Science.gov

Sample records for high-rate plastic deformation

  1. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  2. Engineering of surface microstructure transformations using high rate severe plastic deformation in machining

    NASA Astrophysics Data System (ADS)

    Abolghasem, Sepideh

    Engineering surface structures especially at the nanometer length-scales can enable fundamentally new multifunctional property combinations, including tunable physical, mechanical, electrochemical and biological responses. Emerging manufacturing paradigms involving Severe Plastic Deformation (SPD), for manipulating final microstructure of the surfaces are unfortunately limited by poorly elucidated process-structure-performance linkages, which are characterized by three central variables of plasticity: strain, strain-rate and temperature that determine the resulting Ultrafine Grained (UFG) microstructure. The challenge of UFG surface engineering, design and manufacturing can be overcome if and only if the mappings between the central variables and the final microstructure are delineated. The objective of the proposed document is to first envision a phase-space, whose axes are parameterized in terms of the central variables of SPD. Then, each point can correspond to a unique microstructure, characterized by its location on this map. If the parametrization and the population of the datasets are accurately defined, then the mapping is bijective where: i) realizing microstructure designs can be reduced to simply one of tuning process parameters falling within the map s desired subspaces. And, inversely, ii) microstructure prediction is directly possible by merely relating the measured/calculated thermomechanics at each point in the deformation zone to the corresponding spot on the maps. However, the analytic approach to establish this map first requires extensive datasets, where the microstructures are accurately measured for a known set of strain, strain-rate and temperature of applied SPD. Although such datasets do not exist, even after the empirical data is accumulated, there is a lack of formalized statistical outlines in relating microstructural characteristic to the process parameters in order to build the mapping framework. Addressing these gaps has led to this

  3. Modeling Large-Strain, High-Rate Deformation in Metals

    SciTech Connect

    Lesuer, D R; Kay, G J; LeBlanc, M M

    2001-07-20

    The large strain deformation response of 6061-T6 and Ti-6Al-4V has been evaluated over a range in strain rates from 10{sup -4} s{sup -1} to over 10{sup 4} s{sup -1}. The results have been used to critically evaluate the strength and damage components of the Johnson-Cook (JC) material model. A new model that addresses the shortcomings of the JC model was then developed and evaluated. The model is derived from the rate equations that represent deformation mechanisms active during moderate and high rate loading. Another model that accounts for the influence of void formation on yield and flow behavior of a ductile metal (the Gurson model) was also evaluated. The characteristics and predictive capabilities of these models are reviewed.

  4. Plastic Deformation of Granular Materials

    DTIC Science & Technology

    1993-01-25

    discontinuities. These result will be important in our granular flow work, when considering viscoplastic constitutive relations (i.e. relaxation systems...5 CUNDN( NUMRES Plastic Deformation of Granular Materials (U) 61102F 6. AUTHOR(S) 2304/A4 Dr. E. Bruce Pitman 7 PERFORMING ORGANIZATION NA .h • 8...lose hyperbolicity. 98 3 81 061! SUBJECT TERMS 15. NUMBER OF PAGES granular material ; plastic deformation; hyperbolic 12 equations 16. PRICE CODE 17

  5. High-rate deformation and fracture of steel 09G2S

    NASA Astrophysics Data System (ADS)

    Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.

    2014-11-01

    The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.

  6. Theory of Strength and High-Rate Plasticity in BCC Metals Laser-Driven to High Pressures

    NASA Astrophysics Data System (ADS)

    Rudd, Robert E.; Barton, N. R.; Cavallo, R. M.; Hawreliak, J. A.; Maddox, B. R.; Park, H.-S.; Prisbrey, S. T.; Remington, B. A.; Comley, A. J.; Ross, P. W.; Brickner, N.

    2012-10-01

    High-rate plastic deformation is the subject of increasing experimental activity. High energy laser platforms such as those at the National Ignition Facility and the Laboratory for Laser Energetics offer the possibility to study plasticity at extremely high rates in shock waves and, importantly, in non-shock ramp-compression waves. Here we describe the theory of high-rate deformation of metals and how high energy lasers can be, and are, used to study the mechanical strength of materials under extreme conditions. Specifically, we describe how LLNL's multiscale strength model has been used to interpret the microscopic plastic flow in laser-driven Rayleigh-Taylor strength experiments, and how molecular dynamics (MD) and plasticity theory have been used to help understand in-situ diffraction based strength experiments for tantalum. The multiscale model provides information about the dislocation flow associated with plasticity and makes predictions that are compared with the experimental in-situ radiography of the Rayleigh-Taylor growth rate. We also use multi-million atom MD simulations inform the analytic theory of 1D to 3D plastic relaxation and compare to diffraction.

  7. Machining and grinding: High rate deformation in practice

    SciTech Connect

    Follansbee, P.S.

    1993-04-01

    Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of this paper is to outline the current understanding of strain rate effects in metals.

  8. Machining and grinding: High rate deformation in practice

    SciTech Connect

    Follansbee, P.S.

    1993-01-01

    Machining and grinding are well-established material-working operations involving highly non-uniform deformation and failure processes. A typical machining operation is characterized by uncertain boundary conditions (e.g.,surface interactions), three-dimensional stress states, large strains, high strain rates, non-uniform temperatures, highly localized deformations, and failure by both nominally ductile and brittle mechanisms. While machining and grinding are thought to be dominated by empiricism, even a cursory inspection leads one to the conclusion that this results more from necessity arising out of the complicated and highly interdisciplinary nature of the processes than from the lack thereof. With these conditions in mind, the purpose of this paper is to outline the current understanding of strain rate effects in metals.

  9. Deformation mechanisms of plasticized starch materials.

    PubMed

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  10. Plastic Deformation of Accreted Planetesimals

    NASA Astrophysics Data System (ADS)

    Kadish, J.

    2005-08-01

    The early stages of planetesimal growth follow an accretion model (Weidenschilling, Icarus 2000), which influences the intrinsic strength of a body and may control how its shape evolves after growth. In previous work we have determined the stress field of an accreted planetesimal accounting for possible variation in the object's spin as it accretes (Kadish et al., IJSS In Press) At the end of growth, these objects are subject to transport mechanisms that can distribute them throughout the solar system. As they are transported these objects can be spun-up by tidal forces (Scheeres et al, Icarus 2000), YORP (Bottke et al., Asteroids III 2002), and collisions (Binzel et al., Asteroids II 1989). Such an increase of spin will cause perturbations to the initial stress field and may lead to failure. We are able to show analytically that failure is initiated on the object's surface and a plastic zone propagates inward as the object's spin is increased. If we model an accreted body as a conglomeration of rocks similar to a gravel or sand, the deformation in the region of failure is characterized using a Mohr-Coulomb failure criterion with negligible cohesion and zero hardening(e.g. Holsapple, Icarus 2001). Such a response is highly non-linear and must be solved using finite elements and iterative methods (Simo and Hughes, Computational Inelasticity 1998). Using the commercial finite element code ABAQUS, we present the shape deformation resulting from an elasto-plastic analysis of a spinning, self-gravitating accreted sphere that is spun-up after growth is complete. The methodology can be extended to model plastic deformation due to local failure for more complex planetesimal shapes, such as for the asteroid Kleopatra. This work has implications for the evolution of planetesimal shapes, the creation of binary and contact binary asteroids, and for the maximum spin rate of small planetary bodies.

  11. Bertram Hopkinson's pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations.

    PubMed

    Armstrong, Ronald W

    2014-05-13

    Bertram Hopkinson was prescient in writing of the importance of better measuring, albeit better understanding, the nature of high rate deformation of materials in general and, in particular, of the importance of heat in initiating detonation of explosives. This report deals with these subjects in terms of post-Hopkinson crystal dislocation mechanics applied to high rate deformations, including impact tests, Hopkinson pressure bar results, Zerilli-Armstrong-type constitutive relations, shock-induced deformations, isentropic compression experiments, mechanical initiation of explosive crystals and shear banding in metals.

  12. Mechanical properties and constitutive relations for tantalum and tantalum alloys under high-rate deformation

    SciTech Connect

    Chen, S.R.; Gray, G.T. III; Bingert, S.R.

    1996-05-01

    Tantalum and its alloys have received increased interest as a model bcc metal and for defense-related applications. The stress-strain behavior of several tantalums, possessing varied compositions and manufacturing histories, and tantalum alloyed with tungsten, was investigated as a function of temperature from {minus}196 C to 1,000 C, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress for all the Ta-materials was found to be sensitive to the test temperature, the impurity and solute contents; however, the strain hardening remained very similar for various ``pure`` tantalums but increased with alloying. Powder-metallurgy (P/M) tantalum with various levels of oxygen content produced via different processing paths was also investigated. Similar mechanical properties compared to conventionally processed tantalums were achieved in the P/M Ta. This data suggests that the frequently observed inhomogeneities in the mechanical behavior of tantalum inherited from conventional processes can be overcome. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong, and the Mechanical Threshold Stress models were evaluated for all the Ta-based materials. Parameters were also fit for these models to a tantalum-bar material. Flow stresses of a Ta bar stock subjected to a large-strain deformation of {var_epsilon} = 1.85 via multiple upset forging were obtained. The capabilities and limitations of each model for large-strain applications are examined. The deformation mechanisms controlling high-rate plasticity in tantalum are revisited.

  13. Plastic deformation mechanisms in nanocrystalline metallic materials

    NASA Astrophysics Data System (ADS)

    Ovid'ko, Ilya A.

    2013-11-01

    This article discusses the experiments, computer simulations, and theoretical models addressing the conventional and specific mechanisms of plastic deformation in nanocrystalline metallic materials. Particular attention is devoted to the competition between lattice dislocation slip and specific deformation mechanisms mediated by grain boundaries as well as its sensitivity to grain size and other parameters of nanocrystalline metallic structures.

  14. Modeling plasticity by non-continuous deformation

    NASA Astrophysics Data System (ADS)

    Ben-Shmuel, Yaron; Altus, Eli

    2016-10-01

    Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.

  15. The effect of aspect ratio on the compressive high rate deformation of three metallic alloys

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Radford, D. D.; Chapman, D. J.

    2006-08-01

    Metallic cylinders of rolled homogeneous armour (RHA) steel, Ti6Al4V, and FNC tungsten alloy of four different length l to diameter d ratios (dimensions in mm): 8/4, 4/8, 10/8, 8/10) were deformed at high rates of deformation using a direct impact Hopkinson pressure bar. Highspeed photographic sequences of the deformation were taken using a Hadland Imacon 790 imageconverter camera working at either 1 or 2 x 104 frames/s. It was found that titanium alloy cylinders of all four aspect ratios shear-banded and fractured, but that cylinders made from RHA steel and FNC tungsten behaved in a ductile manner when l/d < 1 but in a brittle manner when l/d > 1. We conclude that adiabatic shear banding is not just an inherent material property but that in some materials size effects/geometry can trigger this phenomenon.

  16. Plastic deformation in a metallic granular chain

    NASA Astrophysics Data System (ADS)

    Musson, Ryan W.; Carlson, William

    2016-03-01

    Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.

  17. GNSS seismometer: Seismic phase recognition of real-time high-rate GNSS deformation waves

    NASA Astrophysics Data System (ADS)

    Nie, Zhaosheng; Zhang, Rui; Liu, Gang; Jia, Zhige; Wang, Dijin; Zhou, Yu; Lin, Mu

    2016-12-01

    High-rate global navigation satellite systems (GNSS) can potentially be used as seismometers to capture short-period instantaneous dynamic deformation waves from earthquakes. However, the performance and seismic phase recognition of the GNSS seismometer in the real-time mode, which plays an important role in GNSS seismology, are still uncertain. By comparing the results of accuracy and precision of the real-time solution using a shake table test, we found real-time solutions to be consistent with post-processing solutions and independent of sampling rate. In addition, we analyzed the time series of real-time solutions for shake table tests and recent large earthquakes. The results demonstrated that high-rate GNSS have the ability to retrieve most types of seismic waves, including P-, S-, Love, and Rayleigh waves. The main factor limiting its performance in recording seismic phases is the widely used 1-Hz sampling rate. The noise floor also makes recognition of some weak seismic phases difficult. We concluded that the propagation velocities and path of seismic waves, macro characteristics of the high-rate GNSS array, spatial traces of seismic phases, and incorporation of seismographs are all useful in helping to retrieve seismic phases from the high-rate GNSS time series.

  18. Cathodoluminescence of natural, plastically deformed pink diamonds.

    PubMed

    Gaillou, E; Post, J E; Rose, T; Butler, J E

    2012-12-01

    The 49 type I natural pink diamonds examined exhibit color restricted to lamellae or bands oriented along {111} that are created by plastic deformation. Pink diamonds fall into two groups: (1) diamonds from Argyle in Australia and Santa Elena in Venezuela are heavily strained throughout and exhibit pink bands alternating with colorless areas, and (2) diamonds from other localities have strain localized near the discrete pink lamellae. Growth zones are highlighted by a blue cathodoluminescence (CL) and crosscut by the pink lamellae that emit yellowish-green CL that originates from the H3 center. This center probably forms by the recombination of nitrogen-related centers (A-aggregates) and vacancies mobilized by natural annealing in the Earth's mantle. Twinning is the most likely mechanism through which plastic deformation is accommodated for the two groups of diamonds. The plastic deformation creates new centers visible through spectroscopic methods, including the one responsible for the pink color, which remains unidentified. The differences in the plastic deformation features, and resulting CL properties, for the two groups might correlate to the particular geologic conditions under which the diamonds formed; those from Argyle and Santa Elena are deposits located within Proterozoic cratons, whereas most diamonds originate from Archean cratons.

  19. Modeling plastic deformation effect on magnetization in ferromagnetic materials

    NASA Astrophysics Data System (ADS)

    Li, Jianwei; Xu, Minqiang; Leng, Jiancheng; Xu, Mingxiu

    2012-03-01

    Based on the Sablik-Landgraf model, an integrated model has been developed which provides a description of the effect of plastic deformation on magnetization. The modeling approach is to incorporate the effect of plastic deformation on the effective field and that on the model parameters. The effective field incorporates the contributions of residual stress, stress demagnetization term, and the plastic deformation. We also consider the effect of plastic deformation on the model parameters: pinning coefficient, the scaling constant and the interdomain coupling coefficient. The computed magnetization exhibits sharp change in the preliminary stage of plastic deformation, and then decreases slowly with the increase of plastic strain, in agreement with experimental results.

  20. A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning

    SciTech Connect

    Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne; Brown, Donald William; Cerreta, Ellen Kathleen; Lebensohn, Ricardo A.; Lookman, Turab; Luscher, Darby Jon; Mayeur, Jason Rhea; Morrow, Benjamin M.; Rigg, Paulo A.

    2016-08-09

    An anisotropic, rate-­dependent, single-­crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-­crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-­rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-­rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.

  1. On the response of Escherichia coli to high rates of deformation

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Painter, J. D.; Appleby-Thomas, G. J.; Wood, D. C.; Hazael, R.; McMillan, P. F.

    2017-01-01

    While a large body of work exists on the low strain-rate loading of biological systems such as bacteria, there is a paucity of information on the response of such organisms at high rates of deformation. Here, the response of a readily accessible strain of bacteria, Escherichia coli (E. coli), has been examined under shock loading conditions. Although previous studies have shown greatly reduced growth in shock conditions up to several GPa, relationships between loading conditions and bacterial response have yet to be fully elucidated. Initial results of a more rigorous investigation into the 1D shock loading response of E. coli are presented here, expectantly leading to a more comprehensive view of its behaviour when exposed to high pressures. Comparison has been drawn to provide insight into the importance of the nature of the loading regime to the survival of these biological systems.

  2. Plastic deformation effect of the corrosion resistance in case of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Haraszti, F.; Kovacs, T.

    2017-02-01

    The corrosion forms are different in case of the austenitic steel than in case of carbon steels. Corrosion is very dangerous process, because that corrosion form is the intergranular corrosion. The austenitic stainless steel shows high corrosion resistance level. It knows that plastic deformation and the heat treating decrease it’s resistance. The corrosion form in case of this steel is very special and the corrosion tests are difficult. We tested the selected steel about its corrosion behaviour after high rate deformation. We wanted to find a relationship between the corrosion resistance decreasing and the rate of the plastic deformation. We wanted to show this behaviour from mechanical and electrical changing.

  3. Plastic Deformation Rate and Initiation of Crystalline Explosives

    NASA Astrophysics Data System (ADS)

    Namkung, J.; Coffey, C. S.

    2002-07-01

    Recent theoretical calculations have demonstrated a relationship between the rate of energy dissipation and the rate of plastic deformation in crystalline solids subjected to plastic flow due to shock or impact. In the case of explosive crystals the energy dissipated locally within the crystals during plastic deformation forms the hot spots from which chemical reaction can be initiated. Prompted by this prediction relating the plastic deformation rate with initiation, a series of experiments were undertaken to measure the plastic deformation rate at the initiation site at the moment of initiation for a number of polycrystalline explosives when subjected to impact or mild shock. The experiment and the results will be reviewed here.

  4. Plastic deformation of a wedge by a sliding punch

    NASA Astrophysics Data System (ADS)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  5. Plastic Deformation of Quartz: Unfinished business?

    NASA Astrophysics Data System (ADS)

    Paterson, M. S.

    2011-12-01

    Starting at Harvard in the mid-1930's, David Griggs built a series of high pressure machines for experimental rock deformation. One persistent aim was to achieve the plastic deformation of quartz. Each time he built a new machine for higher pressure and/or temperature, one of the first materials he tested would be quartz. This search went on through a 500 MPa liquid-medium machine at temperatures up to 300°C, then with a gas-medium machine for temperatures up to 800°C, and finally with a solid-medium machine for higher pressures and temperatures. Quartz proved stubbornly resistant to deformation except at extremely high stresses until, finally and somewhat serendipitously, it was found possible to deform quartz at relatively low stresses in the presence of water under special conditions. The breakthrough came in an experiment in a 1500 MPa solid-medium apparatus in which talc was used as pressure medium. At the temperature of the experiment, the talc dehydrated and so released water. Under these conditions, natural quartz proved to be very weak and to readily undergo plastic deformation, a phenomenon that became known as "hydrolytic weakening". Soon after this discovery, it was also found that certain synthetic single crystals could be easily deformed ab initio. These crystals were from a particular set that had been grown rapidly under hydrothermal conditions and had incorporated water during growth. Attempts in our laboratory to weaken crystals in a gas-medium apparatus at around 300 MPa by cooking dry quartz in the presence of added water were all unsuccessful, although we could deform wet synthetic crystals. There was considerable speculation about a role of high pressure in promoting hydrolytic weakening, but the dilemma was eventually clarified by electron microscope studies by Fitz Gerald and coworkers. These studies showed that crystals that had been subjected to high pressure and temperature in the solid-medium apparatus were extensively microcracked

  6. Plastic deformation of polycrystalline zirconium carbide

    NASA Technical Reports Server (NTRS)

    Darolia, R.; Archbold, T. F.

    1976-01-01

    The compressive yield strength of arc-melted polycrystalline zirconium carbide has been found to vary from 77 kg per sq mm at 1200 C to 19 kg per sq mm at 1800 C. Yield drops were observed with plastic strain-rates greater than 0.003/sec but not with slower strain rates. Strain-rate change experiments yielded values for the strain-rate sensitivity parameter m which range from 6.5 at 1500 C to 3.8 at 1800 C, and the product dislocation velocity stress exponent times T was found to decrease linearly with increasing temperature. The deformation rate results are consistent with the Kelly-Rowcliffe model in which the diffusion of carbon assists the motion of dislocations.

  7. Localized Plastic Deformation in Colloidal Micropillars

    NASA Astrophysics Data System (ADS)

    Strickland, Daniel; Hor, Jyo Lyn; Ortiz, Carlos; Lee, Daeyeon; Gianola, Daniel

    When driven beyond yield, many amorphous solids exhibit concentrated regions of large plastic strain referred to as shear bands. Shear bands are the result of localized, cooperative rearrangements of particles known as shear transformations (STs). STs are dilatory: their operation results in an increase of free volume and local softening that leads to spatially concentrated plasticity. However, the evolution of STs into a macroscopic shear band remains poorly understood. To study the process, we perform compression experiments on amorphous colloidal micropillars. The micropillars, which are composed of fluorescent 3 μm PMMA particles, are made freestanding so that shear banding instabilities are not suppressed by confining boundaries. During compression, we observe strong localization of strain in a band of the pillar. As deformation proceeds, the sheared region continues to dilate until it reaches the colloidal glass transition, at which point dilation terminates. We quantify a length scale by measuring the extent of spatial correlations in strain. This length scale decreases gradually with increasing dilation and becomes static beyond the glass transition. Our results reinforce the idea of yield as a stress-induced glass transition in amorphous solids.

  8. Micrographic detection of plastic deformation in nickel-base alloys

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  9. Micrographic detection of plastic deformation in nickel base alloys

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  10. Residual stresses and plastic deformation in GTA-welded steel

    SciTech Connect

    Brand, P.C. ); Keijser, T.H. de; Ouden, G. den )

    1993-03-01

    Residual stresses and plastic deformation in single pass GTA welded low-carbon steel were studied by means of x-ray diffraction in combination with optical microscopy and hardness measurements. The residual stresses and the amount of plastic deformation (microstrain) were obtained from x-ray diffraction line positions and line broading. Since the plates were polished before welding, it was possible to observe in the optical microscope two types of Lueders bands. During heating curved Lueders bands and during cooling straight Lueders bands perpendicular to the weld are formed. The curved Lueders bands extend over a larger distance from the weld than the straight Lueders bands. The amount of plastic deformation as obtained from the x-ray diffraction analysis is in agreement with these observations. An explanation is offered for the stresses measured in combination with plastic deformations observed. It is concluded that in the present experiments plastic deformation is the main cause of the residual stresses.

  11. Structural features of plastic deformation in bulk metallic glasses

    SciTech Connect

    Scudino, S. Shakur Shahabi, H.; Stoica, M.; Kühn, U.; Kaban, I.; Escher, B.; Eckert, J.; Vaughan, G. B. M.

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  12. Stress Analysis for Kinematic Hardening in Finite-Deformation Plasticity.

    DTIC Science & Technology

    1981-12-01

    field, straight lines defined by material points remain straight and the square block is deformed into a sequence of parallelograms . The line of...Contract N00014-81-K-0660 DEPARTMENT STRESS ANALYSIS FOR KINEMATIC HARDENING OF IN FINITE- DEFORMATION PLASTICITY MECHANICAL ENGINEERING By E. H. Lee, R, L...Finite- Deformation Plasticity E. H. Lee and R. L. Mallett, Rensselaer Polytechnic Institute and Stanford University, and T. B. Wertheimer, MARC Analysis

  13. On the initial stage of plastic deformation of metal alloys

    SciTech Connect

    Zuev, L.B.; Danilov, V.I.; Zavodchikov, S.Y.

    2000-04-01

    Plastic deformation has been studied for a range of metal alloys using speckle interferometry. It has been found that, in the initial stage, the process of plastic flow occurs by the propagation of a deformation front, which divides the deforming material into two regions differing with respect to the material's state. The flow exhibits regular features that can be described in terms of a self-excited wave process manifesting itself in an active medium under external mechanical action.

  14. High resolution transmission electron microscopic in-situ observations of plastic deformation of compressed nanocrystalline gold

    SciTech Connect

    Wang, Guoyong; Lian, Jianshe; Jiang, Qing; Sun, Sheng; Zhang, Tong-Yi

    2014-09-14

    Nanocrystalline (nc) metals possess extremely high strength, while their capability to deform plastically has been debated for decades. Low ductility has hitherto been considered an intrinsic behavior for most nc metals, due to the lack of five independent slip systems actively operating during deformation in each nanograin. Here we report in situ high resolution transmission electron microscopic (HRTEM) observations of deformation process of nc gold under compression, showing the excellent ductility of individual and aggregate nanograins. Compression causes permanent change in the profile of individual nanograins, which is mediated by dislocation slip and grain rotation. The high rate of grain boundary sliding and large extent of widely exited grain rotation may meet the boundary compatibility requirements during plastic deformation. The in situ HRTEM observations suggest that nc gold is not intrinsically brittle under compressive loading.

  15. Avalanches and scaling in plastic deformation

    SciTech Connect

    Koslowski, M.

    2004-01-01

    Plastic deformation of crystalline materials is a complex non-homogeneous process characterized by avalanches in the motion of dislocations. We study the evolution of dislocations loops using an analytically solvable phase-field model of dislocations for ductile single crystals during monotonic loading. We present simulations of dislocations under slow external loading that generate scale-free avalanches and power-law behavior that are characteristics of self organized criticality. The distribution of dislocation loop sizes is given by P(A) {approx} A{sup -{sigma}}, with {sigma} = 1.8 {+-} 0.1. The power law exponent is in agreement with those found in acoustic emission measurements on stressed ice single crystals. In addition to the jerky character of dislocation motion, this model also predicts a range of macroscopic behaviors in agreement with observation, including hardening and dislocation multiplication with monotonic loading and a maximum in the acoustic emission signal at the onset of yielding. At sufficient large stress, the hardening rate drops and the stress-strain curve saturates. At the same time the acoustic emission as well as the dislocation production decreases in agreement with experimental observation.

  16. EFFECTS OF HIGH-RATE COMPRESSION LOADING ON SHORT REINFORCED PLASTIC MEMBERS

    DTIC Science & Technology

    thin-walled tubular aluminum columns, solid columns of cellular cellulose acetate , and tubular epoxy columns. Permanent deformations of both the...tubular aluminum columns and the solid cellular cellulose acetate columns appeared to occur intermittently as the columns resisted series of maximum...varied for the cellular cellulose acetate test pieces. the epoxy columns gave the least reproducibility, shattering severely under load. It was concluded

  17. High Rate Plasticity under Pressure using a Windowed Pressure-Shear Impact Experiment

    SciTech Connect

    Florando, J N; Jiao, T; Grunschel, S E; Clifton, R J; Ferranti, L; Becker, R C; Minich, R W; Bazan, G

    2009-07-29

    An experimental technique has been developed to study the strength of materials under conditions of moderate pressures and high shear strain rates. The technique is similar to the traditional pressure-shear plate-impact experiments except that window interferometry is used to measure both the normal and transverse particle velocities at a sample-window interface. Experimental and simulation results on vanadium samples backed with a sapphire window show the utility of the technique to measure the flow strength under dynamic loading conditions. The results show that the strength of the vanadium is 600 MPa at a pressure of 4.5 GPa and a plastic strain of 1.7%.

  18. A High-Rate Continuous GPS Network in Iceland for Crustal Deformation Research

    NASA Astrophysics Data System (ADS)

    Geirsson, H.; Árnadóttir, T.; Bennett, R.; Lafemina, P.; Jónsson, S.; Hreinsdóttir, S.; Holland, A.; Deutscher, J.; Ingvarsson, T.; Sturkell, E.; Villemin, T.

    2007-12-01

    A significant expansion of the current continuous GPS network in Iceland is well underway. The goal of the project is to install 30-40 new continuous GPS stations, with a sampling rate of 1 second or higher in selected areas of the country. Most of the sites are already installed and are collecting data and communications are being established. Currently we have in total about 50 continuous and 12 semi-continuous stations running. Eventually, the older continuous GPS stations (installed from 1999 onwards) will also be upgraded to allow high sampling rates. Many of the CGPS sites are co-located with stations in the national seismic network which is very beneficial for operation of the sites and enhanced monotoring capabilities. The national seismic network in Iceland contains 51 3-component digital stations that all are on-line. High-rate GPS observations have been used successfully to study dynamic earthquake rupture processes, for example the Denali earthquake in Alaska and the 2003 Tokachi-Oki earthquake in Japan. New GPS stations were installed in seismically active areas in the South Iceland Seismic Zone, the Reykjanes Peninsula and in Northern Iceland. We also attempt to capture volcanic processes by installing high-rate GPS stations near the three most active volcanoes in Iceland: Hekla, Grímsvotn, and Katla. These volcanoes have been active recently or are currently showing signs of unrest. Continuous GPS and recent campaign GPS measurements indicate rapid uplift (up to 2 cm/yr) over a wide area in central Iceland due to retreat of the glaciers in a warming climate. The new network already installed in central Iceland will obtain more detailed information on the rate and extent of the uplift. Implementing the 1-Hz technology in Iceland enables studies of both the dynamic as well as slower-rate processes related to earthquake and volcanic activity. The high level of volcanic and earthquake activity in Iceland makes it an ideal site for this project. In

  19. Plastic deformation and sintering of alumina under high pressure

    SciTech Connect

    Liu, Fangming; Liu, Pingping; Wang, Haikuo; Xu, Chao; Yin, Shuai; Yin, Wenwen; Li, Yong; He, Duanwei

    2013-12-21

    Plastic deformation of alumina (Al{sub 2}O{sub 3}) under high pressure was investigated by observing the shape changes of spherical particles, and the near fully dense transparent bulks were prepared at around 5.5 GPa and 900 °C. Through analyzing the deformation features, densities, and residual micro-strain of the Al{sub 2}O{sub 3} compacts prepared under high pressures and temperatures (2.0–5.5 GPa and 600–1200 °C), the effects of plastic deformation on the sintering behavior of alumina have been demonstrated. Under compression, the microscopic deviatoric stress caused by grain-to-grain contact could initiate the plastic deformation of individual particles, eliminate pores of the polycrystalline samples, and enhance the local atomic diffusion at the grain boundaries, thus produced transparent alumina bulks.

  20. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    SciTech Connect

    Marschall, J.; Milstein, F. . Dept. of Materials California Univ., Santa Barbara, CA . Dept. of Mechanical Engineering); Georgeson, G. ); Gerrish, V. . Santa Barbara Operations)

    1991-01-01

    The effects of bulk plastic deformation of mercuric iodide (HgI{sub 2}), upon some of the electronic properties relevant to the performance of HgI{sub 2} as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 % and 25 %, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens. 16 refs., 4 figs., 1 tab.

  1. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    NASA Astrophysics Data System (ADS)

    Marschall, J.; Milstein, F.; Georgeson, G.; Gerrish, V.

    The effects of bulk plastic deformation of mercuric iodide (HgI2), upon some of the electronic properties relevant to the performance of HgI2 as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 percent and 25 percent, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens.

  2. Finite deformation of elasto-plastic solids

    NASA Technical Reports Server (NTRS)

    Osias, J. R.

    1973-01-01

    A theoretical basis is established for analysis of finite deformation of metals. The observation that finite deformation of such elastoplastic materials may be viewed as a process rather than an event leads to derivation of a complete initial and boundary value problem distinguished by its quasilinear nature. This feature of the formulation motivates adoption of an incremental approach to numerical problem solving. Numerical solution capability is established for problems of plane stress and plane strain. The validity of the theory and numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation for which analytic solutions are available. Subsequently the analysis is employed for the investigation of necking in flat metal tensile bars. The results of this investigation provide the first full numerical solutions for tensile necking in plane stress and plane strain. In addition a basis is provided for assessment of the validity of stress-strain relations inferred from tensile test data.

  3. Practical solution of plastic deformation problems in elastic-plastic range

    NASA Technical Reports Server (NTRS)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  4. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    SciTech Connect

    Wronski, S.; Tarasiuk, J.; Bacroix, B.; Baczmanski, A.; Braham, C.

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distribution and misorientation characteristics are examined using EBSD.

  5. Antisite-related defects in plastically deformed GaAs

    SciTech Connect

    Omling, P.; Weber, E.R.; Samuelson, L.

    1986-04-15

    Optical absorption measurements on plastically deformed GaAs show that the total extrinsic absorption increases with deformation, while the quenchable EL2 absorption stays constant. The nonquenchable extrinsic absorption is observed to be proportional to the EPR measured As/sub Ga/ containing defects produced during deformation. Since the As/sub Ga/-related defects produced by plastic deformation anneal at Tapprox.650 /sup 0/C, the implication for any correlation between EL2 and As/sub Ga/ antisites is that only those As/sub Ga/-related EPR centers which are stable up to at least 950 /sup 0/C can possibly be responsible for the EL2 level.

  6. Structural Signature of Plastic Deformation in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Li, M. Z.; Wang, W. H.

    2011-04-01

    The structure feature of a model CuZr metallic glass during deformation is investigated by molecular dynamics simulations. A spatially heterogeneous irreversible rearrangement is observed in terms of nonaffine displacement. We find that regions with smaller nonaffine displacement have more Voronoi pentagons, while in those with larger nonaffine displacement other types of faces are more populated. We use the degree of local fivefold symmetry (LFFS) as the structural indicator to predict plastic deformation of local structures and find that the plastic events prefer to be initiated in regions with a lower degree of LFFS and propagate toward regions with a higher degree of LFFS.

  7. Plastic Deformation Influence on Intrinsic Magnetic Field of Austenitic Biomaterials

    NASA Astrophysics Data System (ADS)

    Smetana, Milan; Čápová, Klára; Chudáčik, Vladimír; Palček, Peter; Oravcová, Monika

    2016-12-01

    This article deals with non-destructive evaluation of austenitic stainless steels, which are used as the biomaterials in medical practice. Intrinsic magnetic field is investigated using the fluxgate sensor, after the applied plastic deformation. The three austenitic steel types are studied under the same conditions, while several values of the deformation are applied, respectively. The obtained results are presented and discussed in the paper.

  8. Acoustic Emission Arising from Plastic Deformation and Fracture.

    DTIC Science & Technology

    1980-05-01

    Acoustic Emission Generation and deEection Li..I Acoustic Emission Theory Plastic Deformation Lm. Fracture 20. ABSTRACT (Continue orn reverse side it...deformation and fracture. Recent developments in quantitative signal detection and trans- ducer characterization are considered. Several theories of acoustic...emis- sion sources are summarized and one based on dislocation theory by M91en and Bolin is extended to provide a relation between the inelastic

  9. Biaxially textured articles formed by plastic deformation

    DOEpatents

    Goyal, Amit

    2001-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  10. Structural Transformations in Metallic Materials During Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-03-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  11. Structural Transformations in Metallic Materials During Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Zasimchuk, E.; Turchak, T.; Baskova, A.; Chausov, N.; Hutsaylyuk, V.

    2017-02-01

    In this paper, the structure formation during the plastic deformation of polycrystalline nickel and aluminum based alloy 2024-T3 is investigated. The possibility of the relaxation and synergetic structure formation is examined. It is shown the deformation softening to be due to the crystallization of the amorphous structure of hydrodynamics flow channels (synergetic structure) HC as micrograins and their subsequent growth. The possible mechanism of micrograins' growth is proposed. The deformation processes change the phase composition of the multiphase alloy 2024-T3. It is shown by the quantitative analysis of the structures which were deformed in different regimes of the alloy samples. A method for increasing of the fatigue life through a dynamic pre-deformation is suggested.

  12. Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires

    PubMed Central

    2015-01-01

    Silicon nanowires of various diameters were irradiated with 100 keV and 300 keV Ar+ ions on a rotatable and heatable stage. Irradiation at elevated temperatures above 300 °C retains the geometry of the nanostructure and sputtering can be gauged accurately. The diameter dependence of the sputtering shows a maximum if the ion range matches the nanowire diameter, which is in good agreement with Monte Carlo simulations based on binary collisions. Nanowires irradiated at room temperature, however, amorphize and deform plastically. So far, plastic deformation has not been observed in bulk silicon at such low ion energies. The magnitude and direction of the deformation is independent of the ion-beam direction and cannot be explained with mass-transport in a binary collision cascade but only by collective movement of atoms in the collision cascade with the given boundary conditions of a high surface to volume ratio. PMID:25951108

  13. Phyllotactic transformations as plastic deformations of tubular crystals with defects

    NASA Astrophysics Data System (ADS)

    Beller, Daniel; Nelson, David

    Tubular crystals are 2D lattices in cylindrical topologies, which could be realized as assemblies of colloidal particles, and occur naturally in biological microtubules and in single-walled carbon nanotubes. Their geometry can be understood in the language of phyllotaxis borrowed from botany. We study the mechanics of plastic deformations in tubular crystals in response to tensile stress, as mediated by the formation and separation of dislocation pairs in a triangular lattice. Dislocation motion allows the growth of one phyllotactic arrangement at the expense of another, offering a low-energy, stepwise mode of plastic deformation in response to external stresses. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, dislocation glide. The crystal's bending modulus is found to produce simple but important corrections to the tube's deformation mechanics.

  14. Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires.

    PubMed

    Johannes, Andreas; Noack, Stefan; Wesch, Werner; Glaser, Markus; Lugstein, Alois; Ronning, Carsten

    2015-06-10

    Silicon nanowires of various diameters were irradiated with 100 keV and 300 keV Ar(+) ions on a rotatable and heatable stage. Irradiation at elevated temperatures above 300 °C retains the geometry of the nanostructure and sputtering can be gauged accurately. The diameter dependence of the sputtering shows a maximum if the ion range matches the nanowire diameter, which is in good agreement with Monte Carlo simulations based on binary collisions. Nanowires irradiated at room temperature, however, amorphize and deform plastically. So far, plastic deformation has not been observed in bulk silicon at such low ion energies. The magnitude and direction of the deformation is independent of the ion-beam direction and cannot be explained with mass-transport in a binary collision cascade but only by collective movement of atoms in the collision cascade with the given boundary conditions of a high surface to volume ratio.

  15. Microstructural Characteristics of High Rate Plastic Deformation in Elektron (trademark) WE43 Magnesium Alloy

    DTIC Science & Technology

    2012-04-01

    Mordike T. Ebert, "Magnesium Properties - applications - potential," Materials Science and Engineering A, vol. 302, no. 1, pp. 37-45, 2001. [2...boundary sliding in rolled AZ91 magnesium alloy at high strain rates," Materials Science and Engineering A, vol. 360, no. 1-2, pp. 107-115,2003

  16. Plastic Deformation Modes of CuZr/Cu Multilayers

    PubMed Central

    Cui, Yan; Abad, Oscar Torrents; Wang, Fei; Huang, Ping; Lu, Tian-Jian; Xu, Ke-Wei; Wang, Jian

    2016-01-01

    We synthesized CuZr/Cu multilayers and performed nanoindentation testing to explore the dependence of plastic deformation modes on the thickness of CuZr layers. The Cu layers were 18 nm thick and the CuZr layers varied in thickness from 4 nm to 100 nm. We observed continuous plastic co-deformation in the 4 nm and 10 nm CuZr − 18 nm Cu multilayers and plastic-induced shear instability in thick CuZr layers (>20 nm). The plastic co-deformation is ascribed to the nucleation and interaction of shear transformation zones in CuZr layers at the adjacent interfaces, while the shear instability is associated with the nucleation and propagation of shear bands in CuZr layers. Shear bands are initialized in the CuZr layers due to the accumulated glide dislocations along CuZr-Cu interfaces, and propagate into adjacent Cu layers via slips on {111} plane non-parallel to the interface. Due to crystallographic constraint of the Cu layers, shear bands are approximately parallel to {111} plane in the Cu layer. PMID:26984537

  17. Influence of Plastic Deformation on Bimaterial Fault Rupture Directivity

    NASA Astrophysics Data System (ADS)

    Templeton-Barrett, E. L.; Dedontney, N.; Rice, J. R.; Dmowska, R.

    2011-12-01

    Material juxtapositions across mature faults are a common occurrence. Previous work has found that this elastic mismatch results in a rupture that will preferentially propagate in the direction of slip displacement on the more compliant side of the fault, with more off-fault damage in the stiffer material. This result has implications for inferring preferred rupture directions based on observations of damage zone asymmetry. We perform a complete numerical investigation of the role of the stress state on the distribution of plastic deformation and the direction of preferred rupture propagation. We show that there are important factors, in addition to the elastic mismatch, which control the preferred direction of propagation as well as the side of the fault in which damage predominately accumulates. The orientation of the most compressive principal stress is the controlling factor in determining the location of plastic deformation. For different orientations, plastic deformation can accumulate in either the stiffer or the more compliant material. For high angles of most compressive stress, the aforementioned preferred rupture direction prediction holds true. However, the off-fault plastic response can reverse that direction for low angles of most compressive stress so that rupture will preferentially propagate in the direction of slip displacement in the stiffer material. Also, as already established in the case of purely elastic materials, when pre-stress is close to static friction (low seismic S ratio) a transition to supershear may take place in the direction opposite to what was the preferred direction.

  18. Plastically deformed region around indentations on Si angle crystal

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.

    1994-12-01

    Expansion of a hemispherical shell by inner pressure has been widely applied for the model of the deformation by an indentation on a flat surface; however, the deformed region is not necessarily spherically symmetric, especially in anisotropic materials such as single crystals. Therefore, whether the spherical model is applicable in an indentation process for objective materials must always be kept in mind. Indentations have been made on the (111) surface of silicon crystal at various temperatures. The three-dimensional shape of the plastically deformed region was experimentally measured by means of an etching technique and its difference from the hemisphere was observed. It was never spherical but much more complicated, similar to a bottle gourd. The slip mechanism, which resulted in the observed shape of the plastic region, is discussed further. The plastic region was analytically obtained also on the assumption that the stress distribution was spherically symmetrical. The result is approximately in accordance with the observed shape. It is therefore concluded that the stress distribution is nearly spherical although the plastic region is far from it. The yield strength of silicon crystals and their temperature dependence were obtained based on the spherical model.

  19. Finite elasto-plastic deformation. I - Theory and numerical examples

    NASA Technical Reports Server (NTRS)

    Osias, J. R.; Swedlow, J. L.

    1974-01-01

    It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate. Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admitting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.

  20. Deformation heterogeneity and texture in surface severe plastic deformation of copper

    PubMed Central

    Wang, Zhiyu; Saldana, Christopher

    2016-01-01

    Comprehensive understanding of thermomechanical response and microstructure evolution during surface severe plastic deformation (S2PD) is important towards establishing controllable processing frameworks. In this study, the evolution of crystallographic textures during directional surface mechanical attrition treatment on copper was studied and modelled using the visco-plastic self-consistent framework. In situ high-speed imaging and digital image correlation of surface deformation in circular indentation were employed to elucidate mechanics occurring in a unit process deformation and to calibrate texture model parameters. Material response during directional surface mechanical attrition was simulated using a finite-element model coupled with the calibrated texture model. The crystallographic textures developed during S2PD were observed to be similar to those resultant from uniaxial compression. The implications of these results towards facilitating a processing-based framework to predict deformation mechanics and resulting crystallographic texture in S2PD configurations are briefly discussed. PMID:27118907

  1. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    PubMed Central

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s−1 and 5000 s−1 strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates. PMID:25537588

  2. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    SciTech Connect

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s-1and 5000 s-1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.

  3. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading.

    PubMed

    Hudspeth, M; Sun, T; Parab, N; Guo, Z; Fezzaa, K; Luo, S; Chen, W

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s(-1) and 5000 s(-1) strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.

  4. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    SciTech Connect

    Hudspeth, M.; Sun, T.; Parab, N.; Guo, Z.; Fezzaa, K.; Luo, S.; Chen, W.

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.

  5. Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    DOE PAGES

    Hudspeth, M.; Sun, T.; Parab, N.; ...

    2015-01-01

    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s–1and 5000 s–1strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imagedviaphase-contrast imaging. It is also shownmore » that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffractionviain-house software (WBXRD_GUI). Finally, of current interest is the ability to evaluate crystald-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates.« less

  6. Plastic Deformation of O+ Oriented Quartz Single Crystals

    NASA Astrophysics Data System (ADS)

    Poston, E. J.; Holyoke, C. W., III; Kronenberg, A. K.

    2015-12-01

    The strength of wet quartz deforming by dislocation creep significantly influences the strength of mid to lower crust. Dislocation creep of quartz in Earth's crust is dominated by slip on the basal slip system. However, very little is known about the temperature, strain rate, or water fugacity dependence of this slip system. In order to better understand the rheology of the basal slip system, we deformed single crystals of synthetic quartz, with the basal slip system oriented at 45° to the compression direction (O+ orientation). Each core was annealed at 900°C and 1 atm for 24 hours to convert the gel-type water defects found in synthetic quartz into fluid inclusions, like those observed in milky quartz. FTIR analysis indicate that water contents (200-450 H/106Si) were not affected by the annealing process. The annealed single crystals were then deformed in a Griggs piston-cylinder rock deformation apparatus using a solid salt assembly, at temperatures from 800 to 900°C, strain rates from 10-6 to 10-4/s, and a confining pressure of 1.5 GPa. The strength of the quartz crystals increases with faster strain rates and decreases with increasing temperature. During some of the faster strain rate steps at 800°C, the crystals did not deform plastically before the differential stress reached the confining pressure, whereas they deformed at low stresses at 800°C and 10-6/s. The microstructures visible in the deformed samples are consistent with dislocation creep. The samples exhibit undulatory extinction, and show no deformation lamellae or subgrain formation. The strength of synthetic quartz crystals with low water contents deformed in this study is greater than milky quartz single crystals with high water contents deformed at the same conditions in other studies. These results indicate that the strength of basal slip system in quartz is affected by both water content and water fugacity.

  7. Occurrence of cohesion of metals during combined plastic deformation

    NASA Technical Reports Server (NTRS)

    Aynbinder, S. G.; Klokova, E. F.

    1980-01-01

    Experiments were conducted to study the cohesion of metals with surface films of varying thickness and hardness. It was established that the deformation necessary for the occurrence of cohesion is determined by the correlation of mechanical properties of the films and the base metal. The greater the relative hardness of the film the lower the deformation necessary for the occurrence of cohesion. The films are as plastic as the base metal prevent cohesion, since in this case it is impossible for sections of metal to appear that are free of contaminants. The physical perculiarities of metals that determine their capability for coalescence under conditions of dry friction are the relative hardness and plasticity of the oxide films formed on their surface under atmospheric conditions.

  8. Plastic Deformation of Aluminum Single Crystals at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Young, A P; Schwope, A D

    1956-01-01

    This report describes the results of a comprehensive study of plastic deformation of aluminum single crystals over a wide range of temperatures. The results of constant-stress creep tests have been reported for the temperature range from 400 degrees to 900 degrees F. For these tests, a new capacitance-type extensometer was designed. This unit has a range of 0.30 inch over which the sensitivity is very nearly linear and can be varied from as low a sensitivity as is desired to a maximum of 20 microinches per millivolt with good stability. Experiments were carried out to investigate the effect of small amounts of prestraining, by two different methods, on the creep and tensile properties of these aluminum single crystals. From observations it has been concluded that plastic deformation takes place predominantly by slip which is accompanied by the mechanisms of kinking and polygonization.

  9. Structure and deformation behavior of Armco iron subjected to severe plastic deformation

    SciTech Connect

    Valiev, R.Z. |; Rauch, E.F.; Baudelet, B.; Ivanisenko, Yu.V.

    1996-12-01

    Structural evolutions in an Armco iron subjected to severe plastic deformation by torsion under high pressure are analyzed with conventional and high resolution electron microscopes. The substructure observed at low strains appears to shrink with increasing deformation and transforms at very high strains into grain boundaries. The resulting grain size decreases down to a constant submicrometric value. Meanwhile, the material strength, as revealed by micro hardness measurements, levels out. Dislocation densities and internal stress levels are used to discuss the structural transformations. Hydrostatic pressure and deformation temperature are believed to modify the steady-state stress level and structural size by impeding the recovery processes involving diffusion.

  10. Processing of Metal Matrix Composites through Severe Plastic Deformation

    DTIC Science & Technology

    2006-05-31

    peer-reviewed journals: 1. M. Furukawa, A. Utsunomiya, S. Komura , Z. Horita, M. Nemoto and T.G. Langdon, AOptimization for Superplasticity in...Materials Science Forum 357-359, 471-475 (2001). 4. S. Komura , M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon, "Optimizing the Procedure for Equal...Zn-Sn Alloy Processed by Severe Plastic Deformation,@ Materials Science and Engineering A307, 23-28 (2001). 11. S. Komura , Z. Horita, M. Furukawa, M

  11. Deformation fields near a steady fatigue crack with anisotropic plasticity

    SciTech Connect

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth and the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.

  12. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  13. Role of plastic deformation in shock-induced phase transitions

    NASA Astrophysics Data System (ADS)

    Ghimire, Punam; Germann, T. C.; Ravelo, R.

    2015-06-01

    Non-equilibrium molecular dynamics (NEMD) simulations of shock-wave propagation in fcc single crystals exhibit high elastic limits and large anisotropies in the yield strength. They can be used to explore the role of plastic deformation in the morphology and kinetics of solid-solid phase transformations. We report on large-scale atomistic simulations of defect-mediated phase transformations under shock and quasi-isentropic compression (QIC). An analytical embedded atom method (EAM) description is used to model a fcc-bcc phase transition (PT) boundary fitted to occur below or above the elastic-plastic threshold in order to model systems undergoing a PT with and without plasticity. For cases where plastic deformation precedes the phase transformation, the defect-mediated PT proceeds at faster rates than the defect-free ones. The bcc fraction growth rate can be correlated with a sharp decrease in the dislocation densities originally present in the parent phase. This work was supported by the Air Force Office of Scientific Research under AFOSR Award FA9550-12-1-0476. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396.

