Science.gov

Sample records for high-rate egsb reactor

  1. Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor.

    PubMed

    Colussi, I; Cortesi, A; Della Vedova, L; Gallo, V; Robles, F K Cano

    2009-12-01

    The effectiveness of operating an industrial UASB reactor, treating wastewater from the beer industry, with flows containing heavy metals was evaluated. A pilot-scale UASB reactor, already used to simulate the industrial reactor, was unsuccessfully employed. An easy start-up was obtained arranging it as an EGSB reactor. Considerations about this modification are reported. The effects of Cu(II), Ni(II) and Cr(III) ions on the anaerobic activity were analyzed by measurements of methane production rate and COD removal. The employed biomass was the sludge of the industrial UASB reactor, while a solution of ethanol and sodium acetate with COD of 3000 mg/L and a heavy metal concentration of 50 mg/L were continuously fed. Experimental results proved higher biomass sensitivity for copper and much slighter for nickel and chromium. Moreover, copper inhibition has been demonstrated to be less significant if a metal-free feed was provided to the system before copper addition.

  2. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    PubMed Central

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  3. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors.

    PubMed

    Fang, Cheng; Boe, Kanokwan; Angelidaki, Irini

    2011-05-01

    In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470 mL-CH(4)/gVS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380 mL-CH(4)/gVS-added at the organic loading rate of 3.2 gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1 gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240 mL-CH(4)/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up-concentrated by evaporation to minimize its volume, and later be utilized as fertilizer.

  4. A new process for efficiently producing methane from waste activated sludge: alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor.

    PubMed

    Zhang, Dong; Chen, Yinguang; Zhao, Yuxiao; Ye, Zhengxiang

    2011-01-15

    In the literature the production of methane from waste activated sludge (WAS) was usually conducted in a continuous stirred tank reactor (CSTR) after sludge was pretreated. It was reported in our previous publication that compared with other pretreatment methods the methane production in CSTR could be significantly enhanced when sludge was pretreated by NaOH at pH 10 for 8 days. In order to further improve methane production, this study reported a new process for efficiently producing methane from sludge, that is, sludge was fermented at pH 10 for 8 days, which was adjusted by Ca(OH)(2), and then the fermentation liquid was treated in an expanded granular sludge bed (EGSB) for methane generation. First, for comparing the methane production observed in this study with that reported in the literature, the conventional operational model was applied to produce methane from the pH 10 pretreated sludge, that is, directly using the pH 10 pretreated sludge to produce methane in a CSTR. It was observed that the maximal methane production was only 0.61 m(3)CH(4)/m(3)-reactor/day. Then, the use of fermentation liquid of pH 10 pretreated sludge to produce methane in the reactors of up-flow anaerobic sludge bed (UASB), anaerobic sequencing batch reactor (ASBR) and EGSB was compared. The maximal methane production in UASB, ASBR, and EGSB reached 1.41, 3.01, and 12.43 m(3)CH(4)/m(3)-reactor/day, respectively. Finally, the mechanisms for EGSB exhibiting remarkably higher methane production were investigated by enzyme, adenosine-triphosphate (ATP), scanning electron microscope (SEM) and fluorescence in situ hybridization (FISH) analyses. It was found that the granular sludge in EGSB had the highest conversion efficiency of acetic acid to methane, and the greatest activity of hydrolysis and acidification enzymes and general physiology with much more Methanosarcinaceae.

  5. Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater (BSIW) treatment.

    PubMed

    Ambuchi, John Justo; Liu, Junfeng; Wang, Haiman; Shan, Lili; Zhou, Xiangtong; Mohammed, Mohammed O A; Feng, Yujie

    2016-05-01

    A looming global energy crisis has directly increased biomethanation processes using anaerobic digestion technology. However, much knowledge on the microbial community structure, their distribution within the digester and related functions remains extremely scanty and unavailable in some cases, yet very valuable in the improvement of the anaerobic bioprocesses. Using pyrosequencing technique based on Miseq PE 3000, microbial community population profiles were determined in an operated mesophilic expanded granular sludge bed (EGSB) reactor treating beet sugar industrial wastewater (BSIW) in the laboratory scale. Further, the distribution of the organisms in the lower, middle and upper sections within the reactor was examined. To our knowledge, this kind of analysis of the microbial community in a reactor treating BSIW is the first of its kind. A total of 44,204 non-chimeric reads with average length beyond 450 bp were yielded. Both bacterial and archaeal communities were identified with archaea predominance (60 %) observed in the middle section. Bayesian classifier yielded 164 families with only 0.73 % sequences which could not be classified to any taxa at family level. The overall phylum predominance in the reactor showed Firmicutes, Euryarchaeota, Chloroflexi, Proteobacteria and Bacteroidetes in the descending order. Our results clearly demonstrate a highly diverse microbial community population of an anaerobic reactor treating BSIW, with distinct distribution levels within the reactor.

  6. Investigation of a sewage-integrated technology combining an expanded granular sludge bed (EGSB) and an electrochemical reactor in a pilot-scale plant.

    PubMed

    Dai, Ruihua; Liu, Yan; Liu, Xiang; Zhang, Xudong; Zeng, Ciyuan; Li, Liang

    2011-09-15

    A sewage-integrated treatment system (SITS) for the treatment of municipal wastewater, consisting of an expanded granular sludge bed (EGSB) reactor to remove soluble organic matter and an electrochemical (EC) reactor to oxidize the NH(3)-N, was evaluated. The performance of the EGSB reactor was monitored for 12 months in a pilot-scale plant. Iron shavings were added to the EGSB reactor on the sixtieth day to improve the removal efficiency of the chemical oxygen demand (COD), suspended solids (SS) and total phosphorus (TP). After the iron shavings were added, the effluent COD, SS and TP decreased from 104 to 46 mg L(-1), 21 to 8.6 mg L(-1) and 3.62 to 1.36 mg L(-1), respectively. Moreover, in the EC reactor, which was equipped with IrO(2)/Ti anodes, the NH(3)-N and total nitrogen (TN) concentrations decreased from 25 to 12 mg L(-1) and 29 to 15 mg L(-1), respectively. The NH(3)-N was directly oxidized to N(2), resulting in no secondary pollution. The results demonstrated the possibility of removing carbon and nutrients in a SITS with high efficiency. The system runs efficiently and with a flexible operation, making it suitable for low-strength wastewater. The results and parameters presented here can provide references for the practical project.

  7. Influence of the organic loading rate on the performance and the granular sludge characteristics of an EGSB reactor used for treating traditional Chinese medicine wastewater.

    PubMed

    Li, Weiguang; Su, Chengyuan; Liu, Xingzhe; Zhang, Lei

    2014-01-01

    The effects of the organic loading rate (OLR) on the performance and the granular sludge characteristics of an expanded granular sludge bed (EGSB) reactor used for treating real traditional Chinese medicine (TCM) wastewater were investigated. Over 90% of the COD removal by the EGSB reactor was observed at the OLRs of 4 to 13 kg COD/(m(3) day). However, increasing the OLR to 20 kg COD/(m(3) day) by reducing the hydraulic retention time (HRT 6 h) reduced the COD removal efficiency to 78%. The volatile fatty acid (VFA) concentration was 512.22 mg/L, resulting in an accumulation of VFAs, and propionic acid was the main acidification product, accounting for 66.51% of the total VFAs. When the OLR increased from 10 to 20 kg COD/(m(3) day), the average size of the granule sludge decreased from 469 to 258 μm. There was an obvious reduction in the concentration of Ca(2+) and Mg(2+) in the granular sludge. The visible humic acid-like peak was identified in the three-dimensional excitation-emission matrix (EEM) fluorescence spectra of the soluble microbial products (SMPs). The fatty acid bond, amide II bond, amide III bond, and C-H bond bending were also observed in the Fourier transform infrared (FTIR) spectra of the SMPs. Methanobacterium formicicum, Methanococcus, and Bacteria populations exhibited significant shifts, and these changes were accompanied by an increase in VFA production. The results indicated that a short HRT and high OLR in the EGSB reactor caused the accumulation of polysaccharides, protein, and VFAs, thereby inhibiting the activity of methanogenic bacteria and causing granular sludge corruption.

  8. Effect of biomass adaptation to the degradation of anionic surfactants in laundry wastewater using EGSB reactors.

    PubMed

    Delforno, T P; Moura, A G L; Okada, D Y; Varesche, M B A

    2014-02-01

    Two expanded granular sludge bed reactors were operated. RAB (adapted biomass) was operated in two stages: Stage I, with standard LAS (13.2 mg L(-1)); and Stage II, in which the standard LAS was replaced by diluted laundry wastewater according to the LAS concentration (11.2 mg L(-1)). RNAB (not adapted biomass) had a single stage, using direct wastewater (11.5 mg L(-1)). Thus, the strategy of biomass adaptation did not lead to an increase of surfactant removal in wastewater (RAB-Stage II: 77%; RNAB-Stage I: 78%). By means of denaturing gradient gel electrophoresis, an 80% similarity was verified in the phases with laundry wastewater (sludge bed) despite the different reactor starting strategies. By pyrosequencing, many reads were related to genera of degraders of aromatic compounds and sulfate reducers (Syntrophorhabdus and Desulfobulbus). The insignificant difference in LAS removal between the two strategies was most likely due to the great microbial richness of the inoculum.

  9. Enrichment of acetogenic bacteria in high rate anaerobic reactors under mesophilic and thermophilic conditions.

    PubMed

    Ryan, P; Forbes, C; McHugh, S; O'Reilly, C; Fleming, G T A; Colleran, E

    2010-07-01

    The objective of the current study was to expand the knowledge of the role of acetogenic Bacteria in high rate anaerobic digesters. To this end, acetogens were enriched by supplying a variety of acetogenic growth supportive substrates to two laboratory scale high rate upflow anaerobic sludge bed (UASB) reactors operated at 37 degrees C (R1) and 55 degrees C (R2). The reactors were initially fed a glucose/acetate influent. Having achieved high operational performance and granular sludge development and activity, both reactors were changed to homoacetogenic bacterial substrates on day 373 of the trial. The reactors were initially fed with sodium vanillate as a sole substrate. Although % COD removal indicated that the 55 degrees C reactor out performed the 37 degrees C reactor, effluent acetate levels from R2 were generally higher than from R1, reaching values as high as 5023 mg l(-1). Homoacetogenic activity in both reactors was confirmed on day 419 by specific acetogenic activity (SAA) measurement, with higher values obtained for R2 than R1. Sodium formate was introduced as sole substrate to both reactors on day 464. It was found that formate supported acetogenic activity at both temperatures. By the end of the trial, no specific methanogenic activity (SMA) was observed against acetate and propionate indicating that the methane produced was solely by hydrogenotrophic Archaea. Higher SMA and SAA values against H(2)/CO(2) suggested development of a formate utilising acetogenic population growing in syntrophy with hydrogenotrophic methanogens. Throughout the formate trial, the mesophilic reactor performed better overall than the thermophilic reactor.

  10. Direct Characterization of Methanogens in Two High-Rate Anaerobic Biological Reactors

    PubMed Central

    Kobayashi, Hester A.; de Macario, Everly Conway; Williams, Regan S.; Macario, Alberto J. L.

    1988-01-01

    The methanogenic flora from two types of turbulent, high-rate reactors was studied by immunologic methods as well as by phase-contrast, fluorescence, and scanning electron microscopy. The reactors were a fluidized sand-bed biofilm ANITRON reactor and an ultrafiltration membrane-associated suspended growth MARS reactor (both trademarks of Air Products and Chemicals, Inc., Allentown, Pa.). Conventional microscopic methods revealed complex mixtures of microbes of a range of sizes and shapes, among which morphotypes resembling Methanothrix spp. and Methanosarcina spp. were noticed. Precise identification of these and other methanogens was accomplished by antigenic fingerprinting with a comprehensive panel of calibrated antibody probes of predefined specificity spectra. The methanogens identified showed morphotypes and antigenic fingerprints indicating their close similarity with the following reference organisms: Methanobacterium formicicum MF and Methanosarcina barkeri W in the ANITRON reactor only; Methanosarcina barkeri R1M3, M. mazei S6, Methanogenium cariaci JR1, and Methanobrevibacter arboriphilus AZ in the MARS reactor only; and Methanobrevibacter smithii ALI and Methanothrix soehngenii Opfikon in both reactors. Species diversity and distribution appeared to be, at least in part, dependent on the degree of turbulence inside the reactor. Images PMID:16347581

  11. Direct characterization of methanogens in two high-rate anaerobic biological reactors.

    PubMed

    Kobayashi, H A; Conway de Macario, E; Williams, R S; Macario, A J

    1988-03-01

    The methanogenic flora from two types of turbulent, high-rate reactors was studied by immunologic methods as well as by phase-contrast, fluorescence, and scanning electron microscopy. The reactors were a fluidized sand-bed biofilm ANITRON reactor and an ultrafiltration membrane-associated suspended growth MARS reactor (both trademarks of Air Products and Chemicals, Inc., Allentown, Pa.). Conventional microscopic methods revealed complex mixtures of microbes of a range of sizes and shapes, among which morphotypes resembling Methanothrix spp. and Methanosarcina spp. were noticed. Precise identification of these and other methanogens was accomplished by antigenic fingerprinting with a comprehensive panel of calibrated antibody probes of predefined specificity spectra. The methanogens identified showed morphotypes and antigenic fingerprints indicating their close similarity with the following reference organisms: Methanobacterium formicicum MF and Methanosarcina barkeri W in the ANITRON reactor only; Methanosarcina barkeri R1M3, M. mazei S6, Methanogenium cariaci JR1, and Methanobrevibacter arboriphilus AZ in the MARS reactor only; and Methanobrevibacter smithii ALI and Methanothrix soehngenii Opfikon in both reactors. Species diversity and distribution appeared to be, at least in part, dependent on the degree of turbulence inside the reactor.

  12. High rate nitrogen removal by ANAMMOX internal circulation reactor (IC) for old landfill leachate treatment.

    PubMed

    Phan, The Nhat; Van Truong, Thi Thanh; Ha, Nhu Biec; Nguyen, Phuoc Dan; Bui, Xuan Thanh; Dang, Bao Trong; Doan, Van Tuan; Park, Joonhong; Guo, Wenshan; Ngo, Huu Hao

    2017-06-01

    This study aimed to evaluate the performance of a high rate nitrogen removal lab-scale ANAMMOX reactor, namely Internal Circulation (IC) reactor, for old landfill leachate treatment. The reactor was operated with pre-treated leachate from a pilot Partial Nitritation Reactor (PNR) using a high nitrogen loading rate ranging from 2 to 10kgNm(-3)d(-1). High rate removal of nitrogen (9.52±1.11kgNm(-3)d(-1)) was observed at an influent nitrogen concentration of 1500mgNL(-1). The specific ANAMMOX activity was found to be 0.598±0.026gN2-NgVSS(-1)d(-1). Analysis of ANAMMOX granules suggested that 0.5-1.0mm size granular sludge was the dominant group. The results of DNA analysis revealed that Candidatus Kueneniastuttgartiensis was the dominant species (37.45%) in the IC reactor, whereas other species like uncultured Bacteroidetes bacterium only constituted 5.37% in the system, but they were still responsible for removing recalcitrant organic matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Advances in high-rate anaerobic treatment: staging of reactor systems.

    PubMed

    van Lier, J B; van der Zee, F P; Tan, N C; Rebac, S; Kleerebezem, R

    2001-01-01

    Anaerobic wastewater treatment (AnWT) is considered as the most cost-effective solution for organically polluted industrial waste streams. Particularly the development of high-rate systems, in which hydraulic retention times are uncoupled from solids retention times, has led to a world-wide acceptance of AnWT. In the last decade up to the present, the application potentials of AnWT are further explored. Research shows the feasibility of anaerobic reactors under extreme conditions, such as low and high temperatures. Also toxic and/or recalcitrant wastewaters, that were previously believed not to be suitable for anaerobic processes, are now effectively treated. The recent advances are made possible by adapting the conventional anaerobic high-rate concept to the more extreme conditions. Staged anaerobic reactor concepts show advantages under non-optimal temperature conditions as well as during the treatment of chemical wastewater. In other situations, a staged anaerobic-aerobic approach is required for biodegradation of specific pollutants, e.g. the removal of dyes from textile processing wastewaters. The current paper illustrates the benefits of reactor staging and the yet un-exploited potentials of high-rate AnWT.

  14. Treatment of distillery vinasse in a high rate anaerobic reactor using low density polyethylene supports.

    PubMed

    Thanikal, J V; Torrijos, M; Habouzit, F; Moletta, R

    2007-01-01

    An anaerobic fixed bed reactor, filled with small floating supports of polyethylene material (Bioflow 30) as inert media, was operated for 6 months to treat vinasse (wine residue after distillation). Bioflow 30 has a density of 0.93 and a specific area of 320 m2/m3. The experimental results showed that the efficiency of the reactor in removal of soluble COD was very good with a maximum organic loading rate of more than 30 g of COD/L x d and a COD removal efficiency of more than 80%. Bioflow 30 showed a high capability of biomass retention with 4-6 g of dried solids per support. Thus, at the end of the experiment, the fixed biomass represented 57 g of solids/L of reactor. The visual observation of the supports and the specific activity (0.54 g COD/g solids x d) of the fixed solids, which remained close to the values obtained with suspended biomass, showed that entrapment was playing an important role in the retention of the biomass inside the reactor. It was then possible to operate the reactor with a very high loading rate as the result of the increase of the solids in the reactor and the maintaining of the specific activity. Bioflow 30 is then an excellent support for use in a high rate anaerobic fixed bed.

  15. Development of Anaerobic High-Rate Reactors, Focusing on Sludge Bed Technology.

    PubMed

    van Lier, J B; van der Zee, F P; Frijters, C T M J; Ersahin, M E

    In the last 40 years, anaerobic sludge bed reactor technology has evolved from localized laboratory-scale trials to worldwide successful implementations in a variety of industries. High-rate sludge bed reactors are characterized by a very small footprint and high applicable volumetric loading rates. Best performances are obtained when the sludge bed consists of highly active and well settleable granular sludge. Sludge granulation provides a rich microbial diversity, high biomass concentration, high solids retention time, good settling characteristics, reduction in both operation costs and reactor volume, and high tolerance to inhibitors and temperature changes. However, sludge granulation cannot be guaranteed on every type of industrial wastewater. Especially in the last two decades, various types of high-rate anaerobic reactor configurations have been developed that are less dependent on the presence of granular sludge, and many of them are currently successfully used for the treatment of various kinds of industrial wastewaters worldwide. This study discusses the evolution of anaerobic sludge bed technology for the treatment of industrial wastewaters in the last four decades, focusing on granular sludge bed systems.

  16. Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate.

    PubMed

    Li, Wei; Zheng, Ping; Guo, Jun; Ji, Junyuan; Zhang, Meng; Zhang, Zonghe; Zhan, Enchao; Abbas, Ghulam

    2014-02-01

    Denitrification is a self-alkalization process. In this experiment, the characteristics of self-alkalization in high-rate heterotrophic denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate were investigated, respectively. The results showed that, (1) The self-alkalization of high-rate denitrifying reactors was remarkably strong both with methanol and sodium acetate as carbon sources, while the effluent pH was much lower than the stoichiometric values and the malfunction from self-alkalization of denitrification was far less serious than expected. (2) The self-adaptation of the reactors was attributed to the neutralization of carbon dioxide (oxidization product of organic matter) and the self-adaptation of denitrifying sludge. The formation and discharge of calcium carbonate precipitates gave rise to lower effluent pH and alkalinity than the stoichiometric values. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Start-up of EGSB for biohydrogen production from compost leachate].

    PubMed

    Liu, Qiang; Xu, Hui; Li, Mi; Xu, Zhi-yi; Qian, Guang-ren

    2009-08-15

    An expanded granular sludge bed reactor (EGSB) was employed to evaluate the start-up process of fermentative biohydrogen production from compost leachate. The removal performance of COD, total nitrogen, total phosphorus in leachate as well as the hydrogen production ability of EGSB was investigated. The results showed that at 35 degrees C +/- 1 degrees C, organic loading rate of 1.4-16.7 g/(L x d), the main pH of 5.0 to 5.5, the continuous hydrogen production by EGSB reactor using the compost leachate as substrate could be achieved after 20d's acclimatization. Under conditions of HRT of 30 h and liquid flow rate of 3.0 m/h, the COD removal rate of between 50% to 70%, the content of hydrogen in the biogas of between 19%-33%, the maximal hydrogen production rate of 1 460 mL/(L x d), total phosphorus and total nitrogen removal rate of between 40%-70% and 32%-65% respectively, were achieved.The total ethanol and acetic acid content was more than 80% in liquid end products (VFAs), suggesting the main fermentation is ethanol fermentation type.

  18. Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor

    SciTech Connect

    Weijma, J.; Stams, A.J.M.; Pol, L.W.H.; Lettinga, G.

    2000-02-05

    Sulfate reduction outcompeted methanogenesis at 65 C and pH 7.5 in methanol and sulfate-fed expanded granular sludge bed reactors operated at hydraulic retention times (HRT) of 14 and 2.5 h, both under methanol-limiting and methanol-overloading conditions. After 100 and 50 days for the reactors operated at 14 and 3.5 h, respectively, sulfide production accounted for 80% of the methanol-COD consumed by the sludge. The specific methanogenic activity on methanol of the sludge from a reactor operated at HRTs of down to 3.5 h for a period of 4 months gradually decreased from 0.83 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} at the start to a value of less than 0.05 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1}, showing that the relative number of methanogens decreased and eventually became very low. By contrast, the increase of the specific sulfidogenic activity of sludge from 0.22 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} to a final value of 1.05 gCOD {sm_bullet} gVSS{sup {minus}1} {sm_bullet} day{sup {minus}1} showed that sulfate reducing bacteria were enriched. Methanol degradation by a methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanogenic culture obtained from a reactor by serial dilution of the sludge was inhibited in the presence of vancomycin, indicating that methanogenesis directly from methanol was not important. H{sub 2}/CO{sub 2} and formate, but not acetate, were degraded to methane in the presence of vancomycin. These results indicated that methanol degradation to methane occurs via the intermediates H{sub 2}/CO{sub 2} and formate. The high and low specific methanogenic activity of sludge on H{sub 2}/CO{sub 2} and formate, respectively, indicated that the former substrate probably acts as the main electron donor for the methanogens during methanol degradation. As

  19. The Buoyant Filter Bioreactor: a high-rate anaerobic reactor for complex wastewater--process dynamics with dairy effluent.

    PubMed

    Haridas, Ajit; Suresh, S; Chitra, K R; Manilal, V B

    2005-03-01

    A novel high-rate anaerobic reactor, called "Buoyant Filter Bioreactor" (BFBR), has been developed for treating lipid-rich complex wastewater. The BFBR is able to decouple the biomass and insoluble COD retention time from the hydraulic retention time by means of a granular filter bed made of buoyant polystyrene beads. Filter clogging is prevented by an automatic backwash driven by biogas release, which fluidizes the granular filter bed in a downward direction. During filter backwash, the solids captured in the filter are reintroduced into the reaction zone of the reactor. The reaction zone is provided with a mixing system, which is independent of the hydraulic retention time. The performance of a laboratory-scale BFBR was studied for the treatment of dairy effluent, chosen as a model complex wastewater. The dairy effluent was not pre-treated for fat removal. The BFBR was operated over 400 d and showed greater than 85% COD removal at 10 kg COD/(m3/d). The COD conversion to methane in the BFBR was essentially complete. The BFBR performance improved with age, and with feed containing 3200 mg COD/l, the treated effluent had 120 mg COD/l and no turbidity. The hold-up of degradable biosolids, including scum, inside the BFBR was estimated using starvation tests. When load is increased, scum accumulates inside the BFBR and then decays after undergoing change from hydrophobic to hydrophilic. This is explained as the accumulation of fat solids, its conversion to insoluble long chain fatty acids and its further solubilization and degradation.

  20. Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors.

    PubMed

    Si, Bu-Chun; Li, Jia-Ming; Zhu, Zhang-Bing; Zhang, Yuan-Hui; Lu, Jian-Wen; Shen, Rui-Xia; Zhang, Chong; Xing, Xin-Hui; Liu, Zhidan

    2016-01-01

    Biohythane production via two-stage fermentation is a promising direction for sustainable energy recovery from lignocellulosic biomass. However, the utilization of lignocellulosic biomass suffers from specific natural recalcitrance. Hydrothermal liquefaction (HTL) is an emerging technology for the liquefaction of biomass, but there are still several challenges for the coupling of HTL and two-stage fermentation. One particular challenge is the limited efficiency of fermentation reactors at a high solid content of the treated feedstock. Another is the conversion of potential inhibitors during fermentation. Here, we report a novel strategy for the continuous production of biohythane from cornstalk through the integration of HTL and two-stage fermentation. Cornstalk was converted to solid and liquid via HTL, and the resulting liquid could be subsequently fed into the two-stage fermentation systems. The systems consisted of two typical high-rate reactors: an upflow anaerobic sludge blanket (UASB) and a packed bed reactor (PBR). The liquid could be efficiently converted into biohythane via the UASB and PBR with a high density of microbes at a high organic loading rate. Biohydrogen production decreased from 2.34 L/L/day in UASB (1.01 L/L/day in PBR) to 0 L/L/day as the organic loading rate (OLR) of the HTL liquid products increased to 16 g/L/day. The methane production rate achieved a value of 2.53 (UASB) and 2.54 L/L/day (PBR), respectively. The energy and carbon recovery of the integrated HTL and biohythane fermentation system reached up to 79.0 and 67.7%, respectively. The fermentation inhibitors, i.e., 5-hydroxymethyl furfural (41.4-41.9% of the initial quantity detected) and furfural (74.7-85.0% of the initial quantity detected), were degraded during hydrogen fermentation. Compared with single-stage fermentation, the methane process during two-stage fermentation had a more efficient methane production rate, acetogenesis, and COD removal. The microbial distribution

  1. Sulphate-reducing laboratory-scale high-rate anaerobic reactors for treatment of metal- and sulphate-containing mine wastewater.

    PubMed

    Tuppurainen, K O; Väisänen, A O; Rintala, J A

    2002-06-01

    Upflow anaerobic sludge blanket (UASB) reactors were used in this study to evaluate the feasibility of the sulphate-reducing, anaerobic high-rate process to treat metal- and sulphate-containing mining wastewater (MWW). Four simultaneous reactors, inoculated with different inocula (mesophilic granular sludge from two UASB reactors, one treating sugar refinery wastewater and the other board mill wastewater) and operated with different loadings, were for 95 days fed with synthetic feed consisting of glucose and sulphate. In all reactors, 23-72% of sulphate and 12-93% of COD were removed. Subsequently, two reactors were fed with diluted MWW (zinc as the main metal) for 77 days with hydraulic retention times down to 8 hours. At the onset of the runs (until day 48), over 99.9% of zinc was removed in both reactors, after which removals fell to less than 30-80%. At the end of the runs, the highest zinc content (44 mg g(-1) TS) in the reactor sludges was 21 times higher than that in the inoculum. It cannot be concluded definitively that sulphide precipitation was the only mechanism of metal removal, for biosorption may have had a role to play in the process.

  2. Biomass granulation in an upflow anaerobic sludge blanket reactor treating 500 m(3)/day low-strength sewage and post treatment in high-rate algal pond.

    PubMed

    Chatterjee, Pritha; Ghangrekar, M M

    2017-09-01

    A pilot-scale upflow anaerobic sludge blanket-moving bed biofilm (UASB-MBB) reactor followed by a high-rate algal pond (HRAP) was designed and operated to remove organic matter, nutrients and pathogens from sewage and to facilitate reuse. For an influent chemical oxygen demand (COD) concentration of 233 ± 20 mg/L, final effluent COD was 50 ± 6 mg/L. Successful biomass granulation was observed in the sludge bed of the upflow anaerobic sludge blanket (UASB) reactor after 5 months of operation. Ammonia removal in HRAP was 85.1 ± 2.4% with average influent and effluent ammonia nitrogen concentrations of 20 ± 3 mg/L and 3 ± 1 mg/L, respectively. Phosphate removal after treatment in the HRAP was 91 ± 1%. There was a 2-3 log scale pathogen removal after treatment in HRAP with most probable number (MPN) of the final effluent being 600-800 per 100 mL, which is within acceptable standards for surface irrigation. The blackwater after treatment in UASB-MBBR-HRAP is being reused for gardening and landscaping. This proper hydro-dynamically designed UASB reactor demonstrated successful granulation and moving bed media improved sludge retention in UASB reactor. This combination of UASB-MBB reactor followed by HRAP demonstrated successful sewage treatment for a year covering all seasons.

  3. High rate biomethanation technology for solid waste management and rapid biogas production: An emphasis on reactor design parameters.

    PubMed

    Dahiya, Shikha; Joseph, Johny

    2015-01-01

    A high rate biomethanation digester was designed and fabricated to study its real field treatment efficiency and simultaneous biogas generation. The major design parameters like self mixing, delinking hydraulic retention time and solid retention time etc. were considered for efficient performance. It was operated with an organic loading rate (OLR) of 1.5kg/m(3)d(-1) with composite food waste for about one year. The maximum treatment efficiency achieved with respect to total solid (TS) reduction and volatile solids (VS) reduction was 94.5% and 89.7%, respectively. Annual mean biogas of about 0.16m(3)/kgVSd(-1) was observed with methane content varying from 56% to 60% (v/v). The high competence of high rate digester is attributed to its specific design features and intermittent mixing of the digester contents and also due to the hydrodynamic principles involved in its operation.

  4. High-rate nitrogen removal and its behavior of granular sequence batch reactor under step-feed operational strategy.

    PubMed

    Zhong, Chen; Wang, Yaqin; Wang, Yongjian; Lv, Junping; Li, Yaochen; Zhu, Jianrong

    2013-04-01

    Alternating anoxic/oxic (A/O) combined with the step-feed granular sequence batch reactor (step-feed SBR) was operated in laboratory scale to investigate nitrogen removal. The results showed that when the total inorganic nitrogen (TIN) and chemical oxygen demand (COD) levels were 55 and 320 mg/L in the influent, the TIN removal efficiencies were 89.7-92.4% in the step-feed mode and 48.1-59.5% in the conventional alternating A/O single-feed mode within a 360 min cycle. The pH and dissolved oxygen (DO) were used to optimize the process of denitrification and nitrification in the step-feed mode. The optimized operational condition was achieved by shortening the cycle time to 207 min, resulting in a nitrogen removal rate of 0.27 kg N/m3 d, which was much higher than those achieved using activated sludge systems. The dominant community in the aerobic granules was coccus-like bacteria, and filamentous bacteria were hardly found. Granules were well maintained throughout the 90 days of continuous step-feed operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A balanced microbiota efficiently produces methane in a novel high-rate horizontal anaerobic reactor for the treatment of swine wastewater.

    PubMed

    Duda, Rose Maria; da Silva Vantini, Juliana; Martins, Larissa Scattolin; de Mello Varani, Alessandro; Lemos, Manoel Victor Franco; Ferro, Maria Inês Tiraboschi; de Oliveira, Roberto Alves

    2015-12-01

    A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development of a super high-rate Anammox reactor and in situ analysis of biofilm structure and function.

    PubMed

    Tsushima, Ikuo; Ogasawara, Yuji; Shimokawa, Masaki; Kindaichi, Tomonori; Okabe, Satoshi

    2007-01-01

    The anaerobic ammonium oxidation (Anammox) process is a new efficient and cost effective method of ammonium removal from wastewater. Under strictly anoxic condition, ammonium is directly oxidised with nitrite as electron acceptor to dinitrogen gas. However, it is extremely difficult to cultivate Anammox bacteria due to their low growth rate. This suggests that a rapid and efficient start-up of Anammox process is the key to practical applications. To screen appropriate seeding sludge with high Anammox potential, a real-time quantitative PCR assay with newly designed primers has been developed. Thereafter, the seeding sludge with high abundance of Anammox bacteria (1.7 x 10(8) copies/mg-dry weight) was selected and inoculated into an upflow anaerobic biofilters (UABs). The UABs were operated for more than 1 year and the highest nitrogen removal rate of 24.0 kg-N m-3 day(-1) was attained. In addition, the ecophysiology of Anammox bacteria (spatial distribution and in situ activity) in biofilms was analysed by combining a full-cycle 16S rRNA approach and microelectrodes. The microelectrode measurement clearly revealed that a successive vertical zonation of the partial nitrification (NH4+ to NO2-), Anammox reaction and denitrification was developed in the biofilm in the UAB. This result agreed with the spatial distribution of corresponding bacterial populations in the biofilm. We linked the micro-scale information (i.e. single cell and/or biofilm levels) with the macro-scale information (i.e. the reactor level) to understand the details of Anammox reaction occurring in the UABs.

  7. Changes in performance and bacterial communities in response to various process disturbances in a high-rate biohydrogen reactor fed with galactose.

    PubMed

    Park, Jeong-Hoon; Kumar, Gopalakrishnan; Park, Jong-Hun; Park, Hee-Deung; Kim, Sang-Hyoun

    2015-01-01

    High-rate biohydrogen production was achieved via hybrid immobilized cells fed with galactose in a continuous reactor system. The hybrid immobilized cells were broken down after 20 days and began to form granules by self-aggregation. The peak hydrogen production rate (HPR) and hydrogen yield (HY) of 11.8 ± 0.6 LH2/L-d and 2.1 ± 0.1 mol H2/molgalactose(added), respectively, were achieved at the hydraulic retention time (HRT) of 8h with an organic loading rate (OLR) of 45 g/L-d. This is the highest yet reported for the employment of galactose in a continuous system. Various process disturbances including shock loading, acidification, alkalization and starvation were examined through bacterial community analysis via pyrosequencing of the 16S rRNA genes. The proportion of Clostridia increased during the stable biohydrogen production periods, while that of Bacilli increased when the reactor was disturbed. However, due to the stability of the self-aggregated granules, the process performance was regained within 4-7 days.

  8. Evaluation of anionic surfactant removal in anaerobic reactor with Fe(III) supplementation.

    PubMed

    Delforno, T P; Okada, D Y; Faria, C V; Varesche, M B A

    2016-12-01

    The objective of this study was to evaluate the removal of linear alkylbenzene sulfonate (LAS) associated with Fe(III) supplementation using an expanded granular sludge bed (EGSB) reactor. The reactor was inoculated with a granular sludge and fed with synthetic wastewater containing a specific LAS load rate (SLLR) of 1.5 mg gVS(-1) d(-1) (∼16.4 mgLAS L(-1) influent) and supplied with 7276 μMol L(-1) of Fe(III). The biomasses from the inoculum and at the end of the EGSB-Fe operation (127 days) were characterized using 16S rRNA Ion Tag sequencing. An increase of 20% in the removal efficiency was observed compared to reactors without Fe(III) supplementation that was reported in the literature, and the LAS removal was approximately 84%. The Fe(III) reduction was dissimilatory (the total iron concentration in the influent and effluent were similar) and reached approximately 64%. The higher Fe(III) reduction and LAS removal were corroborated by the enrichment of genera, such as Shewanella (only EGSB-Fe - 0.5%) and Geobacter (1% - inoculum; 18% - EGSB-Fe). Furthermore, the enrichment of genera that degrade LAS and/or aromatic compounds (3.8% - inoculum; 29.6% - EGSB-Fe of relative abundance) was observed for a total of 20 different genera.

  9. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.

    PubMed

    Kim, Hyun-Woo; Nam, Joo-Youn; Shin, Hang-Sik

    2011-08-01

    Assessing contemporary anaerobic biotechnologies requires proofs on reliable performance in terms of renewable bioenergy recovery such as methane (CH(4)) production rate, CH(4) yield while removing volatile solid (VS) effectively. This study, therefore, aims to evaluate temperature-phased anaerobic sequencing batch reactor (TPASBR) system that is a promising approach for the sustainable treatment of organic fraction of municipal solid wastes (OFMSW). TPASBR system is compared with a conventional system, mesophilic two-stage anaerobic sequencing batch reactor system, which differs in operating temperature of 1st-stage. Results demonstrate that TPASBR system can obtain 44% VS removal from co-substrate of sewage sludge and food waste while producing 1.2m(3)CH(4)/m(3)(system)/d (0.2m(3)CH(4)/kgVS(added)) at organic loading rate of 6.1gVS/L/d through the synergy of sequencing-batch operation, co-digestion, and temperature-phasing. Consequently, the rapid and balanced anaerobic metabolism at thermophilic stage makes TPASBR system to afford high organic loading rate showing superior performance on OFMSW stabilization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Low-Temperature (10°C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    PubMed Central

    Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5–2 kg COD m−3 d−1 with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m−3 d−1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A max) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K m) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor. PMID:24089597

  11. Low-temperature (10°C) anaerobic digestion of dilute dairy wastewater in an EGSB bioreactor: microbial community structure, population dynamics, and kinetics of methanogenic populations.

    PubMed

    Bialek, Katarzyna; Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5-2 kg COD m(-3) d(-1) with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m(-3) d(-1), biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (A(max)) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (K(m)) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor.

  12. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    PubMed

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Application of sequential expanded granular sludge bed reactors for biodegradation of acetate, benzoate, terephtalate and p-toluate in purified terephtalic acid production wastewater.

    PubMed

    Lee, Y S; Han, G B

    2016-01-01

    The anaerobic degradation of four major constituents from purified terephtalic acid production wastewater in sequential two expanded granular sludge bed (EGSB) reactors was studied. The performance of the system was evaluated in terms of chemical oxygen demand (COD) removal efficiencies, methane production, stability, granular sludge adaptability as well as reversion of bacterial inhibition. With volumetric loading rates of 1.9-25 kg-COD m(-3) d(-1) and terephtalate and p-toluate of 584-821 mg L(-1), average removal efficiencies of 97.6% and 75.2% were achieved in the EGSB reactors, respectively. In these conditions, gas production reached a total methane production rate of 0.33 L g-COD(-1) in the two-stage EGSB reactor system. The disturbance of the EGSB reactors was observed at a feed concentration above around 6.9 g-COD L(-1) because of higher influent COD concentration compared to other experiments.

  14. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  15. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  16. Integrated expanded granular sludge bed and sequential batch reactor treating beet sugar industrial wastewater and recovering bioenergy.

    PubMed

    Justo, Ambuchi John; Junfeng, Liu; Lili, Shan; Haiman, Wang; Lorivi, Moirana Ruth; Mohammed, Mohammed O A; Xiangtong, Zhou; Yujie, Feng

    2016-10-01

    The exponential rise in energy demand vis-à-vis depletion of mineral oil resources has accelerated recovery of bioenergy from organic waste. In this study, a laboratory-scale anaerobic (An)/aerobic (Ar) system comprising of expanded granular sludge bed (EGSB) reactor coupled to an aerobic sequential batch reactor (SBR) was constructed to treat beet sugar industrial wastewater (BSIW) of chemical oxygen demand (COD) 1665 mg L(-1) while harnessing methane gas. The EGSB reactor generated methane at the rate of 235 mL/g COD added, with considerably higher than previously reported methane content of 86 %. Meanwhile, contaminants were successfully reduced in the combined An/Ar system, realizing a removal rate of more than 71.4, 97.3, 97.7, and 99.3 % of organic matter as total phosphorus, total nitrogen, biological oxygen demand (BOD), and soluble COD, respectively. Microbial community analysis showed that the bacterial genus Clostridium sp. and archaeal genus Methanosaeta sp. dominated the EGSB reactor, while Rhodobacter sp. dominance was observed in the SBR. The obtained experimental results indicate that the integration of expanded granular sludge bed and sequential batch reactor in treating BSIW obtained competitively outstanding performance.

  17. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  18. REACTORS

    DOEpatents

    Spitzer, L. Jr.

