Science.gov

Sample records for high-redshift uv background

  1. Extragalactic Backgrounds in the Far UV and Exploring Star Formation at High Redshifts with Gamma-ray Observations

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2006-01-01

    The determination of the intergalactic photon densities from the FIR to the UV which is produced by stellar emission and dust reradiation at various redshifts can provide an independent measure of the star formation history of the universe. Using recent Spitzer and GALEX data in conjunction with other observational inputs, Stecker, Malkan and Scully have calculated the intergalactic photon density as a function of both energy and redshift for 0 < zeta < 6 for photon energies from 0.003 eV to the Lyman limit cutoff at 13.6 eV in a ACDM universe with Omega(sub Lambda) = 0.7 and Omega(sub m) = 0.3. Their results are based on backwards evolution models for galaxies which were developed by Malkan and Stecker previously. The calculated background SEDs at zeta = 0 are in good agreement with the present observational data and limits. The calculated intergalactic photon densities as a function of redshift were used to predict to extend the absorption of high energy 7-rays in intergalactic space from sources such as blazars and quasars, this absorption being produced by interactions the y-rays with the intergalactic FIR-UV photons having the calculated densities. The results are in excellent agreement with absorption features found in the low gamma-ray spectra of Mkn 421, Mkn 501 at, zeta = 0.03 and PKS

  2. UV Spectral Templates for High-Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara; Lindler, Don; Lanz, Thierry

    2003-01-01

    New instrumentation such as DEIMOS on Keck-II now enable deep spectral surveys, and thereby samples of galaxies at younger ages. At a redshift, z = 1, all galaxies are less than 6 Gyr old and hence, have not yet formed horizontal-branch stars. Also, at z = 1, the restframe-UV comes into view, and with it, a new set of spectral diagnostics. UV spectral features are especially important because most of the UV flux comes from stars at the main-sequence turnoff (MSTO). Hence, UV spectral diagnostics enable the ages of z = 1 galaxies to be estimated directly from MSTO stars. In preparation for these high-redshift spectral surveys, we are developing UV spectral templates for stellar populations younger than 6 Gyr using UV-optical spectra of stars observed by HST/STIS. We are also planning to supplement these observations with theoretical spectral grids of stars of various metallicities. In this paper, we present a progress report on the observation-based spectral templates and spectral diagnostics.

  3. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  4. ON THE EFFECT OF THE COSMIC MICROWAVE BACKGROUND IN HIGH-REDSHIFT (SUB-)MILLIMETER OBSERVATIONS

    SciTech Connect

    Da Cunha, Elisabete; Groves, Brent; Walter, Fabian; Decarli, Roberto; Rix, Hans-Walter; Weiss, Axel; Bertoldi, Frank; Carilli, Chris; Daddi, Emanuele; Sargent, Mark; Maiolino, Roberto; Riechers, Dominik; Smail, Ian

    2013-03-20

    Modern (sub-)millimeter interferometers enable the measurement of the cool gas and dust emission of high-redshift galaxies (z > 5). However, at these redshifts the cosmic microwave background (CMB) temperature is higher, approaching, and even exceeding, the temperature of cold dust and molecular gas observed in the local universe. In this paper, we discuss the impact of the warmer CMB on (sub-)millimeter observations of high-redshift galaxies. The CMB affects the observed (sub-)millimeter dust continuum and the line emission (e.g., carbon monoxide, CO) in two ways: (1) it provides an additional source of (both dust and gas) heating and (2) it is a non-negligible background against which the line and continuum emission are measured. We show that these two competing processes affect the way we interpret the dust and gas properties of high-redshift galaxies using spectral energy distribution models. We quantify these effects and provide correction factors to compute what fraction of the intrinsic dust (and line) emission can be detected against the CMB as a function of frequency, redshift, and temperature. We discuss implications on the derived properties of high-redshift galaxies from (sub-)millimeter data. Specifically, the inferred dust and molecular gas masses can be severely underestimated for cold systems if the impact of the CMB is not properly taken into account.

  5. Crossing the Lyman valley: how many UV-bright high redshift quasars are there?

    NASA Astrophysics Data System (ADS)

    Picard, Alain; Jakobsen, Peter

    1993-09-01

    We present predictions for the appearance of the high redshift quasar population at far-UV (λ <~ 1500A) wavelengths, with an emphasis on assessing the feasibility of carrying out the HeII λ304A equivalent of the Gunn-Peterson test with HST and FUSE. We assume that the shape of the intrinsic extreme-UV spectra of luminous quasars can be described by a simple power law, and combine the quasar evolution models of Schmidt & Green (1983) and Boyle et al. (1988) with the intervening Lyman continuum absorption model of Moller & Jakobsen (1990) in order to calculate the distribution of quasars in apparent far- UV flux and redshift. We present curves giving the predicted total number of observable quasars on the sky as a function of limiting far-UV sensitivity at received HeII λ304A for the redshift range z > 3 accessible with HST and the range 2 < z <3 accessible with FUSE. The steepness of the quasar luminosity function is enhanced by the effects of intervening Lyman continuum absorption, and leads to the number of observable quasars being strongly dependent on the limiting sensitivity and assumed quasar spectrum. Nonetheless, our analysis suggests that a limiting far-UV spectroscopic sensitivity of Flambda_ ~ 1 x 10^16^ ergs s^-1^ cm^2^ A^-1^ is required in order to be able to observe HeII λ304A absorption in the ~10^2^ brightest quasars at redshifts z > 3. This sensitivity cannot currently be reached with the aberrated HST observatory but may be achievable in the future with the COSTAR and STIS instruments. In the lower redshift range 2 < Z < 3, where redshifted HeII λ304A line is accessible with FUSE, the corresponding sensitivity required to reach the ~10^2^ brightest quasars is Flambda_ ~ 1 x 10^-15^ ergs s^-1^ cm^-2^ A^-1^. This sensitivity is below that expected for the prime spectrographic mode of FUSE, but could be achieved in a low resolution mode

  6. Dark-ages reionization and galaxy formation simulation - IV. UV luminosity functions of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.

  7. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  8. Diffuse UV Background Radiation

    NASA Astrophysics Data System (ADS)

    Conn Henry, Richard; Murthy, J.

    2012-01-01

    The diffuse UV sky is expected to glow with significant amounts of starlight that is scattered from the interstellar dust. The albedo and scattering pattern of the dust in the ultraviolet are both well established, and are both fairly independent of wavelength from 912 Å to 3000 Å. We present 1943 Voyager spectra of the diffuse cosmic background radiation from 500 Å to 1200 Å, and we compare their brightnesses, and their distribution on the sky, to those observed (Murthy et al., ApJ 724, 1389, 2010) from the GALEX mission at longer wavelengths (1530 Å). Significant differences appear, suggesting that background radiation components in addition to dust-scattered starlight may be present in both spectral regions.

  9. Dust Obscuration and Metallicity at High Redshift: New Inferences from UV, Hα, and 8 μm Observations of z ~ 2 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Erb, Dawn K.; Pettini, Max; Steidel, Charles C.; Shapley, Alice E.

    2010-04-01

    We use a sample of 90 spectroscopically confirmed Lyman break galaxies with Hα measurements and Spitzer MIPS 24 μm observations to constrain the relationship between rest-frame 8 μm luminosity (L 8) and star formation rate (SFR) for L* galaxies at z ~ 2. We find a tight correlation with 0.24 dex scatter between L 8 and Hα luminosity/SFR for z ~ 2 galaxies with 1010 L sun <~ L IR <~ 1012 L sun. Employing this relationship with a larger sample of 392 galaxies with spectroscopic redshifts, we find that the UV slope β can be used to recover the dust attenuation of the vast majority of moderately luminous L* galaxies at z ~ 2 to within a 0.4 dex scatter using the local correlation. Separately, young galaxies with ages lsim100 Myr appear to be less dusty than their UV slopes would imply based on the local trend and may follow an extinction curve that is steeper than what is typically assumed. Consequently, very young galaxies at high redshift may be significantly less dusty than inferred previously. Our results provide the first direct evidence, independent of the UV slope, for a correlation between UV and bolometric luminosity (L bol) at high redshift, in the sense that UV-faint galaxies are on average less infrared and less bolometrically luminous than their UV-bright counterparts. The L bol-L UV relation indicates that as the SFR increases, L UV turns over (or "saturates") around the value of L* at z ~ 2, implying that dust obscuration may be largely responsible for modulating the bright end of the UV luminosity function. Finally, dust attenuation is found to correlate with oxygen abundance at z ~ 2. Accounting for systematic differences in local and high-redshift metallicity calibrations, we find that L* galaxies at z ~ 2, while at least an order of magnitude more bolometrically luminous, exhibit ratios of metals to dust that are similar to those of local starbursts. This result is expected if high-redshift galaxies are forming their stars in a less metal

  10. High redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Mccarthy, Patrick J.

    1993-01-01

    High redshift galaxies that host powerful radio sources are examined. An overview is presented of the content of radio surveys: 3CR and 3CRR, 4C and 4C/USS, B2/1 Jy, MG, MRC/1Jy, Parkes/PSR, B3, and ESO Key-Project. Narrow-line radio galaxies in the visible and UV, the source of ionization and excitation of the emission lines, emission-line luminosities, morphology of the line-emitting gas, physical properties and energetics, kinematics of the line-emitting gas, and implications from the emission lines are discussed. The morphologies and environments of the host galaxies, the alignment effect, and spectral energy distributions and ages are also examined.

  11. Mapping the Dark Matter From UV Light at High Redshift: An Empirical Approach to Understand Galaxy Statistics

    SciTech Connect

    Lee, Kyoung-Soo; Giavalisco, Mauro; Conroy, Charlie; Wechsler, Risa H; Ferguson, Henry C.; Somerville, Rachel S.; Dickinson, Mark E.; Urry, Claudia M.; /Yale Ctr. Astron. Astrophys.

    2009-08-03

    We present a simple formalism to interpret the observations of two galaxy statistics, the UV luminosity function (LF) and two-point correlation functions for star-forming galaxies at z {approx} 4, 5 and 6 in the context of {Lambda}CDM cosmology. Both statistics are the result of how star formation takes place in dark matter halos, and thus are used to constrain how UV light depends on halo properties, in particular halo mass. The two physical quantities we explore are the star formation duty cycle, and the range of UV luminosity that a halo of mass M can have (mean and variance). The former directly addresses the typical duration of star formation activity in halos while the latter addresses the averaged star formation history and regularity of gas inflow into these systems. In the context of this formalism, we explore various physical models consistent with all the available observational data, and find the following: (1) the typical duration of star formation observed in the data is {approx}< 0.4 Gyr (1{sigma}), (2) the inferred scaling law between the observed L{sub UV} and halo mass M from the observed faint-end slope of the luminosity functions is roughly linear out to M {approx} 10{sup 11.5} - 10{sup 12} h{sup -1} M{sub {circle_dot}} at all redshifts probed in this work, and (3) the observed L{sub UV} for a fixed halo mass M decreases with time, implying that the star formation efficiency (after dust extinction) is higher at earlier times. We explore several different physical scenarios relating star formation to halo mass, but find that these scenarios are indistinguishable due to the limited range of halo mass probed by our data. In order to discriminate between different scenarios, we discuss the possibility of using the bright-faint galaxy cross-correlation functions and more robust determination of luminosity-dependent galaxy bias for future surveys.

  12. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Pérez-Fournon, I.; Balcells, M.; Moreno-Insertis, F.; Sánchez, F.

    2010-08-01

    Participants; Group photograph; Preface; Acknowledgements; 1. Galaxy formation and evolution: recent progress R. Ellis; 2. Galaxies at high redshift M. Dickinson; 3. High-redshift galaxies: the far-infrared and sub-millimeter view A. Franceschini; 4. Quasar absorption lines J. Bechtold; 5. Stellar population synthesis models at low and high redshift G. Bruzual A.; 6. Elliptical galaxies K. C. Freeman; 7. Disk galaxies K. C. Freeman; 8. Dark matter in disk galaxies K. C. Freeman.

  13. Obscured AGN at High Redshift

    NASA Technical Reports Server (NTRS)

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  14. Effect of primordial non-Gaussianities on the far-UV luminosity function of high-redshift galaxies: implications for cosmic reionization

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Silk, Joseph; Nishimichi, Takahiro; Habouzit, Melanie; Mamon, Gary A.; Peirani, Sébastien

    2015-01-01

    Understanding how the intergalactic medium (IGM) was reionized at z ≳ 6 is one of the big challenges of current high-redshift astronomy. It requires modelling the collapse of the first astrophysical objects (Pop III stars, first galaxies) and their interaction with the IGM, while at the same time pushing current observational facilities to their limits. The observational and theoretical progress of the last few years have led to the emergence of a coherent picture in which the budget of hydrogen-ionizing photons is dominated by low-mass star-forming galaxies, with little contribution from Pop III stars and quasars. The reionization history of the Universe therefore critically depends on the number density of low-mass galaxies at high redshift. In this work, we explore how changes in the cosmological model, and in particular in the statistical properties of initial density fluctuations, affect the formation of early galaxies. Following Habouzit et al. (2014), we run five different N-body simulations with Gaussian and (scale-dependent) non-Gaussian initial conditions, all consistent with Planck constraints. By appealing to a phenomenological galaxy formation model and to a population synthesis code, we compute the far-UV galaxy luminosity function down to MFUV = -14 at redshift 7 ≤ z ≤ 15. We find that models with strong primordial non-Gaussianities on ≲ Mpc scales show a far-UV luminosity function significantly enhanced (up to a factor of 3 at z = 14) in low-mass galaxies. We adopt a reionization model calibrated from state-of-the-art hydrodynamical simulations and show that such scale-dependent non-Gaussianities leave a clear imprint on the Universe reionization history and electron Thomson scattering optical depth τe. Although current uncertainties in the physics of reionization and on the determination of τe still dominate the signatures of non-Gaussianities, our results suggest that τe could ultimately be used to constrain the statistical properties

  15. Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Bauer, F. E.

    2014-10-01

    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  16. LOW-REDSHIFT Lyalpha SELECTED GALAXIES FROM GALEX SPECTROSCOPY: A COMPARISON WITH BOTH UV-CONTINUUM SELECTED GALAXIES AND HIGH-REDSHIFT Lyalpha EMITTERS

    SciTech Connect

    Cowie, Lennox L.; Barger, Amy J.; Hu, Esther M. E-mail: barger@astro.wisc.ed

    2010-03-10

    We construct a sample of low-redshift Lyalpha emission-line selected sources from Galaxy Evolution Explorer (GALEX) grism spectroscopy of nine deep fields to study the role of Lyalpha emission in galaxy populations with cosmic time. Our final sample consists of 119 (141) sources selected in the redshift interval z = 0.195-0.44 (z = 0.65-1.25) from the FUV (NUV) channel. We classify the Lyalpha sources as active galactic nuclei (AGNs) if high-ionization emission lines are present in their UV spectra and as possible star-forming galaxies otherwise. We classify additional sources as AGNs using line widths for our Lyalpha emitter (LAE) analysis. These classifications are broadly supported by comparisons with X-ray and optical spectroscopic observations, though the optical spectroscopy identifies a small number of additional AGNs. Defining the GALEX LAE sample in the same way as high-redshift LAE samples, we show that LAEs constitute only about 5% of NUV-continuum selected galaxies at z {approx} 0.3. We also show that they are less common at z {approx} 0.3 than they are at z {approx} 3. We find that the z {approx} 0.3 optically confirmed Lyalpha galaxies lie below the metallicity-luminosity relation of the z {approx} 0.3 NUV-continuum selected galaxies but have similar Halpha velocity widths at similar luminosities, suggesting that they also lie below the metallicity-mass relation of the NUV-continuum selected galaxies. We show that, on average, the Lyalpha galaxies have bluer colors, lower extinctions as measured from the Balmer line ratios, and more compact morphologies than the NUV-continuum selected galaxies. Finally, we confirm that the z {approx} 2 Lyman break galaxies have relatively low metallicities for their luminosities, and we find that they lie in the same metallicity range as the z {approx} 0.3 Lyalpha galaxies.

  17. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  18. High redshift GRBs

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Cannizzo, John K.

    2012-09-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  19. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  20. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  1. High-redshift cosmography

    SciTech Connect

    Vitagliano, Vincenzo; Xia, Jun-Qing; Liberati, Stefano; Viel, Matteo E-mail: xia@sissa.it E-mail: viel@oats.inaf.it

    2010-03-01

    We constrain the parameters describing the kinematical state of the universe using a cosmographic approach, which is fundamental in that it requires a very minimal set of assumptions (namely to specify a metric) and does not rely on the dynamical equations for gravity. On the data side, we consider the most recent compilations of Supernovae and Gamma Ray Bursts catalogues. This allows to further extend the cosmographic fit up to z = 6.6, i.e. up to redshift for which one could start to resolve the low z degeneracy among competing cosmological models. In order to reliably control the cosmographic approach at high redshifts, we adopt the expansion in the improved parameter y = z/(1+z). This series has the great advantage to hold also for z > 1 and hence it is the appropriate tool for handling data including non-nearby distance indicators. We find that Gamma Ray Bursts, probing higher redshifts than Supernovae, have constraining power and do require (and statistically allow) a cosmographic expansion at higher order than Supernovae alone. Exploiting the set of data from Union and GRBs catalogues, we show (for the first time in a purely cosmographic approach parametrized by deceleration q{sub 0}, jerk j{sub 0}, snap s{sub 0}) a definitively negative deceleration parameter q{sub 0} up to the 3σ confidence level. We present also forecasts for realistic data sets that are likely to be obtained in the next few years.

  2. Revisiting the Contributions of Supernova and Hypernova Remnants to the Diffuse High-Energy Backgrounds: Constraints on Very High Redshift Injection

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Mészáros, Peter; Murase, Kohta; Dai, Zi-Gao

    2016-08-01

    Star-forming and starburst galaxies are considered one of the viable candidate sources of the high-energy cosmic neutrino background detected in IceCube. We revisit contributions of supernova remnants (SNRs) and hypernova remnants (HNRs) in such galaxies to the diffuse high-energy neutrino and gamma-ray backgrounds, in light of the latest Fermi data above 50 GeV. We also take into account possible time-dependent effects of the cosmic-ray (CR) acceleration during the SNR evolution. CRs accelerated by the SNR shocks can produce high-energy neutrinos up to ˜100 TeV energies, but CRs from HNRs can extend the spectrum up to PeV energies. We show that, only if HNRs are dominant over SNRs, the diffuse neutrino background above 100 TeV can be explained without contradicting the gamma-ray data. However, the neutrino data around 30 TeV remain unexplained, which might suggest a different population of gamma-ray dark CR sources. We also consider possible contributions of Pop-III HNRs up to z ≲ 10 and show that they are not constrained by the gamma-ray data and thus could contribute to the diffuse high-energy backgrounds if their explosion energy reaches {{ E }}{POP - {III}}˜ \\text{a few}× {10}53 erg. More conservatively, our results suggest that the explosion energy of Pop-III HNRs is {{ E }}{POP - {III}}≲ 7× {10}53 erg.

  3. High Redshift Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  4. Hard Ionizing Photons at High Redshift --- A New Method for Measuring the QSO Continuum Shape

    NASA Astrophysics Data System (ADS)

    Baldwin, Jack

    2006-07-01

    We wish to test and calibrate a new method for measuring the far-UV continuum shapes of AGN. Knowledge of this continuum shape bears on several key questions about the high-redshift universe: What is the shape and intensity of the ionizing background radiation for the IGM, as a function of lookback time? How and at what rate do massive black holes grow at the centers of galaxy halos? How do the chemical abundances in the central regions of massive proto-galaxies evolve with lookback time at redshifts z > 6? A well-established way to measure the far- to near-UV continuum shape of AGN is to compare the intensities of high- and low-ionization emission lines from the gas that is photoionized by that radiation. The highest ionization gas is expected to be in a hard-to-observe hot phase, emitted by gas at nearly a million degrees. There are to date only a few detections of this gas, using x-ray telescopes to measure the L-alpha equivalent emission line from ions such as O VII, Ne IX and Mg XI. Such measurements are only possible for the brightest nearby AGN. We show here that these same ions are expected to also emit other lines in the rest-UV with about the same strength. For high-redshift QSOs, these will be redshifted into the optical region, where they can be studied using the large collecting area of ground-based telescopes. The strengths of these lines will then tie down the far-UV continuum shape of high-redshift AGN. But the method needs to be tested and calibrated by searching for these lines in the observed-UV spectra of the same nearby AGN for which the L-alpha equivalent lines have been detected at x-ray wavelengths. This is only possible using archival HST spectra, as we propose to do here.

  5. Broadband Observations of High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Fabian, A. C.; Stalin, C. S.

    2016-07-01

    We present a multi-wavelength study of four high redshift blazars, S5 0014+81 (z = 3.37), CGRaBS J0225+1846 (z = 2.69), BZQ J1430+4205 (z = 4.72), and 3FGL J1656.2-3303 (z = 2.40) using quasi-simultaneous data from the Swift, Nuclear Spectroscopic Telescope Array (NuSTAR) and the Fermi-Large Area Telescope (LAT) and also archival XMM-Newton observations. Other than 3FGL J1656.2-3303, none of the sources were known as γ-ray emitters, and our analysis of ˜7.5 yr of LAT data reveals the first time detection of statistically significant γ-ray emission from CGRaBS J0225+1846. We generate the broadband spectral energy distributions (SED) of all the objects, centering at the epoch of NuSTAR observations and reproduce them using a one-zone leptonic emission model. The optical-UV emission in all the objects can be explained by radiation from the accretion disk, whereas the X-ray to γ-ray windows of the SEDs are found to be dominated by inverse Compton scattering off the broad line region photons. All of them host black holes that are billions of solar masses. Comparing the accretion disk luminosity and the jet power of these sources with a large sample of blazars, we find them to occupy a high disk luminosity-jet power regime. We also investigate the X-ray spectral properties of the sources in detail with a major focus on studying the causes of soft X-ray deficit, a feature generally seen in high redshift radio-loud quasars. We summarize that this feature could be explained based on the intrinsic curvature in the jet emission rather than being due to the external effects predicted in earlier studies, such as host galaxy and/or warm absorption.

  6. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  7. Early Star Formation and High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Dietrich, Matthias; Peterson, B. M.