  14. Plastic deformation of silicon nitride/boron nitride fibrous monoliths.

    SciTech Connect

    de Arellano-Lopez, A. R.; Lopez-Pombero, S.; Dominguez-Rodriguez, A.; Routbort, J. L.; Singh, D.; Goretta, K. C.; Energy Technology; Univ. de Sevilla

    2001-02-01

    High-temperature compressive creep of unidirectional Si{sub 3}N{sub 4}/BN fibrous monoliths has been investigated at 1300-1500 C in an inert atmosphere. The results were then compared to those for deformation of the Si{sub 3}N{sub 4} and BN base materials. Plasticity of the fibrous monoliths was limited to very low stresses when the Si{sub 3}N{sub 4} cells were oriented perpendicular to the stress axis because the BN cell boundaries failed, followed by failure of the Si{sub 3}N{sub 4} cells. In the fibrous monolith in which cells were oriented parallel to the stress axis, steady-state deformation controlled by deformation of the Si{sub 3}N{sub 4} cells was achieved.

  15. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    NASA Astrophysics Data System (ADS)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  16. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    DOE PAGES

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less

  17. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    SciTech Connect

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includes kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.

  18. Theory of Lattice Strain for Materials Undergoing Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Karato, S.

    2008-12-01

    Radial x-ray diffraction is used to probe physical properties of materials including elastic and plastic properties. The theory used behind such an practice is the one developed by Singh (1993) in which the relation between lattice strain and elastic constants and macroscopic stress is derived. In this theory, the variation of inferred stress with the crystallographic planes, (hkl), is due to the elastic anisotropy. However, recent experimental studies showed that in many cases, the variation of stress with (hkl) far exceeds the value expected from this theory. I have developed a modified theory to rectify this problem with Singh's theory. In Singh's theory, the stress distribution in a polycrystalline material is treated only either unrelaxed or relaxed state. The role of plastic deformation is included only to the extent that plastic flow influences this stress state. Such an assumption corresponds to a Voigt model behavior, which is not an appropriate model at high temperatures where continuing plastic flow occurs with concurrent microscopic equilibrium, elastic deformation. This is a Maxwell model type behavior, and my model provides a stress analysis in a Maxwell material with anisotropic and non-linear power-law rheology. In this theory, the lattice strain corresponding to an imposed macroscopic strain-rate is calculated by three steps: (i) conversion of macroscopic strain-rate to macroscopic stress, (ii) conversion of macroscopic stress to microscopic stress at individual grains, and (iii) calculation of microscopic strain due to microscopic stress. The first step involves anisotropy in macroscopic viscosity that depends on anisotropy in crystal plasticity and lattice-preferred orientation. The second step involves anisotropic crystal plasticity and finally the third step involves elastic crystal anisotropy. In most cases, the influence of LPO is weak and in such a case, the lattice strain depends on (hkl) due to the anisotropy in both elastic and plastic

  19. Rejuvenation effects during plastic deformation of Zircon: geochronological implications

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs

    2013-04-01

    Zircon is one of the most stable accessory minerals known on the Earth; it was believed that zircon isotopic ages mostly record primary igneous crystallization events. It is true until the mineral is not affected by plastic deformation or other disturbing events during its life after crystallization. Zircon may deform by the recovery/subgrain rotation recrystallisation that indicates formation and migration of dislocations under crustal conditions. Deformation occurs at depth due to stresses associated with collision of the phases, and forms such microstructures as low-angle boundaries (Reddy et al., 2007). Low-angle boundaries act as fluid migration paths and elements diffusion paths. Facilitating Pb, Ti, U, Th and trace elements mobility in the crystalline zircon, these structures can change chemical, REE and isotopic composition of certain grain's parts (Reddy and Timms, 2010) and lead to isotopic resetting in the mineral domains. Since the isotopic age of the domains of single crystal can vary, it should be possible to recognize and interpret this variation and distinguish the timing of different high-temperature deformation events. Zircon can preserve low-angle boundaries and associated age disturbance under lower-crust temperatures for billions of years (Moser et al., 2009). Electron backscatter diffraction (EBSD) allows us to make microstructural-crystallographic analyses in order to measure the crystallographic orientations in crystalline material. EBSD mapping is supposed to be able to constrain potential diffusion pathways in minerals. It can indicate areas of damaged crystalline structure, helps to examine substructures of minerals used in radiometric dating and to assess the potential for resetting of ages by deformation events (Reddy et al., 2007). In this research we are trying to answer a list of questions, related to isotopic resetting due to deformation: What is the behavior of zircons which were plastically deformed during metamorphic-deformation

  20. Finite elastic-plastic deformation of polycrystalline metals

    NASA Technical Reports Server (NTRS)

    Iwakuma, T.; Nemat-Nasser, S.

    1984-01-01

    Applying Hill's self-consistent method to finite elastic-plastic deformations, the overall moduli of polycrystalline solids are estimated. The model predicts a Bauschinger effect, hardening, and formation of vertex or corner on the yield surface for both microscopically non-hardening and hardening crystals. The changes in the instantaneous moduli with deformation are examined, and their asymptotic behavior, especially in relation to possible localization of deformations, is discussed. An interesting conclusion is that small second-order quantities, such as shape changes of grains and residual stresses (measured relative to the crystal elastic moduli), have a first-order effect on the overall response, as they lead to a loss of the overall stability by localized deformation. The predicted incipience of localization for a uniaxial deformation in two dimensions depends on the initial yield strain, but the orientation of localization is slightly less than 45 deg with respect to the tensile direction, although the numerical instability makes it very difficult to estimate this direction accurately.

  1. Plastic deformation of triblock elastomers by molecular simulation

    NASA Astrophysics Data System (ADS)

    Parker, Amanda; Rottler, Jörg

    2015-03-01

    The mechanical properties of thermoplastic elastomers (TPE) can be greatly enhanced by exploiting the complex morphology of triblock copolymers. A common strategy consists of confining chain ends into hard glassy regions that effectively crosslink a soft rubbery phase. We present molecular dynamics simulations that provide insight into key microscopic behaviour of the copolymer chains during deformation. First, a coarse-grained polymer model with an ABA type configuration and soft interactions is employed to achieve equilibrated spherical morphologies. Our model TPEs contain at least 30 spheres in order to ensure configurational averaging. Elastoplastic deformation with uniaxial extension or volume conserving shear is then studied after hard excluded volume interactions have been reintroduced. We consider trends of stress-strain curves for different chain lengths, and compare to equivalent homopolymeric systems. During deformation we simultaneously track the evolution of the number and shape of the minority spheres, the proportion of chains bridging from one sphere to another, as well as local plastic deformation. The simulations reveal strong differences between deformation modes, the evolution of sphere morphology and chain anisotropy.

  2. Stochastically forced dislocation density distribution in plastic deformation

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2016-08-01

    The dynamical evolution of dislocations in plastically deformed metals is controlled by both deterministic factors arising out of applied loads and stochastic effects appearing due to fluctuations of internal stress. Such types of stochastic dislocation processes and the associated spatially inhomogeneous modes lead to randomness in the observed deformation structure. Previous studies have analyzed the role of randomness in such textural evolution, but none of these models have considered the impact of a finite decay time (all previous models assumed instantaneous relaxation which is "unphysical") of the stochastic perturbations in the overall dynamics of the system. The present article bridges this knowledge gap by introducing a colored noise in the form of an Ornstein-Uhlenbeck noise in the analysis of a class of linear and nonlinear Wiener and Ornstein-Uhlenbeck processes that these structural dislocation dynamics could be mapped on to. Based on an analysis of the relevant Fokker-Planck model, our results show that linear Wiener processes remain unaffected by the second time scale in the problem, but all nonlinear processes, both the Wiener type and Ornstein-Uhlenbeck type, scale as a function of the noise decay time τ . The results are expected to ramify existing experimental observations and inspire new numerical and laboratory tests to gain further insight into the competition between deterministic and random effects in modeling plastically deformed samples.

  3. Plastic Deformation in Zirconium Based Metallic Glasses via Nanoindentation

    NASA Astrophysics Data System (ADS)

    Melgarejo-Pinto, Zenon Humberto

    Since the discovery in 1960 of Au-Si amorphous alloy by rapidly quenching with cooling rates up to 106 K/s metallic glasses became as an important research topic in the materials science community because of their intriguing processing routes, structure and properties. Recently, new multicomponent glassy- alloy systems, bulk metallic glasses (BMGs), appeared with lower critical cooling rates (103 to 1 K/s) and superlative properties, such as corrosion resistance, biocompatibility, and high strength/modulus ratio. Nevertheless, low temperature brittleness remains a concern. This brittleness comes from the tendency of plastic deformation to concentrate into extremely narrow shear bands. The present research pursues a better understanding of plastic deformation in metallic glasses (MGs) by studying, via nanoindentation, the effect of thermal history, composition, and loading paths on the mechanical behavior of Zr-based MGs. Differential scanning calorimeter (DSC) analysis helps to assess structural relaxation near glass transition temperature (T g). Broadband nanoindentation creep (BNC) and load transient nanoindentation experiments contribute to characterize the hardness-strain rate behavior and indentation size effects, respectively. As-cast Zr 50Cu45Al5 (at. %) metallic glasses evidenced hardness-strain rate loading path dependence, which gradually disappears by effect of the annealing treatments. Back-stresses effect is theorized as the cause of load path dependence behavior. Relaxation effect at low and high strain rates in BNC traces and load ramps "overshoots" in transient experiments enabled to confirm structural changes during mechanical deformation, which is not considered by thermal activation models of deformation. Most of the Zr-based metallic glasses exhibited measurable overshoot indentation size effect. Nonetheless, creep fraction size effect was observed just in as-cast Zr50Cu45Al5 alloys. Rheological mechanical model helps to both characterize the

  4. Effect of Plastic Deformation on Magnitude of Barkhausen Effect in Steel 40

    NASA Astrophysics Data System (ADS)

    Vylezhnev, V. P.; Malyshev, V. S.; Simonov, Yu. N.

    2015-09-01

    The effect of steel 40 cold deformation and subsequent annealing on emf value caused by the Barkhausen effect (BE) is studied. Plastic deformation by rolling leads to BE anisotropy, which is connected with deformed structure anisotropy. Anisotropy parameter e m (maximum emf value of Barkhausen jumps), arising during plastic deformation, makes it possible to recommend BE for monitoring steel deformation condition and its change during development of recrystallization.

  5. Plastic Collapse Localisation in Simple Shearing and Coaxial Deformations

    NASA Astrophysics Data System (ADS)

    Hobbs, B. E.; Ord, A.

    2011-12-01

    We explore, numerically, the evolution of localisation due to plastic collapse in both coaxial shortening and simple shearing deformations. These localisation features arise from plastic behaviour and hence differ from the formation of anticracks modelled by linear elastic behaviour (Fletcher and Pollard, 1990). The behaviour is close to that discussed by Rudnicki (2004) and Chemenda (2009) in that localisation consists of zones of plastic collapse separated by elastically unloaded regions. The constitutive behaviour assumed here comprises a Tresca yield with both strain-softening of the yield stress and of a cap that models plastic volumetric collapse during phase transformations, such as the olivine-spinel transition, with ΔV<0. The work builds on Detournay et al. (2003). An analysis similar to that of Issen and Rudnicki (2000) allows conditions for localisation to be specified. However critical softening of the cap is a necessary condition for collapse localisation to form. Localised collapse zones develop as tabular bodies oriented normal to the principal axis of compression and, within a shear zone, at approximately 45degrees to the boundaries of the shear zone. A different mode of localisation results from softening of the yield stress. This leads to shear localisation approximately parallel to the boundaries of a shear zone with zero plastic volume change. Whether one form of localisation or the other develops is a function of the constitutive parameters which are influenced by energy dissipation due to deformation and chemical reactions, and hence position, within a heterogeneously deforming zone. Localisation due to plastic collapse is followed by a stress drop and so is presumably seismic in nature as suggested by Green and Burnley (1989). The shear localisation mode of deformation is aseismic unless coupled to thermal or chemical effects. This study forms part of a broader study in which energy dissipation is coupled to constitutive behaviour similar to

  6. Plastic deformation of ordered intermetallic alloys: Fundamental aspects

    SciTech Connect

    Yoo, M.H.

    1994-10-01

    Fundamental aspects of plastic deformation in ordered intermetallic alloys are reviewed by directly comparing the temperature-dependent yield stresses of Ni{sub 3}Al and Ni{sub 3}Si (the L1{sub 2} structure), NiAl and FeAl (the B2 structure), and TiAl and Ti{sub 3}Al (non-cubic L1{sub 0} and D0{sub 19} structures, respectively). While the yield strength anomaly observed in Ni{sub 3}Al is consistent with the prevailing dislocation models, that found in stoichiometric Ni{sub 3}Si is not. The strong plastic anisotropy observed in NiAl stems from the high antiphase boundary energy, and that found in two-phase {gamma}-TiAl/{alpha}{sub 2}-Ti{sub 3}Al is due to the exceptionally high compressive yield strength along the c-axis of Ti{sub 3}Al.

  7. Plastic Deformation in Profile-Coated Elliptical KB Mirrors

    DOE PAGES

    Liu, Chian; Conley, R.; Qian, J.; ...

    2012-01-01

    Profile coating has been successfully applied to produce elliptical Kirkpatrick-Baez (KB) mirrors using both cylindrical and flat Si substrates. Previously, focusing widths of 70 nm with 15-keV monochromatic and 80 nm with white beam were achieved using a flat Si substrate. Now, precision elliptical KB mirrors with sub-nm figure errors are produced with both Au and Pt coatings on flat substrates. Recent studies of bare Si-, Au-, and Pt-coated KB mirrors under prolonged synchrotron X-ray radiation and low-temperature vacuum annealing will be discussed in terms of film stress relaxation and Si plastic deformation.

  8. Plastic deformation of alumina reinforced with SiC whiskers

    SciTech Connect

    DeArellano-Lopez, A.R.; Dominguez-Rodriguez, A.; Goretta, K.C.; Routbort, J.L.

    1993-06-01

    Addition of small amounts of stiff reinforcement (SiC whiskers) to a polycrystalline AL{sub 2}O{sub 3} matrix partially inhibits grain boundary sliding because of an increase in threshold stress. When the concentration of whiskers is high enough, a pure diffusional mechanism takes over the control of plastic deformation of the composites. For higher whisker loadings, the materials creep properties depend on a microstructural feature different from the nominal grain size. A tentative correlation of this effective microstructural parameter with the spacing between the whiskers was established through a model.

  9. Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts

    NASA Astrophysics Data System (ADS)

    Yamada, Kohei; Kizuka, Tokushi

    2017-02-01

    Various types of nanometer-sized structures have been applied to advanced functional and structural devices. Inherent structures, thermal stability, and properties of such nanostructures are emphasized when their size is decreased to several nanometers, especially, to several atoms. In this study, we observed the atomistic tensile deformation process of zirconium nanocontacts, which are typical nanostructures used in connection of nanometer-sized wires, transistors, and diodes, memory devices, and sensors, by in situ transmission electron microscopy. It was found that the contact was deformed via a plastic flow mechanism, which differs from the slip on lattice planes frequently observed in metals, and that the crystallinity became disordered. The various irregular relaxed structures formed during the deformation process affected the conductance.

  10. Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts

    PubMed Central

    Yamada, Kohei; Kizuka, Tokushi

    2017-01-01

    Various types of nanometer-sized structures have been applied to advanced functional and structural devices. Inherent structures, thermal stability, and properties of such nanostructures are emphasized when their size is decreased to several nanometers, especially, to several atoms. In this study, we observed the atomistic tensile deformation process of zirconium nanocontacts, which are typical nanostructures used in connection of nanometer-sized wires, transistors, and diodes, memory devices, and sensors, by in situ transmission electron microscopy. It was found that the contact was deformed via a plastic flow mechanism, which differs from the slip on lattice planes frequently observed in metals, and that the crystallinity became disordered. The various irregular relaxed structures formed during the deformation process affected the conductance. PMID:28218244

  11. Plastic deformation of high-purity a-titanium: model development and validation using the Taylor cylinder impact test

    NASA Astrophysics Data System (ADS)

    Chandola, Nitin; Revil-Baudard, Benoit; Cazacu, Oana

    2016-08-01

    Results of an experimental study on the quasi-static and high-rate plastic deformation due to impact of a high-purity, polycrystalline, a-titanium material are presented. To quantify the plastic anisotropy and tension-compression asymmetry of the material, first monotonic uniaxial compression and tension tests were carried out at room temperature under quasi-static conditions. It was found that the material is transversely isotropic and displays strong strength differential effects. To characterize the material's strain rate sensitivity, Split Hopkinson Pressure Bar tests in tension and compression were also conducted. Taylor impact tests were performed for impact velocity of 196 m/s. Plastic deformation extended to 64% of the length of the deformed specimen, with little radial spreading. To model simultaneously the observed anisotropy, strain-rate sensitivity, and tension-compression asymmetry of the material, a three-dimensional constitutive model was developed. Key in the formulation is a macroscopic yield function [1] that incorporates the specificities of the plastic flow, namely the combined effects of anisotropy and tension-compression asymmetry. Comparison between model predictions and data show the capabilities of the model to describe with accuracy the plastic behavior of the a-Ti material for both quasi-static and dynamic loadings, in particular, a very good agreement was obtained between the simulated and experimental post-test Taylor specimen geometries.

  12. Emergence of stable interfaces under extreme plastic deformation

    PubMed Central

    Beyerlein, Irene J.; Mayeur, Jason R.; Zheng, Shijian; Mara, Nathan A.; Wang, Jian; Misra, Amit

    2014-01-01

    Atomically ordered bimetal interfaces typically develop in near-equilibrium epitaxial growth (bottom-up processing) of nanolayered composite films and have been considered responsible for a number of intriguing material properties. Here, we discover that interfaces of such atomic level order can also emerge ubiquitously in large-scale layered nanocomposites fabricated by extreme strain (top down) processing. This is a counterintuitive result, which we propose occurs because extreme plastic straining creates new interfaces separated by single crystal layers of nanometer thickness. On this basis, with atomic-scale modeling and crystal plasticity theory, we prove that the preferred bimetal interface arising from extreme strains corresponds to a unique stable state, which can be predicted by two controlling stability conditions. As another testament to its stability, we provide experimental evidence showing that this interface maintains its integrity in further straining (strains > 12), elevated temperatures (> 0.45 Tm of a constituent), and irradiation (light ion). These results open a new frontier in the fabrication of stable nanomaterials with severe plastic deformation techniques. PMID:24616514

  13. Plastic deformation mechanisms in SiC-whisker-reinforced alumina

    SciTech Connect

    Arellano-Lopez, A.R. de; Dominguez-Rodriguez, A. )

    1993-06-01

    SiC-whisker-reinforced Al[sub 2]O[sub 3] samples (SiC[sub w]/Al[sub 2]O[sub 3]), obtained from three different manufacturers, containing 0-30 vol% SiC have been crept under compression at 1,400 C in flowing argon. Compressive creep tests and microstructural observations have been used to characterize the plastic deformation mechanisms. The presence of whiskers decreased the creep rate by reducing grain-boundary sliding. Damage formation was increased, however, because the whiskers acted as stress concentration sites. For specimens with whisker loadings greater than 15%, the absolute creep rate was not strongly dependent on whisker concentration, and the formation of cavitation damage was negligible below a critical stress that depended on the fabrication procedure of the specimen. This creep regime was characterized by a stress exponent of approximately 1, in which deformation occurred primarily by diffusional flow. For the materials with less SiC, the deformation occurred primarily by grain boundary sliding.

  14. On the Modeling of Plastic Deformation of Magnesium Alloys

    SciTech Connect

    Ertuerk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-17

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  15. On the Modeling of Plastic Deformation of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Ertürk, S.; Steglich, D.; Bohlen, J.; Letzig, D.; Brocks, W.

    2007-05-01

    Magnesium alloys are promising materials due to their low density and therefore high specific strength. However, the industrial application is not well established so far, especially for wrought products such as sheets or profiles. Due to its hexagonal crystallographic structure, deformation mechanisms observed in magnesium alloys are rather different from those in face centered cubic metals such as aluminum alloys. This leads not only to a mechanical anisotropy, but also to a tension-compression asymmetry, i.e. unequal compressive and tensile yield strength. The resulting complexity in the yielding behavior of such materials cannot be captured by conventional models of J2 plasticity. Cazacu and Barlat, therefore, proposed a phenomenological yield potential which accounts for the respective phenomena by introducing the third invariant of the stress tensor. Simulations based on this model are performed with ABAQUS/Explicit and a user defined routine VUMAT for validating the respective implementation. The application aims at simulating the extrusion process of magnesium alloys.

  16. Crystal Plasticity Analysis of Texture Evolution of Pure Aluminum During Processing by a New Severe Plastic Deformation Technique

    NASA Astrophysics Data System (ADS)

    Khajezade, Ali; Parsa, Mohammad Habibi; Mirzadeh, Hamed

    2016-02-01

    Texture evolution in a newly developed severe plastic deformation technique, named multi-axial incremental forging and shearing (MAIFS), was studied applying the visco-plastic self-consistent crystal plasticity formulation by consideration of macroscopic deformation history. The simulated texture evolutions revealed that although shear-like texture had developed by the MAIFS process, texture components rotated around normal to mid-plane section. This could be ascribed to the complex deformation history that naturally develops during processing by the MAIFS process. The increased complexity of the deformation history in the MAIFS process, compared to the techniques that are solely based on the simple shear deformation, causes more activated slip planes, which in turn can result in an enhanced grain refinement ability of this processing technique.

  17. Quantifying Damage Accumulation During Ductile Plastic Deformation Using Synchrotron Radiation

    SciTech Connect

    Suter, Robert M.; Rollett, Anthony D.

    2015-08-15

    Under this grant, we have developed and demonstrated the ability of near-field High Energy Diffraction Microscopy (nf-HEDM) to map crystal orientation fields over three dimensions in deformed polycrystalline materials. Experimental work was performed at the Advanced Photon Source (APS) at beamline 1-ID. Applications of this new capability to ductile deformation of copper and zirconium samples were demonstrated as was the comparison of the experimental observations to computational plasticity models using a fast Fourier transform based algorithm that is able to handle the large experimental data sets. No such spatially resolved, direct comparison between measured and computed microstructure evolutions had previously been possible. The impact of this work is reflected in numerous publications and presentations as well as in the investments by DOE and DOD laboratories of millions of dollars in applying the technique, developing sophisticated new hardware that allows the technique to be applied to a wide variety of materials and materials problems, and in the use of the technique by other researchers. In essence, the grant facilitated the development of a new form of three dimensional microscopy and its application to technologically critical states of polycrystalline materials that are used throughout the U.S. and world economies. On-going collaborative work is further optimizing experimental and computational facilities at the APS and is pursuing expanded facilities.

  18. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  19. Dislocation dynamics during plastic deformations of complex plasma crystals

    NASA Astrophysics Data System (ADS)

    Durniak, C.; Samsonov, D.; Ralph, J. F.; Zhdanov, S.; Morfill, G.

    2013-11-01

    The internal structures of most periodic crystalline solids contain defects. This affects various important mechanical and thermal properties of crystals. Since it is very difficult and expensive to track the motion of individual atoms in real solids, macroscopic model systems, such as complex plasmas, are often used. Complex plasmas consist of micrometer-sized grains immersed into an ion-electron plasma. They exist in solidlike, liquidlike, and gaseouslike states and exhibit a range of nonlinear and dynamic effects, most of which have direct analogies in solids and liquids. Slabs of a monolayer hexagonal complex plasma were subjected to a cycle of uniaxial compression and decompression of large amplitudes to achieve plastic deformations, both in experiments and simulations. During the cycle, the internal structure of the lattice exhibited significant rearrangements. Dislocations (point defects) were generated and displaced in the stressed lattice. They tended to glide parallel to their Burgers vectors under load. It was found that the deformation cycle was macroscopically reversible but irreversible at the particle scale.

  20. Theory of radial X-ray Diffraction from a Polycrystalline Sample Undergoing Plastic Deformation

    SciTech Connect

    S Karato

    2011-12-31

    Theory of lattice strain in a polycrystalline aggregate under deviatoric stress is extended to include the influence of ongoing plastic deformation. When deviatoric stress is applied to a polycrystalline material at high temperatures (or above the yield stress), applied macroscopic stress is redistributed to individual grains by plastic deformation according to their orientations with respect to the macroscopic stress and plastic anisotropy of a given crystal. This microstress causes elastic deformation of individual grains that can be measured by x-ray diffraction. Consequently, the observed lattice strain depends on two material properties, viscosity (plasticity) and elastic compliance as well as the applied macroscopic stress and the stress-strain distribution among various grains. The influence of plastic deformation on lattice strain is analyzed using an anisotropic and nonlinear power-law constitutive relationship. In this model, the dependence of inferred macroscopic stress on the crystallographic orientation of diffraction plane (hkl) comes from elastic and plastic anisotropy of a crystal. In many materials, plastic anisotropy dominates over elastic anisotropy. This explains the observed large dependence of inferred stress on the diffraction plane and means that the determination of elastic anisotropy is difficult when plastic deformation occurs with anisotropic plasticity. When elastic anisotropy is known, plastic anisotropy of single crystal and/or stress-strain distribution in a deformed polycrystal can be determined from radial x-ray diffraction using the present model. Some examples are presented using the data on MgO.

  1. Demonstration of finite element simulations in MOOSE using crystallographic models of irradiation hardening and plastic deformation

    SciTech Connect

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique; Tome, Carlos

    2016-05-31

    This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.

  2. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-12-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution.

  3. Effect of plastic deformation on the coarsening of

    NASA Astrophysics Data System (ADS)

    Angers, L.; Fine, M. E.; Weertman, J. R.

    1987-04-01

    Particle coarsening has been studied in a rapidly solidified Al-8.8 wt pct Fe-3.7 wt pct Ce alloy subjected to isothermal annealing for various times at 425 °C. The effect of static and dynamic loading on the particle coarsening rates at the same temperature also has been examined. The dispersed particles in all specimens of the present study are the equilibrium Al13Fe4 and Al10Fe2Ce phases. They are incoherent with the matrix and constitute 23 pct of the total volume. The coarsening rate in isothermally annealed specimens is orders of magnitude greater than predicted by the modified Lifshitz-Slyozov-Wagner theory for volume diffusion controlled coarsening but can be explained using Kirchner's model for coarsening by diffusion along grain boundaries. In the case of intragranular particles, coarsening by diffusion along dislocation cores also is likely to be significant. Creep loading is seen to cause a significant enhancement of the coarsening rate. Fatigue testing with a hold period at the maximum tensile stress also accelerates coarsening whereas continuous cycling appears initially to retard the increase in the average particle size. Dislocations connecting dispersed phase particles are observed more frequently in crept specimens and specimens fatigued with a hold period than in specimens fatigued with no hold period. The effects of plastic deformation on particle coarsening rates are discussed in terms of excess vacancy generation, short circuiting along dislocations, and fine precipitation during fatigue.

  4. Effect of plastic deformation on the coarsening of

    NASA Astrophysics Data System (ADS)

    Angers, L.; Fine, M. E.; Weertman, J. R.

    1987-05-01

    Particle coarsening has been studied in a rapidly solidified Al-8.8 wt pct Fe-3.7 wt pct Ce alloy subjected to isothermal annealing for various times at 425 °C. The effect of static and dynamic loading on the particle coarsening rates at the same temperature also has been examined. The dispersed particles in all specimens of the present study are the equilibrium Al13Fe4 and Al10Fe2Ce phases. They are incoherent with the matrix and constitute 23 pct of the total volume. The coarsening rate in isothermally annealed specimens is orders of magnitude greater than predicted by the modified Lifshitz-Slyozov-Wagner theory for volume diffusion controlled coarsening but can be explained using Kirchner’s model for coarsening by diffusion along grain boundaries. In the case of intragranular particles, coarsening by diffusion along dislocation cores also is likely to be significant. Creep loading is seen to cause a significant enhancement of the coarsening rate. Fatigue testing with a hold period at the maximum tensile stress also accelerates coarsening whereas continuous cycling appears initially to retard the increase in the average particle size. Dislocations connecting dispersed phase particles are observed more frequently in crept specimens and specimens fatigued with a hold period than in specimens fatigued with no hold period. The effects of plastic deformation on particle coarsening rates are discussed in terms of excess vacancy generation, short circuiting along dislocations, and fine precipitation during fatigue.

  5. Modeling of sharp change in magnetic hysteresis behavior of electrical steel at small plastic deformation

    SciTech Connect

    Sablik, M.J.; Rios, S.; Landgraf, F.J.G.; Yonamine, T.; Campos, M.F. de

    2005-05-15

    In 2.2% Si electrical steel, the magnetic hysteresis behavior is sharply sheared by a rather small plastic deformation (0.5%). A modification to the Jiles-Atherton hysteresis model makes it possible to model magnetic effects of plastic deformation. In this paper, with this model, it is shown how a narrow hysteresis with an almost steplike hysteresis curve for an undeformed specimen is sharply sheared by plastic deformation. Computed coercivity and hysteresis loss show a sharp step to higher values at small strain due to an n=1/2 power law dependence on residual strain. The step is seen experimentally.

  6. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior.

    PubMed

    Ferguson, V L

    2009-08-01

    The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior

  7. Plastic behavior of polycrystalline copper at optical scales of deformation

    NASA Astrophysics Data System (ADS)

    Domber, Jeanette Leah

    Microplasticity is permanent deformation that occurs below the proportional limit of a material. For precision deployable optical spacecraft, it is unknown how microplasticity will affect the performance of the precision structure. An examination of the rolling of thin film optical reflectors indicates a strong dependence of the post-deployed shape on the strain hardening exponent of the material. However, confirmation of the valid extension of the constitutive model used to predict the deployed shape to microscopic strain regimes is necessary. The primary objective of this thesis is threefold: determine the relationship between stress and strain at nano to microstrain levels for representative materials; determine if the relationship between microscopic and macroscopic plastic behavior can be accurately characterized by the Ramberg-Osgood strain hardening constitutive model with a single set of material parameters; and determine if dislocation motion is the root cause of microplastic behavior at room temperature. The test apparatus, with a dynamic force range of 40,000 to 1, measures strains from 0.01 to 1000 parts per million (ppm) of cylindrical amorphous quartz and cold-worked and annealed tempered polycrystalline copper specimen. Elastic behavior in all three materials was consistent with typical values. However, plastic responses were larger than expected. Stresses on the order of 10 to 10,000 kPa (1.45 to 1450 psi) produced permanent strain in all three types of materials ranging from 0.01 to 1 ppm, some of which was attributable to a systematic error in the measurement. Extrapolating macroplastic behavior to lower stress and strain values underestimates the amount of microplasticity observed in the material. Therefore, material property characterization is required at all strain levels that are of concern for a particular application. The similarity in the levels of measured permanent strain for a given stress level between the as-drawn and annealed copper

  8. Finite-element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1975-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

  9. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    SciTech Connect

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  10. Continuous Severe Plastic Deformation Processing of Aluminum Alloys

    SciTech Connect

    Raghavan Srinivasan; Prabir K. Chaudhury; Balakrishna Cherukuri; Qingyou Han; David Swenson; Percy Gros

    2006-06-30

    Metals with grain sizes smaller than 1-micrometer have received much attention in the past decade. These materials have been classified as ultra fine grain (UFG) materials (grain sizes in the range of 100 to 1000-nm) and nano-materials (grain size <100-nm) depending on the grain size. This report addresses the production of bulk UFG metals through the use of severe plastic deformation processing, and their subsequent use as stock material for further thermomechanical processing, such as forging. A number of severe plastic deformation (SPD) methods for producing bulk UFG metals have been developed since the early 1990s. The most promising of these processes for producing large size stock that is suitable for forging is the equal channel angular extrusion or pressing (ECAE/P) process. This process involves introducing large shear strain in the work-piece by pushing it through a die that consists of two channels with the same cross-sectional shape that meet at an angle to each other. Since the cross-sections of the two channels are the same, the extruded product can be re-inserted into the entrance channel and pushed again through the die. Repeated extrusion through the ECAE/P die accumulates sufficient strain to breakdown the microstructure and produce ultra fine grain size. It is well known that metals with very fine grain sizes (< 10-micrometer) have higher strain rate sensitivity and greater elongation to failure at elevated temperature, exhibiting superplastic behavior. However, this superplastic behavior is usually manifest at high temperature (> half the melting temperature on the absolute scale) and very low strain rates (< 0.0001/s). UFG metals have been shown to exhibit superplastic characteristics at lower temperature and higher strain rates, making this phenomenon more practical for manufacturing. This enables part unitization and forging more complex and net shape parts. Laboratory studies have shown that this is particularly true for UFG metals produced

  11. Plastic deformation drives wrinkling, saddling and wedging of annular bilayer nanostructures

    PubMed Central

    Cho, Jeong-Hyun; Datta, Dibakar; Park, Si-Young; Shenoy, Vivek B.; Gracias, David H.

    2010-01-01

    We describe the spontaneous wrinkling, saddling, and wedging of metallic, annular bilayer nanostructures driven by grain coalescence in one of the layers. Experiments revealed these different outcomes based on the dimensions of the annuli and we find that the essential features are captured using finite element simulations of the plastic deformation in the metal bilayers. Our results show that the dimensions and nanomechanics associated with the plastic deformation of planar nanostructures can be important in forming complex three dimensional nanostructures. PMID:21090597

  12. Discussion on Applicability of Rigid Plastic Dynamic Deformation Analysis to Soil Structures

    NASA Astrophysics Data System (ADS)

    Hoshina, Takashi; Ohtsuka, Satoru; Isobe, Koichi

    This paper proposes a new analysis method to estimate a residual deformation of soil structure for external loads. It employs a rigid plastic constitutive equation for soil which needs a small number of soil constants in comparison with general elasto-plastic constitutive equations. The purpose of this method is to simulate a large amount of deformation caused by failure of soil structure based on finite deformation theory. The features of proposed method are (1) simulation for large deformation of soil structure, (2) no effect of initial stress distribution, and (3) application to dynamic load. This study expresses the formulation of rigid plastic dynamic finite element method based on finite deformation theory. It examines the applicability of proposed method by applying to Prandtl's limit bearing capacity of foundation for static monotonically increasing load. The result clearly shows the applicability of rigid plastic constitutive equation to deformation analysis. Both kinematical effect and time rate dependency on limit bearing capacity were clearly presented by employing Rigid Plastic Dynamic Deformation Analysis Method.

  13. Microstructural Evolution in the 2219 Aluminum Alloy During Severe Plastic Deformation

    SciTech Connect

    Kaibyshev, R.O.; Safarov, I.M.; Lesuen, D.R.

    2000-03-29

    Numerous investigations have demonstrated that intense plastic deformation is an attractive procedure for producing an ultrafine grain size in metallic materials. Torsional deformation under high pressure and equal-channel angular extrusion are two techniques that can produce microstructures with grain sizes in the submicrometer and nanometer range. Materials with these microstructures have many attractive properties. The microstructures formed by these two processing techniques are essentially the same and thus the processes occurring during deformation should be the same. Most previous studies have examined the final microstructures produced as a result of severe plastic deformation and the resulting properties. Only a limited number of studies have examined the evolution of microstructure. As a result, some important aspects of ultra-fine grain formation during severe plastic deformation remain unknown. There is also limited data on the influence of the initial state of the material on the microstructural evolution and mechanisms of ultra-fine grain formation. This limited knowledge base makes optimization of processing routes difficult and retards commercial application of these techniques. The objective of the present work is to examine the microstructure evolution during severe plastic deformation of a 2219 aluminum alloy. Specific attention is given to the mechanism of ultrafine grain formation as a result of severe plastic deformation.

  14. Multilevel approach to the experimental study of plastic deformation of HCP-zirconium alloys

    SciTech Connect

    Poletika, T. M. E-mail: girs@ispms.tsc.ru; Girsova, S. L. E-mail: girs@ispms.tsc.ru

    2014-11-14

    A multilevel approach was developed to the experimental study of plastic deformation in anisotropic polycrystalline materials, using by way of an example HCP-Zr alloys. This allowed establishing the relationship and hierarchy of processes occurring at macro-, meso- and microscale levels in conditions of significant heterogeneity of plastic flow and of texture formation.

  15. The mechanical response of a 6061-T6 Al/Al{sub 2}O{sub 3} metal matrix composite at high rates of deformation

    SciTech Connect

    Yadav, S.; Chichili, D.R.; Ramesh, K.T.

    1995-12-01

    The mechanical properties of a 6061-T6 aluminum alloy reinforced with a 20 vol% fraction of alumina particles and of an unreinforced 6061-T6 alloy are studied over a range of strain rates (10{sup {minus}4} to 6 {times} 10{sup 5} s{sup {minus}1}) using quasistatic compression, compression and torsion Kolsky Bars, and high strain rate pressure-shear plate impact. At a given strain rate the composite displays increased strength but essentially the same strain hardening as the matrix. However, the composite displays a stronger rate-sensitivity than does the unreinforced alloy at high rates of deformation (> 10{sup 3} s{sup {minus}1}). The rate-sensitivity of the unreinforced alloy is shown to be largely the result of the imposed strain rate rather than of the rate history. For quasistatic deformations, a model proposed by Bao et al. (1991) describes the behavior of the composite fairly accurately given the behavior of the unreinforced alloy. This paper presents an extension of the model that is able to predict the dynamic behavior of the composite given the dynamic response of the monolithic alloy.

  16. A measurement setup for acquiring the local magnetic properties of plastically deformed soft magnetic materials

    SciTech Connect

    Bi Shasha; Sutor, Alexander; Lerch, Reinhard; Xiao Yunshi

    2011-04-01

    This paper introduces a new measurement setup for extraction of the local magnetic properties. With the help of finite element method simulations, modifications are made on the previous double-C-yoke method. Small dimension measuring coils are applied in the stray field produced by the magnetic circuit to evaluate the local magnetic properties of the specified part of the specimen. Through the measurements with the plastically deformed materials at different temperatures, it indicates that the magnetic properties of soft magnetic materials are quite sensitive to plastic straining. After high-temperature thermal treatment on the plastically deformed specimen, the local magnetic properties exhibit an obvious recovery.

  17. Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, part 2

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The inelastic deformation mechanisms for the SiC (SCS-6)/Ti-15-3 system were studied at 538 C (1000 F) using a combination of mechanical measurements and detailed microstructural examinations. The objectives were to evaluate the contributions of plasticity and damage to the overall MMC response, and to compare the room temperature and elevated temperature deformation behaviors. Four different laminates were studied: (0)8, (90)8,(+ or -45)2s, and (0/90)2s, with the primary emphasis on the unidirectional (0)8, and (90)8 systems. The elevated temperature responses were similar to those at room temperature, involving a two-stage elastic-plastic type of response for the (0)8 system, and a characteristic three-stage deformation response for the (90)8 and (+ or -45)2s systems. The primary effects of elevated temperatures included: (1) reduction in the 'yield' and failure strengths; (2) plasticity through diffused slip rather than concentrated planar slip (which occurred at room temperature); and (3) time-dependent deformation. The inelastic deformation mechanism for the (0)8 MMC was dominated by plasticity at both temperatures. For the (90)8 and (+ or -45)2s MMCs, a combination of damage and plasticity contributed to the deformation at both temperatures.

  18. Characteristics of materials and thermal treatments applied to gearwheels obtained by plastic deformation

    NASA Astrophysics Data System (ADS)

    Bostan, I.; Dulgheru, V.; Trifan, N.

    2016-08-01

    A variety of materials are used in the manufacture of gearwheels. These materials satisfy various working conditions for gears. Such gears are made of metallic materials - ferrous, non-ferrous and from plastic materials. Among ferrous materials the following are used: irons; cast, forged and rolled steels; among non-ferrous materials the following are used: bronze, aluminium alloys, brass, etc., and of plastics the following are used: textolite, polyamide, polyacetal. In the practice of exploitation and in the process of special research it was established that the permissible load, according to teeth contact resistance, is generally determined by the hardness of the material. The highest hardness and respectively, the smallest sizes and reduced mass of the transmission can be obtained in the manufacture of steel gears via thermal treatment. It is obvious that by plastic deformation at cold it cannot be obtained gearwheels with complicated configuration as deformed plastic metal will form cracks caused by low plasticity. To improve processability by plastic deformation the mouldings for gearwheels are heated. With increasing the heating temperature, plasticity increases and resistance to deformation decreases.

  19. Finite element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1974-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.

  20. Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation

    SciTech Connect

    Weizhong, Liang; Zhiliang, Ning; Zhenqian, Dang; Linzhi, Wu

    2013-12-15

    Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentation sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.

  1. On the elastic–plastic decomposition of crystal deformation at the atomic scale

    SciTech Connect

    Stukowski, Alexander; Arsenlis, A.

    2012-03-02

    Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = FeFp, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a material due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, Fp, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, Fe, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.

  2. On the elastic–plastic decomposition of crystal deformation at the atomic scale

    DOE PAGES

    Stukowski, Alexander; Arsenlis, A.

    2012-03-02

    Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = FeFp, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a material due tomore » crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, Fp, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, Fe, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less

  3. NON-CONTACT ACOUSTO-THERMAL SIGNATURES OF PLASTIC DEFORMATION IN TI-6AL-4V

    SciTech Connect

    Welter, J. T.; Jata, K. V.; Blodgett, M. P.; Malott, G.; Schehl, N.; Sathish, S.

    2010-02-22

    Plastic deformation introduces changes in a material which include increases in: dislocations, strains, residual stress, and yield stress. However, these changes have a very small impact on the material properties such as elastic modulus, conductivity and ultrasonic wave speed. This is due to the fact that interatomic forces govern these properties, and they are not affected by plastic deformation to any large degree. This is evident from the fact that the changes in electrical resistance and ultrasonic velocity in plastically deformed and virgin samples are very small and can only be determined by highly controlled experiments. Except for X-ray diffraction, there are no direct nondestructive methods for measuring strain and the residual stress. This paper presents an application of the non-contact acousto-thermal signature (NCATS) NDE methodology to detect plastic deformation in flat dog bone Ti-6Al-4V samples. Results of the NCATS measurements on samples subjected to incremental amounts of plastic deformation are presented. The maximum temperature attained by the sample due to acoustic excitation is found to be sensitive to the amount of plastic strain. It is observed that the temperature induced by acoustic excitation increases to a peak followed by a decrease to failure. The maximum temperature peak occurs at plastic strains of 12-14%. It is observed that there is a correlation between the peak in maximum temperature rise and the strain at the experimentally determined ultimate tensile strength. A microstructural based explanation for this will be presented. The results are discussed in reference to utilizing this technique for detection and evaluation of plastic deformation.

  4. Modeling of ultrasonic nonlinearities for dislocation evolution in plastically deformed materials: Simulation and experimental validation.

    PubMed

    Zhu, Wujun; Deng, Mingxi; Xiang, Yanxun; Xuan, Fu-Zhen; Liu, Changjun; Wang, Yi-Ning

    2016-05-01

    A nonlinear constitutive relationship was established to investigate nonlinear behaviors of ultrasonic wave propagation in plastically damaged media based on analyses of mixed dislocation evolution. Finite element simulations of longitudinal wave propagation in plastically deformed martensite stainless steel were performed based on the proposed nonlinear constitutive relationship, in which the contribution of mixed dislocation to acoustic nonlinearity was considered. The simulated results were validated by experimental measurements of plastically deformed 30Cr2Ni4MoV martensite stainless steels. Simulated and experimental results both reveal a monotonically increasing tendency of the normalized acoustic nonlinearity parameter as a function of plastic strain. Microscopic studies revealed that the changes of the acoustic nonlinearity are mainly attributed to dislocation evolutions, such as dislocation density, dislocation length, and the type and fraction of dislocations during plastic loading.

  5. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    SciTech Connect

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri; Heiden, Michael J.; Field, David P.

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energy for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.

  6. Quantum effect on the nucleation of plastic deformation carriers and destruction in crystals

    SciTech Connect

    Khon, Yury A. Kaminskii, Petr P.

    2015-10-27

    New concepts on the irreversible crystal deformation as a structure transformation caused by a change in interatomic interactions at fluctuations of the electron density under loading are described. The change in interatomic interactions lead to the excitation of dynamical displacements of atoms. A model and a theory of a deformable pristine crystal taking into account the excitation of thermally activated and dynamical displacements of atoms are suggested. New mechanisms of the nucleation of plastic deformation carriers and destruction in pristine crystals at the real value of the deforming stress are studied.

  7. What is the structure of a polymer glass after plastic deformation?

    NASA Astrophysics Data System (ADS)

    Montes, Helene; Lequeux, Francois; Alba-Simionesco, Christiane; Casas, Frederic

    2008-03-01

    We aim to study the effect of plastic deformation on the structure of a glassy polymer. Using neutrons scattering on a large range of length scales, and comparing samples deformed below and above Tg, we show that: 1) The deformation is extremely homogeneous (or affine) for length scales above the entanglement distance 2) The crossover length scale between affine and non affine deeformation is about half the one of the entanglements, and is independent of temperature below the glass transition 3) The arrangement of the polymer chain is distorded by plastic deformation at the atomic scale We then discuss these results and compare them to the results of the simulation of Hoy and Robbins (J. Polym. Sci., 44 (2006), 3487). As a conclusion we see that the entanglements are respopnsible for the very homogeneous deformations, forcing the individual plastic events to propagate in the sample following the tension of the chains. Thus we conclude that the physics of the plastic deformation of polymer glasses are very different from the one of other glasses.

  8. The load separation criterion in elastic-plastic fracture mechanics: Rate and temperature dependence of the material plastic deformation function in an ABS resin

    NASA Astrophysics Data System (ADS)

    Agnelli, Silvia; Baldi, Francesco; Riccò, Theonis

    2012-07-01

    This work is aimed at analyzing the effects of temperature and loading rate on the plastic deformation behavior of an acrylonitrile-butadiene-styrene (ABS) resin during a fracture process. According to the load separation criterion, the plastic deformation behavior during the fracture process of an elastic-plastic material is described by a plastic deformation function. For the ABS here examined, the material plastic deformation function was constructed at different temperatures and loading rates, by single edge notched in bending (SEB) tests on blunt notched specimens. Both low and moderately high (impact) loading rates were explored. For the various conditions of temperature and loading rate the material yield stress was also measured by uniaxial tensile tests. The relationships between material deformation function and yield stress were researched and discussed.

  9. Stress and plastic deformation of MEA in fuel cells. Stresses generated during cell assembly

    NASA Astrophysics Data System (ADS)

    Bograchev, Daniil; Gueguen, Mikael; Grandidier, Jean-Claude; Martemianov, Serguei

    A linear elastic-plastic 2D model of fuel cell with hardening is developed for analysis of mechanical stresses in MEA arising in cell assembly procedure. The model includes the main components of real fuel cell (membrane, gas diffusion layers, graphite plates, and seal joints) and clamping elements (steel plates, bolts, nuts). The stress and plastic deformation in MEA are simulated with ABAQUS code taking into account the realistic clamping conditions. The stress distributions are obtained on the local and the global scales. The first one corresponds to the single tooth/channel structure. The global scale deals with features of the entire cell (the seal joint and the bolts). Experimental measurements of the residual membrane deformations have been provided at different bolts torques. The experimental data are in a good agreement with numerical predictions concerning the beginning of the plastic deformation.

  10. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension

    NASA Astrophysics Data System (ADS)

    Wu, F. F.; Wei, J. S.; Chan, K. C.; Chen, S. H.; Zhao, R. D.; Zhang, G. A.; Wu, X. F.

    2017-02-01

    The tensile plastic deformation of dendrite-reinforced Ti-based metallic glass composites (MGCs) was investigated. It was found that there is a critical normalized strain-hardening rate (NSHR) that determines the plastic stability of MGCs: if the NSHR is larger than the critical value, the plastic deformation of the MGCs will be stable, i.e. the necking and strain localization can be effectively suppressed, resulting in homogeneous plastic elongation. In addition, dendrite-reinforce MGCs are verified as being intrinsically ductile, and can be used as good coatings for improving the surface properties of pure titanium or titanium alloys. These findings are helpful in designing, producing, and using MGCs with improved performance properties.

  11. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension

    PubMed Central

    Wu, F. F.; Wei, J. S.; Chan, K. C.; Chen, S. H.; Zhao, R. D.; Zhang, G. A.; Wu, X. F.

    2017-01-01

    The tensile plastic deformation of dendrite-reinforced Ti-based metallic glass composites (MGCs) was investigated. It was found that there is a critical normalized strain-hardening rate (NSHR) that determines the plastic stability of MGCs: if the NSHR is larger than the critical value, the plastic deformation of the MGCs will be stable, i.e. the necking and strain localization can be effectively suppressed, resulting in homogeneous plastic elongation. In addition, dendrite-reinforce MGCs are verified as being intrinsically ductile, and can be used as good coatings for improving the surface properties of pure titanium or titanium alloys. These findings are helpful in designing, producing, and using MGCs with improved performance properties. PMID:28195216

  12. A Crystalline Plasticity Finite Element Method for Simulation of the Plastic Deformation of AZ31 Magnesium Alloys

    SciTech Connect

    Li Dayong; Peng Yinghong; Zhang Shaorui; Tang Weiqin; Huang Shiyao

    2010-06-15

    In this paper, a constitutive framework based on a crystalline plasticity model is employed to simulate the plastic deformation of AZ31 magnesium alloy, which posses the hexagonal close packed (HCP) crystal structure. Dislocation slip and mechanical twinning are taken into account in the model. The successive integration method is used to determine the active slip systems, and the contribution of twinning to the grain reorientation is treated by the PTR method. The FE model is introduced into ABAQUS/Explicit through a user material subroutine (VUMAT). Three deformation processes of AZ31 magnesium alloy, including tension, compression and a stamping process, are simulated with the present method. The simulation results are compared with experiment and those presented in the literature.

