/approach: During the empirical study of connection between university education and innovational development of…

  15. Assessment of the Regenerative Potential of Organic Waste Streams in Lagos Mega-City

    NASA Astrophysics Data System (ADS)

    Opejin, Adenike Kafayat

    There is never a better time for this study than now when Nigeria as a country is going through the worst time in power supply. In Lagos city about 12,000 tons of waste is generated daily, and is expected to increase as the city adds more population. The management of these waste has generated great concern among professionals, academia and government agencies. This study examined the regenerative management of organic waste, which accounts for about 45% of the total waste generated in Lagos. To do this, two management scenarios were developed: landfill methane to electricity and compost; and analyzed using data collected during field work and from government reports. While it is understood that landfilling waste is the least sustainable option, this study argued that it could be a viable method for developing countries. Using U.S EPA LandGEM and the IPCC model, estimates of capturable landfill methane gas was derived for three landfills studied. Furthermore, a 35-year projection of waste and landfill methane was done for three newly proposed landfills. Assumptions were made that these new landfills will be sanitary. It was established that an average of 919,480,928m3 methane gas could be captured to generate an average of 9,687,176 MW of electricity annually. This makes it a significant source of power supply to a city that suffers from incessant power outages. Analysis of composting organics in Lagos was also done using descriptive method. Although, it could be argued that composting is the most regenerative way of managing organics, but it has some problems associated with it. Earthcare Compost Company processes an average of 600 tons of organics on a daily basis. The fraction of waste processed is infinitesimal compared to the rate of waste generated. One major issue identified in this study as an obstacle to extensive use of this method is the marketability of compost. The study therefore suggests that government should focus on getting the best out of the

  16. Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls

    USDA-ARS?s Scientific Manuscript database

    The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...

  17. Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger.

    PubMed

    Valsala, T P; Roy, S C; J G Shah; Gabriel, J; Raj, Kanwar; Venugopal, V

    2009-07-30

    The volumes of low level waste (LLW) generated during the operation of nuclear reactor are very high and require a concentration step before suitable matrix fixation. The volume reduction (concentration) is achieved either by co-precipitating technique or by the use of highly selective sorbents and ion exchange materials. The present study details the preparation of cobalt ferrocyanide impregnated into anion exchange resin and its evaluation with respect to removal of Cs in LLW streams both in column mode and batch mode operations. The Kd values of the prepared exchanger materials were found to be very good in actual reactor LLW solutions also. It was observed that the exchanger performed very well in the pH range of 3-9. A batch size of 6 g l(-1) of the exchanger was enough to give satisfactory decontamination for Cs in actual reactor LLW streams. The lab scale and pilot plant scale performance of the exchanger material in both batch mode and column mode operations was very good.

  18. Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities.

    PubMed

    Lin, Angela Yu-Chen; Tsai, Yu-Ting

    2009-06-01

    We investigated the occurrence and distribution of pharmaceuticals (including antibiotics, estrogens, non-steroidal anti-inflammatory drugs (NSAIDs), beta-blockers, and lipid regulators) in three rivers and in the waste streams of six hospitals and four pharmaceutical production facilities in Taiwan. The most frequently detected pharmaceuticals were acetaminophen, erythromycin-H(2)O, sulfamethoxazole, and gemfibrozil. NSAIDs were the next most-often detected compounds, with a detection frequency >60%. The other analytes were not detected or were seen in only a few samples at trace concentrations. The present study demonstrates a significant discharge of human medications from hospital and drug production facilities into surface waters in the Taipei district. The high concentrations of pharmaceuticals found in the Sindian and Dahan rivers demonstrate the alarming degree to which they have been impacted by urban drainage (waste effluents from hospitals, households, and pharmaceutical production facilities). The ubiquitous occurrence at extremely high concentrations of acetaminophen and erythromycin-H(2)O in both rivers (up to 15.7 and 75.5 microg/L) and in wastewater from hospitals and pharmaceutical production facilities (up to 417.5 and 7.84 microg/L) was unique. This finding, in combination with acetaminophen's status as the drug most often prescribed by Taiwan's dominant clinical institute, suggests the potential use of acetaminophen as a molecular indicator of contamination of Taiwan's aqueous environments with untreated urban drainage.

  19. Recovering Americium and Curium from Mark-42 Target Materials- New Processing Approaches to Enhance Separations and Integrate Waste Stream Disposition - 12228

    SciTech Connect

    Patton, Brad D.; Benker, Dennis; Collins, Emory D.; Mattus, Catherine H.; Robinson, Sharon M.; Wham, Robert M.

    2012-07-01

    Oak Ridge National Laboratory (ORNL) is investigating flowsheets to enhance processing efficiencies and to address waste streams associated with recovery of americium (Am) and curium (Cm) from Mark-42 (Mk-42) target materials stored at ORNL. The objective of this work was to identify the most effective flowsheet with which to process the 104 Mk-42 oxide capsules holding a total of 80 g of plutonium (Pu), 190 g of Cm, 480 g of Am, and 5 kg of lanthanide (Ln) oxides for the recovery and purification of the Am/Cm for future use as feedstock for heavy actinide production. Studies were also conducted to solidify the process flowsheet waste streams for disposal. ORNL is investigating flowsheets to enhance processing efficiencies and address waste streams associated with recovery of Am and Cm from Mk-42 target materials stored at ORNL. A series of small-scale runs are being performed to demonstrate an improved process to recover Am/Cm and to optimize the separations of Ln fission products from the Am/Cm constituents. The first of these runs has been completed using one of the Am/Cm/Ln oxide capsules stored at ORNL. The demonstration run showed promising results with a Ln DF of 40 for the Am/Cm product and an Am/Cm DF of 75 for the Ln product. In addition, the total losses of Am, Cm, and Ln to the waste solvents and raffinates were very low at <0.2%, 0.02%, and 0.04%, respectively. However, the Ln-actinide separation was less than desired. For future Reverse TALSPEAK demonstration runs, several parameters will be adjusted (flow rates, the ratio of scrub to strip stages, etc.) to improve the removal of Ln from the actinides. The next step will also include scale-up of the processing flowsheet to use more concentrated solutions (15 g/L Ln versus 5 g/L) and larger volumes and to recycle the HDEHP solvent. This should improve the overall processing efficiency and further reduce losses to waste streams. Studies have been performed with simulated wastes to develop solidification

  20. Evaluation of different solvent extraction methods for removing actinides from high acid waste streams

    SciTech Connect

    Yarbro, S.L.; Schreiber, S.B.; Dunn, S.L. ); Rogers, J. )

    1991-01-01

    At the Los Alamos National Laboratory Plutonium Facility, anion exchange is used to recover plutonium from nitric acid solutions. Although this approach recovers >99%, trace amounts of plutonium and other actinides remain the effluent and require additional processing. Currently, a ferric hydroxide carrier precipitation is used to remove the trace actinides and the resulting sludge is cemented. Because it costs approximately $10,000 per drum for disposal, we are developing an additional polishing step so that the effluent actinide levels are reduced to below 100 nCi/g. This would allow the resulting waste sludge to disposed as low-level waste at approximately $200 per drum. We are investigating various solvent extraction techniques for removing actinides. The most promising are chelating resins and membrane-based liquid-liquid solvent extraction. This report details some of our preliminary results. 4 refs., 3 tabs.

  1. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    SciTech Connect

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter, the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.

  2. Catalytic methods using molecular oxygen for treatment of PMMS and ECLSS waste streams, volume 2

    NASA Technical Reports Server (NTRS)

    Akse, James R.

    1992-01-01

    Catalytic oxidation has proven to be an effective addition to the baseline sorption, ion exchange water reclamation technology which will be used on Space Station Freedom (SSF). Low molecular weight, polar organics such as alcohols, aldehydes, ketones, amides, and thiocarbamides which are poorly removed by the baseline multifiltration (MF) technology can be oxidized to carbon dioxide at low temperature (121 C). The catalytic oxidation process by itself can reduce the Total Organic Carbon (TOC) to below 500 ppb for solutions designed to model these waste waters. Individual challenges by selected contaminants have shown only moderate selectivity towards particular organic species. The combined technology is applicable to the more complex waste water generated in the Process Materials Management System (PMMS) and Environmental Control and Life Support System (ECLSS) aboard SSF. During the phase 3 Core Module Integrated Facility (CMIF) water recovery tests at NASA MSFC, real hygiene waste water and humidity condensate were processed to meet potable specifications by the combined technology. A kinetic study of catalytic oxidation demonstrates that the Langmuir-Hinshelwood rate equation for heterogeneous catalysts accurately represent the kinetic behavior. From this relationship, activation energy and rate constants for acetone were determined.

  3. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    SciTech Connect

    Fernandez, Jose M.; Plaza, Cesar; Polo, Alfredo; Plante, Alain F.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC

  4. Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams.

    PubMed

    Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz

    2016-04-01

    Heavy metals from industrial processes are of special concern because they produce chronic poisoning in the aquatic environment. More strict environmental regulations on the discharge of toxic metals require the development of various technologies for their removal from polluted streams (i.e. industrial wastewater, mine waters, landfill leachate, and groundwater). The separation of toxic metal ions using immobilized materials (novel sorbents and membranes with doped ligands), due to their high selectivity and removal efficiency, increased stability, and low energy requirements, is promising for improving the environmental quality. This critical review is aimed at studying immobilized materials as potential remediation agents for the elimination of numerous toxic metal (e.g. Pb, Cd, Hg, and As) ions from polluted streams. This study covers the general characteristics of immobilized materials and separation processes, understanding of the metal ion removal mechanisms, a review of the application of immobilized materials for the removal of toxic metal ions, as well as the impacts of various parameters on the removal efficiency. In addition, emerging trends and opportunities in the field of remediation technologies using these materials are addressed.

  5. Money Laundering in China: Why PACOM Should Place High Priority on this Issue

    DTIC Science & Technology

    2012-10-06

    tx_ttnews%5Btt_news%5D=39422 Accessed on 22Sep12. 8 Leland Vittert, “Lawsuit Alleging Bank of China Laundered Terrorists’ Money Moves Forward...McCusker, “Underground Banking : Legitimate Remittance Network or Money Laundering System?”, Trends and Issues in Crime and Criminal Justice...FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Money Laundering in China: Why PACOM Should Place High Priority on this Issue

  6. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect

    Betts, Stephen Ellsworth

    1993-05-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  7. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    SciTech Connect

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200°C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ~93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200°C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 g/cm3 and contained ~39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  8. Silica-based waste form for immobilization of iodine from reprocessing plant off-gas streams

    NASA Astrophysics Data System (ADS)

    Matyáš, Josef; Canfield, Nathan; Sulaiman, Sannoh; Zumhoff, Mac

    2016-08-01

    A high selectivity and sorption capacity for iodine and a feasible consolidation to a durable SiO2-based waste form makes silver-functionalized silica aerogel (Ag0-aerogel) an attractive choice for the removal and sequestration of iodine compounds from the off-gas of a nuclear fuel reprocessing plant. Hot uniaxial pressing of iodine-loaded Ag0-aerogel (20.2 mass% iodine) at 1200 °C for 30 min under 29 MPa pressure provided a partially sintered product with residual open porosity of 16.9% that retained ∼93% of sorbed iodine. Highly iodine-loaded Ag0-aerogel was successfully consolidated by hot isostatic pressing at 1200 °C with a 30-min hold and under 207 MPa. The fully densified waste form had a bulk density of 3.3 × 103 kg/m3 and contained ∼39 mass% iodine. The iodine was retained in the form of nano- and micro-particles of AgI that were uniformly distributed inside and along boundaries of fused silica grains.

  9. The hypocholesterolemic effect of lemon peels, lemon pectin, and the waste stream material of lemon peels in hybrid F1B hamsters.

    PubMed

    Terpstra, A H M; Lapré, J A; de Vries, H T; Beynen, A C

    2002-02-01

    We found in preliminary studies with hamsters that citrus peels have a cholesterol lowering effect comparable to that of pectin extracted from these peels. We wanted to examine whether the cholesterol lowering effect of the peels could be completely accounted for by the pectin in the peels. We fed cholesterol enriched (0.1 %,w/w) semipurified diets containing 3% (w/w) of cellulose, lemon peels, lemon pectin, and the waste stream material of the lemon peels to hybrid F1B hamsters for a period of 8 weeks. The waste stream of the lemon peels is the left over after extraction of the lemon pectin. Feeding the semipurified diets resulted in an increase of plasma cholesterol levels in all the dietary groups after 2 and 4 weeks on the diets. Cholesterol concentrations in the cellulose fed hamsters continued to increase after 4 weeks on the diet, whereas cholesterol levels in the other groups had reached a plateau. As a consequence, the plasma cholesterol levels in the hamsters fed the peels (5.59 +/- 0.74 mmol/L, mean +/- SD, n = 14), pectin (5.19 +/- 0.48 mmol/L), or waste stream (5.53 +/- 0.94 mmol/L) were lower than those in the hamsters fed cellulose (6.71 +/- 1.52 mmol/L) after 8 weeks on the diets. Differences in total plasma cholesterol were reflected in differences in both VLDL and LDL cholesterol concentration, but this effect was more distinct for the VLDL. There was no effect of the type of fiber on HDL cholesterol levels. Liver cholesterol concentrations paralleled. the concentrations of plasma cholesterol and the liver cholesterol concentrations in the hamsters fed the peels (3.57+/- 1.01 micromol/g liver, mean +/- SD, n = 14), pectin (4.86 +/- 1.42), and the waste stream (4.96 +/- 1.89) were lower than those in the cellulose group (7.19 +/- 2.32). The hamsters fed the peels, pectin, or waste stream tended to have a higher excretion of fecal bile acids and neutral sterols then the cellulose fed hamsters. The results of this study suggest that lemon peels and

  10. Formulation of fermentation media from flour-rich waste streams for microbial lipid production by Lipomyces starkeyi.

    PubMed

    Tsakona, Sofia; Kopsahelis, Nikolaos; Chatzifragkou, Afroditi; Papanikolaou, Seraphim; Kookos, Ioannis K; Koutinas, Apostolis A

    2014-11-10

    Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90% (w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitrogen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WAST STREAMS

    SciTech Connect

    Robert C. Brown

    2003-10-01

    The corrosion behavior of two coagulants used in water treatment, ferric chloride (FC) and polymeric ferric sulfate (PFS) prepared from SO{sub 2} was investigated. Corrosion tests were performed to compare the corrosivity of these two coagulants on aluminum 6061 and steel 4140 specimens. Results showed that both temperature and concentration of the coagulants substantially impact corrosion rates. The corrosion rates increased with the increase of temperature and concentration. The results from a scanning electron microscope (SEM) showed that chloride caused more serious pitting than sulfate anion on both aluminum and steel specimens. Although SEM confirmed the existence of pitting corrosion, the results of weight loss indicated that the uniform corrosion predominate the corrosion mechanism, and pitting corrosion played a less important role. The test proved that PFS was less corrosive than FC, which may lead to the large-scale application of PFS in waste treatment in the near future.

  12. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  13. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  14. Energy Efficient Removal of Volatile Organic Compounds (VOCs) and Organic Hazardous Air Pollutants (o-HAPs) from Industrial Waste Streams by Direct Electron Oxidation

    SciTech Connect

    Testoni, A. L.

    2011-10-19

    This research program investigated and quantified the capability of direct electron beam destruction of volatile organic compounds and organic hazardous air pollutants in model industrial waste streams and calculated the energy savings that would be realized by the widespread adoption of the technology over traditional pollution control methods. Specifically, this research determined the quantity of electron beam dose required to remove 19 of the most important non-halogenated air pollutants from waste streams and constructed a technical and economic model for the implementation of the technology in key industries including petroleum refining, organic & solvent chemical production, food & beverage production, and forest & paper products manufacturing. Energy savings of 75 - 90% and green house gas reductions of 66 - 95% were calculated for the target market segments.

  15. Recovery of fine coal from waste streams using advanced column flotation. Annual report, September 1, 1990--August 31, 1991

    SciTech Connect

    Groppo, J.G.

    1991-12-31

    The advanced flotation techniques, namely column flotation, have shown potential in obtaining a low ash, low pyritic sulfur fine size clean coal. The overall objective of this program is to evaluate applicability of an advanced flotation technique, `Ken-Flote` column to recover clean coal with minimum mineral matter content at greater than 90 percent combustible recovery from two Illinois preparation plant waste streams. Column flotations tests were conducted on the flotation feed obtained from the Kerr-McGee Galatia and Ziegler No. 26 plants using three different bubble-generating devices: sparger, gas saver and foam jet. Each of these devices was tested with three different frothers and various column-operating variable to provide maximum combustible recovery, minimum product ash and maximum pyrite rejection. For the Galatia slurry, the column provided a clean coal containing 5 percent ash, 0.48 percent pyritic sulfur at combustible recovery averaging 90 percent. In other words, about 90 percent ash and about 75 percent pyritic sulfur rejection were attained for the Galatia slurry. Pilot plant studies on this slurry basically obtained results similar to the laboratory studies. For the Ziegler No. 26, slurry column flotation provided a clean coal containing about 5 percent ash, 0.44 percent pyritic sulfur at more than 90 percent combustible recovery. The ash and pyrite sulfur rejection was about 85 percent and 65 percent, respectively.

  16. Variation in trace-element accumulation in predatory fishes from a stream contaminated by coal combustion waste.

    PubMed

    Fletcher, Dean E; Lindell, Angela H; Stillings, Garrett K; Mills, Gary L; Blas, Susan A; McArthur, J Vaun

    2014-04-01

    Extensive and critical evaluation can be required to assess contaminant bioaccumulation in large predatory fishes. Species differences in habitat use, resource use, and trophic level, often influenced by body form, can result in diverging contaminant bioaccumulation patterns. Moreover, the broad size ranges inherent with large-bodied fish provide opportunity for trophic and habitat shifts within species that can further influence contaminant exposure. We compared contaminant bioaccumulation in four fish species, as well as two herbivorous invertebrates, from a coal combustion waste contaminated stream. Muscle, liver, and gonad tissue were analyzed from fish stratified across the broadest size ranges available. Effects of trophic position (δ (15)N), carbon sources (δ (13)C), and body size varied among and within species. Mercury and cesium concentrations were lowest in the invertebrates and increased with trophic level both among and within fish species. Other elements, such as vanadium, cadmium, barium, nickel, and lead, had greater levels in herbivorous invertebrates than in fish muscle. Sequestration by the fish livers averted accumulation in muscle. Consequently, fish liver tissue appeared to be a more sensitive indicator of bioavailability, but exceptions existed. Despite liver sequestration, within fishes, muscle concentrations of many elements still tended to increase by trophic level. Notable variation within some species was observed. These results illustrate the utility of stable isotope data in exploring differences of bioaccumulation within taxa. Our analyses suggest a need for further evaluation of the underlying sources of this variability to better understand contaminant bioaccumulation in large predatory fishes.

  17. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    PubMed

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  18. Valorisation to biogas of macroalgal waste streams: a circular approach to bioproducts and bioenergy in Ireland.