    2007-12-01

    We are investigating for a sample of about 30 high-redshift quasars, with redshifts up to z=6, the gas chemical metallicity based on emission line ratios and employing the FeII UV/MgII line ratio, we probe the differential metal enrichment timescale between iron and alpha-elements at these early epochs. The quasars show enhanced solar metallicities ( 5 times solar) in their broad emission-line region and no indication of a metallicity evolution up to redshifts z=6. The measured FeII UV/MgII ratios range from 3 to 5, typical for high redshift quasars, with a weighted mean of about 4. However, there is a weak tendency for a lower mean ratio at z>4.7. For the first time, we will compare the gas metallicity and the FeII UV/MgII ratio for high redshift quasars. In concert, the gas metallicity, the FeII UV/MgII ratio, and model-based estimated time scales for enriching the gas and building up the super-massive black holes suggest that a violent episode of star formation and the main growth of the black hole occur roughly contemporaneously beginning at redshifts z = 8 to 13. Support for this work was provided by NASA through grant HST-GO-10792 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  8. Flaring γ-Ray Emission from High Redshift Blazars

    NASA Astrophysics Data System (ADS)

    Orienti, Monica; D'Ammando, Filippo; Giroletti, Marcello; Finke, Justin; Dallacasa, Daniele

    2016-09-01

    High redshift blazars are among the most powerful objects in the Universe. Although they represent a significant fraction of the extragalactic hard X-ray sky, they are not commonly detected in gamma-rays. High redshift (z>2) objects represent <10 per cent of the AGN population observed by Fermi so far, and gamma-ray flaring activity from these sources is even more uncommon. The characterization of the radio-to-gamma-ray properties of high redshift blazars represent a powerful tool for the study of both the energetics of such extreme objects and the Extragalactic Background Light. We present results of a multi-band campaign on TXS 0536+145, which is the highest redshift flaring gamma-ray blazar detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6x10^49 erg/s, which is comparable with the luminosity observed from the most powerful blazars. The physical properties derived from the multi-wavelength observations are then compared with those shown by the high redshift population. In addition preliminary results from the high redshift flaring blazar PKS 2149-306 will be discussed.

  9. The Intergalactic Medium at High Redshifts

    NASA Astrophysics Data System (ADS)

    Furlanetto, Steven R.

    The intergalactic medium (IGM) contains >95% of the mass in the Universe at high redshifts, and its properties control the earliest phases of structure formation and the reionization process. Although its evolution may seem straightforward, a number of feedback mechanisms can dramatically affect it. Radiative feedback, through a Lyman-Werner background, an X-ray background, and photoionization, affect halo collapse and the clumping of the IGM. We describe how the redshifted 21 cm background can be used to study these effects. Chemical feedback, primarily through supernova winds, changes the modes of star formation and halo cooling; it can be studied through metal absorption lines with the JWST, as well as metal lines in the cosmic microwave background, direct observations of cooling radiation, and fossil evidence in the nearby Universe. Finally, we describe how uncertainties in our modeling of the IGM structure affect reionization models and observations. Detailed studies of helium reionization, which occurs at the much more accessible z˜3, will significantly improve these models over the next few years.

  10. Dust Emission from High-Redshift QSOs.

    PubMed

    Carilli; Bertoldi; Menten; Rupen; Kreysa; Fan; Strauss; Schneider; Bertarini; Yun; Zylka

    2000-04-10

    We present detections of emission at 250 GHz (1.2 mm) from two high-redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30 m telescope. The sources are SDSSp 015048.83+004126.2 at z=3.7 and SDSSp J033829.31+002156.3 at z=5.0; the latter is the third highest redshift QSO known and the highest redshift millimeter-emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of centimeter and millimeter observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses approximately 108 M middle dot in circle. We consider possible dust heating mechanisms, including UV emission from the active galactic nucleus (AGN) and a massive starburst concurrent with the AGN, with implied star formation rates greater than 103 M middle dot in circle yr-1. PMID:10727380

  11. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  12. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  13. Spectroscopy of high redshift sightlines

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba

    2011-04-01

    This thesis deals with the absorption studies of two cosmological objects: Gamma-ray bursts (GRBs) and quasars (QSO), using spectroscopy and spectral energy distribution (SED) analysis. GRBs are the most powerful explosions in the Universe. After the discovery of these cosmological events in 1967, a lot of progress has been made in investigating their properties which divided them into two subcategories of long and short bursts. Both GRB classes have different origins and properties. Long duration GRBs are signposts of star formation due to their association with the deaths of short-lived massive stars. The launch of the Swift satellite in 2004, mainly devoted to GRB observations, has marked a dramatic improvement in our understanding of GRB physics. The initial burst of gamma-rays should be followed by slowly fading emission at low frequencies, which is termed the "afterglow". GRB afterglows are excellent and sensitive probes of gas and dust in star-forming galaxies at all epochs. The X-ray to optical/near-infrared SED analysis of GRB afterglows can reveal intrinsic host galaxy properties. The brightness of these transient sources and their occurrence in young, blue galaxies make them excellent tools to study star forming regions in the distant Universe. The first chapter presents an introduction to the history of GRB research, different progenitor models and afterglow phases. It also summarizes the different dust models used for afterglow SED modeling. The chapter also provides an introduction to the Damped Ly-alpha absorbers (DLAs) usually seen in the spectra of background QSOs.

  14. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2–3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass–metallicity relation (MZR) in these local analogs shows ‑0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  15. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2-3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows -0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  16. Detectability of Gravitational Waves from High-Redshift Binaries

    NASA Astrophysics Data System (ADS)

    Rosado, Pablo A.; Lasky, Paul D.; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-01

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳1010M⊙ can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms.

  17. Detectability of Gravitational Waves from High-Redshift Binaries.

    PubMed

    Rosado, Pablo A; Lasky, Paul D; Thrane, Eric; Zhu, Xingjiang; Mandel, Ilya; Sesana, Alberto

    2016-03-11

    Recent nondetection of gravitational-wave backgrounds from pulsar timing arrays casts further uncertainty on the evolution of supermassive black hole binaries. We study the capabilities of current gravitational-wave observatories to detect individual binaries and demonstrate that, contrary to conventional wisdom, some are, in principle, detectable throughout the Universe. In particular, a binary with rest-frame mass ≳10^{10}M_{⊙} can be detected by current timing arrays at arbitrarily high redshifts. The same claim will apply for less massive binaries with more sensitive future arrays. As a consequence, future searches for nanohertz gravitational waves could be expanded to target evolving high-redshift binaries. We calculate the maximum distance at which binaries can be observed with pulsar timing arrays and other detectors, properly accounting for redshift and using realistic binary waveforms. PMID:27015470

  18. A Catalog of Candidate High-redshift Blazars for GLAST

    SciTech Connect

    Arias, Tersi M.; /SLAC /San Francisco State U.

    2006-09-27

    High-redshift blazars are promising candidates for detection by the Gamma-ray Large Area Space Telescope (GLAST). GLAST, expected to be launched in the Fall of 2007, is a high-energy gamma-ray observatory designed for making observations of celestial gamma-ray sources in the energy band extending from 10 MeV to more than 200 GeV. It is estimated that GLAST will find several thousand blazars. The motivations for measuring the gamma-ray emission from distant blazars include the study of the high-energy emission processes occurring in these sources and an indirect measurement of the extragalactic background light. In anticipation of the launch of GLAST we have compiled a catalog of candidate high-redshift blazars. The criteria for sources chosen for the catalog were: high radio emission, high redshift, and a flat radio spectrum. A preliminary list of 307 radio sources brighter than 70mJy with a redshift z {ge} 2.5 was acquired using data from the NASA Extragalactic Database. Flux measurements of each source were obtained at two or more radio frequencies from surveys and catalogs to calculate their radio spectral indices {alpha}. The sources with a flat-radio spectrum ({alpha} {le} 0.5) were selected for the catalog, and the final catalog includes about 200 sources.

  19. DUST ATTENUATION IN HIGH REDSHIFT GALAXIES: 'DIAMONDS IN THE SKY'

    SciTech Connect

    Scoville, Nick; Capak, Peter; Steinhardt, Charles; Faisst, Andreas; Kakazu, Yuko; Li, Gongjie

    2015-02-20

    We use observed optical to near-infrared spectral energy distributions (SEDs) of 266 galaxies in the COSMOS survey to derive the wavelength dependence of the dust attenuation at high redshift. All of the galaxies have spectroscopic redshifts in the range z = 2-6.5. The presence of the C IV absorption feature, indicating that the rest-frame UV-optical SED is dominated by OB stars, is used to select objects for which the intrinsic, unattenuated spectrum has a well-established shape. Comparison of this intrinsic spectrum with the observed broadband photometric SED then permits derivation of the wavelength dependence of the dust attenuation. The derived dust attenuation curve is similar in overall shape to the Calzetti curve for local starburst galaxies. We also see the 2175 Å bump feature which is present in the Milky Way and Large Magellanic Cloud extinction curves but not seen in the Calzetti curve. The bump feature is commonly attributed to graphite or polycyclic aromatic hydrocarbons. No significant dependence is seen with redshift between sub-samples at z = 2-4 and z = 4-6.5. The 'extinction' curve obtained here provides a firm basis for color and extinction corrections of high redshift galaxy photometry.

  20. Stars and gas in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Pettini, Max

    Recent advances in instrumentation and observing techniques have made it possible to begin to study in detail the stellar populations and the interstellar media of galaxies at redshift z=3, when the universe was still in its "teen years". In keeping with the theme of this conference, I show how our knowledge of local star-forming regions can be applied directly to these distant galaxies to deduce their ages, metallicities, initial mass function, and masses. I also discuss areas where current limitations in stellar astrophysics have a direct bearing on the interpretation of the data being gathered, at an ever increasing rate, on the high redshift universe.

  1. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  2. The dust budget crisis in high-redshift submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Gomez, H.; Dunne, L.; Aragon-Salamanca, A.; Dye, S.; Maddox, S.; da Cunha, E.; van der Werf, P.

    We apply a chemical evolution model to investigate the sources and evolution of dust in a sample of 26 high-redshift (z > 1) submillimetre galaxies (SMGs) with complete photometry from the UV-submillimetre. Models with dust produced only by low-intermediate mass stars fall a factor 240 short of the observed dust masses of SMGs, the well-known ‘dust-budget crisis’. Adding an extra source of dust from supernovae can account for the dust mass in 19% of the sample. After accounting for dust produced by supernovae the remaining deficit in the dust mass provides support for higher supernova yields or substantial grain growth in the interstellar medium. Efficient destruction of dust by supernova shocks increases the tension between the model and observed dust masses. Models which best reproduce the physical properties of SMGs have a rapid build-up of dust from both stellar and interstellar sources and minimal dust destruction.

  3. Simulation of High-Redshift Galactic Images

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Scannapieco, E.; Windhorst, R. A.; Thacker, R.

    2009-12-01

    We construct an observational model of galaxies at high redshifts (z 3 - 13) from numerical N-body and SPH simulations of galaxy formation using the computing cluster "Saguaro” at Arizona State University. The model uses a concordance Lambda-CDM model including baryonic components with gas heating and cooling and star formation using Gadget-2 simulations. Snapshots at various redshifts yield star "particles” (populations) with a modeled metallicity and age of formation. The Bruzual-Charlot '03 stellar population models are used to compute a red-shifted flux for various filters for each simulated star population. The flux and spatial coordinates are then used to create a pixel image in a fits file format. The different redshift "slices” are shifted randomly in the simulation periodic box, and resized according to the comoving distance to correct for the angular pixel mapping. The various redshift corrected fits images are then combined into a single image for each filter to produce simulated observational images. This is to enable the use of observational imaging tools to detect galaxies and to aid observational proposals at high redshifts including the new WFC3 camera to be installed on the HST. This method also permits estimates of the luminosity function at z >6 directly from the simulated stellar populations rather than just the size of the Dark Matter haloes. With runs of higher resolution, this will permit exploration of the faint end of the luminosity function. The computing time was supplied by the ASU Fulton HPC center.

  4. Searches for high redshift radio galaxies

    SciTech Connect

    De Breuck, C.; Van Breugel, W.; Rottgering, H.; Miley, G.

    1997-05-05

    We have started a search for High Redshift Radio Galaxies (HZRGS) in an area covering 7 sr by selecting a sample of Ultra Steep Spectrum (USS) sources with a low flux density cut-off S1400 > 10 mJy and a steep spectral index cut-off of a < -1.3 (S of about nu-alpha) from the WENSS, NVSS and TEXAS surveys. Our first results for 27 sources show that we are almost twice as effective in finding HZRGs than than surveys of relatively bright radio sources with a spectral index cut-off of a < - 1.0. The redshift distribution is consistent with an extension of the z - a relation to a < -1.3, but a large fraction of our sample (40%) consists of objects which are too faint to observe with 3-4 m class telescopes. Our search is aimed at increasing the number of very high redshift radio galaxies for further detailed studies of the formation and evolution of massive galaxies and their environment.

  5. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  6. SCUBA Observations of High Redshift Radio Galaxies

    SciTech Connect

    Reuland, M; Rottgering, H; van Breugel, W

    2003-03-11

    High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies.The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen the result found by Archibald et al. (1), that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates that have so far eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.

  7. FEEDBACK FROM HIGH-MASS X-RAY BINARIES ON THE HIGH-REDSHIFT INTERGALACTIC MEDIUM: MODEL SPECTRA

    SciTech Connect

    Power, Chris; James, Gillian; Wynn, Graham; Combet, Celine

    2013-02-10

    Massive stars at redshifts z {approx}> 6 are predicted to have played a pivotal role in cosmological reionization as luminous sources of ultraviolet (UV) photons. However, the remnants of these massive stars could be equally important as X-ray-luminous (L{sub X} {approx} 10{sup 38} erg s{sup -1}) high-mass X-ray binaries (HMXBs). Because the absorption cross section of neutral hydrogen decreases sharply with photon energy ({sigma}{proportional_to}E {sup -3}), X-rays can escape more freely than UV photons from the star-forming regions in which they are produced, allowing HMXBs to make a potentially significant contribution to the ionizing X-ray background during reionization. In this paper, we explore the ionizing power of HMXBs at redshifts z {approx}> 6 using a Monte Carlo model for a coeval stellar population of main-sequence stars and HMXBs. Using the archetypal Galactic HMXB Cygnus X-1 as our template, we propose a composite HMXB spectral energy distribution consisting of blackbody and power-law components, whose contributions depend on the accretion state of the system. We determine the time-dependent ionizing power of a combined population of UV-luminous stars and X-ray-luminous HMXBs and deduce fitting formulae for the boost in the population's ionizing power arising from HMXBs; these fits allow for simple implementation of HMXB feedback in numerical simulations. Based on this analysis, we estimate the contribution of high-redshift HMXBs to the present-day soft X-ray background, and we show that it is a factor of {approx}100-1000 smaller than the observed limit. Finally, we discuss the implications of our results for the role of HMXBs in reionization and in high-redshift galaxy formation.

  8. High redshift quasars and high metallicities

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  9. "Observing and Analyzing" Images from a Simulated High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Windhorst, Rogier A.; Scannapieco, Evan; Thacker, Robert J.

    2015-09-01

    We investigate the high-redshift evolution of the rest-frame UV-luminosity function (LF) of galaxies via hydrodynamical cosmological simulations, coupled with an emulated observational astronomy pipeline that provides a direct comparison with observations. We do this by creating mock images and synthetic galaxy catalogs of ≈100 arcmin-2 fields from the numerical model at redshifts ≈4.5 to 10.4. We include the effects of dust extinction and the point-spread function (PSF) for the Hubble WFC3 camera for comparison with space observations. We also include the expected zodiacal background to predict its effect on space observations, including future missions such as the James Webb Space Telescope (JWST). When our model catalogs are fitted to Schechter function parameters, we predict that the faint-end slope (α) of the LF evolves as α = -1.16-0.12z over the redshift range z ≈ 4.5-7.7, in excellent agreement with observations from, e.g., Hathi and coworkers. However, for redshifts z ≈ 6-10.4, α(z) appears to display a shallower evolution, α = -1.79-0.03z. Augmenting the simulations with more detailed physics—specifically stellar winds and supernovae (SN)—produces similar results. The model shows an overproduction of galaxies, especially at faint magnitudes, compared with the observations, although the discrepancy is reduced when dust extinction is taken into account.

  10. An empirical SFR estimator for high redshift galaxies:

    NASA Astrophysics Data System (ADS)

    Arnouts, Stephane

    2015-08-01

    At high redshift, most of the SFR indicators are limited to the most massive galaxies (Far-IR, radio) and out of reach of optical spectroscopy (Halpha). The UV continuum is the only one available at all redshifts and for galaxies within a large range of mass. The main question is then to properly account for dust absorption. The SED fitting are always limited in the choice of popular attenuation laws (if not only one, starburst) which relies on the slope of the UV continuum. The alternative is to measure the net budget between the absorbed vs un-absorbed UV light i.e. the infrared excess (IRX= Lir/Luv).By using the deep 24 micron in the COSMOS field, we have observed a remarkable behaviour of IRX stripes within the (NUV-r)o vs (r-K)o color diagram which can be used to derive robust SFR estimates just with the Luv, Lr and Lk luminosities (Arnouts et al, 2013). We have shown that we can explain the correlation if we consider a two component models for the birth clouds and the ISM and also a complete model for galaxy inclination to explain the extrem IRX values. We are now extended the method with Herschel data at higher redshift (z~2) and lower masses (M~10^8Mo) by using stacking techniques and find that the IRX-NUVrK correlation persists (Le Floc’h , in prep). This method allows us to derive an accurate SFR for each individual galaxy based on its location in the NUVrK diagram and with no assumption on dust attenuation law, a main caveat for SED fitting technique.We investigated the behavior of the scatter of the SFR-Mass in GOODS and COSMOS fields and find that both SFR (Lir+Luv) or SFR(NUVrK) estimatesare consistent (Ilbert et al., 2015). Finally will investigate the dust-free UV luminosity functions in between 0

  11. WISH: Wide-field Imaging Durvayor for High-redshift

    NASA Astrophysics Data System (ADS)

    Yamada, Toru

    2015-08-01

    We introduce the concept and current status of WISH project and discuss the science cases. WISH is a proposed space science mission for JAXA, which is dedicated for the deep and wide-field near-infrared imaging surveys. The mission contains the 1.5m cooled telescope as well as the imager with the FoV of ~850 square arcmin. The main goal of WISH is to detect and study galaxies at z=8-15 in the earliest history of structure formation in the universe. The key feature is to conduct WISH Ultra Deep Survey, which images in total of 100 square degrees in 6 broad-band filters at 0.9-4.5 micron down to 28AB magnitude. While more than 10^5 galaxies at z=8-9, 10^4 galaxies at z=11-12 will be detected, WISH-UDS is designed to constrain UV luminosity function at z=15. Depending on the models of the earliest evolution history, 1-1000 galaxies at z~15 (~100 galaxies for the moderate cases) will be detected. The UV spectral properties as well as the clustering properties of galaxies at z=8-15 can be studied as well; UV slope can be measured up to z=15, and the stellar and dark-matter-halo masses can be obtained up to z=9. WISH UDS can provide excellent opportunities for studying SNe at high redshift. Up to ~7000 type Ia SNe at z>1 can be detected and the distance modulus can be constrained with the precision of 0.9-1.5% at z>1.5. More than 100 Super Luminous SNe at z>6, and 10 SLSN at z>10 can also be detected, which allow us to study the earliest history of massive star formation in the universe. WISH imaging surveys as well as WISHSpec, which is an optional parallel-operation simple IFU spectrograph, also provide unique opportunities in various astronomical fields. WISH mission proposal was submitted to JAXA in February 2015 for the first down selection of JAXA Large Strategic Science Mission targeting the launch date in 2020-22. International collaborations including SAO (G.Fazio et al.), LAM (D. Burgarella et al.) and Canada (M.Sawicki et al.) are also actively coordinated.

  12. Sources and Evolution of Dust in the High Redshift Universe

    NASA Astrophysics Data System (ADS)

    Dwek, Eli

    2015-08-01

    Understanding the sources and evolution of dust in the very high redshift universe (z > 8-9) poses unique challenges to observers and theorists alike.The peak of the infrared emission from the dust falls in the ~ 80-120 micron region in the rest frame of the galaxy, or about 850 micron to 2 mm in the observers' frame. Sensitivity and background confusion are the main obstacles for the detection of these high-z galaxies and their association with optical and near-IR counterparts. Observations with instruments such as the SCUBA-2, AzTEC, Mambo, Laboca, and GISMO2 offer the best hope for detecting such sources.On the theoretical side, the sources of dust in these galaxies are confined to massive stars with main sequence lifetimes that are shorter than the age of the universe. This leaves core collapse supernovae (CCSNe) as the main source of thermally-condensed dust in these objects. Dust is not only produced by CCSNe, but also destroyed by them in the remnant phase of their evolution. Accounting for the mass of dust inferred from the far-IR/millimeter observations requires therefore an understanding of the various physical processes affecting the evolution of dust in the very high-z universe, and a carefull evaluation of the balance between their different dust formation and destruction mechanisms.

  13. Radiative transfer in a clumpy universe: The colors of high-redshift galaxies

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    1995-01-01

    We assess the effects of the stochastic attenuation produced by intervening QSO absorption systems on the broadband colors of galaxies at cosmological distances. We compute the H I opacity of a clumpy universe as a function of redshift, including scattering in resonant lines, such as Lyman alpha, Lyman beta, Lyman gamma, and higher order members, and Lyman-continuum absorption. Both the numerous, optically thin Lyman-alpha forest clouds and the rarer, optically thick Lyman limit systems are found to contribute to the obscuration of background sources. We study the mean properties of primeval galaxies at high redshift in four broad optical passbands, U(sub n), B, G, and R. Even if young galaxies radiated a significant amount of ionizing photons, the attenuation due to the accumulated photoelectric opacity along the path is so severe that sources beyond z approximately 3 will drop out of the U(sub n) image together. We also show that the observed B-R color of distant galaxies can be much redder than expected from a stellar population. At z approximately 3.5, the blanketing by discrete absorption lines in the Lyman series is so effective that background galaxies appear, on average, 1 mag fainter in B. By z approximately 4, the observed B magnitude increment due to intergalactic absorption exceeds 2 mag. By modeling the intrinsic UV spectral energy distribution of star-forming galaxies with a stellar population synthesis code, we show that the (B-R)(sub AB) approximately 0 criterion for identifying 'flat-spectrum,' metal-producing galaxies is biased against objects at z greater than 3. The continuum blanketing from the Lyman series produces a characteristic staircase profile in the transmitted power. We suggest that this cosmic Lyman decrement might be used as a tool to identify high-z galaxies.