  13. A Crystalline Plasticity Finite Element Method for Simulation of the Plastic Deformation of AZ31 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Li, Dayong; Zhang, Shaorui; Tang, Weiqin; Huang, Shiyao; Peng, Yinghong

    2010-06-01

    In this paper, a constitutive framework based on a crystalline plasticity model is employed to simulate the plastic deformation of AZ31 magnesium alloy, which posses the hexagonal close packed (HCP) crystal structure. Dislocation slip and mechanical twinning are taken into account in the model. The successive integration method is used to determine the active slip systems, and the contribution of twinning to the grain reorientation is treated by the PTR method. The FE model is introduced into ABAQUS/Explicit through a user material subroutine (VUMAT). Three deformation processes of AZ31 magnesium alloy, including tension, compression and a stamping process, are simulated with the present method. The simulation results are compared with experiment and those presented in the literature.

  14. Crystal-plastic deformation and recrystallization of peridotite controlled by the seismic cycle

    NASA Astrophysics Data System (ADS)

    Matysiak, Agnes K.; Trepmann, Claudia A.

    2012-03-01

    Deformed peridotites from the Balmuccia complex, Northern Italy, have been investigated by light and electron microscopy (SEM/EBSD, TEM). The peridotites show a heterogeneous and partly recrystallized microfabric associated with cataclastic shear zones. Intracrystalline deformation microstructures (undulatory extinction, crinkly deformation lamellae, deformation bands, kink bands) and recrystallized grains along intragranular zones in large original grains record a sequence with an initial stage of inhomogeneous glide-controlled deformation in the low-temperature plasticity regime associated with brittle deformation and a subsequent stage of recovery and recrystallization. The microstructural evidence of deformation of olivine in the low-temperature field indicates high stresses on the order of several hundred MPa and accordingly high strain rates. Subsequent recovery and recrystallization requires decreasing stresses and strain rates, as there is no evidence for a complex thermal history with increasing temperatures. A locally occurring foam structure in aggregates of recrystallized olivine indicates grain growth at very low differential stresses at a late stage. Such a stress history with transiently high and then decaying stresses is characteristic for coseismic deformation and postseismic creep just below the base of the seismogenic zone. The associated occurrence of pseudotachylytes and microstructures generated by crystal-plastic mechanisms is explained by semi-brittle behavior at transient high stresses and strain rates during coseismic loading at depths, where during postseismic relaxation and in interseismic periods the rocks are behaving by crystal-plastic flow. The consideration of high-stress deformation and subsequent recrystallization processes at decaying stresses in peridotites is especially relevant for earthquake-driven deformation in the mantle.

  15. Misorientation mapping for visualization of plastic deformation via electron back-scattered diffraction.

    PubMed

    Brewer, L N; Othon, M A; Young, L M; Angeliu, T M

    2006-02-01

    The ability to map plastic deformation around high strain gradient microstructural features is central in studying phenomena such as fatigue and stress corrosion cracking. A method for the visualization of plastic deformation in electron back-scattered diffraction (EBSD) data has been developed and is described in this article. This technique is based on mapping the intragrain misorientation in polycrystalline metals. The algorithm maps the scalar misorientation between a local minimum misorientation reference pixel and every other pixel within an individual grain. A map around the corner of a Vickers indentation in 304 stainless steel was used as a test case. Several algorithms for EBSD mapping were then applied to the deformation distributions around air fatigue and stress corrosion cracks in 304 stainless steel. Using this technique, clear visualization of a deformation zone around high strain gradient microstructural features (crack tips, indentations, etc.) is possible with standard EBSD data.

  16. Shear stress-driven refreshing capability of plastic deformation in nanolayered metals.

    PubMed

    Yan, J W; Zhu, X F; Yang, B; Zhang, G P

    2013-04-12

    Severely localized deformation within shear bands can occur much more easily in a metal with nanoscale microstructures, such as nanograined and nanolayered materials. Based on atomic-scale observations, here we show that such locally large deformation (the continuous thinning of the layers) within the indentation-induced shear bands of the Cu/Au nanolayers is essentially attributed to the large shear stress component along the interface, which can refresh the capability of the interface to absorb incoming dislocations through unlocking the product of the dislocation-interface reaction. The results have implications for understanding the interface-mediated mechanisms of plastic deformation and for the engineering application of severe plastic deformation processing of metals at nanoscales.

  17. Elastic-plastic deformations of a beam with the SD-effect

    SciTech Connect

    Pavilaynen, Galina V.

    2015-03-10

    The results for the bending of a cantilever beam with the SD-effect under a concentrated load are discussed. To solve this problem, the standard Bernoulli-Euler hypotheses for beams and the Ilyushin model of perfect plasticity are used. The problem is solved analytically for structural steel A40X. The SD-effect for elastic-plastic deformations is studied. The solutions for beam made of isotropic material and material with the SD-effect are compared.

  18. Method for measuring residual stresses in materials by plastically deforming the material and interference pattern comparison

    DOEpatents

    Pechersky, Martin J.

    1995-01-01

    A method for measuring residual stress in a material comprising the steps of establishing a speckle pattern on the surface with a first laser then heating a portion of that pattern with an infrared laser until the surface plastically deforms. Comparing the speckle patterns before and after deformation by subtracting one pattern from the other will produce a fringe pattern that serves as a visual and quantitative indication of the degree to which the plasticized surface responded to the stress dung heating and enables calculation of the stress.

  19. Tensile elastic properties of 18:8 chromium-nickel steel as affected by plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcadam, D J; Mebs, R W

    1939-01-01

    The relationship between stress and strain, and between stress and permanent set, for 18:8 alloy as affected by prior plastic deformation is discussed. Hysteresis and creep and their effects on the stress-strain and stress-set curves are also considered, as well as the influence of duration of the rest interval after cold work and the influence of plastic deformation on proof stresses, on the modulus of elasticity at zero stress, and on the curvature of the stress-strain line. A constant (c sub 1) is suggested to represent the variation of the modulus of elasticity with stress.

  20. Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder

    SciTech Connect

    Valiev, R.Z. |; Mishral, R.S.; Grozal, J.; Mukherjee, A.K.

    1996-05-01

    Severe plastic deformation consolidation process of the ball-milled powder has been able to produce fully dense nanocrystalline nickel with a grain size of {approximately}20 nm. The processed samples are characterized by very high elastic strains, very likely caused by a presence of high density of extrinsic grain boundary dislocations. The combined effect of the smallest nanoscale grain size in nickel, as obtained in this study, along with the effect of high elastic strains, resulted in the high level of hardness and also the lower experimentally measured density of these severe plastic deformation consolidation samples.

  1. Phase field crystal study of deformation and plasticity in nanocrystalline materials.

    PubMed

    Stefanovic, Peter; Haataja, Mikko; Provatas, Nikolas

    2009-10-01

    We introduce a modified phase field crystal (MPFC) technique that self-consistently incorporates rapid strain relaxation alongside the usual plastic deformation and multiple crystal orientations featured by the traditional phase field crystal (PFC) technique. Our MPFC formalism can be used to study a host of important phase transformation phenomena in material processing that require rapid strain relaxation. We apply the MPFC model to study elastic and plastic deformations in nanocrystalline materials, focusing on the "reverse" Hall-Petch effect. Finally, we introduce a multigrid algorithm for efficient numerical simulations of the MPFC model.

  2. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  3. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  4. An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials.

    PubMed

    Uzer, B; Toker, S M; Cingoz, A; Bagci-Onder, T; Gerstein, G; Maier, H J; Canadinc, D

    2016-07-01

    The relationship between cell viability and adhesion behavior, and micro-deformation mechanisms was investigated on austenitic 316L stainless steel samples, which were subjected to different amounts of plastic strains (5%, 15%, 25%, 35% and 60%) to promote a variety in the slip and twin activities in the microstructure. Confocal laser scanning microscopy (CLSM) and field emission scanning electron microscopy (FESEM) revealed that cells most favored the samples with the largest plastic deformation, such that they spread more and formed significant filopodial extensions. Specifically, brain tumor cells seeded on the 35% deformed samples exhibited the best adhesion performance, where a significant slip activity was prevalent, accompanied by considerable slip-twin interactions. Furthermore, maximum viability was exhibited by the cells seeded on the 60% deformed samples, which were particularly designed in a specific geometry that could endure greater strain values. Overall, the current findings open a new venue for the production of metallic implants with enhanced biocompatibility, such that the adhesion and viability of the cells surrounding an implant can be optimized by tailoring the surface relief of the material, which is dictated by the micro-deformation mechanism activities facilitated by plastic deformation imposed by machining.

  5. Rotational defects and plastic deformation in molecular crystal RDX

    NASA Astrophysics Data System (ADS)

    Pal, Anirban; Picu, Catalin

    2013-03-01

    Defects in molecular crystals differ in many aspects from their atomic counterparts. Molecules in the crystal lattice can undergo conformational changes or twist and rotate into various configurations during deformation. These processes play an important role in the mechanics at a larger scale by controlling critical parameters like dislocation mobility. We present a computational study of such processes in cyclo-trimethylene-trinitramine (RDX), an energetic molecular crystal. Conformational changes, rotational defects and their role in the deformation mechanics of RDX is investigated using molecular dynamics simulations. Structure and mobility of dislocations are also presented and role of conformational and rotational defects in dislocation mobility is discussed. The authors acknowledge discussions with the Army Research Laboratory, and gratefully acknowledge the support from the Army Research Office

  6. Analysis of Deformation Behavior of Plastic during Lining on Steel Pipe with an FEM

    NASA Astrophysics Data System (ADS)

    Yamada, Toshiro; Mikawa, Toshihide; Kushizaki, Yoshiyuki

    2007-05-01

    There exist serious issues on the poor adhesion and residual stress of plastics on the steel pipe lined with plastics such as polyvinyl chloride (PVC), polyethylene (PE) and polypropylene (PP), which cause the interface delamination and crack of plastics. In order to prevent the failure during lining, the optimum lining conditions such as temperature pattern and the length of plastic pipe are not determined by the theoretical analysis but by trial and error because of the following reasons: As a plastic pipe is longitudinally stretched in advance, it has the strong anisotropy that it shrinks in the longitudinal direction and expands in the circumferential direction while sliding and adhesion of plastics at the contact point with steel during lining. Moreover, plastics are usually a viscoelastic material; the dynamic behavior is remarkably dependent on temperature and time. In this work, the authors have tried to analyze the deformation behavior of polyvinyl chloride (PVC) lining a steel pipe during lining. Mechanical and viscoelastic properties of stretched PVC pipe have been measured in the longitudinal and circumferential directions. The deformation behavior of PVC pipe has been numerically predicted by a finite element analysis (FEA) under the assumption of anisotropic and viscoelastic material during lining. It has been confirmed that the calculated results by an FEA can give the good agreement with experimental ones.

  7. Method for making biaxially textured articles by plastic deformation

    DOEpatents

    Goyal, Amit

    2002-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  8. Plastic Deformation by Twinning in CsHSO4 Single Crystal

    NASA Astrophysics Data System (ADS)

    Ozaki, Toru; Itoh, Kazuyuki; Nakamura, Eiji

    1982-01-01

    Plastic deformation by mechanical twinning with (001) twin plane has been observed in the b-plate of CsHSO4 single crystals at room temperature. A parallelogram-shaped hysteresis loop is found between the external shear stress and the deformation angle of the crystal plate. The maximum deformation angle is found to be 24° which is very close to 2(β-90°), where β{=}101.51° is the monoclinic angle of the crystal lattice. A microscopic model based on the crystal structure for the twin structure is proposed.

  9. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    NASA Astrophysics Data System (ADS)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-02-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  10. Peculiarities of plastic deformation nucleation in copper under nanoindentation

    SciTech Connect

    Kryzhevich, Dmitrij S. Korchuganov, Aleksandr V.; Zolnikov, Konstantin P.; Psakhie, Sergey G.

    2015-10-27

    The computer simulation results on the atomic structure of the copper crystallite and its behavior in nanoindentation demonstrate the key role of local structural transformations in nucleation of plasticity. The generation of local structural transformations can be considered as an elementary event during the formation of higher scale defects, including partial dislocations and stacking faults. The cause for local structural transformations, both direct fcc-hcp and reverse hcp-fcc, is an abrupt local increase in atomic volume. A characteristic feature is that the values of local volume jumps in direct and reverse structural transformations are comparable with that in melting and lie in the range 5–7%.

  11. A Study of Localized Plastic Deformation as Related to Fatigue Mechanisms.

    DTIC Science & Technology

    1982-05-01

    J. M. Baik) ... ............. 5 III.1 Introduction .... ... .. ....................... 6 111.2 Cyclic Deformation Behavior and Strain-Life...Strain and Plastic Strain Control LCF Behavior . 27 111.2.3.3 Fatigue Life Characteristic ..... .............. 36 111.2.3.4 Fracture Surface Morphology...59 111.3.3 Results ....... ......................... ... 61 111.3.3.1 Crack Closure Behavior ..... ..... .......... .. 61

  12. The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy

    SciTech Connect

    Bochkareva, Anna Lunev, Aleksey; Barannikova, Svetlana; Gorbatenko, Vadim; Shlyakhova, Galina; Zuev, Lev

    2015-10-27

    The effect of hydrogen embrittlement on the localized plastic deformation of aluminum alloy D1 was investigated. The studies were performed for the test samples of aluminum alloy subjected to electrolytic hydrogenation. It is found that the mechanical properties and localized plastic deformation parameters of aluminum alloy are affected adversely by hydrogen embrittlement. The hydrogenated counterpart of alloy has a lower degree of ductility relative to the original alloy; however, the plastic flow behavior of material remains virtually unaffected. Using scanning electron and atomic force microscopy methods, the changes in the fracture surface were investigated. The deformation diagrams were examined for the deformed samples of aluminum alloy. These are found to show all the plastic flow stages: the linear, parabolic and pre-failure stages would occur for the respective values of the exponent n from the Ludwik-Holomon equation. Using digital speckle image technique, the local strain patterns were being registered for the original alloy D1 and the counterpart subjected to electrolytic hydrogenation for 100 h.

  13. Processing Ultra Fine Grained Net-Shaped MEMS Parts Using Severe Plastic Deformation

    SciTech Connect

    Valiev, Ruslan Z.; Raab, Georgy I.; Estrin, Yuri; Zi, Aikaterini; Janecek, Milos

    2007-04-07

    This paper presents the results of investigation of the process of severe plastic deformation by means of ECAP method for producing the mini billets of pure aluminium. The strain state of the process and peculiarities of structure formation have been studied. The achieved results testify to the high efficiency of the process.

  14. An acoustic emission study of plastic deformation in polycrystalline aluminium

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Frederick, J. R.; Felbeck, D. K.

    1979-01-01

    Acoustic emission experiments were performed on polycrystalline and single crystal 99.99% aluminum while undergoing tensile deformation. It was found that acoustic emission counts as a function of grain size showed a maximum value at a particular grain size. Furthermore, the slip area associated with this particular grain size corresponded to the threshold level of detectability of single dislocation slip events. The rate of decline in acoustic emission activity as grain size is increased beyond the peak value suggests that grain boundary associated dislocation sources are giving rise to the bulk of the detected acoustic emissions.

  15. Cell resolved, multiparticle model of plastic tissue deformations and morphogenesis

    NASA Astrophysics Data System (ADS)

    Czirok, Andras; Isai, Dona Greta

    2015-02-01

    We propose a three-dimensional mechanical model of embryonic tissue dynamics. Mechanically coupled adherent cells are represented as particles interconnected with elastic beams which can exert non-central forces and torques. Tissue plasticity is modeled by a stochastic process consisting of a connectivity change (addition or removal of a single link) followed by a complete relaxation to mechanical equilibrium. In particular, we assume that (i) two non-connected, but adjacent particles can form a new link; and (ii) the lifetime of links is reduced by tensile forces. We demonstrate that the proposed model yields a realistic macroscopic elasto-plastic behavior and we establish how microscopic model parameters determine material properties at the macroscopic scale. Based on these results, microscopic parameter values can be inferred from tissue thickness, macroscopic elastic modulus and the magnitude and dynamics of intercellular adhesion forces. In addition to their mechanical role, model particles can also act as simulation agents and actively modulate their connectivity according to specific rules. As an example, anisotropic link insertion and removal probabilities can give rise to local cell intercalation and large scale convergent extension movements. The proposed stochastic simulation of cell activities yields fluctuating tissue movements which exhibit the same autocorrelation properties as empirical data from avian embryos.

  16. Infrared thermography coupled with digital image correlation in studying plastic deformation on the mesoscale level

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang; Witz, Jean-François; El Bartali, Ahmed; Jiang, Chao

    2016-11-01

    This paper focuses on a study of plastic deformation on the mesoscale level by infrared thermography coupled with digital image correlation. First, a novel technique for fully-coupled thermal and kinematic measurements was developed, and the common problem of spatial coupling in the multifield measurement was solved successfully using an image registration method. Then the developed technique was applied to investigate the plastic deformation of a pure aluminium oligocrystal specimen in a tensile test. The deformed specimen manifested high strains of type out-of-plane, which were found closely associated with the crystallographic structure. From a metrological point of view, the out-of-plane effect on the thermographic measurement was analyzed, and the pertinent radiometric artifacts were estimated. The source of errors was verified through a correlation analysis between the estimated artifacts and specimen surface profile. Moreover, the out-of-plane effect on the kinematic measurement was investigated, and the relevant errors were analyzed via the correlation residual. The analysis highlighted the role of the microstructure that played in the plastic deformation and showed that grain boundary was crucial in shaping the heterogeneous deformation patterns for aluminium oligocrystals.

  17. Crystallographically controlled crystal-plastic deformation of zircon in shear zones

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs

    2014-05-01

    Plastically-deformed zircons from various types of strained natural metamorphic rocks have been investigated in-situ by electron backscatter diffraction analysis (EBSD), allowing crystallographic orientation mapping at high spatial resolution. Plastic deformation often forms under the control of grain-internal heterogeneities. At the crystal structure scale deformation is controlled by the physical anisotropy of the lattice. Three most common slip systems in zircon are [100]{010}, [010]{001} and [001]{010} (Leroux et. al., 1999; Reddy et. al., 2007). They are genetically connected with the main zircon crystallographic directions: [001] (c-axis), [100] and [010] (a and b axes). Atomic models show weak planes normal to these directions that preferably evolve to glide planes in the deforming crystal. The visualization of seismic (elastic) properties of zircon with the MATLAB toolbox MTEX shows a similar pattern. The slowest S-wave velocities are observed in directions parallel to [100], [010] and [001] crystallographic directions. The highest Young's modulus values lie in the same directions. In natural zircon grains, the common slip systems are preferably activated when zircon is hosted by rheologically comparatively weaker phases or a fine-grained matrix. In these cases zircon behaves as a rigid clast. During progressive deformation high deviatoric stresses together with high strain rates concentrate at crystal tips, as shown by numerical modeling. Softer host phases allow more degrees of freedom for zircon to be deformed according to its crystallographic and internal properties. These conclusions are supported by the misorientation axes density distribution maps, derived with MTEX. Deformed zircon hosted by a relatively soft phase (mostly biotite) develops a crystallographic preferred orientation (CPO), which has not been documented for zircon before. At the same time deformation of zircon hosted by a rheologically stronger matrix causes the activation of less

  18. On the influence of plastic deformation on discontinuous precipitation in Mg-Al

    SciTech Connect

    Duly, D.; Audier, M.; Brechet, Y. . Lab. de Thermodynamique et de Physico-Chimie Metallurgique)

    1993-12-15

    The influence of a prestrain on intragranular precipitation is well known: the dislocations created by plastic deformation act as nucleation sites for heterogeneous precipitation. The influence of a similar prestrain on discontinuous precipitation is much less documented. There appears to be no general rule: depending on the systems considered, the kinetics of discontinuous precipitation can either be accelerated or slowed down. Moreover, in certain alloys, discontinuous precipitation is associated with recrystallization phenomena. In this paper, the authors results on the influence of plastic strain at room temperature on discontinuous precipitation in a Mg-8.5 wt% Al alloy. The interesting feature of this alloy is that plastic deformation induces both dislocation glide and twinning.

  19. Pressure self-multiplication and the kinetics of phase transition in plastic layer experiencing plane deformation

    NASA Astrophysics Data System (ADS)

    Boguslavskii, Yu.; Achmetshackirova, Kh.; Drabkin, S.

    1998-09-01

    Based on the deformation theory of plasticity the problem of pressure distribution in a compressed layer at phase transition experiencing a plane plastic deformation is considered. It is found that in the pressure distribution near the phase boundaries anomalies emerge in the form of a “step” or a local maximum caused by volume jumps at phase transition. It is shown that these anomalies and differences in yield limits of the phases can lead to essential change of pressure in the center of the layer in comparison with its value in absence of phase transition, but under equal external load. The maximal value of external load admitting the considered solution is found. The kinetics of possible isothermal regimes of phase transition leading to change in the time-pressure distribution in the plastic layer is investigated.

  20. Yielding and Irreversible Deformation below the Microscale: Surface Effects and Non-Mean-Field Plastic Avalanches

    PubMed Central

    Moretti, Paolo; Cerruti, Benedetta; Miguel, M.-Carmen

    2011-01-01

    Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as a series of abrupt discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed at larger scales. PMID:21666747

  1. In situ nanoindentation study of plastic co-deformation in Al-TiN nanocomposites.

    PubMed

    Li, N; Wang, H; Misra, A; Wang, J

    2014-10-16

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. The results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.

  2. In situ nanoindentation study of plastic Co-deformation in Al-TiN nanocomposites

    DOE PAGES

    Li, N.; Wang, H.; Misra, A.; ...

    2014-10-16

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. Our results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.

  3. Assessment of Localized Plastic Deformation during Fatigue in Polycrystalline Copper by Nonlinear Ultrasonic

    NASA Astrophysics Data System (ADS)

    Metya, Avijit; Parida, N.; Bhattacharya, D. K.; Bandyopadhyay, N. R.; Palit Sagar, S.

    2007-12-01

    Nonlinear ultrasonic (NLU) and conventional ultrasonic techniques have been applied to assess the localized plastic deformation in polycrystalline copper during high-cycle fatigue (HCF). The measurement parameter of NLU, i.e., the NLU parameter, β, has been calculated from the power spectrum of the filtered and amplified received signal. For conventional ultrasonic, longitudinal velocity ( V l) and attenuation coefficients ( α) have been determined. It has been observed that the position of maximum localized plastic deformation cannot be detected by V l and α, whereas β detects the same at the stage of 30 pct of damage corresponding to the total fatigue life of the material. The result of NLU has also been correlated with the hardness during fatigue. This work reveals the potential of NLU to assess the localized deformation during fatigue much earlier to the failure.

  4. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2016-11-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  5. Finite deformation analysis of crack tip fields in plastically compressible hardening-softening-hardening solids

    NASA Astrophysics Data System (ADS)

    Khan, D.; Singh, S.; Needleman, A.

    2017-02-01

    Crack tip fields are calculated under plane strain small scale yielding conditions. The material is characterized by a finite strain elastic-viscoplastic constitutive relation with various hardening-softening-hardening hardness functions. Both plastically compressible and plastically incompressible solids are considered. Displacements corresponding to the isotropic linear elastic mode I crack field are prescribed on a remote boundary. The initial crack is taken to be a semi-circular notch and symmetry about the crack plane is imposed. Plastic compressibility is found to give an increased crack opening displacement for a given value of the applied loading. The plastic zone size and shape are found to depend on the plastic compressibility, but not much on whether material softening occurs near the crack tip. On the other hand, the near crack tip stress and deformation fields depend sensitively on whether or not material softening occurs. The combination of plastic compressibility and softening (or softening-hardening) has a particularly strong effect on the near crack tip stress and deformation fields.

  6. Characterization of plastic deformation and chemical reaction in titanium-polytetrafluoroethylene mixture

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery Jon

    1998-09-01

    The subject of this dissertation is the deformation process of a single metal - polymer system (titanium - polytetrafluoroethylene) and how this process leads to initiation of chemical reaction. Several different kinds of experiments were performed to characterize the behavior of this material to shock and impact. These mechanical conditions induce a rapid plastic deformation of the sample. All of the samples tested had an initial porosity which increased the plastic flow condition. It is currently believed that during the deformation process two important conditions occur: removal of the oxide layer from the metal and decomposition of the polymer. These conditions allow for rapid chemical reaction. The research from this dissertation has provided insight into the complex behavior of plastic deformation and chemical reactions in titanium - polytetrafluoroethylene (PTFE, Teflon). A hydrodynamic computational code was used to model the plastic flow for correlation with the results from the experiments. The results from this work are being used to develop an ignition and growth model for metal/polymer systems. Three sets of experiments were used to examine deformation of the 80% Ti and 20% Teflon materials: drop- weight, gas gun, and split-Hopkinson pressure bar. Recovery studies included post shot analysis of the samples using x-ray diffraction. Lagrangian hydrocode DYNA2D modeling of the drop-weight tests was performed for comparison with experiments. One of the reactions know to occur is Ti + C → TiC (s) which results in an exothermic release. However, the believed initial reactions occur between Ti and fluorine which produces TixFy gases. The thermochemical code CHEETAH was used to investigate the detonation products and concentrations possible during Ti - Teflon reaction. CHEETAH shows that the Ti - fluorine reactions are thermodynamically favorable. This research represents the most comprehensive to date study of deformation induced chemical reaction in metal/polymers.

  7. Reversible plastic events during oscillatory deformation of amorphous solids.

    PubMed

    Priezjev, Nikolai V

    2016-01-01

    The effect of oscillatory shear strain on nonaffine rearrangements of individual particles in a three-dimensional binary glass is investigated using molecular dynamics simulations. The amorphous material is represented by the Kob-Andersen mixture at the temperature well below the glass transition. We find that during periodic shear deformation of the material, some particles undergo reversible nonaffine displacements with amplitudes that are approximately power-law distributed. Our simulations show that particles with large amplitudes of nonaffine displacement exhibit a collective behavior; namely, they tend to aggregate into relatively compact clusters that become comparable with the system size near the yield strain. Along with reversible displacements there exist a number of irreversible ones. With increasing strain amplitude, the probability of irreversible displacements during one cycle increases, which leads to permanent structural relaxation of the material.

  8. Microstructural stability after severe plastic deformation of AZ31 Magnesium

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Askari, H.; Hovanski, Y.; Heiden, M. J.; Field, D. P.

    2014-08-01

    Friction stir processing (FSP) and equal channel angular pressing (ECAP) were used to modify the microstructure of twin roll cast (TRC) AZ31 magnesium. The influence of these processes on the microstructural properties of the material was investigated. It was found that both processes produced microstructures with an average grain size of less than 10 pm, suggesting that they have the potential for superplastic deformation. Heat treatments were performed on the TRC, ECAP and FSP materials to assess their microstructural stability. Both the ECAP and TRC material were found to be fairly stable, showing normal grain growth while the FSP material grew substantially at temperatures above 200°C. The activation energy of grain boundary motion of the TRC material was calculated to be 167 kJ/mol.

  9. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGES

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; ...

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  10. Pinning, flow and plastic deformation of flux vortices in high T(sub c) superconductors

    NASA Technical Reports Server (NTRS)

    Roytburd, A.

    1990-01-01

    In high temperature superconductor (HTSC) materials the vortices are highly mobile and flexible. This is reflected in different models of melt of a vortex lattice. Another aspect of the problem is stressed: an easy nucleation and high mobility of dislocations in the vortex lattice. Some models of plastic deformation of vortex lattice are considered as a result of its interaction with a real crystal structure. Depinning is interpreted as yield of plastic flow is vortex medium. Effect of macroscopic defects in crystal structures (pores, inclusions, grain and domain boundaries) is being considered in detail. Available experimental facts on magnetization and a critical current in HTSC and conventional superconductors are discussed from the points of view of depinning to vortices vs. plastic flow of vortices vs. plastic flow of vortices medium.

  11. Thermoelastic investigation of residual stress: plastic deformation and the change in thermoelastic constant

    NASA Astrophysics Data System (ADS)

    Robinson, A. F.; Dulieu-Barton, J. M.; Quinn, S.; Burguete, R. L.

    2010-06-01

    Plastic deformation causes very small changes in the thermoelastic response of metallic materials; this variation of the thermoelastic constant has the potential to form the basis of a new non-destructive, non-contact, full-field technique for residual stress assessment that is quicker and cheaper than existing methods. The effect of plastic strain on the thermoelastic constant is presented as a potential basis for a calibration methodology that reveals areas of a component that have experienced plastic strain. Establishing this basis provides the initial step in identifying a new approach to residual stress analysis using the thermoelastic response. An evaluation of initial calibration results is presented and the feasibility of applying the methodology to actual components is assessed. As the response to plastic strain is likely to be small it is necessary to identify the effects of the paint coating; experimental work is presented that highlights the importance of repeatable coating approaches.

  12. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.

    PubMed

    Fintová, Stanislava; Kunz, Ludvík

    2015-02-01

    Fatigue properties of cast AZ91 magnesium alloy processed by severe plastic deformation were investigated and compared with the properties of the initial cast state. The severe plastic deformation was carried out by equal channel angular pressing (ECAP). The ECAP treatment resulted in a bimodal structure. The bimodality consists in a coexistence of fine grained areas with higher content of Mg17Al12 particles and areas exhibiting larger grains and lower density of Mg17Al12 particles. Improvement of the basic mechanical properties of AZ91 (yield stress, tensile strength and ductility) by ECAP was significant. Also the improvement of the fatigue life in the low-cycle fatigue region was substantial. However the improvement of the fatigue strength in the high-cycle fatigue region was found to be negligible. The endurance limit based on 10(7) cycles for the cast alloy was 80 MPa and for the alloy processed by ECAP 85 MPa. The cyclic plastic response in both states was qualitatively similar; initial softening was followed by a long cyclic hardening. Fatigue cracks in cast alloy initiate in cyclic slip bands which were formed in areas of solid solution. In the case of severe plastic deformed material with bimodal structure two substantially different mechanisms of crack initiation were observed. Crack initiation in slip bands was a preferred process in the areas with large grains whereas the grain boundaries cracking was a characteristic mechanism in the fine grained regions.

  13. Plastic deformation of a model glass induced by a local shear transformation

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai V.

    2015-03-01

    The effect of a local shear transformation on plastic deformation of a three-dimensional amorphous solid is studied using molecular dynamics simulations. We consider a spherical inclusion, which is gradually transformed into an ellipsoid of the same volume and then converted back into the sphere. It is shown that at sufficiently large strain amplitudes, the deformation of the material involves localized plastic events that are identified based on the relative displacement of atoms before and after the shear transformation. We find that the density profiles of cage jumps decay away from the inclusion, which correlates well with the radial dependence of the local deformation of the material. At the same strain amplitude, the plastic deformation becomes more pronounced in the cases of weakly damped dynamics or large time scales of the shear transformation. We show that the density profiles can be characterized by the universal function of the radial distance multiplied by a dimensionless factor that depends on the friction coefficient and the time scale of the shear event.

  14. Microstructure and Plastic Deformation of the As-Welded Invar Fusion Zones

    NASA Astrophysics Data System (ADS)

    Yao, D. J.; Zhou, D. R.; Xu, P. Q.; Lu, F. G.

    2017-02-01

    The as-welded Invar fusion zones were fabricated between cemented carbides and carbon steel using a Fe-Ni Invar interlayer and laser welding method. Three regions in the as-welded Invar fusion zones were defined to compare microstructures, and these were characterized and confirmed by scanning electron microscopy and X-ray diffractometry. The structure and plastic deformation mechanism for initial Invar Fe-Ni alloys and the as-welded Invar fusion zones are discussed. (1) After undergoing high-temperature thermal cycles, the microstructure of the as-welded Invar fusion zones contains γ-(Fe, Ni) solid solution (nickel dissolving in γ-Fe) with a face-centered cubic (fcc) crystal structure and mixed carbides (eutectic colonies, mixed carbides between two adjacent grains). The mixed carbides exhibited larger, coarser eutectic microstructures with a decrease in welding speed and an increase in heat input. (2) The structure of the initial Invar and the as-welded Invar is face-centered cubic γ-(Fe, Ni). (3) The as-welded Invar has a larger plastic deformation than initial Invar with an increase in local strain field and dislocation density. Slip deformation is propagated along the (111) plane. This finding helps us to understand microstructure and the formation of dislocation and plastic deformation when the Invar Fe-Ni alloy undergoes a high-temperature process.

  15. Interfacial diffusion in high-temperature deformation of composites: A discrete dislocation plasticity investigation

    NASA Astrophysics Data System (ADS)

    Shishvan, Siamak S.; Pollock, Tresa M.; McMeeking, Robert M.; Deshpande, Vikram S.

    2017-01-01

    We present a discrete dislocation plasticity (DDP) framework to analyse the high temperature deformation of multi-phase materials (composites) comprising a matrix and inclusions. Deformation of the phases is by climb-assisted glide of the dislocations while the particles can also deform due to stress-driven interfacial diffusion. The general framework is used to analyse the uniaxial tensile deformation of a composite comprising elastic particles with dislocation plasticity only present in the matrix phase. When dislocation motion is restricted to only glide within the matrix a strong size effect of the composite strength is predicted with the strength increasing with decreasing unit cell size due to dislocations forming pile-ups against the matrix/particle interface. Interfacial diffusion decreases the composite strength as it enhances the elongation of the elastic particles along the loading direction. When dislocation motion occurs by climb-assisted glide within the matrix the size effect of the strength is reduced as dislocations no longer arrange high energy pile-up structures but rather form lower energy dislocation cell networks. While interfacial diffusion again reduces the composite strength, in contrast to continuum plasticity predictions, the elongation of the particles is almost independent of the interfacial diffusion constant. Rather, in DDP the reduction in composite strength due to interfacial diffusion is a result of changes in the dislocation structures within the matrix and the associated enhanced dislocation climb rates in the matrix.

  16. PLASTIC DEFORMATION AND FRACTURE OF STEELS UNDER DYNAMIC BIAXIAL LOADING

    SciTech Connect

    Syn, C; Moreno, J; Goto, D M; Belak, J; Grady, D

    2004-07-08

    Dynamic equi-biaxial bulging of thin AerMet 100 alloy plates was studied. The plates were deformed using a gas-gun driven flyer plate test set-up at impact velocities between 1.0 and 2.0 km/sec. The results indicate that in addition to biaxial stretching (and thinning) of the plate, internal cavitation (spallation fracture) results from the complex wave interactions within the plate. No outward evidence of damage was observed at the lower velocities, in the range of 1.0-1.2 km/sec. Fine scale cracking of the plates was observed at impact velocity above approximately 1.4 km/sec. Complete specimen fracture, in the form of multiple petals and pie-shaped fragments, was observed at impact velocity above 1.6 km/sec. Hydrodynamic computer code simulations were performed, prior to and in conjunction with the experiments, to aid in experiment design and interpretation of the experimental data.

  17. Incremental Carcass Theory of Polycrystalline Media at Large Elastic and Plastic Deformations

    NASA Astrophysics Data System (ADS)

    Akhundov, V. M.

    2016-11-01

    A two-level carcass theory as applied to media with a polycrystalline structure at large elastic and plastic deformation of crystals (crystal grains) is presented. The theory is incremental, in accordance with the incremental nature of governing equations of a crystal, which take into account the prehistory of its deformation in the medium. The theory is based on the field of carcass (macroscopic) displacements, which determines the material displacements of carcass points and carcass (macroscopic) deformations of the medium. At the macromechanical level, the equations of macroscopic deformation and motion are given in an incremental form. At the micromechanical (locally structural) level, incremental microboundary-value problems for nodal presentation blocks of the polycrystalline material are solved on the basis of carcass displacements and their increments. From the internal fields of nodal blocks and their increments found, the incremental macroscopic stresses are determined, which allow one to close the system of equations of the macromechanical level of analysis.

  18. Numerical study on dynamic compressive deformation and elasto-plastic wave propagation of foam materials

    NASA Astrophysics Data System (ADS)

    Tanigaki, Kenichi; Idouji, Toru; Horikawa, Keitaro; Kobayashi, Hidetoshi; Ogawa, Kinya

    2015-09-01

    Finite element models of closed-cell foam structures were created using the three-dimensional Voronoi tessellation method coupled with the random sequential addition algorithm. The dynamic compressive deformation behaviors of the models were numerically studied using LS-DYNA code. The deformation mode of the models changed gradually as the deformation rate increases. Also, the generation and the propagation of plastic wave was clearly observed with the rate of 100 m/s. The longitudinal elastic wave velocity showed a weak negative dependency on the deformation rate although the strain rate dependence of material properties was not considered. Furthermore, a prediction method for the dynamic stress state on the impact side based on the static stress-strain relationship was presented.

  19. Study of an athermal quasi static plastic deformation in a 2D granular material

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zheng, Jie

    2016-11-01

    In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.

  20. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    SciTech Connect

    Lunev, Aleksey G. E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V. E-mail: nadjozhkin@ispms.tsc.ru; Shlyakhova, Galina V.; Barannikova, Svetlana A.; Zuev, Lev B.

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  1. Deformation effect on plastic and elastic stress components in grains with different bending

    NASA Astrophysics Data System (ADS)

    Kozlov, Eduard; Kiseleva, Svetlana; Popova, Natalya; Koneva, Nina

    2016-11-01

    The paper presents the investigations of deformation processes in polycrystal. Austenitic steel of the type 1.1C-13Mn-Fe is subjected to tensile deformation on a test machine at a rate of 3.4×10-4 s-1 and room temperature. The suggested experimental methodology implies the recovery of internal stresses using the parameters of the bend extinction contours observed on TEM images of the deformed polycrystal structure. The contribution of plastic and elastic stress components is determined in this paper. The analysis of these components is given for grains with different bending in deformed austenitic steel specimens. TEM images are obtained for a single polycrystal grain at different goniometer inclinations. The experimental findings are given for different degrees of steel deformation resulting in its rupture. It is shown that in the vicinity of the material rupture (ɛ = 36%), the plastic component mostly contributes to the internal stresses, while the contribution of elastic component is considerably reduced. The obtained results are compared to the defective structure of austenitic steel specimens.

  2. Water ice phases II, III, and V - Plastic deformation and phase relationships

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Boro, C. O.; Kirby, S. H.; Stern, L. A.; Heard, H. C.

    1988-01-01

    The ordinary water phase I was transformed to the ice phases that are known to exist in the interiors of large ice moons, such as Ganymede and Callisto for the purpose of investigating plastic deformation behavior of these ices. Ices II, III, and V were prepared using an apparatus and techniques similar to those described by Durham et al. (1983) and subsequently deformed in a gas deformation apparatus, and their deformation data were obtained. It was found that ice II was the strongest of the high-pressure phases, with a strength that was comparable to that of ice I; ice III was very weak, with the flow rate 100 to 1000 times higher than that of ice II at the same levels of stress. It was also found that ices III and V can exist metastably within the ice II field and that they may be deformed plastically within much of the metastable region without reverting to ice II. It is suggested that the weakness of the ice III phase may have profoundly influenced the evolution and the present-day behavior of the icy moons.

  3. Deformation temperature, strain rate, and irradiation microstructure effects on localized plasticity in 304L SS

    SciTech Connect

    Cole, J.I.; Brimhall, J.L.; Vetrano, J.S.; Bruemmer, S.M.

    1995-12-31

    The present study examines the deformation behavior of ion-irradiated, low-carbon 304L stainless steel to investigate the influence of irradiation microstructure, deformation temperature and strain rate on localized plasticity. Dislocation loop character, size and density are linked to changes in deformation character. Lower doses produce small faulted loops and stacking fault tetrahedra that impede dislocation mobility. Dislocations are pinned at defects and require higher stress to break free from the defects. Larger defects take the form of faulted Frank loops that can interact with glide dislocations to form microtwins at lower temperatures and faster strain rates. Deformation at higher temperatures and slower strain rates promotes interactions between glide dislocations and loops leading to loop annihilation. Dislocation free zones or ``channels`` form where further plastic deformation is highly localized. Results are compared to limited observations for neutron-irradiated materials. These irradiation-induced changes can be an important concern for light-water reactor (LWR) stainless steel (SS) structural components due to a reduced damage tolerance, and potential susceptibility to environmental cracking such as irradiation-assisted stress corrosion cracking (IASCC).

  4. Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation

    SciTech Connect

    Wong, Sherman; Haberl, Bianca; Williams, James S.; Bradby, Jodie E.

    2016-09-30

    Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed material than indents that initially nucleate crystalline defects.

  5. Investigations of a nanostructured FeMnSi shape memory alloy produced via severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Gurau, Gheorghe; Gurau, Carmela; Sampath, Vedamanickam; Bujoreanu, Leandru Gheorghe

    2016-11-01

    Low-cost iron-based shape memory alloys (SMAs) show great potential for engineering applications. The developments of new processing techniques have recently enabled the production of nanocrystalline materials with improved properties. These developments have opened avenues for newer applications for SMAs. The influence of severe plastic deformation induced by the high-speed high-pressure torsion (HSHPT) process on the microstructural evolution of an Fe-Mn-Si-Cr alloy was investigated. Transmission electron microscopic analysis of the alloy revealed the existence of nanoscale grains with an abundance of stacking faults. The high density of dislocations characteristic of severe plastic deformation was not observed in this alloy. X-ray diffraction studies revealed the presence of ɛ-martensite with an HCP crystal structure and γ-phase with an FCC structure.

  6. Reasons for the formation of incoherent additional microwaves in fresh ice under plastic deformation

    NASA Astrophysics Data System (ADS)

    Bordonskiy, G. S.

    2016-08-01

    It is supposed that incoherent additional waves that appear in fresh ice in the microwave range are associated with the spontaneous decomposition of an unstable phase. This decomposition produces periodic phases. The unstable phase may result from the plastic deformation of the ice, from vapor condensation on a cold substrate, or from other effects causing spinodals. Experimental data obtained for millimeter and centimeter waves have been presented that support the above supposition regarding the formation of the incoherent additional waves.

  7. Plastic Deformation Characteristics Of AZ31 Magnesium Alloy Sheets At Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Park, Jingee; Lee, Jongshin; You, Bongsun; Choi, Seogou; Kim, Youngsuk

    2007-05-01

    Using lightweight materials is the emerging need in order to reduce the vehicle's energy consumption and pollutant emissions. Being a lightweight material, magnesium alloys are increasingly employed in the fabrication of automotive and electronic parts. Presently, magnesium alloys used in automotive and electronic parts are mainly processed by die casting. The die casting technology allows the manufacturing of parts with complex geometry. However, the mechanical properties of these parts often do not meet the requirements concerning the mechanical properties (e.g. endurance strength and ductility). A promising alternative can be forming process. The parts manufactured by forming could have fine-grained structure without porosity and improved mechanical properties such as endurance strength and ductility. Because magnesium alloy has low formability resulted form its small slip system at room temperature it is usually formed at elevated temperature. Due to a rapid increase of usage of magnesium sheets in automotive and electronic industry it is necessary to assure database for sheet metal formability and plastic yielding properties in order to optimize its usage. Especially, plastic yielding criterion is a critical property to predict plastic deformation of sheet metal parts in optimizing process using CAE simulation. Von-Mises yield criterion generally well predicts plastic deformation of steel sheets and Hill'1979 yield criterion predicts plastic deformation of aluminum sheets. In this study, using biaxial tensile test machine yield loci of AZ31 magnesium alloy sheet were obtained at elevated temperature. The yield loci ensured experimentally were compared with the theoretical predictions based on the Von-Mises, Hill, Logan-Hosford, and Barlat model.

  8. Ultrasound Velocity Measurements in High-Chromium Steel Under Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Lunev, Aleksey; Bochkareva, Anna; Barannikova, Svetlana; Zuev, Lev

    2016-04-01

    In the present study, the variation of the propagation velocity of ultrasound in the plastic deformation of corrosion-resistant high-chromium steel 40X13 with ferrite-carbide (delivery status), martensitic (quenched) and sorbitol (after high-temperature tempering) structures have beem studied/ It is found that each state shows its view of the loading curve. In the delivery state diagram loading is substantially parabolic throughout, while in the martensitic state contains only linear strain hardening step and in the sorbitol state the plastic flow curve is three-step. The velocity of ultrasonic surface waves (Rayleigh waves) was measured simultaneously with the registration of the loading curve in the investigated steel in tension. It is shown that the dependence of the velocity of ultrasound in active loading is determined by the law of plastic flow, that is, the staging of the corresponding diagram of loading. Structural state of the investigated steel is not only changing the type of the deformation curve under uniaxial tension, but also changes the nature of ultrasound speed of deformation.

  9. Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor.

    PubMed

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B; Altintas, Ayhan

    2014-10-20

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment.

  10. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation.

    PubMed

    Bagherifard, Sara; Ghelichi, Ramin; Khademhosseini, Ali; Guagliano, Mario

    2014-06-11

    Cell-substrate interface is known to control the cell response and subsequent cell functions. Among the various biophysical signals, grain structure, which indicates the repeating arrangement of atoms in the material, has also proved to play a role of significant importance in mediating the cell activities. Moreover, refining the grain size through severe plastic deformation is known to provide the processed material with novel mechanical properties. The potential application of such advanced materials as biomedical implants has recently been evaluated by investigating the effect of different substrate grain sizes on a wide variety of cell activities. In this review, recent advances in biomedical applications of severe plastic deformation techniques are highlighted with special attention to the effect of the obtained nano/ultra-fine-grain size on cell-substrate interactions. Various severe plastic deformation techniques used for this purpose are discussed presenting a brief description of the mechanism for each process. The results obtained for each treatment on cell morphology, adhesion, proliferation, and differentiation, as well as the in vivo studies, are discussed. Finally, the advantages and challenges regarding the application of these techniques to produce multifunctional bio-implant materials are addressed.

  11. Atomistic simulation on the plastic deformation and fracture of bio-inspired graphene/Ni nanocomposites

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyu; Wang, Dandan; Lu, Zixing; Hu, Wenjun

    2016-11-01

    Molecular dynamics simulations were performed to investigate the plastic deformation and fracture behaviors of bio-inspired graphene/metal nanocomposites, which have a "brick-and-mortar" nanostructure, consisting of hard graphene single-layers embedded in a soft Ni matrix. The plastic deformation mechanisms of the nanocomposites were analyzed as well as their effects on the mechanical properties with various geometrical variations. It was found that the strength and ductility of the metal matrix can be highly enhanced with the addition of the staggered graphene layers, and the plastic deformation can be attributed to the interfacial sliding, dislocation nucleation, and cracks' combination. The strength of the nanocomposites strongly depends on the length scale of the nanostructure and the interlayer distance as well. In addition, slip at the interface releases the stress in graphene layers, leading to the stress distribution on the graphene more uniform. The present results are expected to contribute to the design of the nanolayered graphene/metal composites with high performance.

  12. Effect of inherent deformations of leadframes on bleedability of plastic dip

    NASA Astrophysics Data System (ADS)

    Kerk, S. L.; Tay, S. C.; Hu, S. J.

    1989-03-01

    Variance formed between the mold plate and the leadframe causes resin bleed on the leads of the plastic 40L Dual In-Line Package (PDIP 40L). Resin bleed affects the solderability of the package. The mechanical stamping method used in the production of the copper leadframes causes dented deformation at the edge of the leads of the leadframe. A perfect uniform flatness on the surface of the copper leadframe is also not possible. Study is carried out to investigate the effect of these inherent deformations of stamped copper leadframes' surface on the resin bleed-out of the plastic DIP. The results show that two types of bleed rejects occurred because of the stamping induced deformation found at the edge of the leads of the copper leadframes and the non uniform flatness of the surface on the copper leadframes. Resin bleedability and non-solderability can be eliminated when chemically etched copper leadframes are used for the plastic Dual-In-Line Packages.

  13. Severe plastic deformation processing and high strain rate superplasticity in an aluminum matrix composite

    SciTech Connect

    Mishra, R.S.; McFadden, S.X.; Mukherjee, A.K.; Valiev, R.Z.; Islamgaliev, R.K.

    1999-04-23

    Metal matrix composites possess an attractive set of properties for structural applications. For example, reinforcement of conventional aluminum alloys with second phase ceramic particulates increases the stiffness, high temperature strength, etc. A drawback of ceramic phase reinforcement is that it makes machining of components difficult. Superplastic forming is quite attractive for hard-to-machine materials like composites. A number of aluminum matrix composites exhibit superplasticity. The most attractive feature of superplasticity in aluminum matrix composite is the high strain rate (10{sup {minus}2}--10{sup 1} s{sup {minus}1}) for optimum ductility. This is significantly higher than the optimum superplastic strain rates of 10{sup {minus}4}--10{sup {minus}3} s{sup {minus}1} in conventional fine grained alloys. The optimum superplasticity in aluminum matrix composites is influenced by the thermo-mechanical processing. In the last five years or so, a number of aluminum alloys have been processes by severe plastic deformation (SePD). Severe plastic deformation processing leads to ultrafine grained aluminum alloys with attractive superplastic properties. In this short paper the authors report on successful processing of an ultrafine grained aluminum matrix composite by severe plastic deformation technique. The SePD processes 2009 Al-SiC{sub 2} composite exhibits high strain rate superplasticity.