    PubMed

    Tedesco, Silvia; Stokes, Joseph

    2017-01-01

    Seaweeds (macroalgae) have been recently attracting more and more interest as a third generation feedstock for bioenergy and biofuels. However, several barriers impede the deployment of competitive seaweed-based energy. The high cost associated to seaweed farming and harvesting, as well as their seasonal availability and biochemical composition currently make macroalgae exploitation too expensive for energy production only. Recent studies have indicated a possible solution to aforementioned challenges may lay in seaweed integrated biorefinery, in which a bioenergy and/or biofuel production step ends an extractions cascade of high-value bioproducts. This results in the double benefit of producing renewable energy while adopting a zero waste approach, as fostered by recent EU societal challenges within the context of the Circular Economy development. This study investigates the biogas potential of residues from six indigenous Irish seaweed species while discussing related issues experienced during fermentation. It was found that Laminaria and Fucus spp. are the most promising seaweed species for biogas production following biorefinery extractions producing 187-195 mL CH4 gVS(-1) and about 100 mL CH4 gVS(-1) , respectively, exhibiting overall actual yields close to raw un-extracted seaweed.

  19. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  20. SYNTHESIS OF SULFUR-BASED WATER TREATMENT AGENT FROM SULFUR DIOXIDE WASTE STREAMS

    SciTech Connect

    Robert C. Brown; Maohong Fan; Adrienne Cooper

    2004-11-01

    Absorption of sulfur dioxide from a simulated flue gas was investigated for the production of polymeric ferric sulfate (PFS), a highly effective coagulant useful in treatment of drinking water and wastewater. The reaction for PFS synthesis took place near atmospheric pressure and at temperatures of 30-80 C. SO{sub 2} removal efficiencies greater than 90% were achieved, with ferrous iron concentrations in the product less than 0.1%. A factorial analysis of the effect of temperature, oxidant dosage, SO{sub 2} concentration, and gas flow rate on SO{sub 2} removal efficiency was carried out, and statistical analyses are conducted. The solid PFS was also characterized with different methods. Characterization results have shown that PFS possesses both crystalline and non-crystalline structure. The kinetics of reactions among FeSO{sub 4} {center_dot} 7H{sub 2}O, NaHSO{sub 3} and NaClO{sub 3} was investigated. Characterizations of dry PFS synthesized from SO{sub 2} show the PFS possesses amorphous structure, which is desired for it to be a good coagulant in water and wastewater treatment. A series of lab-scale experiments were conducted to evaluate the performance of PFS synthesized from waste sulfur dioxide, ferrous sulfate and sodium chlorate. The performance assessments were based on the comparison of PFS and other conventional and new coagulants for the removal of turbidity and arsenic under different laboratory coagulant conditions. Pilot plant studies were conducted at Des Moines Water Works in Iowa and at the City of Savannah Industrial and Domestic (I&D) Water Treatment Plant in Port Wentworth, Georgia. PFS performances were compared with those of conventional coagulants. The tests in both water treatment plants have shown that PFS is, in general, comparable or better than other coagulants in removal of turbidity and organic substances. The corrosion behavior of polymeric ferric sulfate (PFS) prepared from SO{sub 2} and ferric chloride (FC) were compared. Results

  1. Biochar soil amendment for waste-stream diversion, nutrient holding capacity, and carbon sequestration in two contrasting soils

    NASA Astrophysics Data System (ADS)

    Deem, L. M.; Crow, S. E.; Deenik, J. L.; Penton, C. R.; Yanagida, J.

    2013-12-01

    tillage and ratoon (no-till) harvest. We expect that the physical soil differences due to tillage versus no-tillage with vegetative regrowth on the biochar-amended soil will increase the diversity of soil microbial community structure, potential for C sequestration, and overall valuation of biochar as a soil amendment for factors such as waste-stream diversion, nutrient holding capacity, and C sequestration in addition to crop yield and GHG flux. These different treatments paired with intensive biochar characterization will aid in identifying how specific biochar properties translate to soil quality changes and increase the ability to target specific soil deficiencies with a tailored biochar for maximum holistic benefits.

  2. Solid radioactive waste management facility design for managing CANDU{sup R} 600 MW nuclear generating station re-tube/refurbishment Waste Streams

    SciTech Connect

    Pontikakis, N.; Hopkins, J.; Scott, D.; Bajaj, V.; Nosella, L.

    2007-07-01

    The main design features of the re-tube canisters, waste handling equipment and waste containers designed by Atomic Energy of Canada Limited (AECL{sup R}) and implemented in support of the re-tube/refurbishment activities for Candu 600 MW nuclear generating stations are described in this paper. The re-tube/refurbishment waste characterization and the waste management principles, which form the basis of the design activities, are also briefly outlined. (authors)

  3. Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-Priority Pathogen Reagents

    PubMed Central

    Wilson, Michael R.; Stenglein, Mark D.; Olejnik, Judith; Rennick, Linda J.; Nambulli, Sham; Feldmann, Friederike; Duprex, W. Paul

    2016-01-01

    ABSTRACT Laboratories studying high-priority pathogens need comprehensive methods to confirm microbial species and strains while also detecting contamination. Metagenomic deep sequencing (MDS) inventories nucleic acids present in laboratory stocks, providing an unbiased assessment of pathogen identity, the extent of genomic variation, and the presence of contaminants. Double-stranded cDNA MDS libraries were constructed from RNA extracted from in vitro-passaged stocks of six viruses (La Crosse virus, Ebola virus, canine distemper virus, measles virus, human respiratory syncytial virus, and vesicular stomatitis virus). Each library was dual indexed and pooled for sequencing. A custom bioinformatics pipeline determined the organisms present in each sample in a blinded fashion. Single nucleotide variant (SNV) analysis identified viral isolates. We confirmed that (i) each sample contained the expected microbe, (ii) dual indexing of the samples minimized false assignments of individual sequences, (iii) multiple viral and bacterial contaminants were present, and (iv) SNV analysis of the viral genomes allowed precise identification of the viral isolates. MDS can be multiplexed to allow simultaneous and unbiased interrogation of mixed microbial cultures and (i) confirm pathogen identity, (ii) characterize the extent of genomic variation, (iii) confirm the cell line used for virus propagation, and (iv) assess for contaminating microbes. These assessments ensure the true composition of these high-priority reagents and generate a comprehensive database of microbial genomes studied in each facility. MDS can serve as an integral part of a pathogen-tracking program which in turn will enhance sample security and increase experimental rigor and precision. IMPORTANCE Both the integrity and reproducibility of experiments using select agents depend in large part on unbiased validation to ensure the correct identity and purity of the species in question. Metagenomic deep sequencing

  4. Algal Nitrate Assimilation and Productivity in an Urban, Concrete-Lined Stream Dominated by Tertiary Treated Municipal Waste-Water

    NASA Astrophysics Data System (ADS)

    Kent, R. H.; Burton, C. A.

    2001-12-01

    This study examined the extent and variabiltity of nitrate loss in a 2.85 km reach of Cucamonga Creek, which is concrete-lined and dominated by treated municipal waste-water. Primary production was measured to determine if the loss could be attributed to algal assimilation. Samples for nitrite plus nitrate analysis were collected at the top and bottom of the study reach every hour throughout the 24-hour sampling period; samples for analyses of other parameters were collected less frequently. Water temperature, dissolved oxygen (DO), pH and specific conductance were monitored continuously throughout the sampling period using in-stream probes. During the two weeks prior to the study, periphyton samples were collected periodically at four stations along the reach for standing crop measurements and a growth rate time-series using Chlorophyll A and ash-free-dry mass. Water samples from the upstream station were compared to those taken an hour later (the approximate travel time) at the downstream station. Nitrate concentrations were lower at the downstream station in 21 of 25 of the paired samples, indicating nearly continuous loss in the reach. The total loss of NO3 for the day was about 0.71 g as N/m2. Most of the loss occurred during daylight hours, with the peak occurring at midday. During the night, CO2 concentrations were relatively constant at about 25 mg/L. Concentrations began to decline at sunrise, and declined to 0 mg/L at the lower site after midday. Peak nitrate loss occurred at about the same time as the CO2 concentration was at its minimum. DO declined slightly during the night, began to rise at sunrise, reached a peak during midday, and declined in late afternoon through evening; pH followed a similar pattern. Net primary productivity, as measured by the differences in DO between the two sites was 13 g O2/m2 for the day. Using the Redfield ratio, the predicted nitrate assimilation is about 0.66 g NO3 as N/m2. The continuous loss of nitrate between the two

  5. Proposal for optimizing a biological treatment system for denitrification of Y-12 waste stream. Final report, March 16, 1987--September 15, 1987

    SciTech Connect

    McKinstry, G.; Osborne, T.; King, A.; Tolman, C.

    1987-12-31

    Over the past 6 months quite a bit of information was gathered on the denitrification of plating rinse waste by microorganisms present in Y-12 process tanks. Work efforts under the contract assigned to us by Martin Marietta Y-12 engineers was perceived by Oak Ridge Research Institute (ORRI) as being a successful undertaking, completed on time as targeted by three milestone progress reports and a final summary report. The following suggestions were made for improving their rates of denitrification in their waste stream process tanks: (1) Substitute succinate for acetate as C-source. (2) Temperature controls on the process tanks to maintain them at 35--39C; and (3) Three-stage seed of their dentrification process.

  6. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    SciTech Connect

    Anast, Kurt Roy; Funk, David John

    2016-05-12

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers, and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.

  7. Inventory of miscellaneous streams

    SciTech Connect

    Haggard, R.D.

    1998-08-14

    Miscellaneous streams discharging to the soil column on the Hanford Site are subject to requirements of several milestones identified in Consent Order No. DE 9INM-177 (Ecology and DOE 1991). The Plan and Schedule for Disposition and Regulatory Compliance for Miscellaneous Stream (DOE/RL-93-94) provides a plan and schedule for the disposition of miscellaneous streams to satisfy one of the Section 6.0 requirements of the Consent Order. One of the commitments (Activity 6-2.2) established in the plan and schedule is to annually update, the miscellaneous streams inventory. This document constitutes the 1998 revision of the miscellaneous streams inventory. Miscellaneous stream discharges were grouped into four permitting categories (Table 1). The first miscellaneous streams Permit (ST 4508) was issued May 30, 1997, to cover wastewater discharges from hydrotesting, maintenance, and construction activities. The second miscellaneous streams Permit (ST4509) covers discharges from cooling water and condensate discharges. The third permit application for category three waste streams was eliminated by recategorizing waste streams into an existing miscellaneous streams permit or eliminating stream discharges. Elimination of the third categorical permit application was approved by Ecology in January 1997 (Ecology 1997). The fourth permit application, to cover storm water, is due to Ecology in September 1998. Table 1 provides a history of the miscellaneous streams permitting activities.

  8. Influence of the contaminated wastes/soils on the geochemical characteristics of the Bodelhão stream waters and sediments from Panasqueira mine area, Portugal

    NASA Astrophysics Data System (ADS)

    Abreu, Maria Manuela; Godinho, Berta; Magalhães, Maria Clara F.; Anjos, Carla; Santos, Erika

    2013-04-01

    Panasqueira is a famous Portuguese tin-tungsten mine operating more or less continuously since the end of the nineteenth century. This mine is located in the Central Iberian Zone, northwest of Castelo Branco, about 35 km from Fundão, being the greatest producer of tungsten in Europe. Panasqueira mine also produces copper and tin. The ore exploitation has caused huge local visual and chemical impact from the large waste tailings, together with water drainage from mine galleries, seepage and effluents from water plant treatment. The objective of this work was to evaluate the influence of the contaminated wastes and soils on the water and sediments characteristics of the Bodelhão stream. This stream crosses the mine area at the bottom of the main tailings, receiving sediments, seepage and drainage waters from wastes and/or soils developed on the waste materials which cover the host rocks (schists), and also from the water treatment plant. Waste materials contain different levels of hazardous chemical elements depending on their age and degree of weathering (mg/kg - As: 466-632; Cd: 2.6-4.2; Cu: 264-457; Zn: 340-456; W: 40-1310). Soils developed on old wastes (60-80 years old) are mainly silty loam, acidic (except one soil (pH 8.2) developed on waste materials covered by leakage mud from a pipe conducting effluent to a pond), with relatively high concentration of organic carbon (median 48.6 g/kg). The majority of soils are heavily contaminated in As (158-7790 mg/kg), Cd (0.6-138 mg/kg), Cu (51-4081 mg/kg), W (19-1450 mg/kg), and Zn (142-12300 mg/kg). The fraction of these elements extracted with DTPA solution, relatively to total concentration, varies from low to As (< 4%) to high, as for Cd (4-76%) or Zn (1.5-60%). Surface waters collected after the water treatment plant are less acidic (pH: 5.6-6.5) than those collected upper stream (pH 4.9) and showed high electric conductivity (up to 1.5 mS/cm), high concentrations of sulfate (618-1030 mg/L), and hazardous

  9. Issues in the shipment and disposal of TRU waste from small stream generators: The case of Battelle Columbus Operations

    SciTech Connect

    Kohli, R.; Pasupathi, V.

    1995-11-01

    The Battelle Hot Cell Facility in Central Ohio is scheduled to be decommissioned in the near future. Past nuclear research activities have left the hot cells and other controlled areas with highly contaminated equipment, as well as extensively contaminated surfaces and residual radioactive materials, including approximately 45 m{sup 3} of stored transuranic (TRU) waste. Because of the high radiation levels of the waste, it must be packaged in shielded containers for shipment and, depending on the final disposal site, repackaged in different containers to meet disposal site acceptance criteria. At present, Battelle does not have authorization to ship the TRU waste off site since no storage or disposal site has been designated to receive the waste. Various options are being considered for disposal of the TRU waste each with different packaging requirements that will have major impacts on the cost and schedule for completion of the decommissioning of the facility. These issues are discussed.

  10. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-04-05

    A process is described for using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 87 figures.

  11. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents, selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  12. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1994-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  13. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, R.J.; Chum, H.L.

    1994-10-25

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent. 83 figs.

  14. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of mixed polymer waste streams to sequentially recover monomers or other high value products

    DOEpatents

    Evans, Robert J.; Chum, Helena L.

    1993-01-01

    A process of using fast pyrolysis in a carrier gas to convert a plastic waste feedstream having a mixed polymeric composition in a manner such that pyrolysis of a given polymer to its high value monomeric constituent occurs prior to pyrolysis of other plastic components therein comprising: selecting a first temperature program range to cause pyrolysis of said given polymer to its high value monomeric constituent prior to a temperature range that causes pyrolysis of other plastic components; selecting a catalyst and support for treating said feed streams with said catalyst to effect acid or base catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said temperature program range; differentially heating said feed stream at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantities of the high value monomeric constituent prior to pyrolysis of other plastic components; separating the high value monomeric constituents; selecting a second higher temperature range to cause pyrolysis of a different high value monomeric constituent of said plastic waste and differentially heating the feedstream at the higher temperature program range to cause pyrolysis of the different high value monomeric constituent; and separating the different high value monomeric constituent.

  15. Recommendations for high-priority research on cancer-related fatigue in children and adults.

    PubMed

    Barsevick, Andrea M; Irwin, Michael R; Hinds, Pamela; Miller, Andrew; Berger, Ann; Jacobsen, Paul; Ancoli-Israel, Sonia; Reeve, Bryce B; Mustian, Karen; O'Mara, Ann; Lai, Jin-Shei; Fisch, Michael; Cella, David

    2013-10-02

    Over the past decades, some scientific progress has been made in understanding and treating cancer-related fatigue (CRF). However, three major problems have limited further progress: lack of agreement about measurement, inadequate understanding of the underlying biology, and problems in the conduct of clinical trials for CRF. This commentary reports the recommendations of a National Cancer Institute Clinical Trials Planning Meeting and an ongoing National Cancer Institute working group to address these problems so that high-priority research and clinical trials can be conducted to advance the science of CRF and its treatment. Recommendations to address measurement issues included revising the current case definition to reflect more rigorous criteria, adopting the Patient Reported Outcomes Measurement Information System fatigue scales as standard measures of CRF, and linking legacy measures to the scales. With regard to the biology of CRF, the group identified the need for longitudinal research to examine biobehavioral mechanisms underlying CRF and testing mechanistic hypotheses within the context of intervention research. To address clinical trial issues, recommendations included using only placebo-controlled trial designs. setting eligibility to minimize sample heterogeneity or enable subgroup analysis, establishing a CRF severity threshold for participation in clinical trials, conducting dissemination trials of efficacious interventions (such as exercise), and combining nonpharmacologic and pharmacologic interventions to exploit the potential synergy between these approaches. Accomplishing these goals has the potential to advance the science of CRF and improve the clinical management of this troubling symptom.

  16. Imaging exoplanets with the WFIRST Coronagraph: A background check of high priority targets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Turnbull, Margaret C.; Gallagher, John S.; Kotulla, Ralf C.; Merrelli, Aronne; L'Ecuyer, Tristan; Hu, Renyu

    2016-01-01

    The WFIRST coronagraph is envisioned to achieve a limiting contrast for exoplanet detection of 10e-9. This revolutionary mission will enable the direct detection of known and newly discovered exoplanets amongst the nearest stars, from super-Earths to giants. However, at this contrast the coronagraph will essentially see a Hubble Ultra Deep Field (HUDF) in every image. For targets near the Galactic Plane on the sky, distant stars with varying levels of extinction and reddening will dominate the background. Away from the plane, we then expect extragalactic sources to dominate. What impact will these background sources have on the WFIRST exoplanet imaging program? How can we efficiently distinguish background sources from exoplanet targets in a single image? To have a comprehensive understanding of the distribution of background sources across the sky, we have used the HUDF to model extragalactic faint sources, and "Trilegal" simulations to model galactic background sources. Through some preliminary color and point source analysis, we offer a statistical estimation of expected background contamination and the probability of false positive background sources. In this poster we show plots relating number of extragalactic sources versus magnitude in HUDF and "Trilegal" simulation. We present a table of high priority WFIRST exoplanet imaging targets, with an assessment of the "background threat" due to background stars, galaxies, and binary companions.

  17. Determination of heavy metal pollution with environmental physicochemical parameters in waste water of Kocabas Stream (Biga, Canakkale, Turkey) by ICP-AES.

    PubMed

    Yayintas, Ozlem Tonguc; Yilmaz, Selahattin; Turkoglu, Muhammet; Dilgin, Yusuf

    2007-04-01

    Waste water pollution of industrial areas can answer for the serious consequences of one of the most important environmental threats to the future. In this study, inductively coupled plasma-atomic emission spectrometry method (ICP-AES) is proposed to determine heavy metals (Pb, Cu, Cd, Cr, Zn, Al, Fe, Ni, Co, Mn) and major elements (Ca, Mg) in waste water of Kocabas Stream. The concentration of metals in the waste water samples taken from 9 different stations (St.) in Biga-Kocabas Stream in November 2004 (autumn period) were determined after simple pretreatment of samples by the proposed ICP-AES method. An analysis of a given sample is completed in about 15 min for ICP-AES the method. The results of heavy metals concentrations in waste water were found between 0.00001-77.69610 mg l(-1) by the ICP-AES technique. The concentrations of Pb, Cd, Cu, Zn, Cr, Al, Fe, Mn, Ni, Co, Mg and Ca 0.00001 (St.3,6,7) - 0.0087 mg l(-1) (St.9), 0.00001 (St.4-7) - 0.0020 mg l(-1) (St.8), 0.00001 (St.1,3-7,9) - 0.0041 mg l(-1) (St.2), 0.0620 (St.2) - 0.2080 mg l(-1) (St.3), 0.0082 (St.6) - 0.2290 mg l(-1) (St.8), 0.3580 (St.2) - 1.7400 mg l(-1) (St.3), 0.2240 (St.1) - 0.6790 mg l(-1) (St.3), 0.0080 (St.1) - 1.5840 mg l(-1) (St.3), 0.0170 (St.3) - 0.0640 mg l(-1) (St.2), 0.0010 (St.1,4,5,8) - 0.0080 mg l(-1) (St.3), 5.0640 (St.9) - 5.2140 mg l(-1) (St.1) and 43.3600 (St.2) - 77.6961 mg l(-1) (St.9), respectively. Also we measured environmental physicochemical parameters such as temperature, salinity, specific conductivity, total dissolved solid (TDS), pH, oxidation and reduction potential (ORP), and dissolved oxygen (DO) in the waste water at sampling stations.