  14. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    NASA Technical Reports Server (NTRS)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  15. Life On The Edge: A Measurement Of The Cosmic UV Background At Z 0

    NASA Astrophysics Data System (ADS)

    Uson, Juan M.; Adams, J. J.; Hill, G. J.; MacQueen, P. J.

    2012-01-01

    We have used the VIRUS-P integral-field spectrometer on the University of Texas McDonald Observatory 2.7m telescope to observe the edge of the superthin spiral galaxy UGC7321. We detect faint Hα emission as expected from the exposure of the peripheral neutral Hydrogen gas traced by its 21cm radio emission to the metagalactic UV background. Observations of the intensity of the UV background and its redshift evolution are important to the theory and simulations of the evolution of large scale structure in the Universe as the UV background controls the cooling and collapse of small halos and is itself determined by the global histories of quasar and star formation. We have used dithered expositions with three pointings that fill in the gaps in the VIRUS-P detector for essentially full spatial coverage over a field of view of 1.6‧ x 1.6‧ and a spectral resolution of R = 3860 from 6040 Å to 6740 Å that allows us to resolve bright OH sky lines and geocoronal Hα from our target wavelength of 6574 Å. The Hα layer appears rather thin, with a peak surface brightness of Σ = 1.4 x 10-19 erg s-1 cm-2 arcsec-2 Å-1 for spectra smoothed with a 15″ spatial kernel. This leads to a measurement of the cosmic UV background induced HI photoionization rate Γ = 3.4 x 10-14 s-1 ( 5σ, preliminary absolute calibration). Contrary to past observational attempts, our measurements covered a large, two-dimensional on-sky area. We reach flux limits that are 50 times fainter than the sky background with significant smoothing over spatial elements and applying a sky background model that accounts for variations in the spectral resolution of our instrument. At this writing, we are continuing with the analysis of the data. Final results will be announced at the meeting.

  16. The formation of massive primordial stars in the presence of moderate UV backgrounds

    SciTech Connect

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S.; Grassi, T.; Spaans, M.

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  17. An Increasing Stellar Baryon Fraction in Bright Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Song, Mimi; Behroozi, Peter; Somerville, Rachel S.; Papovich, Casey; Milosavljević, Miloš; Dekel, Avishai; Narayanan, Desika; Ashby, Matthew L. N.; Cooray, Asantha; Fazio, Giovanni G.; Ferguson, Henry C.; Koekemoer, Anton M.; Salmon, Brett; Willner, S. P.

    2015-12-01

    Recent observations have shown that the characteristic luminosity of the rest-frame ultraviolet (UV) luminosity function does not significantly evolve at 4 < z < 7 and is approximately {M}{UV}*˜ -21. We investigate this apparent non-evolution by examining a sample of 173 bright, MUV < -21 galaxies at z = 4-7, analyzing their stellar populations and host halo masses. Including deep Spitzer/IRAC imaging to constrain the rest-frame optical light, we find that {M}{UV}* galaxies at z = 4-7 have similar stellar masses of log(M/M⊙) = 9.6-9.9 and are thus relatively massive for these high redshifts. However, bright galaxies at z = 4-7 are less massive and have younger inferred ages than similarly bright galaxies at z = 2-3, even though the two populations have similar star formation rates and levels of dust attenuation for a fixed dust-attenuation curve. Matching the abundances of these bright z = 4-7 galaxies to halo mass functions from the Bolshoi ΛCDM simulation implies that the typical halo masses in ˜ {M}{{UV}}* galaxies decrease from log(Mh/M⊙) = 11.9 at z = 4 to log(Mh/M⊙) = 11.4 at z = 7. Thus, although we are studying galaxies at a similar stellar mass across multiple redshifts, these galaxies live in lower mass halos at higher redshift. The stellar baryon fraction in ˜ {M}{{UV}}* galaxies in units of the cosmic mean Ωb/Ωm rises from 5.1% at z = 4 to 11.7% at z = 7; this evolution is significant at the ˜3σ level. This rise does not agree with simple expectations of how galaxies grow, and implies that some effect, perhaps a diminishing efficiency of feedback, is allowing a higher fraction of available baryons to be converted into stars at high redshifts.

  18. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  19. Gravitational microlensing of high-redshift supernovae by compact objects

    NASA Technical Reports Server (NTRS)

    Rauch, Kevin P.

    1991-01-01

    An analysis of the effect of microlensing by a cosmologically dominant density of compact objects is performed, using high-redshift Type Ia supernovae (SN Ia's) as probes. The compact objects are modeled as a three-dimensional distribution of point masses, and Monte Carlo simulations are done to calculate the resulting amplification probability distributions for several column densities and cosmologies. By combining these distributions with the intrinsic SN Ia luminosity function and comparing with the results for a perfectly smooth universe, estimates are made of the number of supernovae that would need to be observed to confirm or rule out this lensing scenario. It is found that about 1000 SN Ia's with redshifts of z = 1 would be needed to perform this test, which is beyond what current searches can hope to accomplish. Observations of many fewer high-redshift supernovae, used merely as standard candles, appears a promising way of distinguishing between different cosmological models.

  20. Formation of elongated galaxies with low masses at high redshift

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-10-01

    We report the identification of elongated (triaxial or prolate) galaxies in cosmological simulations at z ≃ 2. These are preferentially low-mass galaxies (M* ≤ 109.5 M⊙), residing in dark matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift DM haloes in the Λ cold dark matter cosmology. Feedback slows formation of stars at the centres of these haloes, so that a dominant and prolate DM distribution gives rise to galaxies elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A large population of elongated galaxies produces a very asymmetric distribution of projected axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.

  1. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  2. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z∼ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z∼ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z∼ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5–2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}ȯ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  3. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  4. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  5. A physical model for the evolving ultraviolet luminosity function of high redshift galaxies and their contribution to the cosmic reionization

    SciTech Connect

    Cai, Zhen-Yi; Lapi, Andrea; Bressan, Alessandro; De Zotti, Gianfranco; Danese, Luigi; Negrello, Mattia

    2014-04-10

    We present a physical model for the evolution of the ultraviolet (UV) luminosity function of high-redshift galaxies, taking into account in a self-consistent way their chemical evolution and the associated evolution of dust extinction. Dust extinction is found to increase fast with halo mass. A strong correlation between dust attenuation and halo/stellar mass for UV selected high-z galaxies is thus predicted. The model yields good fits of the UV and Lyman-α (Lyα) line luminosity functions at all redshifts at which they have been measured. The weak observed evolution of both luminosity functions between z = 2 and z = 6 is explained as the combined effect of the negative evolution of the halo mass function; of the increase with redshift of the star formation efficiency due to the faster gas cooling; and of dust extinction, differential with halo mass. The slope of the faint end of the UV luminosity function is found to steepen with increasing redshift, implying that low luminosity galaxies increasingly dominate the contribution to the UV background at higher and higher redshifts. The observed range of the UV luminosities at high z implies a minimum halo mass capable of hosting active star formation M {sub crit} ≲ 10{sup 9.8} M {sub ☉}, which is consistent with the constraints from hydrodynamical simulations. From fits of Lyα line luminosity functions, plus data on the luminosity dependence of extinction, and from the measured ratios of non-ionizing UV to Lyman-continuum flux density for samples of z ≅ 3 Lyman break galaxies and Lyα emitters, we derive a simple relationship between the escape fraction of ionizing photons and the star formation rate. It implies that the escape fraction is larger for low-mass galaxies, which are almost dust-free and have lower gas column densities. Galaxies already represented in the UV luminosity function (M {sub UV} ≲ –18) can keep the universe fully ionized up to z ≅ 6. This is consistent with (uncertain) data

  6. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  7. The Cosmic Evolution of Galaxies: The Hunt for Hot Gas (and Winds!) at High Redshift

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann; Kilbourne, Caroline; Lehmer, Bret; Yukita, Mihoko; Smith, Randall; Basu-Zych, Antara; Ptak, Andrew; Tatum, Malachi

    Deep surveys with current missions have revealed a population of high-redshift normal galaxies whose X-ray emission is dominated not by accretion onto supermassive black holes, but by the hot interstellar medium and accreting neutron star and black hole binary populations. Enormous progress has been made on the evolution of galaxies in the X-ray band, however there are some glaring holes in our understanding. For one, it is very difficult to measure the properties of the hot phase of the interstellar medium at high redshift, which in many galaxies is tremendously important component. Also, we know from optical, IR and UV studies that outflows from starburst galaxies appear to be relatively ubiquitous; such outflows are thought to be superwinds from the combination of many supernova explosions and stellar winds. Only with high-resolution X-ray spectroscopy will we have the capability of catching the hot phase of these outflows. The outflows remove fuel for subsequent generations of star formation and pollute the Intergalactic Medium with metals. Prospects for observations by next-generation X-ray spectroscopic instruments will be discussed.

  8. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  9. High-redshift supermassive black holes: accretion through cold flows

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Khandai, Nishikanta

    2014-05-01

    We use zoom-in techniques to re-simulate three high-redshift (z ≥ 5.5) haloes which host 109 M⊙ black holes from the ˜Gpc volume, MassiveBlack cosmological hydrodynamic simulation. We examine a number of factors potentially affecting supermassive black hole growth at high redshift in cosmological simulations. We find insignificant differences in the black hole accretion history by (i) varying the region over which feedback energy is deposited directly, (ii) changing mass resolution by factors of up to 64, (iii) changing the black hole seed mass by a factor of 100. Switching from the density-entropy formulation to the pressure-entropy formulation of smoothed particle hydrodynamics slightly increases the accretion rate. In general numerical details/model parameters appear to have small effects on the main fuelling mechanism for black holes at these high redshifts. The insensitivity to simulation technique seems to be a hallmark of the cold flow feeding picture of these high-z supermassive black holes. We show that the gas that participates in critical accretion phases in these massive objects at z > 6-7 is in all cases colder, denser and forms more coherent streams than the average gas in the halo. This is also mostly the case when the black hole accretion is feedback regulated (z < 6), however, the distinction is less prominent. For our resimulated haloes, cold flows appear to be a viable mechanism for forming the most massive black holes in the early universe, occurring naturally in Λ cold dark matter models of structure formation, without requiring fine-tuning of numerical parameters.

  10. Bulge Growth Through Disc Instabilities in High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric

    The role of disc instabilities, such as bars and spiral arms, and the associated resonances, in growing bulges in the inner regions of disc galaxies have long been studied in the low-redshift nearby Universe. There it has long been probed observationally, in particular through peanut-shaped bulges (Chap. 14 10.1007/978-3-319-19378-6_14"). This secular growth of bulges in modern disc galaxies is driven by weak, non-axisymmetric instabilities: it mostly produces pseudobulges at slow rates and with long star-formation timescales. Disc instabilities at high redshift (z > 1) in moderate-mass to massive galaxies (1010 to a few 1011 M⊙ of stars) are very different from those found in modern spiral galaxies. High-redshift discs are globally unstable and fragment into giant clumps containing 108-9 M⊙ of gas and stars each, which results in highly irregular galaxy morphologies. The clumps and other features associated to the violent instability drive disc evolution and bulge growth through various mechanisms on short timescales. The giant clumps can migrate inward and coalesce into the bulge in a few 108 years. The instability in the very turbulent media drives intense gas inflows toward the bulge and nuclear region. Thick discs and supermassive black holes can grow concurrently as a result of the violent instability. This chapter reviews the properties of high-redshift disc instabilities, the evolution of giant clumps and other features associated to the instability, and the resulting growth of bulges and associated sub-galactic components.

  11. Cosmic Lighthouses : Unveiling the nature of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Dayal, Pratika

    2011-01-01

    We are in the golden age for the search for high-redshift galaxies, made possible by a combination of new instruments and innovative search techniques. One of the major aims of such searches is to constrain the epoch of reionization (EoR), which marks the second major change in the ionization state of the Universe. Understanding the EoR is difficult since whilst it is galaxy evolution which drives reionization, reionization itself influences galaxy evolution through feedback effects. Unraveling the interplay of reionization and galaxy evolution is further complicated by of a lack of understanding of the metal enrichment and dust distribution in high redshift galaxies. To this end, a class of galaxies called Lyman Alpha Emitters (LAEs) have been gaining enormous popularity as probes of all these three processes. In this thesis, we couple state of the art cosmological SPH simulations (GADGET-2) with a physically motivated, self-consistent model for LAEs, so as to be able to understand the importance of the intergalactic medium (IGM) ionization state, dust and peculiar velocities in shaping their observed properties. By doing so, the aim is to gain insight on the nature of LAEs, put precious constraints on their elusive physical properties and make predictions for future instruments such as the Atacama Large Millimeter Array (ALMA). Using our LAE model in conjunction with a code that builds the MW merger tree (GAMETE), we build a bridge between the high-redshift and the local Universe. We also use SPH simulations (GADGET-2) to study the nature of the earliest galaxies that have been detected as of yet, place constraints on their contribution to reionization, and predict their detectability using the next generation of instruments, such as the James Web Space Telescope (JWST).

  12. On the Evolution of High-redshift Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Kim, Minsun

    2016-09-01

    We build a simple physical model to study the high-redshift active galactic nucleus (AGN) evolution within the co-evolution framework of central black holes (BHs) and their host galaxies. The correlation between the circular velocity of a dark halo V c and the velocity dispersion of a galaxy σ is used to link the dark matter halo mass and BH mass. The dark matter halo mass function is converted to the BH mass function for any given redshift. The high-redshift optical AGN luminosity functions (LFs) are constructed. At z˜ 4, the flattening feature is not shown at the faint end of the optical AGN LF. This is consistent with observational results. If the optical AGN LF at z˜ 6 can be reproduced in the case in which central BHs have the Eddington-limited accretion, it is possible for the AGN lifetime to have a small value of 2× {10}5 {{years}}. The X-ray AGN LFs and X-ray AGN number counts are also calculated at 2.0\\lt z\\lt 5.0 and z\\gt 3, respectively, using the same parameters adopted in the calculation for the optical AGN LF at z˜ 4. It is estimated that about 30 AGNs per {{{\\deg }}}2 at z\\gt 6 can be detected with a flux limit of 3× {10}-17 {erg} {{cm}}-2 {{{s}}}-1 in the 0.5-2 keV band. Additionally, the cosmic reionization is also investigated. The ultraviolet photons emitted from the high-redshift AGNs mainly contribute to the cosmic reionization, and the central BHs of the high-redshift AGNs have a mass range of {10}6{--}{10}8{M}⊙ . We also discuss some uncertainties in both the AGN LFs and AGN number counts originating from the {M}{{BH}}{--}σ relation, Eddington ratio, AGN lifetime, and X-ray attenuation in our model.

  13. Bimodal star formation - Constraints from galaxy colors at high redshift

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, Joseph

    1987-01-01

    The possibility that at early epochs the light from elliptical galaxies is dominated by stars with an initial mass function (IMF) which is deficient in low-mass stars, relative to the solar neighborhood is investigated. V-R colors for the optical counterparts of 3CR radio sources offer the most severe constraints on the models. Reasonable fits are obtained to both the blue, high-redshift colors and the redder, low-redshift colors with a model galaxy which forms with initially equal star formation rates in each of two IMF modes: one lacking low-mass stars, and one with stars of all masses. The net effect is that the time-integrated IMF has twice as many high-mass stars as the solar neighborhood IMF, relative to low mass stars. A conventional solar neighborhood IMF does not simultaneously account for both the range in colors at high redshift and the redness of nearby ellipticals, with any single star formation epoch. Models with a standard IMF require half the stellar population to be formed in a burst at low redshift z of about 1.

  14. Properties of High Redshift Galaxies in the ELTs Era

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Gullieuszik, Marco; Falomo, Renato; Fantinel, Daniela; Uslenghi, Michela

    2015-08-01

    The extraordinary sensitivity and spatial resolution of the future Extremely Large Telescopes will allow us to characterize the photometric and structural properties of high redshift galaxies, in spite of their small size. In this contribution we present a quantitative analysis of these capabilities thorugh the generation of a large set of simulated images, and their subsequent analysis with GALFIT. In particular, we assess the accuracy with which it will be possible to measure the basic galaxy parameters: Sersic index, half light radius and total magnitude. The simulations adopt the expected performances of the near-IR imagers MICADO at the E-ELT for galaxies at z ~ 2 and z ~ 3, spanning a mass range from 10^9 to 10^11 solar masses, and whose sizes, magnitudes and colors are obtained from presently available scaling relations for high redshift objects. It turns out that with such future facility it will be possible to derive both accurate photometry and detailed morphology for very distant galaxies, that are mandatory to probe fundamental problems on the processes of galaxy formation and evolution. These results are also compared with the expected capabilities of NIRcam at JWST.

  15. Far-Infrared Line Emission from High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Cox, P.; Hunter, T. R.; Malhotra, S.; Phillips, T. G.; Yun, M. S.

    2002-01-01

    Recent millimeter and submillimeter detections of line emission in high redshift objects have yielded new information and constraints on star formation at early epochs. Only CO transitions and atomic carbon transitions have been detected from these objects, yet bright far-infrared lines such as C+ at 158 microns and N+ at 205 microns should be fairly readily detectable when redshifted into a submillimeter atmospheric window. We have obtained upper limits for C+ emission &om two high redshift quasars, BR1202-0725 at z=4.69 and BRI1335-0415 at z=4.41. These limits show that the ratio of the C+ line luminosity to the total far-infrared luminosity is less than 0.0l%, ten times smaller than has been observed locally. Additionally, we have searched for emission in the N+ 205 micron line from the Cloverleaf quasar, H1413+117, and detected emission in CO J=7-6. The N+ emission is found to be below the amount predicted based on comparison to the only previous detection of this line, in the starburst galaxy M82.

  16. Identifying high-redshift gamma-ray bursts with RATIR

    SciTech Connect

    Littlejohns, O. M.; Butler, N. R.; Cucchiara, A.; Watson, A. M.; Lee, W. H.; Richer, M. G.; De Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Kutyrev, A. S.; Troja, E.; Gehrels, N.; Moseley, H.; Klein, C. R.; Fox, O. D.; Bloom, J. S.; Prochaska, J. X.; Ramirez-Ruiz, E.

    2014-07-01

    We present a template-fitting algorithm for determining photometric redshifts, z {sub phot}, of candidate high-redshift gamma-ray bursts (GRBs). Using afterglow photometry, obtained by the Reionization and Transients InfraRed (RATIR) camera, this algorithm accounts for the intrinsic GRB afterglow spectral energy distribution, host dust extinction, and the effect of neutral hydrogen (local and cosmological) along the line of sight. We present the results obtained by this algorithm and the RATIR photometry of GRB 130606A, finding a range of best-fit solutions, 5.6 < z {sub phot} < 6.0, for models of several host dust extinction laws (none, the Milky Way, Large Magellanic Clouds, and Small Magellanic Clouds), consistent with spectroscopic measurements of the redshift of this GRB. Using simulated RATIR photometry, we find that our algorithm provides precise measures of z {sub phot} in the ranges of 4 < z {sub phot} ≲ 8 and 9 < z {sub phot} < 10 and can robustly determine when z {sub phot} > 4. Further testing highlights the required caution in cases of highly dust-extincted host galaxies. These tests also show that our algorithm does not erroneously find z {sub phot} < 4 when z {sub sim} > 4, thereby minimizing false negatives and allowing us to rapidly identify all potential high-redshift events.

  17. ALMA and SINFONI high redshift observations to test AGN feedback

    NASA Astrophysics Data System (ADS)

    Kakkad, D.; Mainieri, V.; Padovani, P.; Cresci, G.; Husemann, B.; Carniani, S.; Brusa, M.; Lamastra, A.; Lanzuisi, G.; Feruglio, C.; Piconcelli, E.; Schramm, M.

    2016-08-01

    The epoch between redshift of 1-3 has become the prime focus of many galaxy evolutionary studies as the accretion rates of super massive black holes at the galactic center and the star formation rates of their hosts peaked around this period, pointing to their co-evolution throughout cosmic history. We will present two different approaches to study the impact of high redshift AGN (z~1.5) on the host galaxy: a) CO(2-1) observations from ALMA in a sample of "main sequence" AGNs to compare the star formation efficiency and gas fractions in active and inactive galaxies. b) SINFONI-IFU observations of a representative sample of high redshift quasars for which we observe intermediate to high velocity outflows using [OIII]5007 line diagnostics. These outflows are extended up-to kiloparsec scales and have an asymmetric geometry. With these approaches, one is able to test the effect of AGN feedback on the molecular as well as the ionized gas content.

  18. Detectability of cold streams into high-redshift galaxies by absorption lines

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Dekel, Avishai; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-08-01

    Cold gas streaming along the dark matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disc instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circumgalactic environment of galaxies via Lyα absorption and selected low-ionization metal absorption lines. We model the expected absorption signatures using high-resolution zoom-in adaptive mesh refinement cosmological simulations. In the post-processing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionization for species with an ionization potential greater than 13.6 eV. In the optically-thin, unshielded gas, these species are also photoionized by the metagalactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the centre of the same halo. We predict the strength of the absorption signal for individual galaxies without stacking. We find that the Lyα absorption profiles produced by the streams are consistent with observations of absorption and emission Lyα profiles in high-redshift galaxies. Due to the low metallicities in the streams, and their low covering factors, the metal absorption features are weak and difficult to detect.

  19. Testing primordial non-Gaussianities on galactic scales at high redshift

    NASA Astrophysics Data System (ADS)

    Habouzit, Mélanie; Nishimichi, Takahiro; Peirani, Sébastien; Mamon, Gary A.; Silk, Joseph; Chevallard, Jacopo

    2014-11-01

    Primordial non-Gaussianities provide an important test of inflationary models. Although the Planck cosmic microwave background experiment has produced strong limits on non-Gaussianity on scales of clusters, there is still room for considerable non-Gaussianity on galactic scales. We have tested the effect of local non-Gaussianity on the high-redshift galaxy population by running five cosmological N-body simulations down to z = 6.5. For these simulations, we adopt the same initial phases, and either Gaussian or scale-dependent non-Gaussian primordial fluctuations, all consistent with the constraints set by Planck on cluster scales. We then assign stellar masses to each halo using the halo-stellar mass empirical relation of Behroozi et al. Our simulations with non-Gaussian initial conditions produce halo mass functions that show clear departures from those obtained from the analogous simulations with Gaussian initial conditions at z ≳ 10. We observe a >0.3 dex enhancement of the low end of the halo mass function, which leads to a similar effect on the galaxy stellar mass function, which should be testable with future galaxy surveys at z > 10. As cosmic reionization is thought to be driven by dwarf galaxies at high redshift, our findings may have implications for the reionization history of the Universe.