    1961-10-01

    Thermonuclear reactors, methods, and apparatus are described for controlling and confining high temperature plasma. Main axial confining coils in combination with helical windings provide a rotational transform that avoids the necessity of a figure-eight shaped reactor tube. The helical windings provide a multipolar helical magnetic field transverse to the axis of the main axial confining coils so as to improve the effectiveness of the confining field by counteracting the tendency of the more central lines of force in the stellarator tube to exchange positions with the magnetic lines of force nearer the walls of the tube. (AEC)

  19. Analysis of features of hydrodynamics and heat transfer in the fuel assembly of prospective sodium reactor with a high rate of reproduction in the uranium-plutonium fuel cycle

    NASA Astrophysics Data System (ADS)

    Lubina, A. S.; Subbotin, A. S.; Sedov, A. A.; Frolov, A. A.

    2016-12-01

    The fast sodium reactor fuel assembly (FA) with U-Pu-Zr metallic fuel is described. In comparison with a "classical" fast reactor, this FA contains thin fuel rods and a wider fuel rod grid. Studies of the fluid dynamics and the heat transfer were carried out for such a new FA design. The verification of the ANSYS CFX code was provided for determination of the velocity, pressure, and temperature fields in the different channels. The calculations in the cells and in the FA were carried out using the model of shear stress transport (SST) selected at the stage of verification. The results of the hydrodynamics and heat transfer calculations have been analyzed.

  20. Analysis of features of hydrodynamics and heat transfer in the fuel assembly of prospective sodium reactor with a high rate of reproduction in the uranium-plutonium fuel cycle

    SciTech Connect

    Lubina, A. S. Subbotin, A. S.; Sedov, A. A.; Frolov, A. A.

    2016-12-15

    The fast sodium reactor fuel assembly (FA) with U–Pu–Zr metallic fuel is described. In comparison with a “classical” fast reactor, this FA contains thin fuel rods and a wider fuel rod grid. Studies of the fluid dynamics and the heat transfer were carried out for such a new FA design. The verification of the ANSYS CFX code was provided for determination of the velocity, pressure, and temperature fields in the different channels. The calculations in the cells and in the FA were carried out using the model of shear stress transport (SST) selected at the stage of verification. The results of the hydrodynamics and heat transfer calculations have been analyzed.

  1. High Rate GPS on Volcanoes

    NASA Astrophysics Data System (ADS)

    Mattia, M.

    2005-12-01

    The high rate GPS data processing can be considered as the "new deal" in geodetic monitoring of active volcanoes. Before an eruption, infact, transient episodes of ground displacements related to the dynamics of magmatic fluids can be revealed through a careful analysis of high rate GPS data. In the very first phases of an eruption the real time processing of high rate GPS data can be used by the authorities of Civil Protection to follow the opening of fractures field on the slopes of the volcanoes. During an eruption large explosions, opening of vents, migration of fractures fields, landslides and other dangerous phenomena can be followed and their potential of damage estimated by authorities. Examples from the recent eruption of Stromboli volcano and from the current activities of high rate GPS monitoring on Mt. Etna are reported, with the aim to show the great potential and the perspectives of this technique.

  2. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  3. High-rate biological denitrification in the cyclic rotating-bed biological reactor: Effect of COD/NO3(-), nitrate concentration and salinity and the phylogenetic analysis of denitrifiers.

    PubMed

    Jafari, Seyed Javad; Moussavi, Gholamreza; Yaghmaeian, Kamyar

    2015-12-01

    The effects of COD/NO3(-) ratio, nitrate concentration and salinity was tested on the performance of the CRBR in denitrification with catechol as carbon source. The maximum nitrate reduction attained at COD/NO3(-) ratio of 1. The CRBR operated at optimum COD/NO3(-) ratio could completely denitrify the nitrate at inlet concentration up to 1250mg/L without nitrite accumulation. The maximum denitrification rate in the CRBR was 3.56kgNO3(-)/m(3)d with a nitrate reduction efficiency of 99% when the bioreactor was operated at inlet nitrate loading rate of 3.6kgNO3(-)/m(3)d. The denitrification performance of the CRBR was not affected significantly by NaCl concentrations up to 20g/L. 16S rRNA fragment and phylogenetic analysis identified Pseudomonas resinovorans, Stenotrophomonas maltophilia and Bacillus cereus as the most abundant denitrifiers in biomass. Accordingly, the CRBR is a high-rate bioreactor and appropriate technology for treatment of nitrate-laden industrial wastewaters containing phenolic compounds and salinity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of the support material addition on the hydrodynamic behavior of an anaerobic expanded granular sludge bed reactor.

    PubMed

    Pérez-Pérez, Tania; Correia, Gleyce Teixeira; Kwong, Wu Hong; Pereda-Reyes, Ileana; Oliva-Merencio, Deny; Zaiat, Marcelo

    2017-04-01

    As a support material, zeolite can be used to promote the granulation process due to its high settable property and the ability to retain biomass on its surface. The present paper reports on the influence of zeolite addition on the hydrodynamic behavior of an expanded granular sludge bed reactor (EGSB). Different models were applied to fit the flow pattern and to compare EGSB hydrodynamic performance with and without the addition of zeolite. The experimental data fit the tanks in a series model for zeolite bed height of 5cm and upflow velocity of 6m/hr. Higher axial dispersion degree (D/uL) was obtained at lower heights of zeolite. The real hydraulic retention time (HRTr) was increased with both increased zeolite bed height and increased upflow velocity. The short-circuit results for 5cm of zeolite bed and 6, 8 and 10m/hr upflow velocity were 0.3, 0.24 and 0.19 respectively, demonstrating the feasibility of using zeolite for a proper hydrodynamic environment to operate the EGSB reactor. The presence of zeolite resulted in the higher percentage values of dead zones, ranging from 12% to 24%. Zeolite addition exerted a positive effect on the hydrodynamics pattern for this technology being advantageous for the anaerobic process because of its possible contribution to better biofilm agglomeration, granule formation and substrate-microorganism contact. Copyright © 2016. Published by Elsevier B.V.

  5. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  6. Microbial community structure and dynamics in anaerobic fluidized‐bed and granular sludge‐bed reactors: influence of operational temperature and reactor configuration

    PubMed Central

    Bialek, Katarzyna; Kumar, Amit; Mahony, Thérèse; Lens, Piet N. L.; O' Flaherty, Vincent

    2012-01-01

    Summary Methanogenic community structure and dynamics were investigated in two different, replicated anaerobic wastewater treatment reactor configurations [inverted fluidized bed (IFB) and expanded granular sludge bed (EGSB)] treating synthetic dairy wastewater, during operating temperature transitions from 37°C to 25°C, and from 25°C to 15°C, over a 430‐day trial. Non‐metric multidimensional scaling (NMS) and moving‐window analyses, based on quantitative real‐time PCR data, along with denaturing gradient gel electrophoresis (DGGE) profiling, demonstrated that the methanogenic communities developed in a different manner in these reactor configurations. A comparable level of performance was recorded for both systems at 37°C and 25°C, but a more dynamic and diverse microbial community in the IFB reactors supported better stability and adaptative capacity towards low temperature operation. The emergence and maintenance of particular bacterial genotypes (phylum Firmicutes and Bacteroidetes) was associated with efficient protein hydrolysis in the IFB, while protein hydrolysis was inefficient in the EGSB. A significant community shift from a Methanobacteriales and Methanosaetaceae towards a Methanomicrobiales‐predominated community was demonstrated during operation at 15°C in both reactor configurations. PMID:22967313

  7. ISS Update: High Rate Communications System

    NASA Image and Video Library

    ISS Update Commentator Pat Ryan interviews Diego Serna, Communications and Tracking Officer, about the High Rate Communications System. Questions? Ask us on Twitter @NASA_Johnson and include the ha...

  8. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment.

    PubMed

    Liao, Runhua; Li, Yan; Yu, Xuemin; Shi, Peng; Wang, Zhu; Shen, Ke; Shi, Qianqian; Miao, Yu; Li, Wentao; Li, Aimin

    2014-04-01

    The disposal of waste brines has become a major challenge that hinders the wide application of ion-exchange resins in the water industry in recent decades. In this study, high sulfate removal efficiency (80%-90%) was achieved at the influent sulfate concentration of 3600 mg/L and 3% NaCl after 145 days in an expanded granular sludge bed (EGSB) reactor. Furthermore, the feasibility of treating synthetic waste brine containing high levels of sulfate and nitrate was investigated in a single EGSB reactor during an operation period of 261 days. The highest nitrate and sulfate loading rate reached 6.38 and 5.78 kg/(m(3)·day) at SO(2-)4-S/NO(-)3-N mass ratio of 4/3, and the corresponding removal efficiency was 99.97% and 82.26% at 3% NaCl, respectively. Meanwhile, 454-pyrosequencing technology was used to analyze the bacterial diversity of the sludge on the 240th day for stable operation of phase X. Results showed that a total of 9194 sequences were obtained, which could be affiliated to 14 phyla, including Proteobacteria, Firmicutes, Chlorobi, Bacteroidetes, Synergistetes and so on. Proteobacteria (77.66%) was the dominant microbial population, followed by Firmicutes (12.23%) and Chlorobi (2.71%). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Pilot-scale experiment on thermally hydrolyzed sludge liquor anaerobic digestion using a mesophilic expanded granular sludge bed reactor.

    PubMed

    Qiao, Wei; Yin, Zhibiao; Wang, Wei; Wang, Jing; Zhang, Zhongzhi

    2013-01-01

    A pilot process of thermal hydrolysis combined with an expanded granular sludge bed reactor (EGSB) was carried out to evaluate pretreated sludge liquor into biogas conversion, process stability, and energy input/output balance. Approximately 25% of suspended solids of sludge were liquefied into aqueous phase during thermal hydrolysis pretreatment, which resulted in chemical oxygen demand (COD) concentration of 20.0 to 35.0 g/L. A mesophilic EGSB reactor was operated for 206 days treating pretreated liquor. Under an organic loading rate of 11.0 kg COD/(m(3)·d) and hydraulic retention time of 60 h, COD conversion efficiency was maintained at 63%. The energy from biogas provided 80% of that demand for heating pretreatment. Dewatered sludge after thermal hydrolysis could be incinerated with municipal solid waste in an industrial-scale incinerator. Total energy production from combined biogas anaerobic digestion and sludge incineration, treating 1.0 kg raw sludge with moisture content of 82%, was 2419 kJ. The energy demand of thermal hydrolysis pretreatment was 340 kJ.

  10. High-rate lithium thionyl chloride cells

    NASA Technical Reports Server (NTRS)

    Goebel, F.

    1982-01-01

    A high-rate C cell with disc electrodes was developed to demonstrate current rates which are comparable to other primary systems. The tests performed established the limits of abuse beyond which the cell becomes hazardous. Tests include: impact, shock, and vibration tests; temperature cycling; and salt water immersion of fresh cells.

  11. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  12. Analytical Modeling of High Rate Processes.

    DTIC Science & Technology

    2007-11-02

    TYPE AND DATES COVERED 1 13 Apr 98 Final (01 Sep 94 - 31 Aug 97) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Analytical Modeling of High Rate Processes...20332- 8050 FROM: S. E. Jones, University Research Professor Department of Aerospace Engineering and Mechanics University of Alabama SUBJECT: Final...Mr. Sandor Augustus and Mr. Jeffrey A. Drinkard. There are no outstanding commitments. The balance in the account, as of July 31 , 1997, was $102,916.42

  13. High rate psychrophilic anaerobic digestion of undiluted dairy cow feces.

    PubMed

    Massé, Daniel I; Saady, Noori M Cata

    2015-01-01

    Novel high rate psychrophilic (20°C) anaerobic digestion (PAD) of undiluted cow feces (11.5-13.5% total solids) was demonstrated using sequence batch reactor in long-term operation with successive cycles of 21days treatment cycle length (TCL). At organic loading rates (OLR) 9.0, 10.0, 11.0 and 12.0g TCOD kg(-1) inoculum d(-1) average specific methane yield (SMY) was 154.0±11.7, 152.1±12.2, 126.0±2.8 and 116.0±6.1NL CH4 per kg of VS fed, respectively. Volatile solids removal averaged around 31.7±3.3%, 32.2±1.0%, 27.9±2.2% and 23.4±0.5%, respectively. Substrate-to-inoculum ratio (SIR; wet-mass basis) ranged between 1.17±0.06 and 1.43±0.05. Concentration of volatile fatty acids in the bioreactors during the TCL indicated that hydrolysis was the rate limiting reaction. High rate PAD of undiluted cow feces is possible at OLR (g TCOD kg(-1) inoculum d(-1)) 9.0 and 10.0 with a TCL of 21days; however, OLR of 11.0 and 12.0 are also possible but require longer TCL to maintain the SMY.

  14. High-rate anaerobic composting with biogas recovery

    SciTech Connect

    DeBaere, L.; Verstraete, W.

    1984-03-01

    In Belgium a novel high rate anaerobic composting process with biogas has been developed as an alternative to aerobic systems, producing a commercial dry compost and 60 to 95 cubic metres methane per ton of municipal solid waste. This is a high value energy source simultaneously yielding a stabilized end product. The process was developed so that digestion could take place at 25 to 35% total solids, thus reducing the amount of water needed to dilute the waste, decreasing the digestor volume and cutting transportation costs. The end product is odorless and stable. High rate anaerobic composting of MSW can be combined with sewage sludge stabilization. Manure, vegetable or fruit wastes can be co-treated in certain proportions as required. About 15 to 20% of the energy produced is transformed into electricity and heat and consumed as the waste disposal plant itself. 120 to 140 US $ worth of methane gas and compost can be produced per cubic metre of reactor per year, making anaerobic composting economically attractive.

  15. TMF ultra-high rate discharge performance

    SciTech Connect

    Nelson, B.

    1997-12-01

    BOLDER Technologies Corporation has developed a valve-regulated lead-acid product line termed Thin Metal Film (TMF{trademark}) technology. It is characterized by extremely thin plates and close plate spacing that facilitate high rates of charge and discharge with minimal temperature increases, at levels unachievable with other commercially-available battery technologies. This ultra-high rate performance makes TMF technology ideal for such applications as various types of engine start, high drain rate portable devices and high-current pulsing. Data are presented on very high current continuous and pulse discharges. Power and energy relationships at various discharge rates are explored and the fast-response characteristics of the BOLDER{reg_sign} cell are qualitatively defined. Short-duration recharge experiments will show that devices powered by BOLDER batteries can be in operation for more than 90% of an extended usage period with multiple fast recharges. The BOLDER cell is ideal for applications such as engine-start, a wide range of portable devices including power tools, hybrid electric vehicles and pulse-power devices. Applications such as this are very attractive, and are well served by TMF technology, but an area of great interest and excitement is ultrahigh power delivery in excess of 1 kW/kg.

  16. Deconvolution of high rate flicker electroretinograms.

    PubMed

    Alokaily, A; Bóhorquez, J; Özdamar, Ö

    2014-01-01

    Flicker electroretinograms are steady-state electroretinograms (ERGs) generated by high rate flash stimuli that produce overlapping periodic responses. When a flash stimulus is delivered at low rates, a transient response named flash ERG (FERG) representing the activation of neural structures within the outer retina is obtained. Although FERGs and flicker ERGs are used in the diagnosis of many retinal diseases, their waveform relationships have not been investigated in detail. This study examines this relationship by extracting transient FERGs from specially generated quasi steady-state flicker and ERGs at stimulation rates above 10 Hz and similarly generated conventional flicker ERGs. The ability to extract the transient FERG responses by deconvolving flicker responses to temporally jittered stimuli at high rates is investigated at varying rates. FERGs were obtained from seven normal subjects stimulated with LED-based displays, delivering steady-state and low jittered quasi steady-state responses at five rates (10, 15, 32, 50, 68 Hz). The deconvolution method enabled a successful extraction of "per stimulus" unit transient ERG responses for all high stimulation rates. The deconvolved FERGs were used successfully to synthesize flicker ERGs obtained at the same high stimulation rates.

  17. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  18. Treatment of high-strength ethylene glycol waste water in an expanded granular sludge blanket reactor: use of PVA-gel beads as a biocarrier.

    PubMed

    Jin, Yue; Wang, Dunqiu; Zhang, Wenjie

    2016-01-01

    Industrial-scale use of polyvinyl alcohol (PVA)-gel beads as biocarriers is still not being implemented due to the lack of understanding regarding the optimal operational parameters. In this study, the parameters for organic loading rate (OLR), alkalinity, recycle rate, and addition of trace elements were investigated in an expanded granular sludge blanket reactor (EGSB) treating high-strength ethylene glycol wastewater (EG) with PVA-gel beads as biocarrier. Stable chemical oxygen demand (COD) removal efficiencies of 95 % or greater were achieved, and continuous treatment was demonstrated with appropriate parameters being an OLR of 15 kg COD/m(3)/day, NaHCO3 added at 400 mg/L, a recycle rate of 15 L/h, and no addition of trace elements addition. A biogas production yield rate of 0.24 m(3)/kg COD was achieved in this study. A large number of long rod-shaped bacteria (Methanosaeta), were found with low acetate concentration in the EGSB reactor.

  19. Application of high-rate cutting tools

    NASA Astrophysics Data System (ADS)

    Moriarty, John L., Jr.

    1989-03-01

    Widespread application of the newest high-rate cutting tools to the most appropriate jobs is slowed by the sheer magnitude of developments in tool types, materials, workpiece applications, and by the rapid pace of change. Therefore, a study of finishing and roughing sizes of coated carbide inserts having a variety of geometries for single point turning was completed. The cutting tools were tested for tool life, chip quality, and workpiece surface finish at various cutting conditions with medium alloy steel. An empirical wear-life data base was established, and a computer program was developed to facilitate technology transfer, assist selection of carbide insert grades, and provide machine operating parameters. A follow-on test program was implemented suitable for next generation coated carbides, rotary cutting tools, cutting fluids, and ceramic tool materials.

  20. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  1. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  2. High-Rate Capable Floating Strip Micromegas

    NASA Astrophysics Data System (ADS)

    Bortfeldt, Jonathan; Bender, Michael; Biebel, Otmar; Danger, Helge; Flierl, Bernhard; Hertenberger, Ralf; Lösel, Philipp; Moll, Samuel; Parodi, Katia; Rinaldi, Ilaria; Ruschke, Alexander; Zibell, André

    2016-04-01

    We report on the optimization of discharge insensitive floating strip Micromegas (MICRO-MEsh GASeous) detectors, fit for use in high-energy muon spectrometers. The suitability of these detectors for particle tracking is shown in high-background environments and at very high particle fluxes up to 60 MHz/cm2. Measurement and simulation of the microscopic discharge behavior have demonstrated the excellent discharge tolerance. A floating strip Micromegas with an active area of 48 cm × 50 cm with 1920 copper anode strips exhibits in 120 GeV pion beams a spatial resolution of 50 μm at detection efficiencies above 95%. Pulse height, spatial resolution and detection efficiency are homogeneous over the detector. Reconstruction of particle track inclination in a single detector plane is discussed, optimum angular resolutions below 5° are observed. Systematic deviations of this μTPC-method are fully understood. The reconstruction capabilities for minimum ionizing muons are investigated in a 6.4 cm × 6.4 cm floating strip Micromegas under intense background irradiation of the whole active area with 20 MeV protons at a rate of 550 kHz. The spatial resolution for muons is not distorted by space charge effects. A 6.4 cm × 6.4 cm floating strip Micromegas doublet with low material budget is investigated in highly ionizing proton and carbon ion beams at particle rates between 2 MHz and 2 GHz. Stable operation up to the highest rates is observed, spatial resolution, detection efficiencies, the multi-hit and high-rate capability are discussed.

  3. High rate production of hydrogen/methane from various substrates and wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2004-01-01

    To treat soluble and solid wastes and recover energy from them, high rate methane fermentation, especially using the UASB (upflow anaerobic sludge blanket) reactor, and hydrogen fermentation using various microorganisms and microbial consortia have been investigated intensively in Japan. In this chapter, recent works on high rate methane fermentation in Japan are reviewed, focusing on: 1) basic studies into the applicability of the UASB reactor for various substrates such as propionate, lactate, ethanol, glucose and phenol; 2) its applications to unfeasible conditions, such as lipid and protein containing wastes, low temperature and high salt-containing wastes; 3) progress made in the field of advanced UASB reactors, and; 4) research into methane fermentation from solid wastes, such as from cellulosic materials, municipal sewage sludge, and mud sediments. Following this, although hydrogen fermentation with photosynthetic microorganisms or anaerobic bacteria was researched, for this review we have focused on fermentative hydrogen production using strictly or facultative anaerobes and microbial consortia in Japan, since high rate production of hydrogen-methane via a two-stage process was judged to be more attractive for biological hydrogen production and wastewater treatments.

  4. High-rate composting-vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms).

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2002-07-01

    In an attempt to develop a system with which the aquatic weed water hyacinth (Eichhornia crassipes, Mart. Solms) can be economically processed to generate vermicompost in large quantities, the weed was first composted by a 'high-rate' method and then subjected to vermicomposting in reactors operating at much larger densities of earthworm than recommended hitherto: 50, 62.5, 75, 87.5, 100, 112.5, 125, 137.5, and 150 adults of Eudrilus eugeniae Kinberg per litre of digester volume. The composting step was accomplished in 20 days and the composted weed was found to be vermicomposted three times as rapidly as uncomposted water hyacinth [Bioresource Technology 76 (2001) 177]. The studies substantiated the feasibility of high-rate composting-vermicomposting systems, as all reactors yielded consistent vermicast output during seven months of operation. There was no earthworm mortality during the first four months in spite of the high animal densities in the reactors. In the subsequent three months a total of 79 worms died out of 1650, representing less than 1.6% mortality per month. The results also indicated that an increase in the surface-to-volume ratio of the reactors might further improve their efficiency.

  5. Fast Reactors

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Pisanti, O.

    The following sections are included: * Elementary Considerations * The Integral Equation to the Neutron Distribution * The Critical Size for a Fast Reactor * Supercritical Reactors * Problems and Exercises

  6. Comparison of oxygen and carbon dioxide balances in HRAP (high-rate algal ponds).

    PubMed

    El Ouarghi, H; Praet, E; Jupsin, H; Vasel, J L

    2003-01-01

    We previously suggested a method to characterize the oxygen balance in High-Rate Algal Ponds (HRAPs). The method was based on a hydrodynamic study of the reactor combined with a tracer gas method to measure the oxygen transfer coefficient. From such a method diurnal variations of photosynthesis and respiration can be quantified and the net oxygen production rate determined. In this paper we propose a similar approach to obtain carbon dioxide balances in HRAPs. Then oxygen and carbon dioxide balances can be compared.

  7. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  8. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  9. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  10. DSN acquisition of Magellan high-rate telemetry data

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Au, P. A.

    1992-01-01

    The Magellan Project levied the stringent requirement of a 98-percent high-rate telemetry data capture rate on the Deep Space Network (DSN) during the Magellan Prime Mapping Mission. To meet this requirement, the DSN undertook extensive development of the DSN Telemetry System, as well as extensive DSN operations planning and test and training. In actuality, the DSN substantially exceeded the requirement by achieving a Prime Mapping Mission high-rate telemetry data capture rate of 99.14 percent. This article details the DSN telemetry system development and DSN operations planning and test and training. In addition, the actual high-rate telemetry data outages are comprehensively presented and analyzed.

  11. DSN acquisition of Magellan high-rate telemetry data

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Au, P. A.

    1992-01-01

    The Magellan Project levied the stringent requirement of a 98 percent high-rate telemetry data capture rate on the Deep Space Network (DSN) during the Magellan Prime Mapping Mission. To meet this requirement, the DSN undertook extensive development of the DSN Telemetry System, as well as extensive DSN operation planning and test and training. In actuality, the DSN substantially exceeded the requirement by achieving a Prime Mapping Mission high-rate telemetry data capture rate of 99.14 percent. This article details the DSN telemetry system development, and DSN operations planning and test and training. In addition, the actual high-rate telemetry data outages are comprehensively presented and analyzed.

  12. Application of high rate, high temperature anaerobic digestion to fungal thermozyme hydrolysates from carbohydrate wastes.

    PubMed

    Forbes, C; O'Reilly, C; McLaughlin, L; Gilleran, G; Tuohy, M; Colleran, E

    2009-05-01

    The objective of this study was to examine the feasibility of using a two-step, fully biological and sustainable strategy for the treatment of carbohydrate rich wastes. The primary step in this strategy involves the application of thermostable enzymes produced by the thermophilic, aerobic fungus, Talaromyces emersonii, to carbohydrate wastes producing a liquid hydrolysate discharged at elevated temperatures. To assess the potential of thermophilic treatment of this hydrolysate, a comparative study of thermophilic and mesophilic digestion of four sugar rich thermozyme hydrolysate waste streams was conducted by operating two high rate upflow anaerobic hybrid reactors (UAHR) at 37 degrees C (R1) and 55 degrees C (R2). The operational performance of both reactors was monitored from start-up by assessing COD removal efficiencies, volatile fatty acid (VFA) discharge and % methane of the biogas produced. Rapid start-up of both R1 and R2 was achieved on an influent composed of the typical sugar components of the organic fraction of municipal solid waste (OFMSW). Both reactors were subsequently challenged in terms of volumetric loading rate (VLR) and it was found that a VLR of 9 gCOD l(-1)d(-1) at a hydraulic retention time (HRT) of 1 day severely affected the thermophilic reactor with instability characterised by a build up of volatile fatty acid (VFA) intermediates in the effluent. The influent to both reactors was changed to a simple glucose and sucrose-based influent supplied at a VLR of 4.5 gCOD l(-1)d(-1) and HRT of 2 days prior to the introduction of thermozyme hydrolysates. Four unique thermozyme hydrolysates were subsequently supplied to the reactors, each for a period of 10 HRTs. The applied hydrolysates were derived from apple pulp, bread, carob powder and cardboard, all of which were successfully and comparably converted by both reactors. The % total carbohydrate removal by both reactors was monitored during the application of the sugar rich thermozyme

  13. Membrane-aerated biofilms for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements.

    PubMed

    Syron, Eoin; Casey, Eoin

    2008-03-15

    Diffusion of the electron acceptor is the rate controlling step in virtually all biofilm reactors employed for aerobic wastewater treatment. The membrane-aerated biofilm reactor (MABR) is a technology that can deliver oxygen at high rates and transfer efficiencies, thereby enhancing the biofilm activity. This paper provides a comparative performance rate analysis of the MABR in terms of its application for carbonaceous pollutant removal, nitrification/denitrification and xenobiotic biotreatment. We also describe the mechanisms influencing process performance in the MABR and the inter-relationships between these factors. The challenges involved in scaling-up the process are discussed with recommendations for prioritization of research needs.

  14. Highly stable high-rate discriminator for nuclear counting

    NASA Technical Reports Server (NTRS)

    English, J. J.; Howard, R. H.; Rudnick, S. J.

    1969-01-01

    Pulse amplitude discriminator is specially designed for nuclear counting applications. At very high rates, the threshold is stable. The output-pulse width and the dead time change negligibly. The unit incorporates a provision for automatic dead-time correction.

  15. High rate, high reliability Li/SO2 cells

    NASA Astrophysics Data System (ADS)

    Chireau, R.

    1982-03-01

    The use of the lithium/sulfur dioxide system for aerospace applications is discussed. The high rate density in the system is compared to some primary systems: mercury zinc, silver zinc, and magnesium oxide. Estimates are provided of the storage life and shelf life of typical lithium sulfur batteries. The design of lithium cells is presented and criteria are given for improving the output of cells in order to achieve high rate and high reliability.

  16. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  17. Identifying High-Rate Flows Based on Sequential Sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Fang, Binxing; Luo, Hao

    We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.

  18. Integrating GPS with GLONASS for high-rate seismogeodesy

    NASA Astrophysics Data System (ADS)

    Geng, Jianghui; Jiang, Peng; Liu, Jingnan

    2017-04-01

    High-rate GPS is a precious seismogeodetic tool to capture coseismic displacements unambiguously and usually improved by sidereal filtering to mitigate multipath effects dominating the periods of tens of seconds to minutes. We further introduced GLONASS (Globalnaya navigatsionnaya sputnikovaya sistema) data into high-rate GPS to deliver over 2000 24 h displacements at 99 stations in Europe. We find that the major displacement errors induced by orbits and atmosphere on the low-frequency band that are not characterized by sidereal repeatabilities can be amplified markedly by up to 40% after GPS sidereal filtering. In contrast, integration with GLONASS can reduce the noise of high-rate GPS significantly and near uniformly over the entire frequency band, especially for the north components by up to 40%, suggesting that this integration is able to mitigate more errors than only multipath within high-rate GPS. Integrating GPS with GLONASS outperforms GPS sidereal filtering substantially in ameliorating displacement noise by up to 60% over a wide frequency band (e.g., 2 s-0.5 days) except a minor portion between 100 and 1000 s. High-rate multi-GNSS (Global Navigation Satellite System) can be enhanced further by sidereal filtering, which should however be carefully implemented to avoid adverse complications of the noise spectrum of displacements.

  19. High-rate squeezing process of bulk metallic glasses

    PubMed Central

    Fan, Jitang

    2017-01-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092

  20. High-rate squeezing process of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  1. Breakdown Limit Studies in High-Rate Gaseous Detectors

    NASA Technical Reports Server (NTRS)

    Ivaniouchenkov, Yu; Fonte, P.; Peskov, V.; Ramsey, B. D.

    1999-01-01

    We report results from a systematic study of breakdown limits for novel high-rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable pin, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the breakgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.

  2. BOILING REACTORS

    DOEpatents

    Untermyer, S.

    1962-04-10

    A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)

  3. Calcium thionyl chloride high-rate reserve cell

    NASA Astrophysics Data System (ADS)

    Peled, E.; Meitav, A.; Brand, M.

    1981-09-01

    The goal is to assess the high-rate capability of a reserve type calcium-Ca(AlCl4) thionyl chloride cell and to demonstrate its excellent safety features. The good discharge performance at a discharge time of 10-15 min, together with the excellent safety features of the cell, is seen as warranting further investigations of this system as a candidate for high-rate multicell reserved and nonreserved battery applications. A test is described proving that it is practically impossible to 'charge' this cell.

  4. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  5. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  6. High rate and stable cycling of lithium metal anode

    SciTech Connect

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  7. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    SciTech Connect

    OCONNOR,P.; GRATCHEV,V.; KANDASAMY,A.; POLYCHRONAKOS,V.; TCHERNIATINE,V.; PARSONS,J.; SIPPACH,W.

    1999-09-25

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm{sup 2}/s.

  8. Cassini High Rate Detector V14.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; DiDonna, P.

    2014-06-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through December 31, 2013. Please refer to Srama et al. (2004) for a detailed HRD description.

  9. Cassini High Rate Detector V16.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; DiDonna, P.

    2016-05-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through December 31, 2015. Please refer to Srama et al. (2004) for a detailed HRD description.

  10. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations

    ERIC Educational Resources Information Center

    David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.

    2011-01-01

    Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…

  11. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations

    ERIC Educational Resources Information Center

    David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.

    2011-01-01

    Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…

  12. Digital approach to high rate gamma-ray spectrometry

    SciTech Connect

    Korolczuk, Stefan; Mianowski, Slawomir; Rzadkiewicz, Jacek; Sibczynski, Pawel; Swiderski, Lukasz; Szewinski, Jaroslaw; Zychor, Izabella

    2015-07-01

    Basic concepts and preliminary results of creating high rate digital spectrometry system using efficient ADCs and latest FPGA are presented as well as a comparison with commercially available devices. The possibility to use such systems, coupled to scintillators, in plasma experiments is discussed. (authors)

  13. High rate and stable cycling of lithium metal anode

    DOE PAGES

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; ...

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  14. Design of abrasive tool for high-rate grinding

    NASA Astrophysics Data System (ADS)

    Ilinykh, AS

    2017-02-01

    The experimental studies aimed to design heavy-duty abrasive wheels for high-rate grinding are presented. The design of abrasive wheels with the working speed up to 100 m/s is based on the selection of optimized material composition and manufacture technology of the wheels.

  15. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  16. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  17. Microalgae from domestic wastewater facility's high rate algal pond: Lipids extraction, characterization and biodiesel production.

    PubMed

    Drira, Neila; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2016-04-01

    In this study, the harvesting of a biomass from a high rate algal pond (HRAP) of a real-scale domestic wastewater treatment facility and its potential as a biomaterial for the production of biodiesel were investigated. Increasing the medium pH to 12 induced high flocculation efficiency of up to 96% of the biomass through both sweep flocculation and charge neutralization. Lipids extracted by ultrasounds from this biomass contained around 70% of fatty acids, with palmitic and stearic acids being the most abundant. The extract obtained by supercritical CO2 contained 86% of fatty acids. Both conventional solvents extracts contained only around 10% of unsaturated fats, whereas supercritical CO2 extract contained more than 40% of unsaturated fatty acids. This same biomass was also subject to direct extractive-transesterification in a microwave reactor to produce fatty acid methyl esters, also known as, raw biodiesel.

  18. Ciprofloxacin removal during secondary domestic wastewater treatment in high rate algal ponds.

    PubMed

    Hom-Diaz, Andrea; Norvill, Zane N; Blánquez, Paqui; Vicent, Teresa; Guieysse, Benoit

    2017-08-01

    This study investigated the removal of antibiotic ciprofloxacin during the treatment of real wastewater using high rate algal ponds (HRAP). When spiked at 2 mg/L into primary domestic wastewater, ciprofloxacin (CPX) was efficiently removed from laboratory scale photobioreactors continuously operated under various durations of artificial illumination and hydraulic residence times. Subsequent batch tests conducted with reactor microcosms showed CPX removal was mainly caused by photodegradation during daytime, and sorption to biomass during night time. These findings were confirmed during an experiment conducted in a 1000 L pilot HRAP operated outdoors, as well as during outdoor batch assays conducted using pilot HRAP microcosms. While these results highlight a potentially interesting treatment capacity in comparison to conventional biological treatment, further research must confirm these findings at relevant pollutant concentration (ng-μg/L) and determine the fate and potential toxicity of degradation products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A super high-rate sulfidogenic system for saline sewage treatment.

    PubMed

    Tsui, To-Hung; Chen, Lin; Hao, Tianwei; Chen, Guang-Hao

    2016-11-01

    This study proposes a novel approach to resolve the challenging issue of sludge bed clogging in a granular sulfate-reducing upflow sludge bed (GSRUSB) reactor by means of introducing intermittent gas sparging to advance it into a super high-rate anaerobic bioreactor. Over a 196-day lab-scale trial, the GSRUSB system was operated from nominal hydraulic retention time of 4-hr to 40-min and achieved the highest organic loading rate of 13.31 kg COD/m(3)·day which is substantially greater than the typical loading of 2.0-3.5 kg COD/m(3)·day in a conventional upflow anaerobic sludge bed reactor treating dilute organic strength wastewater. The average organic removal efficiency and total dissolved sulfide of this system were 90 ± 4.2% and 158 ± 28 mg S/L, while organics residual in the effluent was 34 ± 14 mg COD/L. The control stage (without gas sparging) revealed that the sludge bed clogging happened concomitantly with the significant drop in extracellular polymeric substance content of granular sludge, through relevant chemical measurements and confocal laser scanning microscopy analyses. On the other hand, compared with increasing the effluent recirculation ratio (from 1.4 to 5), the three-dimensional computational fluid dynamics modeling in combination with energy dissipation analysis demonstrated that the gas sparging (at a superficial gas velocity of 0.8 m s(-1)) can create a 23 times higher liquid shear as well as enhanced particle attrition. Overall, this study not only developed a super high-rate anaerobic bioreactor for saline sewage treatment, but also shed light on the role of intermittent gas sparging in control of sludge bed clogging for anaerobic bioreactors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Online aging study of a high rate MRPC

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Yi; Feng, S. Q.; Xie, Bo; Lv, Pengfei; Wang, Fuyue; Guo, Baohong; Han, Dong; Li, Yuanjing

    2016-05-01

    With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setup of the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector. Supported by National Natural Science Foundation of China (11420101004, 11461141011, 11275108), Ministry of Science and Technology (2015CB856905)

  1. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  2. Semi-solid electrodes having high rate capability

    SciTech Connect

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-07-05

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  3. Data Feature Extraction for High-Rate 3-Phase Data

    SciTech Connect

    2016-10-18

    This algorithm processes high-rate 3-phase signals to identify the start time of each signal and estimate its envelope as data features. The start time and magnitude of each signal during the steady state is also extracted. The features can be used to detect abnormal signals. This algorithm is developed to analyze Exxeno's 3-phase voltage and current data recorded from refrigeration systems to detect device failure or degradation.

  4. High-Rate Strong-Signal Quantum Cryptography

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  5. Adjunct payload for ISS high-rate communications

    NASA Astrophysics Data System (ADS)

    Mitchell, W. Carl; Cleave, Robert; Ford, David

    1999-01-01

    An adjunct payload on commercial geosynchronous satellites is developed for ISS and similar high-rate communications. The technical parameters of this payload are set forth and bounds on user fees are established. Depending on the financial arrangements-e.g., development funds, long-term lease agreement, other value offered, commercial subscriptions-the adjunct payload can be a viable option for ISS communications service.

  6. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  7. Performance Evaluation of High-Rate GPS Seismometers

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ebinuma, T.

    2011-12-01

    High-rate GPS observations with higher than once-per-second sampling are getting increasingly important for seismology. Unlike a traditional seismometer which measures short period vibration using accelerometers, the GPS receiver can measure its antenna position directly and record long period seismic wave and permanent displacements as well. The high-rate GPS observations are expected to provide new insights in understanding the whole aspects of earthquake process. In this study, we investigated dynamic characteristics of the high-rate GPS receivers capable of outputting the observations at up to 50Hz. This higher output rate, however, doesn't mean higher dynamics range of the GPS observations. Since many GPS receivers are designed for low dynamics applications, such as static survey, personal and car navigation, the bandwidth of the loop filters tend to be narrower in order to reduce the noise level of the observations. The signal tracking loop works like a low-pass filter. Thus the narrower the bandwidth, the lower the dynamics range. In order to extend this dynamical limit, high-rate GPS receivers might use wider loop bandwidth for phase tracking. In this case, the GPS observations are degraded by higher noise level in return. In addition to the limitation of the loop bandwidth, higher acceleration due to earthquake may cause the steady state error in the signal tracking loop. As a result, kinematic solutions experience undesirable position offsets, or the receiver may lose the GPS signals in an extreme case. In order to examine those effects for the high-rate GPS observations, we made an experiment using a GPS signal simulator and several geodetic GPS receivers, including Trimble Net-R8, NovAtel OEMV, Topcon Net-G3A, and Javad SIGMA-G2T. We set up the zero-baseline simulation scenario in which the rover receiver was vibrating in a periodic motion with the frequency from 1Hz to 10Hz around the reference station. The amplitude of the motion was chosen to provide

  8. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  9. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  10. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  11. Miniaturized Stretchable and High-Rate Linear Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjun; Zhang, Yang; Zhou, Xiaoshuang; Xu, Jiang; Liu, Zunfeng; Yuan, Ningyi; Ding, Jianning

    2017-07-01

    Linear stretchable supercapacitors have attracted much attention because they are well suited to applications in the rapidly expanding field of wearable electronics. However, poor conductivity of the electrode material, which limits the transfer of electrons in the axial direction of the linear supercapacitors, leads to a serious loss of capacity at high rates. To solve this problem, we use gold nanoparticles to decorate aligned multiwall carbon nanotube to fabricate stretchable linear electrodes. Furthermore, we have developed fine stretchable linear supercapacitors, which exhibited an extremely high elasticity up to 400% strain with a high capacitance of about 8.7 F g-1 at the discharge current of 1 A g-1.