  18. The Potential For Efficient Biological Pre-Treatment Of Exploration Based Waste Streams For Potable Water Production Using A Membrane Reactor Capable Of Simultaneous Nitrification-Denitrification

    NASA Astrophysics Data System (ADS)

    Jackson, William; Morse, Audra; Landes, Nick

    Long term space habitation and exploration require high efficiency water recycling systems. Waste streams from space habitation contain high concentrations of both organic nitrogen and ammonium and high ratios of N to organic C compared to terrestrial wastewater. As with terrestrial systems wastewater must be highly treated to remove organic carbon, nitrogen compounds, salts, and trace constituents. In general, either some type of reverse osmosis or distillation step is required as the final treatment prior to disinfection. However, the high waste strength of the waste can seriously impact the efficiency of these post-processors. Biological pre-treatment is one process capable of significant reductions in organic carbon and nitrogen. Biological systems are self sustaining and require minimal inputs of energy or consumables. Research in our lab has been conducted to evaluate a number of micro-gravity compatible biological reactor systems. Both nitrification-denitrification coupled systems, in which oxygen consumption is reduced by using nitrate as an electron acceptor, and single reactor systems for organic removal and nitrification have been extensively investigated. Reactor types include tubular pulsed flow reactors, packed bed reactors, and membrane reactors. Recently a single vessel membrane reactor capable of simultaneous nitrification-denitrification (sNDN) has been developed and evaluated for its ability to potentially replace other proposed systems. Results to be presented include a review of past system performance and limitations with comparison to the performance of the new sNDN reactor system. Conversion efficiency, stability, and volumetric reaction rates will be discussed.

  19. Disseminating evidence-based treatments for PTSD in organizational settings: A high priority focus area.

    PubMed

    Ruzek, Josef I; Rosen, Raymond C

    2009-11-01

    Dissemination of evidence-based treatments for PTSD has become an important focus of activity in the aftermath of recent terrorist attacks (e.g., London underground and U.S. 9/11 attacks), natural disasters (e.g., Indian Ocean tsunami and Hurricane Katrina), and wars (e.g., in Iraq and Afghanistan). This has become a high priority need for all mental health training and service delivery organizations. Researchers and educators have begun to examine clinician and client perceptions and preferences regarding PTSD treatment processes, and health care systems are organizing more comprehensive efforts at training and system change. As this evolution of services moves forward, effective dissemination should be a major focus of health policy research for the next decade or more. This review critically evaluates the PTSD-related research and emerging theory related to four major sets of variables that affect dissemination: (1) Practitioner factors, (2) Training methods, (3) The practice innovation(s) being disseminated; and (4) Organization or system factors. We evaluate findings from recent studies in light of emerging models of dissemination, and in the final section of the paper, we consider five broad topics with particular implications for dissemination of PTSD-specific treatments. They are: (1) The content of dissemination (i.e., which treatment protocols or intervention methods should be prioritized); (2) Strict adherence versus flexibility in the use of treatment manuals and the role of fidelity assessment; (3) The need for collaboration with user audiences; (4) The potential role of web-based technologies in increasing the effectiveness and efficiency of dissemination; and (5) Development of dissemination infrastructures within organizations.

  20. Attention-deficit/hyperactivity disorder: identifying high priority future research needs.

    PubMed

    Gaynes, Bradley N; Christian, Robert; Saavedra, Lissette M; Wines, Roberta; Jonas, Daniel E; Viswanathan, Meera; Ellis, Alan R; Woodell, Carol; Carey, Timothy S

    2014-03-01

    With onset often occurring before 6 years of age, attention-deficit/hyperactivity disorder (ADHD) involves attention problems, impulsivity, overactivity, and sometimes disruptive behavior. Impairment usually persists into adulthood, with an estimated worldwide prevalence in adults of 2.5%. Existing gaps in evidence concerning ADHD hinder decision-making about treatment. This article describes and prioritizes future research needs for ADHD in three areas: treatment effectiveness for at-risk preschoolers; long-term treatment effectiveness; and variability in prevalence, diagnosis, and treatment.Using a recent systematic review concerning ADHD completed by a different evidence-based practice center as a foundation, we worked with a diverse group of 12 stakeholders, who represented researchers, funders, healthcare providers, patients, and families, to identify and prioritize research needs. From an initial list of 29 evidence gaps, we enumerated 8 high-priority research needs: a) accurate, brief standardized diagnosis and assessment; b) comparative effectiveness and safety of pharmacologic treatments for children under 6 years of age; c) comparative effectiveness of different combinations of psychosocial and pharmacologic treatments for children under 6 years of age; d) case identification and measurement of prevalence and outcomes; e) comparative effectiveness of psychosocial treatment alone versus pharmacologic and combination treatments for children under 6 years of age; f) comparative long-term treatment effectiveness for people 6 years of age and older; g) relative efficacy of specific psychosocial program components for children under 6 years of age; and h) identification of person-level effect modifiers for people 6 years of age and older. In this article, we describe these future research needs in detail and discuss study designs that could be used to address them.

  1. Impact of High-Priority Allocation on Lung and Heart-Lung Transplantation for Pulmonary Hypertension.

    PubMed

    Savale, Laurent; Le Pavec, Jérôme; Mercier, Olaf; Mussot, Sacha; Jaïs, Xavier; Fabre, Dominique; O'Connell, Caroline; Montani, David; Stephan, François; Sitbon, Olivier; Simonneau, Gérald; Dartevelle, Philippe; Humbert, Marc; Fadel, Elie

    2017-08-01

    Since 2006 and 2007, patients in France with severe pulmonary hypertension (PH) who are at imminent risk of death, despite optimal treatment in the intensive care unit, are placed on a high-priority list (HPL) for heart-lung transplantation (HLT) or double-lung transplantation (DLT). We assessed the effect of this approach on the waiting list and outcomes after transplantation. We conducted a single-center, retrospective, before-and-after study of consecutive patients with severe group 1, 1', or 4 PH listed for DLT or HLT between 2000 and 2013 (ie, 6 years before and 6 years after HPL implementation). We included 234 patients. HPL implementation resulted in a significant decrease of the cumulative incidence of death on the waiting list at 1 and 2 years (p < 0.0001). The cumulative incidence of transplantation increased significantly from 48% to 76% after 2 years (p < 0.0001). Overall survival after transplantation was not significantly different between the pre-HPL and post-HPL era. In the HPL period, patients on the regular list who received a transplant had a nonsignificant trend toward improved overall survival compared with those on the HPL who received a transplant (at 1, 2, 3, and 5 years: 85%, 77%, 72%, and 72% vs 67%, 61%, 58%, and 50%; p = 0.053). Finally, survival after listing improved significantly after HPL implementation (at 1, 2, 3, and 5 years: 69%, 62%, 58%, and 54% vs 54%, 45%, 34%, and 26% before the HPL; p < 0.001). HPL implementation was followed by higher survival of PH patients after registration on the DLT or HLT waiting list and by a higher cumulative incidence of transplantation among waiting-list patients. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Using Autonomously-Controlled Aerocapture to Achieve High-Priority Science

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Hall, J. L.

    2006-05-01

    Aerocapture is a means of inserting a spacecraft into orbit at a planetary body with a substantial atmosphere, from a hyperbolic approach, via atmospheric drag in that atmosphere. Compared to current-practice propulsive insertion systems, it offers large reductions in the mass spent on orbit insertion, making available significantly more mass for science instruments and direct instrument support systems such as telecommunications. This yields much greater science return for a given launch mass. In some cases the gain in science return is so significant it enables the missions. The aerocapture maneuver itself, which involves hypersonic, guided flight through an imperfectly known and variable planetary atmosphere, critically depends on autonomous systems to guide the craft's flight path to a controlled exit at a pre-determined, much-reduced target speed and target direction. For the past five years NASA funded its Aerocapture Systems Analysis Team to conduct high-fidelity studies of aerocapture applications to destinations of high priority for planetary and solar system science. These studies aimed at deriving various aerocapture system parameters and performance figures for each destination, and to highlight technology developments needed to provide the requisite system parameters and performance. Significant progress has been made, to the point that aerocapture is fully ready for a flight demonstration, and soon after that implementation at some of the less-demanding destinations. Autonomous control algorithms of sufficient accuracy and speed are now available for a flight test, as is the hardware needed for computation, navigation, control, and thermal protection. Candidate destinations for which relatively low-performance systems are sufficient include Saturn's moon Titan, Venus, and Mars, while trips to more demanding destinations, such as Uranus, Neptune, Saturn, and possibly even and Pluto and Neptune's moon Triton, would require higher-performance systems

  3. High Priority Future Research Needs for Obstructive Sleep Apnea Diagnosis and Treatment

    PubMed Central

    Patel, Kamal; Moorthy, Denish; Chan, Jeffrey A.; Concannon, Thomas W.; Ratichek, Sara J.; Chung, Mei; Balk, Ethan M.

    2013-01-01

    Study Objectives: To identify and prioritize future research needs (FRN) topics for diagnosis and treatment of obstructive sleep apnea (OSA). Methods: Twenty-one panel members represented six stake-holder categories: patients and the public, providers; purchasers of health care, payers, policymakers, and principal investigators. Building on a recently completed comparative effectiveness review, stakeholders nominated and discussed potential FRN topics. Stakeholders then nominated their top priority FRN topics based on the Agency for Healthcare Research and Quality Effective Health Care Program Selection Criteria. From these nominations, the highest priority FRN topics were determined and were elaborated upon to include possible study designs to address the topics. Results: Thirty-seven topics were discussed and prioritized. The nine highest priority FRN topics included: cost-effectiveness of management strategies, defining age- and sex-specific criteria for OSA, evaluating routine preoperative screening for OSA, evaluating involvement of a sleep medicine specialist in diagnosis of OSA, evaluating clinical prediction rules, assessing the effect of treating sleep disordered breathing and long-term clinical outcomes, comparing treatments for patients who do not tolerate positive airway pressure, evaluating strategies to improve treatment compliance, and evaluating the association between sleep apnea severity and long-term clinical outcomes. Conclusions: While there are numerous specific research questions with low or insufficient strength of evidence for OSA management, OSA patients, their healthcare providers, and society at large would benefit from refocusing research efforts into the prioritized research questions and away from simple comparisons of short-term outcomes between specific interventions. Citation: Patel K; Moorthy D; Chan JA; Concannon TW. High priority future research needs for obstructive sleep apnea diagnosis and treatment. J Clin Sleep Med 2013

  4. Mixed waste minimization in a research environment

    SciTech Connect

    Kirner, N.

    1994-12-31

    This presentation describes minimization efforts and processes for mixed waste generated by research facilities. Waste stream assessment and treatment, and database management for various research-related waste streams is detailed.

  5. Waste from food processors

    SciTech Connect

    Sheehan, K.

    1993-12-01

    Food processing companies, by nature of the commodities they deal in and the products they provide, generate a much higher percentage of biodegradable, organic wastes than they do nonorganic wastes. The high percentage of food materials, and to a lesser extent, paper, found in a food processor's waste stream makes composting a highly cost-effective way to manage the wastes. This is the last in a series of articles that discussed solid waste management in various public arenas. Each segment highlighted particulars -- the waste stream; how the waste is handled; waste reduction and recovery programs; and the direction of future waste management -- that are specific to that area.

  6. Methods for Facilitating Microbial Growth on Pulp Mill Waste Streams and Characterization of the Biodegradation Potential of Cultured Microbes

    PubMed Central

    Mathews, Stephanie L.; Ayoub, Ali S.; Pawlak, Joel; Grunden, Amy M.

    2013-01-01

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor. PMID:24378616

  7. Methods for facilitating microbial growth on pulp mill waste streams and characterization of the biodegradation potential of cultured microbes.

    PubMed

    Mathews, Stephanie L; Ayoub, Ali S; Pawlak, Joel; Grunden, Amy M

    2013-12-12

    The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.

  8. Emergence and fate of cyclic volatile polydimethylsiloxanes (D4, D5) in municipal waste streams: release mechanisms, partitioning and persistence in air, water, soil and sediments.

    PubMed

    Surita, Sharon C; Tansel, Berrin

    2014-01-15

    Siloxane use in consumer products (i.e., fabrics, paper, concrete, wood, adhesive surfaces) has significantly increased in recent years due to their excellent water repelling and antimicrobial characteristics. The objectives of this study were to evaluate the release mechanisms of two siloxane compounds, octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5), which have been detected both at landfills and wastewater treatment plants, estimate persistence times in different media, and project release quantities over time in relation to their increasing use. Analyses were conducted based on fate and transport mechanisms after siloxanes enter waste streams. Due to their high volatility, the majority of D4 and D5 end up in the biogas during decomposition. D5 is about ten times more likely to partition into the solid phase (i.e., soil, biosolids). D5 concentrations in the wastewater influent and biogas are about 16 times and 18 times higher respectively, in comparison to the detected levels of D4.

  9. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    SciTech Connect

    Lunsford, G.F.

    1999-06-14

    This report is fully responsive to the requirements of Section 4.0 Acceptable Knowledge from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  10. Characterization of nutrient removal and microalgal biomass production on an industrial waste-stream by application of the deceleration-stat technique.

    PubMed

    Van Wagenen, Jon; Pape, Mathias Leon; Angelidaki, Irini

    2015-05-15

    Industrial wastewaters can serve as a nutrient and water source for microalgal production. In this study the effluent of an internal circulation (IC) reactor anaerobically treating the wastes of a biotechnology production facility were chosen as the cultivation medium for Chlorella sorokiniana in batch and continuous cultures. The aim was to evaluate the rates of nutrient removal and biomass production possible at various dilution rates. The results demonstrate that the industrial wastewater served as a highly effective microalgae culture medium and that dilution rate strongly influenced algae productivity in a short light-path photobioreactor. Batch culture on undiluted wastewater showed biomass productivity of 1.33 g L(-1)day(-1), while removing over 99% of the ammonia and phosphate from the wastewater. Deceleration-stat (D-stat) experiments performed at high and low intensities of 2100 and 200 (μmol photon m(2)s(-1)) established the optimal dilution rates to reach volumetric productivity of 5.87 and 1.67 g L(-1)day(-1) respectively. The corresponding removal rates of nitrogen were 238 and 93 mg L(-1)day(-1) and 40 and 19 mg L(-1)day(-1) for phosphorous. The yield on photons at low light intensity was as high as had been observed in any previous report indicating that the waste stream allowed the algae to grow at its full potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    SciTech Connect

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  12. Selective reduction of Cr(VI) in chromium, copper and arsenic (CCA) mixed waste streams using UV/TiO2 photocatalysis.

    PubMed

    Zheng, Shan; Jiang, Wenjun; Rashid, Mamun; Cai, Yong; Dionysiou, Dionysios D; O'Shea, Kevin E

    2015-02-03

    The highly toxic Cr(VI) is a critical component in the Chromated Copper Arsenate (CCA) formulations extensively employed as wood preservatives. Remediation of CCA mixed waste and discarded treated wood products is a significant challenge. We demonstrate that UV/TiO2 photocatalysis effectively reduces Cr(VI) to less toxic Cr(III) in the presence of arsenate, As(V), and copper, Cu(II). The rapid conversion of Cr(VI) to Cr(III) during UV/TiO2 photocatalysis occurs over a range of concentrations, solution pH and at different Cr:As:Cu ratios. The reduction follows pseudo-first order kinetics and increases with decreasing solution pH. Saturation of the reaction solution with argon during UV/TiO2 photocatalysis had no significant effect on the Cr(VI) reduction demonstrating the reduction of Cr(VI) is independent of dissolved oxygen. Reduction of Cu(II) and As(V) does not occur under the photocatalytic conditions employed herein and the presence of these two in the tertiary mixtures had a minimal effect on Cr(VI) reduction. The Cr(VI) reduction was however, significantly enhanced by the addition of formic acid, which can act as a hole scavenger and enhance the reduction processes initiated by the conduction band electron. Our results demonstrate UV/TiO2 photocatalysis effectively reduces Cr(VI) in mixed waste streams under a variety of conditions.

  13. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  14. SALTSTONE VAULT CLASSIFICATION SAMPLES MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT/ACTINIDE REMOVAL PROCESS WASTE STREAM APRIL 2011

    SciTech Connect

    Eibling, R.

    2011-09-28

    Savannah River National Laboratory (SRNL) was asked to prepare saltstone from samples of Tank 50H obtained by SRNL on April 5, 2011 (Tank 50H sampling occurred on April 4, 2011) during 2QCY11 to determine the non-hazardous nature of the grout and for additional vault classification analyses. The samples were cured and shipped to Babcock & Wilcox Technical Services Group-Radioisotope and Analytical Chemistry Laboratory (B&W TSG-RACL) to perform the Toxic Characteristic Leaching Procedure (TCLP) and subsequent extract analysis on saltstone samples for the analytes required for the quarterly analysis saltstone sample. In addition to the eight toxic metals - arsenic, barium, cadmium, chromium, mercury, lead, selenium and silver - analytes included the underlying hazardous constituents (UHC) antimony, beryllium, nickel, and thallium which could not be eliminated from analysis by process knowledge. Additional inorganic species determined by B&W TSG-RACL include aluminum, boron, chloride, cobalt, copper, fluoride, iron, lithium, manganese, molybdenum, nitrate/nitrite as Nitrogen, strontium, sulfate, uranium, and zinc and the following radionuclides: gross alpha, gross beta/gamma, 3H, 60Co, 90Sr, 99Tc, 106Ru, 106Rh, 125Sb, 137Cs, 137mBa, 154Eu, 238Pu, 239/240Pu, 241Pu, 241Am, 242Cm, and 243/244Cm. B&W TSG-RACL provided subsamples to GEL Laboratories, LLC for analysis for the VOCs benzene, toluene, and 1-butanol. GEL also determines phenol (total) and the following radionuclides: 147Pm, 226Ra and 228Ra. Preparation of the 2QCY11 saltstone samples for the quarterly analysis and for vault classification purposes and the subsequent TCLP analyses of these samples showed that: (1) The saltstone waste form disposed of in the Saltstone Disposal Facility in 2QCY11 was not characteristically hazardous for toxicity. (2) The concentrations of the eight RCRA metals and UHCs identified as possible in the saltstone waste form were present at levels below the UTS. (3) Most of the

  15. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, H.L.; Evans, R.J.

    1992-08-04

    A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.

  16. Controlled catalytic and thermal sequential pyrolysis and hydrolysis of phenolic resin containing waste streams to sequentially recover monomers and chemicals

    DOEpatents

    Chum, Helena L.; Evans, Robert J.

    1992-01-01

    A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.

  17. Geochemical Characterization of Mine Waste, Mine Drainage, and Stream Sediments at the Pike Hill Copper Mine Superfund Site, Orange County, Vermont

    USGS Publications Warehouse

    Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Kiah, Richard G.; Deacon, Jeffrey R.; Adams, Monique; Anthony, Michael W.; Briggs, Paul H.; Jackson, John C.