  20. Relativistic jet feedback in high-redshift galaxies - I. Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-09-01

    We present the results of 3D relativistic hydrodynamic simulations of interaction of active galactic nucleus jets with a dense turbulent two-phase interstellar medium, which would be typical of high-redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent interstellar medium (ISM). The jet-driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multiphase ISM and radial outflows. One of the striking result of this work is that low-power jets (Pjet ≲ 1043 ergs-1), although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  1. Non-steller light from high-redshift radiogalaxies

    NASA Technical Reports Server (NTRS)

    Rawlings, Steve; Eales, Stephen A.

    1990-01-01

    With the aid of a new IRCAM image of 3C356, researchers question the common assumption that radiosource-stimulated starbursts are responsible for the extended optical emission aligned with radio structures in high-redshift radiogalaxies. They propose an alternative model in which the radiation from a hidden luminous quasar is beamed along the radio axis and illuminates dense clumps of cool gas to produce both extended narrow emission line regions and, by Thomson scattering, extended optical continua. Simple observational tests of this model are possible and necessary if we are to continue to accept that the color, magnitude and shape evolution of radiogalaxies are controlled by the active evolution of stellar populations.

  2. The Host Galaxies of Type Ia Supernovae at High Redshift

    NASA Astrophysics Data System (ADS)

    Quimby, R.; Aldering, G.; Nugent, P.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M.; Kim, A.; Knop, R. A.; Lidman, C.; McMahon, R.; Mendez, J.; Nobili, S.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Schaefer, B.; Schahmaneche, K.; Spadafora, A. L.; Walton, N.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.; Supernova Cosmology Project Collaboration

    2002-12-01

    We use the luminosities and B-V colors from the host galaxies of 74 high-redshift (0.17 < z < 0.86) Type Ia supernovae (SNe Ia) discovered by the Supernova Cosmology Project (SCP) to search for environmental effects on supernovae peak luminosities. Using the galaxy luminosity-metallicity relation and the radial metallicity gradient of galaxies as indicators of the progenitor metallicity, we find no significant correlation between peak SNe Ia luminosity and host galaxy metallicity. The projected radial distribution of supernovae tracks the galaxy light and shows no deficit of SNe Ia near the galaxy cores (Shaw effect). The host galaxy luminosity function is calculated, and shown to be consistent with the subset of the Caltech Faint Galaxy Redshift Survey (Cohen et al. 2000) in the same redshift range, as well as the luminosity function of nearby galaxies measured by the Sloan Digital Sky Survey (Blanton et al. 2001).

  3. Radio-loud high-redshift protogalaxy canidates in Bootes

    SciTech Connect

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  4. XMM-Newton spectroscopy of high-redshift quasars

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Reeves, J. N.; O'Brien, P. T.; Turner, M. J. L.

    2005-11-01

    XMM-Newton observations of 29 high-redshift (z > 2) quasars, including seven radio-quiet, 16 radio-loud and six broad absorption line (BAL) objects, are presented; due to the high redshifts, the rest-frame energy bands extend up to ~30-70 keV. Over 2-10 keV, the quasars can be well fitted in each case by a simple power law, with no strong evidence for iron emission lines. The lack of iron lines is in agreement both with dilution by the radio jet emission (for the radio-loud quasars) and the X-ray Baldwin effect. No Compton reflection humps at higher energies (i.e. above 10 keV in the rest frame) are detected either. Over the broad-band (0.3-10 keV), approximately half (nine out of 16) of the radio-loud quasars are intrinsically absorbed, with the values of NH generally being 1 × 1022 to 2 × 1022cm-2 in the rest frames of the objects. None of the seven radio-quiet objects shows excess absorption, while four of the six BAL quasars are absorbed. The radio-loud quasars have flatter continuum slopes than their radio-quiet counterparts (ΓRL~ 1.55; ΓRQ~ 1.98 over 2-10 keV), while, after modelling the absorption, the underlying photon index for the six BAL quasars is formally consistent with the non-BAL radio-quiet objects.

  5. OPTIMAL MASS CONFIGURATIONS FOR LENSING HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Wong, Kenneth C.; Zabludoff, Ann I.; Ammons, S. Mark; Keeton, Charles R.

    2012-06-20

    We investigate the gravitational lensing properties of lines of sight containing multiple cluster-scale halos, motivated by their ability to lens very high redshift (z {approx} 10) sources into detectability. We control for the total mass along the line of sight, isolating the effects of distributing the mass among multiple halos and of varying the physical properties of the halos. Our results show that multiple-halo lines of sight can increase the magnified source-plane region compared to the single cluster lenses typically targeted for lensing studies and thus are generally better fields for detecting very high redshift sources. The configurations that result in optimal lensing cross sections benefit from interactions between the lens potentials of the halos when they overlap somewhat on the sky, creating regions of high magnification in the source plane not present when the halos are considered individually. The effect of these interactions on the lensing cross section can even be comparable to changing the total mass of the lens from 10{sup 15} M{sub Sun} to 3 Multiplication-Sign 10{sup 15} M{sub Sun }. The gain in lensing cross section increases as the mass is split into more halos, provided that the lens potentials are projected close enough to interact with each other. A nonzero projected halo angular separation, equal halo mass ratio, and high projected halo concentration are the best mass configurations, whereas projected halo ellipticity, halo triaxiality, and the relative orientations of the halos are less important. Such high-mass, multiple-halo lines of sight exist in the Sloan Digital Sky Survey.

  6. High-redshift clumpy discs and bulges in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Bournaud, Frederic

    2010-06-01

    We analyse the first cosmological simulations that recover the fragmentation of high-redshift galactic discs driven by cold streams. The fragmentation is recovered owing to an AMR resolution better than 70pc with cooling below 104K. We study three typical star-forming galaxies in haloes of ~5 × 1011Msolar at z ~= 2.3 when they were not undergoing a major merger. The steady gas supply by cold streams leads to gravitationally unstable, turbulent discs, which fragment into giant clumps and transient features on a dynamical time-scale. The disc clumps are not associated with dark-matter haloes. The clumpy discs are self-regulated by gravity in a marginally unstable state. Clump migration and angular-momentum transfer on an orbital time-scale help the growth of a central bulge with a mass comparable to the disc. The continuous gas input keeps the system of clumpy disc and bulge in a near steady state for several Gyr. The average star formation rate, much of which occurs in the clumps, follows the gas accretion rate of ~45Msolaryr-1. The simulated galaxies resemble in many ways the observed star-forming galaxies at high redshift. Their properties are consistent with the simple theoretical framework presented in Dekel, Sari & Ceverino. In particular, a two-component analysis reveals that the simulated discs are indeed marginally unstable, and the time evolution confirms the robustness of the clumpy configuration in a cosmological steady state. By z ~ 1, the simulated systems are stabilized by a dominant stellar spheroid, demonstrating the process of `morphological quenching' of star formation. We demonstrate that the disc fragmentation is not a numerical artefact once the Jeans length is kept larger than nearly seven resolution elements, i.e. beyond the standard Truelove criterion.

  7. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  8. THE FIRST HIGH-REDSHIFT QUASAR FROM Pan-STARRS

    SciTech Connect

    Morganson, Eric; De Rosa, Gisella; Decarli, Roberto; Walter, Fabian; Rix, Hans-Walter; Chambers, Ken; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Sweeney, Bill; Waters, Christopher; McGreer, Ian; Fan, Xiaohui; Greiner, Jochen; Price, Paul

    2012-06-15

    We present the discovery of the first high-redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i{sub P1} dropout in PS1, confirmed photometrically with the SAO Wide-field InfraRed Camera at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph at the Calar Alto 3.5 m telescope. Its near-infrared spectrum was taken at the Large Binocular Telescope Observatory (LBT) with the LBT Near-Infrared Spectroscopic Utility with Camera and Integral Field Unit for Extragalactic Research. It has a redshift of 5.73, an AB z{sub P1} magnitude of 19.4, a luminosity of 3.8 Multiplication-Sign 10{sup 47} erg s{sup -1}, and a black hole mass of 6.9 Multiplication-Sign 10{sup 9} M{sub Sun }. It is a broad absorption line quasar with a prominent Ly{beta} peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high-redshift quasar search that is projected to discover more than 100 i{sub P1} dropout quasars and could potentially find more than 10 z{sub P1} dropout (z > 6.8) quasars.

  9. Accessing the population of high-redshift Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Ghisellini, G.; Mereghetti, S.; Tagliaferri, G.; Campana, S.; Osborne, J. P.; O'Brien, P.; Tanvir, N.; Willingale, D.; Amati, L.; Basa, S.; Bernardini, M. G.; Burlon, D.; Covino, S.; D'Avanzo, P.; Frontera, F.; Götz, D.; Melandri, A.; Nava, L.; Piro, L.; Vergani, S. D.

    2015-04-01

    Gamma Ray Bursts (GRBs) are a powerful probe of the high-redshift Universe. We present a tool to estimate the detection rate of high-z GRBs by a generic detector with defined energy band and sensitivity. We base this on a population model that reproduces the observed properties of GRBs detected by Swift, Fermi and CGRO in the hard X-ray and γ-ray bands. We provide the expected cumulative distributions of the flux and fluence of simulated GRBs in different energy bands. We show that scintillator detectors, operating at relatively high energies (e.g. tens of keV to the MeV), can detect only the most luminous GRBs at high redshifts due to the link between the peak spectral energy and the luminosity (Epeak-Liso) of GRBs. We show that the best strategy for catching the largest number of high-z bursts is to go softer (e.g. in the soft X-ray band) but with a very high sensitivity. For instance, an imaging soft X-ray detector operating in the 0.2-5 keV energy band reaching a sensitivity, corresponding to a fluence, of ˜10-8 erg cm-2 is expected to detect ≈40 GRBs yr-1 sr-1 at z ≥ 5 (≈3 GRBs yr-1 sr-1 at z ≥ 10). Once high-z GRBs are detected the principal issue is to secure their redshift. To this aim we estimate their NIR afterglow flux at relatively early times and evaluate the effectiveness of following them up and construct usable samples of events with any forthcoming GRB mission dedicated to explore the high-z Universe.

  10. A Population of X-ray Weak Quasars: PHL 1811 Analogs at High Redshift

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Brandt, W. N.; Hall, P. B.; Gibson, R. R.; Richards, G. T.; Schneider, D. P.; Shemmer, O.; Just, D. W.; Schmidt, S. J.

    2011-09-01

    Luminous X-ray emission is considered to be a universal property of efficiently accreting supermassive black holes. However, there are a few notable examples of quasars emitting X-rays much more weakly by a factor of 10-100. We report X-ray observations of a sample of 10 high-redshift (z 2.2) type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. All of the eight radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of 13. These sources lack broad absorption lines and have blue UV/optical continua, suggesting they are intrinsically X-ray weak. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our radio-quiet PHL 1811 analogs support a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be < 1.2%. Correlations between relative X-ray brightness and UV emission-line properties suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, radio-quiet PHL 1811 analogs appear to be a subset ( 30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization "shielding gas" covers most of the BELR, but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs.

  11. Mapping metals at high redshift with far-infrared lines

    NASA Astrophysics Data System (ADS)

    Pallottini, A.; Gallerani, S.; Ferrara, A.; Yue, B.; Vallini, L.; Maiolino, R.; Feruglio, C.

    2015-10-01

    Cosmic metal enrichment is one of the key physical processes regulating galaxy formation and the evolution of the intergalactic medium (IGM). However, determining the metal content of the most distant galaxies has proven so far almost impossible; also, absorption line experiments at z ≳ 6 become increasingly difficult because of instrumental limitations and the paucity of background quasars. With the advent of Atacama Large Millimeter/submillimeter Array (ALMA), far-infrared emission lines provide a novel tool to study early metal enrichment. Among these, the [C II] line at 157.74 μm is the most luminous line emitted by the interstellar medium of galaxies. It can also resonant scatter comic microwave background (CMB) photons inducing characteristic intensity fluctuations (ΔI/ICMB) near the peak of the CMB spectrum, thus allowing to probe the low-density IGM. We compute both [C II] galaxy emission and metal-induced CMB fluctuations at z ˜ 6 by using adaptive mesh refinement cosmological hydrodynamical simulations and produce mock observations to be directly compared with ALMA Band 6 data (νobs ˜ 272 GHz). The [C II] line flux is correlated with MUV as log (F_peak/μ Jy)= -27.205 -2.253 M_UV -0.038 M_UV^2. Such relation is in very good agreement with recent ALMA observations of MUV < -20 galaxies by e.g. Maiolino et al. and Capak et al. We predict that a MUV = -19 (MUV = -18) galaxy can be detected at 4σ in ≃40 (2000) h, respectively. CMB resonant scattering can produce ≃ ± 0.1 μJy/beam emission/absorptions features that are very challenging to be detected with current facilities. The best strategy to detect these signals consists in the stacking of deep ALMA observations pointing fields with known MUV ≃ -19 galaxies. This would allow to simultaneously detect both [C II] emission from galactic reionization sources and CMB fluctuations produced by z ˜ 6 metals.

  12. X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS

    SciTech Connect

    Eitan, Assaf; Behar, Ehud E-mail: behar@physics.technion.ac.il

    2013-09-01

    The soft X-ray photoelectric absorption of high-z quasars has been known for two decades, but has no unambiguous astrophysical context. We construct the largest sample to date of 58 high-redshift quasars (z > 0.45) selected from the XMM-Newton archive based on a high photon count criterion (>1800). We measure the optical depth {tau} at 0.5 keV and find that 43% of the quasars show significant absorption. We aim to find which physical parameters of the quasars, e.g., redshift, radio luminosity, radio loudness, or X-ray luminosity, drive their observed absorption. We compare the absorption behavior with redshift with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We also compare the absorption with a comparison sample of gamma-ray burst (GRB) X-ray afterglows. Although the z > 2 quasar opacity is consistent with diffuse IGM absorption, many intermediate-z (0.45 < z < 2) quasars are not sufficiently absorbed for this scenario, and are appreciably less absorbed than GRBs. Only 10/37 quasars at z < 2 are absorbed, and only 5/30 radio-quiet quasars are absorbed. We find a weak correlation between {tau} and z, and an even weaker correlation between {tau} and radio luminosity. These findings lead to the conclusion that although a diffuse IGM origin for the quasar absorption is unlikely, the optical depth does seem to increase with redshift, roughly as (1 + z){sup 2.2{+-}0.6}, tending to {tau} Almost-Equal-To 0.4 at high redshifts, similar to the high-z GRBs. This result can be explained by an ionized and clumpy IGM at z < 2, and a cold, diffuse IGM at higher redshift. If, conversely, the absorption occurs at the quasar, and owing to the steep L{sub x} {proportional_to}(1 + z){sup 7.1{+-}0.5} correlation in the present sample, the host column density scales as N{sub H}{proportional_to}L{sub x}{sup 0.7{+-}0.1}.

  13. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  14. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar

  15. Tracing a high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret; Tago, Erik; Lietzen, Heidi; Park, Changbom; Heinämäki, Pekka; Saar, Enn; Song, Hyunmi; Liivamägi, Lauri Juhan; Einasto, Jaan

    2014-08-01

    Context. To understand the formation, evolution, and present-day properties of the cosmic web we need to study it at low and high redshifts. Aims: We trace the cosmic web at redshifts that range from 1.0 ≤ z ≤ 1.8 by using the quasar (QSO) data from the SDSS DR7 QSO catalogue. Methods: We apply a friend-of-friend algorithm to the quasar and random catalogues to determine systems at a series of linking length and analyse richness and sizes of these systems. Results: At the linking lengths l ≤ 30 h-1 Mpc, the number of quasar systems is larger than the number of systems detected in random catalogues, and the systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe. The richest quasar systems have four members. The mean space density of quasar systems, ≈ 10-7 (h-1 Mpc)-3, is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 ≤ l ≤ 70 h-1 Mpc), the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. The percolating system, which penetrate the whole sample volume appears in a quasar sample at a smaller linking length than in random samples (85 h-1 Mpc). At the linking length 70 h-1 Mpc, the richest systems of quasars have diameters exceeding 500 h-1 Mpc. Quasar luminosities in systems are not correlated with the system richness. Conclusions: Quasar system catalogues in our web pages and at the Strasbourg Astronomical Data Center (CDS) serve as a database for searching superclusters of galaxies and for tracing the cosmic web at high redshifts. Appendix A is available in electronic form at http://www.aanda.orgThe catalogues are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  16. A new method to obtain the broad line region size of high redshift quasars

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2014-10-10

    We present high signal-to-noise ratio UV spectra for eight quasars at z ∼ 3 obtained with Very Large Telescope/FORS. The spectra enable us to analyze in detail the strong and weak emission features in the rest frame range 1300-2000 Å of each source (C III] λ1909, Si III] λ1892, Al III λ1860, Si II λ1814, C IV λ1549 and blended Si IV λ1397+O IV] λ1402). The flux ratios Al III λ1860/Si III] λ1892, C IV λ1549/Al III λ1860, Si IV λ1397+O IV] λ1402/Si III] λ1892 and Si IV λ1397+O IV] λ1402/C IV λ1549 strongly constrain ionizing photon flux and metallicity through the use of diagnostic maps built from CLOUDY simulations. The radius of the broad line region is then derived from the ionizing photon flux applying the definition of the ionization parameter. The r {sub BLR} estimate and the width of a virial component isolated in prominent UV lines yields an estimate of black hole mass. We compare our results with previous estimates obtained from the r {sub BLR}-luminosity correlation customarily employed to estimate the black hole masses of high redshift quasars.

  17. DUST FORMATION, EVOLUTION, AND OBSCURATION EFFECTS IN THE VERY HIGH-REDSHIFT UNIVERSE

    SciTech Connect

    Dwek, Eli; Benford, Dominic J.; Staguhn, Johannes; Su, Ting; Arendt, Richard G.; Kovacks, Attila

    2014-06-20

    The evolution of dust at redshifts z ≳ 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production compared to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This ''silicate-UV break'' may be confused with the Lyman break, resulting in a misidentification of a galaxy's photometric redshift. In this Letter we demonstrate these effects by analyzing the spectral energy distribution of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2 mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high-redshift universe.

  18. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacks, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-togas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe.

  19. High redshift signatures in the 21 cm forest due to cosmic string wakes

    SciTech Connect

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph E-mail: toyokazu.sekiguchi@nagoya-u.jp

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ''21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (z∼>10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10{sup −7}. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10{sup −8} for the single frequency band case and 4.0 × 10{sup −8} for the multi-frequency band case.

  20. High redshift signatures in the 21 cm forest due to cosmic string wakes

    NASA Astrophysics Data System (ADS)

    Tashiro, Hiroyuki; Sekiguchi, Toyokazu; Silk, Joseph

    2014-01-01

    Cosmic strings induce minihalo formation in the early universe. The resultant minihalos cluster in string wakes and create a ``21 cm forest'' against the cosmic microwave background (CMB) spectrum. Such a 21 cm forest can contribute to angular fluctuations of redshifted 21 cm signals integrated along the line of sight. We calculate the root-mean-square amplitude of the 21 cm fluctuations due to strings and show that these fluctuations can dominate signals from minihalos due to primordial density fluctuations at high redshift (zgtrsim10), even if the string tension is below the current upper bound, Gμ < 1.5 × 10-7. Our results also predict that the Square Kilometre Array (SKA) can potentially detect the 21 cm fluctuations due to strings with Gμ ≈ 7.5 × 10-8 for the single frequency band case and 4.0 × 10-8 for the multi-frequency band case.

  1. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  2. The dust budget crisis in high-redshift submillimetre galaxies

    NASA Astrophysics Data System (ADS)

    Rowlands, K.; Gomez, H. L.; Dunne, L.; Aragón-Salamanca, A.; Dye, S.; Maddox, S.; da Cunha, E.; van der Werf, P.

    2014-06-01

    We apply a chemical evolution model to investigate the sources and evolution of dust in a sample of 26 high-redshift (z > 1) submillimetre galaxies (SMGs) from the literature, with complete photometry from ultraviolet to the submillimetre. We show that dust produced only by low-intermediate-mass stars falls a factor 240 short of the observed dust masses of SMGs, the well-known `dust-budget crisis'. Adding an extra source of dust from supernovae can account for the dust mass in 19 per cent of the SMG sample. Even after accounting for dust produced by supernovae the remaining deficit in the dust mass budget provides support for higher supernova yields, substantial grain growth in the interstellar medium or a top-heavy IMF. Including efficient destruction of dust by supernova shocks increases the tension between our model and observed SMG dust masses. The models which best reproduce the physical properties of SMGs have a rapid build-up of dust from both stellar and interstellar sources and minimal dust destruction. Alternatively, invoking a top-heavy IMF or significant changes in the dust grain properties can solve the dust budget crisis only if dust is produced by both low-mass stars and supernovae and is not efficiently destroyed by supernova shocks.

  3. The fate of high-redshift massive compact galaxies

    NASA Astrophysics Data System (ADS)

    de la Rosa, Ignacio G.; La Barbera, Francesco; Ferreras, Ignacio; Sánchez Almeida, Jorge; Dalla Vecchia, Claudio; Martínez-Valpuesta, Inma; Stringer, Martin

    2016-04-01

    Massive high-redshift quiescent compact galaxies (nicknamed red nuggets) have been traditionally connected to present-day elliptical galaxies, often overlooking the relationships that they may have with other galaxy types. We use large bulge-disc decomposition catalogues based on the Sloan Digital Sky Survey to check the hypothesis that red nuggets have survived as compact cores embedded inside the haloes or discs of present-day massive galaxies. In this study, we designate a compact core as the bulge component that satisfies a prescribed compactness criterion. Photometric and dynamic mass-size and mass-density relations are used to show that, in the inner regions of galaxies at z ˜ 0.1, there are abundant compact cores matching the peculiar properties of the red nuggets, an abundance comparable to that of red nuggets at z ˜ 1.5. Furthermore, the morphology distribution of the present-day galaxies hosting compact cores is used to demonstrate that, in addition to the standard channel connecting red nuggets with elliptical galaxies, a comparable fraction of red nuggets might have ended up embedded in discs. This result generalizes the inside-out formation scenario; present-day massive galaxies can begin as dense spheroidal cores (red nuggets), around which either a spheroidal halo or a disc is formed later.

  4. Is deuterium in high-redshift Lyman limit systems primordial?

    SciTech Connect

    Jedamzik, K.; Fuller, G.M.