  12. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  13. Strategies for adapting to high rates of employee turnover.

    PubMed

    Mowday, R T

    1984-01-01

    For many organizations facing high rates of employee turnover, strategies for increasing employee retention may not be practical because employees leave for reasons beyond the control of management or the costs of reducing turnover exceed the benefits to be derived. In this situation managers need to consider strategies that can minimize or buffer the organization from the negative consequences that often follow from turnover. Strategies organizations can use to adapt to uncontrollably high employee turnover rates are presented in this article. In addition, suggestions are made for how managers should make choices among the alternative strategies.

  14. Quantum data locking for high-rate private communication

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Lloyd, Seth

    2015-03-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.

  15. The operation of plastic MSGCs at high rates

    SciTech Connect

    Taylor, S.C.; Armitage, J.C.; Batchelar, D.

    1994-12-31

    The operation of MicroStrip Gas Counters (MSGCS) on a Upilex (polyimide) substrate is described. The surface resistivity of the substrate was reduced by ion implantation or by coating with a thin film of nickel oxide. Results are presented concerning the surface resistivity and The lowering of the substrate resistivity allows perate at very high rates and several devices in a high flux X-ray beam. Substrates with optimum resistivity showed no gain changes whereas gain changes were seen on those with higher resistivity.

  16. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  17. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  18. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  19. Investigation of high-rate lithium-thionyl chloride cells

    NASA Astrophysics Data System (ADS)

    Hayes, Catherine A.; Gust, Steven; Farrington, Michael D.; Lockwood, Judith A.; Donaldson, George J.

    Chemical analysis of a commercially produced high-rate D-size lithium-thionyl cell was carried out, as a function of rate of discharge (1 ohm and 5 ohms), depth of discharge, and temperature (25 C and -40 C), using specially developed methods for identifying suspected minor cell products or impurities which may effect cell performance. These methods include a product-retrieval system which involves solvent extraction to enhance the recovery of suspected semivolatile minor chemicals, and methods of quantitative GC analysis of volatile and semivolatile products. The nonvolatile products were analyzed by wet chemical methods. The results of the analyses indicate that the predominant discharge reaction in this cell is 4Li + 2SOCl2 going to 4LiCl + S + SO2, with SO2 formation decreasing towards the end of cell life (7 to 12 Ah). The rate of discharge had no effect on the product distribution. Upon discharge of the high-rate cell at -40 C, one cell exploded, and all others exhibited overheating and rapid internal pressure rise when allowed to warm up to room temperature.

  20. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-06-07

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  1. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  2. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  3. Fate and long-term inhibitory impact of ZnO nanoparticles during high-rate anaerobic wastewater treatment.

    PubMed

    Otero-González, Lila; Field, Jim A; Sierra-Alvarez, Reyes

    2014-03-15

    The aim of this study was to evaluate the long-term effect of ZnO nanoparticles (NPs) on the performance of high-rate anaerobic bioreactors. Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were fed with a mixture of volatile fatty acids and exposed to either low (0.32 mg Zn L(-1)) or high (34.5 mg Zn L(-1)) concentrations of ZnO NPs. Exposure to high NP concentrations caused a rapid and permanent decline in the methane production and the removal of acetate and propionate. In contrast, a gradual and partial inhibitory response was observed in the reactor exposed to low NP concentrations. The long-term effect of the NP exposure was also evident from a decline in the specific methanogenic activity, which was more severe for the acetoclastic compared to the hydrogenotrophic methanogens. ZnO NPs were removed by 62-82% during passage through the UASB reactors. The results taken as a whole indicate that ZnO NPs cause severe inhibition of acetoclastic methanogens. Even sub-ppm levels of the nano-ZnO in the influent had a negative impact on the performance of the UASB reactor due to long-term exposure of methanogens to NPs that accumulated in the sludge bed.

  4. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  5. Modeling Large-Strain, High-Rate Deformation in Metals

    SciTech Connect

    Lesuer, D R; Kay, G J; LeBlanc, M M

    2001-07-20

    The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a range in strain rates from 10{sup -4} s{sup -1} to over 10{sup 4} s{sup -1}. The results have been used to critically evaluate the strength and damage components of the Johnson-Cook (JC) material model. A new model that addresses the shortcomings of the JC model was then developed and evaluated. The model is derived from the rate equations that represent deformation mechanisms active during moderate and high rate loading. Another model that accounts for the influence of void formation on yield and flow behavior of a ductile metal (the Gurson model) was also evaluated. The characteristics and predictive capabilities of these models are reviewed.

  6. Wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-01-01

    While research and development of algal biofuels are currently receiving much interest and funding, they are still not commercially viable at today's fossil fuel prices. However, a niche opportunity may exist where algae are grown as a by-product of high rate algal ponds (HRAPs) operated for wastewater treatment. In addition to significantly better economics, algal biofuel production from wastewater treatment HRAPs has a much smaller environmental footprint compared to commercial algal production HRAPs which consume freshwater and fertilisers. In this paper the critical parameters that limit algal cultivation, production and harvest are reviewed and practical options that may enhance the net harvestable algal production from wastewater treatment HRAPs including CO(2) addition, species control, control of grazers and parasites and bioflocculation are discussed.

  7. Evaluation of advanced high rate Li-SOCl2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Ang, V.; Dawson, S.; Frank, H.; Subbarao, S.

    1986-01-01

    Under NASA sponsorship, JPL is developing advanced, high rate Li-SOCl2 cells for future space missions. As part of this effort, Li-SOCl2 cells of various designs were examined for performance and safety. The cells differed from one another in several aspects, such as: nature of carbon cathode, catalysts, cell configuration, case polarity, and safety devices. Performance evaluation included constant-current discharge over a range of currents and temperatures. Abuse-testing consisted of shortcircuiting, charging, and over-discharge. Energy densities greater than 300 Wh/Kg at the C/2 rate were found for some designs. A cell design featuring a high-surface-area carbon cathode was found to deliver nearly 500 Wh/Kg at moderate discharge rates. Temperature influenced the performance significantly.

  8. Simulation of ceramics fracture due to high rate dynamic impact

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Bratov, V. A.; Petrov, Y. V.

    2015-11-01

    In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives the area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith surface energy) was evaluated and was found to be an order of magnitude higher as comparing to its static value.

  9. Advances in solid polymer electrochemical capacitors for high rate applications

    NASA Astrophysics Data System (ADS)

    Lian, Keryn; Gao, Han

    2011-06-01

    All solid electrochemical capacitors (EC) have been demonstrated using proton conducting silicotungstic acid (SiWA) and poly(vinyl alcohol) (PVA) based polymer electrolytes. Graphite electrodes were utilized for electrochemical double layer capacitors (EDLC), while RuO2 electrodes were employed as pseudocapacitive electrodes. Both solid EDLC and pseudocapacitors exhibited very high charge/discharge rate capability. Especially for solid EDLC, a charge/discharge rate of 25 V/s and a 10 ms time constant ("factor of merit") were obtained. The rate capability of the solid EC is attributable to thin film thickness, good proton conductivity of the polymer electrolyte, and intimate contact between electrode and electrolyte. These results demonstrate promise of polymer electrolytes as enablers of high rate and high performance solid EC devices.

  10. Low resistance bakelite RPC study for high rate working capability

    DOE PAGES

    Dai, T.; Han, L.; Hou, S.; ...

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of newmore » structure performs as efficiently as traditional RPCs.« less

  11. High-rate lithium thionyl-chloride battery development

    SciTech Connect

    Cieslak, W.R.; Weigand, D.E.

    1993-12-31

    We have developed a lithium thionyl-chloride cell for use in a high rate battery application to provide power for a missile computer and stage separation detonators. The battery pack contains 20 high surface area ``DD`` cells wired in a series-parallel configuration to supply a nominal 28 volts with a continuous draw of 20 amperes. The load profile also requires six squib firing pulses of one second duration at a 20 ampere peak. Performance and safety of the cells were optimized in a ``D`` cell configuration before progressing to the longer ``DD` cell. Active surface area in the ``D`` cell is 735 cm{sup 2}, and 1650 cm{sup 2} in the ``DD`` cell. The design includes 1.5M LiAlCl{sub 4}/SOCl{sub 2} electrolyte, a cathode blend of Shawinigan Acetylene Black and Cabot Black Pearls 2000 carbons, Scimat ETFE separator, and photoetched current collectors.

  12. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.

  13. Low resistance bakelite RPC study for high rate working capability

    SciTech Connect

    Dai, T.; Han, L.; Hou, S.; Liu, M.; Li, Q.; Song, H.; Xia, L.; Zhang, Z.

    2014-11-19

    This paper presents series efforts to lower resistance of bakelite electrode plate to improve the RPC capability under high rate working condition. New bakelite material with alkali metallic ion doping has been manufactured and tested. This bakelite is found unstable under large charge flux and need further investigation. A new structure of carbon-embedded bakelite RPC has been developed, which can reduce the effective resistance of electrode by a factor of 10. The prototype of the carbon-embedded chamber could function well under gamma radiation source at event rate higher than 10 kHz/cm2. The preliminary tests show that this kind of new structure performs as efficiently as traditional RPCs.

  14. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  15. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.

    1960-11-22

    A nuclear reactor is described wherein horizontal rods of thermal- neutron-fissionable material are disposed in a body of heavy water and extend through and are supported by spaced parallel walls of graphite.

  16. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  17. Reactor apparatus

    DOEpatents

    Echtler, J. Paul

    1981-01-01

    A reactor apparatus for hydrocracking a polynuclear aromatic hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the hydrocarbonaceous feedstock with hydrogen in the presence of a molten metal halide catalyst.

  18. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  19. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  20. Reactor Engineering

    NASA Astrophysics Data System (ADS)

    Lema, Juan M.; López, Carmen; Eibes, Gemma; Taboada-Puig, Roberto; Moreira, M. Teresa; Feijoo, Gumersindo

    In this chapter, the engineering aspects of processes catalyzed by peroxidases will be presented. In particular, a discussion of the existing technologies that utilize peroxidases for different purposes, such as the removal of recalcitrant compounds or the synthesis of polymers, is analyzed. In the first section, the essential variables controlling the process will be investigated, not only those that are common in any enzymatic system but also those specific to peroxidative reactions. Next, different reactor configurations and operational modes will be proposed, emphasizing their suitability and unsuitability for different systems. Finally, two specific reactors will be described in detail: enzymatic membrane reactors and biphasic reactors. These configurations are especially valuable for the treatment of xenobiotics with high and poor water solubility, respectively.

  1. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  2. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  3. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  4. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  5. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  6. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  7. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  8. High Rate Laser Pitting Technique for Solar Cell Texturing

    SciTech Connect

    Hans J. Herfurth; Henrikki Pantsar

    2013-01-10

    High rate laser pitting technique for solar cell texturing Efficiency of crystalline silicon solar cells can be improved by creating a texture on the surface to increase optical absorption. Different techniques have been developed for texturing, with the current state-of-the-art (SOA) being wet chemical etching. The process has poor optical performance, produces surfaces that are difficult to passivate or contact and is relatively expensive due to the use of hazardous chemicals. This project shall develop an alternative process for texturing mc-Si using laser micromachining. It will have the following features compared to the current SOA texturing process: -Superior optical surfaces for reduced front-surface reflection and enhanced optical absorption in thin mc-Si substrates -Improved surface passivation -More easily integrated into advanced back-contact cell concepts -Reduced use of hazardous chemicals and waste treatment -Similar or lower cost The process is based on laser pitting. The objective is to develop and demonstrate a high rate laser pitting process which will exceed the rate of former laser texturing processes by a factor of ten. The laser and scanning technologies will be demonstrated on a laboratory scale, but will use inherently technologies that can easily be scaled to production rates. The drastic increase in process velocity is required for the process to be implemented as an in-line process in PV manufacturing. The project includes laser process development, development of advanced optical systems for beam manipulation and cell reflectivity and efficiency testing. An improvement of over 0.5% absolute in efficiency is anticipated after laser-based texturing. The surface textures will be characterized optically, and solar cells will be fabricated with the new laser texturing to ensure that the new process is compatible with high-efficiency cell processing. The result will be demonstration of a prototype process that is suitable for scale-up to a

  9. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  10. Temporal pitch perception at high rates in cochlear implants.

    PubMed

    Kong, Ying-Yee; Carlyon, Robert P

    2010-05-01

    A recent study reported that a group of Med-El COMBI 40+CI (cochlear implant) users could, in a forced-choice task, detect changes in the rate of a pulse train for rates higher than the 300 pps "upper limit" commonly reported in the literature [Kong, Y.-Y., et al. (2009). J. Acoust. Soc. Am. 125, 1649-1657]. The present study further investigated the upper limit of temporal pitch in the same group of CI users on three tasks [pitch ranking, rate discrimination, and multidimensional scaling (MDS)]. The patterns of results were consistent across the three tasks and all subjects could follow rate changes above 300 pps. Two subjects showed exceptional ability to follow temporal pitch change up to about 900 pps. Results from the MDS study indicated that, for the two listeners tested, changes in pulse rate over the range of 500-840 pps were perceived along a perceptual dimension that was orthogonal to the place of excitation. Some subjects showed a temporal pitch reversal at rates beyond their upper limit of pitch and some showed a reversal within a small range of rates below the upper limit. These results are discussed in relation to the possible neural bases for temporal pitch processing at high rates.

  11. Accuracy of High-Rate GPS for Seismology

    NASA Technical Reports Server (NTRS)

    Elosegui, P.; Davis, J. L.; Oberlander, D.; Baena, R.; Ekstrom, G.

    2006-01-01

    We built a device for translating a GPS antenna on a positioning table to simulate the ground motions caused by an earthquake. The earthquake simulator is accurate to better than 0.1 mm in position, and provides the "ground truth" displacements for assessing the technique of high-rate GPS. We found that the root-mean-square error of the 1-Hz GPS position estimates over the 15-min duration of the simulated seismic event was 2.5 mm, with approximately 96% of the observations in error by less than 5 mm, and is independent of GPS antenna motion. The error spectrum of the GPS estimates is approximately flicker noise, with a 50% decorrelation time for the position error of approx.1.6 s. We that, for the particular event simulated, the spectrum of dependent error in the GPS measurements. surface deformations exceeds the GPS error spectrum within a finite band. More studies are required to determine whether a generally optimal bandwidth exists for a target group of seismic events.

  12. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  13. High rates of evolution preceded the origin of birds.

    PubMed

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J

    2014-05-01

    The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. © 2014 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  14. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  15. Metrology challenges for high-rate nanomanufacturing of polymer structures

    NASA Astrophysics Data System (ADS)

    Mead, Joey; Barry, Carol; Busnaina, Ahmed; Isaacs, Jacqueline

    2012-10-01

    The transfer of nanoscience accomplishments into commercial products is hindered by the lack of understanding of barriers to nanoscale manufacturing. We have developed a number of nanomanufacturing processes that leverage available high-rate plastics fabrication technologies. These processes include directed assembly of a variety of nanoelements, such as nanoparticles and nanotubes, which are then transferred onto a polymer substrate for the fabrication of conformal/flexible electronic materials, among other applications. These assembly processes utilize both electric fields and/or chemical functionalization. Conducting polymers and carbon nanotubes have been successfully transferred to a polymer substrate in times less than 5 minutes, which is commercially relevant and can be utilized in a continuous (reel to reel/roll to roll) process. Other processes include continuous high volume mixing of nanoelements (CNTs, etc) into polymers, multi-layer extrusion and 3D injection molding of polymer structures. These nanomanufacturing processes can be used for wide range of applications, including EMI shielding, flexible electronics, structural materials, and novel sensors (specifically for chem/bio detection). Current techniques to characterize the quality and efficacy of the processes are quite slow. Moreover, the instrumentation and metrology needs for these manufacturing processes are varied and challenging. Novel, rapid, in-line metrology to enable the commercialization of these processes is critically needed. This talk will explore the necessary measurement needs for polymer based nanomanufacturing processes for both step and continuous (reel to reel/roll to roll) processes.

  16. HIGH RATES OF EVOLUTION PRECEDED THE ORIGIN OF BIRDS

    PubMed Central

    Puttick, Mark N; Thomas, Gavin H; Benton, Michael J; Polly, P David

    2014-01-01

    The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous. PMID:24471891

  17. High rate copper and energy recovery in microbial fuel cells.

    PubMed

    Rodenas Motos, Pau; Ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J N; Sleutels, Tom H J A

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L(-1) Cu(2+)) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m(-2) in combination with a power density of 5.5 W m(-2) was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery.

  18. Algal biofuels from wastewater treatment high rate algal ponds.

    PubMed

    Craggs, R J; Heubeck, S; Lundquist, T J; Benemann, J R

    2011-01-01

    This paper examines the potential of algae biofuel production in conjunction with wastewater treatment. Current technology for algal wastewater treatment uses facultative ponds, however, these ponds have low productivity (∼10 tonnes/ha.y), are not amenable to cultivating single algal species, require chemical flocculation or other expensive processes for algal harvest, and do not provide consistent nutrient removal. Shallow, paddlewheel-mixed high rate algal ponds (HRAPs) have much higher productivities (∼30 tonnes/ha.y) and promote bioflocculation settling which may provide low-cost algal harvest. Moreover, HRAP algae are carbon-limited and daytime addition of CO(2) has, under suitable climatic conditions, the potential to double production (to ∼60 tonnes/ha.y), improve bioflocculation algal harvest, and enhance wastewater nutrient removal. Algae biofuels (e.g. biogas, ethanol, biodiesel and crude bio-oil), could be produced from the algae harvested from wastewater HRAPs, The wastewater treatment function would cover the capital and operation costs of algal production, with biofuel and recovered nutrient fertilizer being by-products. Greenhouse gas abatement results from both the production of the biofuels and the savings in energy consumption compared to electromechanical treatment processes. However, to achieve these benefits, further research is required, particularly the large-scale demonstration of wastewater treatment HRAP algal production and harvest.

  19. Development of a high-rate submerged anaerobic membrane bioreactor.

    PubMed

    Mahmoud, I; Gao, W J; Liao, B Q; Cumin, J; Dagnew, M; Hong, Y

    2017-04-04

    Typically, anaerobic membrane bioreactors are operated at an organic loading rate (OLR) less than 10 kg chemical oxygen demand (COD)/m(3 )d. This paper discusses the development and performance of a high-rate submerged anaerobic membrane bioreactor (SAnMBR) for a high-strength synthetic industrial wastewater treatment. An OLR as high as 41 kg COD/m(3) d was achieved with excellent COD removal efficiency (>99%). The membrane was operated at constant fluxes (9.4-9.9 ± 0.5 L/m(2) h) and the change in trans-membrane pressure (TMP) was monitored to characterize the membrane performance. The results showed a low TMP (<5 kPa) under steady-state operation with only biogas sparging and relaxation as control strategy for over 300 days, implying no significant fouling was developed. Inorganic fouling was the dominant fouling mechanism occurred at the end of the study. The results suggest that the newly developed SAnMBR configuration can treat high-strength wastewater at lower capital expenditure while still providing superior effluent quality for water reuse or system closure.

  20. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  1. A high rate clarifier for load levelling in sewerage systems.

    PubMed

    Jago, R A; Davey, A; Li, H

    2003-01-01

    The combining of chemically assisted clarification with a proprietary physical separation technology has led to a high rate process for clarifying flocculated sewage and other waste streams. This hybrid physico-chemical system, known as the CDS Fine Solids Separation (FSS) System, was developed over a two year period within a sewage treatment plant environment. This paper summarises the results of a recent field trial of the system with a Victorian water authority which experiences heavy loading of sewers in a coastal town during holiday periods. The trial sought to evaluate the FSS as a tool for smoothing the load on the 11 km long sewer to the sewage treatment plant (STP). The FSS system could possibly enable the costly augmentation of the sewer to be deferred, particularly as the capacity of the existing sewer pipe is satisfactory for most of the year. Water quality parameters were determined for a range of flowrates and operational conditions over a two month period. Large reductions were achieved in TSS, TP, FC, turbidity and BOD5, with only minimal reductions in NH3 and TON. These results showed that the FSS could meet the authority's objectives for load levelling and would provide a 20-25% increase in effective sewer capacity. The data are also discussed in terms of possible use of the effluent from the FSS for water reuse applications.

  2. High rate composting of herbal pharmaceutical industry solid waste.

    PubMed

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3.

  3. High-rate measurement-device-independent quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.

    2015-06-01

    Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.

  4. High rate reactive sputtering of MoN(x) coatings

    NASA Technical Reports Server (NTRS)

    Rudnik, Paul J.; Graham, Michael E.; Sproul, William D.

    1991-01-01

    High rate reactive sputtering of MoN(x) films was performed using feedback control of the nitorgen partial pressure. Coatings were made at four different target powers: 2.5, 5.0, 7.5 and 10 kW. No hysteresis was observed in the nitrogen partial pressure vs. flow plot, as is typically seen for the Ti-N system. Four phases were determined by X-ray diffraction: molybdenum, Mo-N solid solution, Beta-Mo2N and gamma-Mo2N. The hardness of the coatings depended upon composition, substrate bias, and target power. The phases present in the hardest films differed depending upon deposition parameters. For example, the Beta-Mo2N phase was hardest (load 25 gf) at 5.0 kW with a value of 3200 kgf/sq mm, whereas the hardest coatings at 10 kW were the gamma-Mo2N phase (3000 kgf/sq mm). The deposition rate generally decreased with increasing nitrogen partial pressure, but there was a range of partial pressures where the rate was relatively constant. At a target power of 5.0 kW, for example, the deposition rates were 3300 A/min for a N2 partial pressure of 0.05 - 1.0 mTorr.

  5. Substrate inhibition and control for high rate biogas production

    SciTech Connect

    Shin, H.S.

    1982-01-01

    This research addresses a critical aspect of the technical feasibility of biogas recovery with poultry manure using anaerobic digestion, namely, inhibition and toxicity factors limiting methane generation under high rate conditions. The research was designed to identify the limiting factors and to examine alternative pretreatment and in situ control methods for the anaerobic digestion of poultry manure as an energy producing system. Biogas production was indicated by the daily gas volume produced per unit digester capacity. Enhanced biogas generation from the anaerobic digester systems using poultry manure was studied in laboratory- and pilot-scale digester operations. It was found that ammonia nitrogen concentration above 4000 mg/l was inhibitory to biogas production. Pretreatment of the manure by elutriation was effective for decreasing inhibitory/toxic conditions. Increased gas production resulted without an indication of serious inhibition by increased volatile acids, indicating a limitation of available carbon sources. For poultry manure digestion, the optimum pH range was 7.1 to 7.6. Annual costs for pretreatment/biogas systems for 10,000, 30,000 and 50,000 birds were estimated and compared with annual surplus energy produced. The economic break-even point was achieved in digesters for greater than 30,000 birds. Capital cost of the digester system was estimated to be $18,300 with annual costs around $4000. It is anticipated that the digester system could be economically applied to smaller farms as energy costs increase.

  6. High rate and stable cycling of lithium metal anode

    PubMed Central

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark; Borodin, Oleg; Zhang, Ji-Guang

    2015-01-01

    Lithium metal is an ideal battery anode. However, dendrite growth and limited Coulombic efficiency during cycling have prevented its practical application in rechargeable batteries. Herein, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide salt enables the high-rate cycling of a lithium metal anode at high Coulombic efficiency (up to 99.1%) without dendrite growth. With 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane as the electrolyte, a lithium|lithium cell can be cycled at 10 mA cm−2 for more than 6,000 cycles, and a copper|lithium cell can be cycled at 4 mA cm−2 for more than 1,000 cycles with an average Coulombic efficiency of 98.4%. These excellent performances can be attributed to the increased solvent coordination and increased availability of lithium ion concentration in the electrolyte. Further development of this electrolyte may enable practical applications for lithium metal anode in rechargeable batteries. PMID:25698340

  7. A high-rate PCI-based telemetry processor system

    NASA Astrophysics Data System (ADS)

    Turri, R.

    2002-07-01

    The high performances reached by the Satellite on-board telemetry generation and transmission, as consequently, will impose the design of ground facilities with higher processing capabilities at low cost to allow a good diffusion of these ground station. The equipment normally used are based on complex, proprietary bus and computing architectures that prevent the systems from exploiting the continuous and rapid increasing in computing power available on market. The PCI bus systems now allow processing of high-rate data streams in a standard PC-system. At the same time the Windows NT operating system supports multitasking and symmetric multiprocessing, giving the capability to process high data rate signals. In addition, high-speed networking, 64 bit PCI-bus technologies and the increase in processor power and software, allow creating a system based on COTS products (which in future may be easily and inexpensively upgraded). In the frame of EUCLID RTP 9.8 project, a specific work element was dedicated to develop the architecture of a system able to acquire telemetry data of up to 600 Mbps. Laben S.p.A - a Finmeccanica Company -, entrusted of this work, has designed a PCI-based telemetry system making possible the communication between a satellite down-link and a wide area network at the required rate.

  8. Cassini High Rate Detector V5.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; Didonna, P.

    2009-06-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through the end of 2008. Please refer to Srama et al. (2004) for a detailed HRD description. --Apple-Mail-2--243167724 Content-Type: text/plain; charset=US-ASCII; format=flowed; delsp=yes Content-Transfer-Encoding: 7bit On Aug 5, 2008, at 1:54 PM, Carolyn Stern Grant wrote: >> I am preparing to send you a new batch of publications for >> inclusion in the ADS system. I notice that I never got a response >> from you to the following question. Should I send the publications >> in >> the format we have used in the past, or would you like us to change >> our software to fix this problem? (see your earlier message >> attached.) > > Hi Carol, > > Go ahead and use the format you've used in the past. > > Thanks, > -Carolyn > ************************************************************************* > Carolyn Stern Grant Astrophysics Data System (ADS) > stern@cfa.harvard.edu Center for Astrophysics > 617-495-7154 (voicemail) 60 Garden Street MS 67 > 617-495-7356 fax Cambridge, MA 02138 > ************************************************************************* > > --Apple-Mail-2--243167724--

  9. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  10. An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters.

    PubMed

    Rose, P D; Boshoff, G A; van Hille, R P; Wallace, L C; Dunn, K M; Duncan, J R

    1998-01-01

    Acid mine drainage pollution may be associated with large water volume flows and exceptionally long periods of time over which the drainage may require treatment. While the use and role of sulphate reducing bacteria has been demonstrated in active treatment systems for acid mine drainage remediation, reactor size requirement and the cost and availability of the carbon and electron donor source are factors which constrain process development. Little attention has focussed on the use of waste stabilisation ponding processes for acid mine drainage treatment. Wastewater ponding is a mature technology for the treatment of large water volumes and its use as a basis for appropriate reactor design for acid mine drainage treatment is described including high rates of sulphate reduction and the precipitation of metal sulphides. Together with the co-disposal of organic wastes, algal biomass is generated as an independent carbon source for SRB production. Treatment of tannery effluent in a custom-designed high rate algal ponding process, and its use as a carbon source in the generation and precipitation of metal sulphides, has been demonstrated through piloting to the implementation of a full-scale process. The treatment of both mine drainage and zinc refinery wastewaters are reported. A complementary role for microalgal production in the generation of alkalinity and bioadsorptive removal of metals has been utilised and an Integrated 'Algal Sulphate Reducing Ponding Process for the Treatment of Acidic and Metal Wastewaters' (ASPAM) has been described.

  11. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater.

    PubMed

    Keating, Ciara; Chin, Jason P; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J; McGrath, John W; O'Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4', 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m(-3) d(-1) and hydraulic retention times of 8-24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded

  12. Biological Phosphorus Removal During High-Rate, Low-Temperature, Anaerobic Digestion of Wastewater

    PubMed Central

    Keating, Ciara; Chin, Jason P.; Hughes, Dermot; Manesiotis, Panagiotis; Cysneiros, Denise; Mahony, Therese; Smith, Cindy J.; McGrath, John W.; O’Flaherty, Vincent

    2016-01-01

    We report, for the first time, extensive biologically mediated phosphate removal from wastewater during high-rate anaerobic digestion (AD). A hybrid sludge bed/fixed-film (packed pumice stone) reactor was employed for low-temperature (12°C) anaerobic treatment of synthetic sewage wastewater. Successful phosphate removal from the wastewater (up to 78% of influent phosphate) was observed, mediated by biofilms in the reactor. Scanning electron microscopy and energy dispersive X-ray analysis revealed the accumulation of elemental phosphorus (∼2%) within the sludge bed and fixed-film biofilms. 4′, 6-diamidino-2-phenylindole (DAPI) staining indicated phosphorus accumulation was biological in nature and mediated through the formation of intracellular inorganic polyphosphate (polyP) granules within these biofilms. DAPI staining further indicated that polyP accumulation was rarely associated with free cells. Efficient and consistent chemical oxygen demand (COD) removal was recorded, throughout the 732-day trial, at applied organic loading rates between 0.4 and 1.5 kg COD m-3 d-1 and hydraulic retention times of 8–24 h, while phosphate removal efficiency ranged from 28 to 78% on average per phase. Analysis of protein hydrolysis kinetics and the methanogenic activity profiles of the biomass revealed the development, at 12°C, of active hydrolytic and methanogenic populations. Temporal microbial changes were monitored using Illumina MiSeq analysis of bacterial and archaeal 16S rRNA gene sequences. The dominant bacterial phyla present in the biomass at the conclusion of the trial were the Proteobacteria and Firmicutes and the dominant archaeal genus was Methanosaeta. Trichococcus and Flavobacterium populations, previously associated with low temperature protein degradation, developed in the reactor biomass. The presence of previously characterized polyphosphate accumulating organisms (PAOs) such as Rhodocyclus, Chromatiales, Actinobacter, and Acinetobacter was recorded

  13. NEUTRONIC REACTOR

    DOEpatents

    Ohlinger, L.A.; Wigner, E.P.; Weinberg, A.M.; Young, G.J.

    1958-09-01

    This patent relates to neutronic reactors of the heterogeneous water cooled type, and in particular to a fuel element charging and discharging means therefor. In the embodiment illustrated the reactor contains horizontal, parallel coolant tubes in which the fuel elements are disposed. A loading cart containing a magnzine for holding a plurality of fuel elements operates along the face of the reactor at the inlet ends of the coolant tubes. The loading cart is equipped with a ram device for feeding fuel elements from the magazine through the inlot ends of the coolant tubes. Operating along the face adjacent the discharge ends of the tubes there is provided another cart means adapted to receive irradiated fuel elements as they are forced out of the discharge ends of the coolant tubes by the incoming new fuel elements. This cart is equipped with a tank coataining a coolant, such as water, into which the fuel elements fall, and a hydraulically operated plunger to hold the end of the fuel element being discharged. This inveation provides an apparatus whereby the fuel elements may be loaded into the reactor, irradiated therein, and unloaded from the reactor without stopping the fiow of the coolant and without danger to the operating personnel.

  14. Coherent Detection of High-Rate Optical PPM Signals

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Fernandez, Michela Munoz

    2006-01-01

    A method of coherent detection of high-rate pulse-position modulation (PPM) on a received laser beam has been conceived as a means of reducing the deleterious effects of noise and atmospheric turbulence in free-space optical communication using focal-plane detector array technologies. In comparison with a receiver based on direct detection of the intensity modulation of a PPM signal, a receiver based on the present method of coherent detection performs well at much higher background levels. In principle, the coherent-detection receiver can exhibit quantum-limited performance despite atmospheric turbulence. The key components of such a receiver include standard receiver optics, a laser that serves as a local oscillator, a focal-plane array of photodetectors, and a signal-processing and data-acquisition assembly needed to sample the focal-plane fields and reconstruct the pulsed signal prior to detection. The received PPM-modulated laser beam and the local-oscillator beam are focused onto the photodetector array, where they are mixed in the detection process. The two lasers are of the same or nearly the same frequency. If the two lasers are of different frequencies, then the coherent detection process is characterized as heterodyne and, using traditional heterodyne-detection terminology, the difference between the two laser frequencies is denoted the intermediate frequency (IF). If the two laser beams are of the same frequency and remain aligned in phase, then the coherent detection process is characterized as homodyne (essentially, heterodyne detection at zero IF). As a result of the inherent squaring operation of each photodetector, the output current includes an IF component that contains the signal modulation. The amplitude of the IF component is proportional to the product of the local-oscillator signal amplitude and the PPM signal amplitude. Hence, by using a sufficiently strong local-oscillator signal, one can make the PPM-modulated IF signal strong enough to

  15. New liquid cathode electrolytes in high rate cells

    NASA Astrophysics Data System (ADS)

    Bailey, Jean W.; Kalisz, David W.; Blomgren, George E.

    1990-03-01

    The power limitations of liquid oxyhalide batteries were explored by examining the physical and electrical properties of new electrolytes. Conductivity, kinematic viscosity, and specific gravity of electrolytes were measured inside a specially adapted argon filled drybox. Liquid cathode oxyhalide electrolytes designed to enhance power density were tested first in demountable test cells and then, the most promising, in hermetically sealed high rate F size jellyroll cells. For F cells, the capacity on constant current discharge was measured at 3.5 and 12.5 mA/sq cm for fresh cells at 21 C and at 3.5 mA/sq cm for cells stored 4 weeks at 54 C then discharged at -30 C. An optimized cell design with thicker electrodes was developed for testing electrolytes with higher conductivity than LiAlCl4-SOCl2. The best capacity at 2A was achieved with LiGaCl4-SOCl2 or LiAlCl4-SOCl2. The best capacity at 7A was achieved with LiGaCl4-SOCl2. LiGaCl4 in SOCl2 was found to discharge at higher temperatures than LiAlCl4 in SOCl2. Imidazolium, aralkylammonium, and sulfonium chlorides were found to have high solubility and conductivity in thionyl chloride, but lithium was found to be passive in contact with these solutions and most metals corroded excessively. These salts mixed with aluminum chloride were much less aggressive and when mixed with lithium salts in addition gave high conductivity and test cell capacities.

  16. Systematic Uncertainties in High-Rate Germanium Data

    SciTech Connect

    Gilbert, Andrew J.; Fast, James E.; Fulsom, Bryan G.; Pitts, William K.; VanDevender, Brent A.; Wood, Lynn S.

    2016-10-06

    For many nuclear material safeguards inspections, spectroscopic gamma detectors are required which can achieve high event rates (in excess of 10^6 s^-1) while maintaining very good energy resolution for discrimination of neighboring gamma signatures in complex backgrounds. Such spectra can be useful for non-destructive assay (NDA) of spent nuclear fuel with long cooling times, which contains many potentially useful low-rate gamma lines, e.g., Cs-134, in the presence of a few dominating gamma lines, such as Cs-137. Detectors in use typically sacrifice energy resolution for count rate, e.g., LaBr3, or visa versa, e.g., CdZnTe. In contrast, we anticipate that beginning with a detector with high energy resolution, e.g., high-purity germanium (HPGe), and adapting the data acquisition for high throughput will be able to achieve the goals of the ideal detector. In this work, we present quantification of Cs-134 and Cs-137 activities, useful for fuel burn-up quantification, in fuel that has been cooling for 22.3 years. A segmented, planar HPGe detector is used for this inspection, which has been adapted for a high-rate throughput in excess of 500k counts/s. Using a very-high-statistic spectrum of 2.4*10^11 counts, isotope activities can be determined with very low statistical uncertainty. However, it is determined that systematic uncertainties dominate in such a data set, e.g., the uncertainty in the pulse line shape. This spectrum offers a unique opportunity to quantify this uncertainty and subsequently determine required counting times for given precision on values of interest.

  17. Simplifying microbial electrosynthesis reactor design

    PubMed Central

    Giddings, Cloelle G. S.; Nevin, Kelly P.; Woodward, Trevor; Lovley, Derek R.; Butler, Caitlyn S.

    2015-01-01

    Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional ‘H-cell’ reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs. PMID:26029199

  18. Simplifying microbial electrosynthesis reactor design.

    PubMed

    Giddings, Cloelle G S; Nevin, Kelly P; Woodward, Trevor; Lovley, Derek R; Butler, Caitlyn S

    2015-01-01

    Microbial electrosynthesis, an artificial form of photosynthesis, can efficiently convert carbon dioxide into organic commodities; however, this process has only previously been demonstrated in reactors that have features likely to be a barrier to scale-up. Therefore, the possibility of simplifying reactor design by both eliminating potentiostatic control of the cathode and removing the membrane separating the anode and cathode was investigated with biofilms of Sporomusa ovata. S. ovata reduces carbon dioxide to acetate and acts as the microbial catalyst for plain graphite stick cathodes as the electron donor. In traditional 'H-cell' reactors, where the anode and cathode chambers were separated with a proton-selective membrane, the rates and columbic efficiencies of microbial electrosynthesis remained high when electron delivery at the cathode was powered with a direct current power source rather than with a potentiostat-poised cathode utilized in previous studies. A membrane-less reactor with a direct-current power source with the cathode and anode positioned to avoid oxygen exposure at the cathode, retained high rates of acetate production as well as high columbic and energetic efficiencies. The finding that microbial electrosynthesis is feasible without a membrane separating the anode from the cathode, coupled with a direct current power source supplying the energy for electron delivery, is expected to greatly simplify future reactor design and lower construction costs.

  19. NUCLEAR REACTOR

    DOEpatents

    Christy, R.F.

    1958-07-15

    A nuclear reactor of the homogeneous liquid fuel type is described wherein the fissionable isotope is suspended or dissolved in a liquid moderator such as water. The reactor core is comprised essentially of a spherical vessel for containing the reactive composition surrounded by a reflector, preferably of beryllium oxide. The reactive composition may be an ordinary water solution of a soluble salt of uranium, the quantity of fissionable isotope in solution being sufficient to provide a critical mass in the vessel. The liquid fuel is stored in a tank of non-crtttcal geometry below the reactor vessel and outside of the reflector and is passed from the tank to the vessel through a pipe connecting the two by air pressure means. Neutron absorbing control and safety rods are operated within slots in the reflector adjacent to the vessel.

  20. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.

    1957-10-01

    A reactor of the type which preferably uses plutonium as the fuel and a liquid moderator, preferably ordinary water, and which produces steam within the reactor core due to the heat of the chain reaction is described. In the reactor shown the fuel elements are essentially in the form of trays and are ventically stacked in spaced relationship. The water moderator is continuously supplied to the trays to maintain a constant level on the upper surfaces of the fuel element as it is continually evaporated by the heat. The steam passes out through the spaces between the fuel elements and is drawn off at the top of the core. The fuel elements are clad in aluminum to prevent deterioration thereof with consequent contamimation of the water.

  1. REACTOR CONTROL

    DOEpatents

    Fortescue, P.; Nicoll, D.

    1962-04-24

    A control system employed with a high pressure gas cooled reactor in which a control rod is positioned for upward and downward movement into the neutron field from a position beneath the reactor is described. The control rod is positioned by a coupled piston cylinder releasably coupled to a power drive means and the pressurized coolant is directed against the lower side of the piston. The coolant pressure is offset by a higher fiuid pressure applied to the upper surface of the piston and means are provided for releasing the higher pressure on the upper side of the piston so that the pressure of the coolant drives the piston upwardly, forcing the coupled control rod into the ncutron field of the reactor. (AEC)

  2. NEUTRONIC REACTORS

    DOEpatents

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  3. Bioconversion reactor

    DOEpatents

    McCarty, Perry L.; Bachmann, Andre

    1992-01-01

    A bioconversion reactor for the anaerobic fermentation of organic material. The bioconversion reactor comprises a shell enclosing a predetermined volume, an inlet port through which a liquid stream containing organic materials enters the shell, and an outlet port through which the stream exits the shell. A series of vertical and spaced-apart baffles are positioned within the shell to force the stream to flow under and over them as it passes from the inlet to the outlet port. The baffles present a barrier to the microorganisms within the shell causing them to rise and fall within the reactor but to move horizontally at a very slow rate. Treatment detention times of one day or less are possible.