    2006-01-01

    The Pike Hill Copper Mine Superfund Site in the Vermont copper belt consists of the abandoned Smith, Eureka, and Union mines, all of which exploited Besshi-type massive sulfide deposits. The site was listed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004 due to aquatic ecosystem impacts. This study was intended to be a precursor to a formal remedial investigation by the USEPA, and it focused on the characterization of mine waste, mine drainage, and stream sediments. A related study investigated the effects of the mine drainage on downstream surface waters. The potential for mine waste and drainage to have an adverse impact on aquatic ecosystems, on drinking- water supplies, and to human health was assessed on the basis of mineralogy, chemical concentrations, acid generation, and potential for metals to be leached from mine waste and soils. The results were compared to those from analyses of other Vermont copper belt Superfund sites, the Elizabeth Mine and Ely Copper Mine, to evaluate if the waste material at the Pike Hill Copper Mine was sufficiently similar to that of the other mine sites that USEPA can streamline the evaluation of remediation technologies. Mine-waste samples consisted of oxidized and unoxidized sulfidic ore and waste rock, and flotation-mill tailings. These samples contained as much as 16 weight percent sulfides that included chalcopyrite, pyrite, pyrrhotite, and sphalerite. During oxidation, sulfides weather and may release potentially toxic trace elements and may produce acid. In addition, soluble efflorescent sulfate salts were identified at the mines; during rain events, the dissolution of these salts contributes acid and metals to receiving waters. Mine waste contained concentrations of cadmium, copper, and iron that exceeded USEPA Preliminary Remediation Goals. The concentrations of selenium in mine waste were higher than the average composition of eastern United States soils. Most mine waste was

  18. Determination by combustion of the total organochlorine content of tissue, soil, water, waste streams, and oil sludges

    SciTech Connect

    Morton, M.; Pollak, J.K.

    1987-01-01

    The distribution and concentration of organochlorine pesticides have been intensively investigated, but there is much less information on the total organochlorine overburden either in the environment or in man. The reason for this paucity of information seems to be that while there were many methods available for the determination of individual organochlorines, there was no simple method which permitted the determination of the total organochlorine content of biological and environmental samples. In this communication a method is described which is suitable for measuring gram quantities of total lipid-soluble organochlorine. Chloride in tissues, tissue fluids, water, soil, liquid industrial wastes and oil sludges. The method is simple and consists of three steps. The first step is a small volume extraction procedure, which extracts organic compounds containing chlorine, but excludes inorganic chlorides. The other two steps involve the degradation of organically bound chlorine to inorganic chlorides and a colorimetric assay of these chlorides.

  19. Dissolved phosphorus export from an animal waste impacted in-stream wetland: response to tropical storm and hurricane disturbance.

    PubMed

    Novak, J M; Szogi, A A; Stone, K C; Watts, D W; Johnson, M H

    2007-01-01

    The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export.

  20. A Comparison between Ultraviolet Disinfection and Copper Alginate Beads within a Vortex Bioreactor for the Deactivation of Bacteria in Simulated Waste Streams with High Levels of Colour, Humic Acid and Suspended Solids

    PubMed Central

    Thomas, Simon F.; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M.; Mason, Paul T.; Allen, Michael J.

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries. PMID:25541706

  1. A comparison between ultraviolet disinfection and copper alginate beads within a vortex bioreactor for the deactivation of bacteria in simulated waste streams with high levels of colour, humic acid and suspended solids.

    PubMed

    Thomas, Simon F; Rooks, Paul; Rudin, Fabian; Atkinson, Sov; Goddard, Paul; Bransgrove, Rachel M; Mason, Paul T; Allen, Michael J

    2014-01-01

    We show in this study that the combination of a swirl flow reactor and an antimicrobial agent (in this case copper alginate beads) is a promising technique for the remediation of contaminated water in waste streams recalcitrant to UV-C treatment. This is demonstrated by comparing the viability of both common and UV-C resistant organisms in operating conditions where UV-C proves ineffective - notably high levels of solids and compounds which deflect UV-C. The swirl flow reactor is easy to construct from commonly available plumbing parts and may prove a versatile and powerful tool in waste water treatment in developing countries.

  2. Development of materials for the removal of metal ions from radioactive and non-radioactive waste streams

    NASA Astrophysics Data System (ADS)

    Hasan, Md. Shameem

    Nuclear wastes that were generated during cold-war era from various nuclear weapon programs are presently stored in hundreds of tanks across the United States. The composition of these wastes is rather complex containing both radionuclides and heavy metals, such as 137Cs, 90Sr, Al, Pb, Cr, and Cd. In this study, chitosan based biosorbents were prepared to adsorb some of these metal ions. Chitosan is a partially acetylated glucosamine biopolymer encountered in the cell walls of fungi. In its natural form this material is soft and has a tendency to agglomerate or form gels. Various methods were used to modify chitosan to avoid these problems. Chitosan is generally available commercially in the form of flakes. For use in an adsorption system, chitosan was made in the form of beads to reduce the pressure drop in an adsorption column. In this research, spherical beads were prepared by mixing chitosan with perlite and then by dropwise addition of the slurry mixture into a NaOH precipitation bath. Beads were characterized using Fourier Transform InfraRed Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy dispersive spectroscopy (EDS), Tunneling Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric Analysis (TGA). The SEM, EDS, and TEM data indicated that the beads were porous in nature. The TGA data showed that bead contained about 32% chitosan. The surface area, pore volume, and porosity of the beads were determined from the BET surface area that was measured using N2 as adsorbate at 77K. Adsorption and desorption of Cr(VI), Cr(III), Cd(II), U(VI), Cu(II), from aqueous solutions of these metal ions were studied to evaluate the adsorption capacities of the beads for these metals ions. Equilibrium adsorption data of these metals on the beads were found to correlate well with the Langmuir isotherm equation. Chitosan coated perlite beads had negligible adsorption capacity for Sr(II) and Cs(I). It was found that Fullers earth

  3. Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed of Mitilus edulis shells.

    PubMed

    Torretta, Vincenzo; Collivignarelli, Maria Cristina; Raboni, Massimo; Viotti, Paolo

    2015-01-01

    The paper presents the results of a two-stage pilot plant for the removal of benzene, toluene, ethylbenzene and xylene (BTEX) from a waste air stream of a refinery wastewater treatment plant (WWTP). The pilot plant consisted of a water scrubber followed by a biotrickling filter (BTF). The exhausted air was drawn from the main works of the WWTP in order to prevent the free migration to the atmosphere of these volatile hazardous contaminants. Concentrations were detected at average values of 12.4 mg Nm(-3) for benzene, 11.1 mg Nm(-3) for toluene, 2.7 mg Nm(-3) for ethylbenzene and 9.5 mg Nm(-3) for xylene, with considerable fluctuation mainly for benzene and toluene (peak concentrations of 56.8 and 55.0 mg Nm(-3), respectively). The two treatment stages proved to play an effective complementary task: the water scrubber demonstrated the ability to remove the concentration peaks, whereas the BTF was effective as a polishing stage. The overall average removal efficiency achieved was 94.8% while the scrubber and BTF elimination capacity were 37.8 and 15.6 g BTEX d(-1) m(-3), respectively. This result has led to outlet average concentrations of 1.02, 0.25, 0.32 and 0.26 mg Nm(-3) for benzene, toluene, ethylbenzene and xylene, respectively. The paper also compares these final concentrations with toxic and odour threshold concentrations.

  4. Sequential Extraction Results and Mineralogy of Mine Waste and Stream Sediments Associated With Metal Mines in Vermont, Maine, and New Zealand

    USGS Publications Warehouse

    Piatak, N.M.; Seal, R.R.; Sanzolone, R.F.; Lamothe, P.J.; Brown, Z.A.; Adams, M.

    2007-01-01

    We report results from sequential extraction experiments and the quantitative mineralogy for samples of stream sediments and mine wastes collected from metal mines. Samples were from the Elizabeth, Ely Copper, and Pike Hill Copper mines in Vermont, the Callahan Mine in Maine, and the Martha Mine in New Zealand. The extraction technique targeted the following operationally defined fractions and solid-phase forms: (1) soluble, adsorbed, and exchangeable fractions; (2) carbonates; (3) organic material; (4) amorphous iron- and aluminum-hydroxides and crystalline manganese-oxides; (5) crystalline iron-oxides; (6) sulfides and selenides; and (7) residual material. For most elements, the sum of an element from all extractions steps correlated well with the original unleached concentration. Also, the quantitative mineralogy of the original material compared to that of the residues from two extraction steps gave insight into the effectiveness of reagents at dissolving targeted phases. The data are presented here with minimal interpretation or discussion and further analyses and interpretation will be presented elsewhere.

  5. A multidimensional model of direct-stream heating of newspaper and municipal solid waste in a hydrothermal reactor

    SciTech Connect

    Thorsness, C.B.

    1995-09-28

    Hydrothermal treatment (reaction in a water medium at elevated temperatures) can transform many municipal solid waste (MSW) constituents into a synthetic coal material which is more amenable for use as a fuel or chemical feedstock than the raw MSW. One means of heating the MSW is to use direct high temperature steam injection into a closed reactor and allow the latent heat of the steam to raise the MSW to the desired temperature and at the same time build the pressure necessary to maintain a water phase. This report describes a computer model which can be used to look at details of the steam flow, water evaporation/condensation, thermal evolution, and MSW decomposition in a direct-steam heated MSW hydrothermal reactor. The model treats the system as a packed bed using a Darcy`s law formulation for computing gas flow rates. The model has been applied to a pilot and a commercial scale system. Computations take between 1-6 hours on a HP-9000/730. Initial computations performed with the model indicate that pressure drop and velocities on a pilot scale systems will be small. On the other hand, they indicate that gas velocities inside a commercial scale reactor can reach levels at which entrainment of liquid or solids could occur. In addition, on the commercial scale, model results indicate that in the absence of liquid water flow the thermal coupling between vessel contents and heavy reactor walls should be small thus minimizing unwanted heat loss.

  6. DRD4 long allele carriers show heightened attention to high-priority items relative to low-priority items.

    PubMed

    Gorlick, Marissa A; Worthy, Darrell A; Knopik, Valerie S; McGeary, John E; Beevers, Christopher G; Maddox, W Todd

    2015-03-01

    Humans with seven or more repeats in exon III of the DRD4 gene (long DRD4 carriers) sometimes demonstrate impaired attention, as seen in attention-deficit hyperactivity disorder, and at other times demonstrate heightened attention, as seen in addictive behavior. Although the clinical effects of DRD4 are the focus of much work, this gene may not necessarily serve as a "risk" gene for attentional deficits, but as a plasticity gene where attention is heightened for priority items in the environment and impaired for minor items. Here we examine the role of DRD4 in two tasks that benefit from selective attention to high-priority information. We examine a category learning task where performance is supported by focusing on features and updating verbal rules. Here, selective attention to the most salient features is associated with good performance. In addition, we examine the Operation Span (OSPAN) task, a working memory capacity task that relies on selective attention to update and maintain items in memory while also performing a secondary task. Long DRD4 carriers show superior performance relative to short DRD4 homozygotes (six or less tandem repeats) in both the category learning and OSPAN tasks. These results suggest that DRD4 may serve as a "plasticity" gene where individuals with the long allele show heightened selective attention to high-priority items in the environment, which can be beneficial in the appropriate context.

  7. Accelerator Production of Tritium Waste Characterization and Certification Challenges

    SciTech Connect

    Ades, M.J.; England, J.L.; Nowacki, P.L.; Hane, R.; Tempel, K.L.; Pitcher, E.; Cohen, H.S.

    1998-06-01

    This paper summaries the processes and methods APT used for the identification and classification of the waste streams, the characterization and certification of the waste streams, and waste minimization.

  8. Toluene removal from waste air stream by the catalytic ozonation process with MgO/GAC composite as catalyst.

    PubMed

    Rezaei, Fatemeh; Moussavi, Gholamreza; Bakhtiari, Alireza Riyahi; Yamini, Yadollah

    2016-04-05

    This paper investigates the catalytic potential of MgO/GAC composite for toluene elimination from waste air in the catalytic ozonation process (COP). The MgO/GAC composite was a micro-porous material with the BET surface area of 1082m(2)/g. Different functional groups including aromatic CC, saturated CO of anhydrates, hydroxyl groups and SH bond of thiols were identified on the surface of MgO/GAC. Effects of residence time (0.5-4s), inlet toluene concentration (100-400ppmv) and bed temperature (25-100°C) were investigated on degradation of toluene in COP. Impregnation of GAC with MgO increased the breakthrough time and removal capacity by 73.9% and 64.6%, respectively, at the optimal conditions. The catalytic potential of the GAC and MgO/GAC for toluene degradation was 11.1% and 90.6%, respectively, at the optimum condition. The highest removal capacity using MgO/GAC (297.9gtoulene/gMgO/GAC) was attained at 100°C, whereas the highest removal capacity of GAC (128.5mgtoulene/gGAC) was obtained at 25°C. Major by-products of the toluene removal in COP with GAC were Formic acid, benzaldehyde, O-nitro-p-cresol and methyl di-phenyl-methane. MgO/GAC could greatly catalyze the decomposition of toluene in COPand formic acid was the main compound desorbed from the catalyst. Accordingly, the MgO/GAC is an efficient material to catalyze the ozonation of hydrocarbon vapors.

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  10. Method for processing aqueous wastes

    SciTech Connect

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1992-12-31

    This invention is comprised of a method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  11. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  12. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  13. Nuclear waste solutions

    DOEpatents

    Walker, Darrel D.; Ebra, Martha A.

    1987-01-01

    High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.

  14. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus.

    PubMed

    Morgan-Sagastume, Fernando; Karlsson, Anton; Johansson, Peter; Pratt, Steven; Boon, Nico; Lant, Paul; Werker, Alan

    2010-10-01

    In this study, the production of polyhydroxyalkanoates (PHAs) from waste activated sludge (WAS) was evaluated. PHAs were produced from fermented WAS pretreated via high-pressure thermal hydrolysis, a stream characterised by high levels of nutrients (approximately 3.5 g N L(-1) and 0.5 g P L(-1)) and soluble organics. PHA-storing organisms were successfully enriched at high organic loading rates (6 g COD(sol) L(-1) d(-1)) under aerobic dynamic feeding in sequencing batch reactors at a sludge retention time of 6 d with a short feast length less than 20% of the cycle, and a maximum substrate concentration during feast of 1 g COD(VFA) L(-1). The biomass enrichment, characterised by a decrease in species evenness based on Lorenz curves, provided a biomass that accumulated 25% PHA on a dry-biomass basis with yields on VFA of 0.4 Cmol Cmol(-1) in batch tests. The PHA consisted of ∼70 mol% 3-hydroxybutyrate and ∼30 mol% 3-hydroxyvalerate, and presented high thermal stability (T(d) = 283-287 °C) and a molecular mass ranging from 0.7 to 1.0 × 10(6) g mol(-1). Overall PHA storage was comparable to that achieved with other complex substrates; however, lower PHA storage rates (0.04-0.05 Cmol PHA(-1) Cmol X(-1) h(-1)) and productivities (3-4 Cmol PHA L(-1) h(-1)) were probably associated with a biomass-growth and high-respiration response induced by high levels of non-VFA organics (40-50% of COD(sol) in feed) and nutrients. PHA production is feasible from pretreated WAS, but the enrichment and accumulation process require further optimisation. A milder WAS pretreatment yielding lower levels of non-VFA organics and readily available nutrients may be more amenable for improved performance.

  15. Perspectives on sustainable waste management.

    PubMed

    Castaldi, Marco J

    2014-01-01

    Sustainable waste management is a goal that all societies must strive to maintain. Currently nearly 80% of global wastes are sent to landfill, with a significant amount lacking proper design or containment. The increased attention to environmental impacts of human activities and the increasing demand for energy and materials have resulted in a new perspective on waste streams. Use of waste streams for energy and materials recovery is becoming more prevalent, especially in developed regions of the world, such as Europe, the United States, and Japan. Although currently these efforts have a small impact on waste disposal, use of waste streams to extract value very likely will increase as society becomes more aware of the options available. This review presents an overview of waste management with a focus on following an expanded waste hierarchy to extract value specifically from municipal solid waste streams.

  16. Field tests of polyethylene-membrane diffusion samplers for characterizing volatile organic compounds in stream-bottom sediments, Nyanza Chemical Waste Dump Superfund site, Ashland, Massachusetts

    USGS Publications Warehouse

    Lyford, Forest P.; Willey, Richard E.; Clifford, Scott

    2000-01-01

    A plume of volatile organic compounds (VOCs) in ground water extends from the Nyanza Chemical Waste Dump Superfund site in Ashland, Massachusetts, northward toward a mill pond on the Sudbury River and eastward toward the Sudbury River and former mill raceway downstream from the mill pond. Polyethylene-membrane water-to-vapor (vapor) and water-to-water (water) diffusion samplers were installed January 1999 in bottom sediments along the Sudbury River and former mill raceway in a pilot study to determine if vapor samplers would be useful in this setting for delineating a plume of contaminants in ground water near the river and raceway, to evaluate equilibration time for vapor-diffusion samplers, and to determine if diffusion samplers might be an alternative to seepage meters (inverted steel drums) and sediment sampling for evaluating concentrations of VOCs in bottom sediments. Of five tested compounds (benzene, trichloroethene, toluene, tetrachloroethene, and chlorobenzene), chlorobenzene and trichloroethene were most frequently detected in vapor from vapor-diffusion samplers. The distribution of VOCs was generally consistent with a previously mapped plume of contaminants in ground water. The field evaluation of equilibration times for vapor-diffusion samplers was inconclusive because of changing hydrologic conditions that may have affected concentrations of VOCs, possible variations in concentrations ofVOCs over short distances, and imprecise sampling and analytical methods. The limited data, however, indicated that equilibration may require 3 weeks or more in some settings. VOCs detected in samples from water-diffusion samplers and their concentrations were comparable to results from seepage meters, and VOCs detected in vapor-diffusion samplers correlated with VOCs detected in water-diffusion samplers. These results indicate that either vapor-or water-diffusion samplers would serve as an economical alternative to seepage meters for sampling of VOCs in pore water

  17. Results of Toxicity Identification Evaluations (TIE`S) conducted on the A-01 outfall and its contributory waste streams, July 1996--February 1997

    SciTech Connect

    Specht, W.L.

    1997-03-01

    Toxicity tests were conducted at nine locations during the summer of 1996. The results indicated that A-01B, A-01C, A-03, A-04, A-05 and A-01 were toxic to the test species, Ceriodaphnia dubia, while A-01A, A-06, and WE-01 were not toxic. Beginning in August 1996, Toxicity Identification Evaluations (TIE`s) were initiated on all toxic outfalls in order to identify the toxicants responsible for the observed toxicity. A complete TIE was performed on A-01 because it is the regulatory compliance point for all of the combined waste streams that were tested. Only the portions of a TIE that are related to metal and chlorine toxicity were performed on the remaining locations because existing data indicated that metals and chlorine were present in potentially toxic quantities at these locations, and there was no evidence that other toxicants would be expected to be present in toxic amounts. The results of the TIE`s indicate that metals are responsible for most of the toxicity at all of the outfalls that were toxic and that chlorine contributed to the toxicity at two of the outfalls. Specifically, the toxicity at A-01B, A-01C, and A-01 was due to copper; the toxicity at A-03 was due to primarily to copper, although zinc also contributed to the toxicity; the toxicity at A-04 was due primarily to copper, with residual chlorine and zinc contributing to the toxicity; and the toxicity at A-05 was due primarily to copper, with residual chlorine contributing to the toxicity. A-03 was the most toxic outfall, with 100% mortality occurring at concentrations as low as 12.5% effluent. A-03 was found to have concentrations of copper, lead, and zinc that exceeded EPA water quality criteria by approximately two orders of magnitude. The metal concentrations at A-01 and WE-01, which is located approximately 0.5 miles downstream from A-01 were similar. However, A-01 was toxic, while WE-01 was not.