  14. Yielding, Plasticity, and Microstructure in a 2D Jammed Material under Shear Deformation

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo; Keim, Nathan

    2015-03-01

    In this talk, we discuss an experimental investigation on the yielding and plastic deformation of disordered solids. Experiments are performed on colloidal particles that are adsorbed at an oil-water interface and form a dense disordered monolayer. The rheological properties (G', G'') of this dense monolayer are obtained in a custom-built interfacial stress rheometer that uses a magnetic needle within the material. This configuration allows for the simultaneous characterization of both microstructure (tracking ~ 105 particles) and bulk rheology. Results show that for oscillatory shear below a certain strain amplitude, the microstructure becomes reversible after a transient. Above this strain amplitude, the microstructure continues to evolve through many irreversible events. We argue that this boundary between a reversible and irreversible steady state is a yielding transition, and that our experiments measure a meaningful yield stress. Further, we find that reversible plastic deformation is possible. That is, the material can reorganize itself so that the link between plasticity and irreversibility is broken: the material flows slightly, and yet at the end of each deformation cycle, it is exactly unchanged. Now at California Polytechnic State University at San Luis Obispo.

  15. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    NASA Astrophysics Data System (ADS)

    Kowalik, Marek; Rucki, Mirosław; Paszta, Piotr; Gołębski, Rafał

    2016-10-01

    Measuring errors caused by deformation (flattening) of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  16. Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling

    NASA Astrophysics Data System (ADS)

    Revil-Baudard, Benoit; Cazacu, Oana; Flater, Philip; Chandola, Nitin; Alves, J. L.

    2016-03-01

    In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.

  17. Effects of water on the plastic deformation and deformation microstructure of olivine

    NASA Astrophysics Data System (ADS)

    Jung, Haemyeong

    Deformation experiments on olivine were conducted in simple shear geometry under both water-poor ("dry") and water-saturated ("wet") conditions at high pressures (0.5--2.2 GPa) and high temperatures (1400--1570 K) using the Griggs apparatus. Hot-pressed synthetic olivine aggregates and single crystals of olivine were used as starting materials. Water was supplied by a mixture of talc and brucite during the experiment and water content of samples was determined by the FT-IR spectroscopy after each experiment. Under these conditions, a wide range of water fugacity can be explored up to ˜13 GPa and we have identified significant effects of water both on microstructures and on rheology. Water affects microstructures of deformed olivine in two ways: (1) the size of dynamically recrystallized grains under water-rich conditions is significantly larger than that under water-poor conditions and (2) the pattern of lattice preferred orientation (LPO) is different under water-rich conditions from those under water-poor conditions. These observations indicate that water enhances grain-boundary migration and also changes the relative easiness of slip systems in olivine. The LPOs found under water-rich conditions are characterized by strong peaks of [001] poles at ˜20--30° from the shear direction, although the maxima of poles of other crystallographic axes depend also on the stress level. A diagram showing the relationship between LPO and deformation conditions was constructed. The results indicate that the relationship between seismic anisotropy and flow geometry depends on water content as well as stress level. The role of water on rheology was investigated through the analyses of stress versus strain-rate relationship under various pressures using dislocation densities as a stress indicator. We found that when the system is saturated with water, the strength of olivine changes with pressure in non-monotonic way: the strength decreases with pressure at low pressures, but

  18. Simulation of high-temperature superlocalization of plastic deformation in single-crystals of alloys with an L12 superstructure

    NASA Astrophysics Data System (ADS)

    Solov'eva, Yu. V.; Fakhrutdinova, Ya. D.; Starenchenko, V. A.

    2015-01-01

    The processes of the superlocalization of plastic deformation in L12 alloys have been studied numerically based on a combination of the model of the dislocation kinetics of the deformation-induced and heat-treatment-induced strengthening of an element of a deformable medium with the model of the mechanics of microplastic deformation described in terms of elastoplastic medium. It has been shown that the superlocalization of plastic deformation is determined by the presence of stress concentrators and by the nonmonotonic strengthening of the elements of the deformable medium. The multiple nonmonotonicity of the process of strengthening of the elementary volume of the medium can be responsible for the multiplicity of bands of microplastic localization of deformation.

  19. Influence of niobium on the beginning of the plastic flow of material during cold deformation.

    PubMed

    Rešković, Stoja; Jandrlić, Ivan

    2013-01-01

    Investigations were conducted on low-carbon steel and the steel with same chemical composition with addition of microalloying element niobium. While tensile testing was carried out, the thermographic measurement was tacking place simultaneously. A specific behavior of niobium microalloyed steel was noticed. Test results have shown that, in the elastic deformation region, thermoelastic effect occurs, which is more pronounced in niobium microalloyed steel. Start of plastic flow in steel which is not microalloyed with niobium begins later in comparison to the microalloyed steel, and it is conducted so that, at the point of maximum stress, deformation zone is formed within which stresses grow. In steel microalloyed with niobium after proportionality limit, comes the occurrence of the localized increase in temperature and the occurrence of Lüders band, which propagate along the sample forming a deformation zone.

  20. Procedures for experimental measurement and theoretical analysis of large plastic deformations

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1974-01-01

    Theoretical equations are derived and analytical procedures are presented for the interpretation of experimental measurements of large plastic strains in the surface of a plate. Orthogonal gage lengths established on the metal surface are measured before and after deformation. The change in orthogonality after deformation is also measured. Equations yield the principal strains, deviatoric stresses in the absence of surface friction forces, true stresses if the stress normal to the surface is known, and the orientation angle between the deformed gage line and the principal stress-strain axes. Errors in the measurement of nominal strains greater than 3 percent are within engineering accuracy. Applications suggested for this strain measurement system include the large-strain-stress analysis of impact test models, burst tests of spherical or cylindrical pressure vessels, and to augment small-strain instrumentation tests where large strains are anticipated.

  1. Influence of Niobium on the Beginning of the Plastic Flow of Material during Cold Deformation

    PubMed Central

    2013-01-01

    Investigations were conducted on low-carbon steel and the steel with same chemical composition with addition of microalloying element niobium. While tensile testing was carried out, the thermographic measurement was tacking place simultaneously. A specific behavior of niobium microalloyed steel was noticed. Test results have shown that, in the elastic deformation region, thermoelastic effect occurs, which is more pronounced in niobium microalloyed steel. Start of plastic flow in steel which is not microalloyed with niobium begins later in comparison to the microalloyed steel, and it is conducted so that, at the point of maximum stress, deformation zone is formed within which stresses grow. In steel microalloyed with niobium after proportionality limit, comes the occurrence of the localized increase in temperature and the occurrence of Lüders band, which propagate along the sample forming a deformation zone. PMID:24453896

  2. Severe plastic deformation through adiabatic shear banding in Fe-C steels

    SciTech Connect

    Lesuer, D; Syn, C; Sherby, O

    2004-12-01

    Severe plastic deformation is observed within adiabatic shear bands in iron-carbon steels. These shear bands form under high strain rate conditions, in excess of 1000 s{sup -1}, and strains in the order 5 or greater are commonly observed. Studies on shear band formation in a ultrahigh carbon steel (1.3%C) are described in the pearlitic condition. A hardness of 11.5 GPa (4600 MPa) is obtained within the band. A mechanism is described to explain the high strength based on phase transformation to austenite from adiabatic heating resulting from severe deformation. Rapid re-transformation leads to an ultra-fine ferrite grain size containing carbon principally in the form of nanosize carbides. It is proposed that the same mechanism explains the ultrahigh strength of iron-carbon steels observed in ball-milling, ball drop tests and in severely deformed wires.

  3. Microstructures in the 6060 aluminium alloy after various severe plastic deformation treatments

    SciTech Connect

    Adamczyk-Cieslak, Boguslawa Mizera, Jaroslaw; Kurzydlowski, Krzysztof Jan

    2011-03-15

    This paper presents the results concerning the microstructural refinement of the industrial 6060 aluminium alloy processed by severe plastic deformation (SPD). The high level of plastic deformation was achieved using the three methods: hydrostatic extrusion (HE), equal channel angular extrusion (ECAE) and extrusion torsion (ET), which differed in the dynamics of the loading, intensity and homogeneity of the plastic strain field. Microstructure analyses were performed before and after SPD deformation using a transmission (TEM) and a scanning electron microscope (SEM). The refined microstructures were examined qualitatively and quantitatively by the stereological methods and computer image analyses. The microstructure of the industrial 6060 aluminium alloy after deformation was characterized by an average grain size of about 0.4 {mu}m. The results show that the precipitates strongly affect the degree of refinement and the mechanism of microstructural transformations. During the SPD, the second phase particles break apart and homogenize. The HE method generates the largest increase of the volume fraction of the small primary particles. Moreover, the HE process is most effective in reducing the primary particle size. During HE and ECAE processes the second phase precipitates dissolve partially and change their shape. - Research Highlights: {yields} SPD results in a significant increase in the density of the small primary particles. {yields} SPD homogenizes the particle size distribution. {yields} HE and ECAE processes bring nano-grains in the vicinity of the primary particles. {yields} HE and ECAE processing results in the {beta}' precipitates partial dissolutions. {yields} During HE and ECAE processes the {beta}' particles change their shape.

  4. Evolution of yield surfaces and texture with finite plastic deformation in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Pandey, Amit

    2009-12-01

    The primary objectives of this study are to determine the (i) evolution of subsequent yield surfaces based on 10muepsilon deviation from linearity; and (ii) to report a comprehensive study of anisotropy and texture evolution with finite plastic deformation. The first study gives comprehensive experimental results on subsequent yield surfaces of a high work hardening alloy under proportional and non proportional loading paths. The size of yield surfaces under non-proportional loading decrease and no cross-effect is observed; these yield surfaces are completely different under proportional loading where the size of the yield surfaces increase and show positive cross-effect. The experimental results on subsequent yield surfaces after proportional loading paths under tension-tension stress space, for a very low and a very high work hardening Al alloy, using 10muepsilon deviation from linearity as the definition of yield are presented. Subsequent yield surfaces are determined under axial, hoop, and combined hoop and axial proportional loading directions at various levels of plastic strain in each direction. Elastic moduli are also determined within each subsequent yield surface. Further, comprehensive responses of Al5754 and AZ31 are measured over wide ranges of strain rates and temperatures on same batch of two materials. These include the strain hardening, anisotropy, and texture evolution with finite plastic deformation. Tension, compression, and simple shear experiments at wide ranges of strain rates and temperatures are performed in rolling, transverse to rolling, and 45° to rolling directions. In addition, compression experiments were also performed in thickness direction. A new simple shear device is fabricated to perform simple shear experiments at elevated temperatures. Texture measurements are performed using neutron diffraction and EBSD in order to understand the deformation mechanisms of various specimens after finite deformation.

  5. Modeling coupled Thermo-Hydro-Mechanical processes including plastic deformation in geological porous media

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.

    2012-12-01

    There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses/deformations

  6. The strain path dependence of plastic deformation response of AA5754: Experiment and modeling

    SciTech Connect

    Pham, Minh-Son; Hu, Lin; Iadicola, Mark; Creuziger, Adam; Rollett, Anthony D.

    2013-12-16

    This work presents modeling of experiments on a balanced biaxial (BB) pre-strained AA5754 alloy, subsequently reloaded uniaxially along the rolling direction and transverse direction. The material exhibits a complex plastic deformation response during the change in strain path due to 1) crystallographic texture, 2) aging (interactions between dislocations and Mg atoms) and 3) recovery (annihilation and re-arrangement of dislocations). With a BB prestrain of about 5 %, the aging process is dominant, and the yield strength for uniaxially deformed samples is observed to be higher than the flow stress during BB straining. The strain hardening rate after changing path is, however, lower than that for pre-straining. Higher degrees of pre-straining make the dynamic recovery more active. The dynamic recovery at higher strain levels compensates for the aging effect, and results in: 1) a reduction of the yield strength, and 2) an increase in the hardening rate of re-strained specimens along other directions. The yield strength of deformed samples is further reduced if these samples are left at room temperature to let static recovery occur. The synergistic influences of texture condition, aging and recovery processes on the material response make the modeling of strain path dependence of mechanical behavior of AA5754 challenging. In this study, the influence of crystallographic texture is taken into account by incorporating the latent hardening into a visco-plastic self-consistent model. Different strengths of dislocation glide interaction models in 24 slip systems are used to represent the latent hardening. Moreover, the aging and recovery effects are also included into the latent hardening model by considering strong interactions between dislocations and dissolved atom Mg and the microstructural evolution. These microstructural considerations provide a powerful capability to successfully describe the strain path dependence of plastic deformation behavior of AA5754.

  7. Plastic deformation of amorphous poly(L/DL-lactide): structure evolution and physical properties.

    PubMed

    Pluta, Miroslaw; Galeski, Andrzej

    2007-06-01

    Plastic deformation of amorphous, thermally noncrystallizable poly(L/DL-lactide) 70/30 (P(L/DL)LA) was induced by a plane-strain compression in a channel-die at different temperatures, above the glass transition (Tg) from 60 to 90 degrees C. Samples undeformed (reference) and deformed to different compression ratios, from 4.6 to 23.0, were studied by X-ray diffraction, thermally modulated differential scanning calorimetry, light microscopy, and mechanical methods-viscoelastic and tensile tests. The effects of the compression ratios and deformation temperatures on the final structure and properties of the P(L/DL)LA were evaluated. It was revealed that plastic deformation transformed an amorphous P(L/DL)LA (thermally noncrystallizable) to a crystalline fibrillar texture oriented in the flow direction. Fibrillar texture was formed in spite of the tendency of the plane-strain compression to form single-crystal-like texture. The crystallite size in the transverse direction was small, up to 90 angstroms at the highest compression ratio. No evidence of lamellar organization and features of supermolecular structure were detected by small-angle X-ray scattering and light microscopy, respectively. The oriented samples exhibited a low crystallinity degree at the level of 6-9% at the highest compression ratio. The main transformation mechanism was shear and orientation-induced crystallization. The crystalline phase was in the alpha crystallographic modification of poly(lactide) typically formed in more stereoregular poly(lactide) by thermal treatment. The glass transition increased with the increase of compression ratio reflecting the increase of orientation of the polymer chains. The tensile strength of deformed samples was improved considerably in comparison to that of the reference sample.

  8. Effect of the plasticizer di(2-ethylhexyl)phthalate on red cell deformability

    SciTech Connect

    Labow, R.S.; Card, R.T.; Rock, G.

    1987-07-01

    Red cell concentrates (RCC) are stored for 35 to 42 days in plastic containers manufactured with the liquid plasticizer di(2-ethylhexyl)phthalate (DEHP). DEHP leaches from the polyvinylchloride (PVC) plastic bag, then binds to and stabilizes the RC membrane. This study was undertaken to determine the deformability of the RC membrane using an osmotic gradient ektacytometer and to relate these measurements to the concentration of DEHP in the stored RCC. Pooled RCC was aliquoted into PL146 (PVC), PL732 (polyolefin), and PL732 (with added DEHP) bags with samples removed weekly for analysis of osmotic fragility, deformability, and DEHP concentration. The adenosine triphosphate (ATP) content was also measured. The increase in osmotic fragility during storage was greater when RCC was stored without DEHP. In addition, there was a decrease in the maximum elongation index (El max) when there was decreased DEHP in the storage bag. The osmolarity (Omax) at which El max occurred, as well as the Omin, the osmolarity at which minimum elongation (El min) occurred was higher in the PL732 container than in the PL146 or in the PL732 to which DEHP had been added. These changes could be reversed by addition of DEHP at the beginning of the storage period, showing a direct correlation between DEHP concentration during storage and RC membrane flexibility. By a better understanding of the mechanism of DEHP protection, it might be possible to substitute a less toxic stabilizing compound.

  9. Modeling Of Microstructure Evolution Of BCC Metals Subjected To Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Svyetlichnyy, Dmytro; Majta, Janusz; Muszka, Krzysztof; Łach, Łukasz

    2011-01-01

    Prediction of microstructure evolution and properties of ultrafine-grained materials is one of the most significant, current problems in materials science. Several advanced methods of analysis can be applied for this issue: vertex models, phase field models, Monte Carlo Potts, finite element method (FEM) discrete element method (DEM) and finally cellular automata (CA). The main asset of the CA is ability for a close correlation of the microstructure with the mechanical properties in micro- and meso-scale simulation. Joining CA with the DEM undoubtedly improves accuracy of modeling of coupled phenomena during the innovative forming processes in both micro- and macro-scale. Deformation in micro-scale shows anisotropy, which connected with that the polycrystalline material contains grains with different crystallographic orientation, and grain deformation is depended from configuration of directions of main stresses and axis of grain. Then, CA and DEM must be joint solutions of crystal plasticity theory. In the present model, deformation in macro-scale is transferred to meso-sale, where a block contains several, score or hundreds grains, and then is applied in micro-scale to each grain. Creation of low-angle boundaries and their development into high-angle boundaries are simulated by the cellular automata on the base of calculations using finite element method and crystal plasticity theory. The idea proposed in this study and particular solutions are discussed for the case of ultrafine-grained low-carbon steel.

  10. Modeling Of Microstructure Evolution Of BCC Metals Subjected To Severe Plastic Deformation

    SciTech Connect

    Svyetlichnyy, Dmytro; Majta, Janusz; Muszka, Krzysztof; Lach, Lukasz

    2011-01-17

    Prediction of microstructure evolution and properties of ultrafine-grained materials is one of the most significant, current problems in materials science. Several advanced methods of analysis can be applied for this issue: vertex models, phase field models, Monte Carlo Potts, finite element method (FEM) discrete element method (DEM) and finally cellular automata (CA). The main asset of the CA is ability for a close correlation of the microstructure with the mechanical properties in micro- and meso-scale simulation. Joining CA with the DEM undoubtedly improves accuracy of modeling of coupled phenomena during the innovative forming processes in both micro- and macro-scale. Deformation in micro-scale shows anisotropy, which connected with that the polycrystalline material contains grains with different crystallographic orientation, and grain deformation is depended from configuration of directions of main stresses and axis of grain. Then, CA and DEM must be joint solutions of crystal plasticity theory. In the present model, deformation in macro-scale is transferred to meso-sale, where a block contains several, score or hundreds grains, and then is applied in micro-scale to each grain. Creation of low-angle boundaries and their development into high-angle boundaries are simulated by the cellular automata on the base of calculations using finite element method and crystal plasticity theory. The idea proposed in this study and particular solutions are discussed for the case of ultrafine-grained low-carbon steel.

  11. Observations of a dynamical-to-kinematic diffraction transition in plastically deformed polycrystalline intermetallic YCu

    SciTech Connect

    Williams, Scott H.; Brown, Donald W.; Clausen, Bjorn; Russell, Alan; Gschneidner Jr., Karl A.

    2014-03-01

    Unlike most intermetallic compounds, polycrystalline YCu, a B2 (CsCl-type) intermetallic, is ductile at room temperature. The mechanisms for this behavior are not fully understood. In situ neutron diffraction was used to investigate whether a stress-induced phase transformation or twinning contribute to the ductility; however, neither mechanism was found to be active in YCu. Surprisingly, this study revealed that the intensities of the diffraction peaks increased after plastic deformation. It is thought that annealing the samples created nearly perfect crystallinity, and subsequent deformation reduced this high degree of lattice coherency, resulting in a modified mosaic structure that decreased or eliminated the extinction effect. Analysis of changes in diffraction peak intensity showed a region of primary plasticity that exhibits significant changes in diffraction behavior. Fully annealed samples initially contain diffracting volumes large enough to follow the dynamical theory of diffraction. When loaded beyond the yield point, dislocation motion disrupts the lattice perfection, and the diffracting volume is reduced to the point that diffraction follows the kinematic theory of diffraction. Since the sample preparation and deformation mechanisms present in this study are common in numerous material systems, this dynamical to kinematic diffraction transition should also be considered in other diffraction experiments. These measurements also suggest the possibility of a new method of investigating structural characteristics. (C) 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  12. Cap plasticity models and compactive and dilatant pre-failure deformation

    SciTech Connect

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-02-17

    At low mean stresses, porous geomaterials fail by shear localization, and at higher mean stresses, they undergo strain-hardening behavior. Cap plasticity models attempt to model this behavior using a pressure-dependent shear yield and/or shear limit-state envelope with a hardening or hardening/softening elliptical end cap to define pore collapse. While these traditional models describe compactive yield and ultimate shear failure, difficulties arise when the behavior involves a transition from compactive to dilatant deformation that occurs before the shear failure or limit-state shear stress is reached. In this work, a continuous surface cap plasticity model is used to predict compactive and dilatant pre-failure deformation. During loading the stress point can pass freely through the critical state point separating compactive from dilatant deformation. The predicted volumetric strain goes from compactive to dilatant without the use of a non-associated flow rule. The new model is stable in that Drucker's stability postulates are satisfied. The study has applications to several geosystems of current engineering interest (oil and gas reservoirs, nuclear waste repositories, buried targets, and depleted reservoirs for possible use for subsurface sequestration of greenhouse gases).

  13. Investigation of features of plastic deformation and fracture of fine-crystalline V-4Ti-4Cr alloy

    SciTech Connect

    Grinyaev, Konstantin V. Tyumentsev, Alexander N.; Ditenberg, Ivan A.; Smirnov, Ivan V.; Chernov, Vyacheslav M. E-mail: mmp@bochvar.ru; Potapenko, Mikhail M. E-mail: mmp@bochvar.ru

    2014-11-14

    With the use of transmission electron microscopy the investigation of defect substructure was carried out in the V-4Ti-4Cr-(C, N, O) alloy with disperse strengthening (by nanoparticles of oxy-carbo-nitride phase) after deformation by active tension at temperatures of 20 and 800 °C. It has been shown that an important feature of plastic deformation is deformation localization with crystal lattice reorientation.

  14. An Investigation of Enhanced Formability in AA5182-O Al During High-Rate Fre-Forming at Room-Temperature: Quantification of Deformation History

    SciTech Connect

    Rohatgi, Aashish; Soulami, Ayoub; Stephens, Elizabeth V.; Davies, Richard W.; Smith, Mark T.

    2014-03-01

    Following the two prior publication of PNNL Pulse-Pressure research in the Journal of Materials Processing Technology, this manuscript continues to describe PNNL’s advances in getting a better understanding of sheet metal formability under high strain-rate conditions. Specifically, using a combination of numerical modeling and novel experiments, we quantitatively demonstrate the deformation history associated with enhanced formability (~2.5X) in Al under room temperature forming.

  15. High-rate squeezing process of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  16. High-rate squeezing process of bulk metallic glasses

    PubMed Central

    Fan, Jitang

    2017-01-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092

  17. Wireless Measurement of Elastic and Plastic Deformation by a Metamaterial-Based Sensor

    PubMed Central

    Ozbey, Burak; Demir, Hilmi Volkan; Kurc, Ozgur; Erturk, Vakur B.; Altintas, Ayhan

    2014-01-01

    We report remote strain and displacement measurement during elastic and plastic deformation using a metamaterial-based wireless and passive sensor. The sensor is made of a comb-like nested split ring resonator (NSRR) probe operating in the near-field of an antenna, which functions as both the transmitter and the receiver. The NSRR probe is fixed on a standard steel reinforcing bar (rebar), and its frequency response is monitored telemetrically by a network analyzer connected to the antenna across the whole stress-strain curve. This wireless measurement includes both the elastic and plastic region deformation together for the first time, where wired technologies, like strain gauges, typically fail to capture. The experiments are further repeated in the presence of a concrete block between the antenna and the probe, and it is shown that the sensing system is capable of functioning through the concrete. The comparison of the wireless sensor measurement with those undertaken using strain gauges and extensometers reveals that the sensor is able to measure both the average strain and the relative displacement on the rebar as a result of the applied force in a considerably accurate way. The performance of the sensor is tested for different types of misalignments that can possibly occur due to the acting force. These results indicate that the metamaterial-based sensor holds great promise for its accurate, robust and wireless measurement of the elastic and plastic deformation of a rebar, providing beneficial information for remote structural health monitoring and post-earthquake damage assessment. PMID:25333292

  18. Factors contributing to plastic strain amplification in slip dominated deformation of magnesium alloys

    NASA Astrophysics Data System (ADS)

    Sinclair, C. W.; Martin, G.; Lebensohn, R. A.

    2015-12-01

    While plastic strains are never distributed uniformly in polycrystals, it has recently been shown experimentally that the distribution can be extremely heterogeneous in magnesium polycrystals even when the deformation is dominated by slip. Here, we attempt to provide insight into the (macroscopic) factors that contribute to this strain amplification and to explain, from a local perspective, the origins of this strain amplification. To do this, full field VPFFT crystal plasticity simulations have been performed under the simplifying assumption that twinning is inoperative. It is shown that the experimentally observed heterogeneity can be reproduced when a sufficiently high anisotropy in slip system strength is assumed. This can be further accentuated by a weakening of the texture.

  19. Plastic deformation mechanisms in polyimide resins and their semi-interpenetrating networks

    NASA Technical Reports Server (NTRS)

    Jang, Bor Z.

    1990-01-01

    High-performance thermoset resins and composites are critical to the future growth of space, aircraft, and defense industries in the USA. However, the processing-structure-property relationships in these materials remain poorly understood. In the present ASEE/NASA Summer Research Program, the plastic deformation modes and toughening mechanisms in single-phase and multiphase thermoset resins were investigated. Both thermoplastic and thermoset polyimide resins and their interpenetrating networks (IPNs and semi-IPNs) were included. The fundamental tendency to undergo strain localization (crazing and shear banding) as opposed to a more diffuse (or homogeneous) deformation in these polymers were evaluated. Other possible toughening mechanisms in multiphase thermoset resins were also examined. The topological features of network chain configuration/conformation and the multiplicity of phase morphology in INPs and semi-IPNs provide unprecedented opportunities for studying the toughening mechanisms in multiphase thermoset polymers and their fiber composites.

  20. Microstructure evolution of a multiphase superalloy processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Sauvage, Xavier; Mukhtarov, Shamil

    2014-08-01

    This paper presents an overview and some original results about the microstructure evolution of an Ultra Fine Grained (UFG) nickel-iron based alloy INCONEL 718 processed by Severe Plastic Deformation (SPD). The ultrafine grain structure of this alloy that contains a high density of γ" and γ' precipitates was characterized by Scanning Transmission Electron Microscopy (STEM). We propose a comparison between two SPD processes, High Pressure Torsion (HPT) and Multiple Forging (MF). The grain refinement is much more pronounced by HPT but intermetallic particles are partly dissolved during SPD. The UFG structure after MF is obviously very different and exhibits a much better thermal stability especially because second phase particles do not reprecipitate during post-deformation annealing.

  1. Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2016-09-30

    Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed materialmore » than indents that initially nucleate crystalline defects.« less

  2. Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation

    NASA Technical Reports Server (NTRS)

    Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.

    1986-01-01

    An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.

  3. 6th International Conference on Nanomaterials by Severe Plastic Deformation (NanoSPD6)

    NASA Astrophysics Data System (ADS)

    2014-08-01

    ''NanoSPD'' means Nano-material by Severe Plastic Deformation (SPD), which is an efficient way to obtain bulk nano-structured materials. During SPD, the microstructure of the material is transformed into a very fine structure consisting of ultra fine grains (UFG) approaching even the nano-scale. SPD is different from classical large strain forming processes in two aspects: 1. The sample undergoes extremely large strains without significant change in its dimensions, 2. In most SPD processes high hydrostatic stress is applied which makes it possible to deform difficult-to-form materials. This conference is part of a series of conferences taking place every third year; the history of NanoSPD conferences began in 1999 in Moscow (Russia), followed by Vienna in 2002 (Austria), Fukuoka in 2005 (Japan), Goslar in 2008 (Germany), Nanjing in 2011 (China), and Metz in 2014 (France). The preface continues in the pdf.

  4. Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later

    NASA Astrophysics Data System (ADS)

    Valiev, Ruslan Z.; Estrin, Yuri; Horita, Zenji; Langdon, Terence G.; Zehetbauer, Michael J.; Zhu, Yuntian

    2016-04-01

    It is now well established that the processing of bulk solids through the application of severe plastic deformation (SPD) leads to exceptional grain refinement to the submicrometer or nanometer level. Extensive research over the last decade has demonstrated that SPD processing also produces unusual phase transformations and leads to the introduction of a range of nanostructural features, including nonequilibrium grain boundaries, deformation twins, dislocation substructures, vacancy agglomerates, and solute segregation and clustering. These many structural changes provide new opportunities for fine tuning the characteristics of SPD metals to attain major improvements in their physical, mechanical, chemical, and functional properties. This review provides a summary of some of these recent developments. Special emphasis is placed on the use of SPD processing in achieving increased electrical conductivity, superconductivity, and thermoelectricity, an improved hydrogen storage capability, materials for use in biomedical applications, and the fabrication of high-strength metal-matrix nanocomposites.

  5. Smaller is Plastic: Polymorphic Structures and Mechanism of Deformation in Nanoscale hcp Metals.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2015-06-10

    Using first-principles calculations, we establish the existence of highly stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.

  6. EBIC and LBIC studies of the properties of extended defects in plastically deformed silicon

    SciTech Connect

    Orlov, V. I.; Feklisova, O. V.; Yakimov, E. B.

    2015-06-15

    The results of comparative experimental studies of one- and two-dimensional defects in plastically deformed silicon by the electron-beam-induced current (EBIC) and light-beam-induced current (LBIC) techniques are reported. It is shown that the contrast of two-dimensional defects (dislocation trails) in the LBIC method can by much more pronounced than that in the EBIC technique, which is in good agreement with the results of calculations. The higher sensitivity of the LBIC technique is mainly due to deeper penetration of the optical beam into the material in comparison to the penetration of the electron beam of a scanning electron microscope.

  7. The effect of carbon concentration and plastic deformation on ultrasonic higher order elastic properties of steel

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Allison, S. G.; Salama, K.

    1985-01-01

    The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.

  8. The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact

    NASA Astrophysics Data System (ADS)

    Bower, A. F.; Johnson, K. L.

    THE INFLUENCE of strain hardening on the cumulative plastic deformation (ratchetting) which takes place in repeated rolling and sliding contacts has been assessed by the use of a non-linear kinematic hardening law proposed and tested by B OWER ( J. Mech. Phys. Solids37,455, 1989). Both the sub-surface flow, which occurs at low traction coefficients ( <0.25), and the surface flow which occurs at high traction ( >0.25), have been investigated. Two materials have been studied: hard-drawn copper and rail steel. Good correlation was found for copper between the theory and rolling contact experiments.

  9. Effects of pairwise versus many-body forces on high-stress plastic deformation

    NASA Astrophysics Data System (ADS)

    Holian, B. L.; Voter, A. F.; Wagner, N. J.; Ravelo, R. J.; Chen, S. P.; Hoover, W. G.; Hoover, C. G.; Hammerberg, J. E.; Dontje, T. D.

    1991-03-01

    We propose a model embedded-atom (many-body) potential and test it against an effective, density-independent, pairwise-additive potential in a variety of nonequilibrium molecular-dynamics simulations of plastic deformation under high stress. Even though both kinds of interactions have nearly the same equilibrium equation of state, the defect energies (i.e., vacancy formation and surface energies) are quite different. As a result, we observe significant qualitative differences in flow behavior between systems characterized by purely pairwise interactions versus higher-order many-body forces.

  10. Structural and mechanical properties of nanocrystalline titanium processed by severe plastic deformation

    SciTech Connect

    Popov, A.A.; Pyshmintsev, I.Y.; Demakov, S.L.; Illarionov, A.G.; Lowe, T.C.; Sergeyeva, A.V.; Valiev, R.Z.

    1997-10-01

    Recent investigations have demonstrated that materials with ultrafine grain (UFG) structure (nano- and submicron crystalline) can be processed by severe plastic deformation. One advantage of this method is that it can be applied to both pure metals and alloys. Moreover, it produces samples that have no residual porosity so that meaningful measurements of the physical and mechanical properties are possible. Investigations of ultrafine grain copper and aluminum alloys have revealed a number of specific features of their mechanical behavior, namely extremely high hardness and strength, the absence of strain hardening, and deviation form the Hall-Petch relationship. In this work the authors investigate the mechanical properties and thermal stability of UFG titanium.

  11. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.

    2016-12-01

    The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.

  12. Correlation between structural heterogeneity and plastic deformation for phase separating FeCu metallic glasses

    PubMed Central

    Peng, Chuan-Xiao; Song, Kai-Kai; Wang, Li; Şopu, Daniel; Pauly, Simon; Eckert, Jürgen

    2016-01-01

    Unlike crystalline metals, the plastic deformation of metallic glasses (MGs) involves a competition between disordering and structural relaxation ordering, which is not well understood, yet. Molecular dynamics (MD) simulations were performed to investigate the evolutions of strain localizations, short-range order (SRO) as well as the free volume in the glass during compressive deformation of Fe50Cu50 MGs with different degrees of phase separation. Our findings indicate that the free volume in the phase separating MGs decreases while the shear strain localizations increase with increasing degree of phase separation. Cu-centered clusters show higher potential energies and Voronoi volumes, and bear larger local shear strains. On the other hand, Fe-centered pentagon-rich clusters in Cu-rich regions seem to play an important role to resist the shear transformation. The dilatation or annihilation of Voronoi volumes is due to the competition between ordering via structural relaxation and shear stress-induced deformation. The present study could provide a better understanding of the relationship between the structural inhomogeneity and the deformation of MGs. PMID:27681052

  13. The effect of crystal-plastic deformation on Ti concentration in quartz

    NASA Astrophysics Data System (ADS)

    Nachlas, W. O.; Hirth, G.; Whitney, D. L.; Teyssier, C. P.

    2013-12-01

    Quartz is a dominant phase controlling crustal rheology and strain localization, and the sensitivity of its recrystallization mechanisms to variations in temperature, pressure, and fluid activity make evaluation of these parameters crucial to reconstructing the deformation history of quartz-bearing rocks in the lithosphere. The advent of Ti in quartz thermobarometry provides a technique with potentially powerful applications for understanding the conditions at which rocks deform plastically in the crust. However, it is unclear how ductile deformation, specifically dislocation creep, affects Ti substitution in quartz and whether the Ti concentration in quartz accurately records the conditions at which quartz recrystallized. This study addresses these questions through a series of high P-T rock deformation experiments on precisely synthesized Ti-doped quartz aggregates to investigate the influence of strain and dynamic recrystallization on the concentration of Ti in quartz. Laboratory rock deformation experiments provide an ideal opportunity to study Ti solubility in deformed quartz because they allow for recrystallization to occur in a controlled environment; deformation experiments are conducted under isothermal and isobaric conditions at constant strain rate for increasing intervals of time to isolate the effect of strain on Ti chemistry of quartz. This study employs a novel doping synthesis method to produce a quartz aggregate consisting of a large population of quartz crystals doped with a precise Ti concentration where each individual crystal has a uniform dopant distribution. Deformation of a homogeneous starting material enables simulation of a retrograde solubility path, in which a sample with an initially high, uniform concentration is modified during deformation at conditions where the solubility is substantially lower. This enables observations to be made of the mechanisms responsible for mobilizing Ti through diffusion and exsolution to adjust to the

  14. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    NASA Astrophysics Data System (ADS)

    Gerbig, Y. B.; Michaels, C. A.; Bradby, J. E.; Haberl, B.; Cook, R. F.

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published papers on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately fivefold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of sixfold coordinated atomic arrangements. These sixfold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  15. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation

    PubMed Central

    Gerbig, Y.B; Michaels, C.A.; Bradby, J.E.; Haberl, B.; Cook, R.F.

    2016-01-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  16. In situ spectroscopic study of the plastic deformation of amorphous silicon under non-hydrostatic conditions induced by indentation.

    PubMed

    Gerbig, Y B; Michaels, C A; Bradby, J E; Haberl, B; Cook, R F

    2015-12-01

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique. Quantitative analyses of the generated in situ Raman maps provide unique, new insight into the phase behavior of as-implanted a-Si. In particular, the occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were measured. The experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a sequence for the development of deformation of a-Si under indentation loading. The sequence involves three distinct deformation mechanisms of a-Si: (1) reversible deformation, (2) increase in coordination defects (onset of plastic deformation), and (3) phase transformation. Estimated conditions for the occurrence of these mechanisms are given with respect to relevant intrinsic and extrinsic parameters, such as indentation stress, volumetric strain, and bond angle distribution (a measure for the structural order of the amorphous network). The induced volumetric strains are accommodated solely by reversible deformation of the tetrahedral network when exposed to small indentation stresses. At greater indentation stresses, the increased volumetric strains in the tetrahedral network lead to the formation of predominately five-fold coordination defects, which seems to mark the onset of irreversible or plastic deformation of the a-Si thin film. Further increase in the indentation stress appears to initiate the formation of six-fold coordinated atomic arrangements. These six-fold coordinated arrangements may maintain their amorphous tetrahedral structure with a high density of coordination defects or nucleate as a new crystalline

  17. Plastic deformation behavior of aluminum casting alloys A356/357

    NASA Astrophysics Data System (ADS)

    Wang, Q. G.

    2004-09-01

    The plastic deformation behavior of aluminum casting alloys A356 and A357 has been investigated at various solidification rates with or without Sr modification using monotonic tensile and multi-loop tensile and compression testing. The results indicate that at low plastic strains, the eutectic particle aspect ratio and matrix strength dominate the work hardening, while at large plastic strains, the hardening rate depends on secondary dendrite arm spacing (SDAS). For the alloys studied, the average internal stresses increase very rapidly at small plastic strains and gradually saturate at large plastic strains. Elongated eutectic particles, small SDAS, or high matrix strength result in a high saturation value. The difference in the internal stresses, due to different microstructural features, determines the rate of eutectic particle cracking and, in turn, the tensile instability of the alloys. The higher the internal stresses, the higher the damage rate of particle cracking and then the lower the Young’s modulus. The fracture strain of alloys A356/357 corresponds to the critical amount of damage by particle cracking locally or globally, irrespective of the fineness of the microstructure. In the coarse structure (large SDAS), this critical amount of damage is easily reached, due to the clusters of large and elongated particles, leading to alloy fracture before global necking. However, in the alloy with the small SDAS, the critical amount of damage is postponed until global necking takes place due to the small and round particles. Current models for dispersion hardening can be used to calculate the stresses induced in the particles. The calculations agree well with the results inferred from the experimental results.

  18. Modeling plastic deformation of post-irradiated copper micro-pillars

    NASA Astrophysics Data System (ADS)

    Crosby, Tamer; Po, Giacomo; Ghoniem, Nasr M.

    2014-12-01

    We present here an application of a fundamentally new theoretical framework for description of the simultaneous evolution of radiation damage and plasticity that can describe both in situ and ex situ deformation of structural materials [1]. The theory is based on the variational principle of maximum entropy production rate; with constraints on dislocation climb motion that are imposed by point defect fluxes as a result of irradiation. The developed theory is implemented in a new computational code that facilitates the simulation of irradiated and unirradiated materials alike in a consistent fashion [2]. Discrete Dislocation Dynamics (DDD) computer simulations are presented here for irradiated fcc metals that address the phenomenon of dislocation channel formation in post-irradiated copper. The focus of the simulations is on the role of micro-pillar boundaries and the statistics of dislocation pinning by stacking-fault tetrahedra (SFTs) on the onset of dislocation channel and incipient surface crack formation. The simulations show that the spatial heterogeneity in the distribution of SFTs naturally leads to localized plastic deformation and incipient surface fracture of micro-pillars.

  19. Elementary model of severe plastic deformation by KoBo process

    SciTech Connect

    Gusak, A.; Storozhuk, N.; Danielewski, M. Korbel, A.; Bochniak, M.

    2014-01-21

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In this very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.

  20. Elementary model of severe plastic deformation by KoBo process

    NASA Astrophysics Data System (ADS)

    Gusak, A.; Danielewski, M.; Korbel, A.; Bochniak, M.; Storozhuk, N.

    2014-01-01

    Self-consistent model of generation, interaction, and annihilation of point defects in the gradient of oscillating stresses is presented. This model describes the recently suggested method of severe plastic deformation by combination of pressure and oscillating rotations of the die along the billet axis (KoBo process). Model provides the existence of distinct zone of reduced viscosity with sharply increased concentration of point defects. This zone provides the high extrusion velocity. Presented model confirms that the Severe Plastic Deformation (SPD) in KoBo may be treated as non-equilibrium phase transition of abrupt drop of viscosity in rather well defined spatial zone. In this very zone, an intensive lateral rotational movement proceeds together with generation of point defects which in self-organized manner make rotation possible by the decrease of viscosity. The special properties of material under KoBo version of SPD can be described without using the concepts of nonequilibrium grain boundaries, ballistic jumps and amorphization. The model can be extended to include different SPD processes.

  1. Transition of Temporal Scaling Behavior in Percolation Assisted Shear-branching Structure during Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Ren, Jingli; Chen, Cun; Wang, Gang; Liaw, Peter K.

    2017-03-01

    This paper explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10‑2 s‑1 the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at the intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10‑2 s‑1.

  2. Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate

    NASA Astrophysics Data System (ADS)

    Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong

    2016-10-01

    High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.

  3. Transition of Temporal Scaling Behavior in Percolation Assisted Shear-branching Structure during Plastic Deformation

    PubMed Central

    Ren, Jingli; Chen, Cun; Wang, Gang; Liaw, Peter K.

    2017-01-01

    This paper explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10−2 s−1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at the intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10−2 s−1. PMID:28327562

  4. Formation of nanocrystalline layers by surface severe plastic deformation and pulsed plasma electrolytic carburizing.

    PubMed

    Aliofkhazraei, M; Rouhaghdam, A Sabour

    2010-07-01

    Surfaces of various kinds of metallic materials spheres were treated by nanocrystalline surface severe plastic deformation and then pulsed nanocrystalline plasma electrolytic carburizing to study nanocrystalline substrate effect on formation and nano-hardness of hard nanocrystalline layer. The surface layers of the metallic materials developed by the nanocrystalline surface severe plastic deformation were characterized by means of high resolution scanning electron microscope. Nearly equiaxed nanocrystals with grain sizes ranging from 15 to 90 nm were observed in the near surface regions of all metallic materials, which are low carbon steel and commercially pure titanium. The effect of substrate nanocrystallization on growth kinetics and hardness of formed nanocrystalline carbide layer was studied with the means of figure analysis and nanohardness tests. Figure analysis show the length to diameter ratio and distribution curve of nanocrystals and it has been found that the achieved properties of hard layer (growth rate, nano-hardness, nanostructure...) are related to these factors. It was also clarified that these techniques and surface nanocrystallization can be easily achieved in most of metallic materials. Results indicate that the resultant hardened carburized layers exhibited excellent hardness profile. Investigation of the layer characteristics showed strong dependence followed from the treatment experimental parameters as well as the shape of nanocrystals.

  5. A combined crystal plasticity and graph-based vertex model of dynamic recrystallization at large deformations

    NASA Astrophysics Data System (ADS)

    Mellbin, Y.; Hallberg, H.; Ristinmaa, M.

    2015-06-01

    A mesoscale model of microstructure evolution is formulated in the present work by combining a crystal plasticity model with a graph-based vertex algorithm. This provides a versatile formulation capable of capturing finite-strain deformations, development of texture and microstructure evolution through recrystallization. The crystal plasticity model is employed in a finite element setting and allows tracing of stored energy build-up in the polycrystal microstructure and concurrent reorientation of the crystal lattices in the grains. This influences the progression of recrystallization as nucleation occurs at sites with sufficient stored energy and since the grain boundary mobility and energy is allowed to vary with crystallographic misorientation across the boundaries. The proposed graph-based vertex model describes the topological changes to the grain microstructure and keeps track of the grain inter-connectivity. Through homogenization, the macroscopic material response is also obtained. By the proposed modeling approach, grain structure evolution at large deformations as well as texture development are captured. This is in contrast to most other models of recrystallization which are usually limited by assumptions of one or the other of these factors. In simulation examples, the model is in the present study shown to capture the salient features of dynamic recrystallization, including the effects of varying initial grain size and strain rate on the transitions between single-peak and multiple-peak oscillating flow stress behavior. Also the development of recrystallization texture and the influence of different assumptions on orientation of recrystallization nuclei are investigated. Further, recrystallization kinetics are discussed and compared to classical JMAK theory. To promote computational efficiency, the polycrystal plasticity algorithm is parallelized through a GPU implementation that was recently proposed by the authors.

  6. Anhysteretic magnetization and magnetostriction of thin NiFe films under stress and plastic deformation

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Garrity, Ed; Lofland, Sam

    2006-03-01

    The magnetic properties of thin samples of a thin film NiFe sample under tensile stress are investigated. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops are discussed. Also, a role of the plastic deformation interrelated with the elastic stress in the magnetization process is established. An experimental system based on a conventional vibrating sample magnetometer equipped with the specially designed loading fixture and optical resonant spectroscopy tension monitoring technique is used to measure anhysteretic permeability and magnetization curve as a function of stress and temperature. This method used to measure anhysteretic permeability and magnetization curve of Ni-Fe as a function of stress and temperature. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. The large positive magnetostriction constant of FeNi samples leads to higher susceptibility and lower coercivity with tensile stress while the large volume magnetostriction results in reduced saturation magnetization. Large stresses imposed on the sample result in plastic strain of the sample which induces increase in dislocation density and domain wall pinning. This causes the gain in hysteresis loss and coercivity to increase at the highest stresses. We also discuss the effect of the Ni composition on results of the measurements.

  7. Micropillar Compression Technique Applied to Micron-Scale Mudstone Elasto-Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Boyce, B.; Buchheit, T.; Heath, J. E.; Chidsey, T.; Michael, J.

    2010-12-01

    Mudstone mechanical testing is often limited by poor core recovery and sample size, preservation and preparation issues, which can lead to sampling bias, damage, and time-dependent effects. A micropillar compression technique, originally developed by Uchic et al. 2004, here is applied to elasto-plastic deformation of small volumes of mudstone, in the range of cubic microns. This study examines behavior of the Gothic shale, the basal unit of the Ismay zone of the Pennsylvanian Paradox Formation and potential shale gas play in southeastern Utah, USA. Precision manufacture of micropillars 5 microns in diameter and 10 microns in length are prepared using an ion-milling method. Characterization of samples is carried out using: dual focused ion - scanning electron beam imaging of nano-scaled pores and distribution of matrix clay and quartz, as well as pore-filling organics; laser scanning confocal (LSCM) 3D imaging of natural fractures; and gas permeability, among other techniques. Compression testing of micropillars under load control is performed using two different nanoindenter techniques. Deformation of 0.5 cm in diameter by 1 cm in length cores is carried out and visualized by a microscope loading stage and laser scanning confocal microscopy. Axisymmetric multistage compression testing and multi-stress path testing is carried out using 2.54 cm plugs. Discussion of results addresses size of representative elementary volumes applicable to continuum-scale mudstone deformation, anisotropy, and size-scale plasticity effects. Other issues include fabrication-induced damage, alignment, and influence of substrate. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline -Ti

    SciTech Connect

    Wang, Leyun; Barabash, Rozaliya; Yang, Y; Bieler, Prof T R; Crimp, Prof M A; Eisenlohr, P; Liu, W.; Ice, Gene E

    2011-01-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  9. Experimental characterization and crystal plasticity modeling of heterogeneous deformation in polycrystalline {alpha}-Ti.

    SciTech Connect

    Wang, L.; Barabash, R. I.; Yang, Y.; Bieler, T. R.; Crimp, M. A.; Eisenlohr, P.; Liu, W.; Ice, G. E.

    2011-03-01

    Grain-level heterogeneous deformation was studied in a polycrystalline {alpha}-Ti specimen deformed by four-point bending. Dislocation slip activity in the microstructure was investigated by surface slip trace analysis. Three-dimensional-X-ray diffraction (3D-XRD) was used to investigate subsurface lattice rotations and to identify geometrically necessary dislocations (GNDs). The slip systems of local GNDs were analyzed by studying the streaking directions of reflections in corresponding Laue patterns. The analysis performed in one grain indicated that the subsurface GNDs were from the same slip system identified using slip trace analysis in backscattered electron images. A crystal plasticity finite element (CPFE) model was used to simulate deformation of the same microstructural region. The predictions of dislocation slip activity match the general aspects of the experimental observations, including the ability to simulate the activation of different slip systems in grains where multiple slip systems were activated. Prediction of local crystal rotations, however, was the least accurate aspect of the CPFE model.

  10. The influence of hold time on the onset of plastic deformation in silicon

    SciTech Connect

    Wong, S.; Haberl, B.; Williams, J. S.; Bradby, J. E.

    2015-12-28

    The transformation of diamond-cubic silicon to the metallic β-Sn phase is known to be “sluggish,” even when the critical pressure (∼11 GPa) for the transformation is reached. In this letter, we use nanoindentation to apply pressures to just above the critical threshold. In this regime, the sample displays purely elastic behavior at zero hold time. As the hold time at maximum load is increased up to 180 s, the percentage of indents that plastically deform also increase. Interestingly, the indents deform via one of two distinct processes: either via a phase transformation to a mixed bc8/r8-Si end phase, or by initiation of crystalline defects. Raman spectroscopy and cross-sectional transmission electron microscopy are used to show that the two deformation mechanisms are mutually exclusive under the indentation conditions presented here, and elastic modelling was utilized to propose a model for this mutually exclusive behavior. Hence, this behavior enhances the potential for application of the exotic bc8/r8-Si end phase.

  11. The influence of hold time on the onset of plastic deformation in silicon

    NASA Astrophysics Data System (ADS)

    Wong, S.; Haberl, B.; Williams, J. S.; Bradby, J. E.