    1997-07-01

    Detections of deuterium in high-redshift Lyman limit absorption systems along the line of sight to QSOs promise to reveal the primordial deuterium abundance. At present, the deuterium abundances (D/H) derived from the very few systems observed are significantly discordant. Assuming the validity of all the data, if this discordance does not reflect intrinsic primordial inhomogeneity, then it must arise from processes operating after the primordial nucleosynthesis epoch. We consider processes that might lead to significant deuterium production or destruction and yet allow the cloud to mimic a chemically unevolved system. These processes include, for example, anomalous/stochastic chemical evolution and D/{sup 4}He photodestruction. In general, we find it unlikely that these processes could have significantly altered D/H in Lyman limit clouds. We argue that chemical evolution scenarios, unless very finely tuned, cannot account for significant local deuterium depletion since they tend to overproduce {sup 12}C, even when allowance is made for possible outflow. Similarly, D/{sup 4}He photodestruction schemes engineered to locally produce or destroy deuterium founder on the necessity of requiring an improbably large {gamma}-ray source density. Future observations of D/H in Lyman limit systems may provide important insight into the initial conditions for the primordial nucleosynthesis process, early chemical evolution, and the galaxy formation process. {copyright} {ital 1997} {ital The American Astronomical Society}

  5. Tracing high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret

    2016-10-01

    We study the cosmic web at redshifts 1.0 <= <= 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l <= 30 h -1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

  6. Radio Selected Clusters of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Wing, Joshua; Blanton, Elizabeth

    2010-08-01

    Previous studies have shown that three-component radio sources exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD type galaxy at the center of a cluster. We have cross-correlated the Sloan Digital Sky Survey (SDSS) with samples selected from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) catalog and measured the richness of the cluster environments surrounding three- component sources exhibiting both bent and straight lobes. This has lead to the discovery and classification of a large number of galaxy clusters out to a redshift of z ~ 0.5. For both bent- and straight- lobed sources without an optical counterpart it is likely that the radio emission is associated with a galaxy fainter than m_r=22 (the limiting magnitude of the SDSS) and at a redshift higher than z~0.8. We propose to observe a small sub-sample of these sources with the FLAMINGOS instrument on the Mayall 4-m telescope in an attempt to discover if these sources are located in high redshift (z≳0.8) galaxy clusters. In our visually-selected bent radio source sample, 78% of sources with counterparts in the SDSS are associated with clusters.

  7. Strongly time-variable ultraviolet metal-line emission from the circum-galactic medium of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Sravan, Niharika; Faucher-Giguère, Claude-André; van de Voort, Freeke; Kereš, Dušan; Muratov, Alexander L.; Hopkins, Philip F.; Feldmann, Robert; Quataert, Eliot; Murray, Norman

    2016-11-01

    We use cosmological simulations from the Feedback In Realistic Environments project, which implement a comprehensive set of stellar feedback processes, to study ultraviolet (UV) metal-line emission from the circum-galactic medium of high-redshift (z = 2-4) galaxies. Our simulations cover the halo mass range Mh ˜ 2 × 1011-8.5 × 1012 M⊙ at z = 2, representative of Lyman break galaxies. Of the transitions we analyse, the low-ionization C III (977 Å) and Si III (1207 Å) emission lines are the most luminous, with C IV (1548 Å) and Si IV (1394 Å) also showing interesting spatially extended structures. The more massive haloes are on average more UV-luminous. The UV metal-line emission from galactic haloes in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ˜2 dex. The peaks of UV metal-line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic haloes to power the metal-line emission. The strong time variability implies that even some relatively low-mass haloes may be detectable. Conversely, flux-limited samples will be biased towards haloes whose central galaxy has recently experienced a strong burst of star formation. Spatially extended UV metal-line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer on the Very Large Telescope and Keck Cosmic Web Imager.

  8. Serendipitous Discovery of an Extended X-Ray Jet without a Radio Counterpart in a High-redshift Quasar

    NASA Astrophysics Data System (ADS)

    Simionescu, A.; Stawarz, Ł.; Ichinohe, Y.; Cheung, C. C.; Jamrozy, M.; Siemiginowska, A.; Hagino, K.; Gandhi, P.; Werner, N.

    2016-01-01

    A recent Chandra observation of the nearby galaxy cluster Abell 585 has led to the discovery of an extended X-ray jet associated with the high-redshift background quasar B3 0727+409, a luminous radio source at redshift z = 2.5. This is one of only few examples of high-redshift X-ray jets known to date. It has a clear extension of about 12″, corresponding to a projected length of ∼100 kpc, with a possible hot spot located 35″ from the quasar. The archival high resolution Very Large Array maps surprisingly reveal no extended jet emission, except for one knot about 1.″4 from the quasar. The high X-ray to radio luminosity ratio for this source appears consistent with the \\propto {(1+z)}4 amplification expected from the inverse Compton radiative model. This serendipitous discovery may signal the existence of an entire population of similar systems with bright X-ray and faint radio jets at high redshift, a selection bias that must be accounted for when drawing any conclusions about the redshift evolution of jet properties and indeed about the cosmological evolution of supermassive black holes and active galactic nuclei in general.

  9. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    SciTech Connect

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  10. The Quest for Dusty Star-forming Galaxies at High Redshift z ≳ 4

    NASA Astrophysics Data System (ADS)

    Mancuso, C.; Lapi, A.; Shi, J.; Gonzalez-Nuevo, J.; Aversa, R.; Danese, L.

    2016-06-01

    We exploit the continuity equation approach and “main-sequence” star formation timescales to show that the observed high abundance of galaxies with stellar masses ≳ a few 1010 M ⊙ at redshift z ≳ 4 implies the existence of a galaxy population featuring large star formation rates (SFRs) ψ ≳ 102 M ⊙ yr-1 in heavily dust-obscured conditions. These galaxies constitute the high-redshift counterparts of the dusty star-forming population already surveyed for z ≲ 3 in the far-IR band by the Herschel Space Observatory. We work out specific predictions for the evolution of the corresponding stellar mass and SFR functions out to z ˜ 10, determining that the number density at z ≲ 8 for SFRs ψ ≳ 30 M ⊙ yr-1 cannot be estimated relying on the UV luminosity function alone, even when standard corrections for dust extinction based on the UV slope are applied. We compute the number counts and redshift distributions (including galaxy-scale gravitational lensing) of this galaxy population, and show that current data from the AzTEC-LABOCA, SCUBA-2, and ALMA-SPT surveys are already addressing it. We demonstrate how an observational strategy based on color preselection in the far-IR or (sub-)millimeter band with Herschel and SCUBA-2, supplemented by photometric data from on-source observations with ALMA, can allow us to reconstruct the bright end of the SFR functions out to z ≲ 8. In parallel, such a challenging task can be managed by exploiting current UV surveys in combination with (sub-)millimeter observations by ALMA and NIKA2 and/or radio observations by SKA and its precursors.

  11. The growth efficiency of high-redshift black holes

    NASA Astrophysics Data System (ADS)

    Pacucci, Fabio; Volonteri, Marta; Ferrara, Andrea

    2015-09-01

    The observational evidence that Super-Massive Black Holes (M• ˜ 109-10 M⊙) are already in place less than 1 Gyr after the big bang poses stringent time constraints on the growth efficiency of their seeds. Among proposed possibilities, the formation of massive (˜103-6 M⊙) seeds and/or the occurrence of super-Eddington (dot{M}>dot{M}_{Edd}) accretion episodes may contribute to the solution of this problem. In this work, using a set of astrophysically motivated initial conditions, we analytically and numerically investigate the accretion flow on to high-redshift (z ˜ 10) black holes to understand the physical requirements favouring rapid and efficient growth. Our model identifies a `feeding-dominated' accretion regime and a `feedback-limited' one, the latter being characterized by intermittent (duty cycles D ≲ 0.5) and inefficient growth, with recurring outflow episodes. We find that low-mass seeds (≲103-4 M⊙) evolve in the feedback-limited regime, while more massive seeds (≳105-6 M⊙) grow very rapidly as they are found in the feeding-dominated regime. In addition to the standard accretion model with a fixed matter-energy conversion factor (ɛ = 0.1), we have also explored slim disc models, appropriate for super-Eddington accretion, where radiation is trapped in the disc and the radiative efficiency is reduced (ɛ ≲ 0.04), which may ensure a continuous growth with dot{M} ≫ dot{M}_{Edd} (up to {˜ } 300 dot{M}_{Edd} in our simulations). Under these conditions, outflows play a negligible role and a black hole can accrete 80-100 per cent of the gas mass of the host halo (˜107 M⊙) in ˜10 Myr, while in feedback-limited systems we predict that black holes can accrete only up to ˜15 per cent of the available mass.

  12. POPULATION III STARS AND REMNANTS IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Xu Hao; Norman, Michael L.; Wise, John H. E-mail: mlnorman@ucsd.edu

    2013-08-20

    Recent simulations of Population III star formation have suggested that some fraction form in binary systems, in addition to having a characteristic mass of tens of solar masses. The deaths of metal-free stars result in the initial chemical enrichment of the universe and the production of the first stellar-mass black holes. Here we present a cosmological adaptive mesh refinement simulation of an overdense region that forms a few 10{sup 9} M{sub Sun} dark matter halos and over 13,000 Population III stars by redshift 15. We find that most halos do not form Population III stars until they reach M{sub vir} {approx} 10{sup 7} M{sub Sun} because this biased region is quickly enriched from both Population III and galaxies, which also produce high levels of ultraviolet radiation that suppress H{sub 2} formation. Nevertheless, Population III stars continue to form, albeit in more massive halos, at a rate of {approx}10{sup -4} M{sub Sun} yr{sup -1} Mpc{sup -3} at redshift 15. The most massive starless halo has a mass of 7 Multiplication-Sign 10{sup 7} M{sub Sun }, which could host massive black hole formation through the direct gaseous collapse scenario. We show that the multiplicity of the Population III remnants grows with halo mass above 10{sup 8} M{sub Sun }, culminating in 50 remnants located in 10{sup 9} M{sub Sun} halos on average. This has implications that high-mass X-ray binaries and intermediate-mass black holes that originate from metal-free stars may be abundant in high-redshift galaxies.

  13. Photometric Selection of High-Redshift Type Ia Supernova Candidates

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1%-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of Δz/(1+zspec)<0.09 in redshift and +/-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and ΩM) and find any effect to be negligible.

  14. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    SciTech Connect

    Coe, Dan; Bradley, Larry; Zitrin, Adi

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z > 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.

  15. Reionisation and High-Redshift Galaxies: The View from Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Becker, George D.; Bolton, James S.; Lidz, Adam

    2015-12-01

    Determining when and how the first galaxies reionised the intergalactic medium promises to shed light on both the nature of the first objects and the cosmic history of baryons. Towards this goal, quasar absorption lines play a unique role by probing the properties of diffuse gas on galactic and intergalactic scales. In this review, we examine the multiple ways in which absorption lines trace the connection between galaxies and the intergalactic medium near the reionisation epoch. We first describe how the Ly α forest is used to determine the intensity of the ionising ultraviolet background and the global ionising emissivity budget. Critically, these measurements reflect the escaping ionising radiation from all galaxies, including those too faint to detect directly. We then discuss insights from metal absorption lines into reionisation-era galaxies and their surroundings. Current observations suggest a buildup of metals in the circumgalactic environments of galaxies over z ~ 6 to 5, although changes in ionisation will also affect the evolution of metal line properties. A substantial fraction of metal absorbers at these redshifts may trace relatively low-mass galaxies. Finally, we review constraints from the Ly α forest and quasar near zones on the timing of reionisation. Along with other probes of the high-redshift Universe, absorption line data are consistent with a relatively late end to reionisation (5.5 ≲ z ≲ 7); however, the constraints are still fairly week. Significant progress is expected to come through improved analysis techniques, increases in the number of known high-redshift quasars from optical and infrared sky surveys, large gains in sensitivity from next-generation observing facilities, and synergies with other probes of the reionisation era.

  16. Soft X-Ray Absorption by High-Redshift Intergalactic Helium.

    PubMed

    Miralda-Escudé

    2000-01-01

    The Lyalpha absorption from intergalactic, once-ionized helium (He ii) has been measured with the Hubble Space Telescope in four quasars over the last few years in the redshift range 2.4background were present before this epoch. The detailed history of He ii reionization at higher redshifts is, however, model-dependent and difficult to determine from these observations, since the intergalactic medium (IGM) can be completely optically thick to Lyalpha photons when only a small fraction of the helium remains as He ii. In addition, finding quasars in which the He ii Lyalpha absorption can be observed becomes increasingly difficult at higher redshift owing to the large abundance of hydrogen Lyman limit systems. It is pointed out here that He ii in the IGM should also cause detectable continuum absorption in the soft X-rays. The spectrum of a high-redshift source seen behind the IGM when most of the helium was He ii should recover from the He ii Lyman continuum absorption at an observed energy of approximately 0.1 keV. Galactic absorption will generally be stronger, but not by a large factor; the intergalactic He ii absorption can be detected as an excess over the expected Galactic absorption from the 21 cm H i column density. In principle, this method allows a direct determination of the fraction of helium that was singly ionized as a function of redshift if the measurement is done on a large sample of high-redshift sources over a range of redshifts. PMID:10587481

  17. Massive Elliptical Galaxies at High Redshift: NICMOS Imaging of z~1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Zirm, Andrew W.; Dickinson, Mark; Dey, Arjun

    2003-03-01

    We present deep, ~1.6 μm, continuum images of 11 high-redshift (0.811UV-bright aligned component are also visible in the infrared images. We derive both the effective radius and surface brightness for nine of 11 sample galaxies by fitting one- and two-dimensional surface-brightness models to them. We compare the high-redshift radio galaxies to lower redshift counterparts. We find that their sizes are similar to those of local FRII radio source hosts and are in general larger than other local galaxies. The derived host galaxy luminosities are very high and lie at the bright end of luminosity functions constructed at similar redshifts. This indicates that the high-redshift radio galaxies are likely rare, massive sources. The galaxies in our sample are also brighter than the rest-frame size-surface-brightness locus defined by the low-redshift sources. Passive evolution roughly aligns the z~1 galaxies with the low-redshift samples with a slope equal to 4.7. This value is intermediate between the canonical Kormendy relation (~3.5) and a constant luminosity line (=5). The optical host is sometimes centered on a local minimum in the rest-frame UV

  18. Luminous compact blue galaxies in the local Universe: A key reference for high-redshift studies

    NASA Astrophysics Data System (ADS)

    Pérez Gallego, J.; Guzmán, R.; Castander, F. J.; Garland, C. A.; Pisano, D. J.

    2005-05-01

    Luminous Compact Blue Galaxies (LCBGs) are high surface brightness starburst galaxies, bluer than a typical Sbc and brighter than ˜0.25Lstar. LCBGs have evolved more than any other galaxy class in the last ˜8 Gyr, and are a major contributor to the observed enhancement of the UV luminosity density of the Universe at z≤1. Despite the key role LCBGs may play in galaxy evolution, their statistical properties are still largely unknown. We have selected a complete sample of ˜25 LCBGs within 100 Mpc, after investigating over 106 nearby galaxies from the DR1 of the SDSS database. This sample, although small, provides an excellent reference for comparison with current and future surveys of similar galaxies at high redshift, including the population of Lyman-break galaxies. We present preliminary results of this study using 3D spectroscopic observations obtained over a very wide range in wavelength, using WIYN/DENSEPAK in the optical, FISICA in the infrared, and the VLA at cm wavelengths.

  19. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    SciTech Connect

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-07-20

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z {approx} 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of {approx}13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be {approx}< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset ({approx}30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X

  20. A Population of X-Ray Weak Quasars: PHL 1811 Analogs at High Redshift

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Brandt, W. N.; Hall, Patrick B.; Gibson, Robert R.; Richards, Gordon T.; Schneider, Donald P.; Shemmer, Ohad; Just, Dennis W.; Schmidt, Sarah J.

    2011-07-01

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z ≈ 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of ≈13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be <~ 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset (≈30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization "shielding gas" covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. X-ray spectral

  1. New observations directly measuring the full continuous sizes of high redshift damped Lya systems

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; O'Meara, John

    2016-01-01

    The formation and evolution of galaxies requires large reservoirs of cold, neutral gas. The damped Lyman-α systems (DLAs), seen in absorption towards distant quasars and gamma ray bursts, are predicted to be the dominant reservoirs for this gas. Detailed properties of DLAs have been studied extensively for decades with great success. However, their size, fundamental in understanding their nature, has remained elusive, as quasar and gamma ray burst sightlines only probe comparatively tiny areas of the foreground DLAs. Here, we introduce a new approach to measure the full extent of DLAs in the sightlines to extended background sources. We present the discovery of z ~ 2 DLAs with column densities as high as log N(HI) = 21.1 ±0.4 cm-2 covering 90-100% of the luminous extent of background galaxies. Estimates of the sizes of the background galaxies range from a minimum of a few kpc2, to ˜100 kpc2, and demonstrate that high-column density neutral gas can span continuous areas 108-1010 times larger than previously explored in quasar or gamma ray burst sightlines. The DLAs are from our pilot survey that searches Lyman break and Lyman continuum galaxies at high redshift. The low luminosities, large sizes, and mass contents (~106-109 M⊙) implied by the early data suggest that DLAs contain the necessary fuel for galaxies, with many systems consistent with relatively massive, low-luminosity primeval galaxies.

  2. Background UV in the 300 to 400 nm region affecting the extended range detection of radioactive material

    NASA Astrophysics Data System (ADS)

    West, William Carey

    The desire to find alternative methods for the detection of radioactive material at extended ranges has resulted in an increased interest in the detection of the air fluorescence resulting from the alpha or beta radioactive particle's interaction with molecules of air. Air fluorescence photons travel further than the radioactive particles, allowing for detections at longer distances. However, any detection of the ultraviolet (UV) air fluorescence is dependant on overcoming natural and man-made background UV to achieve favorable signal to noise ratios. This research describes laboratory and field experiments conducted to determine the background UV in the 300 to 400 nm region of the electromagnetic spectrum for certain detection scenarios, and number of UV air fluorescence photons required to achieve detections with a certain confidence limit. The reflective, scintillation, and transmissive UV characteristics of some common materials are discussed and their contribution to a successful detection explored. Additionally, the contributions to the UV background from natural and man-made light sources are investigated. The successful outside optical detection of alpha and beta radioactive isotopes in the 300 to 400 nm region is possible in the lower part of the spectral region (i.e., near 316 nm), when there is no UV light from man-made sources in that band and only natural light exists. Alpha sources (i.e., 241Am) equal to or larger than 1.017 curies, theoretically can be detected with 95% confidence during nighttime scenarios with moonless overcast skies at a distances of 20 meters at 316 nm with the optical system assumed for these calculations. Additionally, where scintillators are available that can be employed near 90Sr radioactive sources, the detectable activities can be reduced by factors as high as 250. This allows for detections of sources in the millicuries. Tests results are presented for several common materials (e.g., polypropylene, high density

  3. GRB hosts and the search for missing star formation at high redshift

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2014-10-01

    Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and the formation of galaxies at early times. Two common, complementary approaches are Lyman-Break-Galaxy (LBG) surveys, providing large samples, and Gamma-Ray-Bursts (GRBs) which can sign-post star formation even in the smallest galaxies. Recent results of both methods have found evidence for a dominant population of very faint star-forming galaxies at z>5, representing a continuation of the steepening of the galaxy luminosity function with redshift. However, LBG surveys are affected by possible incompleteness and contamination, while the magnitude limit means very large correction factors must be applied to account for these unseen galaxies. On the other hand GRBs suffer small number statistics and have their own selection biases. We propose to construct a new sample of six 6UV light from stars sustain reionization. We will carry out WFC3/IR (F140W) imaging to a limit approaching that of the current HUDF observations (M(AB)~-18) in all cases. Prior knowledge of the exact locations and redshifts of the targets means that this can be achieved relatively economically, since we can accept a lower level of significance and single filter. This method depends only on GRBs and SF tracing UV light (both likely at high-z), and in turn will constrain the completeness correction to be applied to LBG surveys in order to derive the ionizing photon budget.

  4. The Progenitors of the Compact Early-type Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Giavalisco, Mauro; Cassata, Paolo; Tundo, Elena; Wiklind, Tommy; Guo, Yicheng; Lee, Bomee; Barro, Guillermo; Wuyts, Stijn; Bell, Eric F.; Conselice, Christopher J.; Dekel, Avishai; Faber, Sandra M.; Ferguson, Henry C.; Grogin, Norman; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale; Koekemoer, Anton; Koo, David C.; Ravindranath, Swara; Salimbeni, Sara

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 1010 M ⊙) compact early-type galaxies (ETGs) at z ~ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ~ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ~ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended "halos" surrounding the compact "core,"both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ~ 1.6.

  5. The progenitors of the compact early-type galaxies at high redshift

    SciTech Connect

    Williams, Christina C.; Giavalisco, Mauro; Lee, Bomee; Cassata, Paolo; Tundo, Elena; Conselice, Christopher J.; Wiklind, Tommy; Guo, Yicheng; Barro, Guillermo; Faber, Sandra M.; Koo, David C.; Bell, Eric F.; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton; Hathi, Nimish; Huang, Kuang-Han; Kocevski, Dale; and others

    2014-01-01

    We use GOODS and CANDELS images to identify progenitors of massive (M > 10{sup 10} M {sub ☉}) compact early-type galaxies (ETGs) at z ∼ 1.6. Because merging and accretion increase the size of the stellar component of galaxies, if the progenitors are among known star-forming galaxies, these must be compact themselves. We select candidate progenitors among compact Lyman-break galaxies at z ∼ 3 on the basis of their mass, star-formation rate (SFR), and central stellar density, and we find that these account for a large fraction of, and possibly all, compact ETGs at z ∼ 1.6. We find that the average far-UV spectral energy distribution (SED) of the candidates is redder than that of the non-candidates, but the optical and mid-IR SED are the same, implying that the redder UV of the candidates is inconsistent with larger dust obscuration and consistent with more evolved (aging) star formation. This is in line with other evidence suggesting that compactness is a sensitive predictor of passivity among high-redshift massive galaxies. We also find that the light distribution of both the compact ETGs and their candidate progenitors does not show any extended 'halos' surrounding the compact 'core,' both in individual images and in stacks. We argue that this is generally inconsistent with the morphology of merger remnants, even if gas rich, as predicted by N-body simulations. This suggests that the compact ETGs formed via highly dissipative, mostly gaseous accretion of units whose stellar components are very small and undetected in the Hubble Space Telescope images, with their stellar mass assembling in situ, and that they have not experienced any major merging until the epoch of observations at z ∼ 1.6.