  18. Liquid chromatography-mass spectrometry coupled with multivariate analysis for the characterization and discrimination of extractable and nonextractable polyphenols and glucosinolates from red cabbage and Brussels sprout waste streams.

    PubMed

    Gonzales, Gerard Bryan; Raes, Katleen; Vanhoutte, Hanne; Coelus, Sofie; Smagghe, Guy; Van Camp, John

    2015-07-10

    Nonextractable polyphenol (NEP) fractions are usually ignored because conventional extraction methods do not release them from the plant matrix. In this study, we optimized the conditions for sonicated alkaline hydrolysis to the residues left after conventional polyphenol extraction of Brussels sprouts top (80°C, 4M NaOH, 30min) and stalks (60°C, 4M NaOH, 30min), and red cabbage waste streams (80°C, 4M NaOH, 45min) to release and characterize the NEP fraction. The NEP fractions of Brussels sprouts top (4.8±1.2mg gallic acid equivalents [GAE]/g dry waste) and stalks (3.3±0.2mg GAE/g dry waste), and red cabbage (11.5mg GAE/g dry waste) waste have significantly higher total polyphenol contents compared to their respective extractable polyphenol (EP) fractions (1.5±0.0, 2.0±0.0 and 3.7±0.0mg GAE/g dry waste, respectively). An LC-MS method combined with principal components analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to tentatively identify and discriminate the polyphenol and glucosinolate composition of the EP and NEP fractions. Results revealed that phenolic profiles of the EP and NEP fractions are different and some compounds are only found in either fraction in all of the plant matrices. This suggests the need to account both fractions when analyzing the polyphenol and glucosinolate profiles of plant matrices to attain a global view of their composition. This is the first report on the discrimination of the phenolic and glucosinolate profiles of the EP and NEP fractions using metabolomics techniques.

  19. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  20. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 1. Revision 1

    SciTech Connect

    1995-02-01

    This document provides baseline inventories of transuranic wastes for the WIPP facility. Information on waste forms, forecasting of future inventories, and waste stream originators is also provided. A diskette is provided which contains the inventory database.

  1. DOE Waste Treatability Group Guidance

    SciTech Connect

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the sole basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.

  2. Background chemistry for chemical warfare agents and decontamination processes in support of delisting waste streams at the U.S. Army Dugway Proving Ground, Utah

    SciTech Connect

    Rosenblatt, D.H.; Small, M.J.; Kimmell, T.A.; Anderson, A.W.

    1996-04-01

    The State of Utah, Department of Environmental Quality (DEQ), Division of Solid and Hazardous Waste (DSHW), has declared residues resulting from the demilitarization, treatment, cleanup, and testing of military chemical agents to be hazardous wastes. These residues have been designated as corrosive, reactive, toxic, and acute hazardous (Hazardous Waste No. F999). The RCRA regulations (40 Code of Federal Regulations [CFR] 260-280), the Utah Administrative Code (R-315), and other state hazardous waste programs list specific wastes as hazardous but allow generators to petition the regulator to {open_quotes}delist,{close_quotes} if it can be demonstrated that such wastes are not hazardous. The U.S. Army Test and Evaluation Command (TECOM) believes that certain categories of F999 residues are not hazardous and has obtained assistance from Argonne National Laboratory (Argonne) to make the delisting demonstration. The objective of this project is to delist chemical agent decontaminated residues resulting from materials testing activities and to delist a remediation residue (e.g., contaminated soil). To delist these residues, it must be demonstrated that the residues (1) do not contain hazardous quantities of the listed agents; (2) do not contain hazardous quantities of constituents listed in 40 CFR Part 261, Appendix VIII; (3) do not exhibit other characteristics that could define the residues as hazardous; and (4) do not fail a series of acute toxicity tests. The first phase will focus on a subset of the F999 wastes generated at the U.S. Army Dugway Proving Ground (DPG), where the Army tests the effects of military chemical agents and agent-decontamination procedures on numerous military items. This effort is identified as Phase I of the Delisting Program. Subsequent phases will address other DPG chemical agent decontaminated residues and remediation wastes and similar residues at other installations.

  3. Miscellaneous streams best management practices (BMP) report

    SciTech Connect

    Lueck, K.J., Westinghouse Hanford

    1996-07-24

    The Washington State Department of Ecology (Ecology) and U.S. Department of Energy Consent Order No. DE 91NM-177 (Consent Order) lists regulatory milestones for liquid effluent streams at the Hanford Site to comply with the permitting requirements of Washington Administrative Code (WAC) 173-216 (`State Waste Discharge Permit Program`) or WAC 173-218 (`Washington Underground Injection Control Program`) where applicable. Hanford Site liquid effluent streams discharging to the soil column are categorized as Phase I and Phase II Streams, and Miscellaneous Streams. There were originally 33 Phase I and Phase II Streams, however some of these streams have been eliminated. Miscellaneous Streams are those liquid effluent streams discharged to the ground that are not categorized as Phase I or Phase II Streams, and are subject to the requirements of several milestones identified in the Consent Order. The three criteria for identifying streams that are potentially affecting groundwater are: (1) streams discharging to surface contaminated areas (referred to as category `b` streams); (2) potentially contaminated streams (referred to as category `c` streams); and (3) streams discharging within 91 meters (300 feet) of a contaminated crib, ditch, or trench (referred to as category `d` streams). Miscellaneous Streams that meet any of these criteria must be evaluated for application of best management practices (BMP). The purpose of this report is to provide the best management practice preferred alternative. The list of BMP streams has been revised since the original submittal. Several streams from the original list of BMP streams have already been eliminated through facility upgrades, reduction of steam usage, and facility shutdowns. This document contains a description of the changes to the list of BMP streams, applicable definitions and regulatory requirements and possible alternatives, and a schedule for implementing the preferred alternatives.

  4. Phosphate Bonded Solidification of Radioactive Incinerator Wastes

    SciTech Connect

    Walker, B. W.

    1999-04-13

    The incinerator at the Department of Energy Savannah River Site burns low level radioactive and hazardous waste. Ash and scrubber system waste streams are generated during the incineration process. Phosphate Ceramic technology is being tested to verify the ash and scrubber waste streams can be stabilized using this solidification method. Acceptance criteria for the solid waste forms include leachability, bleed water, compression testing, and permeability. Other testing on the waste forms include x-ray diffraction and scanning electron microscopy.

  5. Mixed waste management options

    SciTech Connect

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  6. [High-priority research directions in genetics, and the breeding of the sugar beet (Beta vulgaris L.) in the 21st century].

    PubMed

    Kornienko, A V; Podvigina, O A; Zhuzhzhalova, T P; Fedulova, T P; Bogomolov, M A; Oshevnev, V P; Butorina, A K

    2014-11-01

    High-priority research directions for the genetics and breeding of the sugar beet in the 21st century were developed with consideration of the available scientific achievements of domestic and foreign scholars. These directions unite the classical and molecular approaches to solving the problems of increasing the effectiveness of sugar beet breeding carried out on a genetic basis, and they correspond to the contemporary level of scientific research. Seven such directions are proposed.

  7. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil).

    PubMed

    da Rocha, Monyque Palagano; Dourado, Priscila Leocadia Rosa; de Souza Rodrigues, Mayara; Raposo, Jorge Luiz; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2015-07-01

    Water quality monitoring is used to determine the impact of human activities on the environment. We evaluated water quality in the Água Boa stream, located within the municipality of Dourados, State of Mato Grosso do Sul, Brazil, by analyzing physico-chemical, chemical, and microbiological parameters, as well as chlorophyll concentrations. Five sets of water samples were collected between December 2012 and November 2013 from three locations within the stream. The results showed the presence of Escherichia coli and antibiotic-resistant Pseudomonas spp. strains and high concentrations of organic matter (total dissolved solids), inorganic species (Mg, Ca, and Fe), and agrochemical residues (thiamethoxam). The main stream water contaminants are derived from urban, industrial, and agricultural activities within the watershed. Given the presence of contaminants, it is important that such findings are disseminated in order to highlight the risks that contact with this water may pose to human health. To preserve the environment and improve site conditions, people would need to participate by demanding that normative national and international standards be respected and that the situation be supervised by the competent governmental agencies; this would make it possible to reverse or minimize contamination problems within the Água Boa stream.

  8. Waste Generation Overview, Course 23263

    SciTech Connect

    Simpson, Lewis Edward

    2016-11-28

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identify the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.

  9. "And then you'll see her in the grocery store": the working relationships of public health nurses and high-priority families in northern Canadian communities.

    PubMed

    Moules, Nancy J; MacLeod, Martha L P; Thirsk, Lorraine M; Hanlon, Neil

    2010-10-01

    The aim of the study is to examine and articulate the nature of working relationships of public health nurses and high-priority families in small communities in northern Canada. Public health nurses working in northern, rural, and remote communities face unique and varied challenges. Reportedly, the hardest part of their job is working with families who have been deemed high priority or high risk. Working with these families in these contexts relies on relationships of reciprocity, trust, and communication. This qualitative research was guided by an interpretive hermeneutic inquiry; 32 families, 25 public health nurses, and three lay home visitors were interviewed from July 2005 through July 2006. Analysis was completed individually and through teamwork of the researchers. Findings suggest that the working relationship of public health nurses and high-priority families in northern communities is complex and multifaceted. Nurses carefully negotiate the process of engaging and entering relationships, maintaining the relationships, and negotiating boundaries. The analysis offers insight into the everyday practices and problems that public health nurses and families encounter in providing care to a vulnerable, isolated, and often marginalized population while navigating the complexity of living and working in the same small communities.

  10. Site characterization data for Solid Waste Storage Area 6

    SciTech Connect

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic cond

  11. Mineral Mapping of High Priority Landing Sites for MSL and Beyond Using Mars Express OMEGA and HRSC Data

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Bibring, J.; Poulet, F.; Mangold, N.; Loizeau, D.; Hauber, E.; Altieri, F.; Carrozzo, G.

    2008-12-01

    High priority candidate landing sites for the Mars Science Laboratory (MSL) mission have been proposed by various researchers, their significance based largely on spectroscopic and geomorphic evidence for aqueous processes. Specifically, seven candidate landing sites are under consideration for MSL at the time of this writing: Mawrth Vallis, Nili Fossae, southern Meridiani Planum, Eberswalde Crater, Holden Crater, Gale Crater, and Miyamoto Crater. While only one of these sites can be visited by MSL, the other sites remain among the most compelling localities on Mars for future in-situ exploration by ESA's ExoMars mission or an international Mars sample return mission. We have produced regional scale mineral maps of these sites using data from the Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA). Visible images from the High Resolution Stereo Camera (HRSC) are used as a map base. OMEGA infrared band parameters are used to identify and map pyroxene, olivine, oxides, sulfates, phyllosilicates, and other hydrated phases. OMEGA visible channel data also provide color information, which gives an estimate of dust cover and additional insights into the mineralogy of altered deposits. The dustiest site is Gale Crater and the least dusty is Nili Fossae. The strongest signature of phyllosilicates occurs in Mawrth Vallis, followed by Nili Fossae. However, Nili Fossae also has some of the strongest olivine signatures on the planet. One fundamental difference between the Nili Fossae and Mawrth Vallis sites is that in Mawrth Vallis, phyllosilicate-bearing, light-toned rocks contain no evidence for primary phases in OMEGA data, but in the Nili Fossae area, phyllosilicates, olivine, and pyroxene are mixed at the subpixel level. South Meridiani Planum shows hydrated plains in contact with ancient, pyroxene-bearing, slightly altered, older bedrock. Patchy deposits of phyllosilicates are found in Miyamoto Crater, but their geologic context is

  12. Stream systems.

    Treesearch

    Jack E. Williams; Gordon H. Reeves

    2006-01-01

    Restored, high-quality streams provide innumerable benefits to society. In the Pacific Northwest, high-quality stream habitat often is associated with an abundance of salmonid fishes such as chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss). Many other native...

  13. Stream Processors

    NASA Astrophysics Data System (ADS)

    Erez, Mattan; Dally, William J.

    Stream processors, like other multi core architectures partition their functional units and storage into multiple processing elements. In contrast to typical architectures, which contain symmetric general-purpose cores and a cache hierarchy, stream processors have a significantly leaner design. Stream processors are specifically designed for the stream execution model, in which applications have large amounts of explicit parallel computation, structured and predictable control, and memory accesses that can be performed at a coarse granularity. Applications in the streaming model are expressed in a gather-compute-scatter form, yielding programs with explicit control over transferring data to and from on-chip memory. Relying on these characteristics, which are common to many media processing and scientific computing applications, stream architectures redefine the boundary between software and hardware responsibilities with software bearing much of the complexity required to manage concurrency, locality, and latency tolerance. Thus, stream processors have minimal control consisting of fetching medium- and coarse-grained instructions and executing them directly on the many ALUs. Moreover, the on-chip storage hierarchy of stream processors is under explicit software control, as is all communication, eliminating the need for complex reactive hardware mechanisms.

  14. Hanford Site Tank Waste Remediation System. Waste management 1993 symposium papers and viewgraphs

    SciTech Connect

    Not Available

    1993-05-01

    The US Department of Energy`s (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives.

  15. Chemical quality of Michigan streams

    USGS Publications Warehouse

    Wood, Warren W.

    1970-01-01

    Concentrations of chemical constituents of Michigan streams exhibit regional patterns that are primarily a function of geology and evapotranspiration. However, in some areas waste disposal by municipal and industrial organizations has altered the natural distribution and concentrations of dissolved material. Concentration and areal distribution of chemical constitutents were found to change very little from high spring to low summer flow conditions.

  16. Methods for environmental monitoring of DOE waste disposal and storage sites: Proposal for optimizing a biological treatment system for denitrification of Y-12 waste streams. Semiannual progress report, November 1, 1987--March 31, 1988

    SciTech Connect

    Hicks, G.M.; Revis, N.

    1988-12-31

    The denitrification process at Y-12 involves the use of sludge to denitrify aqueous plating waste containing relatively high levels of NO{sub 3}. The process from time to time does not denitrify. The factors associated with the failure of the process remains to be resolved. The authors propose to resolve those factors by taking the following research approaches: (1) isolation and identification of microorganisms originating from sewage sludge which are associated with denitrification; (2) define physiological factors required for denitrification in this process system; and (3) define toxic factors associated with the aqueous waste that may affect the process of denitrification.

  17. Automated radioanalytical system incorporating microwave-assisted sample preparation, chemical separation, and online radiometric detection for the monitoring of total 99Tc in nuclear waste processing streams.

    PubMed

    Egorov, Oleg B; O'Hara, Matthew J; Grate, Jay W

    2012-04-03

    An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

  18. Waste-form development

    SciTech Connect

    Neilson, R.M. Jr.; Colombo, P.

    1982-01-01

    Contemporary solidification agents are being investigated relative to their applications to major fuel cycle and non-fuel cycle low-level waste (LLW) streams. Work is being conducted to determine the range of conditions under which these solidification agents can be applied to specific LLW streams. These studies are directed primarily towards defining operating parameters for both improved solidification of problem wastes and solidification of new LLW streams generated from advanced volume reduction technologies. Work is being conducted to measure relevant waste form properties. These data will be compiled and evaluated to demonstrate compliance with waste form performance and shallow land burial acceptance criteria and transportation requirements (both as they exist and as they are modified with time).

  19. Waste-acceptance criteria for radioactive waste disposal

    SciTech Connect

    Gilbert, T.L.; Meshkov, N.K.

    1987-02-01

    A method has been developed for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a disposal facility for radioactive waste. The method starts from the objective of protecting public health and safety by assuring that disposal of the waste will not result in a radiation dose of any member of the general public, in either the short or long term, in excess of an established basic dose limit. A key aspect of the method is the introduction of a confinement factor that characterizes the overall confinement capability of a particular disposal facility and can be used for quantitative performance assessments as well as for establishing facility-specific waste-acceptance criteria. Confinement factors enable direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on rationuclides in the waste streams. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. Application of the method to generic facility designs provides a radional basis for a waste classification system. 14 refs.

  20. Liquid secondary waste. Waste form formulation and qualification

    SciTech Connect

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.; King, W. D.; Nichols, R. L.

    2016-03-01

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testing to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.

  1. National Institutes of Health: Mixed waste minimization and treatment

    SciTech Connect

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  2. Occurence of antibiotic compounds found in the water column and bottom sediments from a stream receiving two waste water treatment plant effluents in northern New Jersey, 2008

    USGS Publications Warehouse

    Gibs, Jacob; Heckathorn, Heather A.; Meyer, Michael T.; Klapinski, Frank R.; Alebus, Marzooq; Lippincott, Robert

    2013-01-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and

  3. Vitrification of hazardous and radioactive wastes

    SciTech Connect

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  4. Composting Solid Waste in Overseas Contingency Operations

    DTIC Science & Technology

    2004-12-01

    management or waste operation to include food waste from dining facilities and control. commercial dining establishments located on base. The eventual goal...cake. However, as requirements theater wide, attaches a tremendous additional waste streams such as food waste were added premium on equipment that

  5. Hanford Site liquid waste acceptance criteria

    SciTech Connect

    LUECK, K.J.

    1999-09-11

    This document provides the waste acceptance criteria for liquid waste managed by Waste Management Federal Services of Hanford, Inc. (WMH). These waste acceptance criteria address the various requirements to operate a facility in compliance with applicable environmental, safety, and operational requirements. This document also addresses the sitewide miscellaneous streams program.

  6. Process Waste Assessment - Paint Shop

    SciTech Connect

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are made for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.

  7. Electric power generation using a phosphoric acid cell on a municipal solid waste landfill gas stream. Technology verification report, November 1997--July 1998

    SciTech Connect

    Masemore, S.; Piccot, S.

    1998-08-01

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phosphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Performance data were collected at two sites determined to be representative of the U.S. landfill market. The Penrose facility, in Los Angeles, CA, was the first test site. The landfill gas at this site represented waste gas recovery from four nearby landfills, consisting primarily of industrial waste material. It produced approximately 3000 scf of gas/minute, and had a higher heating value of 446 Btu/scf at about 44% methane concentration. The second test site, in Groton, CT, was a relatively small landfill, but with greater heat content gas (methane levels were about 57% and the average heating value was 585 Btu/scf). The verification test addressed contaminant removal efficiency, flare destruction efficiency, and the operational capability of the cleanup system, and the power production capability of the fuel cell system.

  8. Waste Heat to Power Market Assessment

    SciTech Connect

    Elson, Amelia; Tidball, Rick; Hampson, Anne

    2015-03-01

    Waste heat to power (WHP) is the process of capturing heat discarded by an existing process and using that heat to generate electricity. In the industrial sector, waste heat streams are generated by kilns, furnaces, ovens, turbines, engines, and other equipment. In addition to processes at industrial plants, waste heat streams suitable for WHP are generated at field locations, including landfills, compressor stations, and mining sites. Waste heat streams are also produced in the residential and commercial sectors, but compared to industrial sites these waste heat streams typically have lower temperatures and much lower volumetric flow rates. The economic feasibility for WHP declines as the temperature and flow rate decline, and most WHP technologies are therefore applied in industrial markets where waste heat stream characteristics are more favorable. This report provides an assessment of the potential market for WHP in the industrial sector in the United States.