    2015-12-01

    The transformation of diamond-cubic silicon to the metallic β-Sn phase is known to be "sluggish," even when the critical pressure (˜11 GPa) for the transformation is reached. In this letter, we use nanoindentation to apply pressures to just above the critical threshold. In this regime, the sample displays purely elastic behavior at zero hold time. As the hold time at maximum load is increased up to 180 s, the percentage of indents that plastically deform also increase. Interestingly, the indents deform via one of two distinct processes: either via a phase transformation to a mixed bc8/r8-Si end phase, or by initiation of crystalline defects. Raman spectroscopy and cross-sectional transmission electron microscopy are used to show that the two deformation mechanisms are mutually exclusive under the indentation conditions presented here, and elastic modelling was utilized to propose a model for this mutually exclusive behavior. Hence, this behavior enhances the potential for application of the exotic bc8/r8-Si end phase.

  12. Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties

    SciTech Connect

    Young, John P.; Askari, Hesam A.; Heiden, Michael J.; Hovanski, Yuri; Field, David P.; Zbib, Hussein M.

    2013-07-08

    In recent years magnesium alloys have attracted significant attention as potential candidates to replace many of the heavier metals used in some automotive applications. However, the limited formability of magnesium and its alloys at room temperature has driven interest in the superplastic forming magnesium as an alternative shaping method. Severe plastic deformation techniques have become a well studied method of refining the grain size and modifying the microstructural characteristics of many magnesium alloys to achieve greater superplastic properties. In this study twin roll cast (TRC) AZ31 magnesium alloy was subjected to equal channel angular pressing (ECAP) and friction stir welding (FSW). The influence of these severe plastic deformation processes on the grain size, texture and grain boundary character distribution was investigated to identify the optimum severe plastic deformation process for the superplastic forming of AZ31.

  13. A defect density-based constitutive crystal plasticity framework for modeling the plastic deformation of Fe-Cr-Al cladding alloys subsequent to irradiation

    SciTech Connect

    Patra, Anirban; Wen, Wei; Martinez Saez, Enrique; Tome, Carlos

    2016-02-05

    It is essential to understand the deformation behavior of these Fe-Cr-Al alloys, in order to be able to develop models for predicting their mechanical response under varied loading conditions. Interaction of dislocations with the radiation-induced defects governs the crystallographic deformation mechanisms. A crystal plasticity framework is employed to model these mechanisms in Fe-Cr-Al alloys. This work builds on a previously developed defect density-based crystal plasticity model for bcc metals and alloys, with necessary modifications made to account for the defect substructure observed in Fe-Cr-Al alloys. The model is implemented in a Visco-Plastic Self Consistent (VPSC) framework, to predict the mechanical behavior under quasi-static loading.

  14. A Novel Micro-Scale Plastic Deformation Feature on a Bulk Metallic Glass Surface under Laser Shock Peening

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Wei, Bing-Chen; Wang, Xi; Xu, Guang-Yue; Li, Lei; Wu, Xian-Qian; Song, Hong-Wei; Huang, Chen-Guang

    2013-03-01

    Laser shocking peening is a widely applied surface treatment technique that can effectively improve the fatigue properties of metal parts. We observe many micro-scale arc plastic steps on the surface of Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glass subjected to the ultra-high pressure and strain rate induced by laser shock peening. The scanning electronic microscopy and atomic force microscopy show that the arc plastic step (APS) has an arc boundary, 50-300 nm step height, 5-50 μm radius and no preferable direction. These APSs have the ability to accommodate plastic deformation in the same way as shear band. This may indicate a new mechanism to accommodate the plastic deformation in amorphous metallic glass under high pressure, ultra-high strain rates, and short duration.

  15. A deformation theory of strain gradient crystal plasticity that accounts for geometrically necessary dislocations

    NASA Astrophysics Data System (ADS)

    Bardella, Lorenzo

    2006-01-01

    We propose a deformation theory of strain gradient crystal plasticity that accounts for the density of geometrically necessary dislocations by including, as an independent kinematic variable, Nye's dislocation density tensor [1953. Acta Metallurgica 1, 153-162]. This is accomplished in the same fashion as proposed by Gurtin and co-workers (see, for instance, Gurtin and Needleman [2005. J. Mech. Phys. Solids 53, 1-31]) in the context of a flow theory of crystal plasticity, by introducing the so-called defect energy. Moreover, in order to better describe the strengthening accompanied by diminishing size, we propose that the classical part of the plastic potential may be dependent on both the plastic slip vector and its gradient; for single crystals, this also makes it easier to deal with the "higher-order" boundary conditions. We develop both the kinematic formulation and its static dual and apply the theory to the simple shear of a constrained strip (example already exploited in Shu et al. [2001. J. Mech. Phys. Solids 49, 1361-1395], Bittencourt et al. [2003. J. Mech. Phys. Solids 51, 281-310], Niordson and Hutchinson [2003. Euro J. Mech. Phys. Solids 22, 771-778], Evers et al. [2004. J. Mech. Phys. Solids 52, 2379-2401], and Anand et al. [2005. J. Mech. Phys. Solids 53, 1789-1826]) to investigate what sort of behaviour the new model predicts. The availability of the total potential energy functional and its static dual allows us to easily solve this simple boundary value problem by resorting to the Ritz method.

  16. Effect of plastic deformation on the magnetic properties and dislocation luminescence of isotopically enriched silicon {sup 29}Si:B

    SciTech Connect

    Koplak, O. V.; Shteynman, E. A.; Tereschenko, A. N.; Morgunov, R. B.

    2015-09-15

    A correlation between the temperature dependences of the D1-line intensity of dislocation luminescence and the magnetic moment of plastically deformed isotopically enriched crystals {sup 29}Si:B is found. It is established that the magnetic susceptibility of the deformed crystals obtained by integration of the spectra of electron spin resonance and the D1-line intensity undergo similar nonmonotonic variations with temperature varying in the range of 20–32 K.

  17. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.

    PubMed

    Kobler, A; Kashiwar, A; Hahn, H; Kübel, C

    2013-05-01

    Nanocrystalline metals are expected to exhibit different deformation mechanisms when compared to their coarse grained counterparts because the dislocation storage capacity decreases and the grain boundary mediated processes become more pronounced with decreasing grain size. As a new approach to directly image and quantify the plastic deformation processes in nanocrystalline thin films, a combination of automated crystal orientation mapping in microprobe STEM mode with in situ straining inside a TEM was developed. ACOM-TEM closes the gap between EBSD and BF/DFTEM by providing full orientation maps with nanometer resolution. The novel combination with in situ straining provided for the first time the possibility to directly image and quantify the structural changes of all crystallites in the ensemble of a thin film at the nanometer scale during mechanical deformation. It was used to characterize the metallographic changes during tensile deformation of a nanocrystalline Au thin film prepared by magnetron sputtering. The investigation of the grain size, grain orientation and twinning on a global (grain average over a micron sized area) and local (assembly of selected grains) scale allowed for the development of an in depth picture of the deformation processes. Grain boundary motion and local grain rotation were two of the processes acting to dissipate the applied stress. Additionally, twinning/detwinning occurred simultaneously during straining. These processes, which occurred locally already in the micro-plastic regime, led to global grain growth starting at the transition to the macro-plastic deformation regime.

  18. Mixed brittle-plastic deformation behaviour in a slate belt. Examples from the High-Ardenne slate belt (Belgium, Germany)

    NASA Astrophysics Data System (ADS)

    Sintubin, Manuel; van Baelen, Hervé; van Noten, Koen; Muchez, Philippe

    2010-05-01

    In the High-Ardenne slate belt, part of the Rhenohercynian external fold-and-thrust belt at the northern extremity of the Late Palaeozoic Variscan orogen (Belgium, Germany, France), particular quartz vein occurrences can be observed in predominantly fine-grained siliciclastic metasediments. Detailed structural, petrographical and geochemical studies has revealed that these vein occurrences can be related to a mixed brittle-plastic deformation behaviour in a low-grade metamorphic mid-crustal environment. The first type of quartz veins are bedding-perpendicular, lens-shaped extension veins that are confined to the sandstone layers within the multilayer sequence. Fluid inclusion studies demonstrate high fluid pressures suggesting that the individual sandstone bodies acted as isolated high-pressure compartments in an overpressured basin. Hydraulic fracturing occurred during the tectonic inversion (from extension to compression) in the earliest stages of the Variscan orogeny. The vein fill shows a blocky character indicating crystal growth in open cavities. Both the typical lens shape of the veins and the subsequent cuspate-lobate folding of the bed interfaces in between the quartz veins suggest plastic deformation of cohesionless fluid-filled fissures. Metamorphic grade of the host rock and fluid temperature and pressure clearly indicates mid-crustal conditions below the brittle-plastic transition. This first type of quartz veins exemplifies mixed brittle-plastic deformation behaviour, possibly related to a transient deepening of the brittle-plastic transition. This is in contrast with contemporaneous bedding-perpendicular crack-seal veins observed in higher - upper-crustal - structural levels in the slate belt, reflecting pure brittle deformation behaviour. The second type are discordant quartz veins confined to extensional low-angle detachment shear zones. These very irregular veins transect a pre-existing pervasive cleavage fabric. They show no matching walls and

  19. Thermomechanical model for the plastic deformation in high power laser diodes during operation

    NASA Astrophysics Data System (ADS)

    Martín-Martín, A.; Avella, M.; Iñiguez, M. P.; Jiménez, J.; Oudart, M.; Nagle, J.

    2009-10-01

    A thermomechanical model for the mechanism of rapid degradation of AlGaAs based high power laser bars (808 nm) is presented. Thermal stresses induced in the device by local heating around a facet defect by nonradiative recombination and self-absorption of photons are calculated, as well as the conditions for the beginning of plastic deformation, when these thermal stresses overcome the yield strength. The values of the power density and of the local temperature at which the yield limit is surmounted are in agreement with the threshold values for the degradation of Al based lasers given in the literature. The present model can also elucidate the role played by the packaging stress, being able to explain how this stress reduces the optical power density threshold for failure of these lasers.

  20. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    PubMed Central

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-01-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675–1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications. PMID:26503706

  1. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism.

    PubMed

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-27

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m(0.5). Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  2. Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Rehman, Sahibzada Shakir; Wang, Weimin; Wang, Hao; Wang, Yucheng; Zhang, Jinyong; Zhang, Fan; Fu, Zhengyi

    2015-10-01

    A new ceramic sintering approach employing plastic deformation as the dominant mechanism is proposed, at low temperature close to the onset point of grain growth and under high pressure. Based on this route, fully dense boron carbide without grain growth can be prepared at 1,675-1,700 °C and under pressure of (≥) 80 MPa in 5 minutes. The dense boron carbide shows excellent mechanical properties, including Vickers hardness of 37.8 GPa, flexural strength of 445.3 MPa and fracture toughness of 4.7 MPa•m0.5. Such a process should also facilitate the cost-effective preparation of other advanced ceramics for practical applications.

  3. Identification of As/sub Ga/ antisites in plastically deformed GaAs

    SciTech Connect

    Weber, E.R.; Ennen, H.; Kaufmann, U.; Windscheif, J.; Schneider, J.; Wosinski, T.

    1982-09-01

    As/sub Ga/ antisite defects formed during plastic deformation of GaAs are identified by electron paramagnetic resonance (EPR) measurements. From photo-EPR results it can be concluded that the two levels of this double donor are located near E/sub c/ -0.75 eV and E/sub v/ +0.5 eV. These values are coincident with the Fermi level pinning energies at Schottky barriers. The upper level can be related to the ''main electron trap'' EL2 in GaAs. Photoluminescence experiments before and after thermal annealing suggest that As/sub Ga/ defects reduce the near band edge luminescence efficiency. A dislocation climb model is presented which is able to explain As/sub Ga/ formation during dislocation movement. The production of As/sub Ga/ antisites during dislocation motion under injection conditions in light emitting devices may thus be connected with degradation of the light output.

  4. Microstructure of aluminum-iron alloys subjected to severe plastic deformation

    SciTech Connect

    Senkov, O.N.; Froes, F.H.; Stolyarov, V.V.; Valiev, R.Z.; Liu, J.

    1998-04-14

    The present paper describes detailed experiments on structure and phase characterization carried out on aluminum-iron alloys after intense torsion straining. The equilibrium solubility of iron in the aluminum lattice at room temperature has been reported to be 0.025 at.%. Alloying of aluminum with iron can increase the high-temperature strength due to a dispersion of second-phase particles. This effect can be enhanced by increasing the solid solubility extension of iron in the aluminum matrix and producing non-equilibrium phases by techniques such as RS, MA or even a laser treatment. In the present work, the severe plastic deformation approach has been used to extend the iron solubility in aluminum and to produce a nano-grained structure in several Al-Fe alloys.

  5. Grain boundary distribution and texture in ultrafine-grained copper produced by severe plastic deformation

    SciTech Connect

    Mishin, O.V. |; Gertsman, V.Y. |; Valiev, R.Z.; Gottstein, G.

    1996-10-01

    Ultrafine-grained (UFG), i.e., nano- and submicrocrystalline materials have attracted great attention in recent years. This interest is caused by the unusual mechanical and physical properties of these materials. The extremely high volume fraction of grain boundaries (GBs) and triple junctions in UFG materials contribute to their unusual properties. However, other important parameters describing polycrystalline aggregate, namely, grain boundary misorientation and character distributions have not yet been studied in UFG materials, though they are conceived to influence mechanical and physical properties as well. Some studies indicated that mainly high-angle GBs were formed during severe plastic deformation; however, no direct proof of this suggestion has been obtained so far. The current paper deals with a statistical study of GB distributions and texture in UFG-materials. Pure copper was chosen for this study, since many results on microstructure and properties of the ultrafine-grained state produced in this material are available.

  6. MD simulation of plastic deformation nucleation in stressed crystallites under irradiation

    NASA Astrophysics Data System (ADS)

    Korchuganov, A. V.; Zolnikov, K. P.; Kryzhevich, D. S.; Chernov, V. M.; Psakhie, S. G.

    2016-12-01

    The investigation of plastic deformation nucleation in metals and alloys under irradiation and mechanical loading is one of the topical issues of materials science. Specific features of nucleation and evolution of the defect system in stressed and irradiated iron, vanadium, and copper crystallites were studied by molecular dynamics simulation. Mechanical loading was performed in such a way that the modeled crystallite volume remained unchanged. The energy of the primary knock-on atom initiating a cascade of atomic displacements in a stressed crystallite was varied from 0.05 to 50 keV. It was found that atomic displacement cascades might cause global structural transformations in a region far larger than the radiation-damaged area. These changes are similar to the ones occurring in the process of mechanical loading of samples. They are implemented by twinning (in iron and vanadium) or through the formation of partial dislocation loops (in copper).

  7. The influence of plastic deformation on the magnetic properties of ? alloy

    NASA Astrophysics Data System (ADS)

    Takahashi, S.; Li, X. G.; Chiba, A.

    1996-07-01

    Magnetization is measured in plastically deformed 0953-8984/8/27/018/img2 alloy in the temperature range from 4.5 to 80 K.The temperature dependence of spontaneous magnetization 0953-8984/8/27/018/img3 has been analysed according to the self-consistent renormalization theory of spin fluctuation. The value of 0953-8984/8/27/018/img4 decreases from 0953-8984/8/27/018/img5 to 0953-8984/8/27/018/img6 and the Curie temperature 0953-8984/8/27/018/img7 declines from 57.8 to 50.1 K with 50% strain. The decreases in 0953-8984/8/27/018/img4 and 0953-8984/8/27/018/img7 can be explained by the introduction of the antiphase boundary, which reveals the existence of an atomically ordered structure in the Ni - Cu alloys.

  8. Damage and Plastic Deformation Modeling of Beishan Granite Under Compressive Stress Conditions

    NASA Astrophysics Data System (ADS)

    Chen, L.; Wang, C. P.; Liu, J. F.; Liu, J.; Wang, J.; Jia, Y.; Shao, J. F.

    2015-07-01

    Based on experimental investigations, we propose a coupled elastoplastic damage model to simulate the mechanical behavior of granite under compressive stress conditions. The granite is taken from the Beishan area, a preferable region for China's high-level radioactive waste repository. Using a 3D acoustic emission monitoring system in mechanical tests, we focus on the cracking process and its influence on the macroscopic mechanical behavior of the granite samples. It is verified that the crack propagation coupled with fractional sliding along the cracks is the principal mechanism controlling the failure process and nonlinear mechanical behavior of granite under compressive stress conditions. Based on this understanding, the coupled elastoplastic damage model is formulated in the framework of the thermodynamics theory. In the model, the coupling between damage and plastic deformation is simulated by introducing the independent damage variable in the plastic yield surface. As a preliminary validation of the model, a series of numerical simulations are performed for compressive tests conducted under different confining pressures. Comparisons between the numerical and simulated results show that the proposed model can reproduce the main features of the mechanical behavior of Beishan granite, particularly the damage evolution under compressive stress conditions.

  9. Effect of Severe Plastic Deformation on Structure and Properties of Al-Sc-Ta and Al-Sc-Ti Alloys.

    PubMed

    Berezina, Alla; Monastyrska, Tetiana; Davydenko, Olexandr; Molebny, Oleh; Polishchuk, Sergey

    2017-12-01

    The comparative analysis of the effect of monotonous and non-monotonous severe plastic deformations (SPD) on the structure and properties of aluminum alloys has been carried out. Conventional hydrostatic extrusion (HE) with a constant deformation direction and equal-channel angular hydroextrusion (ECAH) with an abrupt change in the deformation direction were chosen for the cases of monotonous and non-monotonous SPD, respectively. Model cast hypoeutectic Al-0.3%Sc alloys and hypereutectic Al-0.6%Sc alloys with Ta and Ti additives were chosen for studying. It was demonstrated that SPD of the alloys resulted in the segregation of the material into active and inactive zones which formed a banded structure. The active zones were shown to be bands of localized plastic deformation. The distance between zones was found to be independent of the accumulated strain degree and was in the range of 0.6-1 μm. Dynamic recrystallization in the active zones was observed using TEM. The dynamic recrystallization was accompanied by the formation of disclinations, deformation bands, low-angle, and high-angle boundaries, i.e., rotational deformation modes developed. The dynamic recrystallization was more intense during the non-monotonous deformation as compared with the monotonous one, which was confirmed by the reduction of texture degree in the materials after ECAH.

  10. Recrystallization kinetics of an austenitic high-manganese steel subjected to severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Yanushkevich, Zh. Ch.; Molodov, D. A.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-09-01

    The evolution of the microstructure and the properties of an austenitic high-manganese steel subjected to severe deformation by cold rolling and subsequent recrystallization annealing is investigated. Cold rolling is accompanied by mechanical structural twinning and shear banding. The microhardness and microstructural analysis of annealed samples are used to study the recrystallization kinetics of the high-manganese steel. It is shown that large plastic deformation and subsequent annealing result in rapid development of recrystallization processes and the formation of an ultrafine-grained structure. A completely recrystallized structure with an average grain size of 0.64 μm forms after 30-min annealing at a temperature of 550°C. No significant structural changes are observed when the annealing time increases to 18 h, which indicates stability of the recrystallized microstructure. The steel cold rolled to 90% and annealed at 550°C for 30 min demonstrates very high strength properties: the yield strength and the tensile strength achieve 650 and 850MPa, respectively. The dependence of the strength properties of the steel on the grain size formed after rolling and recrystallization annealing is described by the Hall-Petch relation.

  11. Ultra Fine-Grained Metals Prepared by Severe Plastic Deformation: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Čížek, J.; Procházka, I.; Kužel, R.; Matĕj, Z.; Cherkaska, V.; Cieslar, M.; Smola, B.; Stulíková, I.; Brauer, G.; Anwand, W.; Islamgaliev, R. K.; Kulyasova, O.

    2005-05-01

    Recent investigations of ultra fine-grained metals (Cu, Fe, Ni) performed within a Prague-Rossendorf-Ufa collaboration will be reviewed. The specimens were prepared by severe plastic deformation: the high-pressure torsion and equal channel angular pressing. Positron annihilation spectroscopy was used as the main method including (i) the conventional lifetime and the Doppler broadening measurements with 22Na and (ii) the slow-positron implantation spectroscopy with the Doppler broadening measurement. Other methods were also involved: transmission electron microscopy, X-ray diffraction, and microhardness. First, the mean grain size was determined and defects were identified in the as-deformed materials. Defects concentration and spatial distribution were studied in detail. Dislocations situated in distorted regions along grain boundaries, and a few-vacancy clusters distributed homogeneously inside dislocations-free grains, were observed in the ultra fine-grained Cu, Fe, and Ni. Subsequently, the thermal evolution of the ultra fine-grained structures during isochronal annealing was studied.

  12. Computations of Accumulated Deformations and Depletion of Plasticity Reserve Held by the Metal in the Surface Layer during Orthogonal Cutting

    NASA Astrophysics Data System (ADS)

    Blumenstein, V. Yu; Ferranti, A.

    2016-04-01

    The problem relating to the mechanics of orthogonal cutting with the deformation site, which is located within the contact area ahead of, below and behind the cutting tool was provided a solution. The above problem is crucial as it involves developing the mechanics of technological inheritance, which emphasizes the need for the operation-by-operation computations of the metal deformed state. The plane deformation (strain) model was adopted for the treatment with a cutter having a rounded cutting edge. Stresses, rates and deformations along the lines of current, which form the strengthened surface layer of the treated part, were computed. The patterns determining deformation accumulation and metal plasticity reserve depletion during orthogonal cutting were exposed.

  13. Finite Deformations and Internal Forces in Elastic-Plastic Crystals: Interpretations From Nonlinear Elasticity and Anharmonic Lattice Statics

    DTIC Science & Technology

    2009-09-01

    0 Downlond inelastic...zm= 0 . 2.1 Plastic Deformation. Intermediate configuration B̃ in Fig. 1 differs from B0 due to influences of cumulative motion of lattice defects...and perturbations of atomic positions resulting from these defects. Configuration B̃ is by definition free of external traction t̃= 0 and free

  14. Structural modifications induced by compressive plastic deformation in single-step and sequentially irradiated UHMWPE for hip joint components.

    PubMed

    Puppulin, Leonardo; Sugano, Nobuhiko; Zhu, Wenliang; Pezzotti, Giuseppe

    2014-03-01

    Structural modifications were studied at the molecular scale in two highly crosslinked UHMWPE materials for hip-joint acetabular components, as induced upon application of (uniaxial) compressive strain to the as-manufactured microstructures. The two materials, quite different in their starting resins and belonging to different manufacturing generations, were a single-step irradiated and a sequentially irradiated polyethylene. The latter material represents the most recently launched gamma-ray-irradiated polyethylene material in the global hip implant market. Confocal/polarized Raman spectroscopy was systematically applied to characterize the initial microstructures and the microstructural response of the materials to plastic deformation. Crystallinity fractions and preferential orientation of molecular chains have been followed up during in vitro deformation tests on unused cups and correlated to plastic strain magnitude and to the recovery capacity of the material. Moreover, analyses of the in vivo deformation behavior of two short-term retrieved hip cups are also presented. Trends of preferential orientation of molecular chains as a function of residual strain were similar for both materials, but distinctly different in their extents. The sequentially irradiated material was more resistant to plastic deformation and, for the same magnitude of residual plastic strain, possessed a higher capacity of recovery as compared to the single-step irradiated one.

  15. In situ nanoindentation study of plastic Co-deformation in Al-TiN nanocomposites

    SciTech Connect

    Li, N.; Wang, H.; Misra, A.; Wang, J.

    2014-10-16

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. Our results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.

  16. Static-transmission-error vibratory-excitation contributions from plastically deformed gear teeth caused by tooth bending-fatigue damage

    NASA Astrophysics Data System (ADS)

    Mark, W. D.; Reagor, C. P.

    2007-02-01

    To assess gear health and detect gear-tooth damage, the vibratory response from meshing gear-pair excitations is commonly monitored by accelerometers. In an earlier paper, strong evidence was presented suggesting that, in the case of tooth bending-fatigue damage, the principal source of detectable damage is whole-tooth plastic deformation; i.e. yielding, rather than changes in tooth stiffness caused by tooth-root cracks. Such plastic deformations are geometric deviation contributions to the "static-transmission-error" (STE) vibratory excitation caused by meshing gear pairs. The STE contributions caused by two likely occurring forms of such plastic deformations on a single tooth are derived, and displayed in the time domain as a function of involute "roll distance." Example calculations are provided for transverse contact ratios of Qt=1.4 and 1.8, for spur gears and for helical-gear axial contact ratios ranging from Qa=1.2 to Qa=3.6. Low-pass- and band-pass-filtered versions of these same STE contributions also are computed and displayed in the time domain. Several calculations, consisting of superposition of the computed STE tooth-meshing fundamental harmonic contribution and the band-pass STE contribution caused by a plastically deformed tooth, exhibit the amplitude and frequency or phase modulation character commonly observed in accelerometer-response waveforms caused by damaged teeth. General formulas are provided that enable computation of these STE vibratory-excitation contributions for any form of plastic deformation on any number of teeth for spur and helical gears with any contact ratios.

  17. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    SciTech Connect

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; Haberl, Bianca; Cook, Robert F.

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  18. Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Höhne, Nadine; Urai, Janos L.; Bésuelle, Pierre; Viggiani, Gioacchino

    2017-03-01

    The macroscopic description of deformation and fluid flow in mudrocks can be improved by a better understanding of microphysical deformation mechanisms. Here we use a combination of scanning electron microscopy (SEM) and broad ion beam (BIB) polishing to study the evolution of microstructure in samples of triaxially deformed Callovo-Oxfordian Clay. Digital image correlation (DIC) was used to measure strain field in the samples and as a guide to select regions of interest in the sample for BIB-SEM analysis. Microstructures show evidence for dominantly cataclastic and minor crystal plastic mechanisms (intergranular, transgranular, intragranular cracking, grain rotation, clay particle bending) down to the nanometre scale. At low strain, the dilatant fabric contains individually recognisable open fractures, while at high strain the reworked clay gouge also contains broken non-clay grains and smaller pores than the undeformed material, resealing the initial fracture porosity.

  19. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  20. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Gupta, Y. M.

    2017-01-01

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) - a body-centered cubic metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ˜0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within the experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ˜3.6 GPa. Numerical simulations of the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}⟨111⟩ and/or {112}⟨111⟩ slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. The numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.

  1. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids

    SciTech Connect

    Wang Weihua

    2011-09-01

    We study the similarity and correlations between relaxations and plastic deformation in metallic glasses (MGs) and MG-forming liquids. It is shown that the microscope plastic events, the initiation and formation of shear bands, and the mechanical yield in MGs where the atomic sites are topologically unstable induced by applied stress, can be treated as the glass to supercooled liquid state transition induced by external shear stress. On the other hand, the glass transition, the primary and secondary relaxations, plastic deformation and yield can be attributed to the free volume increase induced flow, and the flow can be modeled as the activated hopping between the inherent states in the potential energy landscape. We then propose an extended elastic model to describe the flow based on the energy landscape theory. That is, the flow activation energy density is linear proportional to the instantaneous elastic moduli, and the activation energy density {rho}{sub E} is determined to be a simple expression of {rho}{sub E}=(10/11)G+(1/11)K. The model indicates that both shear and bulk moduli are critical parameters accounting for both the homogeneous and inhomogeneous flows in MGs and MG-forming liquids. The elastic model is experimentally certified. We show that the elastic perspectives offers a simple scenario for the flow in MGs and MG-forming liquids and are suggestive for understanding the glass transition, plastic deformation, and nature and characteristics of MGs.

  2. Indentation Size Effect (ISE) in Copper Subjected to Severe Plastic Deformation (SPD)

    NASA Astrophysics Data System (ADS)

    Gale, Joshua D.; Achuthan, Ajit; Morrison, David J.

    2014-05-01

    The characteristic length scale of deformation in copper specimens subjected to severe plastic deformation (SPD) through surface mechanical attrition treatment (SMAT) was studied with indentation experiments. Annealed copper disks were shot peened with 6-mm diameter tungsten carbide spheres with an average velocity of 2.3 m/s for 15 minutes in a vibrating chamber. The SMAT-treated specimens were cross-sectioned, and the exposed face was studied under nanoindentation in order to determine the effect of dislocation density on surface hardness and indentation size effect (ISE). Since the specimen preparation of the exposed face involved mechanical polishing, which in turn introduced additional SPD on the indenting face, the effect of mechanical polishing on hardness measurement was investigated first. To this end, the mechanically polished specimens were subjected to various durations of electrochemical polishing. Hardness measurements on these specimens showed that the effect of mechanical polishing was substantial for both microindentation and nanoindentation, the impact being significantly larger for nanoindentation. Consequently, the measured depth of influence of the SMAT process, determined on specimens subjected to longer durations of electrochemical polishing, shows larger values compared to those previously reported in the literature. The ISE shows a bilinear relationship between the square of hardness and the reciprocal of indentation depth. The slope of this behavior, corresponding to smaller indentation loads, which is a measure of the ISE associated with a strain gradient, shows a power-law relationship with an increase in the distance away from the SMAT surface, instead of the constant value expected with the Nix-Gao type model.

  3. Experimental Validation of Two-dimensional Finite Element Method for Simulating Constitutive Response of Polycrystals During High Temperature Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Agarwal, Sumit; Briant, Clyde L.; Krajewski, Paul E.; Bower, Allan F.; Taleff, Eric M.

    2007-04-01

    A finite element method was recently designed to model the mechanisms that cause superplastic deformation (A.F. Bower and E. Wininger, A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals during High-Temperature Plastic Deformation, J. Mech. Phys. Solids, 2004, 52, p 1289-1317). The computations idealize the solid as a collection of two-dimensional grains, separated by sharp grain boundaries. The grains may deform plastically by thermally activated dislocation motion, which is modeled using a conventional crystal plasticity law. The solid may also deform by sliding on the grain boundaries, or by stress-driven diffusion of atoms along grain boundaries. The governing equations are solved using a finite element method, which includes a front-tracking procedure to monitor the evolution of the grain boundaries and surfaces in the solid. The goal of this article is to validate these computations by systematically comparing numerical predictions to experimental measurements of the elevated-temperature response of aluminum alloy AA5083 (M.-A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley, Deformation Mechanisms in Superplastic AA5083 materials. Metall. Mater. Trans. A, 2005, 36(5), p 1249-1261). The experimental work revealed that a transition occurs from grain-boundary sliding to dislocation (solute-drag) creep at approximately 0.001/s for temperatures between 425 and 500 °C. In addition, increasing the grain size from 7 to 10 μm decreased the transition to significantly lower strain rates. Predictions from the finite element method accurately predict the effect of grain size on the transition in deformation mechanisms.

  4. Fracture and fracture toughness of nanopolycrystalline metals produced by severe plastic deformation

    PubMed Central

    Hohenwarter, A.; Pippan, R.

    2015-01-01

    The knowledge of the fracture of bulk metallic materials developed in the last 50 years is mostly based on materials having grain sizes, d, in the range of some micrometres up to several hundred micrometres regarding the possibilities of classical metallurgical methods. Nowadays, novel techniques provide access to much smaller grain sizes, where severe plastic deformation (SPD) is one of the most significant techniques. This opens the door to extend basic research in fracture mechanics to the nanocrystalline (NC) grain size regime. From the technological point of view, there is also the necessity to evaluate standard fracture mechanics data of these new materials, such as the fracture toughness, in order to allow their implementation in engineering applications. Here, an overview of recent results on the fracture behaviour of several different ultrafine-grained (d<1 μm) and NC (d<100 nm) metals and alloys covering examples of body- and face-centred cubic structures produced by SPD will be given. PMID:25713459

  5. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  6. Low-temperature acoustic properties of nanostructured zirconium obtained by intensive plastic deformation

    NASA Astrophysics Data System (ADS)

    Vatazhuk, E. N.; Pal-Val, P. P.; Natsik, V. D.; Pal-Val, L. N.; Tikhonovsky, M. A.; Velikodny, A. N.; Khaimovich, P. A.

    2011-02-01

    The temperature dependences of the logarithmic decrement and dynamic Young's modulus of polycrystalline coarse-grained and nanostructured Zr are studied at temperatures of 2.5-340K. A nanostructured state of samples with grain sizes on the order of 100nm was produced by intensive plastic deformation (IPD). The measurements were made using a two-component vibrator technique at frequencies of 73-350kHz. A relaxation peak in the internal friction near 250K was discovered in the coarse-grained, annealed Zr which is retained after IPD, but its height increases by roughly a factor of 10 and the localization temperature shifts to lower values. In addition, after IPD a new internal friction peak shows up at moderately low temperatures near 80K. The activation parameters for the observed peaks are estimated and it is shown that they arise from different thermally activated dislocation processes: interactions of dislocations with impurities and kink pair formation in dislocations. It was found that IPD is accompanied by a significant (1-8%) reduction in the Young's modulus because of quasistatic and dynamic dislocation effects. A glass-like anomaly appears in the temperature dependence of the Young's modulus of nanostructured Zr at T <20K which may be determined by tunnelling and thermally activated relaxation of quasilocal excitations.

  7. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  8. Evaluation of the Mechanical Properties of AA 6063 Processed by Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Jafarlou, Davoud Mashhadi; Zalnezhad, Erfan; Hamouda, Abdelmagid Salem; Faraji, Ghader; Mardi, Noor Azizi Bin; Hassan Mohamed, Mohsen Abdelnaeim

    2015-05-01

    In this study, the mechanical properties, including surface hardness, tensile strength, fatigue, and fretting fatigue behavior of AA 6063 processed by equal channel angular pressing as the most efficient severe shear plastic deformation (SPD) technique, were investigated. Following the SPD process, samples were subjected to heat treatment (HT), hard anodizing (HA), and a combination of HT and HA. Rotating-bending fretting fatigue tests were performed to explore the samples' response to the fretting condition. From the experimental fatigue and fretting fatigue tests, it was apparent that the SPD treatment had a positive effect on enhancing the fatigue and fretting fatigue lives of the samples at low and high-cyclic loads compared with the HT technique by 78 and 67 pct, and 131 and 154 pct respectively. The results also indicate that the SPD + HT technique significantly increased the fatigue and fretting fatigue lives of the samples at high and low cycles by 15.56 and 8.33 pct, and 14.4 and 5.1 pct respectively, compared with the SPD method. HA of AA6063 increased the fatigue and fretting fatigue lives of SPD + HT-processed samples at low cycle by 15.5 and 18.4 pct respectively; however, at high cycle, HA had reverse effects, whereby the fatigue and fretting fatigue lives of SPD + HT-processed samples decreased by 16.7 and 30 pct, respectively.

  9. Rate-dependent Mechanical Deformation Behavior of POSS-filled and Plasticized Poly(vinyl chloride).

    NASA Astrophysics Data System (ADS)

    Soong, Sharon; Cohen, Robert; Boyce, Mary

    2006-03-01

    In different temperatures or strain-rate regimes, the rate sensitivities of polymers change as various primary and secondary molecular mobility mechanisms are accessed. Incorporating nanoparticles into the polymer matrix can potentially alter the molecular level structure and offers an opportunity to tailor the rate-dependent mechanical deformation behavior of the polymer. In this study, methacryl-POSS (C56H88O28Si8) and dioctyl phthalate (DOP) were incorporated into poly(vinyl chloride) (PVC) through melt blending. Dynamic Mechanical Analysis revealed that the incorporation of POSS in PVC plasticizes PVC and reduces both the alpha and beta transition temperatures. As for the PVC/DOP blends, while the alpha-transition temperatures were reduced, beta-motions vanishes with high DOP contents. The rate dependent yield behavior is characterized in compression testing. Zwick Mechine is used for low to moderate strain rate (0.0001 to 0.1/s) and Split Hopkinson Bar is used for high strain rate (500 to 2000/s). It was found that PVC with POSS shows a delay in yield strength rate-sensitivity transition. For PVC with higher DOP contents which show restricted beta-motions, the rate-sensitivity transition in yield stress faded away. Constitutive model used was able to predict the rate-sensitivity transitions in the compression yield behavior of PVC compounds.

  10. Finite deformation analysis of continuum structures with time dependent anisotropic elastic plastic material behavior (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.

    1980-03-01

    A finite element procedure is presented for finite deformation analysis of continuum structures with time-dependent anisotropic elastic-plastic material behavior. An updated Lagrangian formulation is used to describe the kinematics of deformation. Anisotropic constitutive relations are referred, at each material point, to a set of three mutually orthogonal axes which rotate as a unit with an angular velocity equal to the spin at the point. The time-history of the solution is generated by using a linear incremental procedure with residual force correction, along with an automatic time step control algorithm which chooses time step sizes to control the accuracy and numerical stability of the solution.

  11. Structure of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation and long-term storage

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2015-11-01

    Structural and phase transformations in commercial aging aluminum-lithium Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg alloy have been studied after severe plastic deformation by high-pressure torsion (at a pressure of 4 GPa with 1, 5, and 10 revolutions of the anvil) and natural aging (roomtemperature storage) for 1 week and 2 years. It has been found that, in this case, the process of static recrystallization is achieved in the alloy, the degree of which increases with an increasing degree of deformation and time of storage.

  12. 3D Arrangement of Slip Systems in Non-Plane Strain: Experimental Plastic Deformation of Fine-Grained Limestone

    NASA Astrophysics Data System (ADS)

    Llana-Funez, S.; Rutter, E. H.

    2006-12-01

    The condition of simultaneous operation of five slip systems to produce homogeneous deformation by intracrystalline plasticity in polycrystalline aggregates is frequently simplified when applied to studying deformation in nature by considering other deformation mechanisms that relax the strict geometric condition. Insufficient knowledge of how these complementary mechanisms interact and accommodate geometrically non-plane strain situations obscure somehow subsequent interpretation of slip patterns in relation to principal strain axes. We ran an experimental program isolating intracrystalline plasticity from other deformation mechanisms with the aim of testing the effect of non-plane strain geometries in the 3D arrangement of crystallographic elements from which we inferred the orientation of active slip systems. We use a fine grained polycrystalline aggregate (Solnhofen Limestone), naturally doped at grain boundaries with organic matter preventing grain growth, that deforms plastically at the experimental conditions used (600 °C, 200 MPa confining pressure and 10^{- 4}s-1 strain rates). To maximize the number of strain geometries we used different experimental configurations (axi-symmetric shortening and extension, and direct shear) and also study in detail volumes where deformation is heterogeneous but still relatively simple. The aim of the work is to relate strain geometry and the development of crystallographic fabrics in different strain paths. We produced constrictional, flattening, and nearly plane strain deformations. We were also able to obtain strain geometries where the vorticity axis in a non-coaxial deformation was either perpendicular to the extension direction (as in simple and sub-simple shear) or parallel to it. We measured the crystallographic preferred orientation (CPO) of calcite in deformed specimens by electron back-scattered diffraction techniques (EBSD), which allowed us to scan relatively small areas within already small specimens

  13. The Effect of Cold Plastic Straining of Submicrocrystalline and Coarse-Grained Titanium on the Temperature Behavior of Flow Stress in the Stage of Microplastic Deformation

    NASA Astrophysics Data System (ADS)

    Dudarev, E. F.; Pochivalova, G. P.; Kolobov, Yu. R.; Bakach, G. P.; Skosyrskii, A. B.; Zhorovkov, M. F.; Goraynov, А. А.

    2013-10-01

    The results of an experimental investigation of the effect of mechanical-thermal treatment of submicrocrystalline and coarse-grained titanium on the deformation behavior in the stage of microplastic deformation at room and elevated temperatures are reported. The structural factors giving rise to the flowstress changes in the stage of microplastic deformation as a result of mechanical-thermal treatment are discussed. The general tendencies and special features of the effect of annealing and testing temperatures on the deformation behavior and flow stress in the first and second stages of microplastic deformation of submicrocrystalline and coarse-grained titanium subjected to large plastic deformation at 295 K are clarified.

  14. Severe plastic deformation using friction stir processing, and the characterization of microstructure and mechanical behavior using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Woo, Wanchuck

    Friction-stir welding (FSW) is a solid-state joining process, which utilizes a cylindrical rotating tool consisting of a concentric threaded tool pin and tool shoulder. The strong metallurgical bonding during the FSW is accomplished through: (1) the severe plastic deformation caused by the rotation of the tool pin that plunges into the material and travels along the joining line; and (2) the frictional heat generated mainly from the pressing tool shoulder. Recently, a number of variations of the FSW have been applied to modify the microstructure, for example, grain refinements and homogenization of precipitate particles, namely friction-stir processing (FSP). Applications of the FSP/FSW are widespread for the transportation industries. The microstructure and mechanical behavior of light-weight materials subjected to the FSW/FSP are being studied extensively. However, separating the effect of the frictional heat and severe plastic deformation on the residual stress and texture has been a standing problem for the fundamental understanding of FSW/FSP. The fundamental issues are: (i) the heat- and plastic-deformation-induced internal stresses that may be detrimental to the integrity and performance of components; (ii) the frictional heating that causes a microstructural softening due to the dissolution or growth of the precipitates in precipitation-hardenable Al alloys during the process; and (iii) the crystallographic texture can be significantly altered from the original texture, which could affect the physical and mechanical properties. The understanding of the influences of the de-convoluted sources (e.g. frictional heat, severe plastic deformation, or their combination) on the residual stress, microstructural softening, and texture variations during FSW can be used for a physicsvi based optimization of the processing parameters and new tool designs. Furthermore, the analyses and characterization of the natural aging behavior and the aging kinetics can be

  15. Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study.

    PubMed

    Zhao, Kejie; Wang, Wei L; Gregoire, John; Pharr, Matt; Suo, Zhigang; Vlassak, Joost J; Kaxiras, Efthimios

    2011-07-13

    Silicon can host a large amount of lithium, making it a promising electrode for high-capacity lithium-ion batteries. Recent experiments indicate that silicon experiences large plastic deformation upon Li absorption, which can significantly decrease the stresses induced by lithiation and thus mitigate fracture failure of electrodes. These issues become especially relevant in nanostructured electrodes with confined geometries. On the basis of first-principles calculations, we present a study of the microscopic deformation mechanism of lithiated silicon at relatively low Li concentration, which captures the onset of plasticity induced by lithiation. We find that lithium insertion leads to breaking of Si-Si bonds and formation of weaker bonds between neighboring Si and Li atoms, which results in a decrease in Young's modulus, a reduction in strength, and a brittle-to-ductile transition with increasing Li concentration. The microscopic mechanism of large plastic deformation is attributed to continuous lithium-assisted breaking and re-forming of Si-Si bonds and the creation of nanopores.

  16. On the kinetics of localized plasticity domains emergent at the pre-failure stage of deformation process

    NASA Astrophysics Data System (ADS)

    Orlova, Dina V.; Barannikova, Svetlana A.; Zuev, Lev B.

    2016-11-01

    The behavior of localized plasticity domains occurring at the final stage of the plastic flow process has been investigated. A series of runs was conducted on materials differing in the crystal lattice type which disclosed regular features exhibited by the flow process upon transition to macroscopic necking and viscous failure. It is found that the most distinctive regularity is the occurrence of flow domains that are moving in a concerted manner towards the pole of the bundle of domain trajectories plotted in the time-space coordinates. The deformation patterns are found to be related to the kinetics of nucleation and motion of localized plasticity fronts. The probable origin of the observed effects is considered.

  17. Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy

    NASA Astrophysics Data System (ADS)

    Li, Lei-Ting; Lin, Y. C.; Li, Ling; Shen, Lu-Ming; Wen, Dong-Xu

    2015-03-01

    Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.

  18. Atomic-scale analysis of plastic deformation in thin-film forms of electronic materials

    NASA Astrophysics Data System (ADS)

    Kolluri, Kedarnath

    Nanometer-scale-thick films of metals and semiconductor heterostructures are used increasingly in modern technologies, from microelectronics to various areas of nanofabrication. Processing of such ultrathin-film materials generates structural defects, including voids and cracks, and may induce structural transformations. Furthermore, the mechanical behavior of these small-volume structures is very different from that of bulk materials. Improvement of the reliability, functionality, and performance of nano-scale devices requires a fundamental understanding of the atomistic mechanisms that govern the thin-film response to mechanical loading in order to establish links between the films' structural evolution and their mechanical behavior. Toward this end, a significant part of this study is focused on the analysis of atomic-scale mechanisms of plastic deformation in freestanding, ultrathin films of face-centered cubic (fcc) copper (Cu) that are subjected to biaxial tensile strain. The analysis is based on large-scale molecular-dynamics simulations. Elementary mechanisms of dislocation nucleation are studied and several problems involving the structural evolution of the thin films due to the glide of and interactions between dislocations are addressed. These problems include void nucleation, martensitic transformation, and the role of stacking faults in facilitating dislocation depletion in ultrathin films and other small-volume structures of fcc metals. Void nucleation is analyzed as a mechanism of strain relaxation in Cu thin films. The glide of multiple dislocations causes shearing of atomic planes and leads to formation of surface pits, while vacancies are generated due to the glide motion of jogged dislocations. Coalescence of vacancy clusters with surface pits leads to formation of voids. In addition, the phase transformation of fcc Cu films to hexagonal-close packed (hcp) ones is studied. The resulting martensite phase nucleates at the film's free surface and

  19. Interface-Driven Plasticity in Metal-Ceramic Nanolayered Composites: Direct Validation of Multiscale Deformation Modeling via In Situ Indentation in TEM

    NASA Astrophysics Data System (ADS)

    Mara, Nathan A.; Li, Nan; Misra, Amit; Wang, Jian

    2016-01-01

    We present in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with brittle fracture in the TiN layers. At 5 nm and below, cracking in TiN was suppressed with co-deformation evident in both layers. The in situ transmission electron microscopy (TEM) straining results demonstrate a profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers, as well as direct validation of ex situ and 3-D elastic-plastic deformation models.

  20. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    PubMed

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants.

  1. Glide Dislocations Dissociation in Inversion Domain Boundaries of Plastically Deformed Aluminium Nitride

    NASA Astrophysics Data System (ADS)

    Feregotto, Virginia; Michel, Jean-Pierre

    1996-09-01

    A ten per cent plastic deformation of polycrystalline aluminium nitride, at a temperature ranging from 1500 to 1650 ^{circ}C creates a new kind of intragranular defect. Observed by transmission electron microscopy, the look like torsion subboundaries created by dislocations with 1/3<~ngle11bar{2}0rangle Burgers vectors and so nodes are dissociated into Shockley partials. They are located in the basal plane. In fact, these defects appear only in the plane areas of grown-in defects, the inversion domain boundaries. The formation of these faulted networks is interpreted as being the ultimate stage of the interactions between inversion domain boundaries and glide dislocations. Une déformation plastique de 10 % de nitrure d'aluminium polycristallin, entre 1500 et 1650 ^{circ}C introduit un nouveau type de défauts intragranulaires. Au microscope électronique par transmission, ils apparaissent comme des sous-joints de torsion créés par des dislocations de vecteurs de Burgers 1/3<~ngle11bar{2}0rangle dont les nœuds triples sont dissociés en partielles de Shockley ; ils sont situés dans le plan de base. En fait, ces défauts ne se produisent que sur les parties planes de défauts originels, les parois de domaines d'inversion. La formation de ces réseaux fautés est analysée comme l'ultime stade des interactions entre parois de domaines d'inversion et dislocations de glissement.

  2. Effect of laser shock peening on the compressive deformation and plastic behavior of Zr-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Fu, Jie; Zhu, Yunhu; Zheng, Chao; Liu, Ren; Ji, Zhong

    2016-11-01

    The compressive deformation and the plastic behavior of Zr35Ti30Cu8.25Be26.75 bulk metallic glass (BMG) in as-cast and laser peened state were investigated. It was found that as-cast sample displayed brittle fracture with an limited plastic strain of 0.22% and the fracture was mainly localized on one single shear band. For laser peened sample, an apparent plastic strain of 1.48% could be observed in the stress-strain curve, which was much greater than that of as-cast sample. Scanning electron microscope observations revealed that the normal fracture surfaces of both samples displayed a shear mode and consisted of vein-like structure. The relatively uniform distribution of multiple shear bands was observed on the side fracture surface of laser peened sample. Numerical simulation was performed to understand quantitatively the plasticity enhancement of laser peened sample. Under the effect of LSP induced residual stress, the laser peened sample exhibited a larger concentrated stress around the main shear stress plane which could promote the initiation of new shear bands. Besides, the increased free volume in main shear stress plane were beneficial for the generation of multiple shear bands which would probably improve the compressive plasticity of Zr-based BMG.

  3. The effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2014-01-01

    Based on stress-controlled cyclic tension-unloading experiments with different peak stresses, the effect of martensite plasticity on the cyclic deformation of super-elastic NiTi shape memory alloy micro-tubes is investigated and discussed. The experimental results show that the reverse transformation from the induced martensite phase to the austenite phase is gradually restricted by the plastic deformation of the induced martensite phase caused by an applied peak stress that is sufficiently high (higher than 900 MPa), and the extent of such restriction increases with further increasing the peak stress. The residual and peak strains of super-elastic NiTi shape memory alloy accumulate progressively, i.e., transformation ratchetting occurs during the cyclic tension-unloading with peak stresses from 600 to 900 MPa, and the transformation ratchetting strain increases with the increase of the peak stress. When the peak stress is higher than 900 MPa, the peak strain becomes almost unchanged, but the residual strain accumulates and the dissipation energy per cycle decreases very quickly with the increasing number of cycles due to the restricted reverse transformation by the martensite plasticity. Furthermore, a quantitative relationship between the applied stress and the stabilized residual strain is obtained to reasonably predict the evolution of the peak strain and the residual strain.

  4. Quantitative investigation of the tensile plastic deformation characteristic and microstructure for friction stir welded 2024 aluminum alloy

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Yuan, S.J.