  4. Catalytic reactor

    SciTech Connect

    Aaron, Timothy Mark; Shah, Minish Mahendra; Jibb, Richard John

    2009-03-10

    A catalytic reactor is provided with one or more reaction zones each formed of set(s) of reaction tubes containing a catalyst to promote chemical reaction within a feed stream. The reaction tubes are of helical configuration and are arranged in a substantially coaxial relationship to form a coil-like structure. Heat exchangers and steam generators can be formed by similar tube arrangements. In such manner, the reaction zone(s) and hence, the reactor is compact and the pressure drop through components is minimized. The resultant compact form has improved heat transfer characteristics and is far easier to thermally insulate than prior art compact reactor designs. Various chemical reactions are contemplated within such coil-like structures such that as steam methane reforming followed by water-gas shift. The coil-like structures can be housed within annular chambers of a cylindrical housing that also provide flow paths for various heat exchange fluids to heat and cool components.

  5. POWER REACTOR

    DOEpatents

    Zinn, W.H.

    1958-07-01

    A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

  6. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1957-09-24

    Reactors of the type employing plates of natural uranium in a moderator are discussed wherein the plates are um-formly disposed in parallel relationship to each other thereby separating the moderator material into distinct and individual layers. Each plate has an uninterrupted sunface area substantially equal to the cross-sectional area of the active portion of the reactor, the particular size of the plates and the volume ratio of moderator to uranium required to sustain a chain reaction being determinable from the known purity of these materials and other characteristics such as the predictable neutron losses due to the formation of radioactive elements of extremely high neutron capture cross section.

  7. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  8. High rates of methane emissions from south taiga wetland ponds.

    NASA Astrophysics Data System (ADS)

    Glagolev, M.; Kleptsova, I.; Maksyutov, S.

    2012-04-01

    Since wetland ponds are often assumed to be insignificant sources of methane, there is a limited data about its fluxes. In this study, we found surprisingly high rates of methane emission at several shallow ponds in the south taiga zone of West Siberia. Wetland ponds within the Great Vasyugan Mire ridge-hollow-pool patterned bog system were investigated. 22 and 24 flux measurements from ponds and surrounded mires, respectively, were simultaneously made by a static chamber method in July, 2011. In contrast to previous measurements, fluxes were measured using the small boat with floated chamber to avoid disturbance to the water volume. Since the ebullition is most important emission pathway, minimization of physical disturbance provoking gas bubbling significantly increases the data accuracy. Air temperature varied from 15 to 22° C during the measurements, and pH at different pond depths - from 4.4 to 5. As it was found, background emission from surrounding ridges and hollows was 1.7/2.6/3.3 mgC·m-2·h1 (1st/2nd/3rd quartiles). These rates are in a perfect correspondence with the typical methane emission fluxes from other south taiga bogs. Methane emission from wetland ponds turned out to be by order of magnitude higher (9.3/11.3/15.6 mgC·m-2·h1). Comparing to other measurements in West Siberia, many times higher emissions (70.9/111.6/152.3 mgC·m-2·h1) were found in forest-steppe and subtaiga fen ponds. On the contrary, West Siberian tundra lakes emit methane insignificantly, with the flux rate close to surrounding wetlands (about 0.2-0.3 mgC·m-2·h1). Apparently, there is a naturally determined distribution of ponds with different flux rates over different West Siberia climate-vegetation zones. Further investigations aiming at revelation of the zones with different fluxes would be helpful for total flux revision purposes. With respect to other studies, high emission rates were already detected, for instance, in Baltic ponds (Dzyuban, 2002) and U.K. lakes

  9. Neutronic reactor

    DOEpatents

    Carleton, John T.

    1977-01-25

    A graphite-moderated nuclear reactor includes channels between blocks of graphite and also includes spacer blocks between adjacent channeled blocks with an axis of extension normal to that of the axis of elongation of the channeled blocks to minimize changes in the physical properties of the graphite as a result of prolonged neutron bombardment.

  10. Sonochemical Reactors.

    PubMed

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  11. NEUTRONIC REACTORS

    DOEpatents

    Anderson, H.L.

    1958-10-01

    The design of control rods for nuclear reactors are described. In this design the control rod consists essentially of an elongated member constructed in part of a neutron absorbing material and having tube means extending therethrough for conducting a liquid to cool the rod when in use.

  12. NEUTRONIC REACTOR

    DOEpatents

    Creutz, E.C.; Ohlinger, L.A.; Weinberg, A.M.; Wigner, E.P.; Young, G.J.

    1959-10-27

    BS>A reactor cooled by water, biphenyl, helium, or other fluid with provision made for replacing the fuel rods with the highest plutonium and fission product content without disassembling the entire core and for promptly cooling the rods after their replacement in order to prevent build-up of heat from fission product activity is described.

  13. Neutronic reactor

    DOEpatents

    Wende, Charles W. J.

    1976-08-17

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield.

  14. High-rate diamond deposition by microwave plasma CVD

    NASA Astrophysics Data System (ADS)

    Li, Xianglin

    with the total pressure applied. The high-rate growth of HOD films is realized with the help of nitrogen addition. Following the Goodwin's scaling model, there are several factors that can control the preferred growth orientation: temperature, methane concentration, total pressure, and surface condition. Nitrogen addition can alter the preferred growth orientation by the surface modification. In this work, the reactivity of nitrogen on the substrate surface is verified experimentally. An extended scaling model is established to explain the nitrogen effect on CVD diamond growth. The model shows that nitrogen has two distinct effects on the diamond growth: (1) when the nitrogen concentration is low, nitrogen has a positive effect on the growth, i.e., it improves the growth rate and the crystal quality; (2) when the nitrogen concentration is high, nitrogen has a negative effect on the diamond growth, i.e., it decreases the growth rate and deteriorates the crystal quality. Experimental results have successfully verified all the predictions from the extended model. The most important experimental finding is that for a given temperature and pressure, the growth condition for the best quality film shares the same ratio of methane and nitrogen concentration in the process gas. This finding validates the extended model developed in this work.

  15. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-12-15

    A reactor which is particularly adapted tu serve as a heat source for a nuclear powered alrcraft or rocket is described. The core of this reactor consists of a porous refractory modera;or body which is impregnated with fissionable nuclei. The core is designed so that its surface forms tapered inlet and outlet ducts which are separated by the porous moderator body. In operation a gaseous working fluid is circulated through the inlet ducts to the surface of the moderator, enters and passes through the porous body, and is heated therein. The hot gas emerges into the outlet ducts and is available to provide thrust. The principle advantage is that tremendous quantities of gas can be quickly heated without suffering an excessive pressure drop.

  16. REACTOR UNLOADING

    DOEpatents

    Leverett, M.C.

    1958-02-18

    This patent is related to gas cooled reactors wherein the fuel elements are disposed in vertical channels extending through the reactor core, the cooling gas passing through the channels from the bottom to the top of the core. The invention is a means for unloading the fuel elements from the core and comprises dump values in the form of flat cars mounted on wheels at the bottom of the core structure which support vertical stacks of fuel elements. When the flat cars are moved, either manually or automatically, for normal unloading purposes, or due to a rapid rise in the reproduction ratio within the core, the fuel elements are permtted to fall by gravity out of the core structure thereby reducing the reproduction ratio or stopping the reaction as desired.

  17. NEUTRONIC REACTOR

    DOEpatents

    Wade, E.J.

    1958-09-16

    This patent relates to a reflector means for a neutronic reactor. A reflector comprised of a plurality of vertically movable beryllium control members is provided surrounding the sides of the reactor core. An absorber of fast neutrons comprised of natural uramum surrounds the reflector. An absorber of slow neutrons surrounds the absorber of fast neutrons and is formed of a plurality of beryllium blocks having natural uranium members distributcd therethrough. in addition, a movable body is positioned directly below the core and is comprised of a beryllium reflector and an absorbing member attached to the botiom thereof, the absorbing member containing a substance selected from the goup consisting of natural urantum and Th/sup 232/.

  18. REACTOR MONITORING

    DOEpatents

    Bugbee, S.J.; Hanson, V.F.; Babcock, D.F.

    1959-02-01

    A neutron density inonitoring means for reactors is described. According to this invention a tunnel is provided beneath and spaced from the active portion of the reactor and extends beyond the opposite faces of the activc portion. Neutron beam holes are provided between the active portion and the tunnel and open into the tunnel near the middle thereof. A carriage operates back and forth in the tunnel and is adapted to convey a neutron detector, such as an ion chamber, and position it beneath one of the neutron beam holes. This arrangement affords convenient access of neutron density measuring instruments to a location wherein direct measurement of neutron density within the piles can be made and at the same time affords ample protection to operating personnel.

  19. Nuclear reactor

    DOEpatents

    Wade, Elman E.

    1979-01-01

    A nuclear reactor including two rotatable plugs and a positive top core holddown structure. The top core holddown structure is divided into two parts: a small core cover, and a large core cover. The small core cover, and the upper internals associated therewith, are attached to the small rotating plug, and the large core cover, with its associated upper internals, is attached to the large rotating plug. By so splitting the core holddown structures, under-the-plug refueling is accomplished without the necessity of enlarging the reactor pressure vessel to provide a storage space for the core holddown structure during refueling. Additionally, the small and large rotating plugs, and their associated core covers, are arranged such that the separation of the two core covers to permit rotation is accomplished without the installation of complex lifting mechanisms.

  20. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1958-08-19

    A neuclear reactor is described of the heterogeneous type and employing replaceable tubular fuel elements and heavy water as a coolant and moderator. A pluraltty of fuel tubesa having their axes parallel, extend through a tank type pressure vessel which contatns the liquid moderator. The fuel elements are disposed within the fuel tubes in the reaetive portion of the pressure vessel during normal operation and the fuel tubes have removable plug members at each end to permit charging and discharging of the fuel elements. The fuel elements are cylindrical strands of jacketed fissionable material having helical exterior ribs. A bundle of fuel elements are held within each fuel tube with their longitudinal axes parallel, the ribs serving to space them apart along their lengths. Coolant liquid is circulated through the fuel tubes between the spaced fuel elements. Suitable control rod and monitoring means are provided for controlling the reactor.

  1. Neutronic reactor

    DOEpatents

    Lewis, Warren R.

    1978-05-30

    A graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels.

  2. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  3. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1961-01-24

    A core structure for neutronic reactors adapted for the propulsion of aircraft and rockets is offered. The core is designed for cooling by gaseous media, and comprises a plurality of hollow tapered tubular segments of a porous moderating material impregniated with fissionable fuel nested about a common axis. Alternate ends of the segments are joined. In operation a coolant gas passes through the porous structure and is heated.

  4. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  5. REACTOR CONTROL

    DOEpatents

    Ruano, W.J.

    1957-12-10

    This patent relates to nuclear reactors of the type which utilize elongited rod type fuel elements immersed in a liquid moderator and shows a design whereby control of the chain reaction is obtained by varying the amount of moderator or reflector material. A central tank for containing liquid moderator and fuel elements immersed therein is disposed within a surrounding outer tank providing an annular space between the two tanks. This annular space is filled with liquid moderator which functions as a reflector to reflect neutrons back into the central reactor tank to increase the reproduction ratio. Means are provided for circulating and cooling the moderator material in both tanks and additional means are provided for controlling separately the volume of moderator in each tank, which latter means may be operated automatically by a neutron density monitoring device. The patent also shows an arrangement for controlling the chain reaction by injecting and varying an amount of poisoning material in the moderator used in the reflector portion of the reactor.

  6. Space reactors

    NASA Astrophysics Data System (ADS)

    Ranken, W. A.

    1983-01-01

    Progress in design studies and technology for the SP-100 Project - successor to the Space Power Advanced Reactor (SPAR) Project - is reported for the period October 1, 1981 to March 31, 1982. The basis for selecting a high-temperature, UO2-fueled, heat-pipe-cooled reactor with a thermoelectric conversion system as the 100/kW-sub e/ reference design has been reviewed. Although no change has been made in the general concept, design studies have been done to investigate various reactor/conversion system coupling methods and core design modifications. Thermal and mechanical finite element modeling and three dimensional Monte Carlo analysis of a core with individual finned fuel elements are reported. Studies of unrestrained fuel irradiation data are discussed that are relevant both to the core modeling work and to the design and fabrication of the first in-pile irradiation test, which is also reported. Work on lithium-filled core heat pipe development is described, including the attainment of 15.6 kW/sub t/ operation at 1525 K for a 2-m-long heat pipe with a 15.7-mm outside diameter. The successful operation of a 5.5-m-long, lightweight potassium/titanium heat pipe at 760 K is described, and test results of a thermoelectric module with GaP-modified SiGe thermoelectric elements are presented.

  7. Algal biomass production and wastewater treatment in high rate algal ponds receiving disinfected effluent.

    PubMed

    Santiago, Aníbal Fonseca; Calijuri, Maria Lucia; Assemany, Paula Peixoto; Calijuri, Maria do Carmo; dos Reis, Alberto José Delgado

    2013-01-01

    Algal biomass production associated with wastewater is usually carried out in high rate algal ponds (HRAPs), which are concomitantly used in the treatment of such effluent. However, most types of wastewater have high levels of bacteria that can inhibit the growth of algal biomass by competing for space and nutrients. The objective of this study was to assess the influence of ultraviolet (UV) pre-disinfection on the performance of HRAPs used for wastewater treatment and algal biomass production. Two HRAPs were tested: one received effluent from an upflow anaerobic sludge blanket (UASB) reactor- HRAP -and the second received UASB effluent pre-disinfected by UV radiation-(UV)HRAP. Physical, chemical and microbiological parameters were monitored, as well as algal biomass productivity and daily pH and dissolved oxygen (DO) variation. The (UV)HRAP presented highest DO and pH values, as well as greater percentage of chlorophyll a in the biomass, which indicates greater algal biomass productivity. The average percentages of chlorophyll a found in the biomass obtained from the HRAP and the (UV)HRAP were 0.95 +/- 0.65% and 1.58 +/- 0.65%, respectively. However, total biomass productivity was greater in the HRAP (11.4 gVSSm(-2) day(-1)) compared with the (UV)HRAP (9.3 gVSSm(-2) day(-1)). Mean pH values were 7.7 +/- 0.7 in the HRAP and 8.1 +/- 1.0 in the (UV)HRAP, and mean values of DO percent saturation were 87 +/- 26% and 112 +/- 31% for the HRAP and the (UV)HRAP, respectively. Despite these differences, removal efficiencies of organic carbon, chemical oxygen demand, ammoniacal nitrogen and soluble phosphorus were statistically equal at the 5% significance level.

  8. High-rate anaerobic treatment of domestic wastewater at ambient operating temperatures: A review on benefits and drawbacks.

    PubMed

    Gomec, Cigdem Yangin

    2010-08-01

    This paper reviews the current knowledge on high-rate anaerobic sewage treatment at ambient operating temperatures while presenting the benefits and drawbacks. Since domestic sewage is reported as the main point-source pollutant on a global scale, its treatment deserves ample research. In most of the cities and towns of some developing countries, wastewater produced in households is still discharged into the nearest water body without subjected any treatment. Therefore, simple, affordable, and effective sewage treatment systems are required. Anaerobic digestion of wastewater is reported as a sustainable alternative as recovery of energy is provided while nutrients are preserved for reuse. Anaerobic sewage treatment is certainly not limited to regions of hot climates but it also offers treatment potential in sub-tropical and even in moderate climatic regions due to their favorable temperature conditions. Since many sewage-like dilute wastewaters are discharged at low ambient temperatures especially under moderate climate conditions (15 to 20 degrees C), heating the wastewater to maintain mesophilic conditions (35 degrees C) for anaerobic treatment necessitates high energy and certainly high operating costs. Thus, the development of anaerobic treatment systems operated at ambient temperatures without doubt will have a great ecological and economic impact. High-rate anaerobic treatment systems, especially upflow anaerobic sludge blanket (UASB) reactors, have been occupying a noticeable position for sewage treatment in several tropical countries where artificial heating can be eliminated. However, in spite of their undeniable advantages, there are certain drawbacks of anaerobic sewage treatment at low operating temperatures which should be clarified. Among them, the main concern for anaerobic treatment application is its producing effluents that barely comply with the standarts for reuse in agriculture or discharge to the environment. Therefore, the effluents from

  9. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  10. Nuclear reactor

    DOEpatents

    Pennell, William E.; Rowan, William J.

    1977-01-01

    A nuclear reactor in which the core components, including fuel-rod assemblies, control-rod assemblies, fertile rod-assemblies, and removable shielding assemblies, are supported by a plurality of separate inlet modular units. These units are referred to as inlet module units to distinguish them from the modules of the upper internals of the reactor. The modular units are supported, each removable independently of the others, in liners in the supporting structure for the lower internals of the reactor. The core assemblies are removably supported in integral receptacles or sockets of the modular units. The liners, units, sockets and assmblies have inlet openings for entry of the fluid. The modular units are each removably mounted in the liners with fluid seals interposed between the opening in the liner and inlet module into which the fluid enters and the upper and lower portion of the liner. Each assembly is similarly mounted in a corresponding receptacle with fluid seals interposed between the openings where the fluid enters and the lower portion of the receptacle or fitting closely in these regions. As fluid flows along each core assembly a pressure drop is produced along the fluid so that the fluid which emerges from each core assembly is at a lower pressure than the fluid which enters the core assembly. However because of the seals interposed in the mountings of the units and assemblies the pressures above and below the units and assemblies are balanced and the units are held in the liners and the assemblies are held in the receptacles by their weights as they have a higher specific gravity than the fluid. The low-pressure spaces between each module and its liner and between each core assembly and its module is vented to the low-pressure regions of the vessel to assure that fluid which leaks through the seals does not accumulate and destroy the hydraulic balance.

  11. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  12. ELECTRONUCLEAR REACTOR

    DOEpatents

    Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.

    1960-04-19

    An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.

  13. REACTOR COMPONETN

    DOEpatents

    Creutz, E.C.

    1959-10-27

    A reactor fuel element comprised of a slug of fissionable material disposed in a sheath of corrosion resistantmaterial is described. The sheath is in the form of a tubular container closed at one end and is in tight-fitting engagement with the peripheral sunface of the slug. An inner cap is insented into the open end of the sheath against the slug, which end is then bent around the inner cap and welded thereto. An outer cap is then welded around its peripheny to the bent portion of the container.

  14. Photocatalytic reactor

    DOEpatents

    Bischoff, B.L.; Fain, D.E.; Stockdale, J.A.D.

    1999-01-19

    A photocatalytic reactor is described for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane. 4 figs.

  15. Strategy to identify the causes and to solve a sludge granulation problem in methanogenic reactors: application to a full-scale plant treating cheese wastewater.

    PubMed

    Macarie, Hervé; Esquivel, Maricela; Laguna, Acela; Baron, Olivier; El Mamouni, Rachid; Guiot, Serge R; Monroy, Oscar

    2017-08-26

    Granulation of biomass is at the basis of the operation of the most successful anaerobic systems (UASB, EGSB and IC reactors) applied worldwide for wastewater treatment. Despite of decades of studies of the biomass granulation process, it is still not fully understood and controlled. "Degranulation/lack of granulation" is a problem that occurs sometimes in anaerobic systems resulting often in heavy loss of biomass and poor treatment efficiencies or even complete reactor failure. Such a problem occurred in Mexico in two full-scale UASB reactors treating cheese wastewater. A close follow-up of the plant was performed to try to identify the factors responsible for the phenomenon. Basically, the list of possible causes to a granulation problem that were investigated can be classified amongst nutritional, i.e. related to wastewater composition (e.g. deficiency or excess of macronutrients or micronutrients, too high COD proportion due to proteins or volatile fatty acids, high ammonium, sulphate or fat concentrations), operational (excessive loading rate, sub- or over-optimal water upflow velocity) and structural (poor hydraulic design of the plant). Despite of an intensive search, the causes of the granulation problems could not be identified. The present case remains however an example of the strategy that must be followed to identify these causes and could be used as a guide for plant operators or consultants who are confronted with a similar situation independently of the type of wastewater. According to a large literature based on successful experiments at lab scale, an attempt to artificially granulate the industrial reactor biomass through the dosage of a cationic polymer was also tested but equally failed. Instead of promoting granulation, the dosage caused a heavy sludge flotation. This shows that the scaling of such a procedure from lab to real scale cannot be advised right away unless its operability at such a scale can be demonstrated.

  16. Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics.

    PubMed

    Meerburg, Francis A; Boon, Nico; Van Winckel, Tim; Vercamer, Jensen A R; Nopens, Ingmar; Vlaeminck, Siegfried E

    2015-03-01

    The conventional activated sludge process is widely used for wastewater treatment, but to progress toward energy self-sufficiency, the wastewater treatment scheme needs to radically improve energy balances. We developed a high-rate contact stabilization (HiCS) reactor system at high sludge-specific loading rates (>2 kg bCOD kg(-1)TSS d(-1)) and low sludge retention times (<1.2 d) and demonstrate that it is able to recover more chemical energy from wastewater organics than high-rate conventional activated sludge (HiCAS) and the low-rate variants of HiCS and HiCAS. The best HiCS system recovered 36% of the influent chemical energy as methane, due to the combined effects of low production of CO2, high sludge yield, and high methane yield of the produced sludge. The HiCS system imposed a feast-famine cycle and a putative selection pressure on the sludge micro-organisms toward substrate adsorption and storage. Given further optimization, it is a promising process for energy recovery from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    PubMed

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp.

  18. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. High-rate activated sludge system for carbon management--Evaluation of crucial process mechanisms and design parameters.

    PubMed

    Jimenez, Jose; Miller, Mark; Bott, Charles; Murthy, Sudhir; De Clippeleir, Haydee; Wett, Bernhard

    2015-12-15

    The high-rate activated sludge (HRAS) process is a technology suitable for the removal and redirection of organics from wastewater to energy generating processes in an efficient manner. A HRAS pilot plant was operated under controlled conditions resulting in concentrating the influent particulate, colloidal, and soluble COD to a waste solids stream with minimal energy input by maximizing sludge production, bacterial storage, and bioflocculation. The impact of important process parameters such as solids retention time (SRT), hydraulic residence time (HRT) and dissolved oxygen (DO) levels on the performance of a HRAS system was demonstrated in a pilot study. The results showed that maximum removal efficiencies of soluble COD were reached at a DO > 0.3 mg O2/L, SRT > 0.5 days and HRT > 15 min which indicates that minimizing the oxidation of the soluble COD in the high-rate activated sludge process is difficult. The study of DO, SRT and HRT exhibited high degree of impact on the colloidal and particulate COD removal. Thus, more attention should be focused on controlling the removal of these COD fractions. Colloidal COD removal plateaued at a DO > 0.7 mg O2/L, SRT > 1.5 days and HRT > 30 min, similar to particulate COD removal. Concurrent increase in extracellular polymers (EPS) production in the reactor and the association of particulate and colloidal material into sludge flocs (bioflocculation) indicated carbon capture by biomass. The SRT impacted the overall mass and energy balance of the high-rate process indicating that at low SRT conditions, lower COD mineralization or loss of COD content occurred. In addition, the lower SRT conditions resulted in higher sludge yields and higher COD content in the WAS.

  1. Control Means for Reactor

    DOEpatents

    Manley, J. H.

    1961-06-27

    An apparatus for controlling a nuclear reactor includes a tank just below the reactor, tubes extending from the tank into the reactor, and a thermally expansible liquid neutron absorbent material in the tank. The liquid in the tank is exposed to a beam of neutrons from the reactor which heats the liquid causing it to expand into the reactor when the neutron flux in the reactor rises above a predetermincd danger point. Boron triamine may be used for this purpose.

  2. NEUTRONIC REACTOR

    DOEpatents

    Stewart, H.B.

    1958-12-23

    A nuclear reactor of the type speclfically designed for the irradiation of materials is discussed. In this design a central cyllndrical core of moderating material ls surrounded by an active portlon comprlsed of an annular tank contalning fissionable material immersed ln a liquid moderator. The active portion ls ln turn surrounded by a reflector, and a well ls provided in the center of the core to accommodate the materlals to be irradiated. The over-all dimensions of the core ln at least one plane are equal to or greater than twice the effective slowing down length and equal to or less than twlce the effective diffuslon length for neutrons in the core materials.

  3. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1962-12-18

    A power plant is described comprising a turbine and employing round cylindrical fuel rods formed of BeO and UO/sub 2/ and stacks of hexagonal moderator blocks of BeO provided with passages that loosely receive the fuel rods so that coolant may flow through the passages over the fuels to remove heat. The coolant may be helium or steam and fiows through at least one more heat exchanger for producing vapor from a body of fluid separate from the coolant, which fluid is to drive the turbine for generating electricity. By this arrangement the turbine and directly associated parts are free of particles and radiations emanating from the reactor. (AEC)

  4. NEUTRONIC REACTOR

    DOEpatents

    McGarry, R.J.

    1958-04-22

    Fluid-cooled nuclear reactors of the type that utilize finned uranium fuel elements disposed in coolant channels in a moderater are described. The coolant channels are provided with removable bushings composed of a non- fissionable material. The interior walls of the bushings have a plurality of spaced, longtudinal ribs separated by grooves which receive the fins on the fuel elements. The lands between the grooves are spaced from the fuel elements to form flow passages, and the size of the now passages progressively decreases as the dlstance from the center of the core increases for the purpose of producing a greater cooling effect at the center to maintain a uniform temperature throughout the core.

  5. Nuclear reactor neutron shielding

    DOEpatents

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  6. Reactor and method of operation

    DOEpatents

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  7. Nuclear reactor

    DOEpatents

    Yant, Howard W.; Stinebiser, Karl W.; Anzur, Gregory C.

    1977-01-01

    A nuclear reactor, particularly a liquid-metal breeder reactor, whose upper internals include outlet modules for channeling the liquid-metal coolant from selected areas of the outlet of the core vertically to the outlet plenum. The modules are composed of a highly-refractory, high corrosion-resistant alloy, for example, INCONEL-718. Each module is disposed to confine and channel generally vertically the coolant emitted from a subplurality of core-component assemblies. Each module has a grid with openings, each opening disposed to receive the coolant from an assembly of the subplurality. The grid in addition serves as a holdown for the assemblies of the corresponding subplurality preventing their excessive ejection upwardly from the core. In the region directly over the core the outlet modules are of such peripheral form that they nest forming a continuum over the core-component assemblies whose outlet coolant they confine. Each subassembly includes a chimney which confines the coolant emitted by its corresponding subassemblies to generally vertical flow between the outlet of the core and the outlet plenum. Each subplurality of assemblies whose emitted coolant is confined by an outlet module includes assemblies which emit lower-temperature coolant, for example, a control-rod assembly, or fertile assemblies, and assemblies which emit coolant of substantially higher temperature, for example, fuel-rod assemblies. The coolants of different temperatures are mixed in the chimneys reducing the effect of stripping (hot-cold temperature fluctuations) on the remainder of the upper internals which are composed typically of AISI-304 or AISI-316 stainless steel.

  8. High-rate systematic recursive convolutional encoders: minimal trellis and code search

    NASA Astrophysics Data System (ADS)

    Benchimol, Isaac; Pimentel, Cecilio; Souza, Richard Demo; Uchôa-Filho, Bartolomeu F.

    2012-12-01

    We consider high-rate systematic recursive convolutional encoders to be adopted as constituent encoders in turbo schemes. Douillard and Berrou showed that, despite its complexity, the construction of high-rate turbo codes by means of high-rate constituent encoders is advantageous over the construction based on puncturing rate-1/2 constituent encoders. To reduce the decoding complexity of high-rate codes, we introduce the construction of the minimal trellis for a systematic recursive convolutional encoding matrix. A code search is conducted and examples are provided which indicate that a more finely grained decoding complexity-error performance trade-off is obtained.

  9. Reactor safety method

    DOEpatents

    Vachon, Lawrence J.

    1980-03-11

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  10. High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...

  11. High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...

  12. Nuclear reactor

    DOEpatents

    Thomson, Wallace B.

    2004-03-16

    A nuclear reactor comprising a cylindrical pressure vessel, an elongated annular core centrally disposed within and spaced from the pressure vessel, and a plurality of ducts disposed longitudinally of the pressure vessel about the periphery thereof, said core comprising an annular active portion, an annular reflector just inside the active portion, and an annular reflector just outside the active a portion, said annular active portion comprising rectangular slab, porous fuel elements radially disposed around the inner reflector and extending the length of the active portion, wedge-shaped, porous moderator elements disposed adjacent one face of each fuel element and extending the length of the fuel element, the fuel and moderator elements being oriented so that the fuel elements face each other and the moderator elements do likewise, adjacent moderator elements being spaced to provide air inlet channels, and adjacent fuel elements being spaced to provide air outlet channels which communicate with the interior of the peripheral ducts, and means for introducing air into the air inlet channels which passes through the porous moderator elements and porous fuel elements to the outlet channel.

  13. Methanosarcinaceae and Acetate-Oxidizing Pathways Dominate in High-Rate Thermophilic Anaerobic Digestion of Waste-Activated Sludge

    PubMed Central

    Ho, Dang P.; Jensen, Paul D.

    2013-01-01

    This study investigated the process of high-rate, high-temperature methanogenesis to enable very-high-volume loading during anaerobic digestion of waste-activated sludge. Reducing the hydraulic retention time (HRT) from 15 to 20 days in mesophilic digestion down to 3 days was achievable at a thermophilic temperature (55°C) with stable digester performance and methanogenic activity. A volatile solids (VS) destruction efficiency of 33 to 35% was achieved on waste-activated sludge, comparable to that obtained via mesophilic processes with low organic acid levels (<200 mg/liter chemical oxygen demand [COD]). Methane yield (VS basis) was 150 to 180 liters of CH4/kg of VSadded. According to 16S rRNA pyrotag sequencing and fluorescence in situ hybridization (FISH), the methanogenic community was dominated by members of the Methanosarcinaceae, which have a high level of metabolic capability, including acetoclastic and hydrogenotrophic methanogenesis. Loss of function at an HRT of 2 days was accompanied by a loss of the methanogens, according to pyrotag sequencing. The two acetate conversion pathways, namely, acetoclastic methanogenesis and syntrophic acetate oxidation, were quantified by stable carbon isotope ratio mass spectrometry. The results showed that the majority of methane was generated by nonacetoclastic pathways, both in the reactors and in off-line batch tests, confirming that syntrophic acetate oxidation is a key pathway at elevated temperatures. The proportion of methane due to acetate cleavage increased later in the batch, and it is likely that stable oxidation in the continuous reactor was maintained by application of the consistently low retention time. PMID:23956388

  14. Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high-rate sludge digestion.

    PubMed

    Ho, Dang; Jensen, Paul; Batstone, Damien

    2014-06-03

    High-rate anaerobic digestion of organic solids requires rapid hydrolysis and enhanced methanogenic growth rates, which can be achieved through elevated temperature (>55 °C) at short hydraulic retention times (HRT). This study assesses the effect of temperatures between 55 °C and 65 °C and HRTs between 2 and 4 days on process performance, microbial community structure, microbial capability, and acetotrophic pathways in thermophilic anaerobic reactors. Increasing the temperature did not enhance volatile solids (VS) destruction above the base value of 37% achieved at 55 °C and 4 days HRT. Stable isotopic signatures (δ13C) revealed that elevated temperature promoted syntrophic acetate oxidation, which accounted for 60% of the methane formation at 55 °C, and increasing substantially to 100% at 65 °C. The acetate consumption capacity dropped with increasing temperature (from 0.69-0.81 gCOD gVS(-1) d(-1) at 55 °C to 0.21-0.35 gCOD gVS(-1) d(-1) at 65 °C), based on specific activity testing of reactor contents. Community analysis using 16S rRNA pyrosequencing revealed the dominance of Methanosarcina at 55-60 °C. However, a further increase to 65 °C resulted in loss of Methanosarcina, with an accumulation of organic acids and reduced methane production. Similar issues were observed when reducing the HRT to 2 days, indicating that temperature<60 °C and HRT>3 days are critical to operate these systems stably.

  15. Tokamak reactor studies

    SciTech Connect

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features.

  16. Studies Leading to the Development of High-Rate Lithium Sulfuryl Chloride Battery Technology.

    DTIC Science & Technology

    1982-09-01

    greatest attention has been given to the lithium - thionyl chloride (Li/SOC12 ) system. Cells and batteries have been demonstrated with energy densities...Studies Leading to the Development of High-Rate Lithium Sulfuryl Chloride Battery Technology John C. Hall and Mark Koch Gould Research Center, Materials...High-Rate 11182to 33182 Lithium -Sulfuryl Chloride Battery Technology 1_1/82_to_3/31/82 S. PERFORMING ORO. REPORT NUMBER 2 7. AUTHOR(*) S. CONTRACT OR

  17. Hybrid plasmachemical reactor

    SciTech Connect

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  18. Attrition reactor system

    SciTech Connect

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  19. Attrition reactor system

    SciTech Connect

    Scott, C.D.; Davison, B.H.

    1993-09-28

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur. 2 figures.

  20. Modified ADM1 for high-rate anaerobic co-digestion of thermally pre-treated brewery surplus yeast wastewater.

    PubMed

    Pettigrew, Liam; Gutbrod, Alexander; Domes, Herbert; Groß, Frauke; Méndez-Contreras, Juan M; Delgado, Antonio

    2017-07-01

    Co-digestion of surplus yeast with brewery wastewater is a potentially economical method for recovering energy, in the form of biogas, from this difficult to dispose of by-product. In this work a modified version of the ADM1 (Anaerobic Digestion Model No. 1) was calibrated for an anaerobic digester fed with thermally pre-treated brewery yeast surplus wastewater. The model could predict changes to reactor methane production and reduction of biodegradable matter when fed with both pre-treated and untreated yeast surplus wastewater at varying loading rates. Model calibration focused on low temperature thermal pre-treatment as experiments into a combined thermal-alkaline pre-treatment did not show any significant improvements. A low temperature pre-treatment of 60 °C for 30 minutes was sufficient for yeast inactivation and allowed for stable and more efficient operation of the high-rate anaerobic digester over a period of 232 days. The low temperature and time for pre-treatment also reduced the evaporation of easily biodegradable residual ethanol present in the influent, while still maintaining a low level of suspended matter. Inline measurements of gas composition, production and effluent chemical oxygen demand were sufficient for reliable model calibration of these same outputs. More detailed characterization of influent and effluent is required if organic acid concentrations for pH control are needed.

  1. Two-stage high-rate biogas (H2 and CH4) production from food waste using anaerobic mixed microflora

    NASA Astrophysics Data System (ADS)

    Xu, K.; Lee, D.; Kobayashi, T.; Ebie, Y.; Li, Y.; Inamori, Y.

    2010-12-01

    To achieve the high-rate H2 and CH4 production from food waste using fermentative anaerobic microflora, the effects of carbonate-alkalinity in the recirculated digestion sludge on continuous two-stage fermentation were investigated. Higher H2 production rate of 2.9 L-H2/L/day was achieved at the recycle ratio of 1.0 in an alkalinity range of 9000 to 10000 mg-CaCO3/L. The maximum CH4 production rate was stably maintained at the range of 1.85 to 1.88 L-CH4/L/day without alkalinity change. Carbonate alkalinity in digestion sludge could reduce the H2 partial pressure in the headspace of the fermentation reactors, and improve a biogas production capacity in the two-stage fermentation process. The average volatile solids degradation rate in the overall process increased as the digestion sludge recycle increased from 0.5 to 1.0. These results show that the alkalinity in recycle of the digestion sludge is crucial factor in determining biogas (H2 and CH4) production capacity and reducing the total solids.

  2. Effect of solar radiation on the lipid characterization of biomass cultivated in high-rate algal ponds using domestic sewage.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lúcia; Santiago, Anibal da Fonseca; do Couto, Eduardo de Aguiar; Leite, Mauricio de Oliveira; Sierra, Jose Jovanny Bermudez

    2014-01-01

    The objective of this paper is to compare the lipid content and composition ofbiomass produced by a consortium of microalgae and bacteria, cultivated under different solar radiation intensities and tropical conditions in pilot-scale high-rate ponds (HRPs) using domestic sewage as culture medium. The treatment system consisted of an upflow anaerobic sludge blanket reactor followed by UV disinfection and six HRPs covered with shading screens that blocked 9%, 18%, 30%, 60% and 80% of the solar radiation. The total lipid content does not vary significantly among the units, showing a medium value of 9.5%. The results show that blocking over 30% of the solar radiation has a negative effect on the lipid productivity. The units with no shading and with 30% and 60% of solar radiation blocking have statistically significant lipid productivities, varying from 0.92 to 0.96 gm(-2) day(-1). Besides radiation, other variables such as volatile suspended solids and chlorophyll-a are able to explain the lipid accumulation. The lipid profile has a predominance of C16, C18:1 and C18:3 acids. The unsaturation of fatty acids increases with the reduction in solar radiation. On the other hand, the effect of polyunsaturation is not observed, which is probably due to the presence of a complex and diverse biomass.

  3. Live Fast, Die Young: Optimizing Retention Times in High-Rate Contact Stabilization for Maximal Recovery of Organics from Wastewater.

    PubMed

    Meerburg, Francis A; Boon, Nico; Van Winckel, Tim; Pauwels, Koen T G; Vlaeminck, Siegfried E

    2016-09-06

    Wastewater is typically treated by the conventional activated sludge process, which suffers from an inefficient overall energy balance. The high-rate contact stabilization (HiCS) has been proposed as a promising primary treatment technology with which to maximize redirection of organics to sludge for subsequent energy recovery. It utilizes a feast-famine cycle to select for bioflocculation, intracellular storage, or both. We optimized the HiCS process for organics recovery and characterized different biological pathways of organics removal and recovery. A total of eight HiCS reactors were operated at 15 °C at short solids retention times (SRT; 0.24-2.8 days), hydraulic contact times (tc; 8 and 15 min), and stabilization times (ts; 15 and 40 min). At an optimal SRT between 0.5 and 1.3 days and tc of 15 min and ts of 40 min, the HiCS system oxidized only 10% of influent chemical oxygen demand (COD) and recovered up to 55% of incoming organic matter into sludge. Storage played a minor role in the overall COD removal, which was likely dominated by aerobic biomass growth, bioflocculation onto extracellular polymeric substances, and settling. The HiCS process recovers enough organics to potentially produce 28 kWh of electricity per population equivalent per year by anaerobic digestion and electricity generation. This inspires new possibilities for energy-neutral wastewater treatment.

  4. Period meter for reactors

    DOEpatents

    Rusch, Gordon K.

    1976-01-06

    An improved log N amplifier type nuclear reactor period meter with reduced probability for noise-induced scrams is provided. With the reactor at low power levels a sampling circuit is provided to determine the reactor period by measuring the finite change in the amplitude of the log N amplifier output signal for a predetermined time period, while at high power levels, differentiation of the log N amplifier output signal provides an additional measure of the reactor period.

  5. NEUTRONIC REACTOR POWER PLANT

    DOEpatents

    Metcalf, H.E.

    1962-12-25

    This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)

  6. NUCLEAR REACTOR CONTROL SYSTEM

    DOEpatents

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  7. Improved vortex reactor system

    DOEpatents

    Diebold, James P.; Scahill, John W.

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  8. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  9. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  10. NEUTRONIC REACTOR SHIELDING

    DOEpatents

    Borst, L.B.

    1961-07-11

    A special hydrogenous concrete shielding for reactors is described. In addition to Portland cement and water, the concrete essentially comprises 30 to 60% by weight barytes aggregate for enhanced attenuation of fast neutrons. The biological shields of AEC's Oak Ridge Graphite Reactor and Materials Testing Reactor are particular embodiments.