  6. Star formation and mass assembly in high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Santini, P.; Fontana, A.; Grazian, A.; Salimbeni, S.; Fiore, F.; Fontanot, F.; Boutsia, K.; Castellano, M.; Cristiani, S.; de Santis, C.; Gallozzi, S.; Giallongo, E.; Menci, N.; Nonino, M.; Paris, D.; Pentericci, L.; Vanzella, E.

    2009-09-01

    Aims: The goal of this work is to infer the star formation properties and the mass assembly process of high redshift (0.3 ≤ z < 2.5) galaxies from their IR emission using the 24 μm band of MIPS-Spitzer. Methods: We used an updated version of the GOODS-MUSIC catalog, which has multiwavelength coverage from 0.3 to 24 μm and either spectroscopic or accurate photometric redshifts. We describe how the catalog has been extended by the addition of mid-IR fluxes derived from the MIPS 24 μm image. We compared two different estimators of the star formation rate (SFR hereafter). One is the total infrared emission derived from 24 μm, estimated using both synthetic and empirical IR templates. The other one is a multiwavelength fit to the full galaxy SED, which automatically accounts for dust reddening and age-star formation activity degeneracies. For both estimates, we computed the SFR density and the specific SFR. Results: We show that the two SFR indicators are roughly consistent, once the uncertainties involved are taken into account. However, they show a systematic trend, IR-based estimates exceeding the fit-based ones as the star formation rate increases. With this new catalog, we show that: a) at z>0.3, the star formation rate is correlated well with stellar mass, and this relationship seems to steepen with redshift if one relies on IR-based estimates of the SFR; b) the contribution to the global SFRD by massive galaxies increases with redshift up to ≃ 2.5, more rapidly than for galaxies of lower mass, but appears to flatten at higher z; c) despite this increase, the most important contributors to the SFRD at any z are galaxies of about, or immediately lower than, the characteristic stellar mass; d) at z≃ 2, massive galaxies are actively star-forming, with a median {SFR} ≃ 300 M_⊙ yr-1. During this epoch, our targeted galaxies assemble a substantial part of their final stellar mass; e) the specific SFR (SSFR) shows a clear bimodal distribution. Conclusions

  7. Effect of parent genetic background on latency and antigenicity of UV-induced tumors originating in F1 hybrids.

    PubMed

    Kitajima, T; Iwashiro, M; Kuribayashi, K; Imamura, S

    1995-02-01

    Wide variations in susceptibility to skin tumor development by chronic ultraviolet light (UV) exposure and antigenicity of induced tumors which is estimated by tumor rejection in syngeneic recipients have been recognized among various murine strains. To examine the effect of parent genetic background on latency and antigenicity of UV-induced tumors originating in F1 hybrids, we induced skin tumors in three mouse strains: BALB/c, C57BL/6, (B6), and C3H/HeMs (C3H/He), and their F1 hybrids: (BALB/c x C3H/He)F1 (CC3F1), (BALB/c x B6)F1 (CB6F1) and (C3H/HexB6)F1 (C3B6F1) by exposing mice to UV radiation (0.44 mW/cm2 for 1 h) three times a week, and analyzed whether the UV-induced tumors originating in F1 hybrids possess the similar property in latency or antigenicity as seen in the UV-induced tumors derived from the parent strains. The latency of tumor induction by chronic UV exposure in C3H/He, BALB/c and their F1 hybrid CC3F1 was relatively short whereas that of B6 was relatively long, and that of F1 hybrids with B6 (CB6F1 and C3B6F1) was intermediate. On the other hand, the low antigenicity as progressive growth behavior of UV-induced tumors in syngeneic recipients was observed not only in tumors derived from C3H/He but also in those from F1 hybrids with C3H/He (C3B6F1 and CC3F1) whereas most tumors derived from B6, BALB/c and their F1 hybrid CB6F1 were highly antigenic as to be rejected in syngeneic recipients. These findings suggest that the parent genetic quality regulating the susceptibility to tumor induction by chronic UV exposure is co-dominantly inherited into F1 hybrids.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7757331

  8. The Lyman alpha reference sample. IV. Morphology at low and high redshift

    NASA Astrophysics Data System (ADS)

    Guaita, L.; Melinder, J.; Hayes, M.; Östlin, G.; Gonzalez, J. E.; Micheva, G.; Adamo, A.; Mas-Hesse, J. M.; Sandberg, A.; Otí-Floranes, H.; Schaerer, D.; Verhamme, A.; Freeland, E.; Orlitová, I.; Laursen, P.; Cannon, J. M.; Duval, F.; Rivera-Thorsen, T.; Herenz, E. C.; Kunth, D.; Atek, H.; Puschnig, J.; Gruyters, P.; Pardy, S. A.

    2015-04-01

    Context. The transport of Lyα photons in galaxies is a complex process and the conditions under which Lyα photons manage to escape from certain galaxies is still under investigation. The Lyman alpha reference sample (LARS) is a sample of 14 local star-forming galaxies, designed to study Lyα in detail and relate it to rest-frame UV and optical emission. Aims: With the aim of identifying rest-frame UV and optical properties, which are typical of Lyα emitters (LAEs, galaxies with EW(Lyα) > 20 Å) at both low and high redshift, we investigated the morphological properties of the LARS galaxies, in particular the ones that exhibit intense Lyα radiation. Methods: We measured sizes and morphological parameters in the continuum, Lyα, and Hα images. We studied morphology by using the Gini coefficient vs. M20 and asymmetry vs. concentration diagrams. We then simulated LARS galaxies at z ~ 2 and 5.7, performing the same morphological measurements. We also investigated the detectability of LARS galaxies in current deep field observations. The subsample of LAEs within LARS (LARS-LAEs) was stacked to provide a comparison to stacking studies performed at high redshift. Results: LARS galaxies have continuum size, stellar mass, and rest-frame absolute magnitude typical of Lyman break analogues in the local Universe and also similar to 2 < z < 3 star-forming galaxies and massive LAEs. LARS optical morphology is consistent with the one of merging systems, and irregular or starburst galaxies. For the first time we quantify the morphology in Lyα images: even if a variety of intrinsic conditions of the interstellar medium can favour the escape of Lyα photons, LARS-LAEs appear small in the continuum, and their Lyα is compact. LARS galaxies tend to be more extended in Lyα than in the rest-frame UV. It means that Lyα photons escape by forming haloes around HII regions of LARS galaxies. Conclusions: The stack of LARS-LAE Lyα images is peaked in the centre, indicating that the

  9. New Gapless COS G140L Mode Proposed for Background-limited Far-UV Observations

    NASA Astrophysics Data System (ADS)

    Redwine, Keith; McCandliss, Stephan R.; Zheng, Wei; Fleming, Brian; France, Kevin; Osterman, Steven; Chistopher Howk, J.; Anderson, Scott F.; Gäensicke, Boris T.

    2016-10-01

    Here we describe the observation and calibration procedure for a new G140L observing mode for the Cosmic Origins Spectrograph (COS) on board the Hubble Space Telescope (HST). This mode, CENWAV = 800, is designed to move the far-UV band fully onto the Segment A detector, allowing for more efficient observation and analysis by simplifying calibration management between the two channels, and reducing the astigmatism in this wavelength region. We also describe some of the areas of scientific interest for which this new mode will be especially suited.

  10. Quantitative comparison between type Ia supernova spectra at low and high redshifts: a case study

    NASA Astrophysics Data System (ADS)

    Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, T.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2007-08-01

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 ≤ z ≤ 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of the absorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z < 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  11. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  12. High-redshift gamma-ray bursts: observational signatures of superconducting cosmic strings?

    PubMed

    Cheng, K S; Yu, Yun-Wei; Harko, T

    2010-06-18

    The high-redshift gamma-ray bursts (GRBs), GRBs 080913 and 090423, challenge the conventional GRB progenitor models by their short durations, typical for short GRBs, and their high energy releases, typical for long GRBs. Meanwhile, the GRB rate inferred from high-redshift GRBs also remarkably exceeds the prediction of the collapsar model, with an ordinary star formation history. We show that all these contradictions could be eliminated naturally, if we ascribe some high-redshift GRBs to electromagnetic bursts of superconducting cosmic strings. High-redshift GRBs could become a reasonable way to test the superconducting cosmic string model because the event rate of cosmic string bursts increases rapidly with increasing redshifts, whereas the collapsar rate decreases. PMID:20867291

  13. ON THE SHAPES AND STRUCTURES OF HIGH-REDSHIFT COMPACT GALAXIES

    SciTech Connect

    Chevance, Melanie; Damjanov, Ivana; Abraham, Roberto G.; Weijmans, Anne-Marie; Simard, Luc; Van den Bergh, Sidney; Caris, Evelyn; Glazebrook, Karl

    2012-08-01

    Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z {approx} 2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift massive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from two-dimensional structural fits to {approx}40, 000 nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However, the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.

  14. Spectral Observations of the Diffuse FUV Background with DUVE (the Diffuse UV Experiment)

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Bowyer, S.

    1996-05-01

    We present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in July, 1992. The DUVE spectrometer, which covers the band from 970 Angstroms to 1170 Angstroms with 3.2 angstrom resolution, observed a region of low neutral hydrogen column desity near the south galactic pole for a total effective integration time of 1583 seconds. The only emission line detected was a geocoronal hydrogen line 1026 Angstroms. We were, however, able to place upper limits to several important interstellar emission features in this band. We compare these upper limits with predictions of FUV emission based upon several models of the structure of the hot ISM and place limits on the emission measure vs temperature distribution this gas. We also compare these emission measure limits with those obtained from measurements in other optical, UV and X-ray bands.

  15. Physical Conditions in a Young, Unreddened, Low-metallicity Galaxy at High Redshift

    NASA Astrophysics Data System (ADS)

    Erb, Dawn K.; Pettini, Max; Shapley, Alice E.; Steidel, Charles C.; Law, David R.; Reddy, Naveen A.

    2010-08-01

    Increasingly large samples of galaxies are now being discovered at redshifts z ~ 5-6 and higher. Many of these objects are inferred to be young, low in mass, and relatively unreddened, but detailed analysis of their high quality spectra will not be possible until the advent of future facilities. In this paper, we shed light on the physical conditions in a plausibly similar low-mass galaxy by presenting the analysis of the rest-frame optical and UV spectra of Q2343-BX418, an L* galaxy at z = 2.3 with a very low mass-to-light ratio and unusual properties: BX418 is young (<100 Myr), low mass (M sstarf ~ 109 M sun), low in metallicity (Z ~ 1/6 Z sun), and unreddened (E(B - V) ~= 0.02, UV continuum slope β = -2.1). We infer a metallicity 12 + log(O/H) = 7.9 ± 0.2 from the rest-frame optical emission lines. We also determine the metallicity via the direct, electron temperature method, using the ratio O III] λλ1661, 1666/[O III] λ5007 to determine the electron temperature and finding 12 + log(O/H) = 7.8 ± 0.1. These measurements place BX418 among the most metal-poor galaxies observed in emission at high redshift. The rest-frame UV spectrum, which represents ~12 hr of integration with the Keck telescope, contains strong emission from Lyα (with rest-frame equivalent width 54 Å), He II λ1640 (both stellar and nebular), C III] λλ1907, 1909 and O III] λλ1661, 1666. The C IV/C III] ratio indicates that the source of ionization is unlikely to be an active galactic nucleus. Analysis of the He II, O III], and C III] line strengths indicates a very high ionization parameter log U ~ -1, while Lyα and the interstellar absorption lines indicate that outflowing gas is highly ionized over a wide range of velocities. It remains to be determined how many of BX418's unique spectral features are due to its global properties, such as low metallicity and dust extinction, and how many are indicative of a short-lived phase in the early evolution of an otherwise normal star

  16. High-Redshift Type Ia Supernova Rates in Galaxy Cluster and Field Environments

    NASA Astrophysics Data System (ADS)

    Barbary, Kyle Harris

    steeper delay time distribution at large delay times. To check for environmental dependence and the influence of younger stellar populations the rate is also calculated specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, with results similar to the full cluster rate. Finally, the upper limit of one host-less cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts. The volumetric SN Ia rate can also be used to constrain the SN Ia delay time distribution. However, there have been discrepancies in recent analyses of both the high-redshift rate and its implications for the delay time distribution. Here, the volumetric SN Ia rate out to z ˜ 1.6 is measured, based on ˜12 SNe Ia in the foregrounds and backgrounds of the clusters targeted in the survey. The rate is measured in four broad redshift bins. The results are consistent with previous measurements at z > 1 and strengthen the case for a SN Ia rate that is greater than approximately 0.6 x 10-4 h70 3 yr-1 Mpc-3 at z ˜ 1 and flattening out at higher redshift. Assumptions about host-galaxy dust extinction used in different high-redshift rate measurements are examined. Different assumptions may account for some of the difference in published results for the z ˜ 1 rate.

  17. GISMO, a 2 mm Bolometer Camera Optimized for the Study of High Redshift Galaxies

    NASA Technical Reports Server (NTRS)

    Staguhn, J.

    2007-01-01

    The 2mm spectral range provides a unique terrestrial window enabling ground based observations of the earliest active dusty galaxies in the universe and thereby allowing a better constraint on the star formation rate in these objects. We present a progress report for our bolometer camera GISMO (the Goddard-IRAM Superconducting 2-Millimeter Observer), which will obtain large and sensitive sky maps at this wavelength. The instrument will be used at the IRAM 30 m telescope and we expect to install it at the telescope in 2007. The camera uses an 8 x 16 planar array of multiplexed TES bolometers, which incorporates our recently designed Backshort Under Grid (BUG) architecture. GISMO will be very efficient at detecting sources serendipitously in large sky surveys. With the background limited performance of the detectors, the camera provides significantly greater imaging sensitivity and mapping speed at this wavelength than has previously been possible. The major scientific driver for the instrument is to provide the IRAM 30 m telescope with the capability to rapidly observe galactic and extragalactic dust emission, in particular from high-zeta ULI RGs and quasar s, even in the summer season. The instrument will fill in the SEDs of high redshift galaxies at the Rayleigh-Jeans part of the dust emission spectrum, even at the highest redshifts. Our source count models predict that GISMO will serendipitously detect one galaxy every four hours on the blank sky, and that one quarter of these galaxies will be at a redshift of zeta 6.5.

  18. Exploring the Chemical Link Between Local Ellipticals and Their High-Redshift Progenitors

    NASA Technical Reports Server (NTRS)

    Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Skelton, Rosalind E.; Whitaker, Katherine E.; Andrews, Brett H.; Franx, Marijn; Kriek, Mariska; Van Der Wel, Arjen; Bezanson, Rachel; Conroy, Charlie; Schreiber, Natascha Foerster; Nelson, Erica; Patel, Shannon G.

    2013-01-01

    We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z approximately 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N II]lambda6584/H-alpha ratio of 0.27 +/- 0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N II]/Halpha ratios depends on the calibration method, and ranges from 12+log(O/H)(sub gas) = 8.57 for the Pettini & Pagel calibration to 12+log(O/H)(sub gas) = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H)(sub stars) = 8.95, similar to the gas-phase abundances of the z approximately 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z approximately 2.3 sample: the galaxies with detected Ha tend to be larger and have higher star formation rates than the galaxies without detected H-alpha, and we may still be missing the most dust-obscured progenitors.

  19. Outflows Driven by Quasars in High-Redshift Galaxies with Radiation Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bieri, Rebekka; Dubois, Yohan; Rosdahl, Joakim; Wagner, Alexander; Silk, Joseph; Mamon, Gary A.

    2016-09-01

    The quasar mode of Active Galactic Nuclei (AGN) in the high-redshift Universe is routinely observed in gas-rich galaxies together with large-scale AGN-driven winds. It is crucial to understand how photons emitted by the central AGN source couple to the ambient interstellar-medium to trigger large-scale outflows. By means of radiation-hydrodynamical simulations of idealised galactic discs, we study the coupling of photons with the multiphase galactic gas, and how it varies with gas cloud sizes, and the radiation bands included in the simulations, which are ultraviolet (UV), optical, and infrared (IR). We show how a quasar with a luminosity of 146 erg s-1 can drive large-scale winds with velocities of 102 - 103 km s-1 and mass outflow rates around 10^3 M_⊙ yr^{-1} for times of order a few million years. Infrared radiation is necessary to efficiently transfer momentum to the gas via multi-scattering on dust in dense clouds. However, IR multi-scattering, despite being extremely important at early times, quickly declines as the central gas cloud expands and breaks up, allowing the radiation to escape through low gas density channels. The typical number of multi-scattering events for an IR photon is only about a quarter of the mean optical depth from the center of the cloud. Our models account for the observed outflow rates of ˜ 500-1000 M_{⊙} {yr}^{-1} and high velocities of ˜ 10^3 km s^{-1}, favouring winds that are energy-driven via extremely fast nuclear outflows, interpreted here as being IR-radiatively-driven winds.

  20. EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS

    SciTech Connect

    Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina; Nelson, Erica; Brammer, Gabriel; Skelton, Rosalind E.; Whitaker, Katherine E.; Andrews, Brett H.; Franx, Marijn; Patel, Shannon G.; Kriek, Mariska; Van der Wel, Arjen; Bezanson, Rachel; Conroy, Charlie; Förster Schreiber, Natascha

    2013-12-01

    We present Keck/MOSFIRE K-band spectroscopy of the first mass-selected sample of galaxies at z ∼ 2.3. Targets are selected from the 3D-Hubble Space Telescope Treasury survey. The six detected galaxies have a mean [N II]λ6584/Hα ratio of 0.27 ± 0.01, with a small standard deviation of 0.05. This mean value is similar to that of UV-selected galaxies of the same mass. The mean gas-phase oxygen abundance inferred from the [N II]/Hα ratios depends on the calibration method, and ranges from 12+log(O/H){sub gas} = 8.57 for the Pettini and Pagel calibration to 12+log(O/H){sub gas} = 8.87 for the Maiolino et al. calibration. Measurements of the stellar oxygen abundance in nearby quiescent galaxies with the same number density indicate 12+log(O/H){sub stars} = 8.95, similar to the gas-phase abundances of the z ∼ 2.3 galaxies if the Maiolino et al. calibration is used. This suggests that these high-redshift star forming galaxies may be progenitors of today's massive early-type galaxies. The main uncertainties are the absolute calibration of the gas-phase oxygen abundance and the incompleteness of the z ∼ 2.3 sample: the galaxies with detected Hα tend to be larger and have higher star formation rates than the galaxies without detected Hα, and we may still be missing the most dust-obscured progenitors.

  1. Theoretical predictions for the effect of nebular emission on the broad-band photometry of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Coulton, William; Caruana, Joseph; Croft, Rupert; Matteo, Tiziana Di; Khandai, Nishikanta; Feng, Yu; Bunker, Andrew; Elbert, Holly

    2013-11-01

    By combining optical and near-IR observations from the Hubble Space Telescope with near-IR photometry from the Spitzer Space Telescope, it is possible to measure the rest-frame UV-optical colours of galaxies at z = 4-8. The UV-optical spectral energy distribution of star formation dominated galaxies is the result of several different factors. These include the joint distribution of stellar masses, ages and metallicities (solely responsible for the pure stellar spectral energy distribution), and the subsequent reprocessing by dust and gas in the interstellar medium. Using a large cosmological hydrodynamical simulation (MassiveBlack-II), we investigate the predicted spectral energy distributions of galaxies at high redshift with a particular emphasis on assessing the potential contribution of nebular emission. We find that the average (median) pure stellar UV-optical colour correlates with both luminosity and redshift such that galaxies at lower redshift and higher luminosity are typically redder. Assuming that the escape fraction of ionizing photons is close to zero, the effect of nebular emission is to redden the UV-optical 1500 - Vw colour by, on average, 0.4 mag at z = 8 declining to 0.25 mag at z = 4. Young and low-metallicity stellar populations, which typically have bluer pure stellar UV-optical colours, produce larger ionizing luminosities and are thus more strongly affected by the reddening effects of nebular emission. This causes the distribution of 1500 - Vw colours to narrow and the trends with luminosity and redshift to weaken. The strong effect of nebular emission leaves observed-frame colours critically sensitive to the redshift of the source. For example, increasing the redshift by 0.1 can result in observed-frame colours changing by up to ˜0.6. These predictions reinforce the need to include nebular emission when modelling the spectral energy distributions of galaxies at high redshift and also highlight the difficultly in interpreting the observed

  2. [Determination of compound preparation containing unknown absorptive background by UV spectrophotometry].

    PubMed

    Guo, Y L; Xiang, B R; An, D K

    1991-01-01

    A novel algorithm of target factor analysis has been developed for detection and correction of unknown absorptive background in multicomponent analysis. The algorithm is based on the property that the estimated spectra can gradually approach the true ones by iterative refinements. Paracetamol and antipyrine contained in compound injection of paracetamol were determined by this method without any preliminary chemical separation. The average recoveries were both 100.0% and the coefficients of variation were 1.1% and 1.0% respectively. The results clearly indicate that the proposed method may also provide a new approach to the analysis of traditional Chinese medicine containing some unknown absorptive components. PMID:1789114

  3. The Connection Between Reddening, Gas Covering Fraction, and the Escape of Ionizing Radiation at High Redshift

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan; Shapley, Alice E.