    2012-11-15

    The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction stir welded (FSW) 2024 aluminum alloy was investigated for the potential applications on light weight design of vehicles. The microstructure characteristics of the FSW joints, such as the grain structure, dislocation density and the distribution of precipitation, were studied by electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM). The tensile deformation characteristic of the FSW joints was examined using the automatic strain measuring system (ASAME) by mapping the global and local strain distribution, and then was analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous leading to a significant decrease in global ductility. The FSW joints mainly contain two typical deformation zones, which show great effect on the regional inhomogeneous deformation. One is the nugget zone (NZ) with a region of 8 mm in width, and the other is part of the BM with a region of 10 mm in width. The BM of the joints is the weakest region where the strain localizes early and this localization extends until fracture with a strain over 30%, while the strain in the NZ is only 4%. Differences in regional strain of FSW joints, which are essentially controlled by grain structure, the distribution of precipitation and dislocation density, result in decrease on the overall mechanical properties. - Highlights: Black-Right-Pointing-Pointer Microstructure heterogeneity of welds on tensile deformation behavior is studied. Black-Right-Pointing-Pointer The welds contain two typical deformation zones, affecting the global ductility. Black-Right-Pointing-Pointer Regional strain of welds is controlled by grain structure and dislocation density. Black-Right-Pointing-Pointer Theoretical calculation is in good agreement with experimental result.

  5. A study on the surface severe plastic deformation behavior of a Zr-based bulk metallic glass (BMG)

    SciTech Connect

    Tian, J.W.; Shaw, L.L.; Wang, Y.D.; Yokoyama, Y.; Liaw, P.K.

    2009-10-14

    A surface treatment process, which can generate the severe plastic deformation in the near-surface layer of crystalline materials, is successfully applied on the Zr{sub 50}Cu{sub 40}Al{sub 10} bulk metallic glass (BMG). The experiment is implemented using 20 WC/Co balls with a velocity of about 5 m/s to bombard the surface of the samples in a purified argon atmosphere. The plastic-flow deformation in the unconstrained sample edge was observed, which exhibits the good intrinsic ductility of this material under the experimental condition. In the sub-surface layer, the bombardment-induced shear-band operations generate the extrusion and intrusion marks on the side face. Differential scanning calorimetry (DSC) shows that the free volumes of the deformed BMG have increased, and possible crystallization may occur during the process. X-ray diffraction (XRD) and synchrotron high-energy X-ray diffraction techniques were used to inspect the possible crystal phase. A nanoindentation test shows that on the side surface, the hardness increases and, then, decreases with the distance from the processed surface. Four-point-bending-fatigue behavior has been studied and related to the modified surface structure and the compressive residual stress introduced by the surface treatment.

  6. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal-metal composites

    SciTech Connect

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. In this article, a dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with the experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts the strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.

  7. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    DOE PAGES

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less

  8. A dislocation-based, strain–gradient–plasticity strengthening model for deformation processed metal–metal composites

    SciTech Connect

    Tian, Liang; Russell, Alan; Anderson, Iver

    2014-01-03

    Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts the strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.

  9. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  10. An Approach for Measuring and Modeling of Plastic Deformation of Metallic Plates during High Velocity Impacts

    SciTech Connect

    O'Toole, Brendan J.; Trabia, Mohamed B.; Roy, Shawoon K.; Somasundarum, Deepak; Jennings, Richard; Matthes, Melissa; Hixson, Robert S.; Becker, Steven; Daykin, Edward P.; Pena, Michael T.; Machorro, Eric A.

    2014-05-29

    During high velocity impact experiments, projectile impact creates extreme pressure waves that results in a significant localized deformation within a short period of time. Experiments under these conditions require sophisticated data acquisition technique to better understand the materials deformation mechanisms. Since these experiments are expensive, it is also beneficial to develop accurate computational models that can predict this kind of deformation in high velocity impact events.

  11. Rate-dependent serrated flow and plastic deformation in Ti45Zr16Be20Cu10Ni9 bulk amorphous alloy during nanoindentation

    PubMed Central

    Kumar Misra, Dinesh; Woo Sohn, Sung; Tae Kim, Won; Hyang Kim, Do

    2008-01-01

    The plastic deformation of Ti45Zr16Be20Cu10Ni9 bulk metallic glass has been investigated by nanoindentation performed with loads ranging from 10 to 200 mN in a wide range of loading rates. The plastic flow in the alloy exhibited conspicuous serrations at low loading rates. The serrations, however, became less prominent as the rate of indentation increased. Atomic force microscopy showed a significant pile-up of materials around the indents, indicating that a highly localized plastic deformation occurred under nanoindentation. The possible mechanism governing the plastic deformation in bulk metallic glass specimens is tentatively discussed in terms of strain-induced free volume. PMID:27878032

  12. Roles of nanoclusters in shear banding and plastic deformation of bulk metallic glasses

    SciTech Connect

    Nieh, T G

    2012-07-31

    During the course of this research we published 33 papers in various physics/material journals. We select four representing papers in this report and their results are summarized as follows. I. To study shear banding process, it is pertinent to know the intrinsic shear strain rate within a propagating shear band. To this aim, we used nanoindentation technique to probe the mechanical response of a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass in locality and found notable pop-in events associated with shear band emission. Using a free volume model and under the situation when temperature and stress/hardness are fixed result in an equation, which predicts that hardness serration caused by pop-in decreases exponentially with the strain rate. Our data are in good agreement with the prediction. The result also predicts that, when strain rate is higher than a critical strain rate of 1700 s^-1, there will be no hardness serration, thereby no pop-in. In other words, multiple shear bandings will take place and material will flow homogeneously. The critical strain rate of 1700 s^-1 can be treated as the intrinsic strain rate within a shear band. We subsequently carried out a simulation study and showed that, if the imposed strain rate was over , the shear band spacing would become so small that the entire sample would virtually behave like one major shear band. Using the datum strain rate =1700 s^-1 and based on a shear band nucleation model proposed by us, the size of a shear-band nucleus in Au-BMG was estimated to be 3 10^6 atoms, or a sphere of ~30 nm in diameter. II. Inspired by the peculiar result published in a Science article Super Plastic Bulk Metallic Glasses at Room Temperature, we synthesized the Zr-based bulk metallic glass with a composition identical to that in the paper (Zr64.13Cu15.75Ni10.12Al10) and, subsequently, tested in compression at the same slow strain rate (~10^-4 s^-1). We found that the dominant deformation mode is always single shear. The stress

  13. Micro-structural Evolution in Metals Subjected to Simple Shear by a Particular Severe Plastic Deformation Method

    NASA Astrophysics Data System (ADS)

    Li, Jinghui; Li, Fuguo; Li, Pan; Ma, Zhanchao; Wang, Chengpeng; Wang, Lei

    2015-08-01

    Simple shear (SS) has been considered an optimal deformation method of severe plastic deformation (SPD). To achieve SS, a particular SPD method known as mutative channel torsion extrusion (MCTE) was designed based on the geometric equivalence of SS, and the cavity parameters of a die were calculated according to strain equivalence. To investigate the characteristics of micro-structural evolution subjected to MCTE, simulated and experimental investigations were conducted. The simulated results indicate that equivalent strain distribution on the cross section is relatively uniform, and the metallographic observations confirm the simulated phenomenon. Transmission electron microscopy investigations show that the process of grain refinement undergoes the formation of shear bands, dislocation cells, dislocation forests, large-angle grain boundaries, and recrystallization nuclei. Two types of mechanisms are proposed in view of the different effects of SS on grain refinement. Eventually, MCTE is ensured as an effective method for grain refinement.

  14. Effect of r-value and texture on plastic deformation and necking behavior in interstitial-free steel sheets

    NASA Astrophysics Data System (ADS)

    Oh, Gyu-Jin; Lee, Kye-Man; Huh, Moo-Young; Park, Jin Eon; Park, Soo Ho; Engler, Olaf

    2017-01-01

    Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.

  15. Anisotropy of the Hot Plastic Deformation of Ti-6Al-4V Single-Colony Samples (Preprint)

    DTIC Science & Technology

    2009-04-01

    April 2009 Journal Article Preprint 01 April 2009- 01 April 2009 4 . TITLE AND SUBTITLE ANISOTROPY OF THE HOT PLASTIC DEFORMATION OF Ti-6Al-4V SINGLE...COLONY SAMPLES (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S) A.A. Salem and S.L...resistance, and low density, Ti-6Al-4V is the most commonly used alpha/beta titanium alloy. It accounts for approximately 80% of the total titanium used in

  16. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components.

  17. Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC.

    PubMed

    Nawaz, A; Mao, W G; Lu, C; Shen, Y G

    2017-02-01

    The nanoscale elastic-plastic response of single crystal 4H-SiC has been investigated by nanoindentationwith a Berkovich tip. The hardness (H) and elastic modulus (E) determined in the load-independent region were 36±2GPa and 413±8GPa, respectively. The indentation size effect (ISE) of hardness within an indentation depth of 60nm was systematically analyzed by the Nix-Gao model. Pop-in events occurring at a depth of ~23nm with indentation loads of 0.60-0.65mN were confirmed to indicate the elastic-plastic transition of the crystal, on the basis of the Hertzian contact theory and Johnson's cavity model. Theoritically calculated maximum tensile strength (13.5GPa) and cleavage strength (33GPa) also affirms the deformation due to the first pop-in rather than tensile stresses. Further analyses of deformation behavior across the indent was done in 4H-SiC by a combined technique of focused ion beam and transmission electron microscope, revealing that slippage occurred in the (0001) plane after indentation.

  18. Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure.

    PubMed

    Kadkhodapour, J; Montazerian, H; Raeisi, S

    2014-10-01

    Rapid prototyping (RP) has been a promising technique for producing tissue engineering scaffolds which mimic the behavior of host tissue as properly as possible. Biodegradability, agreeable feasibility of cell growth, and migration parallel to mechanical properties, such as strength and energy absorption, have to be considered in design procedure. In order to study the effect of internal architecture on the plastic deformation and failure pattern, the architecture of triply periodic minimal surfaces which have been observed in nature were used. P and D surfaces at 30% and 60% of volume fractions were modeled with 3∗3∗ 3 unit cells and imported to Objet EDEN 260 3-D printer. Models were printed by VeroBlue FullCure 840 photopolymer resin. Mechanical compression test was performed to investigate the compressive behavior of scaffolds. Deformation procedure and stress-strain curves were simulated by FEA and exhibited good agreement with the experimental observation. Current approaches for predicting dominant deformation mode under compression containing Maxwell's criteria and scaling laws were also investigated to achieve an understanding of the relationships between deformation pattern and mechanical properties of porous structures. It was observed that effect of stress concentration in TPMS-based scaffolds resultant by heterogeneous mass distribution, particularly at lower volume fractions, led to a different behavior from that of typical cellular materials. As a result, although more parameters are considered for determining dominant deformation in scaling laws, two mentioned approaches could not exclusively be used to compare the mechanical response of cellular materials at the same volume fraction.

  19. Plastic flow of mild steel (En8) at different strain-rates under abruptly-changing deformation paths

    NASA Astrophysics Data System (ADS)

    Meguid, S. A.

    1981-12-01

    STRAIN-GAUGED thin-walled tubular specimens of annealed medium carbon steel (En8) were tested at room temperature in combined twisting and extension using a closed-loop, servo-controlled, electro-hydraulic biaxial testing machine. Bilinear deformation paths of twisting at a constant rate followed by extension at three different rates were investigated. Precise measurements of the resulting torque and load, together with the controlled deformation parameters, were recorded as functions of time. This study extends earlier work ( MEGUID, MALVERN and CAMPBELL, 1979, J. Engng Mater. Technol.101, 248) in which a notable feature of this particular type of bilinear testing was reported: namely, that it was possible to obtain almost the entire positive quadrant of the initial yield locus from a single run without unloading or reloading (neutral loading). Here, particular attention has been given to the effect of the axial strain-rate on the shape of these "initial" yield loci. Attention has also been given to the effect of the sudden change of direction in the deformation path upon the deviatoric stress and the plastic strain-rate vectors. The results indicate that there exist appreciable differences between the Mises equivalent stress and equivalent plastic strain curves (up to strains of order 2%) for the three axial strain-rates investigated. These differences are attributed to the rate-sensitivity of the material. The results also show a much slower alignment of the deviatoric stress vector direction to the direction of the plastic strain-rate vector than had been expected. Comparisons with two theoretical analyses of a bilinear deformation path of quasistatic twisting followed by extension at a constant strain-rate are made, one using PERZYNA'S (1966) viscoplastic constitutive law for rate-sensitive (but non-strainhardening) material and the other using a rate-independent theory. Refinements in the test procedures now reveal that significant differences exist between

  20. Identification of the plastic deformation characteristics of AL5052-O sheet based on the non-associated flow rule

    NASA Astrophysics Data System (ADS)

    Pham, Quoc Tuan; Kim, Young Suk

    2017-02-01

    This study aims to determine the plastic deformation characteristics of aluminum 5052-O based on non-associated flow rule. To achieve this goal, a new strain hardening model named as Kim-Tuan hardening model is proposed to perfectly describe the stress-strain relation of the studied material in terms of the uniaxial tensile test and to predict the material's post-necking behavior. Additionally, the plastic behaviors of AL5052-O sheet are described by two approaches: the associated flow rule with YLD2000-2d yield function and the non-associated flow rule with Hill's quadratic function (NAFR-Hill48). The parameters of these functions were derived from the material properties that were obtained from uniaxial tensile tests and bulge test. The flow curve based on Kim-Tuan model and plastic behaviors obtained from two above-mentioned approaches were imported into a finite element analysis code to simulate the hydraulic bulge test for this material to confirm the precision of material characteristics achieved before. The simulation results based on the NAFR-Hill48 match well with the experiment results of bulge test while the YLD2000-2d provides highly accurate predictions for anisotropy of this material.

  1. Identification of the plastic deformation characteristics of AL5052-O sheet based on the non-associated flow rule

    NASA Astrophysics Data System (ADS)

    Pham, Quoc Tuan; Kim, Young Suk

    2017-03-01

    This study aims to determine the plastic deformation characteristics of aluminum 5052-O based on non-associated flow rule. To achieve this goal, a new strain hardening model named as Kim-Tuan hardening model is proposed to perfectly describe the stress-strain relation of the studied material in terms of the uniaxial tensile test and to predict the material's post-necking behavior. Additionally, the plastic behaviors of AL5052-O sheet are described by two approaches: the associated flow rule with YLD2000-2d yield function and the non-associated flow rule with Hill's quadratic function (NAFR-Hill48). The parameters of these functions were derived from the material properties that were obtained from uniaxial tensile tests and bulge test. The flow curve based on Kim-Tuan model and plastic behaviors obtained from two above-mentioned approaches were imported into a finite element analysis code to simulate the hydraulic bulge test for this material to confirm the precision of material characteristics achieved before. The simulation results based on the NAFR-Hill48 match well with the experiment results of bulge test while the YLD2000-2d provides highly accurate predictions for anisotropy of this material.

  2. Elasto/visco-plastic deformation of multi-layered shells of revolution under thermal loading due to fluid

    SciTech Connect

    Takezono, S.; Tao, K.; Inamura, E.

    1995-11-01

    An analytical method for the elasto/visco-plastic deformation of the multi-layered shells subjected to thermal loads due to fluid is developed. First, the temperature distribution through the thickness in each layer is assumed to be linear, and the temperature field in the shell is determined using the equations of heat conduction and heat transfer. Secondly, the stresses and deformations are analyzed by the thermal stress equations. The equations of equilibrium and the relationships between the strains and displacements are derived from the Sanders shell theory. For the constitutive relations, Perzyna`s equations are employed. As a numerical example, a two-layered cylindrical shell composed of mild steel and titanium subjected to locally distributed thermal loads due to fluid is analyzed. Numerical computations are carried out for three cases of the ratio of the thickness of the titanium layer to the shell thickness. It is fund from the computations that the temperature and stress distributions and the deformation vary significantly depending on the thickness ratio.

  3. Microstructure and annealing behavior of a modified 9Cr-1Mo steel after dynamic plastic deformation to different strains

    NASA Astrophysics Data System (ADS)

    Zhang, Z. B.; Mishin, O. V.; Tao, N. R.; Pantleon, W.

    2015-03-01

    The microstructure, hardness and tensile properties of a modified 9Cr-1Mo steel processed by dynamic plastic deformation (DPD) to different strains (0.5 and 2.3) have been investigated in the as-deformed and annealed conditions. It is found that significant structural refinement and a high level of strength can be achieved by DPD to a strain of 2.3, and that the microstructure at this strain contains a large fraction of high angle boundaries. The ductility of the DPD processed steel is however low. Considerable structural coarsening of the deformed microstructure without pronounced recrystallization takes place during annealing of the low-strain and high-strain samples for 1 h at 650 °C and 600 °C, respectively. Both coarsening and partial recrystallization occur in the high-strain sample during annealing at 650 °C for 1 h. For this sample, it is found that whereas coarsening alone results in a loss of strength with only a small gain in ductility, coarsening combined with pronounced partial recrystallization enables a combination of appreciably increased ductility and comparatively high strength.

  4. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content.

    PubMed

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J; Buehler, Markus J

    2016-02-01

    Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom-up approach. By conserving the three-dimensional structure and the entanglement of the molecules, we were able to construct finite-size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness.

  5. Recovery of Industrial and Recycled Al-Cu Alloys Subjected to Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Rekik, M. A.; Kassis, K.; Masmoudi, J.; Zghal, S.; Champion, Y.; Njah, N.

    2009-11-01

    Equal channel angular pressing (ECAP) is a well-known method to obtain high hardness levels through a strong refinement of grains. To obtain fine grains, a subsequent heating is performed after deformation. The main difficulty is to retain a sufficiently small grain size. Alloy purity is an important parameter in recristallization kinetics. In the present work, an industrial and a recycled Al-4%Cu alloys were subjected to ECAP. The evolution of the microstructure of the deformed and annealed alloys was investigated. The alloys exhibit different hardness values for a given equivalent deformation. In industrial alloy, no recovery was observed at low temperatures. On the other hand, enhanced precipitation in this alloy leads to an increase in hardness balancing then softening due to recovery. A substantial decrease in hardness is observed around 250 ∘C and seems to depend on alloy purity.

  6. Electron Emission as a Probe of Plastic Deformation in Single Crystal Metals

    SciTech Connect

    J. Thomas Dickinson

    2007-09-28

    Work under this grant focused on the use of photoelectron emission as a probe of deformation processes in metals, principally single crystal and polycrystalline aluminum. Dislocations intersecting the surface produce patches of low work function metal which emit electrons when illuminated with the appropriate ultraviolet radiation. We have shown that changes in the photoemission signals during deformation can be used to identify the onset of strain localization. In some systems, the photoelectron kinetic energy distribution reflects the distribution of surface orientations, which depends on the competition between grain rotation and slip. Photoemission electron microscope images of shape memory alloys and thin films show marked changes in intensity and surface topography as the materal passes through its transition temperature. Photoelectron emission provides important information on the temporal progress of deformation processes that complements the spatial information provided by other techniques.

  7. The effect of ultrasonics on the strength properties of carbon steel processed by cold plastic deformation

    NASA Technical Reports Server (NTRS)

    Atanasiu, N.; Dragan, O.; Atanasiu, Z.

    1974-01-01

    A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.

  8. Mechanisms of plastic deformation in [1 ¯ 11 ]-oriented single crystals of FeNiMnCrCo high entropy alloy

    NASA Astrophysics Data System (ADS)

    Kireeva, Irina; Chumlyakov, Yurii; Pobedennaya, Zinaida; Kuksgauzen, Dmitrii; Karaman, Ibrahim; Sehitoglu, Huseyin

    2016-11-01

    Single crystals of fcc Fe20Ni20Mn20Cr20Co20 (atom percent) high entropy alloy oriented along the [1 ¯11 ] direction are used to study flow curves and deformation mechanisms—slip, twinning under tensile deformation at early stages of plastic flow, ɛ = 2.5-5.0%, at the test temperature of 77 and 296 K. It is shown that twinning in [1 ¯11 ] -oriented single crystals is observed from the beginning of plastic flow when ɛ = 2.5-5.0% from 77 to 296 K. Plastic flow in [1 ¯11 ]-oriented single crystals under tension is developed with the high strain hardening coefficients 1800 and 2000 MPa, respectively, at 296 and 77 K. It is also characterized by a good plasticity of 58 and 60% and by a high level of stresses before fracture, 980 and 1580 MPa, respectively, at 296 and 77 K.

  9. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  10. Effect of preliminary plastic deformation on the anodic behavior of molybdenum-rhenium alloys

    SciTech Connect

    Amirkhanova, N.A.; Tatarinova, O.M.

    1988-07-01

    Two molybdenum-rhenium alloys obtained by the method of vacuum melting and containing 20% and 40% rhenium were investigated for their anodic behavior following heating and bulk forging to develop different degrees of deformation. Their stationary potentials were determined in solutions of a number of sodium salts and polarization measurements were made using a rotating disk electrode. The rate of removal for different working-stress values was determined on an apparatus simulating the electrochemical sizing process. Surface microstructure was observed by metallographic microscopy. The increase in the rate of anodic dissolution of the alloys was determined to be correct for degrees of deformation to 10%.

  11. Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni-Fe alloy

    SciTech Connect

    Li, Hongqi; Wang, Y B; Ho, J C; Liao, X Z; Zhu, Y T; Ringer, S P

    2009-01-01

    Deformation induced grain growth has been widely reported in nanocrystalline materials. However, the grain growth mechanism remains an open question. This study applies high-pressure torsion to severely deform bulk nanocrystalline Ni-20 wt % Fe disks and uses transmission electron microscopy to characterize the grain growth process. Our results provide solid evidence suggesting that high pressure torsion induced grain growth is achieved primarily via grain rotation for grains much smaller than 100 nm. Dislocations are mainly seen at small-angle subgrain boundaries during the grain growth process but are seen everywhere in grains after the grains have grown large.

  12. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    SciTech Connect

    Kopanitsa, D. G. Ustinov, A. M.; Potekaev, A. I.; Klopotov, A. A.; Kopanitsa, G. D.

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  13. Multiscale Modeling of Deformation Twinning Based on Field Theory of Multiscale Plasticity (FTMP)

    DTIC Science & Technology

    2013-09-01

    Simulations: HCP Magnesium (Mg) 13 6.1 Model, Results, and Discussion...for hexagonal close-packed ( HCP ) metals (here HCP refers to any hexagonal metal, not necessarily one with the ideal c/a ratio for closest packing...constitutive model applicable to FCC, BCC, and HCP metals based on statistical mechanics and dislocation dynamics. The rate of plastic distortion is

  14. Analysis of large, non-isothermal elastic-visco-plastic deformations

    NASA Technical Reports Server (NTRS)

    Riff, R.; Carlson, R. L.; Simitses, G. J.

    1984-01-01

    The development of a general mathematical model and solutions of test problems to analyze large nonisothermal elasto-visco-plastic deformatisms of structures is discussed. Geometric and material type nonlinearities of higher order are present in the development of the mathematical model and in the developed solution methodology.

  15. Visco-Plastic Flow of Glacial Covers and the Laws of Ice Deformation,

    DTIC Science & Technology

    The report presents the results of investigations which were made by the author during the Second Antartic Expedition (1956-1958). In the first part...plastic flow of glacial covers and a comparison of the analytic results which were obtained with data from observations under natural conditions in the Antartic . (Author)

  16. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  17. Numerical study of the process of plastic deformation localization by an example of high-speed compression of a hollow single crystal cylinder

    NASA Astrophysics Data System (ADS)

    Dmitriev, A. I.; Nikonov, A. Yu.; Bondar', M. P.

    2016-11-01

    The effect of the crystallographic orientation of a single crystal hollow cylinder on features of creation and evolution of plastic deformation in it under conditions of high-speed axisymmetric load is studied. An advantage of the proposed loading scheme is the simultaneous implementation of all loading variants within the chosen crystallographic base plane of the cylinder and reaching different degrees of deformation over the cross section of the sample. Using the molecular-dynamic modeling, the difference in deformation properties of the loaded sample has been shown depending on the chosen crystallographic orientation of the base plane. Results of the investigation can be used to understand the main mechanisms of the plastic deformation of crystalline bodies.

  18. Structure and mechanical properties of aging Al-Li-Cu-Zr-Sc-Ag alloy after severe plastic deformation by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Kaigorodova, L. I.; Rasposienko, D. Yu.; Pushin, V. G.; Pilyugin, V. P.; Smirnov, S. V.

    2015-04-01

    The structural and phase transformations have been studied in aging commercial aluminum-lithium alloy Al-1.2 Li-3.2 Cu-0.09 Zr-0.11 Sc-0.4 Ag-0.3 Mg in the as-delivered state and after severe plastic deformation by torsion for 1, 5 and 10 revolutions under a high pressure of 4 GPa. Deformation-induced nanofragmentation and dynamic recrystallization have been found to occur in the alloy. The degree of recrystallization increases with deformation. Nanofragmentation and recrystallization processes are accompanied by the deformation-induced decomposition of solid solution and changes in both the nucleation mechanism of precipitation and the phase composition of the alloy. The influence of a nanostructured nanophase state of the alloy on its mechanical properties (microhardness, plasticity, elastic modulus, and stiffness) is discussed.

  19. Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J

    2016-01-01

    ABSTRACT Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale model of a single mineralized collagen fibril using a bottom‐up approach. By conserving the three‐dimensional structure and the entanglement of the molecules, we were able to construct finite‐size fibril models that allowed us to explore the deformation mechanisms which govern their mechanical behavior under large deformation. We investigated the tensile behavior of a single collagen fibril with various intrafibrillar mineral content and found that a mineralized collagen fibril can present up to five different deformation mechanisms to dissipate energy. These mechanisms include molecular uncoiling, molecular stretching, mineral/collagen sliding, molecular slippage, and crystal dissociation. By multiplying its sources of energy dissipation and deformation mechanisms, a collagen fibril can reach impressive strength and toughness. Adding mineral into the collagen fibril can increase its strength up to 10 times and its toughness up to 35 times. Combining crosslinks with mineral makes the fibril stiffer but more brittle. We also found that a mineralized fibril reaches its maximum toughness to density and strength to density ratios for a mineral density of around 30%. This result, in good agreement with experimental observations, attests that bone tissue is optimized mechanically to remain lightweight but maintain strength and toughness. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:26866939

  20. Uniaxial plastic deformation of isotactic polypropylene studied by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Kang, Jia

    At alleviated temperatures, some semicrystralline polymers can be stretched to very large deformation ratios. Such deformations of semicrystalline polymers have been extensively studied since 1960s. Based on experimental observations and theoretical investigations, solid-state transformation (three stage model) proposed in 1971 and local melting and recrystallization in 1978 have been considered two major mechanisms to explain the deformations of polymer crystals. With the elucidation of molecular dynamics in the last two decades, it was proposed in 1999 that helical jump motion plays an important role in crystal deformation. On the other hand, the new structures induced by deformation also influence the molecular motions and resultant properties of deformed polymers. Such processing-structure-property relationship is very important to understand the polymer behaviors as well as to inform the polymer industry. In this dissertation, using the advanced tool of solid-state NMR (ss-NMR), we achieve three goals: Firstly, we investigate the hierarchical crystalline structural changes of isotactic polypropylene (i PP) upon high temperature stretching to understand the deformation process. Secondly, we evaluate the roles of local packing structure and crystal thickness in determining the stem motions and thermal properties of deformed alpha-form iPP. Thirdly, we utilize 13C-labeled isotactic polypropylene (iPP) to trace the change of chain folding number as a function of e to conclude molecular-level deformation mechanism. To realize the first and second goals, the chain packing, crystal thickness, molecular dynamics, and melting temperature (Tm) of a-form iPP drawn uniaxially at high temperatures of 100 - 150 °C were investigated using solid-state (SS) NMR and DSC. Two types of iPP samples with disordered (alpha1) and relatively ordered (alpha2-rich) packing structures were prepared via different thermal treatments and drawn up to an engineering strain ( e) of

  1. Continuum Multiscale Modeling of Finite Deformation Plasticity and Anisotropic Damage in Polycrystals

    DTIC Science & Technology

    2006-09-01

    neighboring grains cannot be spa- tially resolved. 3.5. Homogenization of damage Effects from mechanisms modeled individually— elastoplasticity within each...crystal plasticity routines are available, as the damage computations are effectively uncoupled from the constitutive update of the elastoplastic response... elastoplasticity and damage : multiscale kinematics, Int. J. Solids Struct. 40 (2003) 5669–5688. [17] C. Teodosiu, F. Sidoroff, A finite theory of

  2. Quantitative Assessment of the Accuracy of Constitutive Laws for Plasticity with an Emphasis on Cyclic Deformation

    DTIC Science & Technology

    1993-04-01

    new law, the B-L law. The experimental database is constructed from a5 series of constant amplitude and random amplitude strain controlled cyclic...description of the experimental instrumentation is given in Appendix I. The cyclic plasticity experiments were performed under strain control at room5...instrumentation is present and control accuracy is not as good, the increments or difference of strain at two adjacent sampling intervals should be

  3. Plastic Work to Heat Conversion During High-Strain Rate Deformation of Mg and Mg Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Dipankar; Kingstedt, Owen T.; Ravichandran, Guruswami

    2017-01-01

    Magnesium and magnesium alloy were investigated for plastic work to heat conversion ( β). Thermomechanical response was measured employing the shear-compression specimen geometry, a split-Hopkinson pressure bar, and an infra-red detector. β of both materials measured to be less than the common assumption of 0.9; however, heat conversion was observed to be greater for magnesium alloy. Thus, results suggest that alloying and grain size refinement not only improved yield strength but also affected the thermomechanical response.

  4. Spatially resolved characterization of electromigration-induced plastic deformation in al (0.5wt percent cu) interconnect

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Tamura, N.; Patel, J.R.; Valek, B.C.; Bravman, J.C.; Spolenak, R.

    2003-05-06

    Electromigration during accelerated testing can induce large scale plastic deformation in Al interconnect lines as recently revealed by the white beam scanning X-ray microdiffraction. In the present paper, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in-situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking after electric current flow. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined.

  5. Contactless electrical conductivity measurement of metallic submicron-grain material: Application to the study of aluminum with severe plastic deformation.

    PubMed

    Mito, M; Matsui, H; Yoshida, T; Anami, T; Tsuruta, K; Deguchi, H; Iwamoto, T; Terada, D; Miyajima, Y; Tsuji, N

    2016-05-01

    We measured the electrical conductivity σ of aluminum specimen consisting of submicron-grains by observing the AC magnetic susceptibility resulting from the eddy current. By using a commercial platform for magnetic measurement, contactless measurement of the relative electrical conductivity σn of a nonmagnetic metal is possible over a wide temperature (T) range. By referring to σ at room temperature, obtained by the four-terminal method, σn(T) was transformed into σ(T). This approach is useful for cylinder specimens, in which the estimation of the radius and/or volume is difficult. An experiment in which aluminum underwent accumulative roll bonding, which is a severe plastic deformation process, validated this method of evaluating σ as a function of the fraction of high-angle grain boundaries.

  6. Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2016-08-01

    Microstructural evolutions during annealing of a plastically deformed AISI 304 stainless steel were investigated. Three distinct stages were identified for the reversion of strain-induced martensite to austenite, which were followed by the recrystallization of the retained austenite phase and overall grain growth. It was shown that the primary recrystallization of the retained austenite postpones the formation of an equiaxed microstructure, which coincides with the coarsening of the very fine reversed grains. The latter can effectively impair the usefulness of this thermomechanical treatment for grain refinement at both high and low annealing temperatures. The final grain growth stage, however, was found to be significant at high annealing temperatures, which makes it difficult to control the reversion annealing process for enhancement of mechanical properties. Conclusively, this work unravels the important microstructural evolution stages during reversion annealing and can shed light on the requirements and limitations of this efficient grain refining approach.

  7. Structure and microhardness of Al-Si-Cu-Ni alloy after severe plastic deformation and high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Shvets, Karina; Khalikova, Gulnara; Korznikova, Elena; Trifonov, Vadim

    2015-10-01

    The effect of severe plastic deformation by high-pressure torsion (HPT) and subsequent annealing on the microstructure and microhardness of squeeze casting Al-22%Si-3%Cu-1.7%Ni alloy was investigated. HPT was performed at room temperature with 5 rotations under the pressure of 4 GPa. Annealing temperature range varied from 300 to 500°C for 5 min. HPT resulted in refinement and partial dissolution of the primary silicon and intermetallic particles in aluminum matrix and structure fragmentation that caused the microhardness increase. Subsequent annealing lead to the decomposition of the supersaturated solid solution that took place simultaneously with recovery and recrystallization of the fragmented structure. Increase of annealing temperature resulted in decrease of microhardness values.

  8. Role of plastic deformation in wear of copper and copper - 10-percent-aluminum alloy in cryogenic fuels

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1973-01-01

    High-purity copper specimens and a copper-aluminum (10%) alloy specimen were subjected to sliding against Type 440 C in cryogenic fuel environments. It was found that virtually all wear occurred by the plastic deformation of a recrystallized layer extending to about 10 micrometers below the wear scar surface of the copper or copper alloy. The wear debris was in the form of a layered structure adhering to the exit region of the wear scar. Measurements on the high purity copper specimens indicated that the wear rate was proportional to the applied load and to the sliding velocity squared. A physical model of the wear process is proposed to account for these observations.

  9. The influence of hold time on the onset of plastic deformation in silicon

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Bradby, Jodie E.; ...

    2015-12-24

    Here, the formation of silicon (Si) in its -Sn form is known to be nucleation limited, with an undetermined period of time between when critical pressure for the trans- formation is reached and when the transformation actually occurs. In this letter, we use nanoindentation to apply critical pressure to diamond cubic Si and hold the sample under pressure to promote deformation via phase transformation and crystalline defects. We report that the number of indents in which phase transformation is observed increases with increasing hold time. Interestingly, the number of indents in which crystalline defects are observed also increase with increasingmore » hold time, suggesting crystalline defects are also nucleation limited. Raman spectroscopy and cross-sectional transmission electron microscopy is used to show that these two deformation mechanisms are mutually exclusive under the indentation conditions used within this letter.« less

  10. The influence of hold time on the onset of plastic deformation in silicon

    SciTech Connect

    Wong, Sherman; Haberl, Bianca; Bradby, Jodie E.; Williams, James S.

    2015-12-24

    Here, the formation of silicon (Si) in its -Sn form is known to be nucleation limited, with an undetermined period of time between when critical pressure for the trans- formation is reached and when the transformation actually occurs. In this letter, we use nanoindentation to apply critical pressure to diamond cubic Si and hold the sample under pressure to promote deformation via phase transformation and crystalline defects. We report that the number of indents in which phase transformation is observed increases with increasing hold time. Interestingly, the number of indents in which crystalline defects are observed also increase with increasing hold time, suggesting crystalline defects are also nucleation limited. Raman spectroscopy and cross-sectional transmission electron microscopy is used to show that these two deformation mechanisms are mutually exclusive under the indentation conditions used within this letter.

  11. Modeling complex plastic deformation and fracture of metals under disproportionate loading

    NASA Astrophysics Data System (ADS)

    Volkov, I. A.; Korotkikh, Yu. G.; Tarasov, I. S.

    2009-09-01

    A mathematical model is developed to describe fatigue-damage accumulation in structural materials (metals and their alloys) on multiaxial paths of disproportionate combined heat and power loading. The effect of the shape of the strain path on the fatigue life of metals was studied to obtain qualitative and quantitative estimates of the obtained constitutive relations. It is shown that the proposed constitutive relations adequately describe the main elastoplastic deformation effects and damage accumulation in structural materials for arbitrary strain paths.

  12. Severe Plastic Deformation Processing of Refractory Metals by Equal Channel Angular Extrusion

    DTIC Science & Technology

    2008-12-01

    distributions and extensive texture gradients. Conventional metal processing, such as rolling, swaging , and forging, introduce non-uniform deformation...00 /5 00 ) Tungsten Tantalum Fig. 5. Hall-Petch plot showing the variation in Vickers microhardness vs. d-1/2 for as-worked and recrystallized Ta...softening and flow anisotropy approaches to developing improved tungsten kinetic energy penetrator materials, Mater. Manuf. Proc., 10, 531- 540

  13. Simple model for plastic deformation and slip avalanches in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Dahmen, Karin; Antonaglia, James; Qiao, Junwei; Xie, Xie; Liaw, Peter; Uhl, Jonathan

    2013-03-01

    Ductile bulk metallic glasses are known to deform under shear in an intermittent way with slip-avalanches detected as acoustic emission and serrations in the stress-strain curves. In many such materials, power laws govern the statistics of these avalanches. A basic micromechanical model for deformation of solids with only one tuning parameter is introduced. The model predicts the observed stress-strain curves, acoustic emissions, related power spectra, and power-law statistics of slip avalanches, including the dependence of the cutoff on experimental parameters with a continuous phase transition from brittle to ductile behavior. Material independent (``universal'') predictions for the power-law exponents and scaling functions are extracted using the mean-field theory and renormalization group tools. The results agree with recent experimental observations on deformed bulk metallic glasses. JA and KD gratefully acknowledge NSF grants DMR-1005209 and DMS-1069224, XX, JQ, and PKL gratefully acknowledge NSF grants DMR-0231320, CMMI-0900271, CMMI-1100080, and DMR-0909037.

  14. Plastic deformation mechanisms of ultrafine-grained copper in the temperature range of 4.2-300 K

    NASA Astrophysics Data System (ADS)

    Isaev, N. V.; Grigorova, T. V.; Mendiuk, O. V.; Davydenko, O. A.; Polishchuk, S. S.; Geidarov, V. G.

    2016-09-01

    Main microstructural features of ultrafine-grained (UFG) polycrystalline oxygen-free copper (Cu-OF) obtained by direct and equal-channel angular hydrostatic extrusion were studied by EBSD and XRD methods. The effect of microstructure on the temperature dependences of the yield stress and strain rate sensitivity of the deforming stress was investigated using tensile and stress relaxation tests in the insufficiently studied temperature range of 4.2-300 K. Using thermal activation analysis it was established that in the range 77-200 K the rate of plastic deformation is controlled by the thermally activated mechanism of crossing the forest dislocations and its empirical parameters were obtained. The experimental anomalies below 77 K unaccountable by the forest crossing mechanism were explained by the inertial properties of dislocations revealed under conditions of high effective stress and low dynamic friction. The inversion of the temperature dependences of the activation volume observed above 200 K was attributed to the thermally activated detachment of dislocations from local pinning centers within the grain boundaries.

  15. The form of a constitutive equation of plastic deformation compatible with stress relaxation data

    SciTech Connect

    Fortes, M.A.; Rosa, M.E.

    1984-05-01

    Hart's approach to constitutive equations of plasticity and experimental results relevant to his formalism are reanalyzed, with special emphasis on the consequences of the scaling relation observed in the relaxation curves of a large number of materials. Complete constitutive equations containing a single structure variable are proposed which describe the experimentally determined relaxation and tensile test curves. An interpretation of the structure variable is given in terms of the density of obstacles to dislocations. The equations are generalized to include recovery and applied to dislocation creep.

  16. Features of plastic deformation and fracture of dispersion-strengthened V–Cr–Zr–W alloy depending on temperature of tension

    SciTech Connect

    Ditenberg, Ivan A.; Grinyaev, Konstantin V.; Tyumentsev, Alexander N.; Smirnov, Ivan V.; Pinzhin, Yury P.; Tsverova, Anastasiya S.; Chernov, Vyacheslav M.

    2015-10-27

    Influence of tension temperature on features of plastic deformation and fracture of V–4.23Cr–1.69Zr–7.56W alloy was investigated by scanning and transmission electron microscopy. It is shown that temperature increase leads to activation of the recovery processes, which manifests in the coarsening of microstructure elements, reducing the dislocation density, relaxation of continuous misorientations.

  17. Plastic deformation of single crystals of WSi{sub 2} with the C11{sub b} structure

    SciTech Connect

    Ito, K.; Yano, T.; Nakamoto, T.; Inui, H.; Yamaguchi, M.

    1999-02-05

    The deformation behavior of single crystals of WSi{sub 2} has been investigated as a function of crystal orientation in the temperature range from room temperature to 1500 C in compression. Single crystals of WSi{sub 2} can be deformed only at high temperatures above 1100 C, in contrast to MoSi{sub 2} in which plastic flow is possible even at room temperature. Four slip systems, {l_brace}110{r_brace}{l_angle}111{r_angle}, {l_brace}011{r_brace}{l_angle}100{r_angle}, {l_brace}023{r_brace}{l_angle}100{r_angle} and (001){l_angle}100{r_angle}, are identified. While the former three slip systems are operative also in MoSi{sub 2}, the (001){l_angle}100{r_angle} slip is only operative in WSi{sub 2}. The (001){l_angle}100{r_angle} slip in WSi{sub 2} is the alternative to {l_brace}013{r_brace}{l_angle}331{r_angle} slip in MoSi{sub 2} since they are operative in the same orientation range. Slip on {l_brace}110{r_brace}{l_angle}331{r_angle} is hardly observed in WSi{sub 2}. The values of critical resolved shear stress (CRSS) for the commonly observed slip systems are much higher in WSi{sub 2} than in MoSi{sub 2} with the largest difference for {l_brace}110{r_brace}{l_angle}111{r_angle} slip. The higher CRSS values in WSi{sub 2} are not only due to the intrinsic difference in the deformation behavior but also due to the existence of numerous grown-in stacking faults on (001).

  18. Effect of stress and plastic deformation on hysteresis and anhysteretic magnetization of Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Lofland, Sam

    2004-03-01

    We report on the low-field magnetic properties of thin FeNi alloys films and ribbons under tensile stress. The magnetization was measured using a conventional vibrating sample magnetometer using a special designed fixture allowing applying forces as large as 250 N providing sizable uniaxial stresses on thin film and wires. Anhysteretic permeability was extracted from the anhysteretic B-H curves constructed by degaussing the sample at given longitudinal (parallel to the stresses) dc field. We discuss results of the measurements of steel and invar samples of FeNi samples leads to higher susceptibility and lower coercivity for low tensile stress. The magnetostriction contribution to dc magnetization under elastic stress and the effect of the plastic strain on the hysteresis loops were characterized. Larger stresses result in plastic strain of the sample which induces an increase in dislocation density and subsequently domain wall pinning. This causes an increase in coercivity and decrease in anhysteretic permeability at the highest stresses. We also discuss the effect of composition and processing on these results.

  19. Local melting to design strong and plastically deformable bulk metallic glass composites

    NASA Astrophysics Data System (ADS)

    Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen

    2017-02-01

    Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties.

  20. Local melting to design strong and plastically deformable bulk metallic glass composites

    PubMed Central

    Qin, Yue-Sheng; Han, Xiao-Liang; Song, Kai-Kai; Tian, Yu-Hao; Peng, Chuan-Xiao; Wang, Li; Sun, Bao-An; Wang, Gang; Kaban, Ivan; Eckert, Jürgen

    2017-01-01

    Recently, CuZr-based bulk metallic glass (BMG) composites reinforced by the TRIP (transformation-induced plasticity) effect have been explored in attempt to accomplish an optimal of trade-off between strength and ductility. However, the design of such BMG composites with advanced mechanical properties still remains a big challenge for materials engineering. In this work, we proposed a technique of instantaneously and locally arc-melting BMG plate to artificially induce the precipitation of B2 crystals in the glassy matrix and then to tune mechanical properties. Through adjusting local melting process parameters (i.e. input powers, local melting positions, and distances between the electrode and amorphous plate), the size, volume fraction, and distribution of B2 crystals were well tailored and the corresponding formation mechanism was clearly clarified. The resultant BMG composites exhibit large compressive plasticity and high strength together with obvious work-hardening ability. This compelling approach could be of great significance for the steady development of metastable CuZr-based alloys with excellent mechanical properties. PMID:28211890

  1. Large-deformation, elasto-plastic analysis of frames under nonconservative loading, using explicitly derived tangent stiffnesses based on assumed stresses

    NASA Astrophysics Data System (ADS)

    Kondoh, K.; Atluri, S. N.

    1987-03-01

    Simple and economical procedures for large-deformation elasto-plastic analysis of frames, whose members can be characterized as beams, are presented. An assumed stress approach is employed to derive the tangent stiffness of the beam, subjected in general to non-conservative type distributed loading. The beam is assumed to undergo arbitrarily large rigid rotations but small axial stretch and relative (non-rigid) point-wise rotations. It is shown that if a plastic-hinge method (with allowance being made for the formation of the hinge at an arbitrary location or locations along the beam) is employed, the tangent stiffness matrix may be derived in an explicit fashion, without numerical integration. Several examples are given to illustrate the relative economy and efficiency of the method in solving large-deformation elasto-plastic problems. The method is of considerable utility in analysing off-shore structures and large structures that are likely to be deployed in outerspace.

  2. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Yuan, Lin; Jing, Peng; Shan, Debin; Guo, Bin

    2017-01-01

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (Ф < 64.76°). At the latter stage of plastic deformation, free surfaces served as additional dislocation sources. Parallelly arranged operative slip systems were the fundamental features of plastic deformation. In addition, a number of stacking faults and multiple stacking faults were formed during plastic deformation. The hindrance of stacking faults to dislocation motion and the interactions between dislocations leaded to the observed strain hardening in nanowires with inclination angles at and above 29.50°. The low stacking fault energy of silver was responsible for the appearance of strain hardening. Dislocations emitted from grain 2 interacted with each other contributing to the observed strain hardening. Grain boundaries were completely eliminated by successive emission of dislocations from grain boundaries in nanowires with an inclination angle of 35.26° and 54.74°. A detailed understanding of the relationship between strength and grain boundary structures as well as specific plastic deformation would push forward the application of nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  3. Atomic and dislocation dynamics simulations of plastic deformation in reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Monnet, Ghiath; Domain, Christophe; Queyreau, Sylvain; Naamane, Sanae; Devincre, Benoit

    2009-11-01

    The collective behavior of dislocations in reactor pressure vessel (RPV) steel involves dislocation properties on different phenomenological scales. In the multiscale approach, adopted in this work, we use atomic simulations to provide input data for larger scale simulations. We show in this paper how first-principles calculations can be used to describe the Peierls potential of screw dislocations, allowing for the validation of the empirical interatomic potential used in molecular dynamics simulations. The latter are used to compute the velocity of dislocations as a function of the applied stress and the temperature. The mobility laws obtained in this way are employed in dislocation dynamics simulations in order to predict properties of plastic flow, namely dislocation-dislocation interactions and dislocation interactions with carbides at low and high temperature.

  4. Revolution of Principal Axes of Plastic Anisotropy Developed during Deformation Process

    NASA Astrophysics Data System (ADS)

    Izawa, Yoshiaki; Tanaka, Ryo; Ito, Koichi

    The anisotropies of sheet metals originate from the texture developed by a cold rolling process. In the texture, the crystal grains assume a partial direction, and so the strength of the texture is different from that of the surrounding material. When the sheet metals are deformed with changes of the strain path, the difference in strength produces a new texture and defines a new anisotropic principal axis. Therefore, it is supposed that the principal axis of anisotropies does not behave like the material fiber printed on the sheet metals. To confirm the above assumption, a measuring method of revolution angles of principal axes is proposed by using a laser speckle surface strain meter. The revolution angle is measured by investigating the distribution of r-values with respect to the tensile directions. Finally, a dynamical revolution model of the principal axes is derived and its parameters are identified.

  5. On the reliability of powder diffraction Line Profile Analysis of plastically deformed nanocrystalline systems

    PubMed Central

    Rebuffi, Luca; Troian, Andrea; Ciancio, Regina; Carlino, Elvio; Amimi, Amine; Leonardi, Alberto; Scardi, Paolo

    2016-01-01

    An iron-molybdenum alloy powder was extensively deformed by high energy milling, so to refine the bcc iron domain size to nanometer scale (~10 nm) and introduce a strong inhomogeneous strain. Both features contribute to comparable degree to the diffraction peak profile broadening, so that size and strain contributions can be easily separated by exploiting their different dependence on the diffraction angle. To assess the reliability of Line Profile Analysis, results were compared with evidence from other techniques, including scanning and transmission electron microscopy and X-ray small angle scattering. Results confirm the extent of the size broadening effect, whereas molecular dynamics simulations provide insight into the origin of the local atomic, inhomogeneous strain, pointing out the role of dislocations, domain boundaries and interactions among crystalline domains. PMID:26860471

  6. Plastic-flow and microstructure evolution during hot deformation of a gamma titanium aluminide alloy

    SciTech Connect

    Seetharaman, V.; Semiatin, S.L.

    1997-11-01

    The hot workability of a near gamma titanium aluminide alloy, Ti-49.5Al-2.5Nb-1.1Mn, was assessed in both the cast and the wrought conditions through a series of tension tests conducted over a wide range of strain rates (10{sup {minus}4} to 10{sup 0} s{sup {minus}1}) and temperatures (850 C to 1,377 C). Tensile flow curves for both materials exhibited sharp peaks at low strain levels followed by pronounced necking and flow localization at high strain levels. A phenomenological analysis of the strain rate and temperature dependence of the peak stress data yielded an average value of the strain rate sensitivity equal to 0.21 and an apparent activation energy of {approximately}411 kJ/mol. At low strain rates, the tensile ductility displayed a maximum at {approximately}1,050 C to 1,150 C, whereas at high strain rates, a sharp transition from a brittle behavior at low temperatures to a ductile behavior at high temperatures was noticed. Dynamic recrystallization of the gamma phase was the major softening mechanism controlling the growth and coalescence of cavities and wedge cracks in specimens deformed at strain rates of 10{sup {minus}4} to 10{sup {minus}2} s{sup {minus}1} and temperatures varying from 950 C to 1,250 C. The dynamically recrystallized grain size followed a power-law relationship with the Zener-Hollomon parameter. Deformation at temperatures higher than 1,270 C led to the formation of randomly oriented alpha laths within the gamma grains at low strain levels followed by their reorientation and evolution into fibrous structures containing {gamma} + {alpha} phases, resulting in excellent ductility even at high strain rates.