  11. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  12. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  13. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  14. Assessment of sustainable vermiconversion of water hyacinth at different reactor efficiencies employing Eudrilus eugeniae kinberg.

    PubMed

    Gajalakshmi, S; Ramasamy, E V; Abbasi, S A

    2001-11-01

    The viability of vermireactors fed with different proportions of water hyacinth (WH) and cowdung (CD) was assessed over six-month trials. All reactors performed sustainably with a steadily rising vermicast output, worm zoomass, and number of offspring. There was no mortality in any of the reactors. A change in the WH:CD ratios from 4:1 to 6:1 had no discernable impact on the reactor performances. Attempts were also made to improve the efficiency of the reactors in terms of vermicast production per unit time and per unit digester volume. These attempts led to the 'high-rate' vermireactor in which 5.6 times greater vermicast was produced per litre of digester volume per day than in the 'low-rate' reactors. The high-rate vermireactors also performed sustainably, with steady vermicast output, animal growth, and reproduction.

  15. Reactor vessel support system

    DOEpatents

    Golden, Martin P.; Holley, John C.

    1982-01-01

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  16. Nuclear reactor overflow line

    DOEpatents

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  17. Thorium fueled reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, S.

    2017-01-01

    Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.

  18. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  19. Spinning fluids reactor

    DOEpatents

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  20. Reactor water cleanup system

    DOEpatents

    Gluntz, Douglas M.; Taft, William E.

    1994-01-01

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling.

  1. Reactor water cleanup system

    DOEpatents

    Gluntz, D.M.; Taft, W.E.

    1994-12-20

    A reactor water cleanup system includes a reactor pressure vessel containing a reactor core submerged in reactor water. First and second parallel cleanup trains are provided for extracting portions of the reactor water from the pressure vessel, cleaning the extracted water, and returning the cleaned water to the pressure vessel. Each of the cleanup trains includes a heat exchanger for cooling the reactor water, and a cleaner for cleaning the cooled reactor water. A return line is disposed between the cleaner and the pressure vessel for channeling the cleaned water thereto in a first mode of operation. A portion of the cooled water is bypassed around the cleaner during a second mode of operation and returned through the pressure vessel for shutdown cooling. 1 figure.

  2. Analog Readout and Analysis Software for the Ultra-High Rate Germanium (UHRGe) Project

    SciTech Connect

    Fast, James E.; Aguayo Navarrete, Estanislao; Evans, Allan T.; VanDevender, Brent A.; Rodriguez, Douglas C.; Wood, Lynn S.

    2011-09-01

    High-resolution high-purity germanium (HPGe) spectrometers are needed for Safeguards applications such as spent fuel assay and uranium hexafluoride cylinder verification. In addition, these spectrometers would be applicable to other high-rate applications such as non-destructive assay of nuclear materials using nuclear resonance fluorescence. Count-rate limitations of today's HPGe technologies, however, lead to concessions in their use and reduction in their efficacy. Large-volume, very high-rate HPGe spectrometers are needed to enable a new generation of nondestructive assay systems. The Ultra-High Rate Germanium (UHRGe) project is developing HPGe spectrometer systems capable of operating at unprecedented rates, 10 to 100 times those available today. This report documents current status of developments in the analog electronics and analysis software.

  3. Bertram Hopkinson's pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations.

    PubMed

    Armstrong, Ronald W

    2014-05-13

    Bertram Hopkinson was prescient in writing of the importance of better measuring, albeit better understanding, the nature of high rate deformation of materials in general and, in particular, of the importance of heat in initiating detonation of explosives. This report deals with these subjects in terms of post-Hopkinson crystal dislocation mechanics applied to high rate deformations, including impact tests, Hopkinson pressure bar results, Zerilli-Armstrong-type constitutive relations, shock-induced deformations, isentropic compression experiments, mechanical initiation of explosive crystals and shear banding in metals.

  4. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2008-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This report discusses system configuration and the flight test results.

  5. Carbon Surface Layers on a High-Rate LiFePO4

    SciTech Connect

    Gabrisch, Heike; Wilcox, James D.; Doeff, Marca M.

    2005-09-06

    Transmission electron microscopy (TEM) was used to image particles of a high-rate LiFePO4 sample containing a small amount of in situ carbon. The particle morphology is highly irregular, with a wide size distribution. Nevertheless, coatings, varying from about 5-10 nm in thickness, could readily be detected on surfaces of particles as well as on edges of agglomerates. Elemental mapping using Energy Filtered TEM (EFTEM) indicates that these very thin surface layers are composed of carbon. These observations have important implications for the design of high-rate LiFePO4 materials in which, ideally, a minimal amount of carbon coating is used.

  6. Error analysis of high-rate GNSS precise point positioning for seismic wave measurement

    NASA Astrophysics Data System (ADS)

    Shu, Yuanming; Shi, Yun; Xu, Peiliang; Niu, Xiaoji; Liu, Jingnan

    2017-06-01

    High-rate GNSS precise point positioning (PPP) has been playing a more and more important role in providing precise positioning information in fast time-varying environments. Although kinematic PPP is commonly known to have a precision of a few centimeters, the precision of high-rate PPP within a short period of time has been reported recently with experiments to reach a few millimeters in the horizontal components and sub-centimeters in the vertical component to measure seismic motion, which is several times better than the conventional kinematic PPP practice. To fully understand the mechanism of mystified excellent performance of high-rate PPP within a short period of time, we have carried out a theoretical error analysis of PPP and conducted the corresponding simulations within a short period of time. The theoretical analysis has clearly indicated that the high-rate PPP errors consist of two types: the residual systematic errors at the starting epoch, which affect high-rate PPP through the change of satellite geometry, and the time-varying systematic errors between the starting epoch and the current epoch. Both the theoretical error analysis and simulated results are fully consistent with and thus have unambiguously confirmed the reported high precision of high-rate PPP, which has been further affirmed here by the real data experiments, indicating that high-rate PPP can indeed achieve the millimeter level of precision in the horizontal components and the sub-centimeter level of precision in the vertical component to measure motion within a short period of time. The simulation results have clearly shown that the random noise of carrier phases and higher order ionospheric errors are two major factors to affect the precision of high-rate PPP within a short period of time. The experiments with real data have also indicated that the precision of PPP solutions can degrade to the cm level in both the horizontal and vertical components, if the geometry of satellites is

  7. High-Rate Wireless Airborne Network Demonstration (HiWAND) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Franz, Russell

    2007-01-01

    An increasing number of flight research and airborne science experiments now contain network-ready systems that could benefit from a high-rate bidirectional air-to-ground network link. A prototype system, the High-Rate Wireless Airborne Network Demonstration, was developed from commercial off-the-shelf components while leveraging the existing telemetry infrastructure on the Western Aeronautical Test Range. This approach resulted in a cost-effective, long-range, line-of-sight network link over the S and the L frequency bands using both frequency modulation and shaped-offset quadrature phase-shift keying modulation. This paper discusses system configuration and the flight test results.

  8. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    PubMed Central

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  9. Neutron fluxes in test reactors

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2017-01-01

    Communicate the fact that high-power water-cooled test reactors such as the Advanced Test Reactor (ATR), the High Flux Isotope Reactor (HFIR) or the Jules Horowitz Reactor (JHR) cannot provide fast flux levels as high as sodium-cooled fast test reactors. The memo first presents some basics physics considerations about neutron fluxes in test reactors and then uses ATR, HFIR and JHR as an illustration of the performance of modern high-power water-cooled test reactors.

  10. Evaluation by respirometry of the loading capacity of a high rate vermicompost bed for treating sewage sludge.

    PubMed

    Clarke, William P; Taylor, Michael; Cossins, Rowan

    2007-09-01

    This study examines high rate vermicomposting of sewage sludge using high stocking densities of earthworms. To examine the loading capacity, two vermicompost beds were established in identical 0.84 m diameter reactors, one loaded at an average rate of 10 kg-wet-sludge-mixture m(-2) day(-1) (0.5 kg-carbon m(-2) day(-1)), the other loaded at 20 kg-wet-sludge-mixture m(-2) day(-1) (1 kg-carbon m(-2) day(-1)). The sludge mixture was from a commercial vermicomposting company (Vermitech) and contained 80-90% sludge and 10-20% green waste and clay. The beds were operated in fed-batch mode for 38 days, and then monitored for a further 12 days without any further sludge loading. Earthworms (Eisenia fetida) were added once or twice weekly over the 38 days loading period to gradually decrease the ratio of sludge loading rate to total earthworm biomass. By adding earthworm incrementally, the feeding rate ranged from 3.9 to 1.25 kg-wet-sludge kg-earthworm(-1) day(-1) for the full load experiment and 2-0.62 kg-wet-sludge kg-earthworm(-1) day(-1) for the half load experiment. The extent of degradation was estimated by fitting a 1st order model to the CO2 production rate from the beds. Based on the 1st order model, 53+/-20% (95% CI) and 68+/-4% of the organic carbon was converted to CO2 -C in the full load and half load experiments respectively. The CO2 production rate in the half load experiment became stable and repeatable when the total earthworm biomass reached 5.4 kg, corresponding to a feed rate of 1.04 kg-wet-sludge-mixture kg-earthworm(-1) day(-1). In contrast, the rate of CO2 production was still climbing and traces of methane were evident in the full load experiment at the end of the 38 day loading period. The experiments indicate that high rate vermicomposting beds are sustainable providing the feeding rate does not exceed approximately 1 kg-wet-sludge kg-earthworm(-1) day(-1).

  11. Preliminary test results for Li-SOCl2 high-rate D cells

    NASA Astrophysics Data System (ADS)

    Bragg, Bobby J.; Johnson, Paul

    1992-02-01

    The performance and abuse characteristics of 55 D-size lithium-thionyl chloride (Li-SOCl2) cells are evaluated at relatively high rates. Results from the following tests are presented: shock test, vibration test, capacity performance, uninsulated short circuit, high temperature exposure, and overdischarge.

  12. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE

    EPA Science Inventory

    This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...

  13. Preliminary test results for Li-SOCl2 high-rate D cells

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Johnson, Paul

    1992-01-01

    The performance and abuse characteristics of 55 D-size lithium-thionyl chloride (Li-SOCl2) cells are evaluated at relatively high rates. Results from the following tests are presented: shock test, vibration test, capacity performance, uninsulated short circuit, high temperature exposure, and overdischarge.

  14. Discrimination Training Reduces High Rate Social Approach Behaviors in Angelman Syndrome: Proof of Principle

    ERIC Educational Resources Information Center

    Heald, M.; Allen, D.; Villa, D.; Oliver, C.

    2013-01-01

    This proof of principle study was designed to evaluate whether excessively high rates of social approach behaviors in children with Angelman syndrome (AS) can be modified using a multiple schedule design. Four children with AS were exposed to a multiple schedule arrangement, in which social reinforcement and extinction, cued using a novel…

  15. Parent Use of DRI on High Rate Disruptive Behavior: Direct and Collateral Benefits.

    ERIC Educational Resources Information Center

    Friman, Patrick C.; Altman, Karl

    1990-01-01

    This study evaluates parental use of differential reinforcement of other and/or incompatible behavior to treat high-rate disruptive behavior in a severely retarded four-year-old boy. A withdrawal experimental design was used. Intervention effectively reduced instances of toy chewing and throwing, while appropriate toy play and ability to remain…

  16. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Zhang, Rui; Liu, Gang; Jia, Zhige; Wang, Dijin; Zhou, Yu; Lin, Mu

    2016-12-01

    High-rate global navigation satellite systems (GNSS) can potentially be used as seismometers to capture short-period instantaneous dynamic deformation waves from earthquakes. However, the performance and seismic phase recognition of the GNSS seismometer in the real-time mode, which plays an important role in GNSS seismology, are still uncertain. By comparing the results of accuracy and precision of the real-time solution using a shake table test, we found real-time solutions to be consistent with post-processing solutions and independent of sampling rate. In addition, we analyzed the time series of real-time solutions for shake table tests and recent large earthquakes. The results demonstrated that high-rate GNSS have the ability to retrieve most types of seismic waves, including P-, S-, Love, and Rayleigh waves. The main factor limiting its performance in recording seismic phases is the widely used 1-Hz sampling rate. The noise floor also makes recognition of some weak seismic phases difficult. We concluded that the propagation velocities and path of seismic waves, macro characteristics of the high-rate GNSS array, spatial traces of seismic phases, and incorporation of seismographs are all useful in helping to retrieve seismic phases from the high-rate GNSS time series.

  17. Discrimination Training Reduces High Rate Social Approach Behaviors in Angelman Syndrome: Proof of Principle

    ERIC Educational Resources Information Center

    Heald, M.; Allen, D.; Villa, D.; Oliver, C.

    2013-01-01

    This proof of principle study was designed to evaluate whether excessively high rates of social approach behaviors in children with Angelman syndrome (AS) can be modified using a multiple schedule design. Four children with AS were exposed to a multiple schedule arrangement, in which social reinforcement and extinction, cued using a novel…

  18. GENERIC VERIFICATION PROTOCOL FOR CHEMICALLY-ENHANCED HIGH-RATE SEPARATION

    EPA Science Inventory

    Chemically enhanced high rate separation is a type of physical-chemical treatment technology well suited to the treatment of wet weather flow. The CEHRS technology offers a robust treatment alternative for application to combined sewer overflows, sanitary sewer overflow and exces...

  19. URBAN WET-WEATHER FLOW MICROBIAL CONTAMINATION: HIGH-RATE TREATMENT APPROACHES

    EPA Science Inventory

    fThis presentation is on high-rate disinfection of wet-weather flow (WWF) and pretreatment processes of suspended solids to enhance the disinfection. A discussion of pretreatment processes and of the newest disinfection technologies used for WWF is included, along with the feasib...

  20. Effectiveness of a Highly Rated Science Curriculum Unit for Students with Disabilities in General Education Classrooms

    ERIC Educational Resources Information Center

    Lynch, Sharon; Taymans, Juliana; Watson, William A.; Ochsendorf, Robert J.; Pyke, Curtis; Szesze, Michael J.

    2007-01-01

    This research is part of a study on scaling-up middle school science curriculum units in a large, diverse public school system. Chemistry That Applies (CTA), a guided inquiry unit based on conceptual change theory and highly rated according to the Project 2061 Curriculum Analysis, was implemented in five middle schools matched demographically with…

  1. Recognition of Facial Emotions among Maltreated Children with High Rates of Post-Traumatic Stress Disorder

    ERIC Educational Resources Information Center

    Masten, Carrie L.; Guyer, Amanda E.; Hodgdon, Hilary B.; McClure, Erin B.; Charney, Dennis S.; Ernst, Monique; Kaufman, Joan; Pine, Daniel S.; Monk, Christopher S.

    2008-01-01

    Objective: The purpose of this study is to examine processing of facial emotions in a sample of maltreated children showing high rates of post-traumatic stress disorder (PTSD). Maltreatment during childhood has been associated independently with both atypical processing of emotion and the development of PTSD. However, research has provided little…

  2. An Experimental and Modeling Investigation on High-Rate Formability of Aluminum

    SciTech Connect

    Rohatgi, Aashish; Davies, Richard W.; Stephens, Elizabeth V.; Soulami, Ayoub; Smith, Mark T.

    2014-02-16

    This work describes the integrated experimental and modeling effort at PNNL to enhance the room-temperature formability of aluminum alloys by taking advantage of formability improvements generally associated with high-strain-rate forming. Al alloy AA5182-O sheets were deformed in near plane-strain conditions at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique, and at quasi-static strain-rates via a bulge test. A novel capability, combining high-speed imaging with digital image correlation technique, was developed to quantify the deformation history during high-rate forming. Sheet deformation under high rates was modeled in Abaqus and validated with experimentally determined deformation data. The experimental results show a ~2.5x increase in formability at high rates, relative to quasi-static rates, under a proportional loading path that was verified by the experimental data. The model shows good correlation with the experimentally determined strain path. It is anticipated that such integrated experimental and modeling work will enable room-temperature forming of Al and industrial implementation of high-rate forming processes.

  3. Recognition of Facial Emotions among Maltreated Children with High Rates of Post-Traumatic Stress Disorder

    ERIC Educational Resources Information Center

    Masten, Carrie L.; Guyer, Amanda E.; Hodgdon, Hilary B.; McClure, Erin B.; Charney, Dennis S.; Ernst, Monique; Kaufman, Joan; Pine, Daniel S.; Monk, Christopher S.

    2008-01-01

    Objective: The purpose of this study is to examine processing of facial emotions in a sample of maltreated children showing high rates of post-traumatic stress disorder (PTSD). Maltreatment during childhood has been associated independently with both atypical processing of emotion and the development of PTSD. However, research has provided little…

  4. Development of methods and procedures for high rate low energy expenditure fabrication of solar cells

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.; Minnucci, J. A.

    1976-01-01

    The objective of this program is to develop high rate, energy efficient solar cell processing techniques based around ion implantation and elimination of all conventional thermal operations. Cells have been fabricated using an abbreviated series of vacuum process operations performed at room temperature.

  5. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE

    EPA Science Inventory

    This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...

  6. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  7. High energy reactor neutrinos

    NASA Astrophysics Data System (ADS)

    Raper, Neill

    We present the first measurement of a nonzero reactor neutrino flux with energies above 8 MeV. Measurements are taken with the Daya Bay Reactor Neutrino Experiments detectors, using the Guangdong Nuclear Power Station as a source. Disagreement between data and theory regarding rate and shape of reactor neutrino spectra have made the need for direct measurement clear. Data are especially useful at high energies, where far fewer isotopes contribute. Neutrino candidates are correlated to reactor power and reactor power is extrapolated to zero in order to separate neutrino events from background. We find evidence of reactor neutrinos up to ˜12.5 MeV at 1.92 sigma above 0 and include a survey of isotopes likely to be contributing neutrinos in this energy range.

  8. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  9. A novel tubular microbial electrolysis cell for high rate hydrogen production

    NASA Astrophysics Data System (ADS)

    Guo, Kun; Prévoteau, Antonin; Rabaey, Korneel

    2017-07-01

    Practical application of microbial electrolysis cells (MECs) for hydrogen production requires scalable reactors with low internal resistance, high current density, and high hydrogen recovery. This work reports a liter scale tubular MEC approaching these requirements. The tubular cell components (a platinum-coated titanium mesh cathode, an anion exchange membrane, and a pleated stainless steel felt anode) were arranged in a concentric configuration. The reactor had a low internal resistance (0.325 Ω, 19.5 mΩ m2) due to the high conductivity of the electrodes, a compact reactor configuration, and proper mixing. With acetate as electron donor, the MEC achieved a volumetric current density of 654 ± 22 mA L-1 (projected current density, 1.09 ± 0.04 mA cm-2) and a volumetric hydrogen production rate of 7.10 ± 0.01 L L-1 d-1 at an applied voltage of 1 V. The reactor also showed high hydrogen recovery (∼100%), high hydrogen purity (>98%), and excellent operational stability during the 3 weeks of operation. These results demonstrated that high hydrogen production rate could be achieved on larger scale MEC and this tubular MEC holds great potential for scaling up.

  10. Improved vortex reactor system

    DOEpatents

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  11. The Integral Fast Reactor

    SciTech Connect

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab.

  12. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Dreffin, R.S.

    1959-12-15

    A control means for a nuclear reactor is described. Particularly a device extending into the active portion of the reactor consisting of two hollow elements coaxially disposed and forming a channel therebetween, the cross sectional area of the channel increasing from each extremity of the device towards the center thereof. An element of neutron absorbing material is slidably positionable within the inner hollow element and a fluid reactor poison is introduced into the channel defined by the two hollow elements.

  13. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Goett, J.J.

    1961-01-24

    A system is described which includes a neutronic reactor containing a dispersion of fissionable material in a liquid moderator as fuel and a conveyor to which a portion of the dispersion may be passed and wherein the self heat of the slurry evaporates the moderator. Means are provided for condensing the liquid moderator and returning it to the reactor and for conveying the dried fissionable material away from the reactor.

  14. FLOW SYSTEM FOR REACTOR

    DOEpatents

    Zinn, W.H.

    1963-06-11

    A reactor is designed with means for terminating the reaction when returning coolant is below a predetermined temperature. Coolant flowing from the reactor passes through a heat exchanger to a lower reservoir, and then circulates between the lower reservoir and an upper reservoir before being returned to the reactor. Means responsive to the temperature of the coolant in the return conduit terminate the chain reaction when the temperature reaches a predetermined minimum value. (AEC)

  15. University Reactor Sharing Program

    SciTech Connect

    Dr. W.D. Reece

    1999-09-01

    The University Reactor Sharing Program provides funding for reactor experimentation to institutions that do not normally have access to a research reactor. Research projects supported by the program include items such as dating geological material to producing high current super conducting magnets. The funding also gives small colleges and universities the opportunity to use the facility for teaching courses in nuclear processes; specifically neutron activation analysis and gamma spectroscopy.

  16. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater.

  17. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, Juhani

    1996-01-01

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.

  18. Remote Reactor Monitoring

    SciTech Connect

    Bernstein, Adam; Dazeley, Steve; Dobie, Doug; Marleau, Peter; Brennan, Jim; Gerling, Mark; Sumner, Matthew; Sweany, Melinda

    2014-10-21

    The overall goal of the WATCHMAN project is to experimentally demonstrate the potential of water Cerenkov antineutrino detectors as a tool for remote monitoring of nuclear reactors. In particular, the project seeks to field a large prototype gadolinium-doped, water-based antineutrino detector to demonstrate sensitivity to a power reactor at ~10 kilometer standoff using a kiloton scale detector. The technology under development, when fully realized at large scale, could provide remote near-real-time information about reactor existence and operational status for small operating nuclear reactors out to distances of many hundreds of kilometers.

  19. Pressurized fluidized bed reactor

    DOEpatents

    Isaksson, J.

    1996-03-19

    A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.

  20. HOMOGENEOUS NUCLEAR POWER REACTOR

    DOEpatents

    King, L.D.P.

    1959-09-01

    A homogeneous nuclear power reactor utilizing forced circulation of the liquid fuel is described. The reactor does not require fuel handling outside of the reactor vessel during any normal operation including complete shutdown to room temperature, the reactor being selfregulating under extreme operating conditions and controlled by the thermal expansion of the liquid fuel. The liquid fuel utilized is a uranium, phosphoric acid, and water solution which requires no gus exhaust system or independent gas recombining system, thereby eliminating the handling of radioiytic gas.

  1. Membrane reactors at Degussa.

    PubMed

    Wöltinger, Jens; Karau, Andreas; Leuchtenberger, Wolfgang; Drauz, Karlheinz

    2005-01-01

    The review covers the development of membrane reactor technologies at Degussa for the synthesis of fine chemicals. The operation of fed-batch or continuous biocatalytic processes in the enzyme membrane reactor (EMR) is well established at Degussa. Degussa has experience of running EMRs from laboratory gram scale up to a production scale of several hundreds of tons per year. The transfer of the enzyme membrane reactor from biocatalysis to chemical catalysis in the chemzyme membrane reactor (CMR) is discussed. Various homogeneous catalysts have been investigated in the CMR, and the scope and limitation of this new technique is discussed.

  2. An accelerator-driven reactor for meeting future energy demand

    SciTech Connect

    Takahashi, Hiroshi; Yang, Y.; Yu, A.

    1997-12-31

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor which avoids encountering a shortage of Pu during a high growth rate in the production of nuclear energy. Furthermore, the necessity of the early introduction of the fast reactor can be moderated. Subcritical operation provides flexible nuclear energy options along with high neutron economy for producing the fuel, for transmuting high-level waste such as minor actinides, and for efficiently converting excess and military Pu into proliferation-resistant fuel.

  3. The effect of carbon type and processing on high rate thionyl chloride cathode collectors

    NASA Astrophysics Data System (ADS)

    Bailey, John C.; Kalisz, David W.; Blomgren, George E.

    1990-03-01

    This study was initiated to determine the effects of carbon type, treatment and additives and the manufacturing process on high rate performance of thionyl chloride cathode collectors. Seventeen different collector materials and treatments were tested in demountable test cells and the results compared on the basis of capacity and energy per unit void volume of the cathode collector. Superior results were consistently obtained from CoTMPP catalyzed carbons and from carbon microfibers. Better voltage results were obtained from Ketjenblack EC, but the capacity was not consistently better than acetylene black. Process conditions did not show strong correlations, but in some cases there appears to be a best process for a given carbon type. A significant high rate (7 A test) capacity improvement was seen in F cells with a carbon fiber electrode in agreement with test cell results. Other test cell results did not correlate well with F cell tests, but further work is required to establish statistical significance.

  4. High rate internal pressurization of the human eye to determine dynamic rupture pressure.

    PubMed

    Bisplinghoff, Jill A; McNally, Craig; Yang, Siyang; Herring, Ian P; Brozoski, Fred T; Duma, Stefan M

    2008-01-01

    Over 1.9 million people suffer from eye injuries in the United States, occurring from automobile accidents, sports related impacts, and military combat. The purpose of the current study is to analyze the rupture pressure of human eyes using a high rate pressurization system. Internal pressure was dynamically induced into the eye with a drop tower pressurization system. The rupture pressure was measured with a small pressure sensor inserted into the optic nerve. A total of 10 human eye dynamic pressure tests were performed to determine rupture pressure and to compare the results with previous data. It was found that the average high rate rupture pressure of human eyes is 0.89+/- 0.25 MPa. In comparing these data with previous studies, it is concluded that as the loading rate increases the rupture pressure also increases.

  5. Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks.

    PubMed

    Kwon, Jae Kyun; Seo, Bo-Min; Yun, Kyungsu; Cho, Ho-Shin

    2015-10-30

    Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method.

  6. Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks

    PubMed Central

    Kwon, Jae Kyun; Seo, Bo-Min; Yun, Kyungsu; Cho, Ho-Shin

    2015-01-01

    Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method. PMID:26528983

  7. General Purpose Graphics Processing Unit Based High-Rate Rice Decompression and Reed-Solomon Decoding

    SciTech Connect

    Loughry, Thomas A.

    2015-02-01

    As the volume of data acquired by space-based sensors increases, mission data compression/decompression and forward error correction code processing performance must likewise scale. This competency development effort was explored using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was implemented and benchmarked on a single GPGPU. Distributed processing across one to four GPGPUs was also investigated. The results show that the GPGPU has considerable potential for performing satellite communication Data Signal Processing, with three times or better performance improvements and up to ten times reduction in cost over custom hardware, at least in the case of Rice Decompression and Reed-Solomon Decoding.

  8. Micro vapor bubble jet flow for safe and high-rate fluorescence-activated cell sorting.

    PubMed

    de Wijs, Koen; Liu, Chengxun; Dusa, Alexandra; Vercruysse, Dries; Majeed, Bivragh; Tezcan, Deniz Sabuncuoglu; Blaszkiewicz, Kamil; Loo, Josine; Lagae, Liesbet

    2017-03-29

    Safe, high-rate and cost-effective cell sorting is important for clinical cell isolation. However, commercial fluorescence-activated cell sorters (FACS) are expensive and prone to aerosol-induced sample contamination. Here we report a microfluidic cell sorter allowing high rate and fully enclosed cell sorting. The sorter chip consists of an array of micro heating hotspots. Pulsed resistive heating in the hotspots produces numerous micro vapor bubbles with short duration, which gives rise to a rapid jet flow for cell sorting. With this method, we demonstrated high sorting rate comparable to commercial FACS and the significant enrichment of rare cancer cells. This vapor bubble based cell sorting method can be a powerful tool for contamination-free and affordable clinical cell sorting such as circulating tumor cell isolation and cancer cell therapy.

  9. DETECTORS AND EXPERIMENTAL METHODS: A prototype of a high rating MRPC

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wang, Jing-Bo; Yan, Qiang; Li, Yuan-Jing; Cheng, Jian-Ping; Yue, Qian; Li, Jin

    2009-05-01

    Six-gap resistive plate chamber (MRPC) prototypes with semiconductive glass electrodes (bulk resistivity ~ 1010 Ω·cm) were studied for suitability in time-of-flight (TOF) applications at high rates. These studies were performed using a continuous electron beam of 800 MeV at IHEP and an X-ray machine. Time resolutions of about 100 ps and efficiencies larger than 90% were obtained for flux densities up to 28 kHz/cm2.

  10. Effect of high-rate algal ponds on viability of Cryptosporidium parvum oocysts.

    PubMed

    Araki, S; Martín-Gomez, S; Bécares, E; De Luis-Calabuig, E; Rojo-Vazquez, F

    2001-07-01

    The physicochemical conditions of high-rate algal ponds were responsible for a more than 97% reduction in the infectivity of Cryptosporidium parvum oocysts in neonatal mice. The use of semipermeable bags of cellulose showed that pH, ammonia, and/or light seems to be a major factor for the inactivation of oocysts in wastewater, supporting the importance of alga-based systems for safer reuse of treated wastewater.

  11. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, Jr., Charles W.

    1993-11-09

    A device for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston.

  12. Low-mass, high-rate cylindrical MWPC's for the MEGA experiment

    SciTech Connect

    Mischke, R.E.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.W.; Hogan, G.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Stanislaus, S.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C. )

    1990-01-01

    The construction of MWPCs for the MEGA experiment at LAMPF are described. The chambers are cylindrical, low mass (3 {times} 10{sup {minus}4} radiation lengths), and are designed to operate at high rates (3 {times} 10{sup 4} /mm{sup 2}/s). Several novel construction techniques have been developed and custom electronics have been designed to help achieve the required performance, which corresponds to that needed at high luminosity colliders. 4 refs., 3 figs.

  13. Modern methods for the quality management of high-rate melt solidification

    NASA Astrophysics Data System (ADS)

    Vasiliev, V. A.; Odinokov, S. A.; Serov, M. M.

    2016-12-01

    The quality management of high-rate melt solidification needs combined solution obtained by methods and approaches adapted to a certain situation. Technological audit is recommended to estimate the possibilities of the process. Statistical methods are proposed with the choice of key parameters. Numerical methods, which can be used to perform simulation under multifactor technological conditions, and an increase in the quality of decisions are of particular importance.

  14. High-rate nanoscale offset printing process using directed assembly and transfer of nanomaterials.

    PubMed

    Cho, Hanchul; Somu, Sivasubramanian; Lee, Jin Young; Jeong, Hobin; Busnaina, Ahmed

    2015-03-11

    High-rate nanoscale offset printing using a newly developed reusable template enables the assembly of nanomaterials into nanostructures followed by their transfer onto a flexible substrate in a few minutes. The developed template can potentially be reused more than 100 times in the offset printing process without any additional functionalization. This approach provides a new way for the printing of flexible devices with nanoscale patterns.

  15. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1959-02-10

    A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.

  16. REFLECTOR FOR NEUTRONIC REACTORS

    DOEpatents

    Fraas, A.P.

    1963-08-01

    A reflector for nuclear reactors that comprises an assembly of closely packed graphite rods disposed with their major axes substantially perpendicular to the interface between the reactor core and the reflector is described. Each graphite rod is round in transverse cross section at (at least) its interface end and is provided, at that end, with a coaxial, inwardly tapering hole. (AEC)

  17. NEUTRONIC REACTOR BURIAL ASSEMBLY

    DOEpatents

    Treshow, M.

    1961-05-01

    A burial assembly is shown whereby an entire reactor core may be encased with lead shielding, withdrawn from the reactor site and buried. This is made possible by a five-piece interlocking arrangement that may be easily put together by remote control with no aligning of bolt holes or other such close adjustments being necessary.

  18. N Reactor hydrogen control

    SciTech Connect

    Shuford, D.H.; Kripps, L.J.

    1988-08-01

    Following the accident at the Chernobyl nuclear power reactor in the Soviet Union, a number of reviews were conducted of the N Reactor. Hydrogen generation during postulates severe accidents and the possibility of resulting hydrogen deflagrations/detonations that could affect confinement integrity were issues raised in several reviews, along with recommendations for adding hydrogen mitigation features. To respond to these reviews, an N Reactor Safety Enhancement Program and a subsequent Accelerated Safety Enhancement Program were initiated to address all post-Chernobyl N Reactor review findings. The Safety Enhancement Program and Accelerated Safety Enhancement Program efforts involving hydrogen control included the following: Calculate the potential hydrogen source for a range of severe accidents at the N Reactor to establish an acceptable design basis for the hydrogen mitigation system; Analyze the N Reactor confinement hydrogen mixing capability to identify areas of concern and to the verify effectiveness of the hydrogen mitigation system; Select, design, and construct a hydrogen mitigation system to enhance the N Reactor capability to accommodate possible hydrogen generation from postulated severe accidents; Provide post-accident hydrogen monitoring as an operator aid in assessing confinement conditions. In additions, it was necessary to verify that incorporation of the hydrogen mitigation system had no adverse impact N Reactor safety (e.g., radiological consequence analyses). 77 refs., 25 figs., 10 tabs.

  19. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  20. The Integral Fast Reactor

    SciTech Connect

    Till, C.E.; Chang, Y.I. ); Lineberry, M.J. )

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs.

  1. Polymerization Reactor Engineering.

    ERIC Educational Resources Information Center

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  2. Light water reactor program

    SciTech Connect

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  3. Effects of High-Rate Pulse Trains on Electrode Discrimination in Cochlear Implant Users

    PubMed Central

    Runge-Samuelson, Christina L.

    2009-01-01

    Overcoming issues related to abnormally high neural synchrony in response to electrical stimulation is one aspect in improving hearing with a cochlear implant. Desynchronization of electrical stimuli have shown benefits in neural encoding of electrical signals and improvements in psychophysical tasks. In the present study, 10 participants with either CII or HiRes 90k Advanced Bionics devices were tested for the effects of desynchronizing constant-amplitude high-rate (5,000 Hz) pulse trains on electrode discrimination of sinusoidal stimuli (1,000 Hz). When averaged across the sinusoidal dynamic range, overall improvements in electrode discrimination with high-rate pulses were found for 8 of 10 participants. This effect was significant for the group (p = .003). Nonmonotonic patterns of electrode discrimination as a function of sinusoidal stimulation level were observed. By providing additional spectral channels, it is possible that clinical implementation of constant-amplitude high-rate pulse trains in a signal processing strategy may improve performance with the device. PMID:19447763

  4. The Promise and Challenges of High Rate GNSS for Environmental Monitoring and Response

    NASA Astrophysics Data System (ADS)

    LaBrecque, John

    2017-04-01

    The decadal vision Global Geodetic Observing System recognizes the potential of high rate real time GNSS for environmental monitoring. The GGOS initiated a program to advance GNSS real time high rate measurements to augment seismic and other sensor systems for earthquake and tsunami early warning. High rate multi-GNSS networks can provide ionospheric tomography for the detection and tracking of land, ocean and atmospheric gravity waves that can provide coastal warning of tsunamis induced by earthquakes, volcanic eruptions, severe weather and other catastrophic events. NASA has collaborated on a microsatellite constellation of GPS receivers to measure ocean surface roughness to improve severe storm tracking and a equatorial system of GPS occultation receivers to measure ionospheric and atmospheric dynamics. Systems such as these will be significantly enhanced by the availability of a four fold increase in GNSS satellite systems with new and enhanced signal structures and by the densification of regional multi-GNSS networks. These new GNSS capabilities will rely upon improved and cost effective communications infrastructure for a network of coordinated real time analysis centers with input to national warning systems. Most important, the implementation of these new real time GNSS capabilities will rely upon the broad international support for the sharing of real time GNSS much as is done in weather and seismic observing systems and as supported by the Committee of Experts on UN Global Geodetic Information Management (UNGGIM).

  5. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries.

    PubMed

    Su, Yu-Sheng; Fu, Yongzhu; Manthiram, Arumugam

    2012-11-14

    Realization of a ubiquitous clean energy future depends critically on the efficient storage and utilization of renewable energies. Lithium-ion batteries are appealing in this regard, but low-cost, abundant, safe, high energy-density electrode materials need to be developed to adopt them. Here we present a sulfur-multi-wall carbon nanotube (MWCNT) composite cathode with high-rate cyclability by a facile binder/current collector-free fabrication process. The composite cathode exhibits high capacities of 1352 mAh g(-1) at 1C rate and 1012 mAh g(-1) at 4C rate. Due to the self-weaving behavior of MWCNTs, extra cell components such as binders and current collectors are rendered unnecessary, thereby streamlining the electrode manufacturing process and decreasing the cell weight. While the highly conductive MWCNTs improve the active material utilization at high rates, the absorption ability of the cathode framework localizes the electrolyte and suppresses the migration of soluble polysulfides. The cathode design and facile synthesis enhance the feasibility of practical high rate Li-S batteries.

  6. Rational Design of Cathode Structure for High Rate Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Hongwei; Wang, Changhong; Dai, Yafei; Qiu, Shengqiang; Yang, Jinlong; Lu, Wei; Chen, Liwei

    2015-08-12

    Practical applications of Li-S batteries require not only high specific capacities and long cycle lifetimes but also high rate performance. We report a rationally designed Li-S cathode, which consists of a freestanding composite thin film assembled from S nanoparticles, reduced graphene oxide (rGO), and a multifunctional additive poly(anthraquinonyl sulfide) (PAQS). The S nanoparticles provide a high initial specific capacity, and the layered and porous rGO structure provides electron and ion transport paths and restricts polysulfide shuttling. PAQS is not only a highly efficient sulfide trapping agent but also an excellent Li(+) conductor, which benefits the battery reaction kinetics at a high rate. The resulting cathode exhibits an initial specific capacity of 1255 mAh g(-1) with a decay rate as low as 0.046% per cycles over 1200 cycles. Importantly, it displays a reversible capacity of 615 mAh g(-1) when discharged at a high rate of 8 C (13.744 A g(-1)).

  7. High rates of sexual behavior in the general population: correlates and predictors.

    PubMed

    Långström, Niklas; Hanson, R Karl

    2006-02-01

    We studied 2450, 18-60-year-old men and women from a 1996 national survey of sexuality and health in Sweden to identify risk factors and correlates of elevated rates of sexual behavior (hypersexuality) in a representative, non-clinical population. Interviews and questionnaires measured various sexual behaviors, developmental risk factors, behavioral problems, and health indicators. The results suggested that correlates of high rates of intercourse were mostly positive, whereas the correlates of high rates of masturbation and impersonal sex were typically undesirable. For both men and women, high rates of impersonal sex were related to separation from parents during childhood, relationship instability, sexually transmitted disease, tobacco smoking, substance abuse, and dissatisfaction with life in general. The association between hypersexuality and paraphilic sexual interests (exhibitionism, voyeurism, masochism/sadism) was particularly and equally strong for both genders (odds ratios of 4.6-25.6). The results held, with a few exceptions, when controlling for age, being in a stable relationship, living in a major city, and same-sex sexual orientation. We conclude that elevated rates of impersonal sex are associated with a range of negative health indicators in the general population.

  8. Development of a 300 Amp-hr high rate lithium thionyl chloride cell

    NASA Technical Reports Server (NTRS)

    Boyle, Gerard H.

    1991-01-01

    The development of a high-rate lithium thionyl chloride cylindrical cell with parallel plate electrodes is discussed. The development was divided into three phases: phase 1, a 150 Amp/hour low rate (1 mA/sq cm) design; phase 2, a 25 Amp/hour high rate (5 mA/sq cm) design; and phase 3, a 300 Amp/hour high rate (5 mA/sq cm) design. The basic design is the same for all three cells. The electrodes are perpendicular to the axis of the cylinder. Multiple electrodes are bussed up the side of the cylinder, 180 deg apart allowing excellent anode and cathode utilization. It is a lithium limited design with excess electrolyte. The cathode is Shawinigan or Gulf Acetylene black with no catalyst. The electrolyte is 1.8 Molar lithium tetrachloroaluminate (LiAlCl4) in thionyl chloride. All cell cases are 304L Stainless Steel with a BS&B burst disc.