  9. Waste classification sampling plan

    SciTech Connect

    Landsman, S.D.

    1998-05-27

    The purpose of this sampling is to explain the method used to collect and analyze data necessary to verify and/or determine the radionuclide content of the B-Cell decontamination and decommissioning waste stream so that the correct waste classification for the waste stream can be made, and to collect samples for studies of decontamination methods that could be used to remove fixed contamination present on the waste. The scope of this plan is to establish the technical basis for collecting samples and compiling quantitative data on the radioactive constituents present in waste generated during deactivation activities in B-Cell. Sampling and radioisotopic analysis will be performed on the fixed layers of contamination present on structural material and internal surfaces of process piping and tanks. In addition, dose rate measurements on existing waste material will be performed to determine the fraction of dose rate attributable to both removable and fixed contamination. Samples will also be collected to support studies of decontamination methods that are effective in removing the fixed contamination present on the waste. Sampling performed under this plan will meet criteria established in BNF-2596, Data Quality Objectives for the B-Cell Waste Stream Classification Sampling, J. M. Barnett, May 1998.

  10. stream-stream: Stellar and dark-matter streams interactions

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2017-02-01

    Stream-stream analyzes the interaction between a stellar stream and a disrupting dark-matter halo. It requires galpy (ascl:1411.008), NEMO (ascl:1010.051), and the usual common scientific Python packages.

  11. Public attitudes about nuclear waste

    SciTech Connect

    Bisconti, A.S.

    1991-12-01

    There is general agreement that nuclear waste is an important national issue. It certainly is important to the industry. congress, too, gives high priority to nuclear waste disposal. In a recent pool by Reichman, Karten, Sword, 300 congressional staffers named nuclear waste disposal as the top nuclear energy-related legislative issue for Congress to address. In this paper most of the data the author discusses are from national polls that statistically represent the opinions of all American adults all across the country, as well as polls conducted in Nevada that statistically represent the opinions of all adults in that state. All the polls were by Cambridge Reports and have a margin of error of {plus_minus} 3%.

  12. Waste-assimilation capacity of the Arkansas River in Pueblo County, Colorado, as it relates to water-quality guidelines and stream classification

    USGS Publications Warehouse

    Cain, Doug; Baldridge, Duaina; Edelmann, Patrick

    1980-01-01

    The waste-assimulation capacity of a 42-mile reach of the Arkansas River in Pueblo County, Colo., was evaluated using a one-dimensional steady-state water-quality model. The model is capable of accurately predicting concentrations of carbonaceous biochemical oxygen demand, total ammonia, total nitrate and dissolved oxygen; predicted concentrations of total organic nitrogen and total nitrite are less accurate. Simulation capability for nonionized ammonia was provided by defining its relationship to total ammonia. The model was used to simulate the water-quality effects of 63 combinations of wastewater treatment at the Pueblo Wastewater Treatment Plant and CF and I Steel Corporation. The mixing zone of the effluent from the Pueblo Wastewater Treatment Plant with the Arkansas River was determined to be 2.7 miles in length during the study. (USGS)

  13. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  14. Stream Studies.

    ERIC Educational Resources Information Center

    Stein, Scott

    1997-01-01

    Outlines a science curriculum reform effort aimed at enabling students to collect original data concerning an environmental parameter such as water quality on a yearly basis. Students track the overall health of the stream by analyzing both biotic and abiotic factors. (DDR)

  15. Stream Studies.

    ERIC Educational Resources Information Center

    Hamilton City Board of Education (Ontario).

    This manual provides teachers with some knowledge of ecological study methods and techniques used in collecting data when plants and animals are studied in the field. Most activities deal with the interrelatedness of plant and animal life to the structure and characteristics of a stream and pond. Also included in this unit plan designed for the…

  16. WCATS: Waste Documentation, Course No. 8504

    SciTech Connect

    Simpson, Sandy

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  17. ICDF Complex Operations Waste Management Plan

    SciTech Connect

    W.M. Heileson

    2006-12-01

    This Waste Management Plan functions as a management and planning tool for managing waste streams generated as a result of operations at the Idaho CERCLA Disposal Facility (ICDF) Complex. The waste management activities described in this plan support the selected remedy presented in the Waste Area Group 3, Operable Unit 3-13 Final Record of Decision for the operation of the Idaho CERCLA Disposal Facility Complex. This plan identifies the types of waste that are anticipated during operations at the Idaho CERCLA Disposal Facility Complex. In addition, this plan presents management strategies and disposition for these anticipated waste streams.

  18. Comparison between mixed liquors of two side-stream membrane bioreactors treating wastewaters from waste management plants with high and low solids anaerobic digestion.

    PubMed

    Zuriaga-Agustí, E; Mendoza-Roca, J A; Bes-Piá, A; Alonso-Molina, J L; Fernández-Giménez, E; Álvarez-Requena, C; Muñagorri-Mañueco, F; Ortiz-Villalobos, G

    2016-09-01

    In the last years, biological treatment plants for the previously separated organic fraction from municipal solid wastes (OFMSW) have gained importance. In these processes a liquid effluent (liquid fraction from the digestate and leachate from composting piles), which has to be treated previously to its discharge, is produced. In this paper, the characteristics of the mixed liquor from two full-scale membrane bioreactors treating the effluents of two OFMSW treatment plants have been evaluated in view to study their influence on membrane fouling in terms of filterability. For that, the mixed liquor samples have been ultrafiltrated in an UF laboratory plant. Besides, the effect of the influent characteristics to MBRs and the values of the chemical and physical parameters of the mixed liquors on the filterability have been studied. Results showed that the filterability of the mixed liquor was strongly influenced by the soluble microbial products in the mixed liquors and the influent characteristics to MBR. Permeate flux of MBR mixed liquor treating the most polluted wastewater was considerable the lowest (around 20 L/m(2) h for some samples), what was explained by viscosity and soluble microbial products concentration higher than those measured in other MBR mixed liquor.

  19. Secondary Waste Cast Stone Waste Form Qualification Testing Plan

    SciTech Connect

    Westsik, Joseph H.; Serne, R. Jeffrey

    2012-09-26

    The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

  20. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect

    1995-03-31

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  1. 76 FR 59960 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... AGENCY 40 CFR Part 261 Hazardous Waste Management System; Identification and Listing of Hazardous Waste... Planning and Permitting Division, Corrective Action and Waste Minimization Section (6PD-C), 1445 Ross... will be taken on this petition. A new petition will be required for this waste stream. List of Subjects...

  2. Process Waste Assessment, Mechanics Shop

    SciTech Connect

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags and spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.

  3. CLAB Transuranic Waste Spreadsheets

    SciTech Connect

    Leyba, J.D.

    2000-08-11

    The Building 772-F Far-Field Transuranic (TRU) Waste Counting System is used to measure the radionuclide content of waste packages produced at the Central Laboratory Facilities (CLAB). Data from the instrument are entered into one of two Excel spreadsheets. The waste stream associated with the waste package determines which spreadsheet is actually used. The spreadsheets calculate the necessary information required for completion of the Transuranic Waste Characterization Form (OSR 29-90) and the Radioactive Solid Waste Burial Ground Record (OSR 7-375 or OSR 7-375A). In addition, the spreadsheets calculate the associated Low Level Waste (LLW) stream information that potentially could be useful if the waste container is ever downgraded from TRU to LLW. The spreadsheets also have the capability to sum activities from source material added to a waste container after assay. A validation data set for each spreadsheet along with the appropriate results are also presented in this report for spreadsheet verification prior to each use.

  4. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

  5. High-priority topics for cancer quality measure development: results of the 2012 American Society of Clinical Oncology Collaborative Cancer Measure Summit.

    PubMed

    Hassett, Michael J; McNiff, Kristen K; Dicker, Adam P; Gilligan, Timothy; Hendricks, Carolyn B; Lennes, Inga; Murray, Thomas; Krzyzanowska, Monika K

    2014-05-01

    Most cancer quality measures focus on individual cancers, assess specific providers, and evaluate processes of care. Although important, these efforts are not sufficient. A more comprehensive measure set is needed to address gaps in care, focus on patients rather than providers, and assess the cross-cutting aspects of care that are relevant to all patients with cancer throughout the trajectory of their illness. With the long-term goal of developing a more comprehensive oncology measure set, the American Society of Clinical Oncology (ASCO) organized a collaborative measure summit that used an iterative consensus approach to identify priorities for the development of new cancer quality measures. The summit, which included professional societies and patient/consumer advocacy organizations, was held during the ASCO Quality Care Symposium in December 2012. This effort, which brought together 12 diverse stakeholders, identified 10 high-priority topics for cancer quality measure development that cross-cut cancer diagnoses and care settings and addressed patient-centered concerns. Topics of particular interest included planning and counseling before therapy, interdisciplinary and multidisciplinary coordinated care, comprehensive symptom assessment, patient experience of care, and use of palliative care and hospice services. This is an important first step in the development of patient-centered, cross-cutting cancer quality measures. Addressing the high-priority topics identified by this effort will help fill the gaps left by existing cancer quality measures, including care coordination and transitions, quality of life, safety, experience of care, and outcomes. More work will be needed to specify, implement, and validate measures based on these topics. Copyright © 2014 by American Society of Clinical Oncology.

  6. Immobilization of fission products in phosphate ceramic waste forms

    SciTech Connect

    Singh, D.

    1996-10-01

    The goal of this project is to develop and demonstrate the feasibility of a novel low-temperature solidification/stabilization (S/S) technology for immobilizing waste streams containing fission products such as cesium, strontium, and technetium in a chemically bonded phosphate ceramic. This technology can immobilize partitioned tank wastes and decontaminate waste streams containing volatile fission products.

  7. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  8. Equilibrium Temperature Profiles within Fission Product Waste Forms

    SciTech Connect

    Kaminski, Michael D.

    2016-10-01

    We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.

  9. Removal of TcO 4 from Representative Nuclear Waste Streams with Layered Potassium Metal Sulfide Materials

    SciTech Connect

    Neeway, James J.; Asmussen, R. Matthew; Lawter, Amanda R.; Bowden, Mark E.; Lukens, Wayne W.; Sarma, Debajit; Riley, Brian J.; Kanatzidis, Mercouri G.; Qafoku, Nikolla P.

    2016-06-14

    Many efforts have focused on the sequestration and immobilization of 99Tc because the radionuclide is highly mobile in oxidizing environments and presents serious health risks due to its radiotoxicity and long half-life (t1/2 = 213 000 a). One of the more common methods for Tc removal from solution and immobilization in solids is based on reducing Tc from highly soluble Tc(VII) to sparingly soluble Tc(IV). In order to remove solution Tc through this reduction process, the Tc-sequestering solid must contain a reducing agent and, ideally, the Tc-sequestering material would function in a large range of chemical environments. For long-term stability, the reduced Tc would preferentially be incorporated into the resulting mineral structure instead of simply being sorbed onto the mineral surface. Here, we report results obtained from batch sorption experiments performed in anoxic and oxic conditions with two sulfide-containing potassium metal sulfide (KMS) materials, known as KMS-2 and KMS-2-SS. In deionized water in anoxic conditions after 15 d of contact, KMS-2 is capable of removing ~45% of Tc and KMS-2-SS is capable of removing ~90% of Tc. The improved performance of KMS-2-SS compared to KMS-2 in deionized water in anoxic conditions appears to be linked both to a higher pH resulting from the batch sorption experiments performed with KMS-2-SS and a higher overall purity of KMS-2-SS. Both materials perform even better in highly caustic (pH~13.5), high ionic strength (8.0 M) simulated Hanford low-activity waste solutions, removing more than 90% Tc after 15 d of contact in anoxic conditions. Post-reaction solids analysis indicate that Tc(VII) is reduced to Tc(IV) and that Tc(IV) is bonded to S atoms in the resulting KMS-2 structure in a Tc2S7 form. In contrast to previous ion exchange experiments with other KMS materials, the batch sorption experiments examining Tc removal cause the initially crystalline KMS materials to lose much of their initial long-range order.

  10. Mixed wasted integrated program: Logic diagram

    SciTech Connect

    Mayberry, J.; Stelle, S.; O`Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  11. Waste Preparation and Transport Chemistry: Results of the FY 2001 Studies

    SciTech Connect

    Hunt, R.D.

    2002-03-25

    During FY 2001, tank farm operations at Hanford and the Savannah River Site (SRS) continued to be negatively impacted by the unintended formation of solids. At Hanford, the primary solids formation problem involves a series of plugged pipes and pumps during the saltwell pumping activities of the interim stabilization program. For example, transfers of tank S-102 waste were suspended due to a plugged pipeline or a mechanical problem with the transfer pump. The replacement pump then failed within 2 weeks. In contrast, since full-scale waste remediation activities such as vitrification were initiated, the SRS has encountered a wider range of problems due to unwanted solids. The 2H evaporator system was shut down because of the formation of aluminosilicate deposits with enriched uranium in the evaporator pot. While high concentrations of aluminum are expected in the tank waste due to previous canyon operations, the primary source of silicon is the recycle stream from the vitrifier. While solids formation can be expected when waste streams are combined, the formation of the aluminosilicate deposits required an elevated temperature within the evaporator. The shutdown of the 2H evaporator led to a severe shortage of tank space. Therefore, the SRS tank farm was forced to transfer highly concentrated waste, which led to a plugged transfer pump in tank 32. For each of the proposed cesium removal technologies for the SRS, unwanted solids formation occurred during the large laboratory-scale tests prior to the final selection of the solvent extraction process. It can be expected that further problems will be encountered as more unit operations of the remediation effort are deployed and as more waste streams are combined. Since these problems have already led to costly schedule delays, the tank farm operators at both sites have identified the prevention of solids formation as a high-priority need. In response to this need, the Tank Focus Area has assembled a team of researchers

  12. RCRA Permit for a Hazardous Waste Management Facility, Permit Number NEV HW0101, Annual Summary/Waste Minimization Report

    SciTech Connect

    Arnold, Patrick

    2014-02-14

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  13. Streaming Prominence

    NASA Image and Video Library

    2017-07-05

    A prominence at the edge of the sun provided us with a splendid view of solar plasma as it churned and streamed over less than one day (June 25-26, 2017). The charged particles of plasma were being manipulated by strong magnetic forces. When viewed in this wavelength of extreme ultraviolet light, we can trace the movements of the particles. Such occurrences are fairly common but much easier to see when they are near the sun's edge. For a sense of scale, the arch of prominence in the still image has risen up several times the size of Earth. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA21768

  14. Catalytic oxidation of waste materials

    NASA Technical Reports Server (NTRS)

    Jagow, R. B.

    1977-01-01

    Aqueous stream of human waste is mixed with soluble ruthenium salts and is introduced into reactor at temperature where ruthenium black catalyst forms on internal surfaces of reactor. This provides catalytically active surface to convert oxidizable wastes into breakdown products such as water and carbon dioxide.

  15. Multimedia strategy considers waste treatment

    SciTech Connect

    Phillips, J.B.

    1995-05-01

    The advent of multimedia pollution prevention programs has raised some interesting and challenging questions on the subject of facility operations. First and foremost is the goal of a multimedia pollution prevention program: how can industrial streams in an operating facility be treated to prevent pollutants from escaping in a particular effluent or waste streams without transferring the same pollutants to another medium? Once this is resolved, the next issue to be addressed is the fate of pollutants removed from effluent streams. EPA is moving toward discouraging destruction as an acceptable means of waste treatment. The strategies are presented for handling pollutants from one media without contaminating another.

  16. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  17. Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy

    EPA Pesticide Factsheets

    EPA developed the non-hazardous materials and waste management hierarchy in recognition that no single waste management approach is suitable for managing all materials and waste streams in all circumstances.

  18. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    SciTech Connect

    Not Available

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  19. DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT

    EPA Science Inventory

    In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. The intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative s...

  20. DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT

    EPA Science Inventory

    In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. The intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative s...

  1. Natural carbon-14 activity of organic substances in streams

    USGS Publications Warehouse

    Rosen, A.A.; Rubin, M.

    1964-01-01

    Carbon-14 measurements made on organic contaminants extracted from streams show percentages of industrial waste and domestic sewage. The method, used previously for studies of the atmosphere, can be used in studies of pollution sources.

  2. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... Listing of Hazardous Waste: Carbon Dioxide (CO2) Streams in Geologic Sequestration Activities AGENCY...) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the definition of... Recovery Act (RCRA) to conditionally exclude carbon dioxide (CO 2 ) streams that are hazardous from the...

  3. New prompt fission gamma-ray spectral data from 239Pu(nth, f) in response to a high priority request from OECD Nuclear Energy Agency

    NASA Astrophysics Data System (ADS)

    Gatera, Angélique; Belgya, Tamás; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Lebois, Matthieu; Maróti, Boglárka; Oberstedt, Stephan; Oberstedt, Andreas; Postelt, Frederik; Qi, Liqiang; Szentmiklósi, Laszló; Vidali, Marzio; Zeiser, Fabio

    2017-09-01

    Benchmark reactor calculations have revealed an underestimation of γ-heat following fission of up to 28%. To improve the modelling of new nuclear reactors, the OECD/NEA initiated a nuclear data High Priority Request List (HPRL) entry for the major isotopes (235U, 239Pu). In response to that HPRL entry, we executed a dedicated measurement program on prompt fission γ-rays employing state-of-the-art lanthanum bromide (LaBr3) detectors with superior timing and good energy resolution. Our new results from 252Cf(sf), 235U(nth,f) and 241Pu(nth,f) provide prompt fission γ-ray spectra characteristics : average number of photons per fission, average total energy per fission and mean photon energy; all within 2% of uncertainty. We present preliminary results on 239Pu(nth,f), recently measured at the Budapest Neutron Centre and supported by the CHANDA Trans-national Access Activity, as well as discussing our different published results in comparison to the historical data and what it says about the discrepancy observed in the benchmark calculations.

  4. Hanford Site Secondary Waste Roadmap

    SciTech Connect

    Westsik, Joseph H.

    2009-01-29

    Summary The U.S. Department of Energy (DOE) is making plans to dispose of 54 million gallons of radioactive tank wastes at the Hanford Site near Richland, Washington. The high-level wastes and low-activity wastes will be vitrified and placed in permanent disposal sites. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents, and these need to be processed and disposed of also. The Department of Energy Office of Waste Processing sponsored a meeting to develop a roadmap to outline the steps necessary to design the secondary waste forms. Representatives from DOE, the U.S. Environmental Protection Agency, the Washington State Department of Ecology, the Oregon Department of Energy, Nuclear Regulatory Commission, technical experts from the DOE national laboratories, academia, and private consultants convened in Richland, Washington, during the week of July 21-23, 2008, to participate in a workshop to identify the risks and uncertainties associated with the treatment and disposal of the secondary wastes and to develop a roadmap for addressing those risks and uncertainties. This report describes the results of the roadmap meeting in Richland. Processing of the tank wastes will generate secondary wastes, including routine solid wastes and liquid process effluents. The secondary waste roadmap workshop focused on the waste streams that contained the largest fractions of the 129I and 99Tc that the Integrated Disposal Facility risk assessment analyses were showing to have the largest contribution to the estimated IDF disposal impacts to groundwater. Thus, the roadmapping effort was to focus on the scrubber/off-gas treatment liquids with 99Tc to be sent to the Effluent Treatment Facility for treatment and solidification and the silver mordenite and carbon beds with the captured 129I to be packaged and sent to the IDF. At the highest level, the secondary waste roadmap includes elements addressing regulatory and

  5. Medical waste management - A review.

    PubMed

    Windfeld, Elliott Steen; Brooks, Marianne Su-Ling

    2015-11-01

    This paper examines medical waste management, including the common sources, governing legislation and handling and disposal methods. Many developed nations have medical waste legislation, however there is generally little guidance as to which objects can be defined as infectious. This lack of clarity has made sorting medical waste inefficient, thereby increasing the volume of waste treated for pathogens, which is commonly done by incineration. This review highlights that the unnecessary classification of waste as infectious results in higher disposal costs and an increase in undesirable environmental impacts. The review concludes that better education of healthcare workers and standardized sorting of medical waste streams are key avenues for efficient waste management at healthcare facilities, and that further research is required given the trend in increased medical waste production with increasing global GDP.