  7. In situ investigation of the effect of hydrogen on the plastic deformation ahead of the crack tip and the crack propagation of 0.15C-1.5Mn-0.17V-0.012N steel

    SciTech Connect

    Liao, B.; Nan, Y.; Hu, Y.; Kang, D.T.

    1998-02-01

    The influence of hydrogen on the deformation ahead of the crack tip and the crack propagation were observed and studied in situ under transmission electron microscopy with dynamic tensile deformation for steel. The results show that hydrogen can promote local plastic deformation ahead of the crack tip and change the mode of crack propagation so that the crack will propagate in a zigzag path.

  8. Effect of rolling-assisted deformation on the formation of an ultrafine-grained structure in a two-phase titanium alloy subjected to severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Demakov, S. L.; Elkina, O. A.; Illarionov, A. G.; Karabanalov, M. S.; Popov, A. A.; Semenova, I. P.; Saitova, L. R.; Shchetnikov, N. V.

    2008-06-01

    The effect of rolling in the temperature range 450 650°C on the fragmentation of the primary phase in a hot-rolled VT6 alloy rod preliminarily subjected to severe plastic deformation by equal-channel angular pressing at 700°C (scheme B c, the angle between the channels is 135°, 12 passes) is studied. Rolling at 450°C without preliminary ECAP is shown not to cause α-phase fragmentation and to favor intense cold working of the alloy due to multiple slip. ECAP provides partial fragmentation of the initial structure of the α phase and changes the morphology of the retained β phase: it transforms from a continuous matrix phase into separated precipitates located between α particles. This transformation activates the fragmentation of the α phase during rolling at 550°C owing to the development of twinning and polygonization processes apart from multiple slip. Both a decrease (to 450°C) and an increase (to 625 650°C) in the rolling temperature as compared to 550°C lead to the formation of a less homogeneous and fragmented structure because of weakly developed recovery and intense cold working in the former case and because of the beginning of recrystallization and the suppression of twinning in the latter case. A relation between the structure that forms upon SPD followed by rolling and the set of its properties is found. A general scheme is proposed for the structural transformations that occur during ECAP followed by rolling at various temperatures.

  9. The Mechanics and Energetics of Soil Bioturbation by Plant Roots and Earthworms - Plastic Deformation Considerations

    NASA Astrophysics Data System (ADS)

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus

    2014-05-01

    Soil structure plays a critical factor in the agricultural, hydrological and ecological functions of soils. These services are adversely impacted by soil compaction, a damage that could last for many years until functional structure is restored. An important class of soil structural restoration processes are related to biomechanical activity associated with burrowing of earthworms and root proliferation in impacted soil volumes. We study details of the mechanical processes and energetics associated with quantifying the rates and mechanical energy required for soil structural restoration. We first consider plastic cavity expansion to describe earthworm and plant root radial expansion under various conditions. We then use cone penetration models as analogues to wedging induced by root tip growth and worm locomotion. The associated mechanical stresses and strains determine the mechanical energy associated with bioturbation for different hydration conditions and root/earthworm geometries. Results illustrate a reduction in strain energy with increasing water content and trade-offs between pressure and energy investment for various root and earthworm geometries. The study provides the basic building blocks for estimating rates of soil structural alteration, the associated energetic requirements (soil carbon, plant assimilates) needed to sustain structure regeneration by earthworms and roots, and highlights potential mechanical cut-offs for such activities.

  10. High Rate GPS on Volcanoes

    NASA Astrophysics Data System (ADS)

    Mattia, M.

    2005-12-01

    The high rate GPS data processing can be considered as the "new deal" in geodetic monitoring of active volcanoes. Before an eruption, infact, transient episodes of ground displacements related to the dynamics of magmatic fluids can be revealed through a careful analysis of high rate GPS data. In the very first phases of an eruption the real time processing of high rate GPS data can be used by the authorities of Civil Protection to follow the opening of fractures field on the slopes of the volcanoes. During an eruption large explosions, opening of vents, migration of fractures fields, landslides and other dangerous phenomena can be followed and their potential of damage estimated by authorities. Examples from the recent eruption of Stromboli volcano and from the current activities of high rate GPS monitoring on Mt. Etna are reported, with the aim to show the great potential and the perspectives of this technique.

  11. The effect of high density electric pulses on sintered aluminum 201AB silicon carbide MMC PM compacts during plastic deformation

    NASA Astrophysics Data System (ADS)

    Dariavach, Nader Guseinovich

    The effect of high-density electrical pulses on mechanical and structural properties of sintered aluminum SiC metal-matrix composites, fabricated by standard powder-metallurgy compaction and sintering, was investigated. Three types of phenomena where investigated during transverse rupture testing of the samples: a consolidation effect (increasing of the transverse rupture strength (TRS)), an electroplastic effect (decreasing of the flow stresses), and an increasing of the stress intensity factor by electric pulse application. It was observed, that an increase in the TRS strength of sintered powder metallurgy (PM) aluminum and aluminum metal matrix composite (MMC) compacts is a result of the electric pulse consolidation effect due to non-uniform temperature distribution around the grain boundaries. Three analytical models of the thermal effect of electric pulses on aluminum samples where considered: total temperature change of the sample due to a one electric pulse, one-dimensional steady state model and transient 2D thermal analysis of the temperature distribution around the grain boundary. The 2D transient analysis shows that the temperature rise in the grain boundary of a sintered PM aluminum sample due to an electric pulse can exceed the melting point. At the same time the temperature of the bulk material has an insignificant (<28°C) change. It was found that the electroplastic effect, due to electric pulse application, can account for up to a 40% load drop in aluminum MMC PM compacts. Reduction of flow stresses during plastic deformation could reduce the risk of structural damage, micro-cracks, SiC particle fracture and delamination of the aluminum MMC. These results may find practical application for manufacturing processes such as forging, extrusion, rolling, which involve plastic deformation. It was experimentally proven that a non-uniform temperature distribution around the crack could re-melt the crack tip and increase the strength of the damaged material

  12. Elastic and plastic soil deformation and its influence on emission of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Haas, Christoph; Holthusen, Dörthe; Mordhorst, Anneka; Lipiec, Jerzy; Horn, Rainer

    2016-04-01

    Soil management alters physical, chemical and biological soil properties. Stress application affects microbiological activity and habitats for microorganisms in the root zone and causes soil degradation. We hypothesized that stress application results in altered greenhouse gas emissions if soil strength is exceeded. In the experiments, soil management dependent greenhouse gas emissions of intact soil cores (no, reduced, conventional tillages) were determined using two experimental setups; CO2 emissions were determined with: a dynamic measurement system, and a static chamber method before and after a vertical soil stress had been applied. For the latter CH4 and N2O emissions were analyzed additionally. Stress dependent effects can be summed as follows: In the elastic deformation range microbiological activity increased in conventional tillage soil and decreased in reduced tillage and no tillage. Beyond the precompression stress a release of formerly protected soil organic carbon and an almost total loss of CH4 oxidizability occurred. Only swelling and shrinkage of no tillage and reduced tillage regenerated their microhabitat function. Thus, the direct link between soil strength and microbial activity can be applied as a marker for soil rigidity and the transition to new disequilibria concerning microbial activity and composition.

  13. Atomistic Mechanism of Plastic Deformation During Nano-indentation of Titanium Aluminide

    NASA Astrophysics Data System (ADS)

    Rino, Jose; Dasilva, Claudio

    2013-06-01

    The mechanisms governing defect nucleation in solids are of great interest in all material science branches. Atomistic computer simulations such as Molecular Dynamics (MD), has been providing more understanding of subsurface deformations, bringing out details of atomic structures and dynamics of defects within the material. In the present work we show the first simulation measurements within an atomistic resolution of the mechanical properties of titanium aluminide intermetallic compound (TiAl), which is a promising candidate for high temperature applications with remarkable properties, such as: attractive combination of low density, high melting temperature, high elastic modulus, and strength retention at elevated temperatures, besides its good creep properties. Through calculations of local pressure, local shear stress and spatial rearrangements of atoms beneath the indenter, it was possible to quantify the indentation damage on the structure. We have founded that prismatic dislocations mediate the emission and interaction of dislocations and the activated slip planes are associated with the Thompson tetrahedron. Furthermore, using the load-penetration depth response, we were able to estimate the elastic modulus and the hardness of the TiAl alloy. All our findings are in well agreement with experimental results.

  14. Plastic Deformation Behavior of Ti Foil Under Ultrasonic Vibration in Tension

    NASA Astrophysics Data System (ADS)

    Jiang, Shaosong; Jia, Yong; Zhang, Hongbin; Du, Zhihao; Lu, Zhen; Zhang, Kaifeng; He, Yushi; Wang, Ruizhuo

    2017-03-01

    The benefits of ultrasonic vibration auxiliary metal forming have been shown by many studies. In this study, a series of experiments were carried out to investigate the deformation behavior of Ti foils under ultrasonic vibration in tension, and the tensile properties of Ti foils with/without the application of ultrasonic vibration were investigated. Then, the microstructure of different tensile samples was analyzed by transmission electron microscopy (TEM). The results of the tensile experiments showed that the tensile strength of tensile samples was reduced when ultrasonic vibration was applied, while the elongation of these samples increased. The flow stress increased with increasing strain without applying ultrasonic vibration, while it decreased steeply when the ultrasonic vibration was applied, and this reduction of flow stress demonstrated the effect of acoustic softening on the properties of the material. Additionally, the range of flow stress reduction was inversely proportional to the time for which ultrasonic vibration was applied. The TEM images showed that there were remarkable differences in dislocation distribution and tangles with/without ultrasonic vibration. The dislocation distribution was inhomogeneous, and copious dislocation tangles were discovered without ultrasonic vibration. When it was applied, the parallel re-arrangement of dislocations could be observed and the mass of dislocation tangles was mostly absent.

  15. The role of configurational disorder on plastic and dynamic deformation in Cu64Zr36 metallic glasses: A molecular dynamics analysis

    PubMed Central

    Feng, S. D.; Chan, K. C.; Chen, S. H.; Zhao, L.; Liu, R. P.

    2017-01-01

    The varying degrees of configurational disorder in metallic glasses are investigated quantitatively by molecular dynamics studies. A parameter, the quasi-nearest atom, is used to characterize the configurational disorder in metallic glasses. Our observations suggest configurational disorder play a role in structural heterogeneity, plasticity and dynamic relaxations in metallic glasses. The broad configurational disorder regions distribution is the indicator of abundant potential deformation units and relaxations. Plastic flow, as well as relaxation, is believed to start at configurational disorder regions. The width of the shear bands and dynamic relaxations can then be regulated by the degree of configurational disorder regions in metallic glasses. PMID:28102359

  16. Effect of plastic deformation on the optical and electrical properties in Cd0.96Zn0.04Te single crystals

    NASA Astrophysics Data System (ADS)

    Lmai, F.; Moubah, R.; Amiri, A. El.; Boudali, A.; Hlil, E. K.; Lassri, H.

    2017-01-01

    Using UV-visible, photoluminescence, electrical measurements and ab-initio calculations, we study the effect of introduced dislocations on the optical and electrical properties in Cd0.96Zn0.04Te crystals. To generate dislocations, a plastic deformation on the Cd(111) and Te (1 bar 1 bar 1 bar) faces was induced. It is shown that the plastic deformation results in: i) a decrease in Zn concentration in the deformed regions, which is higher on the Cd face, ii) decrease in the band gap energy, iii) an increase of acceptor concentration, and iv) the leakage current is higher on the Te face. Calculation of barrier height has led to identify the dominant defect, which is the complex Cd vacancies, acceptor center [VCd, ACd] on the Cd face and VTe on the Te side, respectively. Electronic structure calculations based on full potential linearized augmented plane waves (FPLAPW) method were performed as well and have shown that the optical band gap energy decrease upon deformation can be understood by the decrease in Zn content in the deformed regions.

  17. Electrical and optical properties of stacking faults introduced by plastic deformation in 4H-SiC

    SciTech Connect

    Pichaud, B.; Regula, G.; Yakimov, E. B.

    2014-02-21

    The electrical and optical properties of stacking faults (SFs) introduced by plastic deformation in 4H-SiC were studied by Electron Beam Induced Current (EBIC) and cathodoluminescence (CL) methods. Partial dislocations and stacking faults in the (0001) glide planes perpendicular to the surface were introduced in n-type 4H-SiC under a well-controlled state of stress by cantilever bending at 550°C. CL measurements allow determining the multiplicity of the SFs (single or double). It is observed that the overwhelming majority of stacking faults are double Shockley type SFs (CL emission at 504 nm) that correlates well with previously published high resolution transmission electron microscopy (HRTEM) investigations. However, single Shockley type SFs (CL emission at 422 nm) of much smaller lengths are also observed in some areas near the scratched region from where the defects are nucleated. This suggests that the velocity of partial dislocation pairs under a given applied stress could be higher than that of single partial dislocations. It is also shown that in the EBIC mode, SFs produce a strong bright contrast, which can be explained by considering the SFs in 4H-SiC to be quantum wells of II type.

  18. Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Poková, M.; Cieslar, M.

    2014-08-01

    Aluminium alloys prepared by twin-roll casting method become widely used in industry applications. Their high solid solution supersaturation and finer grains ensure better mechanical properties when compared with the direct-chill cast ones. One of the possibilities how to enhance their thermal stability is the addition of zirconium. After heat treatment Al3Zr precipitates form and these pin moving grain boundaries when the material is exposed to higher temperatures. In the present work twin-roll cast aluminium alloys based on AA3003 with and without Zr addition were annealed for 8 hours at 450 °C to enable precipitation of Al3Zr phase. Afterwards they were subjected to severe plastic deformation by equal channel angular pressing, which led to the reduction of average grain size under 1 μm. During subsequent isochronal annealing recovery and recrystallization took place. These processes were monitored by microhardness measurements, light optical microscopy and in-situ transmission electron microscopy. The addition of Zr stabilizes the grain size and increases the recrystallization temperature by 100 °C.

  19. Determination of the activation enthalpy for migration of dislocations in plastically deformed 8006 Al-alloy by positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    Salah, Mohammed; Abdel-Rahman, M.; Badawi, Emad A.; Abdel-Rahman, M. A.

    2016-06-01

    The activation enthalpy for migration of dislocations of plastically deformed 8006 Al-alloy was investigated by positron annihilation lifetime technique. Plastic deformation using a hydraulic press produces mainly dislocations and may produce point defects. The type of defect was studied by isochronal annealing which determines the temperature range of recovery of each type. Only one type of defect (dislocations) was observed for the investigated sample and was found to be recovered within the range 455-700 K. Isothermal annealing by slow cooling was performed through this range and used in determination of the activation enthalpy of migration of dislocations which was found to be 0.26 ± 0.01 eV.

  20. Effects of vitamin E blending on plastic deformation mechanisms of highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) in total hip arthroplasty.

    PubMed

    Takahashi, Yasuhito; Yamamoto, Kengo; Pezzotti, Giuseppe

    2015-03-01

    The molecular mobility and crystalline texture development in highly crosslinked ultrahigh molecular weight polyethylene (HXL-UHMWPE) blended with antioxidant vitamin E (VE, dl-α-tocopherol) were studied via uniaxial compression at room temperature by means of confocal/polarized Raman spectroscopy. The results were compared to morphological analyses under the same compression conditions performed on HXL-UHMWPE prepared in exactly the same way but blending VE into the polyethylene resin (VE-free HXL-UHMWPE). These comparative analyses allow us to evaluate the physical role of VE in morphological alterations of HXL-UHMWPE induced by compression deformation, which can greatly affect its micromechanical behavior. Molecular rearrangement and phase transitions in crystalline and non-crystalline phase, i.e. amorphous and intermediate (third) phase, were found to be part of a reconstruction process after plastic deformation in the samples. Although VE-blended HXL-UHMWPE exhibited more pronounced molecular mobility, as evidenced by its significant deformation-induced texturing, crystallinity change was totally inhibited by the presence of VE during deformation. On the other hand, amorphous-to-intermediate phase transition was confirmed. VE-free HXL-UHMWPE also presented significant crystallization after deformation, but its surface texture evolution occurred to a much lesser extent. This study suggests that the addition of VE induced earlier activation of compression deformation modes in crystalline and non-crystalline phases (e.g. chain slip, interlamellar shear and rotation) due to an increase in polyethylene chain mobility.

  1. An X-ray absorption spectroscopy investigation of the local atomic structure in Cu-Ni-Si alloy after severe plastic deformation and ageing

    NASA Astrophysics Data System (ADS)

    Azzeddine, H.; Harfouche, M.; Hennet, L.; Thiaudiere, D.; Kawasaki, M.; Bradai, D.; Langdon, T. G.

    2015-08-01

    The local atomic structure of Cu-Ni-Si alloy after severe plastic deformation (SPD) processing and the decomposition of supersaturated solid solution upon annealing were investigated by means of X-ray absorption spectroscopy. The coordination number and interatomic distances were obtained by analyzing experimental extend X-ray absorption fine structure data collected at the Ni K-edge. Results indicate that the environment of Ni atoms in Cu-Ni-Si alloy is strongly influenced by the deformation process. Moreover, ageing at 973 K affects strongly the atomic structure around the Ni atoms in Cu-Ni-Si deformed by equal channel angular pressing and high pressure torsion. This influence is discussed in terms of changes and decomposition features of the Cu-Ni-Si solid solution.

  2. Measurement of Orthodontic Bracket Tie Wing Elastic and Plastic Deformation by Arch Wire Torque Expression Utilizing an Optical Image Correlation Technique

    PubMed Central

    Lacoursiere, Ryan A.; Nobes, David S.; Homeniuk, Darren L. N.; Carey, Jason P.; Badawi, Hisham H.; Major, Paul W.

    2010-01-01

    Orthodontic lingual root movement (torque) is an important aspect of treatment biomechanics and is typically achieved by torsion of a rectangular wire within the orthodontic bracket slot which introduces a force couple. The magnitude of the force moment achieved by wire torsion may be influenced by deformation of the orthodontic bracket. A device utilizing an optical image correlation technique has been developed to accurately quantify bracket slot dimensional changes during application of wire torsion. Simultaneous torque moment magnitude, degrees of wire twist, and bracket slot dimension data can be gathered. Bracket tie wing elastic deformation when loaded was demonstrated and plastic deformation was also observed with a single rotation of the wire. PMID:20948571

  3. Deformation mechanism study of a hot rolled Zr-2.5Nb alloy by transmission electron microscopy. I. Dislocation microstructures in as-received state and at different plastic strains

    SciTech Connect

    Long, Fei; Daymond, Mark R. Yao, Zhongwen

    2015-03-07

    Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in the sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.

  4. High Rate Digital Demodulator ASIC

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew

    1998-01-01

    The architecture of High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation in other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA's Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an over-view of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.

  5. Influence of microstructure size on the plastic deformation kinetics, fatigue crack growth rate, and low-cycle fatigue of solder joints

    NASA Astrophysics Data System (ADS)

    Conrad, H.; Guo, Z.; Fahmy, Y.; Yang, Di

    1999-09-01

    The influence of microstructure size on the plastic deformation kinetics, fatigue crack growth rate and low-cycle fatigue of eutectic Sn-Pb solder joints is reviewed. The principal microstructure feature considered is the average eutectic phase size d=(dPb+dSn)/2. The effect of an increase in reflow cooling rate (which gave a decrease in d) on the flow stress and on fatigue life was irregular at 300K, depending on the stress or strain level and cooling rate. In contrast, a consistent increase in fatigue life with decrease in d occurred for thermomechanical cycling between -30° and 130°C. Constitutive equations for plastic deformation and fatigue crack growth rate are presented which include the microstructure size. It appears that the rate-controlling deformation mechanism is the intersection of forest dislocations in the Sn phase. The mechanism for both static and dynamic phase coarsening appears to be grain boundary diffusion with a t1/4 time law. Some success has been achieved in predicting the cyclic stress-strain hysteresis loops and fatigue life, including the influence of the as-reflowed microstructure size and its coarsening. Additional definitive studies are however needed before we can accurately predict the fatigue life of solder joints over the wide temperature range and conditions experienced by electronic packages.

  6. On the Structural Features of Mechanically Alloyed Cu-Ag and Au-Co by Severe Cold and Cryogenic Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Tolmachev, T.; Pilyugin, V.; Ancharov, A.; Patselov, A.; Chernyshev, E.; Zolotarev, K.

    The effect of cryogenic temperature on the formation of solid solutions by mechanical alloying (MA) was studied using synchrotron diffraction and some additional methods. Two systems with different positive enthalpy of mixing (Cu-Ag i Au-Co) were involved. MA by severe plastic deformation at 293 K and 80 K leads to the formation of fcc substitutional solid solutions, with the excess of the equilibrium concentration for both systems. The effect of cryogenic deformation consists in smaller dissolution of the original basic element of the charge (Cu) for Cu-Ag solid solution and in increasing of solute (Co) for Au-Co one. Diffraction experiments were performed at the SR beamline №4 of the VEPP-3 storage ring.

  7. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  8. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  9. Features of the physico-mechanical behavior of UFG low-alloyed bronze Cu-1Cr-0.08Zr produced by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Aksenov, D. A.; Asfandiyarov, R.; Raab, G. I.; Isyandavletova, G. B.

    2017-02-01

    The authors analyze the effect of the accumulated strain during severe plastic deformation as well as the temperature and aging time on the physico-mechanical properties of low-alloyed chromium-zirconium bronze Cu-1Cr-0.08Zr. The following SPD processing techniques were employed in the work: high-pressure torsion (HPT) and equal-channel angular pressing (ECAP). As a result of the investigation there have been revealed the most reasonable regimes of thermomechanical treatment, leading to the maximum increment in mechanical properties, while preserving a high level of electrical conductivity.

  10. Effect of plastic deformation on the electrophysical properties and structure of YBa2Cu3O y ceramics subjected to low-temperature treatment

    NASA Astrophysics Data System (ADS)

    Bobylev, I. B.; Zyuzeva, N. A.; Degtyarev, M. V.; Pilyugin, V. P.

    2015-12-01

    The electrophysical properties and structure of HTSC YBa2Cu3O y compound (123) subjected to plastic deformation by shear under a pressure of 1.7 GPa have been studied. After deformation, the electrophysical properties of samples prepared using the traditional ceramic technology were found to deteriorate. Subsequent annealing at 930°C cannot restore the critical current density ( j c) in low magnetic fields to initial magnitudes; however, in magnetic fields of more than 0.1 T, the j c magnitude increases compared to that for the starting state. The deformation of 123 ceramics treated at 200°C in a humid atmosphere that has undergone phase transformation into the 124 tetragonal phase allows its structure and electrophysical properties to be restored. In this case, the reverse transformation of phase 124 into 123, which is accompanied by the recrystallization of the material, takes place. The combination of low-temperature treatment and high shearing deformation leads to the appearance of texture and an increase of j c, in particular in high magnetic fields.

  11. High-rate deformation of nanocrystalline iron and copper

    NASA Astrophysics Data System (ADS)

    Sinani, A. B.; Shpeizman, V. V.; Vlasov, A. S.; Zil'berbrand, E. L.; Kozachuk, A. I.

    2016-11-01

    Stress-strain curves are recorded during a high-speed impact and slow loading for nanocrystalline and coarse-grained iron and copper. The strain-rate sensitivity is determined as a function of the grain size and the strain. It is shown that the well-known difference between the variations of the strain-rate sensitivity of the yield strength with the grain size in fcc and bcc metals can be extended to other strain dependences: the strain-rate sensitivity of flow stresses in iron decreases with increasing strain, and that in copper increases. This difference also manifests itself in different slopes of the dependence of the strain-rate sensitivity on the grain size when the strain changes.

  12. Anomalous Neutron Capture and Plastic Deformation of cu and pd Cathodes during Electrolysis in a Weak Thermalized Neutron Field:. Evidence of Nuclei-Lattice Exchange

    NASA Astrophysics Data System (ADS)

    Lipson, A. G.; Miley, G. H.; Lipson, A. G.

    2006-02-01

    Anomalous neutron capture and plastic deformation in the hardened Cu and Pd cathodes has been established under combined action of electrolysis and a weak thermalized neutron field (WTNF) with a flux in the range of 180-400 n/s cm2. Experiments with these cathodes showed ~7.0% decrease in the 2224 keV n-D gamma peak accompanying thermalized neutron capture inside the PE cavity during electrolysis vs. experiments with annealed Cu and Pd as well as with the background runs (i.e., no electrolysis). The anomalous neutron capture and plastic deformation of Cu and Pd cathodes under combined action of electrolysis and WTNF may be explained energetically by assuming a selective radiationless thermalized neutron capture at high-internal strain concentration sites in the hardened cathodes. The results of these experiments provide straightforward (avoids the Coulomb barrier penetration issue) evidence that nuclei-lattice energy exchange can result in an increase in neutron capture probability and radiationless de-excitation of the resulting compound nuclei.

  13. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of ~980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  14. Effect of various kinds of severe plastic deformation on the structure and electromechanical properties of precipitation-strengthened CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Belyaeva, A. I.; Galuza, A. A.; Khaimovich, P. A.; Kolenov, I. V.; Savchenko, A. A.; Solodovchenko, S. I.; Shul'gin, N. A.

    2016-11-01

    The effect of various kinds of severe plastic deformation (equal-channel angular pressing and quasi-hydrostatic extrusion at 77 and 300 K) on the structural formation of precipitation-strengthened CuCrZr alloy has been studied. A combination of experimental methods has been used. Sputtering by deuterium ions was used as the tool for the layer-by-layer study of the alloy structure. The difference between the sputtering yields of the matrix (copper) and precipitates (Cr and Zr) allowed us to visualize the alloy structure to a total depth of 0.5-1 μm. The effect of severe plastic deformation on the precipitate distribution is considered. It has been shown that the main peculiarity of the microstructure is related to the high density of precipitates enriched in chromium, which completely determine the surface roughness. Their distribution is not related to the grain size. The combination of equal-channel angular pressing and quasi-hydrostatic extrusion was shown to lead to the increase in the microhardness of the CuCrZr alloy to 2300 MPa in the case of low-temperature quasi-hydrostatic extrusion (at 77 K) and to the retained high conductivity. It has been proved that the high anisotropy of precipitate shape, microhardness, and sputtering yield of the CuCrZr alloy is determined by equal-channel angular pressing.

  15. Improving the mechanical properties of Zr-based bulk metallic glass by controlling the activation energy for β-relaxation through plastic deformation

    SciTech Connect

    Adachi, Nozomu; Todaka, Yoshikazu Umemoto, Minoru; Yokoyama, Yoshihiko

    2014-09-29

    The mechanism of plastic deformation in bulk metallic glasses (BMGs) is widely believed to be based on a shear transformation zone (STZ). This model assumes that a shear-induced atomic rearrangement occurs at local clusters that are a few to hundreds of atoms in size. It was recently postulated that the potential energy barrier for STZ activation, W{sub STZ}, calculated using the cooperative shear model, is equivalent to the activation energy for β-relaxation, E{sub β}. This result suggested that the fundamental process for STZ activation is the mechanically activated β-relaxation. Since the E{sub β} value and the glass transition temperature T{sub g} of BMGs have a linear relation, that is, because E{sub β} ≈ 26RT{sub g}, the composition of the BMG determines the ease with which the STZ can be activated. Enthalpy relaxation experiments revealed that the BMG Zr{sub 50}Cu{sub 40}Al{sub 10} when deformed by high-pressure torsion (HPT) has a lower E{sub β} of 101 kJ/mol. The HPT-processed samples accordingly exhibited tensile plastic elongation (0.34%) and marked decreases in their yield strength (330 MPa). These results suggest that mechanically induced structural defects (i.e., the free volume and the anti-free volume) effectively act to reduce W{sub STZ} and increase the number of STZs activated during tensile testing to accommodate the plastic strain without requiring a change in the composition of the BMG. Thus, this study shows quantitatively that mechanically induced structural defects can overcome the compositional limitations of E{sub β} (or W{sub STZ}) and result in improvements in the mechanical properties of the BMG.

  16. Plastic strain arrangement in copper single crystals in sliding

    SciTech Connect

    Chumaevskii, Andrey V. Lychagin, Dmitry V.; Tarasov, Sergei Yu.

    2014-11-14

    Deformation of tribologically loaded contact zone is one of the wear mechanisms in spite of the fact that no mass loss may occur during this process. Generation of optimal crystallographic orientations of the grains in a polycrystalline materials (texturing) may cause hardening and reducing the deformation wear. To reveal the orientation dependence of an individual gain and simplify the task we use copper single crystals with the orientations of the compression axis along [111] and [110]. The plastic deformation was investigated by means of optical, scanning electron microscopy and EBSD techniques. It was established that at least four different zones were generated in the course of sliding test, such as non-deformed base metal, plastic deformation layer sliding, crystalline lattice reorientation layer and subsurface grain structure layer. The maximum plastic strain penetration depth was observed on [110]-single crystals. The minimum stability of [111]-crystals with respect to rotation deformation mode as well as activation of shear in the sliding contact plane provide for rotation deformation localization below the worn surface. The high-rate accumulation of misorientations and less strain penetration depth was observed on [111]-crystals as compared to those of [110]-oriented ones.

  17. Tensile Elastic Properties of Typical Stainless Steels and Nonferrous Metals as Affected by Plastic Deformation and by Heat Treatment

    NASA Technical Reports Server (NTRS)

    Mcadam, D J; Mebs, R W

    1940-01-01

    A general discussion is given of the relationships between stress, strain, and permanent set. From stress-set curves are derived proof stresses based on five different percentages of permanent set. The influence of prior plastic extension on these values is illustrated and discussed. A discussion is given of the influence of work-hardening, rest interval, and internal stress on the form of the proof stress-extension curve.

  18. High temperature plastic deformation at very low stresses of fine-grained Y{sub 2}O{sub 3}-partially stabilized ZrO{sub 2}

    SciTech Connect

    Bravo-Leon, A.; Jimenez-Melendo, M.; Dominguez-Rodriguez, A.

    1996-08-15

    Plastic deformation at elevated temperatures (1300--1450C) of 3 and 4 mol% Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} polycrystals with fine grain size (d < 1 {micro}m) has been studied at very low stresses (<10 MPa). Extensive internal cavitation has been found for a few percent of strain, instead of the superplastic behavior exhibited by these materials at intermediate and high stresses, along with a change of the stress exponent. These features are explained on the basis of a gradual inhibition of the grain boundary sliding to accommodate the macroscopic strain when decreasing the stress, supporting the existence of a threshold stress for this mechanism.

  19. Evolution of the Structural-Phase State of a Ti-Al- V-Mo Alloy During Severe Plastic Deformation and SubSequent Annealing

    NASA Astrophysics Data System (ADS)

    Grabovetskaya, G. P.; Ratochka, I. V.; Mishin, I. P.; Zabudchenko, O. V.; Lykova, O. N.

    2016-05-01

    The effect of the initial phase composition of a Ti-Al-V-Mo alloy (VT16 according to Russian classification) on the evolution of its structural-phase state during the formation of ultrafine-grained structure and subsequent annealing is investigated by methods of optical and transmission electron microscopy and x-ray diffraction analysis. The structure is produced by cyclic pressing with a change of the deformation axis in each cycle combined with a gradual decrease of the pressing temperature from 1073 to 723 K. As this takes place, α″ → α + β and β → α phase transitions are found to develop in the test alloy. The phase state of the ultrafinegrained material thus produced depends for the most part on its elemental composition and severe plastic deformation regime. Annealing below the recrystallization temperature is shown to give rise to a β→α phase transition and alloying element redistribution. The foregoing processes allow for retaining a high level of the strength properties of the alloy.

  20. Deformation of Forsterite Polycrystals at Mantle Pressure. Comparison with Fe-bearing Olivine and the Effect of Iron on its Plasticity

    SciTech Connect

    Bollinger, Caroline; Merkel, Sebastien; Cordier, Patrick; Raterron, Paul

    2014-12-23

    Rheology of polycrystalline forsterite was investigated in the Deformation-DIA (D-DIA) using insitu X-ray diffraction at pressure between 3.1 and 8.1 GPa, temperature in the 1373–1673 K range, and at steady-state strain rate ranging from 0.5 × 10-5 to 5.5 × 10-5 s-1. Microscopic observations of the run products show characteristic microstructures of the so-called “dislocation creep regime” in wet conditions. Based on the present data at 1473 K, the pressure effect on forsterite plasticity is quantified using an activation volume V*F0 = 12.1±3.0 cm3 mol-1. Moreover, a comparison between the strain rates of San Carlos olivine and forsterite specimens deformed together indicates that, at the experimental conditions, they compare with each other within less than half an order of magnitude. Our comparison also allows for the determination of the stress exponent of forsterite of nFo = 2.3 ± 0.6. Our results, combined with data from the literature, indicate a clear trend of increasing stress exponent with Fe content in olivine.

  1. Plastic deformation in Al (Cu) interconnects stressed by electromigration and studied by synchrotron polychromatic X-ray microdiffraction

    SciTech Connect

    Advanced Light Source; UCLA; Chen, Kai; Chen, Kai; Tamura, Nobumichi; Valek, Bryan C.; Tu, King-Ning

    2008-05-14

    We report here an in-depth synchrotron radiation based white beam X-ray microdiffraction study of plasticity in individual grains of an Al (Cu) interconnect during the early stage of electromigration. The study shows a rearrangement of the geometrically necessary dislocations (GND) in bamboo typed grains during that stage. We find that about 90percent of the GNDs are oriented so that their line direction is the closest to the current flow direction. In non-bamboo typed grains, the Laue peak positions shift, indicating that the grains rotate. An analysis in terms of force directions has been carried out and is consistent with observed electromigration induced grain rotation and bending.

  2. Slow plastic deformation of extruded NiAl-10TiB2 particulate composites at 1200 and 1300 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, S.; Mannan, S. K.; Viswanadham, R. K.

    1990-01-01

    A dispersion of 1-micron TiB2 particles in the B2 crystal structure NiAl intermetallic can effectively increase its elevated temperature strength, in association with increasing deformation resistance with TiB2 volume fraction. Attention is presently given to alternative densification methods, which may increase the initial as-fabricated dislocation density and lead to enhanced elevated-temperature strength. The 'XD' extrusion method was used to produce NiAl with 10 vol pct TiB2. Although apparent extrusion defects were occasionally found, neither grain-boundary cracking nor particle-matrix separation occurred.

  3. Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing

    NASA Astrophysics Data System (ADS)

    Khorrami, M. Sarkari; Kazeminezhad, M.; Miyashita, Y.; Kokabi, A. H.

    2017-03-01

    Severely deformed aluminum sheets were processed by friction stir processing (FSP) with SiC nanoparticles under different conditions to improve the mechanical properties of both the stir zone and the heat affected zone (HAZ). In the case of using a simple probe and the same rotational direction (RD) of the FSP tool between passes, at least three FSP passes were required to obtain the appropriate distribution of nanoparticles. However, after three FSP passes, fracture occurred outward from the stir zone during transverse tensile tests; thus, the strength of the specimen was significantly lower than that of the severely deformed base material because of the softening phenomenon in the HAZ. To improve the mechanical properties of the HAZ, we investigated the possibility of achieving an appropriate distribution of nanoparticles using fewer FSP passes. The results indicated that using the threaded probe and changing the RD of the FSP tool between the passes effectively shattered the clusters of nanoparticles and led to an acceptable distribution of SiC nanoparticles after two FSP passes. In these cases, fracture occurred at the HAZ with higher strength compared to the specimen processed using three FSP passes with the same RD between the passes and with the simple probe. The fracture behaviors of the processed specimens are discussed in detail.

  4. Mechanical plasticity of cells

    NASA Astrophysics Data System (ADS)

    Bonakdar, Navid; Gerum, Richard; Kuhn, Michael; Spörrer, Marina; Lippert, Anna; Schneider, Werner; Aifantis, Katerina E.; Fabry, Ben

    2016-10-01

    Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.

  5. Structural plasticity: how intermetallics deform themselves in response to chemical pressure, and the complex structures that result.

    PubMed

    Berns, Veronica M; Fredrickson, Daniel C

    2014-10-06

    Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.

  6. Elevated temperature slow plastic deformation of NiAl-TiB2 particulate composites at 1200 and 1300 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Viswanadham, R. K.; Mannan, S. K.; Sprissler, B.

    1990-01-01

    Elevated temperature compression testing has been conducted in air at 1200 and 1300 K with strain rates varying from about 10 to the -4th to about 10 to the -7th/sec on NiAl-TiB2 particulate composites. These materials, which consisted of a B2 crystal structure intermetallic Ni-50 at. pct Al matrix and from 0 to 30 vol pct of approximately 1- micron diameter TiB2 particles, were fabricated by XD synthesis and hot pressed to full density. Flow strength of the composites increased with volume fraction of the strengthening phase with NiAl-30TiB2 being approximately three times stronger than NiAl. Comparison of the light optical and TEM microstructures of as-received and tested samples revealed that reactions did not occur between the two phases, and NiAl-TiB2 interfaces were not cracked during deformation. Additional TEM indicated that the particles stabilize a vastly different microstructure in the NiAl matrix of the composites than that formed in unreinforced NiAl.

  7. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-01

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  8. High-Rate Compaction of Aluminium Alloy Foams

    NASA Astrophysics Data System (ADS)

    Harrigan, J. J.; Millett, J. C. F.; Milne, A. M.

    2005-07-01

    The response of aluminium foams to impact can be categorised by the impact velocity. Tests are reported ranging from quasi-static to impact velocities greater than the speed of sound in the foam. The techniques used ranging from drop-hammer and pneumatic launcher tests, to plate impact at velocities greater than 1000 m s-1. The quasi-static compression behaviour was elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities, post-impact examination of partially crushed specimens showed that deformation was through the cumulative multiplication of crush bands. If the impact velocity is less than the velocity of sound, but above a certain critical impact velocity, the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. At higher impact velocities the compaction front is not preceded by an elastic wave. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was input as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  9. High-Rate Compaction of Aluminium Alloy Foams

    SciTech Connect

    Harrigan, J. J.; Hung, Y.-C.; Tan, P. J.; Bourne, N. K.; Withers, P. J.; Reid, S. R.; Millett, J. C. F.; Milne, A. M.

    2006-07-28

    The response of aluminium foams to impact can be categorised according to the impact velocity. Tests have been carried out at a range of impact velocities from quasi-static to velocities approaching the speed of sound in the foam. Various experimental arrangements have been employed including pneumatic launcher tests and plate impact experimants at velocities greater than 1000 m s-1. The quasi-static compression behaviour was approximately elastic, perfectly-plastic, locking. For static and dynamic compression at low impact velocities the deformation pattern was through the cumulative multiplication of discrete, non-contiguous crush bands. Selected impact tests are presented here for which the impact velocity is less than the velocity of sound, but above a certain critical impact velocity so that the plastic compression occurs in a shock-like manner and the specimens deform by progressive cell crushing. Laboratory X-ray microtomography has been employed to acquire tomographic datasets of aluminium foams before and after tests. The morphology of the underformed foam was used as the input dataset to an Eulerian code. Hydrocode simulations were then carried out on a real microstructure. These simulations provide insight to mechanisms associated with the localization of deformation.

  10. ISS Update: High Rate Communications System

    NASA Video Gallery

    ISS Update Commentator Pat Ryan interviews Diego Serna, Communications and Tracking Officer, about the High Rate Communications System. Questions? Ask us on Twitter @NASA_Johnson and include the ha...

  11. Effect of heat treatment and plastic deformation on the structure and the mechanical properties of nitrogen-bearing 04N9Kh2A steel

    NASA Astrophysics Data System (ADS)

    Blinov, V. M.; Bannykh, O. A.; Lukin, E. I.; Kostina, M. V.; Blinov, E. V.

    2014-11-01

    The effect of the conditions of heat treatment and plastic deformation on the structure and the mechanical properties of low-carbon martensitic nickel steel (9 wt % Ni) with an overequilibrium nitrogen content is studied. The limiting strain to failure of 04N9Kh2A steel is found to be 40% at a rolling temperature of 20°C and 80% at a rolling temperature of 900°C. Significant strengthening of the steel (σ0.2 = 1089 MPa) is obtained after rolling at a reduction of 40% at 20°C. The start and final temperatures of the α → γ transformation on heating and those of the γ → α transformation on cooling are determined by dilatometry. The specific features of the formation of the steel structure have been revealed as functions of the annealing and tempering temperatures. Electron-microscopic studies show that, after quenching from 850°C and tempering at 600°C for 1 h, the structure contains packet martensite with thin interlayers of retained austenite between martensite crystals. The strength of the nitrogen-bearing 04N9Kh2A steel after quenching from 850 and 900°C, cooling in water, and subsequent tempering at 500°C for 1 h is significantly higher than that of carboncontaining 0H9 steel used in cryogenic engineering.

  12. Plastic deformation of directionally solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites

    PubMed Central

    Matsunoshita, Hirotaka; Sasai, Yuta; Fujiwara, Kosuke; Kishida, Kyosuke; Inui, Haruyuki

    2016-01-01

    Abstract The high-temperature mechanical properties of directionally solidified (DS) ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites with a script lamellar structure have been investigated as a function of loading axis orientation and growth rate in a temperature range from 900 to 1500°C. These DS ingots are plastically deformed above 1000 and 1100 °C when the compression axis orientations are parallel to [11¯0]MoSi2 (nearly parallel to the growth direction) and [001]MoSi2, respectively. [11¯0]MoSi2-oriented DS eutectic composites are strengthened so much by forming a script lamellar microstructure and they exhibit yield stress values several times higher than those of MoSi2 single crystals of the corresponding orientation. The yield stress values increase with the decrease in the average thickness of MoSi2 phase in the script lamellar structure, indicating that microstructure refinement is effective in obtaining better high-temperature strength of these DS eutectic composites. Among the four ternary alloying elements tested (V, Nb, Ta and W), Ta is found to be the most effective in obtaining higher yield strength at 1400 °C. PMID:27877900

  13. Microstructure study of a severely plastically deformed Mg-Zn-Y alloy by application of low angle annular dark field diffraction contrast imaging

    PubMed Central

    Basha, Dudekula Althaf; Rosalie, Julian M.; Somekawa, Hidetoshi; Miyawaki, Takashi; Singh, Alok; Tsuchiya, Koichi

    2016-01-01

    Microstructural investigation of extremely strained samples, such as severely plastically deformed (SPD) materials, by using conventional transmission electron microscopy techniques is very challenging due to strong image contrast resulting from the high defect density. In this study, low angle annular dark field (LAADF) imaging mode of scanning transmission electron microscope (STEM) has been applied to study the microstructure of a Mg-3Zn-0.5Y (at%) alloy processed by high pressure torsion (HPT). LAADF imaging advantages for observation of twinning, grain fragmentation, nucleation of recrystallized grains and precipitation on second phase particles in the alloy processed by HPT are highlighted. By using STEM-LAADF imaging with a range of incident angles, various microstructural features have been imaged, such as nanoscale subgrain structure and recrystallization nucleation even from the thicker region of the highly strained matrix. It is shown that nucleation of recrystallized grains starts at a strain level of revolution N=1/4 (earlier than detected by conventional bright field imaging). Occurrence of recrystallization of grains by nucleating heterogeneously on quasicrystalline particles is also confirmed. Minimizing all strain effects by LAADF imaging facilitated grain size measurement of 150±25 nm in fully recrystallized HPT specimen after N=5. PMID:27877863

  14. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  15. Experimental determination of the strain and strain rate dependence of the fraction of plastic work converted to heat

    SciTech Connect

    Hodowany, J.; Ravichandran, G.; Rosakis, A.J.

    1995-12-31

    When metals are deformed dynamically, there is insufficient time for heat generated by plastic deformation to be conducted to the surroundings. Thus, the conversion of plastic work into heat at high strain rates can result in significant temperature increases, which contribute to thermal softening, thereby altering a material`s constitutive response. The fraction of plastic work converted to heat represents the strength of the coupling term between temperature and mechanical fields in thermalmechanical problems involving plastic flow. The experimental determination of this constitutive function is important since it is an integral part of the formulation of coupled thermomechanical field equations. This fraction also plays an important role in failure mode characterization for metals deforming at high rates of strain, such as the formation of adiabatic shear bands. This investigation systematically examines the rate of conversion of plastic work to heat in metals under dynamic loading. Temperature was measured in-situ using an array of high speed In-Sb infrared detectors. The plastic work rate and the heat generation rate were determined directly from experimental data. The ratio of heat generation rate to plastic work rate, i.e., the relative rate at which plastic work is converted to heat, was calculated from this data. The functional dependence of this quantity upon strain and strain rate is reported for 1020 steel, 2024 aluminum, Ti-6Al-4V titanium alloy, and C300 maraging steel.

  16. Optical tomography of plastic deformations

    SciTech Connect

    Puro, A.E.

    1994-12-01

    In the framework of linear dependence of the dielectric constant tensor on the strain tensor (birefringence described by the Neumann law), weak optical anisotropy, and incompressibility of a material, we consider the application of optical tomography to the problem of photoplasticity. As starting information, the path difference and the isocline parameter measured by tomography are used. 18 refs., 1 fig.

  17. Analytical Modeling of High Rate Processes.

    DTIC Science & Technology

    2007-11-02

    TYPE AND DATES COVERED 1 13 Apr 98 Final (01 Sep 94 - 31 Aug 97) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Analytical Modeling of High Rate Processes...20332- 8050 FROM: S. E. Jones, University Research Professor Department of Aerospace Engineering and Mechanics University of Alabama SUBJECT: Final...Mr. Sandor Augustus and Mr. Jeffrey A. Drinkard. There are no outstanding commitments. The balance in the account, as of July 31 , 1997, was $102,916.42

  18. Deformability curve for K18 steel

    SciTech Connect

    Pospiech, J.

    1999-12-01

    The problem of the best utilization of plasticity in plastic working processes of metals, at low resistance to deformation and maximum utilization of capacity of installations has gained great importance, especially in recent years. Determination of plasticity of materials by the method of Kolmogorow is described. Variation of the stress factor for several plastic working processes is also described. Tests to plot the deformability curve (also referred to as reserve of plasticity curve) were selected and proved.

  19. Simulation of ceramics fracture due to high rate dynamic impact

    NASA Astrophysics Data System (ADS)

    Kazarinov, N. A.; Bratov, V. A.; Petrov, Y. V.

    2015-11-01

    In this paper dynamic fracture process due to high-speed impact of steel plunger into ceramic sample is simulated. The developed numerical model is based on finite element method and a concept of incubation time criterion, which is proven applicable in order to predict brittle fracture under high-rate deformation. Simulations were performed for ZrO2(Y2O3) ceramic plates. To characterize fracture process quantitatively fracture surface area parameter is introduced and controlled. This parameter gives the area of new surface created during dynamic fracture of a sample and is essentially connected to energetic peculiarities of fracture process. Multiple simulations with various parameters made it possible to explore dependencies of fracture area on plunger velocity and material properties. Energy required to create unit of fracture area at fracture initiation (dynamic analogue of Griffith surface energy) was evaluated and was found to be an order of magnitude higher as comparing to its static value.

  20. Microalgal separation from high-rate ponds

    SciTech Connect

    Nurdogan, Y.

    1988-01-01

    High rate ponding (HRP) processes are playing an increasing role in the treatment of organic wastewaters in sunbelt communities. Photosynthetic oxygenation by algae has proved to cost only one-seventh as much as mechanical aeration for activated sludge systems. During this study, an advanced HRP, which produces an effluent equivalent to tertiary treatment has been studied. It emphasizes not only waste oxidation but also algal separation and nutrient removal. This new system is herein called advanced tertiary high rate ponding (ATHRP). Phosphorus removal in HRP systems is normally low because algal uptake of phosphorus is about one percent of their 200-300 mg/L dry weights. Precipitation of calcium phosphates by autofluocculation also occurs in HRP at high pH levels, but it is generally not complete due to insufficient calcium concentration in the pond. In the case of Richmond where the studies were conducted, the sewage is very low in calcium. Therefore, enhancement of natural autoflocculation was studied by adding small amounts of lime to the pond. Through this simple procedure phosphorus and nitrogen removals were virtually complete justifying the terminology ATHRP.

  1. TMF ultra-high rate discharge performance

    SciTech Connect

    Nelson, B.

    1997-12-01

    BOLDER Technologies Corporation has developed a valve-regulated lead-acid product line termed Thin Metal Film (TMF{trademark}) technology. It is characterized by extremely thin plates and close plate spacing that facilitate high rates of charge and discharge with minimal temperature increases, at levels unachievable with other commercially-available battery technologies. This ultra-high rate performance makes TMF technology ideal for such applications as various types of engine start, high drain rate portable devices and high-current pulsing. Data are presented on very high current continuous and pulse discharges. Power and energy relationships at various discharge rates are explored and the fast-response characteristics of the BOLDER{reg_sign} cell are qualitatively defined. Short-duration recharge experiments will show that devices powered by BOLDER batteries can be in operation for more than 90% of an extended usage period with multiple fast recharges. The BOLDER cell is ideal for applications such as engine-start, a wide range of portable devices including power tools, hybrid electric vehicles and pulse-power devices. Applications such as this are very attractive, and are well served by TMF technology, but an area of great interest and excitement is ultrahigh power delivery in excess of 1 kW/kg.