  9. Characterisation of high-rate acidogenesis processes using a titration and off-gas analysis sensor.

    PubMed

    Wangnai, C; Zeng, R J; Keller, J

    2005-01-01

    The characteristics of the glucose degradation by acidogenesis processes were investigated both in a long-term operating laboratory-scale continuously stirred tank reactor and in short-term experiments utilising a titration and off-gas analysis (TOGA) sensor. The results obtained from continuous-flow experiments in both reactors demonstrated that the TOGA sensor can be applied as a useful tool for the study of acidogenesis processes under steady-state and dynamic conditions. No significant effect from the culture transfer could be detected in the study with the TOGA sensor. Furthermore, the variation of gas production rate could be monitored at real time by the TOGA sensor. The experiments showed that the distribution of acidogenic products in the liquid and the gas phase was significantly influenced by the hydraulic retention time at least in the short term.

  10. Status of French reactors

    SciTech Connect

    Ballagny, A.

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  11. REACTOR FUEL SCAVENGING MEANS

    DOEpatents

    Coffinberry, A.S.

    1962-04-10

    A process for removing fission products from reactor liquid fuel without interfering with the reactor's normal operation or causing a significant change in its fuel composition is described. The process consists of mixing a liquid scavenger alloy composed of about 44 at.% plutoniunm, 33 at.% lanthanum, and 23 at.% nickel or cobalt with a plutonium alloy reactor fuel containing about 3 at.% lanthanum; removing a portion of the fuel and scavenger alloy from the reactor core and replacing it with an equal amount of the fresh scavenger alloy; transferring the portion to a quiescent zone where the scavenger and the plutonium fuel form two distinct liquid layers with the fission products being dissolved in the lanthanum-rich scavenger layer; and the clean plutonium-rich fuel layer being returned to the reactor core. (AEC)

  12. Mitigation of ammonia inhibition by internal dilution in high-rate anaerobic digestion of food waste leachate and evidences of microbial community response.

    PubMed

    Yun, Yeo-Myeong; Kim, Dong-Hoon; Cho, Si-Kyung; Shin, Hang-Sik; Jung, Kyung-Won; Kim, Hyun-Woo

    2016-09-01

    A high-rate anaerobic digestion of food waste leachate were tested using intermittent continuously stirred tank reactors (iCSTRs) to evaluate how severe ammonia inhibition could be mitigated with internal dilution strategy, and to identify how bacterial and archaeal community respond in genus and species level. Experimental results show that the digestion performance was well maintained up to hydraulic retention time (HRT) of 40 days but could not keep steady-state as HRT decreased to 30 days due to severe free ammonia (FA) inhibition. Coupling internal dilution was the key to relieve the inhibition since it reduced FA concentration as low as 62 mg/L even at HRT 30 days, which corresponds to organic loading rate of 5 g COD/L/d, demonstrating CH4 yield of 0.32 L CH4 /g CODadded . It was confirmed that the dilution offers iCTSRs manage severe ammonia inhibition with the balanced community structure between bacteria and archaea in this high-rate anaerobic digestion. Genus and species level pyrosequencing evidence that FA inhibition to community dynamics of Methanosarcina and Methanosaeta is strongly connected to methanogenesis, and Methanosarcina plays a key role in an iCSTR with the dilution. Biotechnol. Bioeng. 2016;113: 1892-1901. © 2016 Wiley Periodicals, Inc.

  13. Reactor Operations Management Plan

    SciTech Connect

    Rice, P.D.

    1991-12-05

    The K-Reactor last operated in April 1988. At that time, K-Reactor was one of three operating reactors at the Savannah River Site (SRS). Following an incident in P-Reactor in August 1988, it was decided to discontinue SRS reactor operation and conduct an extensive program to upgrade operating practices and plant hardware prior to restart of any of the reactors. The K-reactor was the first of three reactors scheduled to resume production. At the present time, it is the only reactor with planned restart. WSRC assumed management of SRS on April 1, 1989. WSRC established the Safety Basis for Restart and a listing of the actions planned to satisfy the Safety Basis. In consultation with DOE, it was determined that proper management of the restart activities would require a single plan that integrated the numerous activities. The plan was entitled the Reactor Operations Management Plan and is referred to simply as the ROMP. The initial version of ROMP was produced in July of 1989. Subsequent modifications led to Revision 3 which was approved by DOE in May, 1990. Other changes were made in a formal change process, resulting in the latest version, Revision 5, being issued in October, 1990. The ROMP contains three key parts: first, the Restart Safety Basis; second, a description of the process for addressing new technical issues and a listing of the established workscope and the associated acceptance criteria; and three, a schedule for executing the work. I will discuss the first two areas, along with the closure process used to assure the intent of ROMP was met. The ROMP activities are all complete and I will not discuss schedule further.

  14. REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REACTOR BASE, SOUTHEAST CORNER. INTERIOR WILL CONTAIN REACTOR TANK, COOLING WATER PIPES, COOLING AIR DUCTS, AND SHIELDING. INL NEGATIVE NO. 776. Unknown Photographer, 10/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  16. Reactor Safety Research Programs

    SciTech Connect

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Slurry reactor design studies

    SciTech Connect

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. ); Akgerman, A. ); Smith, J.M. )

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  18. Denitrification in USB reactor with granulated biomass.

    PubMed

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)).

  19. Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges.

    PubMed

    Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2014-11-25

    In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of "carrier-range" realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode.

  20. STANFORD IN-SITU HIGH RATE YBCO PROCESS: TRANSFER TO METAL TAPES AND PROCESS SCALE UP

    SciTech Connect

    Malcolm R. Beasley; Robert H.Hammond

    2009-04-14

    Executive Summary The materials science understanding of high rate low cost processes for Coated Conductor will benefit the application to power utilities for low loss energy transportation and power generation as well for DOD applications. The research in this program investigated several materials processing approaches that are new and original, and are not being investigated elsewhere. This work added to the understanding of the material science of high rate PVD growth of HTSC YBCO assisted by a liquid phase. A new process discovered uses amorphous glassy precursors which can be made at high rate under flexible conditions of temperature and oxygen, and later brought to conditions of oxygen partial pressure and temperature for rapid conversion to YBCO superconductor. Good critical current densities were found, but further effort is needed to optimize the vortex pinning using known artificial inclusions. A new discovery of the physics and materials science of vortex pinning in the HTSC system using Sm in place of Y came at growth at unusually low oxygen pressure resulting in clusters of a low or non superconducting phase within the nominal high temperature phase. The driving force for this during growth is new physics, perhaps due to the low oxygen. This has the potential for high current in large magnetic fields at low cost, applicable to motors, generators and transformers. The technical demands of this project were the motivation for the development of instrumentation that could be essential to eventual process scale up. These include atomic absorption based on tunable diode lasers for remote monitoring and control of evaporation sources (developed under DARPA support), and the utility of Fourier Transform Infrared Reflectivity (FTIR) for aid in the synthesis of complex thin film materials (purchased by a DURIP-AFOSR grant).

  1. Efficient High-Rate Satellite Clock Estimation for PPP Ambiguity Resolution Using Carrier-Ranges

    PubMed Central

    Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2014-01-01

    In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of “carrier-range” realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode. PMID:25429413

  2. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    PubMed

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2016-10-26

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P < 0.05), including 11 known and six novel miRNAs. We found that all 11 known miRNAs were involved mainly in pathways of reproduction regulation, such as steroid hormone biosynthesis and dopaminergic synapse. Additionally, expression profiling of six randomly selected differentially regulated miRNAs were validated by quantitative real-time polymerase chain reaction (RT-qPCR). Some miRNAs, such as gga-miR-34b, gga-miR-34c and gga-miR-216b, were reported to regulate processes such as proliferation, cell cycle, apoptosis and metastasis and were expressed differentially in ovaries of chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation.

  3. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  4. NEUTRONIC REACTOR CONTROL

    DOEpatents

    Metcalf, H.E.

    1958-10-14

    Methods of controlling reactors are presented. Specifically, a plurality of neutron absorber members are adjustably disposed in the reactor core at different distances from the center thereof. The absorber members extend into the core from opposite faces thereof and are operated by motive means coupled in a manner to simultaneously withdraw at least one of the absorber members while inserting one of the other absorber members. This feature effects fine control of the neutron reproduction ratio by varying the total volume of the reactor effective in developing the neutronic reaction.

  5. Microfluidic electrochemical reactors

    SciTech Connect

    Nuzzo, Ralph G; Mitrovski, Svetlana M

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  6. Nuclear reactor reflector

    DOEpatents

    Hopkins, R.J.; Land, J.T.; Misvel, M.C.

    1994-06-07

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.

  7. Nuclear reactor reflector

    DOEpatents

    Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.

    1994-01-01

    A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.

  8. COOLED NEUTRONIC REACTOR

    DOEpatents

    Binner, C.R.; Wilkie, C.B.

    1958-03-18

    This patent relates to a design for a reactor of the type in which a fluid coolant is flowed through the active portion of the reactor. This design provides for the cooling of the shielding material as well as the reactor core by the same fluid coolant. The core structure is a solid moderator having coolant channels in which are disposed the fuel elements in rod or slug form. The coolant fluid enters the chamber in the shield, in which the core is located, passes over the inner surface of said chamber, enters the core structure at the center, passes through the coolant channels over the fuel elements and out through exhaust ducts.

  9. REACTOR CONTROL SYSTEM

    DOEpatents

    MacNeill, J.H.; Estabrook, J.Y.

    1960-05-10

    A reactor control system including a continuous tape passing through a first coolant passageway, over idler rollers, back through another parallel passageway, and over motor-driven rollers is described. Discrete portions of fuel or poison are carried on two opposed active sections of the tape. Driving the tape in forward or reverse directions causes both active sections to be simultaneously inserted or withdrawn uniformly, tending to maintain a more uniform flux within the reactor. The system is particularly useful in mobile reactors, where reduced inertial resistance to control rod movement is important.

  10. Retrofit Russian research reactors

    SciTech Connect

    Mabe, W.

    1993-04-01

    A likely source for enriched uranium for production of a gun-type bomb might be a research reactor. A state or terrorist organization would find the technical process for separating uranium from the reactor fuel plates is simple and well-published. An unguarded research reactor could be found in the former Soviet Union. Russia and the former republics have seen an increasing number of terrorist incidents, including hijackings and bombings. Recognizing the danger, Russia and the U.S. have explored means of safeguarding former Soviet weapons materials. This article describes some of the plans to reduce the risk of nuclear materials being obtained for illicit weapons production.

  11. Fast Breeder Reactor studies

    SciTech Connect

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  12. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  13. CONTROL FOR NEUTRONIC REACTOR

    DOEpatents

    Lichtenberger, H.V.; Cameron, R.A.

    1959-03-31

    S>A control rod operating device in a nuclear reactor of the type in which the control rod is gradually withdrawn from the reactor to a position desired during stable operation is described. The apparatus is comprised essentially of a stop member movable in the direction of withdrawal of the control rod, a follower on the control rod engageable with the stop and means urging the follower against the stop in the direction of withdrawal. A means responsive to disengagement of the follower from the stop is provided for actuating the control rod to return to the reactor shut-down position.

  14. Anaerobic treatment of winery wastewater in fixed bed reactors.

    PubMed

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  15. High-rate Li-MnO2 cells for aerospace use

    NASA Technical Reports Server (NTRS)

    Becker-Kaiser, R.; Ruch, J.; Harms, H.-J.; Schmoede, P.; Welsh, J. R.; Vollmers, M.-J.; Pack, H.

    1992-01-01

    A series of comparative studies were undertaken on representative cells as objectively as possible in order to appreciate the respective advantages of the different systems. After reviewing the first test results our attention was soon focussed on the following four lithium systems: (1) Li-SOCl2; (2) Li-SO2; (3) Li-(CF(sub x))(sub n); and (4) Li-MnO2. This resulted in the decision in 1982 to adopt the Li-MnO2 system for high-rate applications.

  16. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  17. Device for testing closure disks at high rates of change of pressure

    DOEpatents

    Merten, C.W. Jr.

    1993-11-09

    A device is described for testing the burst pressure of closure disks which provides high pressure to both sides of a disk and rapidly releases pressure from one side thereof causing a high rate of change of pressure. A hollow notched plug allows the rapid release of pressure upon rupturing. A means is also disclosed for transmitting a tensile load from a piston to a hollow notched plug and for sealing the means for transmitting load within a hole in a piston. 5 figures.

  18. Carbon limitation of biomass production in high-rate oxidation ponds.

    PubMed

    Azov, Y; Shelef, G; Moraine, R

    1982-03-01

    Theoretical considerations confirmed by outdoor experiments indicated carbon limitation of biomass production in high-rate oxidation ponds at certain seasonal and operational conditions. Apparently, free carbon dioxide concentration in the pond is the major determinant of carbonlimiting algal photosynthesis. High concentrations of free CO(2) are provided through bacterial respiration which is the main contributor to algal photosynthesis. At high photosynthetic activities and low organic loadings, free CO(2) concentrations are low; its flux into algal cells determines photosynthesis and biomass production rate in the pond.

  19. High-rate lithium/manganese dioxide batteries; the double cell concept

    NASA Astrophysics Data System (ADS)

    Drews, Jürgen; Wolf, Rüdiger; Fehrmann, Gerd; Staub, Roland

    An implantable defibrillator battery has to provide pulse-power capabilities as well as high energy density. Low self-discharge rates are mandatory and an ability to check the state of charge is required. To accomplish these requirements, a lithium/manganese dioxide battery with a modified active cathode mass has been developed. Usage of a double cell design increases significantly the battery performance within an implantable defibrillator. The design features of a high-rate, pulse-power, manganese dioxide double cell are described.

  20. Overview of the Preliminary Design of the Optical Communication Demonstration and High-Rate Link Facility

    NASA Technical Reports Server (NTRS)

    Sandusky, John V.; Jeganathan, M.; Ortiz, G.; Biswas, A.; Lee, S.; Parker, G.; Liu, B.; Johnson, D.; DePew, J.; Lesh, J. R.

    2000-01-01

    Tlis paper presents an overview of the preliminary design of both the flight and ground systems of the Optical Communication Demonstration and High-Rate Link Facility which will demonstrate optical communication from the International Space Station to ground after its deployment in October 2002. The overview of the preliminary design of the Flight System proceeds by contrasting it with the design of the laboratory-model unit, emphasizing key changes and the rationale behind the design choices. After presenting the preliminary design of the Ground System, the timetable for the construction and deployment of the flight and ground systems is outlined.

  1. Combinatorial FSK modulation for power-efficient high-rate communications

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Budinger, James M.; Vanderaar, Mark J.

    1991-01-01

    Deep-space and satellite communications systems must be capable of conveying high-rate data accurately with low transmitter power, often through dispersive channels. A class of noncoherent Combinatorial Frequency Shift Keying (CFSK) modulation schemes is investigated which address these needs. The bit error rate performance of this class of modulation formats is analyzed and compared to the more traditional modulation types. Candidate modulator, demodulator, and digital signal processing (DSP) hardware structures are examined in detail. System-level issues are also discussed.

  2. Pull-out fibers from composite materials at high rate of loading

    NASA Technical Reports Server (NTRS)

    Amijima, S.; Fujii, T.

    1981-01-01

    Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.

  3. Operation of Packed-Bed Reactors Studied in Microgravity

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  4. High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste.

    PubMed

    De Vrieze, Jo; De Lathouwer, Lars; Verstraete, Willy; Boon, Nico

    2013-07-01

    Anaerobic digestion is a key technology in the bio-based economy and can be applied to convert a wide range of organic substrates into CH4 and CO2. Kitchen waste is a valuable substrate for anaerobic digestion, since it is an abundant source of organic matter. Yet, digestion of single kitchen waste often results in process failure. High-rate activated sludge or A-sludge is produced during the highly loaded first stage of the two-phase 'Adsorptions-Belebungsverfahren' or A/B activated sludge system for municipal wastewater treatment. In this specific case, the A-sludge was amended with FeSO4 to enhance phosphorous removal and coagulation during the water treatment step. This study therefore evaluated whether this Fe-rich A-sludge could be used to obtain stable methanation and higher methane production values during co-digestion with kitchen waste. It was revealed that Fe-rich A-sludge can be a suitable co-substrate for kitchen waste; i.e. methane production rate values of 1.15 ± 0.22 and 1.12 ± 0.28 L L(-1) d(-1) were obtained during mesophilic and thermophilic co-digestion respectively of a feed-mixture consisting of 15% KW and 85% A-sludge. The thermophilic process led to higher residual VFA concentrations, up to 2070 mg COD L(-1), and can therefore be considered less stable. Addition of micro- and macronutrients provided a more stable digestion of single kitchen waste, i.e. a methane production of 0.45 L L(-1) d(-1) was obtained in the micronutrient treatment compared to 0.30 L L(-1) d(-1) in the control treatment on day 61. Yet, methane production during single kitchen waste digestion still decreased toward the end of the experiment, despite the addition of micronutrients. Methane production rates were clearly influenced by the total numbers of archaea in the different reactors. This study showed that Fe-rich A-sludge and kitchen waste are suitable for co-digestion.

  5. NEUTRONIC REACTOR STRUCTURE

    DOEpatents

    Daniels, F.

    1961-10-24

    A reactor core, comprised of vertical stacks of hexagonal blocks of beryllium oxide having axial cylindrical apertures extending therethrough and cylindrical rods of a sintered mixture of uranium dioxide and beryllium oxide, is described. (AEC)

  6. Reactor Neutrino Spectra

    NASA Astrophysics Data System (ADS)

    Hayes, Anna C.; Vogel, Petr

    2016-10-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  7. Packed Bed Reactor Experiment

    NASA Image and Video Library

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  8. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  9. Catalytic Hydrogenation Retrofit Reactor

    SciTech Connect

    2001-02-01

    New Fixed-Bed Catalyst System Provides Significant Reduction in Energy and Hazard Exposure. Hydrogenation is an essential industrial reaction that is often performed using a slurry catalyst system in large stirred-tank reactors.

  10. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    PubMed

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  11. High rate, fast timing Glass RPC for the high η CMS muon detectors

    NASA Astrophysics Data System (ADS)

    Lagarde, F.; Gouzevitch, M.; Laktineh, I.; Buridon, V.; Chen, X.; Combaret, C.; Eynard, A.; Germani, L.; Grenier, G.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Wang, Y.; Gong, A.; Moreau, N.; de la Taille, C.; Dulucq, F.; Cimmino, A.; Crucy, S.; Fagot, A.; Gul, M.; Rios, A. A. O.; Tytgat, M.; Zaganidis, N.; Aly, S.; Assran, Y.; Radi, A.; Sayed, A.; Singh, G.; Abbrescia, M.; Iaselli, G.; Maggi, M.; Pugliese, G.; Verwilligen, P.; Van Doninck, W.; Colafranceschi, S.; Sharma, A.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.; Bhatnagar, V.; Kumari, R.; Mehta, A.; Singh, J.; Ahmad, A.; Ahmed, W.; Asghar, H. M. I.; Awan, I. M.; Hoorani, R.; Muhammad, S.; Shahzad, H.; Shah, M. A.; Cho, S. W.; Choi, S. Y.; Hong, B.; Kang, M. H.; Lee, K. S.; Lim, J. H.; Park, S. K.; Kim, M. S.; Carpinteyro Bernardino, S.; Pedraza, I.; Uribe Estrada, C.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pant, L. M.; Buontempo, S.; Cavallo, N.; Esposito, M.; Fabozzi, F.; Lanza, G.; Orso, I.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Thyssen, F.; Braghieri, A.; Magnani, A.; Montagna, P.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Ban, Y.; Qian, S. J.; Choi, M.; Choi, Y.; Goh, J.; Kim, D.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Litov, L.; Pavlov, B.; Petkov, P.; Bagaturia, I.; Lomidze, D.; Avila, C.; Cabrera, A.; Sanabria, J. C.; Crotty, I.; Vaitkus, J.

    2016-09-01

    The HL-LHC phase is designed to increase by an order of magnitude the amount of data to be collected by the LHC experiments. To achieve this goal in a reasonable time scale the instantaneous luminosity would also increase by an order of magnitude up to 6 · 1034 cm-2s-1. The region of the forward muon spectrometer (|η| > 1.6) is not equipped with RPC stations. The increase of the expected particles flux up to 2 kHz/cm2 (including a safety factor 3) motivates the installation of RPC chambers to guarantee redundancy with the CSC chambers already present. The current CMS RPC technology cannot sustain the expected background level. The new technology that will be chosen should have a high rate capability and provide a good spatial and timing resolution. A new generation of Glass-RPC (GRPC) using low-resistivity glass is proposed to equip at least the two most far away of the four high η muon stations of CMS. First the design of small size prototypes and studies of their performance in high-rate particles flux are presented. Then the proposed designs for large size chambers and their fast-timing electronic readout are examined and preliminary results are provided.

  12. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  13. Variable input observer for structural health monitoring of high-rate systems

    NASA Astrophysics Data System (ADS)

    Hong, Jonathan; Laflamme, Simon; Cao, Liang; Dodson, Jacob

    2017-02-01

    The development of high-rate structural health monitoring methods is intended to provide damage detection on timescales of 10 µs -10ms where speed of detection is critical to maintain structural integrity. Here, a novel Variable Input Observer (VIO) coupled with an adaptive observer is proposed as a potential solution for complex high-rate problems. The VIO is designed to adapt its input space based on real-time identification of the system's essential dynamics. By selecting appropriate time-delayed coordinates defined by both a time delay and an embedding dimension, the proper input space is chosen which allows more accurate estimations of the current state and a reduction of the convergence rate. The optimal time-delay is estimated based on mutual information, and the embedding dimension is based on false nearest neighbors. A simulation of the VIO is conducted on a two degree-of-freedom system with simulated damage. Results are compared with an adaptive Luenberger observer, a fixed time-delay observer, and a Kalman Filter. Under its preliminary design, the VIO converges significantly faster than the Luenberger and fixed observer. It performed similarly to the Kalman Filter in terms of convergence, but with greater accuracy.

  14. Spent Fuel Assay with an Ultra-High Rate HPGe Spectrometer

    SciTech Connect

    Fast, James; Fulsom, Bryan; Pitts, Karl; VanDevender, Brent; Wood, Lynn

    2015-07-01

    Traditional verification of spent nuclear fuel (SNF) includes determination of initial enrichment, burnup and cool down time (IE, BU, CT). Along with neutron measurements, passive gamma assay provides important information for determining BU and CT. Other gamma-ray-based assay methods such as passive tomography and active delayed gamma offer the potential to measure the spatial distribution of fission products and the fissile isotopic concentration of the fuel, respectively. All fuel verification methods involving gamma-ray spectroscopy require that the spectrometers manage very high count rates while extracting the signatures of interest. PNNL has developed new digital filtering and analysis techniques to produce an ultra-high rate gamma-ray spectrometer from a standard coaxial high-purity germanium (HPGe) crystal. This 37% relative efficiency detector has been operated for SNF measurements at input count rates of 500-1300 kcps and throughput in excess of 150 kcps. Optimized filtering algorithms preserve the spectroscopic capability of the system even at these high rates. This paper will present the results of both passive and active SNF measurement performed with this system at PNNL. (authors)

  15. Stress gage system for measuring very soft materials under high rates of deformation

    NASA Astrophysics Data System (ADS)

    Kendall, Michael J.; Drodge, Daniel R.; Froud, Richard F.; Siviour, Clive R.

    2014-07-01

    Soft materials have seen continued growth in industrial importance, but are difficult to test at relevant, particularly at high, rates of deformation and relevant temperatures. This is mainly due to the low stresses supported by these materials, which mean that very sensitive force measurements are required. In this paper, a split-Hopkinson pressure bar method for testing very soft materials and elastomers at high rates of deformation is presented and applied. Experiments are conducted in compression on hydroxyl terminated polybutadiene, a very soft rubber, at strain rates of about 2000 s-1. Titanium alloy bars are used, and in addition to the usual strain gauges on the bars, forces at both ends of the specimen are measured using a piezoelectric material, lead zirconium titanate (PZT), which is much more sensitive than the quartz crystal gauges typically used in previous literature. The piezoelectric constant of PZT ranges between 290-630 × 10-12 C N-1, making it 100 times more sensitive than quartz crystal (2.3 × 10-12 C N-1). Results obtained from the experiments show that the gauges are able to measure the forces on both ends of the specimen with excellent signal to noise ratios.

  16. Application of high rate nitrifying trickling filters for potable water treatment.

    PubMed

    van den Akker, Ben; Holmes, Mike; Cromar, Nancy; Fallowfield, Howard

    2008-11-01

    The interference of ammonia with chlorination is a prevalent problem encountered by water treatment plants located throughout South East Asia. The efficacy of high rate, plastic-packed trickling filters as a pre-treatment process to remove low concentrations of ammonia from polluted surface water was investigated. This paper presents the findings from a series of pilot experiments, which were designed to investigate the effect of specific conditions-namely low ammonia feed concentrations (0.5-5.0 mg NH(4)-NL(-1)), variations in hydraulic surface load (72.5-145 m(3)m(-2)d(-1)) and high suspended solid loads (51+/-25 mgL(-1))-on filter nitrifying capacity. The distribution of nitrification activity throughout a trickling filter bed was also characterised. Results confirmed that high hydraulic rate trickling filters were able to operate successfully, under ammonia-N concentrations some 10- to 50-fold lower and at hydraulic loading rates 30-100 times greater than those of conventional wastewater applications. Mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant, where apparent nitrification rates (0.4-1.6 g NH(4)-Nm(-2)d(-1)), equivalent to that of wastewater filters were recorded. High inert suspended solid loadings had no adverse effect on nitrification. Results imply that implementation of high rate trickling filters at the front-end of a water treatment train would reduce the ammonia-related chlorine demand, thereby offering significant cost savings.

  17. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage.

    PubMed

    Wang, Xi; Weng, Qunhong; Liu, Xizheng; Wang, Xuebin; Tang, Dai-Ming; Tian, Wei; Zhang, Chao; Yi, Wei; Liu, Dequan; Bando, Yoshio; Golberg, Dmitri

    2014-03-12

    Distinct from pure graphene, N-doped graphene (GN) has been found to possess high rate capability and capacity for lithium storage. However, there has still been a lack of direct experimental evidence and fundamental understanding of the storage mechanisms at the atomic scale, which may shed a new light on the reasons of the ultrafast lithium storage property and high capacity for GN. Here we report on the atomistic insights of the GN energy storage as revealed by in situ transmission electron microscopy (TEM). The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ high-resolution TEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0002} spacings and surface hole defects result in improved surface capacitive effects and thus high rate capability and the high capacity are owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

  18. High-rate, High Temperature Acetotrophic Methanogenesis Governed by a Three Population Consortium in Anaerobic Bioreactors

    PubMed Central

    Ho, Dang; Jensen, Paul; Gutierrez-Zamora, Maria-Luisa; Beckmann, Sabrina; Manefield, Mike; Batstone, Damien

    2016-01-01

    A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA–stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methanogenesis. Active biomass was harvested from three bench-scale thermophilic bioreactors treating waste activated sludge at 55, 60 and 65°C, and fed with 13-C labelled and 12C-unlabelled acetate. Acetate uptake and cumulative methane production were determined and kinetic parameters were estimated using model-based analysis. Pyrosequencing performed on 13C- enriched samples indicated that organisms accumulating labelled carbon were Coprothermobacter (all temperatures between 55 and 65°C), acetoclastic Methanosarcina (55 to 60°C) and hydrogenotrophic Methanothermobacter (60 to 65°C). The increased relative abundance of Coprothermobacter with increased temperature corresponding with a shift to syntrophic acetate oxidation identified this as a potentially key oxidiser. Methanosarcina likely acts as both a hydrogen utilising and acetoclastic methanogen at 55°C, and is replaced by Methanothermobacter as a hydrogen utiliser at higher temperatures. PMID:27490246

  19. High-rate conditioning pulse trains in cochlear implants: Dynamic range measures with sinusoidal stimuli

    NASA Astrophysics Data System (ADS)

    Hong, Robert S.; Rubinstein, Jay T.

    2003-12-01

    The addition of a continuous, unmodulated, high-rate pulse train to the electrical signals of cochlear implant recipients results in statistically significant increases in psychophysical dynamic range (41 out of 46 electrode pairs tested). The observed increases in dynamic range are thought to result from nerve conditioning by appropriate levels of high-rate pulse train. Five dynamic range profiles are characterized, defining the different responses of dynamic range observed with increasing levels of the conditioner. Four of the five profiles demonstrate increases in dynamic range, with three showing behavior consistent with stochastic resonance. One profile depicts evidence of adaptation in response to higher levels of the conditioner, with a recovery period lasting throughout the duration (on the scale of tens of minutes) of experimentation. Dynamic range profiles are shown to be similar across sinusoidal frequencies (202, 515, and 1031 Hz) but potentially different across electrode pairs (electrodes 1-2, 7-8, and 15-16). Correlation analysis does not reveal any predictors of optimal conditioner level or amount of dynamic range increase with the conditioner.

  20. Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries.

    PubMed

    Chen, Long; Wang, Zhiyuan; He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun

    2013-10-09

    Two-dimensional (2D) porous graphitic carbon nanosheets (PGC nanosheets) as a high-rate anode material for lithium storage were synthesized by an easy, low-cost, green, and scalable strategy that involves the preparation of the PGC nanosheets with Fe and Fe3O4 nanoparticles embedded (indicated with (Fe&Fe3O4)@PGC nanosheets) using glucose as the carbon precursor, iron nitrate as the metal precursor, and a surface of sodium chloride as the template followed by the subsequent elimination of the Fe and Fe3O4 nanoparticles from the (Fe&Fe3O4)@PGC nanosheets by acid dissolution. The unique 2D integrative features and porous graphitic characteristic of the carbon nanosheets with high porosity, high electronic conductivity, and outstanding mechanical flexibility and stability are very favorable for the fast and steady transfer of electrons and ions. As a consequence, a very high reversible capacity of up to 722 mAh/g at a current density of 100 mA/g after 100 cycles, a high rate capability (535, 380, 200, and 115 mAh/g at 1, 10, 20, and 30 C, respectively, 1 C = 372 mA/g), and a superior cycling performance at an ultrahigh rate (112 mAh/g at 30 C after 570 charge-discharge cycles) are achieved by using these nanosheets as a lithium-ion-battery anode material.

  1. Molten metal reactors

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  2. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  3. K-Reactor readiness

    SciTech Connect

    Rice, P.D.

    1991-12-04

    This document describes some of the more significant accomplishments in the reactor restart program and details the magnitude and extent of the work completed to bring K-Reactor to a state of restart readiness. The discussion of restart achievements is organized into the three major categories of personnel, programs, and plant. Also presented is information on the scope and extent of internal and external oversight of the efforts, as well as some details on the startup plan.

  4. Future reactor experiments

    SciTech Connect

    Wen, Liangjian

    2015-07-15

    The non-zero neutrino mixing angle θ{sub 13} has been discovered and precisely measured by the current generation short-baseline reactor neutrino experiments. It opens the gate of measuring the leptonic CP-violating phase and enables the neutrino mass ordering. The JUNO and RENO-50 proposals aim at resolving the neutrino mass ordering using reactors. The experiment design, physics sensitivity, technical challenges as well as the progresses of those two proposed experiments are reviewed in this paper.

  5. K-Reactor readiness

    SciTech Connect

    Rice, P.D.

    1991-12-04

    This document describes some of the more significant accomplishments in the reactor restart program and details the magnitude and extent of the work completed to bring K-Reactor to a state of restart readiness. The discussion of restart achievements is organized into the three major categories of personnel, programs, and plant. Also presented is information on the scope and extent of internal and external oversight of the efforts, as well as some details on the startup plan.

  6. Cultivation of high-rate sulfate reducing sludge by pH-based electron donor dosage.

    PubMed

    Paulo, Paula L; Kleerebezem, Robbert; Lettinga, Gatze; Lens, Piet N L

    2005-07-21

    A novel self-regulating bioreactor concept for sulfate reduction is proposed aiming for high biomass concentrations and treatment capacities. The system consists of a cell suspension of sulfate reducing bacteria in a continuous stirred tank reactor (30 degrees C) fed with a mixture of both electron donor and electron acceptor (formic acid and sulfuric acid, respectively), nutrients and phosphate buffer via a pH controller. The pH rise due to sulfate reduction is balanced with dosage of the sulfate reducing substrates as acids. The reactor concept was shown to be capable of full sulfate reduction without competition for the electron donor by methanogens and acetogens. Activity assays revealed that hardly any methanogenic activity on formate was left in the suspension by the end of the continuous run (130 days). In addition, the sulfidogenic activity with formate and H2/CO2 had increased, respectively, 3.9 and 11.6 times at the end of the experimental run. The evolution of the particle size distribution of the cell suspension over time indicated that newly grown cells have the tendency to attach together in flocs or to the existing agglomerates.

  7. New options for developing of nuclear energy using an accelerator-driven reactor

    SciTech Connect

    Takahashi, Hiroshi

    1997-09-01

    Fissile fuel can be produced at a high rate using an accelerator-driven Pu-fueled subcritical fast reactor. Thus, the necessity of early introduction of the fast reactor can be moderated. High reliability of the proton accelerator, which is essential to implementing an accelerator-driven reactor in the nuclear energy field can be achieved by a slight extension of the accelerator`s length, with only a small economical penalty. Subcritical operation provides flexible nuclear energy options including high neutron economy producing the fuel, transmuting high-level wastes, such as minor actinides, and of converting efficiently the excess Pu and military Pu into proliferation-resistant fuel.

  8. NEUTRONIC REACTOR CONSTRUCTION AND OPERATION

    DOEpatents

    West, J.M.; Weills, J.T.

    1960-03-15

    A method is given for operating a nuclear reactor having a negative coefficient of reactivity to compensate for the change in reactor reactivity due to the burn-up of the xenon peak following start-up of the reactor. When it is desired to start up the reactor within less than 72 hours after shutdown, the temperature of the reactor is lowered prior to start-up, and then gradually raised after start-up.

  9. F Reactor Inspection

    ScienceCinema

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2016-07-12

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  10. F Reactor Inspection

    SciTech Connect

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  11. Reactor Safety Research Programs

    SciTech Connect

    Dotson, CW

    1980-08-01

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  12. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  13. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  14. The 2011 Grímsvötn Eruption From High Rate Geodesy

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, S.; Grapenthin, R.; Sigmundsson, F.; Roberts, M. J.; Holmjarn, J.; Geirsson, H.; Arnadottir, T.; Bennett, R. A.; Villemin, T.; Ofeigsson, B. G.; Sturkell, E. C.

    2011-12-01

    High rate geodetic measurements at volcanoes can give displacements at sub second intervals, revealing surface deformation associated with magma movements. The Grímsvötn volcano lies beneath the Vatnajökull icecap, Iceland, limiting the near field monitoring efforts to a single nunatak, Mt. Grímsfjall, on the southern caldera rim. A 5 Hz GPS station and an electronic tilt meter are located at Grímsfjall. The colocation of these instruments (GPS and tilt station) allows us to relate the observed surface deformation to pressure change in a magma chamber assuming a simple Mogi source within an elastic half space. During the 21-28 May 2011 Grímsvötn eruption a continuous stream of data, despite the eruption plume and lightning, was transmitted to Reykjavík. The tiltmeter measures N-S and E-W components of tilt, the N-S component was recorded at 100 samples per second (sps) but the E-W component at 4 sps. The high rate data from the GPS station at Grímsfjall (GFUM) were analyzed using the Track part of GAMIT/GLOBK. We produced kinematic solutions at 5 Hz and 1 Hz intervals using reference stations in 40-120 km distance of the volcano. To minimize multipath effects we applied sidereal filtering and stacked the individual solutions to further improve the signal to noise ratio. The resulting deformation time series suggests a rapid pressure drop starting about 50 minutes prior to the onset of the eruption when over 20 km high plume formed. The characteristics of the GPS and tilt data time series suggests that the main signal was induced by a single source of fixed location and geometry throughout the eruption; a shallow magma chamber. Small deviations in displacement direction prior to the onset of the eruption can be explained by the opening of the feeder dike. We see a total displacement of 57 cm in direction ˜N38.5°W and down at the GPS station, suggesting a source depth of ~1.7 km. About 20% of the displacement preceded the eruption and more than 95% took

  15. Asynchronous RTK precise DGNSS positioning method for deriving a low-latency high-rate output

    NASA Astrophysics Data System (ADS)

    Liang, Zhang; Hanfeng, Lv; Dingjie, Wang; Yanqing, Hou; Jie, Wu

    2015-07-01

    Low-latency high-rate (1 Hz) precise real-time kinematic (RTK) can be applied in high-speed scenarios such as aircraft automatic landing, precise agriculture and intelligent vehicle. The classic synchronous RTK (SRTK) precise differential GNSS (DGNSS) positioning technology, however, is not able to obtain a low-latency high-rate output for the rover receiver because of long data link transmission time delays (DLTTD) from the reference receiver. To overcome the long DLTTD, this paper proposes an asynchronous real-time kinematic (ARTK) method using asynchronous observations from two receivers. The asynchronous observation model (AOM) is developed based on undifferenced carrier phase observation equations of the two receivers at different epochs with short baseline. The ephemeris error and atmosphere delay are the possible main error sources on positioning accuracy in this model, and they are analyzed theoretically. In a short DLTTD and during a period of quiet ionosphere activity, the main error sources decreasing positioning accuracy are satellite orbital errors: the "inverted ephemeris error" and the integration of satellite velocity error which increase linearly along with DLTTD. The cycle slip of asynchronous double-differencing carrier phase is detected by TurboEdit method and repaired by the additional ambiguity parameter method. The AOM can deal with synchronous observation model (SOM) and achieve precise positioning solution with synchronous observations as well, since the SOM is only a specific case of AOM. The proposed method not only can reduce the cost of data collection and transmission, but can also support the mobile phone network data link transfer mode for the data of the reference receiver. This method can avoid data synchronizing process besides ambiguity initialization step, which is very convenient for real-time navigation of vehicles. The static and kinematic experiment results show that this method achieves 20 Hz or even higher rate output in

  16. High-rate deformation and fracture of steel 09G2S

    NASA Astrophysics Data System (ADS)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  17. QIE10: a new front-end custom integrated circuit for high-rate experiments

    NASA Astrophysics Data System (ADS)

    Baumbaugh, A.; Dal Monte, L.; Drake, G.; Freeman, J.; Hare, D.; Hernandez Rojas, H.; Hughes, E.; Los, S.; Mendez Mendez, D.; Proudfoot, J.; Shaw, T.; Tully, C.; Vidal, R.; Whitmore, J.; Zimmerman, T.

    2014-01-01

    We present results on a new version of the QIE (Charge Integrator and Encoder), a custom Application Specific Integrated Circuit (ASIC) designed at Fermilab. Developed specifically for the measurement of charge from photo-detectors in high-rate environments, this most recent addition to the QIE family features 3 fC sensitivity, 17-bits of dynamic range with logarithmic response, a Time-to-Digital Converter (TDC) with sub-nanosecond resolution, and internal charge injection. The device is capable of dead-timeless operation at 40 MHz, making it ideal for calorimetry at the Large hadron Collider (LHC). We present bench measurements and integration studies that characterize the performance, radiation tolerance measurements, and plans for deployment in the Atlas and CMS detectors as part of the Phase 1 and Phase 2 upgrades.