  6. Multipurpose optimization models for high level waste vitrification

    SciTech Connect

    Hoza, M.

    1994-08-01

    Optimal Waste Loading (OWL) models have been developed as multipurpose tools for high-level waste studies for the Tank Waste Remediation Program at Hanford. Using nonlinear programming techniques, these models maximize the waste loading of the vitrified waste and optimize the glass formers composition such that the glass produced has the appropriate properties within the melter, and the resultant vitrified waste form meets the requirements for disposal. The OWL model can be used for a single waste stream or for blended streams. The models can determine optimal continuous blends or optimal discrete blends of a number of different wastes. The OWL models have been used to identify the most restrictive constraints, to evaluate prospective waste pretreatment methods, to formulate and evaluate blending strategies, and to determine the impacts of variability in the wastes. The OWL models will be used to aid in the design of frits and the maximize the waste in the glass for High-Level Waste (HLW) vitrification.

  7. River and Stream Pollution

    MedlinePlus

    ... Coloring Science Experiments Stories Lessons River and Stream Pollution Kids Homepage Topics Pollution River and Stream Pollution ... stream in the first place by disturbing the land as little as possible. Farmers and construction workers ...

  8. Techniques of fisheries management: water quality assessment with stream insects

    Treesearch

    A. Dennis Lemly

    2000-01-01

    Nutrient enrichment of streams is a long-standing problem that continues to have substantial local and regional consequences. For example, water quality of streams in the southern Appalachian Mountains of the U.S. can be seriously degraded by organic nutrients leached from animal wastes if cattle or other livestock are allowed to graze in the riparian zone. Local...

  9. Combustible radioactive waste treatment by incineration and chemical digestion

    SciTech Connect

    Stretz, L.A.; Crippen, M.D.; Allen, C.R.

    1980-05-28

    A review is given of present and planned combustible radioactive waste treatment systems in the US. Advantages and disadvantages of various systems are considered. Design waste streams are discussed in relation to waste composition, radioactive contaminants by amount and type, and special operating problems caused by the waste.

  10. Engineering Greener Processes--Laser Cutter Transforms Printing Waste

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2011-01-01

    Many of today's students have embraced an environmental ethic and are motivated by efforts to reduce waste or to remanufacture waste into viable products. In-class efforts to reuse and remanufacture waste can be especially motivating. They can also help students develop a better understanding of life-cycle analysis, waste-stream management,…

  11. Engineering Greener Processes--Laser Cutter Transforms Printing Waste

    ERIC Educational Resources Information Center

    Xu, Renmei; Flowers, Jim

    2011-01-01

    Many of today's students have embraced an environmental ethic and are motivated by efforts to reduce waste or to remanufacture waste into viable products. In-class efforts to reuse and remanufacture waste can be especially motivating. They can also help students develop a better understanding of life-cycle analysis, waste-stream management,…

  12. Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)

    DOE Data Explorer

    The Waste Isolation Pilot Plant (WIPP) is a DOE facility located in the desert outside Carlsbad, New Mexico. Its mission is to safely dispose of defense-related transuranic radioactive waste. Disposal ôroomsö are carved out of the Permian Salt Formation deep below the desertÆs surface. The WIPP Waste Information Service (WWIS) was established in accordance with an Agreement between the United States Department of Energy and the New Mexico Environment Department, dated February 11, 2005, Docket Number HWB 04-07 (CO). The service provides information the containers emplaced at WIPP and the waste products they hold. The public may query by shipment number, location of waste stream or location of the container after it is placed at WIPP, date placed, and Haz Codes or other information about the waste stream profiles. For example, choosing the waste stream identified as ID-SDA-SLUDGE reveals that it may contain more than 20 chemical waste products, including arsenic, spent halogenated solvents, potassium cyanide, and chloroform. The system then tells you each numbered container that has this kind of sludge. Container data is available within 14 days after the containerÆs emplacement in the WIPP Repository.

  13. Pollution Prevention Opportunity Assessment for Landscape Waste

    SciTech Connect

    Phillips, N.M.; Raubfogel, S.J.

    1996-08-01

    DOE orders mandate the development of a waste minimization program. The program`s goals are to: reduce volumes of wastes and toxicity; implement a system of tracking and reporting improvements; and devise a method for performing tasks. To satisfy the requirements of this program, Sandia conducts pollution prevention opportunity assessments (PPOAs) to identify waste-generating processes. The information collected from a PPOA then is used to identify waste minimization opportunities. This pollution prevention opportunity assessment was conducted using Sandia`s new methodology for prioritizing, evaluating and managing site-wide waste streams. This new methodology and the list of priority waste streams are described in the wastes revision of the Pollution Prevention Opportunity Assessment Plant. This PPOA addresses landscape waste minimization, partially in response to recent legislation and regulations.

  14. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is a macronutrient essential for all living organisms. Regrettably, it is a finite resource since phosphate rock (PR) is the main material used for production of P fertilizers. Globally, the demand for quality PR is escalating due to many factors including increasing human population....

  15. Removal of heavy metals from waste streams

    SciTech Connect

    Spence, M.D.; Kozaruk, J.M.; Melvin, M.; Gardocki, S.M.

    1988-07-19

    A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water, wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.

  16. Phosphorus recovery and reuse from waste streams

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) is an important macro-nutrient required by higher plants for growth and development. Phosphate rock is the main raw material for P fertilizers and the global rock phosphate production stands at 191,000 thousand tonnes (t) in the year 2011 (Jaisinski, 2012). Phosphate rock is a scarce ...

  17. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  18. Thermal loading of natural streams

    USGS Publications Warehouse

    Jackman, Alan P.; Yotsukura, Nobuhiro

    1977-01-01

    The impact of thermal loading on the temperature regime of natural streams is investigated by mathematical models, which describe both transport (convection-diffusion) and decay (surface dissipation) of waste heat over 1-hour or shorter time intervals. The models are derived from the principle of conservation of thermal energy for application to one- and two-dimensional spaces. The basic concept in these models is to separate water temperature into two parts, (1) excess temperature due to thermal loading and (2) natural (ambient) temperature. This separation allows excess temperature to be calculated from the models without incoming radiation data. Natural temperature may either be measured in prototypes or calculated from the model. If use is made of the model, however, incoming radiation is required as input data. Comparison of observed and calculated temperatures in seven natural streams shows that the models are capable of predicting transient temperature regimes satisfactorily in most cases. (Woodard-USGS)

  19. CRYSTALLINE CERAMIC WASTE FORMS: REFERENCE FORMULATION REPORT

    SciTech Connect

    Brinkman, K.; Fox, K.; Marra, J.

    2012-05-15

    The research conducted in this work package is aimed at taking advantage of the long term thermodynamic stability of crystalline ceramics to create more durable waste forms (as compared to high level waste glass) in order to reduce the reliance on engineered and natural barrier systems. Durable ceramic waste forms that incorporate a wide range of radionuclides have the potential to broaden the available disposal options and to lower the storage and disposal costs associated with advanced fuel cycles. Assemblages of several titanate phases have been successfully demonstrated to incorporate radioactive waste elements, and the multiphase nature of these materials allows them to accommodate variation in the waste composition. Recent work has shown that they can be successfully produced from a melting and crystallization process. The objective of this report is to explain the design of ceramic host systems culminating in a reference ceramic formulation for use in subsequent studies on process optimization and melt property data assessment in support of FY13 melter demonstration testing. The waste stream used as the basis for the development and testing is a combination of the projected Cs/Sr separated stream, the Trivalent Actinide - Lanthanide Separation by Phosphorous reagent Extraction from Aqueous Komplexes (TALSPEAK) waste stream consisting of lanthanide fission products, the transition metal fission product waste stream resulting from the transuranic extraction (TRUEX) process, and a high molybdenum concentration with relatively low noble metal concentrations. In addition to the combined CS/LN/TM High Mo waste stream, variants without Mo and without Mo and Zr were also evaluated. Based on the results of fabricating and characterizing several simulated ceramic waste forms, two reference ceramic waste form compositions are recommended in this report. The first composition targets the CS/LN/TM combined waste stream with and without Mo. The second composition targets

  20. Waste Reduction plan for Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1991-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

  1. Waste Reduction plan for Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1991-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

  2. Waste and Simulant Precipitation Issues

    SciTech Connect

    Steele, W.V.

    2000-11-29

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams.

  3. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  4. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  5. Co-disposal of mixed waste materials

    SciTech Connect

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal.

  6. Vitrification and waste glass compositional limits

    SciTech Connect

    Chapman, C.C.; Whittington, K.F.; Peters, R.D.

    1994-08-01

    The most important issue when evaluating the suitability of a waste stream for vitrification is the composition of the waste. Appropriate analytical data are required to ensure that adequate information is available for evaluating and implementing the technology. Although vitrification can be used to immobilize almost any waste stream through dilution of the waste with glass formers, it may be too costly for certain limiting conditions. This report provides guidelines of these limit sand the consequent analytical requirements that are necessary for appropriate qualitative cost estimates.

  7. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2012, Nevada National Security Site, Nevada

    SciTech Connect

    Arnold, P. M.

    2013-02-21

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101, issued 10/17/10.

  8. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report - Calendar Year 2014

    SciTech Connect

    Arnold, Patrick

    2015-02-17

    This report summarizes the EPA identification number of each generator from which the Permittee received a waste stream, a description and quantity of each waste stream in tons and cubic feet received at the facility, the method of treatment, storage, and/or disposal for each waste stream, a description of the waste minimization efforts undertaken, a description of the changes in volume and toxicity of waste actually received, any unusual occurrences, and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  9. RCRA Permit for a Hazardous Waste Management Facility Permit Number NEV HW0101 Annual Summary/Waste Minimization Report Calendar Year 2011

    SciTech Connect

    NSTec Environmental Restoration

    2012-02-16

    This report summarizes the U.S. Environmental Protection Agency (EPA) identification number of each generator from which the Permittee received a waste stream; a description and quantity of each waste stream in tons and cubic feet received at the facility; the method of treatment, storage, and/or disposal for each waste stream; a description of the waste minimization efforts undertaken; a description of the changes in volume and toxicity of waste actually received; any unusual occurrences; and the results of tank integrity assessments. This Annual Summary/Waste Minimization Report is prepared in accordance with Section 2.13.3 of Permit Number NEV HW0101.

  10. Pollution prevention opportunity assessment for the SNL/California waste management facilities

    SciTech Connect

    Braye, S.; Phillips, N.M.

    1995-01-01

    SNL/California`s waste management facilities, Bldgs. 961 and 962-2, generate a secondary stream of hazardous and radioactive waste. This waste stream is generated mainly during the processing and handling of hazardous, radioactive, and mixed wastes (primary waste stream), which are generated by the laboratories, and when cleaning up spills. The secondary waste stream begins with the removal of a generator`s hazardous, radioactive, and mixed waste from specified collection areas. The waste stream ends when the containers of processed waste are loaded for shipment off-site. The total amount of secondary hazardous waste generated in the waste management facilities from January 1993 to July 1994 was 1,160.6 kg. The total amount of secondary radioactive waste generated during the same period was 1,528.8 kg (with an activity of 0.070 mCi). Mixed waste usually is not generated in the secondary waste stream. This pollution prevention opportunity assessment (PPOA) was conducted using the graded approach methodology developed by the Department of Energy (DOE) PPOA task group. The original method was modified to accommodate the needs of Sandia`s site-specific processes. The options generated for potential hazardous waste minimization, cost savings, and environmental health and safety were the result of a waste minimization team effort. The results of the team efforts are summarized.

  11. 40 CFR 60.3012 - What should I include in my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 2004 Model Rule-Waste Management Plan § 60.3012 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements.... The plan must identify any additional waste management measures and implement those measures...

  12. 40 CFR 60.2901 - What should I include in my waste management plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Analysis Waste Management Plan § 60.2901 What should I include in my waste management plan? A waste management plan must include consideration of the reduction or separation of waste-stream elements such as... must identify any additional waste management measures and implement those measures the...

  13. Leaching behavior of phosphate-bonded ceramic waste forms

    SciTech Connect

    Singh, D.; Wagh, A.S.; Jeong, S.Y.; Dorf, M.

    1996-04-01

    Over the last few years, Argonne National Laboratory has been developing room-temperature-setting chemically bonded phosphate ceramics for solidifying and stabilizing low-level mixed wastes. This technology is crucial for stabilizing waste streams that contain volatile species and off-gas secondary waste streams generated by high-temperature treatment of such wastes. We have developed a magnesium phosphate ceramic to treat mixed wastes such as ash, salts, and cement sludges. Waste forms of surrogate waste streams were fabricated by acid-base reactions between the mixtures of magnesium oxide powders and the wastes, and phosphoric acid or acid phosphate solutions. Dense and hard ceramic waste forms are produced in this process. The principal advantage of this technology is that the contaminants are immobilized by both chemical stabilization and subsequent microencapsulation of the reaction products. This paper reports the results of durability studies conducted on waste forms made with ash waste streams spiked with hazardous and radioactive surrogates. Standard leaching tests such as ANS 16.1 and TCLP were conducted on the final waste forms. Fates of the contaminants in the final waste forms were established by electron microscopy. In addition, stability of the waste forms in aqueous environments was evaluated with long-term water-immersion tests.

  14. Laboratory optimization tests of technetium decontamination of Hanford Waste Treatment Plant low activity waste melter off-gas condensate simulant

    SciTech Connect

    Taylor-Pashow, Kathryn M.L.; McCabe, Daniel J.

    2015-11-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable simplified operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste.

  15. High Solids Consolidated Incinerator Facility (CIF) Wastes Stabilization with Ceramicrete and Super Cement

    SciTech Connect

    Walker, B.W.

    1999-09-14

    High Solids ash and scrubber solution waste streams were generated at the incinerator facility at SRS by burning radioactive diatomaceous filter rolls which contained small amounts of uranium, and listed solvents (F and U). This report details solidification activities using selected Mixed Waste Focus Area (MWFA) technologies with the High Solids waste streams.

  16. Processing constraints on high-level nuclear waste glasses for Hanford Waste Vitrification Plant

    SciTech Connect

    Hrma, P.R.

    1993-09-01

    The work presented in this paper is a part of a major technology program supported by the U.S. Department of Energy (DOE) in preparation for the planned operation of the Hanford Waste Vitrification Plant (HWVP). Because composition of Hanford waste varies greatly, processability is a major concern for successful vitrification. This paper briefly surveys general aspects of waste glass processability and then discusses their ramifications for specific examples of Hanford waste streams.

  17. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    USGS Publications Warehouse

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    -intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.

  18. Customer service model for waste tracking at Los Alamos National Laboratory

    SciTech Connect

    Dorries, Alison M

    2011-02-02

    The goal is to transition from five legacy database systems that have reached end-of-life to a single inventory system that supports workflow, data, and reporting for all waste streams. Plutonium Processing Facility (TA-55) Waste Team provides a high quality system that insures safe, efficient and compliant management of all radioactive and hazardous wastes generated, including waste characterization and repackaging of Transuranic Waste (TRU) and TRU mixed waste for shipment to the Waste Isolation Pilot Plant (WIPP).

  19. Next Generation Bare Base Waste Processing System (Phase 1)

    DTIC Science & Technology

    1997-08-01

    Municipal Solid Waste Generation in the United States in 1994 ............. 10 Table 5.3.1.2 Estimated Bare Base Solid Waste Generation...with municipal solid waste (MSW) generation rates reported in contemporary literature. Liquid waste stream estimates were made using generally...Therefore, information regarding municipal solid waste (MSW) generation in the United States was also used to derive estimates of the amount and nature ofthe

  20. Effectiveness of Onsite Nurse Mentoring in Improving Quality of Institutional Births in the Primary Health Centres of High Priority Districts of Karnataka, South India: A Cluster Randomized Trial

    PubMed Central

    Bradley, Janet; Mony, Prem; Cunningham, Troy; Washington, Maryann; Bhat, Swarnarekha; Rao, Suman; Thomas, Annamma; S, Rajaram; Kar, Arin; N, Swaroop; B M, Ramesh; H L, Mohan; Fischer, Elizabeth; Crockett, Maryanne; Blanchard, James; Moses, Stephen; Avery, Lisa

    2016-01-01

    Background In India, although the proportion of institutional births is increasing, there are concerns regarding quality of care. We assessed the effectiveness of a nurse-led onsite mentoring program in improving quality of care of institutional births in 24/7 primary health centres (PHCs that are open 24 hours a day, 7 days a week) of two high priority districts in Karnataka state, South India. Primary outcomes were improved facility readiness and provider preparedness in managing institutional births and associated complications during child birth. Methods All functional 24/7 PHCs in the two districts were included in the study. We used a parallel, cluster randomized trial design in which 54 of 108 facilities received six onsite mentoring visits, along with an initial training update and specially designed case sheets for providers; the control arm received just the initial training update and the case sheets. Pre- and post-intervention surveys were administered in April-2012 and August-2013 using facility audits, provider interviews and case sheet audits. The provider interviews were administered to all staff nurses available at the PHCs and audits were done of all the filled case sheets during the month prior to data collection. In addition, a cost analysis of the intervention was undertaken. Results Between the surveys, we achieved coverage of 100% of facilities and 91.2% of staff nurse interviews. Since the case sheets were newly designed, case-sheet audit data were available only from the end line survey for about 80.2% of all women in the intervention facilities and 57.3% in the control facilities. A higher number of facilities in the intervention arm had all appropriate drugs, equipment and supplies to deal with gestational hypertension (19 vs.3, OR (odds ratio) 9.2, 95% C.I 2.5 to33.6), postpartum haemorrhage (29 vs. 12, OR 3.7, 95% C.I 1.6 to8.3); and obstructed labour (25 vs.9, OR 3.4, 95% CI 1.6 to8.3). The providers in the intervention arm had better

  1. Effectiveness of Onsite Nurse Mentoring in Improving Quality of Institutional Births in the Primary Health Centres of High Priority Districts of Karnataka, South India: A Cluster Randomized Trial.