    2016-09-01

    Using a large sample of spectroscopically confirmed z∼ 3 galaxies, we establish an empirical relationship between reddening (E(B-V)), neutral gas covering fraction ({f}{{cov}}({{H}} {{I}})), and the escape of ionizing (Lyman continuum, LyC) photons. Our sample includes 933 galaxies at z∼ 3,121 of which have deep spectroscopic observations (≳ 7 hr) at 850≲ {λ }{{rest}}≲ 1300 Å with the Low Resolution Imaging Spectrograph on Keck. The high covering fraction of outflowing optically thick {{H}} {{I}} indicated by the composite spectra of these galaxies implies that photoelectric absorption, rather than dust attenuation, dominates the depletion of LyC photons. By modeling the composite spectra as the combination of an unattenuated stellar spectrum including nebular continuum emission with one that is absorbed by {{H}} {{I}} and reddened by a line-of-sight extinction, we derive an empirical relationship between E(B-V) and {f}{{cov}}({{H}} {{I}}). Galaxies with redder UV continua have larger covering fractions of {{H}} {{I}} characterized by higher line-of-sight extinctions. We develop a model which connects the ionizing escape fraction with E(B-V), and which may be used to estimate the ionizing escape fraction for an ensemble of galaxies. Alternatively, direct measurements of the escape fraction for our sample allow us to constrain the intrinsic LyC-to-UV flux density ratio to be < S(900 \\mathring{{A}} )/S(1500 \\mathring{{A}} ){> }{{int}}≳ 0.20, a value that favors stellar population models that include weaker stellar winds, a flatter initial mass function, and/or binary evolution. Last, we demonstrate how the framework discussed here may be used to assess the pathways by which ionizing radiation escapes from high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous

  4. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000–2000 Å) and rest-frame optical (3600–7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}ȯ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}ȯ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}ȯ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  5. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000-2000 Å) and rest-frame optical (3600-7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}⊙ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}⊙ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}⊙ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  6. FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. I. NON-EQUILIBRIUM COOLANT FORMATION

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2010-07-20

    We use high-resolution three-dimensional adaptive mesh refinement simulations to investigate the interaction of high-redshift galaxy outflows with low-mass virialized clouds of primordial composition. While atomic cooling allows star formation in objects with virial temperatures above 10{sup 4} K, 'minihalos' below this threshold are generally unable to form stars by themselves. However, these objects are highly susceptible to triggered star formation, induced by outflows from neighboring high-redshift starburst galaxies. Here, we conduct a study of these interactions, focusing on cooling through non-equilibrium molecular hydrogen (H{sub 2}) and hydrogen deuteride (HD) formation. Tracking the non-equilibrium chemistry and cooling of 14 species and including the presence of a dissociating background, we show that shock interactions can transform minihalos into extremely compact clusters of coeval stars. Furthermore, these clusters are all less than {approx}10{sup 6} M {sub sun}, and they are ejected from their parent dark matter halos: properties that are remarkably similar to those of the old population of globular clusters.

  7. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    SciTech Connect

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-10-10

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus.

  8. Pressure-driven fragmentation of multiphase clouds at high redshift

    NASA Astrophysics Data System (ADS)

    Dhanoa, H.; Mackey, J.; Yates, J.

    2014-11-01

    The discovery of a hyper metal-poor star with total metallicity of ≤10-5 Z⊙ has motivated new investigations of how such objects can form from primordial gas polluted by a single supernova. In this paper, we present a shock-cloud model which simulates a supernova remnant interacting with a cloud in a metal-free environment at redshift z = 10. Pre-supernova conditions are considered, which include a multiphase neutral medium and H II region. A small dense clump (n = 100 cm-3), located 40 pc from a 40 M⊙ metal-free star, embedded in an n = 10 cm-3 ambient cloud. The evolution of the supernova remnant and its subsequent interaction with the dense clump is examined. We include a comprehensive treatment of the non-equilibrium hydrogen and helium chemistry and associated radiative cooling that is occurring at all stages of the shock-cloud model, covering the temperature range 10-109 K. Deuterium chemistry and its associated cooling are not included because the UV radiation field produced by the relic H II region and supernova remnant is expected to suppress deuterium chemistry and cooling. We find a 103 times density enhancement of the clump (maximum density ≈78 000 cm-3) within this metal-free model. This is consistent with Galactic shock-cloud models considering solar metallicity gas with equilibrium cooling functions. Despite this strong compression, the cloud does not become gravitationally unstable. We find that the small cloud modelled here is destroyed for shock velocities ≳50 km s-1, and not significantly affected by shocks with velocity ≲30 km s-1. Rather specific conditions are required to make such a cloud collapse, and substantial further compression would be required to reduce the local Jeans mass to sub-solar values.

  9. Neutral hydrogen at the present epoch: A constraint on the evolution of high redshift systems

    NASA Technical Reports Server (NTRS)

    Rao, Sandhya; Briggs, Frank H.

    1993-01-01

    Damped Lyman-alpha and metal absorption lines in the spectra of quasars indicate the presence of intervening gas-rich systems at high redshift (z greater than 2). These systems have characteristic size scales, velocity dispersions, and neutral hydrogen column densities (N(H1)) similar to present day spirals and are thus thought to be their progenitors. Constraints on galaxy evolution can be derived by comparing the H1 properties of high redshift systems to the present galaxy population. Good observational statistics on high redshift absorbers specify the number of these systems along the line of sight as a function of N(H1), the column density of neutral hydrogen per absorber. Similar statistics for nearby (z = 0) galaxies of which spirals are the only gas-rich systems that provide a significant cross-section for the interception of light from quasars is derived.

  10. Exploring The Gas Cycle In High-redshift Galaxies: A Joint Effort Of Theory And Observations

    NASA Astrophysics Data System (ADS)

    Fumagalli, Michele

    2012-01-01

    The evolution of high-redshift galaxies is regulated by the balance between the inflow of fresh fuel for star formation and the outflow of metal-polluted material from star forming regions. Hydrodynamic cosmological simulations indicate that galaxies at high redshifts are fed by extended streams of cold gas in a smooth component and in merging satellites, but direct evidence of this mode of accretion is lacking. To investigate the signatures of these "cold streams" in observations, we have studied the Lyman-α emission and hydrogen absorption properties in galaxies simulated at high-resolution, using state-of-the-art radiative transfer codes. I will present these model predictions and I will compare and contrast results of simulations with observations of high-redshift Lyman break galaxies. I will also discuss the prospects of mapping the circumgalactic medium with absorption line systems and present preliminary results from ongoing observations.

  11. The Metagalactic Ionizing Background: A Crisis in UV Photon Production or Incorrect Galaxy Escape Fractions?

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Moloney, Joshua; Danforth, Charles W.; Tilton, Evan M.

    2015-09-01

    Recent suggestions of a “photon underproduction crisis” have generated concern over the intensity and spectrum of ionizing photons in the metagalactic ultraviolet background (UVB). The balance of hydrogen photoionization and recombination determines the opacity of the low-redshift intergalactic medium (IGM). We calibrate the hydrogen photoionization rate ({{{Γ }}}{{H}}) by comparing Hubble Space Telescope spectroscopic surveys of the low-redshift column density distribution of H i absorbers and the observed (z\\lt 0.4) mean Lyα flux decrement, {D}A=(0.014){(1+z)}2.2, to new cosmological simulations. The distribution, f({N}{{H} {{I}}},z)\\equiv {d}2{N}/d({log}{N}{{H} {{I}}}){dz}, is consistent with an increased UVB that includes contributions from both quasars and galaxies. Our recommended fit, {{{Γ }}}{{H}}(z)=(4.6× {10}-14 {{{s}}}-1){(1+z)}4.4 for 0\\lt z\\lt 0.47, corresponds to unidirectional LyC photon flux {{{Φ }}}0≈ 5700 cm-2 s-1 at z = 0. This flux agrees with observed IGM metal ionization ratios (C iii/C iv and Si iii/Si iv) and suggests a 25%-30% contribution of Lyα absorbers to the cosmic baryon inventory. The primary uncertainties in the low-redshift UVB are the contribution from massive stars in galaxies and the LyC escape fraction ({f}{esc}), a highly directional quantity that is difficult to constrain statistically. We suggest that both quasars and low-mass starburst galaxies are important contributors to the ionizing UVB at z\\lt 2. Their additional ionizing flux would resolve any crisis in photon underproduction.

  12. Simulating ALMA Observations of High-Redshift Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Carilli, Michael; Wagg, J.

    2007-12-01

    Until now, the coarse angular resolution of single-dish submm/mm telescopes has limited the depth of extragalactic surveys through confusion noise, meaning that only 20-30% of the 850 micron background can be resolved. However, the majority of this population should have flux densities of 1 mJy or fainter, and so either cannot be resolved or would require prohibitively long integration times to conduct surveys with existing interferometers. This will change with the advent of the Atacama Large Millimeter Array (ALMA); beginning operation within the next decade, it will provide an order of magnitude increase in sensitivity over that of current interferometers. To better plan for future surveys with this facility, I have prepared a set of simulated 850 micron and 1 mm maps covering 16 square arcminutes with an angular resolution of 1 arcsecond. The input models used to create these simulations are based on our current constraints on the 850 micron and 1 mm number counts, as well as a heuristic model which assumes an evolving 60 micron IRAS luminosity function. This work shows how ALMA will constrain the number counts well below the sub-mJy level. Research was conducted as part of the National Science Foundation's Research Experience for Undergraduates program.

  13. The Lyman-continuum photon production efficiency in the high-redshift Universe

    NASA Astrophysics Data System (ADS)

    Wilkins, Stephen M.; Feng, Yu; Di-Matteo, Tiziana; Croft, Rupert; Stanway, Elizabeth R.; Bouwens, Rychard J.; Thomas, Peter

    2016-05-01

    The Lyman-continuum photon production efficiency (ξion) is a critical ingredient for inferring the number of photons available to reionize the intergalactic medium. To estimate the theoretical production efficiency in the high-redshift Universe we couple the BlueTides cosmological hydrodynamical simulation with a range of stellar population synthesis models. We find Lyman-continuum photon production efficiencies of log10(ξion/erg-1 Hz) ≈ 25.1-25.5 depending on the choice of stellar population synthesis model. These results are broadly consistent with recent observational constraints at high-redshift though favour a model incorporating the effects of binary evolution.

  14. The effects of X-ray and UV background radiation on the low-mass slope of the galaxy mass function

    NASA Astrophysics Data System (ADS)

    Hambrick, D. C.; Ostriker, J. P.; Johansson, P. H.; Naab, T.

    2011-06-01

    Even though the dark-matter power spectrum in the absence of biasing predicts a number density of haloes n(M) ∝M-2 (i.e. a Schechter α value of -2) at the low-mass end (M < 1010 M⊙), hydrodynamic simulations have typically produced values for stellar systems in good agreement with the observed value α≃-1. We explain this with a simple physical argument and show that an efficient external gas-heating mechanism (such as the UV background included in all hydro codes) will produce a critical halo mass below which haloes cannot retain their gas and form stars. We test this conclusion with GADGET-2-based simulations using various UV backgrounds, and for the first time we also investigate the effect of an X-ray background. We show that at the present epoch α depends primarily on the mean gas temperature at the star-formation epoch for low-mass systems (z≲ 3): with no background we find α≃-1.5, with UV only α≃-1.0 and with UV and X-rays α≃-0.75. We find the critical final halo mass for star formation to be ˜4 × 108 M⊙ with a UV background and ˜7 × 108 M⊙ with UV and X-rays.

  15. Stellar Populations, Outflows, and Morphologies of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine Anne

    Understanding the regulation and environment of star formation across cosmic time is critical to tracing the build-up of mass in the Universe and the interplay between the stars and gas that are the constituents of galaxies. Three studies are presented in this thesis, each examining a different aspect of star formation at a specific epoch. The first study presents the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyalpha emission and stellar populations. Lyalpha equivalent widths were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. Using a variety of statistical tests, we find that Lyalpha equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyalpha emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyalpha emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyalpha emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. The second study focuses specifically on galactic-scale outflowing winds in 72 star-forming galaxies at z ˜ 1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering SiII, CIV, FeII, MgII, and MgI lines in the rest-frame ultraviolet. Using GALEX, HST, and Spitzer imaging available for the Extended Groth Strip, we examine galaxies on a per-object basis in order to better understand both the prevalence of galactic outflows at z ˜ 1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from

  16. On the [CII]-SFR Relation in High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.; Gallerani, S.; Ferrara, A.; Pallottini, A.; Yue, B.

    2015-11-01

    After two Atacama Large Millimeter/submillimeter Array (ALMA) observing cycles, only a handful of [C ii] 158 μm emission line searches in z > 6 galaxies have reported a positive detection, questioning the applicability of the local [C ii]-star formation rate (SFR) relation to high-z systems. To investigate this issue we use the Vallini et al. (V13) model,based on high-resolution, radiative transfer cosmological simulations to predict the [C ii] emission from the interstellar medium of a z ≈ 7 (halo mass Mh = 1.17 × 1011 M⊙) galaxy. We improve the V13 model by including (a) a physically motivated metallicity (Z) distribution of the gas, (b) the contribution of photodissociation regions (PDRs), and (c) the effects of cosmic microwave background (CMB) on the [C ii] line luminosity. We study the relative contribution of diffuse neutral gas to the total [C ii] emission (Fdiff/Ftot) for different SFR and Z values. We find that the [C ii] emission arises predominantly from PDRs: regardless of the galaxy properties, Fdiff/Ftot ≤ 10%, since at these early epochs the CMB temperature approaches the spin temperature of the [C ii] transition in the cold neutral medium (TCMB ˜ {T}s{{CNM}} ˜ 20 K). Our model predicts a high-z [C ii]-SFR relation, consistent with observations of local dwarf galaxies (0.02 < Z/Z⊙ < 0.5). The [C ii] deficit suggested by actual data (LCii < 2.0 × 107 L⊙ in BDF3299 at z ≈ 7.1) if confirmed by deeper ALMA observations, can be ascribed to negative stellar feedback disrupting molecular clouds around star formation sites. The deviation from the local [C ii]-SFR would then imply a modified Kennicutt-Schmidt relation in z > 6 galaxies. Alternatively/in addition, the deficit might be explained by low gas metallicities (Z < 0.1 Z⊙).

  17. High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    NASA Astrophysics Data System (ADS)

    Siana, Brian; Polletta, Maria del Carmen; Smith, Harding E.; Lonsdale, Carol J.; Gonzalez-Solares, Eduardo; Farrah, Duncan; Babbedge, Tom S. R.; Rowan-Robinson, Michael; Surace, Jason; Shupe, David; Fang, Fan; Franceschini, Alberto; Oliver, Seb

    2008-03-01

    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z ~ 3 (U-dropout) QSO candidates with 19 < r' < 22 over 11.7 deg2 in the ELAIS-N1 (EN1) and ELAIS-N2 (EN2) fields of the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy Survey. The z ~ 3 selection is reliable, with spectroscopic follow-up of 10 candidates confirming that they are all QSOs at 2.83 < z < 3.44. We find that our z ~ 4 (g'-dropout) sample suffers from both unreliability and incompleteness but present seven previously unidentified QSOs at 3.50 < z < 3.89. Detailed simulations show our z ~ 3 completeness to be ~80%-90% from 3.0 < z < 3.5, significantly better than the ~30%-80% completeness of the SDSS at these redshifts. The resulting luminosity function extends 2 mag fainter than SDSS and has a faint-end slope of β = - 1.42 +/- 0.15, consistent with values measured at lower redshift. Therefore, we see no evidence for evolution of the faint-end slope of the QSO luminosity function. Including the SDSS QSO sample, we have now directly measured the space density of QSOs responsible for ~70% of the QSO UV luminosity density at z ~ 3. We derive a maximum rate of H I photoionization from QSOs at z ~ 3.2, Γ = 4.8 × 10-13 s-1, about half of the total rate inferred through studies of the Lyα forest. Therefore, star-forming galaxies and QSOs must contribute comparably to the photoionization of H I in the intergalactic medium at z ~ 3. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  18. AURORA on MEGSAT 1: a photon counting observatory for the Earth UV night-sky background and Aurora emission

    NASA Astrophysics Data System (ADS)

    Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.

    2001-08-01

    A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed ``Notte'' and the Aurora emission with ``Alba''. AURORA, this is the name of the experiment, will determine, with the ``Notte'' channel, the overall night-side photon background in the 300-400nm spectral range, together with a particular 2+N2 line (λc=337nm). The ``Alba'' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6nm) centered on: 367nm (continuum evaluation), 391nm (1-N+2), 535nm (continuum evaluation), 560nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 ``Satan'' rocket. The satellite orbit is nearly circular (hapogee=648km, /e=0.0022), and the inclination of the orbital plane is 64.56°. An overview of the techniques adopted is given in this paper.

  19. Spectra of High-Redshift Type Ia Supernovae and a Comparison withtheir Low-Redshift Counterparts

    SciTech Connect

    Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns,M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente,P.; Sainton, G.; Schaefer, B.E.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-20

    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H&K are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

  20. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-08-20

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s{sup -1}. Their high speeds allow them to travel {approx}0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f{sub esc}, from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f{sub esc} as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f{sub esc} by factors of Almost-Equal-To 1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  1. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z {approx} 3-4

    SciTech Connect

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-08-20

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg{sup 2} of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 < z < 4.3 with proper transverse separations 10 kpc < R{sub perpendicular} < 650 kpc increases the number of such objects known by an order of magnitude. Eight members of this sample are very close pairs with R{sub perpendicular} < 100 kpc, and of these close systems four are at z>3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is {approx}50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R < 1 h {sup -1} Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M {approx}> 10{sup 9} M {sub sun}) supermassive black holes. At z {approx} 4, there is about one close binary per 10 Gpc{sup 3}, thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  2. Chemical abundances in high-redshift galaxies: a powerful new emission line diagnostic

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Kewley, Lisa J.; Sutherland, Ralph S.; Nicholls, David C.

    2016-02-01

    This Letter presents a new, remarkably simple diagnostic specifically designed to derive chemical abundances for high redshift galaxies. It uses only the Hα, [N ii] and [S ii] emission lines, which can usually be observed in a single grating setting, and is almost linear up to an abundance of 12+log (O/H) = 9.05. It can be used over the full abundance range encountered in high redshift galaxies. By its use of emission lines located close together in wavelength, it is also independent of reddening. Our diagnostic depends critically on the calibration of the N/O ratio. However, by using realistic stellar atmospheres combined with the N/O vs. O/H abundance calibration derived locally from stars and H ii regions, and allowing for the fact that high-redshift H ii regions have both high ionisation parameters and high gas pressures, we find that the observations of high-redshift galaxies can be simply explained by the models without having to invoke arbitrary changes in N/O ratio, or the presence of unusual quantities of Wolf-Rayet stars in these galaxies.

  3. The rest-frame submillimeter spectrum of high-redshift, dusty, star-forming galaxies

    SciTech Connect

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Crawford, T. M.; Chapman, S. C.; De Breuck, C.; Gullberg, B.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Holzapfel, W. L.; and others

    2014-04-20

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of {sup 12}CO, [C I], and H{sub 2}O, we also detect several faint transitions of {sup 13}CO, HCN, HNC, HCO{sup +}, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the {sup 13}CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which {sup 13}CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO{sup +}, and CN is consistent with a warm, dense medium with T {sub kin} ∼ 55 K and n{sub H{sub 2}}≳10{sup 5.5} cm{sup –3}. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  4. The Rest-frame Submillimeter Spectrum of High-redshift, Dusty, Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Bothwell, M. S.; Brodwin, M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Holzapfel, W. L.; Husband, K.; Ma, J.; Malkan, M.; Murphy, E. J.; Reichardt, C. L.; Rotermund, K. M.; Stalder, B.; Stark, A. A.; Strandet, M.; Vieira, J. D.; Weiß, A.; Welikala, N.

    2014-04-01

    We present the average rest-frame spectrum of high-redshift dusty, star-forming galaxies from 250 to 770 GHz. This spectrum was constructed by stacking Atacama Large Millimeter/submillimeter Array (ALMA) 3 mm spectra of 22 such sources discovered by the South Pole Telescope and spanning z = 2.0-5.7. In addition to multiple bright spectral features of 12CO, [C I], and H2O, we also detect several faint transitions of 13CO, HCN, HNC, HCO+, and CN, and use the observed line strengths to characterize the typical properties of the interstellar medium of these high-redshift starburst galaxies. We find that the 13CO brightness in these objects is comparable to that of the only other z > 2 star-forming galaxy in which 13CO has been observed. We show that the emission from the high-critical density molecules HCN, HNC, HCO+, and CN is consistent with a warm, dense medium with T kin ~ 55 K and n_{H_2} \\gtrsim 10^{5.5} cm-3. High molecular hydrogen densities are required to reproduce the observed line ratios, and we demonstrate that alternatives to purely collisional excitation are unlikely to be significant for the bulk of these systems. We quantify the average emission from several species with no individually detected transitions, and find emission from the hydride CH and the linear molecule CCH for the first time at high redshift, indicating that these molecules may be powerful probes of interstellar chemistry in high-redshift systems. These observations represent the first constraints on many molecular species with rest-frame transitions from 0.4 to 1.2 mm in star-forming systems at high redshift, and will be invaluable in making effective use of ALMA in full science operations.

  5. Probing high-redshift clusters with HST/ACS gravitational weak-lensing and Chandra x-ray observations

    NASA Astrophysics Data System (ADS)

    Jee, Myungkook James

    2006-06-01

    Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become

  6. Strongly Time-Variable Ultra-Violet Metal Line Emission from the Circum-Galactic Medium of High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Sravan, Niharika; Faucher-Giguère, Claude-André; van de Voort, Freeke; Kereš, Dušan; Muratov, Alexander L.; Hopkins, Philip F.; Feldmann, Robert; Quataert, Eliot; Murray, Norman

    2016-08-01

    We use cosmological simulations from the Feedback In Realistic Environments (FIRE) project, which implement a comprehensive set of stellar feedback processes, to study ultra-violet (UV) metal line emission from the circum-galactic medium of high-redshift (z = 2 - 4) galaxies. Our simulations cover the halo mass range Mh ˜ 2 × 1011 - 8.5 × 1012 M⊙ at z = 2, representative of Lyman break galaxies. Of the transitions we analyze, the low-ionization C III (977 Å) and Si III (1207 Å) emission lines are the most luminous, with C IV (1548 Å) and Si IV (1394 Å) also showing interesting spatially-extended structures. The more massive halos are on average more UV-luminous. The UV metal line emission from galactic halos in our simulations arises primarily from collisionally ionized gas and is strongly time variable, with peak-to-trough variations of up to ˜2 dex. The peaks of UV metal line luminosity correspond closely to massive and energetic mass outflow events, which follow bursts of star formation and inject sufficient energy into galactic halos to power the metal line emission. The strong time variability implies that even some relatively low-mass halos may be detectable. Conversely, flux-limited samples will be biased toward halos whose central galaxy has recently experienced a strong burst of star formation. Spatially-extended UV metal line emission around high-redshift galaxies should be detectable by current and upcoming integral field spectrographs such as the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope and Keck Cosmic Web Imager (KCWI).

  7. Probing Pre-galactic Metal Enrichment with High-redshift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-11-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature >~ 104 K. We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm-3. In more massive halos, corresponding to the first galaxies, the density may be larger, n >~ 100 cm-3. The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z >~ 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may distinguish whether the first heavy elements were produced in a pair

  8. Probing Pre-Galactic Metal Enrichment with High-Redshift Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.; Bromm, Volker; Greif, Thomas H.; Stacy, Athena; Dai, Z. G.; Loeb, Abraham; Cheng, K. S.