  18. Activated carbon derived from melaleuca barks for outstanding high-rate supercapacitors.

    PubMed

    Luo, Qiu-Ping; Huang, Liang; Gao, Xiang; Cheng, Yongliang; Yao, Bin; Hu, Zhimi; Wan, Jun; Xiao, Xu; Zhou, Jun

    2015-07-31

    Activated carbon (AC) was prepared via carbonizing melaleuca bark in an argon atmosphere at 600 °C followed with KOH activation for high-rate supercapacitors. This AC electrode has a high capacitance of 233 F g(-1) at a scan rate of 2 mV s(-1) and an excellent rate capability of ∼80% when increasing the sweep rate from 2 to 500 mV s(-1). The symmetric supercapacitor assembled by the above electrode can deliver a high energy density of 4.2 Wh kg(-1) with a power density of 1500 W kg(-1) when operated in the voltage range of 0-1 V in 1 M H2SO4 aqueous electrolyte while maintaining great cycling stability (less than 5% capacitance loss after 10 000 cycles at sweep rate of 100 mV s(-1)). All the outstanding electrochemical performances make this AC electrode a promising candidate for potential energy storage application.

  19. Scalable multiplexed detector system for high-rate telecom-band single-photon detection.

    PubMed

    Brida, G; Degiovanni, I P; Piacentini, F; Schettini, V; Polyakov, S V; Migdall, A

    2009-11-01

    We present an actively multiplexed photon-counting detection system at telecom wavelengths that overcomes the difficulties of photon-counting at high rates. We find that for gated detectors, the heretofore unconsidered deadtime associated with the detector gate is a critical parameter, that limits the overall scalability of the scheme to just a few detectors. We propose and implement a new scheme that overcomes this problem and restores full scalability that allows an order of magnitude improvement with systems with as few as 4 detectors. When using just two multiplexed detectors, our experimental results show a 5x improvement over a single detector and a greater than 2x improvement over multiplexed schemes that do not consider gate deadtime.

  20. High rates of suicide and attempted suicide using pesticides in Nickerie, Suriname, South America.

    PubMed

    Graafsma, T; Kerkhof, A; Gibson, D; Badloe, R; van de Beek, L M

    2006-01-01

    Suicide and attempted suicide are identified as a serious mental health problem in Suriname, especially in the district of Nickerie. An epidemiological study in the Nickerie catchment area revealed high rates of suicide (48 per 100,000) and attempted suicide (207 per 100,000) on average in the years 2000-2004. Particularly remarkable is the high number of attempted suicides among males (49%), and the use of pesticides in both fatal (55%) and nonfatal suicidal behavior (44%). Probably this high incidence of suicidal behavior reflects the very poor economic situation of the district, poverty of most of the population, high levels of alcohol misuse, domestic violence, the rigidity of Hindustani culture regarding family traditions, the accessibility of pesticides, and the lack of future perspectives. Health care alone will not be sufficient to tackle this problem. One of the most urgent measures to prevent suicides is to stow away pesticides in locked cabinets with the key held by the proprietor.

  1. W phase source inversion using high-rate regional GPS data for large earthquakes

    NASA Astrophysics Data System (ADS)

    Riquelme, S.; Bravo, F.; Melgar, D.; Benavente, R.; Geng, J.; Barrientos, S.; Campos, J.

    2016-04-01

    W phase moment tensor inversion has proven to be a reliable method for rapid characterization of large earthquakes. For global purposes it is used at the United States Geological Survey, Pacific Tsunami Warning Center, and Institut de Physique du Globe de Strasbourg. These implementations provide moment tensors within 30-60 min after the origin time of moderate and large worldwide earthquakes. Currently, the method relies on broadband seismometers, which clip in the near field. To ameliorate this, we extend the algorithm to regional records from high-rate GPS data and retrospectively apply it to six large earthquakes that occurred in the past 5 years in areas with relatively dense station coverage. These events show that the solutions could potentially be available 4-5 min from origin time. Continuously improving GPS station availability and real-time positioning solutions will provide significant enhancements to the algorithm.

  2. On the response of Escherichia coli to high rates of deformation

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Painter, J. D.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.

    2017-01-01

    While a large body of work exists on the low strain-rate loading of biological systems such as bacteria, there is a paucity of information on the response of such organisms at high rates of deformation. Here, the response of a readily accessible strain of bacteria, Escherichia coli (E. coli), has been examined under shock loading conditions. Although previous studies have shown greatly reduced growth in shock conditions up to several GPa, relationships between loading conditions and bacterial response have yet to be fully elucidated. Initial results of a more rigorous investigation into the 1D shock loading response of E. coli are presented here, expectantly leading to a more comprehensive view of its behaviour when exposed to high pressures. Comparison has been drawn to provide insight into the importance of the nature of the loading regime to the survival of these biological systems.

  3. R&D on Resistive Heat Exchangers for HTS High Rated Current Leads

    NASA Astrophysics Data System (ADS)

    Bi, Yanfang

    2011-12-01

    The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end and its cooling approach. The design and operation of a sheet-stack HEX with a larger specific surface and a much smaller hydraulic diameter are presented in the paper. The test results of an HTS lead optimized for 8 kA show that a 98.4% efficiency can be achieved.

  4. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.

    PubMed

    Sutherland, Donna L; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-05-01

    With microalgal biofuels currently receiving much attention, there has been renewed interest in the combined use of high rate algal ponds (HRAP) for wastewater treatment and biofuel production. This combined use of HRAPs is considered to be an economically feasible option for biofuel production, however, increased microalgal productivity and nutrient removal together with reduced capital costs are needed before it can be commercially viable. Despite HRAPs being an established technology, microalgal photosynthesis and productivity is still limited in these ponds and is well below the theoretical maximum. This paper critically evaluates the parameters that limit microalgal light absorption and photosynthesis in wastewater HRAPs and examines biological, chemical and physical options for improving light absorption and utilisation, with the view of enhancing biomass production and nutrient removal.

  5. Tracking health care costs: spending growth remains stable at high rate in 2005.

    PubMed

    2006-10-01

    This Data Bulletin is based on data from the Milliman Health Cost Index 2005 Series ($0 deductible), which is designed to reflect claims trends faced by private insurers; the U.S. Bureau of Labor Statistics' (BLS) Producer Price Index for general medical and surgical for general medical and surgical hospitals and for physicians' offices to track hospital and physician prices; the BLS's Consumer Price Index for prescription drugs and medical supplies to track prescription drug prices; and the Kaiser Family Foundation/Health Research and Educational Trust 2006 Survey of Employer Health Benefits. It is adapted from "Tracking Health Care Costs: Continued Stability But At High Rates In 2005," by Paul B. Ginsburg, Bradley C. Strunk and Michelle I. Banker of HSC; and John P. Cookson of Milliman, Health Affairs, Web-exclusive publication, Oct. 3, 2006, www.healthaffairs.org.

  6. Development of High Rate Coating Technology for Low Cost Electrochromic Dynamic Windows

    SciTech Connect

    Kwak, B.; Joshi, Ajey

    2013-03-31

    Objectives of the Project: The objective of this project was to develop and demonstrate the feasibility of depositing critical electrochromic layers at high rate using new novel vacuum coating sources, to develop a full electrochromic process flow by combining conventional processes with new deposition sources, to characterize, test, evaluate, and optimize the resulting coatings and devices, and, to demonstrate an electrochromic device using the new process flow and sources. As addendum objectives, this project was to develop and demonstrate direct patterning methods with novel integration schemes. The long term objective, beyond this program, is to integrate these innovations to enable production of low-cost, high-performance electrochromic windows produced on highly reliable and high yielding manufacturing equipment and systems.

  7. Results from beam tests of MEGA's low-mass, high-rate cylindrical MWPCs

    SciTech Connect

    Stanislaus, S.; Armijo, V.; Black, J.K.; Bolton, R.D.; Carius, S.; Cooper, M.D.; Espinoza, C.; Hart, G.; Hogan, G.; Gonzales, A.; Mischke, R.E.; Piilonen, L.E.; Sandoval, J.; Schilling, S.; Sena, J.; Suazo, G.; Szymanski, J.J.; Whitehouse, D.A.; Wilkinson, C.A. ); Fisk, R.; Koetke, D.D.; Manweiler, R.W. ); Jui, C.C. (Stanford Univ., CA

    1991-01-01

    One of the leading experimental projects at LAMPF has been the MEGA experiment. This is an experiment to search for the rare decay {mu} {yields} e{gamma} with a sensitivity of 10{sup {minus}13}. A prime component of this project has been the design and construction of high-rate, low mass MWPCs for the tracking of positrons from muon decay. With rate capabilities of 2 {times} 10{sup 4} e{sup +}/mm{sup 2}/s and a thickness of 3 {times} 10{sup {minus}4} radiation lengths, these chambers are state-of-the-art cylindrical MWPCs. Cylindrical chambers of this size (0.9 m{sup 2}) and thinness have never been previously constructed. The MEGA project at LAMPF has recently succeeded in building chambers with these necessary performance characteristics as demonstrated by data taken from muon decays, cosmic rays, and sources.

  8. High-rate laser metal deposition of Inconel 718 component using low heat-input approach

    NASA Astrophysics Data System (ADS)

    Kong, C. Y.; Scudamore, R. J.; Allen, J.

    Currently many aircraft and aero engine components are machined from billets or oversize forgings. This involves significant cost, material wastage, lead-times and environmental impacts. Methods to add complex features to another component or net-shape surface would offer a substantial cost benefit. Laser Metal Deposition (LMD), currently being applied to the repair of worn or damaged aero engine components, was attempted in this work as an alternative process route, to build features onto a base component, because of its low heat input capability. In this work, low heat input and high-rate deposition was developed to deposit Inconel 718 powder onto thin plates. Using the optimised process parameters, a number of demonstrator components were successfully fabricated.

  9. Fabrication of Nb2O5 Nanosheets for High-rate Lithium Ion Storage Applications

    PubMed Central

    Liu, Meinan; Yan, Cheng; Zhang, Yuegang

    2015-01-01

    Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500 ~ 800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh·g−1) and rate capability. Even at a current density of 1 A·g−1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh·g−1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications. PMID:25659574

  10. The MuPix Telescope: A Thin, High-Rate Tracking Telescope

    NASA Astrophysics Data System (ADS)

    Augustin, H.; Berger, N.; Dittmeier, S.; Grzesik, C.; Hammerich, J.; Huang, Q.; Huth, L.; Kiehn, M.; Kozlinskiy, A.; Meier, F.; Perić, I.; Perrevoort, A.-K.; Schöoning, A.; vom Bruch, D.; Wauters, F.; Wiedner, D.

    2017-01-01

    The MuPix Telescope is a particle tracking telescope, optimized for tracking low momentum particles at high rates. It is based on the novel High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking detector. The telescope represents a first application of the HV-MAPS technology and also serves as test bed of the Mu3e readout chain. The telescope consists of up to eight layers of the newest prototypes, the MuPix7 sensors, which send self-triggered data via fast serial links to FPGAs, where the data is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer could be processed. Online tracking is performed with a subset of the incoming data. The general concept of the telescope, chip architecture, readout concept and online reconstruction are described. The performance of the sensor and of the telescope during test beam measurements are presented.

  11. Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater.

    PubMed

    García, J; Green, B F; Lundquist, T; Mujeriego, R; Hernández-Mariné, M; Oswald, W J

    2006-09-01

    In this investigation, diurnal variations in contaminant removal in high rate ponds (HRP) treating urban wastewater were evaluated. Two experimental HRPs (surface area 1.54 m2 and depth 0.3 m), each with a clarifier in series (surface area 0.025 m2), were operated in parallel with different hydraulic retention times (3-10 days) but with the same environmental conditions over a period of one year. The operating strategies adopted only yielded a significant overall difference in removal between the two HRPs for nutrients. Effluent total suspended solids and chemical oxygen demand were slightly higher at midday than at dawn, while for total nitrogen and total phosphorous the concentrations were slightly higher at dawn. All these differences were related to the diurnal changes of DO and pH. The main conclusion of this work is that the diurnal variations of the contaminant concentrations in HRPs do not seriously affect their reliability in treating wastewater.

  12. Intensified nitrogen removal of constructed wetland by novel integration of high rate algal pond biotechnology.

    PubMed

    Ding, Yi; Wang, Wei; Liu, Xingpo; Song, Xinshan; Wang, Yuhui; Ullman, Jeffrey L

    2016-11-01

    High rate algal pond (HRAP) was combined with constructed wetland (CW) to intensify nitrogen removal through optimizing nitrification and denitrification. Nitrification and denitrification process mainly depends on the oxygen content and carbon source level in CWs. Algal biomass was enriched in HRAP, and dissolved oxygen (DO) concentration was increased via photosynthesis. Algal debris increased COD as degradable bioresource. The results showed that HRAP-CW hybrid systems effectively promoted the nitrogen removal performance due to rich DO and COD. The extension of hydraulic retention time in HRAP significantly improved NH4-N and TN removals by 10.9% and 11.1% in hybrid systems, respectively. The highest NH4-N and TN removals in hybrid systems respectively reached 67.2% and 63.5%, which were significantly higher than those in single CW. The study suggested that the hybrid system had the application potentials in nitrogen removal from wastewater.

  13. The effect of aspect ratio on the compressive high rate deformation of three metallic alloys

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Radford, D. D.; Chapman, D. J.

    2006-08-01

    Metallic cylinders of rolled homogeneous armour (RHA) steel, Ti6Al4V, and FNC tungsten alloy of four different length l to diameter d ratios (dimensions in mm): 8/4, 4/8, 10/8, 8/10) were deformed at high rates of deformation using a direct impact Hopkinson pressure bar. Highspeed photographic sequences of the deformation were taken using a Hadland Imacon 790 imageconverter camera working at either 1 or 2 x 104 frames/s. It was found that titanium alloy cylinders of all four aspect ratios shear-banded and fractured, but that cylinders made from RHA steel and FNC tungsten behaved in a ductile manner when l/d < 1 but in a brittle manner when l/d > 1. We conclude that adiabatic shear banding is not just an inherent material property but that in some materials size effects/geometry can trigger this phenomenon.

  14. Organic salts as super-high rate capability materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Sun, Y. Y.; Du, S. X.; Gao, H.-J.; Zhang, S. B.

    2012-02-01

    First-principles calculation reveals that organic salts could be super-high rate capability electrode materials for Li-ion batteries. We show that di-lithium terephthalate, an anode material demonstrated recently by experiment, has low Li diffusion barrier (EA). A resonant bonding model for the low EA is developed, which leads to the prediction that di-potassium terephthalate (K2TPA) has even lower EA (150 meV), with diffusion rate orders of magnitude higher than that in Li-intercalated graphite. The calculated anode voltage (0.62 V), specific energy density (209 mA.h/g), and volume change upon lithiation (5%) make K2TPA a promising anode material for power-intensive applications such as electric-vehicles.

  15. High rate lithium intercalation properties of V 2O 5/carbon/ceramic-filler composites

    NASA Astrophysics Data System (ADS)

    Suzuki, Shinya; Hibino, Mitsuhiro; Miyayama, Masaru

    Composite electrodes of amorphous vanadium pentoxide/carbon/ceramic filler were prepared by mixing vanadium oxide hydrosol, acetone, carbon and ceramic fillers, and by extension on aluminum foil. High rate charge/discharge property of the composite electrode was examined, and the effect of fillers was discussed. The composite electrode had a porous structure, in which pores were 0.5-3 μm in diameter and penetrated through the composite. The composite electrode showed a large capacity of 98 mA h/g-electrode at a high current density of 17.2 mA/cm 2 (270 A/g-electrode). The relation between discharge capacity and current density was calculated by solving the simplified diffusion equation. The apparent diffusion coefficient of lithium ion in the composite electrode was found to be 10 times larger than that of electrode without fillers.

  16. A digital approach for real time high-rate high-resolution radiation measurements

    NASA Astrophysics Data System (ADS)

    Gerardi, G.; Abbene, L.

    2014-12-01

    Modern spectrometers are currently developed by using digital pulse processing (DPP) systems, showing several advantages over traditional analog electronics. The aim of this work is to present digital strategies, in a time domain, for the development of real time high-rate high-resolution spectrometers. We propose a digital method, based on the single delay line (SDL) shaping technique, able to perform multi-parameter analysis with high performance even at high photon counting rates. A robust pulse shape and height analysis (PSHA), applied on single isolated time windows of the detector output waveforms, is presented. The potentialities of the proposed strategy are highlighted through both theoretical and experimental approaches. To strengthen our approach, the implementation of the method on a real-time system together with some experimental results are presented. X-ray spectra measurements with a semiconductor detector are performed both at low and high photon counting rates (up to 1.1 Mcps).

  17. Novel in situ method for locating virtual source in high-rate electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Bhatia, M. S.

    1994-07-01

    The concept of virtual source simplifies calculation of thickness distribution on extended substrates in high rate vacuum coating employing electron-beam heating. The height of the point (virtual source), from which vapor can be assumed to emanate in accordance with Knudsen's cosine law, to yield the experimentally obtained thickness distribution, is calculated and this establishes the position of virtual source. Such as post facto determination is cumbersome as it is valid for the prescribed material evaporating at a certain rate in a specified geometry. A change in any of these entails a fresh measurement. Experimenters who use a large number of materials and deposit at different rates therefore have to carry out a number of trials before they can locate the virtual source at the desired deposition parameters. An in situ method for obtaining virtual source position can go a long way in reducing the labor of these experiments. A novel in situ method is described to locate the virtual source.

  18. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    PubMed

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  20. High rate GPS solutions from 2007 Mw7.7 Tocopilla, Chile Earthquake

    NASA Astrophysics Data System (ADS)

    Owen, S. E.; Webb, F.; Genrich, J.; Simons, M.; Minson, S.; Bertiger, W.; Haines, B.; Chowdhury, F.; Galetzka, J.

    2008-12-01

    The Mw 7.7 Tocopilla, Chile earthquake occurred within the CANTO (Central ANdean Tectonic Observatory) geodetic network, with ten stations recording at 5Hz. Because of the magnitude and proximity of the event, many of the stations recorded the dynamic as well as the static displacement from the earthquake. In order to provide the best time series for source modeling studies (see Minson et al, Fall AGU 2008), we have tested several high-rate analysis strategies. The high-rate solutions were analyzed in a baseline mode, fixing the position and clocks of a remote reference site, and estimating satellite clocks, tropospheric parameters, as well as the station position and clock of the non-stationary site. The station position was estimated at longer time intervals leading up to the onset of earthquake displacement (e.g., 10 minutes) to allow for a more robust position and troposphere estimate. During the earthquake, station positions were estimated at 5Hz. The station position estimates were reduced to 1 second and then 1 minute with time following the earthquake. We mitigated the effects of multipath by applying a modified sidereal filter correction to the phase observables. The multipath correction was estimated from static solutions based on 15 second data from the days prior to the earthquake. Given the potential for afterslip and aftershocks, we avoided using data from after the earthquake for estimation of the multipath correction. The multipath correction significantly reduced noise in the time series at the several minute to several hour period. We also compare 1Hz, and 5Hz solutions from the CANTO stations. While for some stations these solutions are very similar, there are other stations where the 5Hz solutions captures higher rate motion that were aliased in the 1Hz solutions. This result is a strong argument for increasing GPS data collection rates when looking for dynamic seismic motion.

  1. Assessment of high-rate GPS using a single-axis shake table

    NASA Astrophysics Data System (ADS)

    Häberling, S.; Rothacher, M.; Zhang, Y.; Clinton, J. F.; Geiger, A.

    2015-07-01

    The developments in GNSS receiver and antenna technologies, especially the increased sampling rate up to 100 sps, open up the possibility to measure high-rate earthquake ground motions with GNSS. In this paper we focus on the GPS errors in the frequency band above 1 Hz. The dominant error sources are mainly the carrier phase jitter caused by thermal noise and the stress error caused by the dynamics, e.g. antenna motions. To generate a large set of different motions, we used a single-axis shake table, where a GNSS antenna and a strong motion seismometer were mounted with a well-known ground truth. The generated motions were recorded with three different GNSS receivers with sampling rates up to 100 sps and different receiver baseband parameters. The baseband parameters directly dictate the carrier phase jitter and the correlations between subsequent epochs. A narrow loop filter bandwidth keeps the carrier phase jitter on a low level, but has an extreme impact on the receiver response for motions above 1 Hz. The amplitudes above 3 Hz are overestimated up to 50 % or reduced by well over half. The corresponding phase errors are between 30 and 90 degrees. Compared to the GNSS receiver response, the strong motion seismometer measurements do not show any amplitude or phase variations for the frequency range from 1 to 20 Hz. Due to the large errors for dynamic GNSS measurements, it is essential to account for the baseband parameters of the GNSS receivers if high-rate GNSS is to become a valuable tool for seismic displacement measurements above 1 Hz. Fortunately, the receiver response can be corrected by an inverse filter if the baseband parameters are known.

  2. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  3. Serological Diagnosis of Paracoccidioidomycosis: High Rate of Inter-laboratorial Variability among Medical Mycology Reference Centers

    PubMed Central

    Vidal, Monica Scarpelli Martinelli; Del Negro, Gilda Maria Barbaro; Vicentini, Adriana Pardini; Svidzinski, Teresinha Inez Estivalet; Mendes-Giannini, Maria Jose; Almeida, Ana Marisa Fusco; Martinez, Roberto; de Camargo, Zoilo Pires; Taborda, Carlos Pelleschi; Benard, Gil

    2014-01-01

    Background Serological tests have long been established as rapid, simple and inexpensive tools for the diagnosis and follow-up of PCM. However, different protocols and antigen preparations are used and the few attempts to standardize the routine serological methods have not succeeded. Methodology/Principal findings We compared the performance of six Brazilian reference centers for serological diagnosis of PCM. Each center provided 30 sera of PCM patients, with positive high, intermediate and low titers, which were defined as the “reference” titers. Each center then applied its own antigen preparation and serological routine test, either semiquantitative double immunodifusion or counterimmmunoelectrophoresis, in the 150 sera from the other five centers blindly as regard to the “reference” titers. Titers were transformed into scores: 0 (negative), 1 (healing titers), 2 (active disease, low titers) and 3 (active disease, high titers) according to each center's criteria. Major discordances were considered between scores indicating active disease and scores indicating negative or healing titers; such discordance when associated with proper clinical and other laboratorial data, may correspond to different approaches to the patient's treatment. Surprisingly, all centers exhibited a high rate of “major” discordances with a mean of 31 (20%) discordant scores. Alternatively, when the scores given by one center to their own sera were compared with the scores given to their sera by the remaining five other centers, a high rate of major discordances was also found, with a mean number of 14.8 sera in 30 presenting a discordance with at least one other center. The data also suggest that centers that used CIE and pool of isolates for antigen preparation performed better. Conclusion There are inconsistencies among the laboratories that are strong enough to result in conflicting information regarding the patients' treatment. Renewed efforts should be promoted to improve

  4. Low-latency high-rate GPS data from the EarthScope Plate Boundary Observatory

    NASA Astrophysics Data System (ADS)

    Anderson, G.; Jackson, M.; Meertens, C.; Stark, K.

    2007-05-01

    Real-time processing of high rate GPS data can give precise (e.g., 5-10 mm for data recorded once per second) recordings of rapid volcanic and seismic deformation. GPS is also an inertial sensor that records ground displacement with very high dynamic range, which allows the use of high rate GPS as a strong-motion seismometer. Such processing applied to low-latency streams of high sample rate GPS provide an emerging tool for earthquake, volcano, and tsunami geodesy and early warning. UNAVCO, as part of the EarthScope Plate Boundary Observatory project, is developing a system to provide such streams from some PBO and other UNAVCO-operated GPS stations, which we call UStream. UStream will be based on the Ntrip standard, a widely used protocol for streaming GNSS data over the Internet. Remote GPS stations will provide a stream of BINEX data at 1 sample/sec to an Ntrip server at UNAVCO's Boulder offices, while at the same time recording data locally in the event of communications failure. Once in Boulder, the data will be forked into three output streams: BINEX files stored at the UNAVCO archive and streams of data in BINEX and RTCM format. These data will flow to an Ntrip broadcaster that will distribute data to Ntrip clients, which can be anything from epoch-by-epoch processing systems to external data archiving systems. Data will flow through this system with no artificial latency and will be freely available to the community for use in scientific research.

  5. Response variability to high rates of electric stimulation in retinal ganglion cells

    PubMed Central

    Cai, Changsi; Ren, Qiushi; Desai, Neal J.; Rizzo, Joseph F.

    2011-01-01

    To improve the quality of prosthetic vision, it is important to understand how retinal neurons respond to electric stimulation. Previous studies present conflicting reports as to the maximum rate at which retinal ganglion cells can “follow” pulse trains, i.e., generate one spike for each pulse of the train. In the present study, we measured the response of 5 different types of rabbit retinal ganglion cells to pulse trains of 100–700 Hz. Surprisingly, we found significant heterogeneity in the ability of different types to follow pulse trains. For example, brisk transient (BT) ganglion cells could reliably follow pulse rates up to 600 pulses per second (PPS). In contrast, other types could not even follow rates of 200 PPS. There was additional heterogeneity in the response patterns across those types that could not follow high-rate trains. For example, some types generated action potentials in response to approximately every other pulse, whereas other types generated one spike per pulse for a few consecutive pulses and then did not generate any spikes in response to the next few pulses. Interestingly, in the types that could not follow high-rate trains, we found a second type of response: many pulses of the train elicited a biphasic waveform with an amplitude much smaller than that of standard action potentials. This small waveform was often observed following every pulse for which a standard spike was not elicited. A possible origin of the small waveform and its implication for effective retinal stimulation are discussed. PMID:21490287

  6. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Mehrabadi, Abbas; Craggs, Rupert J

    2016-02-01

    Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity and CO2 augmentation is often used to overcome this limitation in summer. However, the implications of carbon limitation during winter are poorly understood. This paper investigates the effects of 0.5%, 2%, 5% and 10% CO2 addition on the winter-time performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, photosynthetic efficiency, biomass production and nutrient removal rates, along with community composition. Varying percentage CO2 addition and associated change in culture pH resulted in 3 distinct microalgal communities. Light absorption by the microalgae increased by up to 144% with CO2 addition, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. Carbon augmentation increased the maximum rate of photosynthesis by up to 172%, which led to increased microalgal biovolume by up to 181% and an increase in total organic biomass for all treatments except 10% CO2. While 10% CO2 improved light absorption and photosynthesis this did not translate to enhanced microalgal productivity. Increased microalgal productivity with CO2 addition did not result in increased dissolved nutrient (nitrogen and phosphorus) removal. This experiment demonstrated that winter-time carbon augmentation up to 5% CO2 improved microalgal light absorption and utilisation, which ultimately increased microalgal biomass and is likely to enhance total annual microalgal areal productivity in HRAPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. High-rate fabrication methods for carbon fiber-reinforced composites

    SciTech Connect

    Fanter, D.L.; Strandburg, Del.B.; Dry, A.C.

    1996-12-31

    Carbon fiber reinforced composites (CFRCs) were developed for highly weight-critical aerospace applications. During the 25-year history of CFRCs, reduced costs of carbon fiber and fabrication methods have broadened the applications of CFRCs. Improved fabrication methods coupled with continued cost reductions of carbon fiber are enabling the next application areas of CFRC applications: civil construction and transportation. Carbon fiber-reinforced concrete provides increased strength and earthquake resistance to civil structures. Transportation applications, driven by new mandates for fuel economy and air quality, represent a huge market for strong, light CFRCs. Both of these new CFRC application areas are dependent upon the development of high-rate, low-cost fabrication methods to meet the demands for rapid, economical construction of large structures. This paper reports the development of two high-rate fabrication methods for producing economical structural composites for civil construction and transportation. Carbon-epoxy tubes for composite-confined concrete civil structures were formed by filament winding large, 320,000 filament, carbon fiber strands. This large-strand filament-winding method builds CFRC structures at rates of over 200 pounds of carbon fiber per hour, Continuous Resin Transfer Molding (CRTM{trademark}) produces constant cross-section composite beams from woven or stitched fiber preforms, fiber tows, and injected resin. Composite channels produced by CRTM{trademark} are being evaluated as replacement for steel channel sections commonly used in truck frame rails. These composite beams represent a weight savings of up to 400 lbs per truck -- a savings that translates directly into payload.

  8. Military personnel sustaining Lisfranc injuries have high rates of disability separation.

    PubMed

    Balazs, George C; Hanley, M G; Pavey, G J; Rue, J-Ph

    2017-06-01

    Lisfranc injuries are relatively uncommon midfoot injuries disproportionately affecting young, active males. Previous studies in civilian populations have reported relatively good results with operative treatment. However, treatment results have not been specifically examined in military personnel, who may have higher physical demands than the general population. The purpose of this study was to examine rates of return to military duty following surgical treatment of isolated Lisfranc injuries. Surgical records and radiographic images from all active duty US military personnel treated for an isolated Lisfranc injury between January 2005 and July 2014 were examined. Demographic information, injury data, surgical details and subsequent return to duty information were recorded. The primary outcome was ability to return to unrestricted military duty following treatment. The secondary outcome was secondary conversion to a midfoot arthrodesis following initial open reduction internal fixation. Twenty-one patients meeting inclusion criteria were identified. Median patient age was 23 years, and mean follow-up was 43 months. Within this cohort, 14 patients were able to return to military service, while seven required a disability separation from the armed forces. Of the 18 patients who underwent initial fixation, eight were subsequently revised to midfoot arthrodesis for persistent pain. Military personnel sustaining Lisfranc injuries have high rates of persistent pain and disability, even after optimal initial surgical treatment. Military surgeons should counsel patients on the career-threatening nature of this condition and high rates of secondary procedures. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  9. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  10. Selective and uniform high rate etching of polysilicon in a magnetically confined microwave discharge

    SciTech Connect

    Gadgil, P.; Dane, D.; Mantei, T.D.

    1993-03-01

    An electron cyclotron resonance plasma reactor with multipolar magnetic confinement has been characterized for potential applications in polysilicon gate patterning. A two-step, low pressure, 100% Cl{sub 2} etch process is used, in which a small substrate bias is applied only during the polysilicon etch step. This system etches anisotropic profiles into undoped polysilicon with an etch rate of 4000-4500 {Angstrom}/min and polysilicon-oxide etch selectivities of 150-300. The downstream ion current density and plasma potential are radially uniform to within 1% (1{sigma}) over a 200 mm diam. The polysilicon etch rate is radially uniform to within {plus_minus}2% of the mean etch rate across a 150 mm wafer. 20 refs., 15 figs., 4 tabs.

  11. EBT reactor analysis

    SciTech Connect

    Uckan, N. A.; Jaeger, E. F.; Santoro, R. T.; Spong, D. A.; Uckan, T.; Owen, L. W.; Barnes, J. M.; McBride, J. B.

    1983-08-01

    This report summarizes the results of a recent ELMO Bumpy Torus (EBT) reactor study that includes ring and core plasma properties with consistent treatment of coupled ring-core stability criteria and power balance requirements. The principal finding is that constraints imposed by these coupling and other physics and technology considerations permit a broad operating window for reactor design optimization. Within this operating window, physics and engineering systems analysis and cost sensitivity studies indicate that reactors with <..beta../sub core/> approx. 6 to 10%, P approx. 1200 to 1700 MW(e), wall loading approx. 1.0 to 2.5 MW/m/sup 2/, and recirculating power fraction (including ring-sustaining power and all other reactors auxiliaries) approx. 10 to 15% are possible. A number of concept improvements are also proposed that are found to offer the potential for further improvement of the reactor size and parameters. These include, but are not limited to, the use of: (1) supplementary coils or noncircular mirror coils to improve magnetic geometry and reduce size, (2) energetic ion rings to improve ring power requirements, (3) positive potential to enhance confinement and reduce size, and (4) profile control to improve stability and overall fusion power density.

  12. REACTOR AND NOVEL METHOD

    DOEpatents

    Young, G.J.; Ohlinger, L.A.

    1958-06-24

    A nuclear reactor of the type which uses a liquid fuel and a method of controlling such a reactor are described. The reactor is comprised essentially of a tank for containing the liquid fuel such as a slurry of discrete particles of fissionnble material suspended in a heavy water moderator, and a control means in the form of a disc of neutron absorbirg material disposed below the top surface of the slurry and parallel thereto. The diameter of the disc is slightly smaller than the diameter of the tank and the disc is perforated to permit a flow of the slurry therethrough. The function of the disc is to divide the body of slurry into two separate portions, the lower portion being of a critical size to sustain a nuclear chain reaction and the upper portion between the top surface of the slurry and the top surface of the disc being of a non-critical size. The method of operation is to raise the disc in the reactor until the lower portion of the slurry has reached a critical size when it is desired to initiate the reaction, and to lower the disc in the reactor to reduce the size of the lower active portion the slurry to below criticality when it is desired to stop the reaction.

  13. Methanation assembly using multiple reactors

    DOEpatents

    Jahnke, Fred C.; Parab, Sanjay C.

    2007-07-24

    A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.

  14. Looking Southwest at Reactor Box Furnaces With Reactor Boxes and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking Southwest at Reactor Box Furnaces With Reactor Boxes and Repossessed Uranium in Recycle Recovery Building - Hematite Fuel Fabrication Facility, Recycle Recovery Building, 3300 State Road P, Festus, Jefferson County, MO

  15. Dynamic bed reactor

    SciTech Connect

    Stormo, K.E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix. 27 figs.

  16. Heat dissipating nuclear reactor

    DOEpatents

    Hunsbedt, Anstein; Lazarus, Jonathan D.

    1987-01-01

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.

  17. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  18. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  19. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  20. Thermionic Reactor Design Studies

    SciTech Connect

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  1. A NEUTRONIC REACTOR

    DOEpatents

    Luebke, E.A.; Vandenberg, L.B.

    1959-09-01

    A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.

  2. Heat dissipating nuclear reactor

    DOEpatents

    Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.

  3. Chemistry in microstructured reactors.

    PubMed

    Jähnisch, Klaus; Hessel, Volker; Löwe, Holger; Baerns, Manfred

    2004-01-16

    The application of microstructured reactors in the chemical process industry has gained significant importance in recent years. Companies that offer not only microstructured reactors, but also entire chemical process plants and services relating to them, are already in existence. In addition, many institutes and universities are active within this field, and process-engineering-oriented reviews and a specialized book are available. Microstructured systems can be applied with particular success in the investigation of highly exothermic and fast reactions. Often the presence of temperature-induced side reactions can be significantly reduced through isothermal operations. Although microstructured reaction techniques have been shown to optimize many synthetic procedures, they have not yet received the attention they deserve in organic chemistry. For this reason, this Review aims to address this by providing an overview of the chemistry in microstructured reactors, grouped into liquid-phase, gas-phase, and gas-liquid reactions.

  4. Reactor for exothermic reactions

    DOEpatents

    Smith, L.A. Jr.; Hearn, D.; Jones, E.M. Jr.

    1993-03-02

    A liquid phase process is described for oligomerization of C[sub 4] and C[sub 5] isoolefins or the etherification thereof with C[sub 1] to C[sub 6] alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120 to 300 F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  5. Dynamic bed reactor

    DOEpatents

    Stormo, Keith E.

    1996-07-02

    A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.

  6. REACTOR CONTROL DEVICE

    DOEpatents

    Graham, R.H.

    1962-09-01

    A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)

  7. Reactor for exothermic reactions

    DOEpatents

    Smith, Jr., Lawrence A.; Hearn, Dennis; Jones, Jr., Edward M.

    1993-01-01

    A liquid phase process for oligomerization of C.sub.4 and C.sub.5 isoolefins or the etherification thereof with C.sub.1 to C.sub.6 alcohols wherein the reactants are contacted in a reactor with a fixed bed acid cation exchange resin catalyst at an LHSV of 5 to 20, pressure of 0 to 400 psig and temperature of 120.degree. to 300.degree. F. Wherein the improvement is the operation of the reactor at a pressure to maintain the reaction mixture at its boiling point whereby at least a portion but less than all of the reaction mixture is vaporized. By operating at the boiling point and allowing a portion of the reaction mixture to vaporize, the exothermic heat of reaction is dissipated by the formation of more boil up and the temperature in the reactor is controlled.

  8. High-rate serial interconnections for embedded and distributed systems with power and resource constraints

    NASA Astrophysics Data System (ADS)

    Sheynin, Yuriy; Shutenko, Felix; Suvorova, Elena; Yablokov, Evgenej

    2008-04-01

    High rate interconnections are important subsystems in modern data processing and control systems of many classes. They are especially important in prospective embedded and on-board systems that used to be multicomponent systems with parallel or distributed architecture, [1]. Modular architecture systems of previous generations were based on parallel busses that were widely used and standardised: VME, PCI, CompactPCI, etc. Busses evolution went in improvement of bus protocol efficiency (burst transactions, split transactions, etc.) and increasing operation frequencies. However, due to multi-drop bus nature and multi-wire skew problems the parallel bussing speedup became more and more limited. For embedded and on-board systems additional reason for this trend was in weight, size and power constraints of an interconnection and its components. Parallel interfaces have become technologically more challenging as their respective clock frequencies have increased to keep pace with the bandwidth requirements of their attached storage devices. Since each interface uses a data clock to gate and validate the parallel data (which is normally 8 bits or 16 bits wide), the clock frequency need only be equivalent to the byte rate or word rate being transmitted. In other words, for a given transmission frequency, the wider the data bus, the slower the clock. As the clock frequency increases, more high frequency energy is available in each of the data lines, and a portion of this energy is dissipated in radiation. Each data line not only transmits this energy but also receives some from its neighbours. This form of mutual interference is commonly called "cross-talk," and the signal distortion it produces can become another major contributor to loss of data integrity unless compensated by appropriate cable designs. Other transmission problems such as frequency-dependent attenuation and signal reflections, while also applicable to serial interfaces, are more troublesome in parallel

  9. A High-Rate Continuous GPS Network in Iceland for Crustal Deformation Research

    NASA Astrophysics Data System (ADS)

    Geirsson, H.; Árnadóttir, T.; Bennett, R.; Lafemina, P.; Jónsson, S.; Hreinsdóttir, S.; Holland, A.; Deutscher, J.; Ingvarsson, T.; Sturkell, E.; Villemin, T.

    2007-12-01

    A significant expansion of the current continuous GPS network in Iceland is well underway. The goal of the project is to install 30-40 new continuous GPS stations, with a sampling rate of 1 second or higher in selected areas of the country. Most of the sites are already installed and are collecting data and communications are being established. Currently we have in total about 50 continuous and 12 semi-continuous stations running. Eventually, the older continuous GPS stations (installed from 1999 onwards) will also be upgraded to allow high sampling rates. Many of the CGPS sites are co-located with stations in the national seismic network which is very beneficial for operation of the sites and enhanced monotoring capabilities. The national seismic network in Iceland contains 51 3-component digital stations that all are on-line. High-rate GPS observations have been used successfully to study dynamic earthquake rupture processes, for example the Denali earthquake in Alaska and the 2003 Tokachi-Oki earthquake in Japan. New GPS stations were installed in seismically active areas in the South Iceland Seismic Zone, the Reykjanes Peninsula and in Northern Iceland. We also attempt to capture volcanic processes by installing high-rate GPS stations near the three most active volcanoes in Iceland: Hekla, Grímsvotn, and Katla. These volcanoes have been active recently or are currently showing signs of unrest. Continuous GPS and recent campaign GPS measurements indicate rapid uplift (up to 2 cm/yr) over a wide area in central Iceland due to retreat of the glaciers in a warming climate. The new network already installed in central Iceland will obtain more detailed information on the rate and extent of the uplift. Implementing the 1-Hz technology in Iceland enables studies of both the dynamic as well as slower-rate processes related to earthquake and volcanic activity. The high level of volcanic and earthquake activity in Iceland makes it an ideal site for this project. In

  10. VRLA Ultrabattery for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Louey, R.; Haigh, N. P.; Lim, O. V.; Vella, D. G.; Phyland, C. G.; Vu, L. H.; Furukawa, J.; Takada, T.; Monma, D.; Kano, T.