    PubMed

    Jayanna, Krishnamurthy; Bradley, Janet; Mony, Prem; Cunningham, Troy; Washington, Maryann; Bhat, Swarnarekha; Rao, Suman; Thomas, Annamma; S, Rajaram; Kar, Arin; N, Swaroop; B M, Ramesh; H L, Mohan; Fischer, Elizabeth; Crockett, Maryanne; Blanchard, James; Moses, Stephen; Avery, Lisa

    In India, although the proportion of institutional births is increasing, there are concerns regarding quality of care. We assessed the effectiveness of a nurse-led onsite mentoring program in improving quality of care of institutional births in 24/7 primary health centres (PHCs that are open 24 hours a day, 7 days a week) of two high priority districts in Karnataka state, South India. Primary outcomes were improved facility readiness and provider preparedness in managing institutional births and associated complications during child birth. All functional 24/7 PHCs in the two districts were included in the study. We used a parallel, cluster randomized trial design in which 54 of 108 facilities received six onsite mentoring visits, along with an initial training update and specially designed case sheets for providers; the control arm received just the initial training update and the case sheets. Pre- and post-intervention surveys were administered in April-2012 and August-2013 using facility audits, provider interviews and case sheet audits. The provider interviews were administered to all staff nurses available at the PHCs and audits were done of all the filled case sheets during the month prior to data collection. In addition, a cost analysis of the intervention was undertaken. Between the surveys, we achieved coverage of 100% of facilities and 91.2% of staff nurse interviews. Since the case sheets were newly designed, case-sheet audit data were available only from the end line survey for about 80.2% of all women in the intervention facilities and 57.3% in the control facilities. A higher number of facilities in the intervention arm had all appropriate drugs, equipment and supplies to deal with gestational hypertension (19 vs.3, OR (odds ratio) 9.2, 95% C.I 2.5 to33.6), postpartum haemorrhage (29 vs. 12, OR 3.7, 95% C.I 1.6 to8.3); and obstructed labour (25 vs.9, OR 3.4, 95% CI 1.6 to8.3). The providers in the intervention arm had better knowledge of active

  2. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    SciTech Connect

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  3. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  4. Stream corridor management

    Treesearch

    Richard E. Wehnes

    1989-01-01

    The quality of streams and stream habitat for aquatic life and terrestrial animals in the central hardwood forest can be maintained or enhanced through careful protection, management, and re-establishment of streamside forests.

  5. Regex-Stream

    SciTech Connect

    Goodall, John

    2012-09-01

    Log files are typically semi-or un-structured. To be useable, they need to be parsed into a standard, structured format. Regex-Stream facilitates parsing text files into structured data (JSON) in streams of data.

  6. Estimated vapor pressure for WTP process streams

    SciTech Connect

    Pike, J.; Poirier, M.

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  7. An overview of waste crime, its characteristics, and the vulnerability of the EU waste sector.

    PubMed

    Baird, J; Curry, R; Cruz, P

    2014-02-01

    While waste is increasingly viewed as a resource to be globally traded, increased regulatory control on waste across Europe has created the conditions where waste crime now operates alongside a legitimate waste sector. Waste crime,is an environmental crime and a form of white-collar crime, which exploits the physical characteristics of waste, the complexity of the collection and downstream infrastructure, and the market opportunities for profit. This paper highlights some of the factors which make the waste sector vulnerable to waste crime. These factors include new legislation and its weak regulatory enforcement, the economics of waste treatment, where legal and safe treatment of waste can be more expensive than illegal operations, the complexity of the waste sector and the different actors who can have some involvement, directly or indirectly, in the movement of illegal wastes, and finally that waste can be hidden or disguised and creates an opportunity for illegal businesses to operate alongside legitimate waste operators. The study also considers waste crime from the perspective of particular waste streams that are often associated with illegal shipment or through illegal treatment and disposal. For each, the nature of the crime which occurs is shown to differ, but for each, vulnerabilities to waste crime are evident. The paper also describes some approaches which can be adopted by regulators and those involved in developing new legislation for identifying where opportunities for waste crime occurs and how to prevent it.

  8. Review: mercury in waste incineration.

    PubMed

    van Veizen, Daniel; Langenkamp, Heinrich; Herb, Georg

    2002-12-01

    The paper investigates the sources of mercury (Hg) in municipal/industrial waste and the consequences of the presence of this pollutant for the incineration of this waste. About 1990 the average mercury concentration of the feed stream to incinerators was about 4 mg kg(-1). The concentration decreased considerably during the last decade thanks to a considerable reduction of the application of mercury and to the introduction of effective battery return systems. Presently the mercury concentration in municipal SOLID waste is approximately 2 mg kg(-1). During incineration mercury passes practically for 100% in the flue gas. The techniques for mercury removal from flue gases are discussed at the hand of practical examples. It is concluded that there are a number of processes which guarantee mercury concentrations of <50 microg Nm(-3) in the clean gas, the present emission limit concentration. All mercury control processes produce a new solid or liquid waste stream that contains the mercury removed from the flue gas. This stream has to be disposed of as hazardous waste in a qualified landfill. The flue gas from waste incinerators undergoes very rapid dispersion and dilution after leaving the incinerator stack. It follows that the maximum mercury concentration in the ambient air will remain at least five to six orders of magnitude below the lowest MAC value (=Maximum Admissible Concentration in work spaces) and that public health will not be threatened.

  9. Military hazardous wastes: an overview and analysis

    SciTech Connect

    Kawaoka, K.E.; Malloy, M.C.; Dever, G.L.; Weinberger, L.P.

    1981-12-01

    The report describes and analyzes the management activities and motivating factors of the military in dealing with its hazardous waste streams. Findings and conclusions in areas of concern are given to provide information that may be of value to the future management of military hazardous wastes.

  10. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)

  11. Documents Related to the Hazardous Waste Listing of Chlorinated Aliphatics Production Wastes

    EPA Pesticide Factsheets

    Rulemaking information about the two waste streams from chlorinated aliphatics production that are listed as hazardous including links to the proposed and final rules and a fact sheet about the final rule.

  12. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    SciTech Connect

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

  13. Hanford Site stream-specific reports

    SciTech Connect

    Not Available

    1990-08-01

    This document and the associated 33 stream-specific addenda were prepared in response to public comments received on the Hanford Federal Facility Agreement and Consent Order. The processes used to characterize the effluents and propose designations pursuant to the Washington (State) Administrative Code 173--303, Dangerous Waste Regulations, are described in this parent'' document. A combination of process knowledge and sampling data was used to accomplish these tasks. 26 refs., 1 fig., 4 tabs.

  14. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  15. Waste Inventory for Near Surface Repository (NSR) - 13482

    SciTech Connect

    Vaidotas, Algirdas

    2013-07-01

    The main characteristics, physical, chemical as well as radiological of the waste intended to be disposed of in the planned NSR are described. This description is mainly based on the waste inventory investigations performed by the Ignalina Nuclear Power Plant (INPP). The four different waste streams to be disposed of in the NSR are described and investigated. (authors)

  16. Process Waste Assessment for the Plotting and Digitizing Support Laboratory

    SciTech Connect

    Phillips, N.M.

    1994-04-01

    This Process Waste Assessment was conducted to evaluate the Plotting and Digitizing Support Laboratory, located in Building 913, Room 157. It documents the processes, identifies the hazardous chemical waste streams generated by these processes, recommends possible ways to minimize waste, and serves as a reference for future assessments of this facility.

  17. Decontamination and melting of low-level waste

    SciTech Connect

    Clements, D.W.

    1997-03-01

    This article describes the decommissioning project of the Capenhurst Diffusion Plant in Europe. Over 99 percent of the low-level waste was successfully treated and recycled. Topics include the following: decommissioning philosophy; specialized techniques including plant pretreatment, plant dismantling, size reduction, decontamination, melting, and encapsulation of waste; recycled materials and waste stream; project safety; cost drivers and savings. 5 refs., 5 figs.

  18. Discussion of ``Performance testing of the solid waste sorting plants``

    SciTech Connect

    1996-12-31

    This paper reviews the performance of a municipal solid waste presorting facility in Taiwan. This sorting process, consisting of several essential unit operations, such as bag ripping, magnetic separation, shredding, air classification, and screening was designed to isolate the non-combustible and food waste from the waste stream, and generate the qualified refuse-derived fuel.

  19. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste from the health care waste stream in order to reduce the amount of toxic emissions from... additional measures, the emissions reductions expected to be achieved, and any other environmental or energy... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Waste management plan. 60.55c Section...

  20. 40 CFR 60.55c - Waste management plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste from the health care waste stream in order to reduce the amount of toxic emissions from... additional measures, the emissions reductions expected to be achieved, and any other environmental or energy... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Waste management plan. 60.55c Section...

  1. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  2. Waste Management Planned for the Advanced Fuel Cycle Facility

    SciTech Connect

    Soelberg

    2007-09-01

    The U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program has been proposed to develop and employ advanced technologies to increase the proliferation resistance of spent nuclear fuels, recover and reuse nuclear fuel resources, and reduce the amount of wastes requiring permanent geological disposal. In the initial GNEP fuel cycle concept, spent nuclear fuel is to be reprocessed to separate re-useable transuranic elements and uranium from waste fission products, for fabricating new fuel for fast reactors. The separated wastes would be converted to robust waste forms for disposal. The Advanced Fuel Cycle Facility (AFCF) is proposed by DOE for developing and demonstrating spent nuclear fuel recycling technologies and systems. The AFCF will include capabilities for receiving and reprocessing spent fuel and fabricating new nuclear fuel from the reprocessed spent fuel. Reprocessing and fuel fabrication activities will generate a variety of radioactive and mixed waste streams. Some of these waste streams are unique and unprecedented. The GNEP vision challenges traditional U.S. radioactive waste policies and regulations. Product and waste streams have been identified during conceptual design. Waste treatment technologies have been proposed based on the characteristics of the waste streams and the expected requirements for the final waste forms. Results of AFCF operations will advance new technologies that will contribute to safe and economical commercial spent fuel reprocessing facilities needed to meet the GNEP vision. As conceptual design work and research and design continues, the waste management strategies for the AFCF are expected to also evolve.

  3. Persistent Temporal Streams

    NASA Astrophysics Data System (ADS)

    Hilley, David; Ramachandran, Umakishore

    Distributed continuous live stream analysis applications are increasingly common. Video-based surveillance, emergency response, disaster recovery, and critical infrastructure protection are all examples of such applications. They are characterized by a variety of high- and low-bandwidth streams as well as a need for analyzing both live and archived streams. We present a system called Persistent Temporal Streams (PTS) that supports a higher-level, domain-targeted programming abstraction for such applications. PTS provides a simple but expressive stream abstraction encompassing transport, manipulation and storage of streaming data. In this paper, we present a system architecture for implementing PTS. We provide an experimental evaluation which shows the system-level primitives can be implemented in a lightweight and high-performance manner, and an application-based evaluation designed to show that a representative high-bandwidth stream analysis application can be implemented relatively simply and with good performance.

  4. Mesoscale modeling of the water vapor cycle at Mawrth Vallis: a Mars2020 and ExoMars exploration rovers high-priority landing site

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2017-04-01

    . During this transition, there is surface convergence into the rising branch (similar to the inter-tropical convergence zone on Earth), and dual Hadley cells with one circulation in each hemisphere. At this time, the mean surface winds flow from the high latitudes to equator in both hemispheres, providing the possibility for a direct vapor connection [5, 6]. It is likely that transient waves (e.g., storm systems) as well as boundary currents associated with planetary-scale stationary waves could advect and mix water equatorward, along the surface, in opposition to the Hadley Cell. Conclusion: We are studying whether moist air in northern spring/summer makes it to the surface of Mawrth at Ls 90, Ls 140 and Ls 180, three periods with high column abundance of water vapor at mid/high latitudes. The objective is to determine if the circulation (mean or regional) is favorable for the transport of water vapor from the north polar cap to MV where it might activate hygroscopic salts and/or chlorides [7]. Relative humidity at those different seasons is estimated to test for consistency with column abundances derived from orbit observations. If moist air makes it to MV during Ls90, 140 and/or 180, it should be a go-to site due to enhanced habitability implications. References: [1] Pla-García, J., & Rafkin, S. C., 2015: Meteorological predictions for Mars 2020 Exploration Rov-er high-priority landing sites throug MRAMS Mesoscale Modeling. In EGU General Assembly Conference Abstracts (Vol. 17, p. 12605). [2] Rafkin, S. C. R., Haberle, R. M., and T. I. Michaels, 2001: The Mars Regional Atmospheric Modeling System (MRAMS): Model description and selected simulations. Icarus, 151, 228-256. [3] Rafkin, S. C. R., M. R. V. Sta. Maria, and T. I. Michaels, 2002: Simulation of the atmospheric thermal circulation of a martian volcano using a mesoscale numerical model. Nature, 419, 697-699. [4] Jakosky, B.M., and C.B. Farmer, 1982: The seasonal and global behavior of water vapor in the Mars

  5. Treatment of ORNL process waste

    SciTech Connect

    Berry, J.B.; Brown, C.H. Jr.; Fowler, V.L.; Robinson, S.M.

    1988-01-01

    Because of the shutdown of the hydrofracture process at ORNL, intensive efforts were made to reduce contaminated liquid waste generation rates. Treatment of slightly radioactive process waste has been dramatically improved. The volume of secondary, radioactively contaminated waste streams and the concentration of pollutants discharged to the environment have been reduced. Further improvements, based on results of research and development, are planned. The future value of alternative flowsheets will be compared with process flexibility to determine the optimal upgrade to the treatment plant. 1 ref., 4 figs., 2 tabs.

  6. Sources and processing of CELSS wastes

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.

    1989-01-01

    The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.

  7. Waste source reduction county government case study

    SciTech Connect

    1990-12-31

    Itasca County is located in north-central Minnesota, has a population of 42,000 and is known for its forests and scenic waterways. With Beltrami County, it contains the upper watershed of the Mississippi River. Its major industries are timber and tourism. Itasca County government made a commitment to source reduce its waste as much as possible. Secondarily, what they could not reduce they committed themselves to recycle. The project demonstrates functional reduction in practice. It shows that reduction is a realistic goal for county governments and that reduction can be measured on a waste stream by waste stream basis.

  8. Sources and processing of CELSS wastes

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.

    1989-01-01

    The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.

  9. ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS

    SciTech Connect

    Rogers, B.; Loveland, K.

    2003-02-27

    Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

  10. Hanford Site waste treatment/storage/disposal integration

    SciTech Connect

    MCDONALD, K.M.

    1999-02-24

    In 1998 Waste Management Federal Services of Hanford, Inc. began the integration of all low-level waste, mixed waste, and TRU waste-generating activities across the Hanford site. With seven contractors, dozens of generating units, and hundreds of waste streams, integration was necessary to provide acute waste forecasting and planning for future treatment activities. This integration effort provides disposition maps that account for waste from generation, through processing, treatment and final waste disposal. The integration effort covers generating facilities from the present through the life-cycle, including transition and deactivation. The effort is patterned after the very successful DOE Complex EM Integration effort. Although still in the preliminary stages, the comprehensive onsite integration effort has already reaped benefits. These include identifying significant waste streams that had not been forecast, identifying opportunities for consolidating activities and services to accelerate schedule or save money; and identifying waste streams which currently have no path forward in the planning baseline. Consolidation/integration of planned activities may also provide opportunities for pollution prevention and/or avoidance of secondary waste generation. A workshop was held to review the waste disposition maps, and to identify opportunities with potential cost or schedule savings. Another workshop may be held to follow up on some of the long-term integration opportunities. A change to the Hanford waste forecast data call would help to align the Solid Waste Forecast with the new disposition maps.

  11. Benthic invertebrate fauna, small streams

    Treesearch

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  12. Hazardous Waste

    MedlinePlus

    ... you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint ...

  13. Stainless steel-zirconium alloy waste forms

    SciTech Connect

    McDeavitt, S.M.; Abraham, D.P.; Keiser, D.D. Jr.; Park, J.Y.

    1996-07-01

    An electrometallurgical treatment process has been developed by Argonne National Laboratory to convert various types of spent nuclear fuels into stable storage forms and waste forms for repository disposal. The first application of this process will be to treat spent fuel alloys from the Experimental Breeder Reactor-II. Three distinct product streams emanate from the electrorefining process: (1) refined uranium; (2) fission products and actinides extracted from the electrolyte salt that are processed into a mineral waste form; and (3) metallic wastes left behind at the completion of the electrorefining step. The third product stream (i.e., the metal waste stream) is the subject of this paper. The metal waste stream contains components of the chopped spent fuel that are unaffected by the electrorefining process because of their electrochemically ``noble`` nature; this includes the cladding hulls, noble metal fission products (NMFP), and, in specific cases, zirconium from metal fuel alloys. The selected method for the consolidation and stabilization of the metal waste stream is melting and casting into a uniform, corrosion-resistant alloy. The waste form casting process will be carried out in a controlled-atmosphere furnace at high temperatures with a molten salt flux. Spent fuels with both stainless steel and Zircaloy cladding are being evaluated for treatment; thus, stainless steel-rich and Zircaloy-rich waste forms are being developed. Although the primary disposition option for the actinides is the mineral waste form, the concept of incorporating the TRU-bearing product into the metal waste form has enough potential to warrant investigation.

  14. Epilithic biofilms as hotspots of in-stream nitrification in a high N loaded urban stream

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Merbt, S. N.; Ribot, M.; Casamayor, E. O.; Martí Roca, E.

    2015-12-01

    Nitrification, the oxidation of ammonia to nitrate, is one of the most important biogeochemical processes in high nitrogen loaded urban streams. The first rate-limiting step of the nitrification process is carried out by ammonia-oxidizing (AO) archaea (AOB) and bacteria (AOB) that live in stream sediments and epilithic biofilms. Yet, the relative contribution of these two stream habitats to whole-reach nitrification is largely unknown. We tested the well-established idea that whole-reach nitrification is mainly driven by AO present in hyporheic sediments because of their relative high active surface area compared to the thin epilithic biofilm interface. To do so, we examined substrata-specific nitrification rates and AO transcripts abundance (amoA gene) in mesocosms and scaled data to whole reach. Further, we compared the scaled data to in situ whole-reach nitrification rates and amoA transcript and gene abundances in a high N loaded urban stream downstream of a waste water treatment plant effluent. Against expectations, whole-reach in-stream nitrification was mainly driven by AOB embedded in biofilms growing on the sediment-facing side (> 60%) and light-exposed side (20%) of stream cobbles. Hyporheic sediments, which were mainly colonized by AOA, accounted for 11% of in situ whole-reach nitrification. Our study points epilithic biofilms as hot spots of nitrification within urban stream ecosystems.

  15. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-03-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

  16. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    SciTech Connect

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  17. INITIAL CHARACTERIZATION AND PERFORMANCE EVALUATION OF A ZIRCONIUM-BASED METALLIC WASTE FORM

    SciTech Connect

    Kane, M; Robert Sindelar, R

    2008-09-30

    A metallic waste form or alloy system for immobilization of Zircaloy cladding hulls, Undissolved Solids (UDS), Technicium (Tc) metal and Transition Metal Fission Products (TMFP) waste stream materials from separations processes for commercial spent nuclear fuel has been developed, and initial characterization of the phase assemblage and composition, and corrosion testing under aqueous conditions has been completed for the waste form with various levels of surrogate waste species. The waste stream materials are those from processes being developed as part of the Separations Campaign under the Department of Energy's (DOE's) Global Nuclear Energy Partnership (GNEP) program. The development of waste forms for these materials is under the Waste Form Campaign.

  18. 40 CFR 60.3012 - What should I include in my waste management plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and... waste management plan must include consideration of the reduction or separation of waste-stream elements...

  19. 40 CFR 60.3012 - What should I include in my waste management plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and... waste management plan must include consideration of the reduction or separation of waste-stream elements...

  20. 40 CFR 60.3012 - What should I include in my waste management plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and... waste management plan must include consideration of the reduction or separation of waste-stream elements...