  2. Deconvolution of high rate flicker electroretinograms.

    PubMed

    Alokaily, A; Bóhorquez, J; Özdamar, Ö

    2014-01-01

    Flicker electroretinograms are steady-state electroretinograms (ERGs) generated by high rate flash stimuli that produce overlapping periodic responses. When a flash stimulus is delivered at low rates, a transient response named flash ERG (FERG) representing the activation of neural structures within the outer retina is obtained. Although FERGs and flicker ERGs are used in the diagnosis of many retinal diseases, their waveform relationships have not been investigated in detail. This study examines this relationship by extracting transient FERGs from specially generated quasi steady-state flicker and ERGs at stimulation rates above 10 Hz and similarly generated conventional flicker ERGs. The ability to extract the transient FERG responses by deconvolving flicker responses to temporally jittered stimuli at high rates is investigated at varying rates. FERGs were obtained from seven normal subjects stimulated with LED-based displays, delivering steady-state and low jittered quasi steady-state responses at five rates (10, 15, 32, 50, 68 Hz). The deconvolution method enabled a successful extraction of "per stimulus" unit transient ERG responses for all high stimulation rates. The deconvolved FERGs were used successfully to synthesize flicker ERGs obtained at the same high stimulation rates.

  3. Strain avalanches in plasticity

    NASA Astrophysics Data System (ADS)

    Argon, A. S.

    2013-09-01

    Plastic deformation at the mechanism level in all solids occurs in the form of discrete thermally activated individual stress relaxation events. While there are clear differences in mechanisms between dislocation mediated events in crystalline solids and by individual shear transformations in amorphous metals and semiconductors, such relaxation events interact strongly to form avalanches of strain bursts. In all cases the attendant distributions of released energy as amplitudes of acoustic emissions, or in serration amplitudes in flow stress, the levels of strain bursts are of fractal character with fractal exponents in the range from -1.5 to -2.0, having the character of phenomena of self-organized criticality, SOC. Here we examine strain avalanches in single crystals of ice, hcp metals, the jerky plastic deformations of nano-pillars of fcc and bcc metals deforming in compression, those in the plastic flow of bulk metallic glasses, all demonstrating the remarkable universality of character of plastic relaxation events.

  4. An Experimental and Modeling Investigation on High-Rate Formability of Aluminum

    SciTech Connect

    Rohatgi, Aashish; Davies, Richard W.; Stephens, Elizabeth V.; Soulami, Ayoub; Smith, Mark T.

    2014-02-16

    This work describes the integrated experimental and modeling effort at PNNL to enhance the room-temperature formability of aluminum alloys by taking advantage of formability improvements generally associated with high-strain-rate forming. Al alloy AA5182-O sheets were deformed in near plane-strain conditions at strain-rates exceeding 1000 /s using the electrohydraulic forming (EHF) technique, and at quasi-static strain-rates via a bulge test. A novel capability, combining high-speed imaging with digital image correlation technique, was developed to quantify the deformation history during high-rate forming. Sheet deformation under high rates was modeled in Abaqus and validated with experimentally determined deformation data. The experimental results show a ~2.5x increase in formability at high rates, relative to quasi-static rates, under a proportional loading path that was verified by the experimental data. The model shows good correlation with the experimentally determined strain path. It is anticipated that such integrated experimental and modeling work will enable room-temperature forming of Al and industrial implementation of high-rate forming processes.

  5. Effect of Plastic Deformation on the Structure and Properties of Alloy IMV7-1 of the Mg - Y - Gd - Zr System

    NASA Astrophysics Data System (ADS)

    Rokhlin, L. L.; Dobatkina, T. V.; Luk'yanova, E. A.; Korol'kova, I. G.; Choporov, V. F.

    2016-07-01

    The microstructure and strength properties of hot-pressed alloy IMV7-1 of the Mg - Y - Gd - Zr system are studied after additional cold and hot rolling deformation. It is shown that the strength properties of the pressed alloy can be elevated by cold deformation at an admissible level of ductility.

  6. Application of high-rate cutting tools

    NASA Astrophysics Data System (ADS)

    Moriarty, John L., Jr.

    1989-03-01

    Widespread application of the newest high-rate cutting tools to the most appropriate jobs is slowed by the sheer magnitude of developments in tool types, materials, workpiece applications, and by the rapid pace of change. Therefore, a study of finishing and roughing sizes of coated carbide inserts having a variety of geometries for single point turning was completed. The cutting tools were tested for tool life, chip quality, and workpiece surface finish at various cutting conditions with medium alloy steel. An empirical wear-life data base was established, and a computer program was developed to facilitate technology transfer, assist selection of carbide insert grades, and provide machine operating parameters. A follow-on test program was implemented suitable for next generation coated carbides, rotary cutting tools, cutting fluids, and ceramic tool materials.

  7. High-Rate Digital Receiver Board

    NASA Technical Reports Server (NTRS)

    Ghuman, Parminder; Bialas, Thomas; Brambora, Clifford; Fisher, David

    2004-01-01

    A high-rate digital receiver (HRDR) implemented as a peripheral component interface (PCI) board has been developed as a prototype of compact, general-purpose, inexpensive, potentially mass-producible data-acquisition interfaces between telemetry systems and personal computers. The installation of this board in a personal computer together with an analog preprocessor enables the computer to function as a versatile, highrate telemetry-data-acquisition and demodulator system. The prototype HRDR PCI board can handle data at rates as high as 600 megabits per second, in a variety of telemetry formats, transmitted by diverse phase-modulation schemes that include binary phase-shift keying and various forms of quadrature phaseshift keying. Costing less than $25,000 (as of year 2003), the prototype HRDR PCI board supplants multiple racks of older equipment that, when new, cost over $500,000. Just as the development of standard network-interface chips has contributed to the proliferation of networked computers, it is anticipated that the development of standard chips based on the HRDR could contribute to reductions in size and cost and increases in performance of telemetry systems.

  8. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  9. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  10. Accuracy of High-Rate GPS for Seismology

    NASA Technical Reports Server (NTRS)

    Elosegui, P.; Davis, J. L.; Oberlander, D.; Baena, R.; Ekstrom, G.

    2006-01-01

    We built a device for translating a GPS antenna on a positioning table to simulate the ground motions caused by an earthquake. The earthquake simulator is accurate to better than 0.1 mm in position, and provides the "ground truth" displacements for assessing the technique of high-rate GPS. We found that the root-mean-square error of the 1-Hz GPS position estimates over the 15-min duration of the simulated seismic event was 2.5 mm, with approximately 96% of the observations in error by less than 5 mm, and is independent of GPS antenna motion. The error spectrum of the GPS estimates is approximately flicker noise, with a 50% decorrelation time for the position error of approx.1.6 s. We that, for the particular event simulated, the spectrum of dependent error in the GPS measurements. surface deformations exceeds the GPS error spectrum within a finite band. More studies are required to determine whether a generally optimal bandwidth exists for a target group of seismic events.

  11. Shape Memory Characteristics of Ti(sub 49.5)Ni(sub 25)Pd(sub 25)Sc(sub 0.5) High-Temperature Shape Memory Alloy After Severe Plastic Deformation

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2011-01-01

    A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.

  12. Thermal evolution of high-purity and boron-doped sub-microcrystalline Ni{sub 3}Al produced by severe plastic deformation

    SciTech Connect

    Korznikov, A.V.; Korznikova, G.F.; Idrisova, S.R.; Dimitrov, O.; Dallas, J.P.; Faudot, F.; Valiev, R.Z.

    1999-09-08

    The influence of boron on the structural stability of sub-microcrystalline Ni{sub 3}Al intermetallic compounds was investigated by comparing a high-purity material with a boron-doped (0.1 wt%) compound. The nanocrystalline structure was obtained by severe shear deformation under quasi-hydrostatic pressure. Residual electrical resistivity, Vickers microhardness, X-ray diffraction and transmission electron microscopy were used to characterize the material evolution during thermal treatments in the temperature range 293--1,313 K. After severe deformation the materials were disordered, with a small crystallite size of about 20 nm, similar in both materials. During isochronal anneals, the evolution of the microstructure, the long-range ordering and the recovery of the investigated properties took place at higher temperatures in the boron-doped compound, i.e. the thermal stability of the cold-worked structure was higher.

  13. High-pressure, high-temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Elasto-ViscoPlastic Self-Consistent modeling and implications for multi-phase rheology of the lower mantle

    NASA Astrophysics Data System (ADS)

    Hilairet, N.; Tomé, C.; Wang, H.; Merkel, S.; Wang, Y.; Nishiyama, N.

    2014-12-01

    As the largest rocky layer in the Earth, the lower mantle plays a critical role in controlling convective patterns in our planet. Current mineralogical mantle models suggest that the lower mantle is dominated by (Mg,Fe)SiO3 perovskite (SiPv; about 70 - 90% in volume fraction) and (Mg,Fe)O ferropericlase (Fp). Knowledge of rheological properties of the major constituent minerals and stress/strain partitioning among these phases during deformation is critical in understanding dynamic processes of the deep Earth. For the lower mantle, the strength contrast between SiPv and Fp has been estimated [1], the former being much stronger than the latter. However fundamental issues of stress-strain interactions among the major phases still remain to be properly addressed. Here we examine rheological properties of a two-phase polycrystal consisting of CaGeO3 perovskite (GePv) and MgO, deformed in the D-DIA at controlled speed ~1 - 3×10-5 s-1 at high pressures and temperatures (between 3 to 10 GPa and 300 to 1200 K), with bulk axial strains up to ~20% [2]. We use Elasto-ViscoPlastic Self-Consistent modeling (EVPSC) [3] to reproduce lattice strains and textures measured in-situ with synchrotron X-ray diffraction. We compare the results to those on an identical deformation experiment with a single phase (GePv) polycrystal. We will discuss stress distributions between the two phases in the composite, textural developments, relationships with active slip systems, and finally the potential implications for rheological properties of the lower mantle. [1] Yamazaki, D., and S. Karato (2002), Fabric development in (Mg,Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth's lower mantle, Physics of the Earth and Planetary Interiors, 131(3-4), 251-267. [2] Wang, Y., N. Hilairet, N. Nishiyama, N. Yahata, T. Tsuchiya, G. Morard, and G. Fiquet (2013), High-pressure, high-temperature deformation of CaGeO3 (perovskite)+/- MgO aggregates: Implications for

  14. Electrical conductivity and mechanical properties of Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys processed by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Kommel, L.; Pokatilov, A.

    2014-08-01

    As-cast Cu-0.7wt% Cr and Cu-1.0wt% Cr alloys were subjected to equal-channel angular pressing (ECAP), hard cyclic viscoplastic (HCV) deformation and post deformation heat treatment for receiving an ultrafine grained material with a combination of high strength, good wear resistance and high electric conductivity. Samples from Cu-0.7wt% Cr alloy were processed up to six passes and Cu-1wt% Cr alloy samples were processed up to four passes of ECAP via Bc route. HCV deformation of samples was conducted by frequency of 0.5 Hz for 20 cycles at tension-compression strain amplitudes of +/-0.05%, +/-0.1%, +/-0.5%, +/-1% and +/-1.5%, respectively. During HCV deformation, as-cast Cu-0./wt% Cr alloy show fully viscoelastic behavior at strain/stress amplitude of +/-0.05% while ECAP processed material show the same behavior at strain amplitude of +/-0.1%. The Young modulus was increased from ~120 GPa up to ~150 GPa. The results illustrated that specific volume wear decrease with increasing of hardness but the measured coefficient of friction (COF ~ 0.6) was approximately the same for all samples at the end of wear testing. The hardness after ECAP for 6 passes by Bc route was 192HV0.1 and electric conduction 74.16% IACS, respectively. By this the as-cast Cu-0./wt% Cr alloy (heat treated at 1000 °C for 2h) has microhardness ~70HV0.1 and electrical conductivity of ~40% IACS. During aging at the temperatures in the interval of 250-550 °C for 1h the hardness and electrical conductivity were stabilized to mean values of 120+/-5HV0.1 and to 93.4+/-0.3% IACS, respectively. The hardness and electric conductivity took decrease by temperature increase over ~550 °C, respectively. The results of present experimental investigation show that UFG Cu- 0.7wt% Cr alloy with compare to Cu-1.0% Cr alloy is a highly electrical conductive and high temperature wear resistant material for using in electrical industry.

  15. On the Evolution of Plasticity and Incompatibility

    SciTech Connect

    Gupta, A; Steigmann, D J; St?lken, J S

    2005-11-23

    The phenomenological theory of elastic-plastic deformations is reconsidered in the light of recent opinion regarding the constitutive character of their constituent elastic and plastic components. The primary role of dissipation in the physics of plastic evolution is emphasized and shown to lead to the clarification of a number of open questions. Particular attention is given to the invariance properties of the elastic and plastic deformations, to the kinematics of discontinuities, and to the role of material symmetry in restricting constitutive equations for elastic response, yield and plastic evolution.

  16. Plastic flow around rigid spherical inclusions

    NASA Technical Reports Server (NTRS)

    Ruoff, A. L.; Nelson, D. A., Jr.

    1974-01-01

    The extent of plastic flow in a spherical solid (assumed to be homogeneous and elastically and plastically isotropic), surrounding a concentric rigid sphere was calculated as a function of applied external pressure. The applied pressure necessary to cause plastic deformation throughout the solid was obtained.

  17. Energy approach to the problem of calculating the stresses at the initial stages of plastic deformation of crystalline substances and the appearance of structural defects

    NASA Astrophysics Data System (ADS)

    Belousov, O. K.; Palii, N. A.

    2016-09-01

    The critical shear stress and its temperature dependence are calculated for 12 simple substances with different structures and types of bonding. The shear stress for stage II-III of deformation of single crystals (τII-III) and σ0, y, i.e., the Hall-Petch relation extrapolated to an infinitely large grain size, are estimated. The energy of formation of lattice defects (vacancies) is calculated using a proposed expression. The results of calculation of the elastic shear energy of a matrix and regions with a high elastic anisotropy are used to estimate the role of elastic anisotropy in lattice stability and fracture. The calculated and experimental results agree satisfactorily with each other.

  18. Martensitic transformations and the evolution of the defect microstructure of metastable austenitic steel during severe plastic deformation by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Litovchenko, I. Yu.; Tyumentsev, A. N.; Akkuzin, S. A.; Naiden, E. P.; Korznikov, A. V.

    2016-08-01

    It has been shown that, in metastable austenitic Fe-18Cr-10Ni-Ti steel, under conditions of torsion under pressure, local reversible (forward plus reverse) (γ → α' → γ) martensitic transformations can occur, which are one of the mechanisms of the formation of nanostructured states. An increase in the rotation rate, which leads to an increase in the deformation temperature, stimulates the reverse (α' → γ) transformation. The evolution of the structural and phase states is represented as the following sequence: (1) mechanical twinning; (2) nucleation of martensitic plates in the microtwinned structure of the austenite with the formation of two-phase (γ + α') structures, packet α' martensite, and structural states with a high curvature of the crystal lattice; (3) reverse (α' → γ)-transformations; and (4) the fragmentation of nanosized crystals via the formation of a nanotwinned structure in the austenite and of a nanoscale banded structure of the ɛ martensite in the α' martensite.

  19. The eastern Tonale fault zone: a 'natural laboratory' for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Stünitz, Holger; Heilbronner, Renée; Schmid, Stefan M.

    2002-12-01

    Near the eastern end of the Tonale fault zone, a segment of the Periadriatic fault system in the Italian Alps, the Adamello intrusion produced a syn-kinematic contact aureole. A temperature gradient from ˜250 to ˜700 °C was determined across the Tonale fault zone using critical syn-kinematic mineral assemblages from the metasedimentary host rocks surrounding deformed quartz veins. Deformed quartz veins sampled along this temperature gradient display a transition from cataclasites to mylonites (frictional-viscous transition) at 280±30 °C. Within the mylonites, zones characterized by different dynamic recrystallization mechanisms were defined: Bulging recrystallization (BLG) was dominant between ˜280 and ˜400 °C, subgrain rotation recrystallization (SGR) in the ˜400-500 °C interval, and the transition to dominant grain boundary migration recrystallization (GBM) occurred at ˜500 °C. The microstructures associated with the three recrystallization mechanisms and the transitions between them can be correlated with experimentally derived dislocation creep regimes. Bulk texture X-ray goniometry and computer-automated analysis of preferred [c]-axis orientations of porphyroclasts and recrystallized grains are used to quantify textural differences that correspond to the observed microstructural changes. Within the BLG- and SGR zones, porphyroclasts show predominantly single [c]-axis maxima. At the transition from the SGR- to the GBM zone, the texture of recrystallized grains indicates a change from [c]-axis girdles, diagnostic of multiple slip systems, to a single maximum in Y. Within the GBM zone, above 630±30 °C, the textures also include submaxima, which are indicative of combined basal - and prism [c] slip.

  20. Plastic Surgery

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Plastic Surgery KidsHealth > For Teens > Plastic Surgery Print A ... her forehead lightened with a laser? What Is Plastic Surgery? Just because the name includes the word " ...

  1. One plasticity model for problems of plastic metal working

    NASA Astrophysics Data System (ADS)

    Greshnov, V. M.

    2008-11-01

    Scalar and tensor models of plastic flow of metals extending plasticity theory are considered over a wide range of temperatures and strain rates. Equations are derived using the physico-phenomenological approach based on modern concepts and methods of the physics and mechanics of plastic deformation. For hardening and viscoplastic solids, a new mathematical formulation of the boundary-value plasticity problem taking into account loading history is obtained. Results of testing of the model are given. A numerical finite-element algorithm for the solution of applied problems is described.

  2. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  3. Finite deformation analysis of geomaterials

    NASA Astrophysics Data System (ADS)

    Jeremi, Boris; Runesson, Kenneth; Sture, Stein

    2001-07-01

    The mathematical structure and numerical analysis of classical small deformation elasto-plasticity is generally well established. However, development of large deformation elastic-plastic numerical formulation for dilatant, pressure sensitive material models is still a research area.In this paper we present development of the finite element formulation and implementation for large deformation, elastic-plastic analysis of geomaterials. Our developments are based on the multiplicative decomposition of the deformation gradient into elastic and plastic parts. A consistent linearization of the right deformation tensor together with the Newton method at the constitutive and global levels leads toward an efficient and robust numerical algorithm. The presented numerical formulation is capable of accurately modelling dilatant, pressure sensitive isotropic and anisotropic geomaterials subjected to large deformations. In particular, the formulation is capable of simulating the behaviour of geomaterials in which eigentriads of stress and strain do not coincide during the loading process.The algorithm is tested in conjunction with the novel hyperelasto-plastic model termed the B material model, which is a single surface (single yield surface, affine single ultimate surface and affine single potential surface) model for dilatant, pressure sensitive, hardening and softening geomaterials. It is specifically developed to model large deformation hyperelasto-plastic problems in geomechanics.We present an application of this formulation to numerical analysis of low confinement tests on cohesionless granular soil specimens recently performed in a SPACEHAB module aboard the Space Shuttle during the STS-89 mission. We compare numerical modelling with test results and show the significance of added confinement by the thin hyperelastic latex membrane undergoing large stretching.

  4. Mechanical properties and constitutive relations for molybdenum under high-rate deformation

    SciTech Connect

    Chen, S.R.; Maudlin, P.J.; Gray, G.T. III

    1998-01-01

    Molybdenum and its alloys have received increased interest in recent years for ballistic applications. The stress-strain behavior of several molybdenums possessing various compositions, manufacturing sources, and the degree of pre-straining, were investigated as a function of temperature from 77 to 1,273 K, and strain rate from 10{sup {minus}3} s{sup {minus}1} to 8,000 s{sup {minus}1}. The yield stress was found to be sensitive to the test temperature and strain rate, however, the strain hardening remained rate-insensitive. The constitutive response of a powder-metallurgy molybdenum was also investigated; similar mechanical properties compared to conventionally wrought processed molybdenums were achieved. Constitutive relations based upon the Johnson-Cook, the Zerilli-Armstrong and the Mechanical Threshold Stress (MTS) models were evaluated and fit for the various Mo-based materials. The capabilities and limitations of each model for large-strain applications were examined. The differences between the three models are demonstrated using model comparisons to Taylor cylinder validation experiments.

  5. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  6. Cu/Nb nano-composite wires processed by severe plastic deformation for applications in high pulsed magnets: effects of the multi-scale microstructure on the mechanical properties

    SciTech Connect

    Dubois, J. B.; Thilly, L.; Renault, P.O.; Lecouturier, F.; Olier, P.

    2012-06-15

    Copper-based high strength and high electrical conductivity nano-composite wires reinforced by Nb nano-tubes are prepared by severe plastic deformation, applied with an Accumulative Drawing and Bundling process (ADB), for the windings of high pulsed magnets. The ADB process leads to a multi-scale Cu matrix containing up to N = 85{sub 4} (52.2.10{sup 6}) continuous parallel Nb tubes with diameter down to few tens nano-meters. After heavy strain, the Nb nano-tubes exhibit a homogeneous microstructure with grain size below 100 nm. The Cu matrix presents a multi-scale microstructure with multi-modal grain size distribution from the micrometer to the nano-meter range. The use of complementary characterization techniques at the microscopic and macroscopic level (in-situ tensile tests in the TEM, nano-indentation, in-situ tensile tests under high energy synchrotron beam) shed light on the interest of the multi-scale nature of the microstructure to achieve extreme mechanical properties, therefore allowing for design guidelines to further improve these properties. (authors)

  7. Pull-out fibers from composite materials at high rate of loading

    NASA Technical Reports Server (NTRS)

    Amijima, S.; Fujii, T.

    1981-01-01

    Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.

  8. Plasticity in Ultra Fine Grained Materials

    SciTech Connect

    Koslowski, Marisol

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  9. DISLOCATIONS AND PLASTIC BEHAVIOR OF IRON SINGLE CRYSTALS

    DTIC Science & Technology

    IRON , CRYSTAL STRUCTURE , CRYSTALLIZATION, DEFORMATION, ELASTIC PROPERTIES, GRAIN STRUCTURES(METALLURGY), GROWTH(PHYSIOLOGY), HEAT TREATMENT, METALLURGY, MICROSTRUCTURE, PLASTIC PROPERTIES, SPECTROGRAPHY.

  10. Single crystal plasticity by modeling dislocation density rate behavior

    SciTech Connect

    Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene; Cerreta, E. K.; Dennis-Koller, Darcie

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  11. Highly stable high-rate discriminator for nuclear counting

    NASA Technical Reports Server (NTRS)

    English, J. J.; Howard, R. H.; Rudnick, S. J.

    1969-01-01

    Pulse amplitude discriminator is specially designed for nuclear counting applications. At very high rates, the threshold is stable. The output-pulse width and the dead time change negligibly. The unit incorporates a provision for automatic dead-time correction.

  12. High rate, high reliability Li/SO2 cells

    NASA Astrophysics Data System (ADS)

    Chireau, R.

    1982-03-01

    The use of the lithium/sulfur dioxide system for aerospace applications is discussed. The high rate density in the system is compared to some primary systems: mercury zinc, silver zinc, and magnesium oxide. Estimates are provided of the storage life and shelf life of typical lithium sulfur batteries. The design of lithium cells is presented and criteria are given for improving the output of cells in order to achieve high rate and high reliability.

  13. Identifying High-Rate Flows Based on Sequential Sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Fang, Binxing; Luo, Hao

    We consider the problem of fast identification of high-rate flows in backbone links with possibly millions of flows. Accurate identification of high-rate flows is important for active queue management, traffic measurement and network security such as detection of distributed denial of service attacks. It is difficult to directly identify high-rate flows in backbone links because tracking the possible millions of flows needs correspondingly large high speed memories. To reduce the measurement overhead, the deterministic 1-out-of-k sampling technique is adopted which is also implemented in Cisco routers (NetFlow). Ideally, a high-rate flow identification method should have short identification time, low memory cost and processing cost. Most importantly, it should be able to specify the identification accuracy. We develop two such methods. The first method is based on fixed sample size test (FSST) which is able to identify high-rate flows with user-specified identification accuracy. However, since FSST has to record every sampled flow during the measurement period, it is not memory efficient. Therefore the second novel method based on truncated sequential probability ratio test (TSPRT) is proposed. Through sequential sampling, TSPRT is able to remove the low-rate flows and identify the high-rate flows at the early stage which can reduce the memory cost and identification time respectively. According to the way to determine the parameters in TSPRT, two versions of TSPRT are proposed: TSPRT-M which is suitable when low memory cost is preferred and TSPRT-T which is suitable when short identification time is preferred. The experimental results show that TSPRT requires less memory and identification time in identifying high-rate flows while satisfying the accuracy requirement as compared to previously proposed methods.

  14. Cleft Nasal Deformity and Rhinoplasty

    PubMed Central

    Kaufman, Yoav; Buchanan, Edward P.; Wolfswinkel, Erik M.; Weathers, William M.; Stal, Samuel

    2012-01-01

    The cleft nasal deformity is a complex challenge in plastic surgery involving the skin, cartilage, mucosa, and skeletal platform. Ever since Blair and Brown first described the intricacies of the cleft pathology in 1931, the appropriate approach has been extensively debated in the literature with respect to timing, technique, and extent of surgical intervention. In this article, the authors review the literature and summarize the various modalities for achieving a successful rhinoplasty in the patient with a cleft nasal deformity. PMID:24179452

  15. Bifurcation and neck formation as a precursor to ductile fracture during high rate extension

    SciTech Connect

    Freund, L.B.; Soerensen, N.J.

    1997-12-31

    A block of ductile material, typically a segment of a plate or shell, being deformed homogeneously in simple plane strain extension commonly undergoes a bifurcation in deformation mode to nonuniform straining in the advanced stages of plastic flow. The focus here is on the influence of material inertia on the bifurcation process, particularly on the formation of diffuse necks as precursors to dynamic ductile fracture. The issue is considered from two points of view, first within the context of the theory of bifurcation of rate-independent, incrementally linear materials and then in terms of the complete numerical solution of a boundary value problem for an elastic-viscoplastic material. It is found that inertia favors the formation of relatively short wavelength necks as observed in shaped charge break-up and dynamic fragmentation.

  16. Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.

  17. Plastic Jellyfish.

    ERIC Educational Resources Information Center

    Moseley, Christine

    2000-01-01

    Presents an environmental science activity designed to enhance students' awareness of the hazards of plastic waste for wildlife in aquatic environments. Discusses how students can take steps to reduce the effects of plastic waste. (WRM)

  18. Breakdown Limit Studies in High-Rate Gaseous Detectors

    NASA Technical Reports Server (NTRS)

    Ivaniouchenkov, Yu; Fonte, P.; Peskov, V.; Ramsey, B. D.

    1999-01-01

    We report results from a systematic study of breakdown limits for novel high-rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable pin, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the breakgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.

  19. The 2011 Grímsvötn Eruption From High Rate Geodesy

    NASA Astrophysics Data System (ADS)

    Hreinsdottir, S.; Grapenthin, R.; Sigmundsson, F.; Roberts, M. J.; Holmjarn, J.; Geirsson, H.; Arnadottir, T.; Bennett, R. A.; Villemin, T.; Ofeigsson, B. G.; Sturkell, E. C.

    2011-12-01

    High rate geodetic measurements at volcanoes can give displacements at sub second intervals, revealing surface deformation associated with magma movements. The Grímsvötn volcano lies beneath the Vatnajökull icecap, Iceland, limiting the near field monitoring efforts to a single nunatak, Mt. Grímsfjall, on the southern caldera rim. A 5 Hz GPS station and an electronic tilt meter are located at Grímsfjall. The colocation of these instruments (GPS and tilt station) allows us to relate the observed surface deformation to pressure change in a magma chamber assuming a simple Mogi source within an elastic half space. During the 21-28 May 2011 Grímsvötn eruption a continuous stream of data, despite the eruption plume and lightning, was transmitted to Reykjavík. The tiltmeter measures N-S and E-W components of tilt, the N-S component was recorded at 100 samples per second (sps) but the E-W component at 4 sps. The high rate data from the GPS station at Grímsfjall (GFUM) were analyzed using the Track part of GAMIT/GLOBK. We produced kinematic solutions at 5 Hz and 1 Hz intervals using reference stations in 40-120 km distance of the volcano. To minimize multipath effects we applied sidereal filtering and stacked the individual solutions to further improve the signal to noise ratio. The resulting deformation time series suggests a rapid pressure drop starting about 50 minutes prior to the onset of the eruption when over 20 km high plume formed. The characteristics of the GPS and tilt data time series suggests that the main signal was induced by a single source of fixed location and geometry throughout the eruption; a shallow magma chamber. Small deviations in displacement direction prior to the onset of the eruption can be explained by the opening of the feeder dike. We see a total displacement of 57 cm in direction ˜N38.5°W and down at the GPS station, suggesting a source depth of ~1.7 km. About 20% of the displacement preceded the eruption and more than 95% took

  20. Calcium thionyl chloride high-rate reserve cell

    NASA Astrophysics Data System (ADS)

    Peled, E.; Meitav, A.; Brand, M.

    1981-09-01

    The goal is to assess the high-rate capability of a reserve type calcium-Ca(AlCl4) thionyl chloride cell and to demonstrate its excellent safety features. The good discharge performance at a discharge time of 10-15 min, together with the excellent safety features of the cell, is seen as warranting further investigations of this system as a candidate for high-rate multicell reserved and nonreserved battery applications. A test is described proving that it is practically impossible to 'charge' this cell.

  1. Design of abrasive tool for high-rate grinding

    NASA Astrophysics Data System (ADS)

    Ilinykh, AS

    2017-02-01

    The experimental studies aimed to design heavy-duty abrasive wheels for high-rate grinding are presented. The design of abrasive wheels with the working speed up to 100 m/s is based on the selection of optimized material composition and manufacture technology of the wheels.

  2. Cassini High Rate Detector V16.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; DiDonna, P.

    2016-05-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through December 31, 2015. Please refer to Srama et al. (2004) for a detailed HRD description.

  3. Digital approach to high rate gamma-ray spectrometry

    SciTech Connect

    Korolczuk, Stefan; Mianowski, Slawomir; Rzadkiewicz, Jacek; Sibczynski, Pawel; Swiderski, Lukasz; Szewinski, Jaroslaw; Zychor, Izabella

    2015-07-01

    Basic concepts and preliminary results of creating high rate digital spectrometry system using efficient ADCs and latest FPGA are presented as well as a comparison with commercially available devices. The possibility to use such systems, coupled to scintillators, in plasma experiments is discussed. (authors)

  4. High rate and stable cycling of lithium metal anode

    DOE PAGES

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; ...

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less

  5. High rate and stable cycling of lithium metal anode

    SciTech Connect

    Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; Bhattacharya, Priyanka; Engelhard, Mark H.; Borodin, Oleg; Zhang, Jiguang

    2015-02-20

    Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycled at high rates (10 mA cm-2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.

  6. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations

    ERIC Educational Resources Information Center

    David, Christopher N.; Greenstein, Deanna; Clasen, Liv; Gochman, Pete; Miller, Rachel; Tossell, Julia W.; Mattai, Anand A.; Gogtay, Nitin; Rapoport, Judith L.

    2011-01-01

    Objective: To document high rates and clinical correlates of nonauditory hallucinations in childhood onset schizophrenia (COS). Method: Within a sample of 117 pediatric patients (mean age 13.6 years), diagnosed with COS, the presence of auditory, visual, somatic/tactile, and olfactory hallucinations was examined using the Scale for the Assessment…

  7. Cassini High Rate Detector V14.0

    NASA Astrophysics Data System (ADS)

    Economou, T.; DiDonna, P.

    2014-06-01

    The High Rate Detector (HRD) from the University of Chicago is an independent part of the CDA instrument on the Cassini Orbiter that measures the dust flux and particle mass distribution of dust particles hitting the HRD detectors. This data set includes all data from the HRD through December 31, 2013. Please refer to Srama et al. (2004) for a detailed HRD description.

  8. READOUT ELECTRONICS FOR A HIGH-RATE CSC DETECTOR

    SciTech Connect

    OCONNOR,P.; GRATCHEV,V.; KANDASAMY,A.; POLYCHRONAKOS,V.; TCHERNIATINE,V.; PARSONS,J.; SIPPACH,W.

    1999-09-25

    A readout system for a high-rate muon Cathode Strip Chamber (CSC) is described. The system, planned for use in the forward region of the ATLAS muon spectrometer, uses two custom CMOS integrated circuits to achieve good position resolution at a flux of up to 2,500 tracks/cm{sup 2}/s.

  9. The plasticity of clays

    USGS Publications Warehouse

    Group, F.F.

    1905-01-01

    (1) Sand injures plasticity little at first because the grains are suspended in a plastic mass. It is only when grains are abundant enough to come in contact with their neighbors, that the effect becomes serious, and then both strength and amount of possible flow are injured. (2) Certain rare organic colloids increase the plasticity by rendering the water viscous. (3) Fineness also tends to increase plasticity. (4) Plane surfaces (plates) increase the amount of possible flow. They also give a chance for lubrication by thinner films, thus increasing the friction of film, and the strength of the whole mass. The action of plates is thus twofold ; but fineness may be carried to such an extent as to break up plate-like grains into angular fragments. The beneficial effects of plates are also decreased by the fact that each is so closely surrounded by others in the mass. (5) Molecular attraction is twofold in increasing plasticity. As the attraction increases, the coherence and strength of the mass increase, and the amount of possible deformation before crumbling also increases. Fineness increases this action by requiring more water. Colloids and crystalloids in solution may also increase the attraction. It is thus seen to be more active than any other single factor.

  10. Data driven modeling of plastic deformation

    DOE PAGES

    Versino, Daniele; Tonda, Alberto; Bronkhorst, Curt A.

    2017-05-01

    In this paper the application of machine learning techniques for the development of constitutive material models is being investigated. A flow stress model, for strain rates ranging from 10–4 to 1012 (quasi-static to highly dynamic), and temperatures ranging from room temperature to over 1000 K, is obtained by beginning directly with experimental stress-strain data for Copper. An incrementally objective and fully implicit time integration scheme is employed to integrate the hypo-elastic constitutive model, which is then implemented into a finite element code for evaluation. Accuracy and performance of the flow stress models derived from symbolic regression are assessed by comparisonmore » to Taylor anvil impact data. The results obtained with the free-form constitutive material model are compared to well-established strength models such as the Preston-Tonks-Wallace (PTW) model and the Mechanical Threshold Stress (MTS) model. Here, preliminary results show candidate free-form models comparing well with data in regions of stress-strain space with sufficient experimental data, pointing to a potential means for both rapid prototyping in future model development, as well as the use of machine learning in capturing more data as a guide for more advanced model development.« less

  11. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  12. Characterization of Composites Response at High Rates of Loading

    NASA Technical Reports Server (NTRS)

    Gilat, Amos

    2002-01-01

    The objective of the proposed research is to experimentally study the effect of strain rate on mechanical response (deformation and failure) carbon fiber/epoxy matrix composites. The experimental data provide the information needed for the development of a nonlinear, rate dependent deformation and strength models that can subsequently be used in design. This year effort was directed into testing the epoxy resin. Two types of epoxy were tested each in tension and shear at various strain rate that ranges from 5x10(exp -5), to 700/s. The results show that both the strain rate and the mode of loading affect the epoxy response.

  13. The effect of anisotropy and plastic spin on fold formations

    NASA Astrophysics Data System (ADS)

    Loret, B.; Dafalias, Y. F.

    THE RESPONSE of anisotropic materials under homogeneous large plastic deformations has been extensively studied in recent works which employ the concept of plastic spin in order to determine the evolution of the anisotropic orientation. The present work extends the investigation to non-homogeneous large plastic deformations for materials with orthotropic and transversely isotropic symmetries. The inhomogeneity of deformation is characterized by the development of different kinds of folds. Closed-form analytical solutions are obtained which provide a clear insight into the effect that the intensity of anisotropy and the plastic spin have on the formation of such folds. The analysis is illustrated by examples.

  14. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  15. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2015-11-10

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  16. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-07-05

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  17. Online aging study of a high rate MRPC

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Yi; Feng, S. Q.; Xie, Bo; Lv, Pengfei; Wang, Fuyue; Guo, Baohong; Han, Dong; Li, Yuanjing

    2016-05-01

    With the constant increase of accelerator luminosity, the rate requirements of MRPC detectors have become very important, and the aging characteristics of the detector have to be studied meticulously. An online aging test system has been set up in our lab, and in this paper the setup of the system is described and the performance stability of a high-rate MRPC studied over a long running time under a high luminosity environment. The high rate MRPC was irradiated by X-rays for 36 days and the accumulated charge density reached 0.1 C/cm2. No obvious performance degradation was observed for the detector. Supported by National Natural Science Foundation of China (11420101004, 11461141011, 11275108), Ministry of Science and Technology (2015CB856905)

  18. High-Rate Strong-Signal Quantum Cryptography

    NASA Technical Reports Server (NTRS)

    Yuen, Horace P.

    1996-01-01

    Several quantum cryptosystems utilizing different kinds of nonclassical lights, which can accommodate high intensity fields and high data rate, are described. However, they are all sensitive to loss and both the high rate and the strong-signal character rapidly disappear. A squeezed light homodyne detection scheme is proposed which, with present-day technology, leads to more than two orders of magnitude data rate improvement over other current experimental systems for moderate loss.

  19. Adjunct payload for ISS high-rate communications

    NASA Astrophysics Data System (ADS)

    Mitchell, W. Carl; Cleave, Robert; Ford, David

    1999-01-01

    An adjunct payload on commercial geosynchronous satellites is developed for ISS and similar high-rate communications. The technical parameters of this payload are set forth and bounds on user fees are established. Depending on the financial arrangements-e.g., development funds, long-term lease agreement, other value offered, commercial subscriptions-the adjunct payload can be a viable option for ISS communications service.

  20. Data Feature Extraction for High-Rate 3-Phase Data

    SciTech Connect

    2016-10-18

    This algorithm processes high-rate 3-phase signals to identify the start time of each signal and estimate its envelope as data features. The start time and magnitude of each signal during the steady state is also extracted. The features can be used to detect abnormal signals. This algorithm is developed to analyze Exxeno's 3-phase voltage and current data recorded from refrigeration systems to detect device failure or degradation.

  1. Atomistic deformation mechanisms in twinned copper nanospheres.

    PubMed

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  2. Deformation mechanisms of antigorite serpentinite at subduction zone conditions determined from experimentally and naturally deformed rocks

    NASA Astrophysics Data System (ADS)

    Auzende, Anne-Line; Escartin, Javier; Walte, Nicolas P.; Guillot, Stéphane; Hirth, Greg; Frost, Daniel J.

    2015-02-01

    We performed deformation-DIA experiments on antigorite serpentinite at pressures of 1-3.5 GPa and temperatures of between 400 and 650 °C, bracketing the stability of antigorite under subduction zone conditions. For each set of pressure-temperature (P-T) conditions, we conducted two runs at strain rates of 5 ×10-5 and 1 ×10-4 s-1. We complemented our study with a sample deformed in a Griggs-type apparatus at 1 GPa and 400 °C (Chernak and Hirth, 2010), and with natural samples from Cuba and the Alps deformed under blueschist/eclogitic conditions. Optical and transmission electron microscopies were used for microstructural characterization and determination of deformation mechanisms. Our observations on experimentally deformed antigorite prior to breakdown show that deformation is dominated by cataclastic flow with observable but minor contribution of plastic deformation (microkinking and (001) gliding mainly expressed by stacking disorder mainly). In contrast, in naturally deformed samples, plastic deformation structures are dominant (stacking disorder, kinking, pressure solution), with minor but also perceptible contribution of brittle deformation. When dehydration occurs in experiments, plasticity increases and is coupled to local embrittlement that we attribute to antigorite dehydration. In dehydrating samples collected in the Alps, embrittlement is also observed suggesting that dehydration may contribute to intermediate-depth seismicity. Our results thus show that semibrittle deformation operates within and above the stability field of antigorite. However, the plastic deformation recorded by naturally deformed samples was likely acquired at low strain rates. We also document that the corrugated structure of antigorite controls the strain accommodation mechanisms under subduction conditions, with preferred inter- and intra-grain cracking along (001) and gliding along both a and b. We also show that antigorite rheology in subduction zones is partly controlled

  3. Performance Evaluation of High-Rate GPS Seismometers

    NASA Astrophysics Data System (ADS)

    Kato, T.; Ebinuma, T.

    2011-12-01

    High-rate GPS observations with higher than once-per-second sampling are getting increasingly important for seismology. Unlike a traditional seismometer which measures short period vibration using accelerometers, the GPS receiver can measure its antenna position directly and record long period seismic wave and permanent displacements as well. The high-rate GPS observations are expected to provide new insights in understanding the whole aspects of earthquake process. In this study, we investigated dynamic characteristics of the high-rate GPS receivers capable of outputting the observations at up to 50Hz. This higher output rate, however, doesn't mean higher dynamics range of the GPS observations. Since many GPS receivers are designed for low dynamics applications, such as static survey, personal and car navigation, the bandwidth of the loop filters tend to be narrower in order to reduce the noise level of the observations. The signal tracking loop works like a low-pass filter. Thus the narrower the bandwidth, the lower the dynamics range. In order to extend this dynamical limit, high-rate GPS receivers might use wider loop bandwidth for phase tracking. In this case, the GPS observations are degraded by higher noise level in return. In addition to the limitation of the loop bandwidth, higher acceleration due to earthquake may cause the steady state error in the signal tracking loop. As a result, kinematic solutions experience undesirable position offsets, or the receiver may lose the GPS signals in an extreme case. In order to examine those effects for the high-rate GPS observations, we made an experiment using a GPS signal simulator and several geodetic GPS receivers, including Trimble Net-R8, NovAtel OEMV, Topcon Net-G3A, and Javad SIGMA-G2T. We set up the zero-baseline simulation scenario in which the rover receiver was vibrating in a periodic motion with the frequency from 1Hz to 10Hz around the reference station. The amplitude of the motion was chosen to provide

  4. The Features of Fracture Behavior of an Aluminum-Magnesium Alloy AMg6 Under High-Rate Straining

    NASA Astrophysics Data System (ADS)

    Skripnyak, N. V.

    2015-09-01

    The results of investigation of fracture dynamics of rolled sheet specimens of an AMg6 alloy are presented for the range of strain rates from 10-3 to 103 s-1. It is found out that the presence of nanostructured surface layers on the thin AMg6 rolled sheets results in improved strength characteristics within the above range of strain rates. A modified model of a deforming medium is proposed to describe the plastic flow and fracture of the AMg6 alloy.

  5. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors.

    PubMed

    Bányai, László; Patthy, László

    2016-08-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.

  6. Putative extremely high rate of proteome innovation in lancelets might be explained by high rate of gene prediction errors

    PubMed Central

    Bányai, László; Patthy, László

    2016-01-01

    A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation. PMID:27476717

  7. Application of high rate nitrifying trickling filters for potable water treatment.

    PubMed

    van den Akker, Ben; Holmes, Mike; Cromar, Nancy; Fallowfield, Howard

    2008-11-01

    The interference of ammonia with chlorination is a prevalent problem encountered by water treatment plants located throughout South East Asia. The efficacy of high rate, plastic-packed trickling filters as a pre-treatment process to remove low concentrations of ammonia from polluted surface water was investigated. This paper presents the findings from a series of pilot experiments, which were designed to investigate the effect of specific conditions-namely low ammonia feed concentrations (0.5-5.0 mg NH(4)-NL(-1)), variations in hydraulic surface load (72.5-145 m(3)m(-2)d(-1)) and high suspended solid loads (51+/-25 mgL(-1))-on filter nitrifying capacity. The distribution of nitrification activity throughout a trickling filter bed was also characterised. Results confirmed that high hydraulic rate trickling filters were able to operate successfully, under ammonia-N concentrations some 10- to 50-fold lower and at hydraulic loading rates 30-100 times greater than those of conventional wastewater applications. Mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant, where apparent nitrification rates (0.4-1.6 g NH(4)-Nm(-2)d(-1)), equivalent to that of wastewater filters were recorded. High inert suspended solid loadings had no adverse effect on nitrification. Results imply that implementation of high rate trickling filters at the front-end of a water treatment train would reduce the ammonia-related chlorine demand, thereby offering significant cost savings.

  8. Plastics Technology.

    ERIC Educational Resources Information Center

    Barker, Tommy G.

    This curriculum guide is designed to assist junior high schools industrial arts teachers in planning new courses and revising existing courses in plastics technology. Addressed in the individual units of the guide are the following topics: introduction to production technology; history and development of plastics; safety; youth leadership,…

  9. Cratering Studies in Thin Plastic Films

    NASA Astrophysics Data System (ADS)

    Shu, Anthony; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T.; Srama, R.; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. Two Smoothed Particle Hydrodynamics (SPH) codes are being evaluated for use as a simulator for hypervelocity impacts: Ansys Autodyn and LS-Dyna from the Livermore Software Technology Corp. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Experimental results and preliminary simulation results and conclusions will be

  10. Strategies for adapting to high rates of employee turnover.

    PubMed

    Mowday, R T

    1984-01-01

    For many organizations facing high rates of employee turnover, strategies for increasing employee retention may not be practical because employees leave for reasons beyond the control of management or the costs of reducing turnover exceed the benefits to be derived. In this situation managers need to consider strategies that can minimize or buffer the organization from the negative consequences that often follow from turnover. Strategies organizations can use to adapt to uncontrollably high employee turnover rates are presented in this article. In addition, suggestions are made for how managers should make choices among the alternative strategies.

  11. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  12. Quantum data locking for high-rate private communication

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Lloyd, Seth

    2015-03-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it.

  13. Semi-solid electrodes having high rate capability

    DOEpatents

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2016-06-07

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  14. High-rate anaerobic composting with biogas recovery

    SciTech Connect

    DeBaere, L.; Verstraete, W.

    1984-03-01

    In Belgium a novel high rate anaerobic composting process with biogas has been developed as an alternative to aerobic systems, producing a commercial dry compost and 60 to 95 cubic metres methane per ton of municipal solid waste. This is a high value energy source simultaneously yielding a stabilized end product. The process was developed so that digestion could take place at 25 to 35% total solids, thus reducing the amount of water needed to dilute the waste, decreasing the digestor volume and cutting transportation costs. The end product is odorless and stable. High rate anaerobic composting of MSW can be combined with sewage sludge stabilization. Manure, vegetable or fruit wastes can be co-treated in certain proportions as required. About 15 to 20% of the energy produced is transformed into electricity and heat and consumed as the waste disposal plant itself. 120 to 140 US $ worth of methane gas and compost can be produced per cubic metre of reactor per year, making anaerobic composting economically attractive.

  15. Investigation of high-rate lithium-thionyl chloride cells

    NASA Astrophysics Data System (ADS)

    Hayes, Catherine A.; Gust, Steven; Farrington, Michael D.; Lockwood, Judith A.; Donaldson, George J.

    Chemical analysis of a commercially produced high-rate D-size lithium-thionyl cell was carried out, as a function of rate of discharge (1 ohm and 5 ohms), depth of discharge, and temperature (25 C and -40 C), using specially developed methods for identifying suspected minor cell products or impurities which may effect cell performance. These methods include a product-retrieval system which involves solvent extraction to enhance the recovery of suspected semivolatile minor chemicals, and methods of quantitative GC analysis of volatile and semivolatile products. The nonvolatile products were analyzed by wet chemical methods. The results of the analyses indicate that the predominant discharge reaction in this cell is 4Li + 2SOCl2 going to 4LiCl + S + SO2, with SO2 formation decreasing towards the end of cell life (7 to 12 Ah). The rate of discharge had no effect on the product distribution. Upon discharge of the high-rate cell at -40 C, one cell exploded, and all others exhibited overheating and rapid internal pressure rise when allowed to warm up to room temperature.

  16. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    NASA Astrophysics Data System (ADS)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  17. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.

  18. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  19. Plastic Surgery Statistics

    MedlinePlus

    ... PRS GO PSN PSEN GRAFT Contact Us News Plastic Surgery Statistics Plastic surgery procedural statistics from the ... Plastic Surgery Statistics 2005 Plastic Surgery Statistics 2016 Plastic Surgery Statistics Stats Report 2016 National Clearinghouse of ...

  20. Production of carboxylates from high rate activated sludge through fermentation.

    PubMed

    Cagnetta, C; Coma, M; Vlaeminck, S E; Rabaey, K

    2016-10-01

    The aim of this work was to study the key parameters affecting fermentation of high rate activated A-sludge to carboxylates, including pH, temperature, inoculum, sludge composition and iron content. The maximum volatile fatty acids production was 141mgCg(-1) VSSfed, at pH 7. Subsequently the potential for carboxylate and methane production for A-sludge from four different plants at pH 7 and 35°C were compared. Initial BOD of the sludge appeared to be key determining carboxylate yield from A-sludge. Whereas methanogenesis could be correlated linearly to the quantity of ferric used for coagulation, fermentation did not show a dependency on iron presence. This difference may enable a strategy whereby A-stage sludge is separated to achieve fermentation, and iron dosing for phosphate removal is only implemented at the B-stage.