    The objective of this study is to produce and test the hybrid valve-regulated Ultrabattery designed specifically for hybrid-electric vehicle duty, i.e., high-rate partial-state-of-charge operation. The Ultrabattery developed by CSIRO Energy Technology is a hybrid energy-storage device, which combines an asymmetric supercapacitor, and a lead-acid battery in one unit cells, taking the best from both technologies without the need for extra, expensive electronic controls. The capacitor will enhance the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging. Consequently, this hybrid technology is able to provide and absorb charge rapidly during vehicle acceleration and braking. The work programme of this study is divided into two main parts, namely, field trial of prototype Ultrabatteries in a Honda Insight HEV and laboratory tests of prototype batteries. In this paper, the performance of prototype Ultrabatteries under different laboratory tests is reported. The evaluation of Ultrabatteries in terms of initial performance and cycling performance has been conducted at both CSIRO and Furukawa laboratories. The initial performance of prototype Ultrabatteries, such as capacity, power, cold cranking and self-discharge has been evaluated based upon the US FreedomCAR Battery Test Manual (DOE/ID-11069, October 2003). Results show that the Ultrabatteries meet, or exceed, respective targets of power, available energy, cold cranking and self-discharge set for both minimum and maximum power-assist HEVs. The cycling performance of prototype Ultrabatteries has been evaluated using: (i) simplified discharge and charge profile to simulate the driving conditions of micro-HEV; (ii) 42-V profile to simulate the driving conditions of mild-HEV and (iii) EUCAR and RHOLAB profiles to simulate the driving conditions of medium-HEV. For comparison purposes, nickel-metal-hydride (Ni-MH) cells, which are presently used in the Honda Insight HEV

  11. High rate partial-state-of-charge operation of VRLA batteries

    NASA Astrophysics Data System (ADS)

    Moseley, Patrick T.

    The world market for 12 V SLI batteries currently stands at around US$ 12 billion. The lack of a serious challenge from other battery types has allowed lead-acid products to serve this market exclusively, with minimal demand for product improvement through research and development, and a sharp competition has, over time, cut sales prices to commodity levels. The electrochemical storage of energy in automobiles now faces the possibility of a major change, in the form of the proposed 36/42 V electrical systems for vehicles that remain primarily powered by internal combustion engines, and of the hybrid electric vehicle. The duty cycle for these two applications sees the battery held at a partial-state-of-charge (PSoC) for most of its life and required to supply, and to accept, charge at unprecedented rates. The remarkable advances achieved with VRLA battery technology for electric vehicles during the past 8-10 years will be of only passing value in overcoming the challenges posed by high rate PSoC service in 36/42 V and HEV duty. This is because the failure modes seen in PSoC are quite different from those faced in EV (deep cycle) use. The replacement of the 12 V SLI will not take place rapidly. However, if the applications which take its place are to be satisfied by a lead-acid product (probably VRLA), rather than by a battery of a different chemistry, a program of development as successful as that mounted for deep cycle duty will be required. The present phase of the Advanced Lead-Acid Battery Consortium (ALABC) R&D program has begun to shed light on those aspects of the function of a VRLA battery which currently limit its life in high rate PSoC duty. The program is also pursuing the several technologies which show promise of overcoming those limits, including multiple tab plate design, mass transport facilitation and minor component (both beneficial and detrimental impurity) management. This paper presents a brief review of the changes which are taking place in

  12. Nuclear reactor apparatus

    DOEpatents

    Wade, Elman E.

    1978-01-01

    A lifting, rotating and sealing apparatus for nuclear reactors utilizing rotating plugs above the nuclear reactor core. This apparatus permits rotation of the plugs to provide under the plug refueling of a nuclear core. It also provides a means by which positive top core holddown can be utilized. Both of these operations are accomplished by means of the apparatus lifting the top core holddown structure off the nuclear core while stationary, and maintaining this structure in its elevated position during plug rotation. During both of these operations, the interface between the rotating member and its supporting member is sealingly maintained.

  13. NEUTRONIC REACTOR SYSTEM

    DOEpatents

    Daniels, F.

    1957-10-15

    Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.

  14. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  15. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  16. Fast quench reactor method

    SciTech Connect

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  17. Diagnostics for hybrid reactors

    SciTech Connect

    Orsitto, Francesco Paolo

    2012-06-19

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  18. Perspectives on reactor safety

    SciTech Connect

    Haskin, F.E.; Camp, A.L.

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  19. ARIES tokamak reactor study

    SciTech Connect

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein.

  20. NEUTRONIC REACTOR CONTROL ELEMENT

    DOEpatents

    Newson, H.W.

    1960-09-13

    A novel composite neutronic reactor control element is offered. The element comprises a multiplicity of sections arranged in end-to-end relationship, each of the sections having a markedly different neutron-reactive characteristic. For example, a three-section control element could contain absorber, moderator, and fuel sections. By moving such an element longitudinally through a reactor core, reactivity is decreased by the absorber, increased slightly by the moderator, or increased substantially by the fuel. Thus, control over a wide reactivity range is provided.

  1. THERMAL NUCLEAR REACTOR

    DOEpatents

    Fenning, F.W.; Jackson, R.F.

    1957-09-24

    Nuclear reactors of the graphite moderated air cooled type in which canned slugs or rods of fissile material are employed are discussed. Such a reactor may be provided with a means for detecting dust particles in the exhausted air. The means employed are lengths of dust absorbent cord suspended in vertical holes in the shielding structure above each vertical coolant flow channel to hang in the path of the cooling air issuing from the channels, and associated spindles and drive motors for hauling the cords past detectors, such as Geiger counters, for inspecting the cords periodically. This design also enables detecting the individual channel in which a fault condition may have occurred.

  2. Diagnostics for hybrid reactors

    NASA Astrophysics Data System (ADS)

    Orsitto, Francesco Paolo

    2012-06-01

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  3. Fast quench reactor method

    DOEpatents

    Detering, B.A.; Donaldson, A.D.; Fincke, J.R.; Kong, P.C.; Berry, R.A.

    1999-08-10

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream. 8 figs.

  4. Fast quench reactor method

    DOEpatents

    Detering, Brent A.; Donaldson, Alan D.; Fincke, James R.; Kong, Peter C.; Berry, Ray A.

    1999-01-01

    A fast quench reaction includes a reactor chamber having a high temperature heating means such as a plasma torch at its inlet and a means of rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Metal halide reactants are injected into the reactor chamber. Reducing gas is added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

  5. MEANS FOR SHIELDING REACTORS

    DOEpatents

    Garrison, W.M.; McClinton, L.T.; Burton, M.

    1959-03-10

    A reactor of the heterageneous, heavy water moderated type is described. The reactor is comprised of a plurality of vertically disposed fuel element tubes extending through a tank of heavy water moderator and adapted to accommodate a flow of coolant water in contact with the fuel elements. A tank containing outgoing coolant water is disposed above the core to function is a radiation shield. Unsaturated liquid hydrocarbon is floated on top of the water in the shield tank to reduce to a minimum the possibility of the occurrence of explosive gaseous mixtures resulting from the neutron bombardment of the water in the shield tank.

  6. Reactor operation environmental information document

    SciTech Connect

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  7. A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery.

    PubMed

    Ding, Yu; Zhao, Yu; Yu, Guihua

    2015-06-10

    We report here a ferrocene-based membrane-free, high-rate semiliquid battery that takes advantage of a highly soluble ferrocene/ferrocenium redox couple in nonaqueous phase. The designed battery exhibits stable capacity retention up to 94% of theoretical capacity of ferrocene (145 mAh g(-1)) at a broad current rate up to 60 C owing to rapid mass transport in a liquid phase and fast redox kinetics. The diffusion coefficient and the standard reaction constant are determined to be in the order of 10(-6) cm(2) s(-1) and 10(-1) cm s(-1), respectively, orders of magnitude greater than those in a solid-phase electrode and those in conventional redox flow batteries. Additionally, the battery demonstrates power density and energy density exceeding 1400 W L(-1) and 40 Wh L(-1), respectively, and stable cyclability with capacity retention of ∼80% for 500 cycles. Compared with state-of-the-art energy storage technologies such as Li-ion batteries or conventional redox flow batteries, the proposed liquid battery shows the potential to be an efficient energy storage system with exceptionally high power and reasonable energy density.

  8. High-rate axial-field ionization chamber for particle identification of Radioactive beams

    NASA Astrophysics Data System (ADS)

    Desouza, Romualdo; Vadas, Justin; Singh, Varinderjit; Visser, G.; Alexander, A.; Hudan, S.; Huston, J.; Wiggins, B.; Chbihi, A.; Famiano, M.; Bischak, M.

    2017-01-01

    The design, construction and performance characteristics of a simple axial-field ionization chamber suitable for identifying ions in a radioactive beam are presented. The detector is optimized for use with low-energy radioactive beams (<) 5 MeV/A. A fast charge sensitive amplifier (CSA) integrated into the detector design is also described. Coupling this fast CSA to the axial field ionization chamber produces an output pulse with a rise-time of 60 to 70 ns and a fall time of 100 ns, making the detector capable of sustaining a relatively high rate while providing a time resolution of 6 to 8 ns. Tests with an α source establish the detector energy resolution as 8 % for an energy deposit of 3.5 MeV. Beam tests indicate that the detector is an effective tool for the characterization of low-energy radioactive beams at beam intensities up to 3 x 105 ions/s. Supported by the U.S. DOE under Award # DE-FG02-88ER-40404 and the NSF under Grant No. 1342962.

  9. Heat dissipation of high rate Li-SOCl sub 2 primary cells

    NASA Astrophysics Data System (ADS)

    Cho, Y. I.; Halpert, G.; Deligiannis, E.

    1986-09-01

    The heat dissipation problem occurring in the lithium thionyl chloride cells discharged at relatively high rates under normal discharge conditions is examined. Four heat flow paths were identified, and the thermal resistances of the relating cell components along each flow path were accordingly calculated. From the thermal resistance network analysis, it was demonstrated that about 90 percent of the total heat produced within the cell should be dissipated along the radial direction in a spirally wound cell. In addition, the threshold value of the heat generation rate at which cell internal temperature could be maintained below 100 C, was calculated from total thermal resistance and found to be 2.9 W. However, these calculations were made only at the cell components' level, and the transient nature of the heat accumulation and dissipation was not considered. A simple transient model based on the lumped-heat-capacity concept was developed to predict the time-dependent cell temperature at different discharge rates. The overall objective was to examine the influence of cell design variable from the heat removal point of view under normal discharge conditions and to make recommendations to build more efficient lithium cells.

  10. Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond.

    PubMed

    Posadas, Esther; Marín, David; Blanco, Saúl; Lebrero, Raquel; Muñoz, Raúl

    2017-05-01

    The bioconversion of biogas to biomethane coupled to centrate treatment was evaluated in an outdoors pilot scale high rate algal pond interconnected to an external CO2-H2S absorption column (AC) via settled broth recirculation. CO2-removal efficiencies ranged from 50 to 95% depending on the alkalinity of the cultivation broth and environmental conditions, while a complete H2S removal was achieved regardless of the operational conditions. A maximum CH4 concentration of 94% with a limited O2 and N2 stripping was recorded in the upgraded biogas at recycling liquid/biogas ratios in the AC of 1 and 2. Process operation at a constant biomass productivity of 15gm(-2)d(-1) and the minimization of effluent generation supported high carbon and nutrient recoveries in the harvested biomass (C=66±8%, N=54±18%, P≈100% and S=16±3%). Finally, a low diversity in the structure of the microalgae population was promoted by the environmental and operational conditions imposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. High rate of drug resistance among tuberculous meningitis cases in Shaanxi province, China

    PubMed Central

    Wang, Ting; Feng, Guo-Dong; Pang, Yu; Liu, Jia-Yun; Zhou, Yang; Yang, Yi-Ning; Dai, Wen; Zhang, Lin; Li, Qiao; Gao, Yu; Chen, Ping; Zhan, Li-Ping; Marais, Ben J; Zhao, Yan-Lin; Zhao, Gang

    2016-01-01

    The clinical and mycobacterial features of tuberculous meningitis (TBM) cases in China are not well described; especially in western provinces with poor tuberculosis control. We prospectively enrolled patients in whom TBM was considered in Shaanxi Province, northwestern China, over a 2-year period (September 2010 to December 2012). Cerebrospinal fluid specimens were cultured for Mycobacterium tuberculosis; with phenotypic and genotypic drug susceptibility testing (DST), as well as genotyping of all positive cultures. Among 350 patients included in the study, 27 (7.7%) had culture-confirmed TBM; 84 (24.0%) had probable and 239 (68.3%) had possible TBM. DST was performed on 25/27 (92.3%) culture positive specimens; 12/25 (48.0%) had “any resistance” detected and 3 (12.0%) were multi-drug resistant (MDR). Demographic and clinical features of drug resistant and drug susceptible TBM cases were similar. Beijing was the most common genotype (20/25; 80.0%) with 9/20 (45%) of the Beijing strains exhibiting drug resistance; including all 3 MDR strains. All (4/4) isoniazid resistant strains had mutations in the katG gene; 75% (3/4) of strains with phenotypic rifampicin resistance had mutations in the rpoB gene detected by Xpert MTB/RIF®. High rates of drug resistance were found among culture-confirmed TBM cases; most were Beijing strains. PMID:27143630

  12. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production.

    PubMed

    Arbib, Zouhayr; de Godos, Ignacio; Ruiz, Jesús; Perales, José A

    2017-07-01

    Special attention is required to the removal of nitrogen and phosphorous in treated wastewaters. Although, there are a wide range of techniques commercially available for nutrient up-take, these processes entail high investment and operational costs. In the other hand, microalgae growth can simultaneously remove inorganic constituents of wastewater and produce energy rich biomass. Among all the cultivation technologies, High Rate Algae Ponds (HRAPs), are accepted as the most appropriate system. However, the optimization of the operation that maximizes the productivity, nutrient removal and lipid content in the biomass generated has not been established. In this study, the effect of two levels of depth and the addition of CO2 were evaluated. Batch essays were used for the calculation of the kinetic parameters of microbial growth that determine the optimum conditions for continuous operation. Nutrient removal and lipid content of the biomass generated were analyzed. The best conditions were found at depth of 0.3m with CO2 addition (biomass productivity of 26.2gTSSm(-2)d(-1) and a lipid productivity of 6.0glipidsm(-2)d(-1)) in continuous mode. The concentration of nutrients was in all cases below discharge limits established by the most restrictive regulation for wastewater discharge.

  13. A forward error correction technique using a high-speed, high-rate single chip codec

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Hartman, W. F.; Jones, Robert E.

    1989-01-01

    The authors describe an error-correction coding approach that allows operation in either burst or continuous modes at data rates of multiple hundreds of megabits per second. Bandspreading is low since the code rate is 7/8 or greater, which is consistent with high-rate link operation. The encoder, along with a hard-decision decoder, fits on a single application-specific integrated circuit (ASIC) chip. Soft-decision decoding is possible utilizing applique hardware in conjunction with the hard-decision decoder. Expected coding gain is a function of the application and is approximately 2.5 dB for hard-decision decoding at 10-5 bit-error rate with phase-shift-keying modulation and additive Gaussian white noise interference. The principal use envisioned for this technique is to achieve a modest amount of coding gain on high-data-rate, bandwidth-constrained channels. Data rates of up to 300 Mb/s can be accommodated by the codec chip. The major objective is burst-mode communications, where code words are composed of 32 n data bits followed by 32 overhead bits.

  14. Achieving High Rates and High Uniformity in Copper Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Nolan, Lucy Marjorie

    The chemical mechanical polishing of Copper (Cu-CMP) is a complex and poorly understood process. Despite this, it is widely used throughout the semiconductor and microelectronics industries, and makes up a significant portion of wafer processing costs. In these contexts, desirable polishing outcomes such as a high rate of removal from the copper surface, and high removal rate uniformity, are achieved largely by trial-and-error. In this study, the same outcomes are pursued through a systematic investigation of polishing lubrication characteristics and abrasive and oxidiser concentrations in the polishing slurry. A strong link between lubrication characteristics, quantified by the dimensionless Sommerfield number, and the uniformity of polishing is demonstrated. A mechanism for the observed relationship is proposed, based on an adaptation of hydrodynamic lubrication theory. The overall rate of removal is maximized by polishing in a slurry containing oxidiser and abrasives in a synergistic ratio. Polishing away from this ratio has additional effects on the overall quality of the surface produced. Transport of slurry across the polishing pad is investigated by using tracers; the results demonstrate that slurry usage can be reduced in many circumstances with no impact on overall polishing outcomes, reducing overall processing costs. These findings are combined to design a polishing process, with good results.

  15. Performance of 0. 75 mm pitch MWPC'S operating at high rate

    SciTech Connect

    Conetti, S.; Kuzminski, J.; Marchionni, A.; Stairs, D.; Arenton, M.; Chen, T.Y.; Cox, B.; Delchamps, S.; Etemadi, B.; Fortney, L.

    1989-01-01

    Three Multiwire Proportional Chambers (MWPC) with high rate capability have been constructed for Fermi National Accelerator Laboratory experiment 705 (Charmonium and Direct Photon production by ..pi../sup +-/, p and /bar p/ at 300 GeV/c). Each chamber, with a sensitive area of 308 cm/sup 2/, consists of three anode planes, wound with 12.5 ..mu..m diameter gold-plated tungsten/rhenium wire, facing 25 ..mu..m graphite-coated kapton cathode planes at a distance of 3 mm. Wire spacing in two of the MWPC (PC-B1 and PC-B2) is 0.75 mm and 1.00 mm in the third one (PC-B3). After a few weeks of running on ''Magic Gas'' with a beam flux of up to /approximately/10/sup 7/ particles/cm/sup 2/sec, severe damage occurred to the graphite coating. All cathode planes were replaced by aluminized kapton, and the chambers worked successfully for the next 3 months until the end of the run, when a 10% efficiency drop was observed after a total accumulated charge of /approximately/1 C/cm of sense wire. After the end of the run the chambers were disassembled and inspected. A white deposit with a characteristic ''wire pattern'' etched away from the Al coating was observed in the region of the beam spot. 10 refs., 8 figs., 1 tab.

  16. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways.

  17. Effects of high-rate electrical stimulation upon firing in modelled and real neurons.

    PubMed

    Krauthamer, V; Crosheck, T

    2002-05-01

    Many medical devices use high-rate, low-amplitude currents to affect neural function. This study examined the effect of stimulation rate upon action potential threshold and sustained firing rate for two model neurons, the rabbit myelinated fibre and the unmyelinated leech touch sensory cell. These model neurons were constructed with the NEURON simulator from electrophysiological data. Alternating-phase current pulses (0-1250 Hz), of fixed phase duration (0.2 ms), were used to stimulate the neurons, and propagation success or failure was measured. One effect of the high pulse rates was to cause a net depolarisation, and this was verified by the relief of action potential conduction block by 500 Hz extracellular stimulation in leech neurons. The models also predicted that the neurons would maintain maximum sustained firing at a number of different stimulation rates. For example, at twice threshold, the myelinated model followed the stimulus up to 500 Hz stimulation, half the stimulus rate up to 850 Hz stimulation, and it did not fire at 1250 Hz stimulation. By contrast, the unmyelinated neuron model had a lower maximum firing rate of 190 Hz, and this rate was obtained at a number of stimulation rates, up to 1250 Hz. The myelinated model also predicted sustained firing with 1240 Hz stimulation at threshold current, but no firing when the current level was doubled. Most of these effects are explained by the interaction of stimulus pulses with the cell's refractory period.

  18. A novel stimulus artifact removal technique for high-rate electrical stimulation.

    PubMed

    Heffer, Leon F; Fallon, James B

    2008-05-30

    Electrical stimulus artifact corrupting electrophysiological recordings often makes the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems.

  19. Thoracic response to high-rate blunt impacts using an advanced testing platform.

    PubMed

    Wickwire, Alexis C; Merkle, Andrew C; Carneal, Catherine M; Pauson, Jeffrey M

    2012-01-01

    ehind Armor Blunt Trauma (BABT) is a persistent concern for both the military and civil law enforcement. Although personal protective equipment (PPE), including soft and hard body armor, mitigates penetrating injuries from ballistic threats, the impact generates a backface deformation which creates a high-rate blunt impact to the body and potential internal injury (i.e., BABT). A critical need exists to understand the mechanics of the human response and subsequently evaluate the efficacy of current and proposed PPE in mitigating BABT injury risk. Current human surrogate test platforms lack anatomical fidelity or instrumentation for capturing the dynamic transfer of energy during the event. Therefore, we have developed and tested a Human Surrogate Torso Model (HSTM) composed of biosimulants representing soft tissues and skeleton of the human torso. A matrix of pressure transducers were embedded in the soft tissue and a custom displacement sensor was mounted to the skeletal structure to measure sternum displacement. A series of non-penetrating, high energy ballistic tests were performed with the HSTM. Results indicate that both sternum displacement and internal localized pressure are sensitive to impact energy and location. These data provide a spatial and temporal comparison to the current standard (static clay measurements) and a method for evaluating the applicability of thoracic injury metrics, including the Viscous Criterion, for BABT. The HSTM provides an advanced, biomechanically relevant test platform for determining the thoracic response to dynamic loading events due to non-penetrating ballistic impacts.

  20. European freshwater vulnerability under high rates of global warming and plausible socio-economic narratives.

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis; Papadimitriou, Lamprini; Grillakis, Manolis; Tsanis, Ioannis

    2017-04-01

    Recent developments could postpone climate actions in the frame of the global climate deal of the Paris Agreement, making higher-end global warming increasingly plausible. Although not clear in the COP21 water security is fundamental to achieving low-carbon ambitions, thus climate and water policies are closely related. The projection of the relationship between global warming, water availability and water stress through their complex interactions among different sectors, along with the synergies and trade-offs between adaptation and mitigation actions, is a rather challenging task under the prism of climate change. Here we try to develop and apply a simple, transparent conceptual framework describing European vulnerability to hydrological drought of current hydro-climatic and socioeconomic status as well as projected vulnerability at specific levels of global warming (1.5oC, 2oC and 4oC) following highly rates of climatic change (RCP8.5) and considering different levels of adaptation associated to specific socioeconomic pathways (SSP2, SSP3 and SSP5).

  1. Atrial high-rate episodes predict clinical outcome in patients with cardiac resynchronization therapy.

    PubMed

    Jacobsson, Jonatan; Platonov, Pyotr G; Reitan, Christian; Carlsson, Jonas; Borgquist, Rasmus

    2017-04-01

    Up to 50% of patients qualified for cardiac resynchronization therapy (CRT) have documented atrial fibrillation (AF) prior to CRT-implantation. This finding is associated with worse prognosis but few studies have evaluated the importance of post-implant device-detected AF. This study aimed to assess the prognostic impact of device-detected atrial high-rate episodes (AHRE), as a surrogate for AF. Data were retrospectively obtained from consecutive patients receiving CRT. Baseline clinical data and data from CRT device-interrogations, performed at a median of 12.2 months after CRT-implantation, were evaluated with regard to prediction of the composite endpoint of death, heart transplant or appropriate shock therapy. Median follow-up time was 51 months post-implant. The study included 377 patients. Preoperative AF was present in 49% and associated with worse outcome. The cumulative burden of AHRE at 12 months post-implant was an independent predictor of the primary endpoint. During the first 12 months after CRT-implantation, AHRE were detected in 25% of the patients with no preoperative diagnosis of AF. This finding was not associated with worse outcome. In CRT recipients, the cumulative burden of AHRE during the first year of follow-up was associated with worse long-term clinical outcome. Prospective trials are needed to determine if a rhythm control strategy is to be preferred in patients with CRT.

  2. Investigating why recycling gravity harvested algae increases harvestability and productivity in high rate algal ponds.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2013-09-15

    It has previously been shown that recycling gravity harvested algae promotes Pediastrum boryanum dominance and improves harvestability and biomass production in pilot-scale High Rate Algal Ponds (HRAPs) treating domestic wastewater. In order to confirm the reproducibility of these findings and investigate the mechanisms responsible, this study utilized twelve 20 L outdoor HRAP mesocosms operated with and without algal recycling. It then compared the recycling of separated solid and liquid components of the harvested biomass against un-separated biomass. The work confirmed that algal recycling promoted P. boryanum dominance, improved 1 h-settleability by >20% and increased biomass productivity by >25% compared with controls that had no recycling. With regard to the improved harvestability, of particular interest was that recycling the liquid fraction alone caused a similar improvement in settleability as recycling the solid fraction. This may be due to the presence of extracellular polymeric substances in the liquid fraction. While there are many possible mechanisms that could account for the increased productivity with algal recycling, all but two were systematically eliminated: (i) the mean cell residence time was extended thereby increasing the algal concentration and more fully utilizing the incident sunlight and, (ii) the relative proportions of algal growth stages (which have different specific growth rates) was changed, resulting in a net increase in the overall growth rate of the culture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Copper-Doped Titanium Dioxide Bronze Nanowires with Superior High Rate Capability for Lithium Ion Batteries.

    PubMed

    Zhang, Yongquan; Meng, Yuan; Zhu, Kai; Qiu, Hailong; Ju, Yanming; Gao, Yu; Du, Fei; Zou, Bo; Chen, Gang; Wei, Yingjin

    2016-03-01

    Pristine and Cu-doped TiO2-B nanowires are synthesized by the microwave assisted hydrothermal method. The doped oxide exhibits a highly porous structure with a specific surface area of 160.7 m(2) g(-1). As evidenced by X-ray photoelectron spectroscopy and X-ray energy dispersive spectroscopy, around 2.0 atom % Cu(2+) cations are introduced into TiO2-B, which leads to not only a slightly expanded lattice network but also, more importantly, a modified electronic structure. The band gap of TiO2-B is reduced from 2.94 to 2.55 eV, resulting in enhanced electronic conductivity. Cyclic voltammetry and electrochemical impedance spectroscopy reveal improved electrochemical kinetic properties of TiO2-B due to the Cu doping. The doped nanowires show a specific capacity of 186.8 mAh g(-1) at the 10 C rate with a capacity retention of 64.3% after 2000 cycles. Remarkably, our material exhibits a specific capacity of 150 mAh g(-1) at the 60 C rate, substantiating its superior high rate capability for rechargeable lithium batteries.

  4. A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation

    PubMed Central

    Heffer, Leon F; Fallon, James B

    2008-01-01

    Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428

  5. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities

    DOE PAGES

    Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen; ...

    2017-03-08

    Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 107/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find that meshmore » convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less

  6. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes

    PubMed Central

    2013-01-01

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g−1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g−1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups. PMID:23692674

  7. Adrenoleukodystrophy in Norway: high rate of de novo mutations and age-dependent penetrance.

    PubMed

    Horn, Morten A; Retterstøl, Lars; Abdelnoor, Michael; Skjeldal, Ola H; Tallaksen, Chantal M E

    2013-03-01

    To investigate X-linked adrenoleukodystrophy in an unselected population, we performed a population based, cross-sectional prevalence study, supplemented by a retrospective study of deceased subjects. Sixty-three subjects (34 males, 29 females) belonging to 22 kindreds were included. Thirty-nine subjects (13 males, 26 females) were alive, and 24 (21 males, 3 females) were deceased on the prevalence day. The point prevalence of X-linked adrenoleukodystrophy in Norway on July 1, 2011, was 0.8 per 100,000 inhabitants. The incidence at birth in the period 1956-1995 was 1.6 per 100,000 inhabitants. An age-dependent penetrance was observed among males and females, with more severe phenotypes appearing with rising age. Only 5% of deceased males had not developed cerebral leukodystrophy. No female older than 50 years was neurologically intact. Sixteen mutations in the ABCD1 gene were identified. De novo mutations were found in 19% of probands. The frequency of X-linked adrenoleukodystrophy was lower in Norway than reported in the literature. A more severe natural course than previously reported was observed, indicating a need for better follow-up of both male and female patients. Given the high rate of de novo mutations, identification programs such as newborn screening may be required to offer timely treatment to all patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Nutrient removal and biofuel production in high rate algal pond using real municipal wastewater.

    PubMed

    Kim, Byung-Hyuk; Kang, Zion; Ramanan, Rishiram; Choi, Jong-Eun; Cho, Dae-Hyun; Oh, Hee-Mock; Kim, Hee-Sik

    2014-08-01

    This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at 85.44 ± 5.10%, 92.74 ± 5.82%, and 82.85 ± 8.63%, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of 0.500 ± 0.03 g/l/day and 0.103 ± 0.0083 g/l/day (2 day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

  9. Recycling algae to improve species control and harvest efficiency from a high rate algal pond.

    PubMed

    Park, J B K; Craggs, R J; Shilton, A N

    2011-12-15

    This paper investigates the influence of recycling gravity harvested algae on species dominance and harvest efficiency in wastewater treatment High Rate Algal Ponds (HRAP). Two identical pilot-scale HRAPs were operated over one year either with (HRAP(r)) or without (HRAP(c)) harvested algal biomass recycling. Algae were harvested from the HRAP effluent in algal settling cones (ASCs) and harvest efficiency was compared to settlability in Imhoff cones five times a week. A microscopic image analysis technique was developed to determine relative algal dominance based on biovolume and was conducted once a month. Recycling of harvested algal biomass back to the HRAP(r) maintained the dominance of a single readily settleable algal species (Pediastrum sp.) at >90% over one year (compared to the control with only 53%). Increased dominance of Pediastrum sp. greatly improved the efficiency of algal harvest (annual average of >85% harvest for the HRAP(r) compared with ∼60% for the control). Imhoff cone experiments demonstrated that algal settleability was influenced by both the dominance of Pediastrum sp. and the species composition of remaining algae. Algal biomass recycling increased the average size of Pediastrum sp. colonies by 13-30% by increasing mean cell residence time. These results indicate that recycling gravity harvested algae could be a simple and effective operational strategy to maintain the dominance of readily settleable algal species, and enhance algal harvest by gravity sedimentation.

  10. High rate response of ultra-high-performance fiber-reinforced concretes under direct tension

    SciTech Connect

    Tran, Ngoc Thanh; Tran, Tuan Kiet; Kim, Dong Joo

    2015-03-15

    The tensile response of ultra-high-performance fiber-reinforced concretes (UHPFRCs) at high strain rates (5–24 s{sup −} {sup 1}) was investigated. Three types of steel fibers, including twisted, long and short smooth steel fibers, were added by 1.5% volume content in an ultra high performance concrete (UHPC) with a compressive strength of 180 MPa. Two different cross sections, 25 × 25 and 25 × 50 mm{sup 2}, of tensile specimens were used to investigate the effect of the cross section area on the measured tensile response of UHPFRCs. Although all the three fibers generated strain hardening behavior even at high strain rates, long smooth fibers produced the highest tensile resistance at high rates whereas twisted fiber did at static rate. The breakages of twisted fibers were observed from the specimens tested at high strain rates unlike smooth steel fibers. The tensile behavior of UHPFRCs at high strain rates was clearly influenced by the specimen size, especially in post-cracking strength.

  11. Learning visual balance from large-scale datasets of aesthetically highly rated images

    NASA Astrophysics Data System (ADS)

    Jahanian, Ali; Vishwanathan, S. V. N.; Allebach, Jan P.

    2015-03-01

    The concept of visual balance is innate for humans, and influences how we perceive visual aesthetics and cognize harmony. Although visual balance is a vital principle of design and taught in schools of designs, it is barely quantified. On the other hand, with emergence of automantic/semi-automatic visual designs for self-publishing, learning visual balance and computationally modeling it, may escalate aesthetics of such designs. In this paper, we present how questing for understanding visual balance inspired us to revisit one of the well-known theories in visual arts, the so called theory of "visual rightness", elucidated by Arnheim. We define Arnheim's hypothesis as a design mining problem with the goal of learning visual balance from work of professionals. We collected a dataset of 120K images that are aesthetically highly rated, from a professional photography website. We then computed factors that contribute to visual balance based on the notion of visual saliency. We fitted a mixture of Gaussians to the saliency maps of the images, and obtained the hotspots of the images. Our inferred Gaussians align with Arnheim's hotspots, and confirm his theory. Moreover, the results support the viability of the center of mass, symmetry, as well as the Rule of Thirds in our dataset.

  12. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m(2)/d, and between 0.5±0.1 and 2.6±1.1g/m(2)/d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m(2)/d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m(2)/d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel.

  13. Using effort-reward imbalance theory to understand high rates of depression and anxiety among clergy.

    PubMed

    Proeschold-Bell, Rae Jean; Miles, Andrew; Toth, Matthew; Adams, Christopher; Smith, Bruce W; Toole, David

    2013-12-01

    The clergy occupation is unique in its combination of role strains and higher calling, putting clergy mental health at risk. We surveyed all United Methodist clergy in North Carolina, and 95% (n = 1,726) responded, with 38% responding via phone interview. We compared clergy phone interview depression rates, assessed using the Patient Health Questionnaire (PHQ-9), to those of in-person interviews in a representative United States sample that also used the PHQ-9. The clergy depression prevalence was 8.7%, significantly higher than the 5.5% rate of the national sample. We used logistic regression to explain depression, and also anxiety, assessed using the Hospital Anxiety and Depression Scale. As hypothesized by effort-reward imbalance theory, several extrinsic demands (job stress, life unpredictability) and intrinsic demands (guilt about not doing enough work, doubting one's call to ministry) significantly predicted depression and anxiety, as did rewards such as ministry satisfaction and lack of financial stress. The high rate of clergy depression signals the need for preventive policies and programs for clergy. The extrinsic and intrinsic demands and rewards suggest specific actions to improve clergy mental health.

  14. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-03

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g(-1) and 380 mA h g(-1) are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  15. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Huang, Jia-Qi; Tian, Gui-Li; Nie, Jing-Qi; Peng, Hong-Jie; Wei, Fei

    2014-03-01

    Preventing the stacking of graphene is essential to exploiting its full potential in energy-storage applications. The introduction of spacers into graphene layers always results in a change in the intrinsic properties of graphene and/or induces complexity at the interfaces. Here we show the synthesis of an intrinsically unstacked double-layer templated graphene via template-directed chemical vapour deposition. The as-obtained graphene is composed of two unstacked graphene layers separated by a large amount of mesosized protuberances and can be used for high-power lithium-sulphur batteries with excellent high-rate performance. Even after 1,000 cycles, high reversible capacities of ca. 530 mA h g-1 and 380 mA h g-1 are retained at 5 C and 10 C, respectively. This type of double-layer graphene is expected to be an important platform that will enable the investigation of stabilized three-dimensional topological porous systems and demonstrate the potential of unstacked graphene materials for advanced energy storage, environmental protection, nanocomposite and healthcare applications.

  16. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-01-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  17. Wastewater treatment high rate algal pond biomass for bio-crude oil production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2017-01-01

    This study investigates the production potential of bio-crude from wastewater treatment high rate algal pond (WWT HRAP) biomass in terms of yield, elemental/chemical composition and higher heating value (HHV). Hydrothermal liquefaction (HTL) of the biomass slurry (2.2wt% solid content, 19.7kJ/g HHV) was conducted at a range of temperatures (150-300°C) for one hour. The bio-crude yield and HHV varied in range of 3.1-24.9wt% and 37.5-38.9kJ/g, respectively. The bio-crudes were comprised of 71-72.4wt% carbon, 0.9-4.8wt% nitrogen, 8.7-9.8wt% hydrogen and 12-15.7wt% oxygen. GC-MS analysis indicated that pyrroles, indoles, amides and fatty acids were the most abundant bio-crude compounds. HTL of WWT HRAP biomass resulted, also, in production of 10.5-26wt% water-soluble compounds (containing up to 293mg/L ammonia), 1.0-9.3wt% gas and 44.8-85.5wt% solid residue (12.2-18.1kJ/g). The aqueous phase has a great potential to be used as an ammonia source for further algal cultivation and the solid residue could be used as a process fuel source.

  18. A Rapid Technique for Isolating Chloroplasts with High Rates of Endogenous Photophosphorylation

    PubMed Central

    Nobel, Park S.

    1967-01-01

    The main features of the procedure developed for rapid chloroplast isolation are: 1) gentle grinding of the plant material in a special nylon bag which retains nearly all whole cells and large debris, 2) osmoticum concentration chosen on the basis of the measured endogenous photophosphorylation, 3) a single, brief, low-speed centrifugation, 4) pellet resuspension by means of a vortex mixer, and 5) a total elapsed time from harvesting the plants to the obtaining of a resuspended chloroplast pellet of only 2 minutes. The usual isolation medium consists of an osmoticum (0.2 m sucrose) and a buffer (0.02 m N-tris-(hydroxymethyl) methyl-2-aminoethanesulfonate-NaOH, pH 7.9). In addition to these, the incubation medium contains only 200 μm ADP and 200 μm phosphate. Photophosphorylation rates of 24 μmoles ATP formed per mg chlorophyll per hour are consistently obtained using chloroplasts isolated from peas (Pisum sativum var. Laxton's Superb). The rate of endogenous photophosphorylation is maximal when the isolation and incubation media have an osmolarity of about 0.19 made up either with sucrose or with NaCl. The high rates and ease of measurement of endogenous photophosphorylation may facilitate the study of certain soluble components of chloroplasts as well as the general state of the photosynthetic ability of the plant. PMID:16656667

  19. A dual coaxial nanocable sulfur composite for high-rate lithium-sulfur batteries.

    PubMed

    Li, Zhen; Yuan, Lixia; Yi, Ziqi; Liu, Yang; Xin, Ying; Zhang, Zhaoliang; Huang, Yunhui

    2014-01-01

    Lithium-sulfur batteries have great potential for some high energy applications such as in electric vehicles and smart grids due to their high capacity, natural abundance, low cost and environmental friendliness. But they suffer from rapid capacity decay and poor rate capability. The problems are mainly related to the dissolution of the intermediate polysulfides in the electrolyte, and to the poor conductivity of sulfur and the discharge products. In this work, we propose a novel dual coaxial nanocable sulfur composite fabricated with multi-walled nanotubes (MWCNT), nitrogen-doped porous carbon (NPC) and polyethylene glycol (PEG), i.e. MWCNTs@S/NPC@PEG nanocable, as a cathode material for Li-S batteries. In such a coaxial structure, the middle N-doped carbon with hierarchical porous structure provides a nanosized capsule to contain and hold the sulfur particles; the inner MWCNTs and the outer PEG layer can further ensure the fast electronic transport and prevent the dissolution of the polysulfides into the electrolyte, respectively. The as-designed MWCNT@S/NPC@PEG composite shows good cycling stability and excellent rate capability. The capacity is retained at 527 mA h g(-1) at 1 C after 100 cycles, and 791 mA h g(-1) at 0.5 C and 551 mA h g(-1) at 2 C after 50 cycles. Especially, the high-rate capability is outstanding with 400 mA h g(-1) at 5 C.

  20. High-rate deposition of diamond films by oxy-acetylene torch

    NASA Astrophysics Data System (ADS)

    Hudson, Martin D.; Brierley, Crofton J.

    1992-12-01

    An oxy-acetylene flame can produce diamond films at significantly higher deposition rates than those associated with either microwave plasma or hot filament assisted chemical vapor deposition. We have established the growth conditions necessary to achieve good quality diamond on silicon substrates. The addition of hydrogen to the gas mixture has been shown to give good quality material at enhanced growth rates. The growth rate has been increased further by using a growth-etch cycling process. This is achieved by periodically pulsing extra oxygen into the gas stream to change from depositing to etching conditions. Under etching conditions the non-diamond carbon in the film is rapidly removed leaving the diamond behind. This allows the use of high rate growth conditions that would otherwise produce poor quality material. The morphology and Raman spectra of films produced by these techniques are presented. The scale-up of the deposition system to cover areas as large as 15 X 20 mm is reported. This is accomplished by rastering a burner consisting of a line of small flames.