    2012-01-01

    We explore high-redshift gamma-ray bursts (GRBs) as promising tools to probe pre-galactic metal enrichment. We utilize the bright afterglow of a Population III (Pop III) GRB exploding in a primordial dwarf galaxy as a luminous background source, and calculate the strength of metal absorption lines that are imprinted by the first heavy elements in the intergalactic medium (IGM). To derive the GRB absorption line diagnostics, we use an existing highly resolved simulation of the formation of a first galaxy which is characterized by the onset of atomic hydrogen cooling in a halo with virial temperature approximately greater than10(exp 4) K.We explore the unusual circumburst environment inside the systems that hosted Pop III stars, modeling the density evolution with the self-similar solution for a champagne flow. For minihalos close to the cooling threshold, the circumburst density is roughly proportional to (1 + z) with values of about a few cm(exp -3). In more massive halos, corresponding to the first galaxies, the density may be larger, n approximately greater than100 cm(exp -3). The resulting afterglow fluxes are weakly dependent on redshift at a fixed observed time, and may be detectable with the James Webb Space Telescope and Very Large Array in the near-IR and radio wavebands, respectively, out to redshift z approximately greater than 20. We predict that the maximum of the afterglow emission shifts from near-IR to millimeter bands with peak fluxes from mJy to Jy at different observed times. The metal absorption line signature is expected to be detectable in the near future. GRBs are ideal tools for probing the metal enrichment in the early IGM, due to their high luminosities and featureless power-law spectra. The metals in the first galaxies produced by the first supernova (SN) explosions are likely to reside in low-ionization stages (C II, O I, Si II and Fe II). We show that, if the afterglow can be observed sufficiently early, analysis of the metal lines may

  9. Spatially resolved emission of a high-redshift DLA galaxy with the Keck/OSIRIS IFU

    SciTech Connect

    Jorgenson, Regina A.; Wolfe, Arthur M.

    2014-04-10

    We present the first Keck/OSIRIS infrared IFU observations of a high-redshift damped Lyα (DLA) galaxy detected in the line of sight to a background quasar. By utilizing the Laser Guide Star Adaptive Optics to reduce the quasar point-spread function to FWHM ∼ 0.''15, we were able to search for and map the foreground DLA emission free from the quasar contamination. We present maps of the Hα and [O III] λλ5007, 4959 emission of DLA 2222–0946 at a redshift of z ∼ 2.35. From the composite spectrum over the Hα emission region, we measure a star formation rate of 9.5 ± 1.0 M {sub ☉} yr{sup –1} and a dynamical mass of M {sub dyn} = 6.1 × 10{sup 9} M {sub ☉}. The average star formation rate surface density is (Σ{sub SFR}) = 0.55 M {sub ☉} yr{sup –1} kpc{sup –2}, with a central peak of 1.7 M {sub ☉} yr{sup –1} kpc{sup –2}. Using the standard Kennicutt-Schmidt relation, this corresponds to a gas mass surface density of Σ{sub gas} = 243 M {sub ☉} pc{sup –2}. Integrating over the size of the galaxy, we find a total gas mass of M {sub gas} = 4.2 × 10{sup 9} M {sub ☉}. We estimate the gas fraction of DLA 2222–0946 to be f {sub gas} ∼ 40%. We detect [N II] λ6583 emission at 3σ significance with a flux corresponding to a metallicity of 75% solar. Comparing this metallicity with that derived from the low-ion absorption gas ∼6 kpc away, ∼30% solar, indicates possible evidence for a metallicity gradient or enriched in/outflow of gas. Kinematically, both Hα and [O III] emission show relatively constant velocity fields over the central galactic region. While we detect some red and blueshifted clumps of emission, they do not correspond with rotational signatures that support an edge-on disk interpretation.

  10. WQ 2059-247: An unusual high redshift X-ray cluster

    NASA Technical Reports Server (NTRS)

    White, R. A.; Sarazin, C. L.; Quintana, H.; Jaffe, W. J.

    1980-01-01

    X-ray, optical, and radio observations of a high redshift, Bautz-Morgan type I cluster of galaxies are reported. The cD galaxy contains a powerful, flat spectrum radio source coincident with the possibly stellar nucleus. The cluster is an extremely luminous X-ray source; however, unlike nearby luminous X-ray clusters the X-ray spectrum appears to be rather soft. Two possible interpretations of the soruces are suggested: either the intracluster gas is much cooler in high redshift clusters because they are less relaxed, or the X-ray and radio emissions from WQ 2059-247 are the result of a non thermal QSO/BL Lac type object in the nucleus of the cD.

  11. Individual QSOs, Groups, & Clusters of High Redshift QSOs Associated with Low Redshift Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Burbidge, Geoffrey; Napier, W.

    2009-01-01

    Starting more than forty years ago it was found by Arp and others that many high redshift QSOs lie very close to comparatively nearby spiral galaxies. As time has gone on the implication of these results have been ignored. Implicitly they have been assumed to be accidental configurations. By now there are so many data, sometimes involving clusters of high z QSOs, that the data requires re-examination. We have done this using conservative statistical methods. We have concluded that the physical associations are real and thus it appears that QSOs are being ejected from spiral galaxies which often show other aspects of activity. Some examples of these phenomena will be described. Thus despite the fact that most investigators continue to use QSOs for cosmological investigations, the results are doomed to failure. Even more important the nature of the high redshifts of QSOs (but not the redshifts of normal galaxies) remains a puzzle yet to be solved.

  12. Damped Ly alpha absorbers at high redshift: Large disks or galactic building blocks?

    NASA Technical Reports Server (NTRS)

    Haehnelt, Martin G.; Steinmetz, Matthias; Rauch, Michael

    1997-01-01

    The nature of the physical structures giving rise to damped Lyman alpha absorption systems (DLAS) at high redshifts is investigated. The proposal that rapidly rotating large disks are the only viable explanation for the observed asymmetric profiles of low ionization absorption lines is examined. Using hydrodynamic simulations of galaxy formation, it is demonstated that irregular protogalactic clumps can reproduce the observed velocity width distribution and asymmetries of the absorption profiles equally well. The velocity broadening in the simulated clumps is due to a mixture of rotation, random motions, infall and merging. The observed velocity width correlates with the virial velocity for the dark matter halo of the forming protogalactic clump. The typical virial velocity of the halos required to lead to the DLAS population is approximately 100 km/s. It is concluded that the evidence that DLAS at high redshift are related to large, rapidly rotating disks, is not compelling.

  13. NIR Brightening of the high redshift Blazar 4C+38.41

    NASA Astrophysics Data System (ADS)

    Carrasco, L.; Porras, A.; Recillas, E.; Chavushyan, V.; Mayya, D. Y.

    2016-09-01

    We report on the recent NIR brightening of the high redshift Blazar 4C+38.41 (z=1.814), associated with the Gamma-ray source 2FGLJ1635.2+3810 and the optical source [HB89]1633+382 On September 21st,2016 (MJD 2457652.6733), we found the source with NIR fluxes corresponding to: H = 14.627 +/- 0.04 . On MJD 2457578.8.

  14. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  15. The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.

    1985-01-01

    In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.

  16. Constraints on Photoionization Feedback from Number Counts of Ultra-faint High-redshift Galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Yue, B.; Ferrara, A.; Merlin, E.; Fontana, A.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.

    2016-06-01

    We exploit a sample of ultra-faint high-redshift galaxies (demagnified Hubble Space Telescope, HST, H 160 magnitude > 30) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function in the presence of photoionization feedback. The objects have been selected on the basis of accurate photometric redshifts computed from multi-band photometry including seven HST bands and deep K s and IRAC observations. Magnification is computed on an object-by-object basis from all available lensing models of the two clusters. We take into account source detection completeness as a function of luminosity and size, magnification effects, and systematics in the lens modeling of the clusters under investigation. We find that our sample of high-z galaxies constrain the cutoff halo circular velocity below which star formation is suppressed by photoionization feedback to {v}c{{cut}}\\lt 50 km s‑1. This circular velocity corresponds to a halo mass of ≈5.6 × 109 M ⊙ and ≈2.3 × 109 M ⊙ at z = 5 and 10, respectively: higher-mass halos can thus sustain continuous star formation activity without being quenched by external ionizing flux. More stringent constraints are prevented by the uncertainty in the modeling of the cluster lens, as embodied by systematic differences among the lens models available.

  17. The importance of stellar feedback for high-redshift galaxy populations in hierarchical formation models

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela; De Lucia, Gabriella

    2015-08-01

    One major deficiency of most state-of-the-art galaxy formation models consists in their inability of capturing the observed galaxy downsizing trend as they significantly over-estimate the number density of low-mass galaxies at high redshifts. This points towards fundamental modifications in modeling the interplay between star formation and stellar feedback. Employing an enhanced galaxy formation model with a full chemical enrichment scheme, we present an improved model for stellar feedback (based on parametrizations extracted from cosmological zoom simulations), in which strong gas outflows happen due to bursty star formation at high redshift, while star formation is mainly "quiescent" not causing any significant outflows anymore at low redshift. Due to the stronger gas outflows at high z, early star formation is strongly delayed towards later times in good agreement with abundance matching predictions. As a consequence, also metal enrichment gets significantly delayed, resulting in a much more realistic redshift evolution of the gaseous metallicity. Overall, with our new stellar feedback model, we can successfully reproduce many observational constraints, such as the redshift evolution of the stellar mass function and of the SFR function, the gaseous and stellar metallicity content, the cold gas fractions and the fraction of quiescent/red galaxies at both low and high redshifts. The resulting new-generation galaxy catalogues based on that model are expected to significantly contribute to the interpretation of current and up-coming large-scale surveys (HST, JWST, Euclid) which in turn may also help to further constrain feedback models.

  18. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  19. MORPHOLOGY AND SIZE DIFFERENCES BETWEEN LOCAL AND HIGH-REDSHIFT LUMINOUS INFRARED GALAXIES

    SciTech Connect

    Rujopakarn, Wiphu; Rieke, George H.; Eisenstein, Daniel J.; Juneau, Stephanie

    2011-01-10

    We show that the star-forming regions in high-redshift luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and submillimeter galaxies (SMGs) have similar physical scales to those in local normal star-forming galaxies. To first order, their higher infrared (IR) luminosities result from higher luminosity surface density. We also find a good correlation between the IR luminosity and IR luminosity surface density in starburst galaxies across over five orders of magnitude of IR luminosity from local normal galaxies to z {approx} 2 SMGs. The intensely star-forming regions of local ULIRGs are significantly smaller than those in their high-redshift counterparts and hence diverge significantly from this correlation, indicating that the ULIRGs found locally are a different population from the high-redshift ULIRGs and SMGs. Based on this relationship, we suggest that luminosity surface density should serve as a more accurate indicator for the IR emitting environment, and hence the observable properties, of star-forming galaxies than their IR luminosity. We demonstrate this approach by showing that ULIRGs at z {approx} 1 and a lensed galaxy at z {approx} 2.5 exhibit aromatic features agreeing with local LIRGs that are an order of magnitude less luminous, but have similar IR luminosity surface density. A consequence of this relationship is that the aromatic emission strength in star-forming galaxies will appear to increase at z>1 for a given IR luminosity compared to their local counterparts.

  20. Spectral shape of the UV ionizing background and He II absorption at redshifts 1.8 < z < 2.9

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Fechner, C.; Tytler, D.; Simcoe, R. A.; Songaila, A.

    2007-01-01

    Aims:The shape of the UV ionizing background is reconstructed from optically thin metal absorption-line systems identified in spectra of HE 2347-4342, Q 1157+3143, and HS 1700+6416 in the redshift interval 1.8 < z < 2.9. Methods: The systems are analyzed by means of the Monte Carlo Inversion method completed with the spectral shape recovering procedure. Results: The UVB spectral shape fluctuates at 2.4 < z < 2.9 mostly due to radiative transfer processes in the clumpy IGM. At z ⪉ 1.8, the IGM becomes almost transparent both in the H I and He II Lyman continua and the variability of the spectral shape comes from diversity of spectral indices describing the QSO/AGN intrinsic radiation. At z > 2.4, the recovered spectral shapes show intensity depression between 3 and 4 Ryd due to He II Lyα absorption in the IGM clouds (line blanketing) and continuous medium (true Gunn-Petersen effect). The mean He II Lyα opacity estimated from the depth of this depression corresponds within 1-2σ to the values directly measured from the H I/He II Lyα forest towards the quasars studied. The observed scatter in η = N(He II)/N(H I) and anti-correlation between N(H I) and η can be explained by the combined action of variable spectral softness and differences in the mean gas density between the absorbing clouds. Neither of the recovered spectral shapes show features which can be attributed to the putative input of radiation from soft sources like starburst galaxies.

  1. The effect of dark matter resolution on the collapse of baryons in high-redshift numerical simulations

    NASA Astrophysics Data System (ADS)

    Regan, John A.; Johansson, Peter H.; Wise, John H.

    2015-06-01

    We examine the impact of dark matter particle resolution on the formation of a baryonic core in high-resolution adaptive mesh refinement simulations. We test the effect that both particle smoothing and particle splitting have on the hydrodynamic properties of a collapsing halo at high redshift (z > 20). Furthermore, we vary the background field intensity, with energy below the Lyman limit (<13.6 eV), as may be relevant for the case of metal-free star formation and supermassive black hole seed formation. We find that using particle splitting methods greatly increases our particle resolution without introducing any numerical noise and allows us to achieve converged results over a wide range of external background fields. Additionally, we find that for lower values of the background field a lower dark matter particle mass is required. We define the radius of the core as the point at which the enclosed baryonic mass dominates over the enclosed dark matter mass. For our simulations this results in Rcore ˜ 5 pc. We find that in order to produce converged results which are not affected by dark matter particles requires that the relationship Mcore/MDM > 100.0 be satisfied, where Mcore is the enclosed baryon mass within the core and MDM is the minimum dark matter particle mass. This ratio should provide a very useful starting point for conducting convergence tests before any production run simulations. We find that dark matter particle smoothing is a useful adjunct to already highly resolved simulations.

  2. Probing the High Redshift IGM: SPH+P{(3}) MG Simulations of the Lyman-alpha Forest

    NASA Astrophysics Data System (ADS)

    Wadsley, J.; Bond, J. R.

    1996-12-01

    Our understanding of the Lyman-alpha forest has received a great boost with the advent of the Keck Telescope and large 3D hydrodynamical simulations. We simulate the high redshift universe using the SPH technique with a P{(3}) MG (Particle-Particle Particle-MultiGrid) non-periodic gravity solver. We employ a high resolution (1 kpc) inner volume, essential for capturing the complex gas physics, larger medium and low resolution volumes surrounding it, essential for correct larger scale tidal fields, and a self-consistently applied, uniform tidal field to model the influence of ultra long waves. Such care is needed because the power per decade in the density fluctuations falls off very slowly in the dwarf galaxy regime of relevance to Lyman alpha clouds. The oft-used periodic boundary condition approach to simulations is ill-suited to proper treatment of the tides. We use constrained field realizations to probe a selection of environments, including voids, quiescent regions, proto-dwarf galaxies and regions experiencing strong tides, such as large galaxy halos and galaxy-galaxy filamentary bridges. We statistically combine our simulations to provide a more comprehensive sample of the universe, including ``rare event'' regions which are difficult to obtain in unrestricted FFT-based approaches. We fit Voigt profiles to the Lyman alpha spectra computed from our simulations direct comparison with the data, e.g., the column density distribution, line widths, temperatures, multiple line-of-sight correlations and the HI (and HeII) flux decrements. We demonstrate the importance of (1) the photoionizing UV flux level and history, (2) tidal environment and (3) differing cosmologies, including CDM and CDM+Lambda. With galaxy-scale rms fluctuations ~ 1 at z=3 and a UV choice motivated by proximity effect observations, the simulations give results in excellent agreement with the data.

  3. Local Counterparts to High-Redshift Turbulent Galaxies: What are the Stellar Kinematics?

    NASA Astrophysics Data System (ADS)

    Bassett, Robert; Glazebrook, Karl; Fisher, David; Abraham, Roberto; Damjanov, Ivana

    2014-02-01

    We aim to measure the stellar kinematics of 4 low redshift turbulent, clumpy disks with the GMOS IFU. Recent observations of high redshift galaxies show that gaseous disks in high redshift (z 2) galaxies are turbulent. The source of this turbulence remains an open question. A possible scenario is that turbulent disks are fed by streams of cold gas, flowing along cosmic filaments, which drive the large H-alpha velocity dispersions and clumpy star formation observed (for example by the SINS survey). However, the recent discovery of low redshift disk galaxies with clumpy-high velocity dispersion disks shows that galaxies with similar properties to high-z clumpy disks can exists in absence of cold flows, therefore an alternate driver for turbulence seems likely to explain, at least these nearby galaxies. A contrasting scenario is that the turbulence is driven by feedback from extreme star formation originating from a thin stellar disk. These nearby star forming disks are very rare, yet they provide an oppurtunity to study clumpy disks with techniques which are impossible at high redshift (due to both resolution and surface brightness dimming). Here we propose one such study, to measure the stellar kinematics from Balmer absorption lines. If the stars and gas have similar velocity dispersion, this would favor externally driven turbulence by gas accretion (a rare thing in the low redshift Universe); conversely if the gas and stars have different dynamics then this would suggest that internally driven turbelence from feedback is a plausible scenario. We currently have GMOS IFU observations of two disk systems, and we propose here to extend our sample. To identify galaxies as disks we use lower resolution IFU emission line kinematics from AAO, surface photometry from UKIDSS and SDSS, and Halpha maps from Hubble Space Telescope.

  4. Imaging and Demography of the Host Galaxies of High-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin F.; Hogan, Craig J.; Barris, Brian; Candia, Pablo; Challis, Peter; Clocchiatti, Alejandro; Coil, Alison L.; Filippenko, Alexei V.; Garnavich, Peter; Kirshner, Robert P.; Holland, Stephen T.; Jha, Saurabh; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Maza, Jose; Phillips, Mark M.; Riess, Adam G.; Schmidt, Brian P.; Schommer, Robert A.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher; Suntzeff, Nicholas B.; Tonry, John L.

    2003-12-01

    We present the results of a study of the host galaxies of high-redshift Type Ia supernovae (SNe Ia). We provide a catalog of 18 hosts of SNe Ia observed with the Hubble Space Telescope (HST) by the High-z Supernova Search Team, including images, scale lengths, measurements of integrated (Hubble-equivalent) BVRIZ photometry in bands where the galaxies are brighter than m~25 mag, and galactocentric distances of the supernovae. We compare the residuals of SN Ia distance measurements from cosmological fits with measurable properties of the supernova host galaxies that might be expected to correlate with variable properties of the progenitor population, such as host-galaxy color and position of the supernova. We find mostly null results; the current data are generally consistent with no correlations of the distance residuals with host-galaxy properties in the redshift range 0.42high redshift. These similarities support the current practice of extrapolating properties of the nearby population to high redshifts, pending more robust detections of any correlations between distance residuals from cosmological fits and host properties. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555.

  5. The fate of high redshift massive compact galaxies in dense environments

    SciTech Connect

    Kaufmann, Tobias; Mayer, Lucio; Carollo, Marcella; Feldmann, Robert; /Fermilab /Chicago U., KICP

    2012-01-01

    Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z {approx} 2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialized galaxy groups of mass {approx} 10{sup 13} M{sub {circle_dot}} hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift {approx} 2 the population of galaxies with M{sub *} > 2 x 10{sup 10} M{sub {circle_dot}} is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the {Lambda}CDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.

  6. Seeding high-redshift QSOs by collisional runaway in primordial star clusters

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Sijacki, Debora; Haehnelt, Martin G.

    2015-08-01

    We study how runaway stellar collisions in high-redshift, metal-poor star clusters form very massive stars (VMSs) that can directly collapse to intermediate-mass black holes (IMBHs). We follow the evolution of a pair of neighbouring high-redshift mini-haloes with high-resolution, cosmological hydrodynamical zoom-in simulations using the adaptive mesh refinement code RAMSES combined with the non-equilibrium chemistry package KROME. The first collapsing mini-halo is assumed to enrich the central nuclear star cluster (NSC) of the other to a critical metallicity, sufficient for Population II (Pop. II) star formation at redshift z ≈ 27. Using the spatial configuration of the flattened, asymmetrical gas cloud forming in the core of the metal-enriched halo, we set the initial conditions for simulations of an initially non-spherical star cluster with the direct summation code NBODY6 which are compared to about 2000 NBODY6 simulations of spherical star clusters for a wide range of star cluster parameters. The final mass of the VMS that forms depends strongly on the initial mass and initial central density of the NSC. For the initial central densities suggested by our RAMSES simulations, VMSs with mass >400 M⊙ can form in clusters with stellar masses of ≈104 M⊙, and this can increase to well over 1000 M⊙ for more massive and denser clusters. The high probability we find for forming a VMS in these mini-haloes at such an early cosmic time makes collisional runaway of Pop. II star clusters a promising channel for producing large numbers of high-redshift IMBHs that may act as the seeds of supermassive black holes.

  7. Long-Term Multiwavelength Studies of High-Redshift Blazar 0836+710

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Akyuz, A.; Donato, D.; Perkins, J. S.; Larsson, S.; Sokolovsky, K.; Fuhrmann, L.; Kurtanidze, O.

    2012-01-01

    Following gamma-ray flaring activity of high-redshift (z=2.218) blazar 0836+710 in 2011, we have assembled a long-term multiwavelength study of this object. Although this source is monitored regularly by radio telescopes and the Fermi Large Area Telescope, its coverage at other wavelengths is limited. The optical flux appears generally correlated with the gamma-ray flux, while little variability has been seen at X-ray energies. The gamma-ray/radio correlation is complex compared to some other blazars. As for many blazars, the largest variability is seen at gamma-ray wavelengths.

  8. Observational Signatures of High-Redshift Quasars and Local Relics of Black Hole Seeds

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Comastri, Andrea

    2016-10-01

    Observational constraints on the birth and early evolution of massive black holes come from two extreme regimes. At high redshift, quasars signal the rapid growth of billion-solar-mass black holes and indicate that these objects began remarkably heavy and/or accreted mass at rates above the Eddington limit. At low redshift, the smallest nuclear black holes known are found in dwarf galaxies and provide the most concrete limits on the mass of black hole seeds. Here, we review current observational work in these fields that together are critical for our understanding of the origin of massive black holes in the Universe.

  9. Updates to the High-Redshift Supernovae in the SCP Union Compilation

    NASA Astrophysics Data System (ADS)

    Rubin, David; Aldering, G. S.; Amanullah, R.; Barbary, K. H.; Bruce, A.; Dawson, K. S.; Doi, M.; Fakhouri, H.; Fruchter, A. S.; Goobar, A.; Huang, X.; Ihara, Y.; Kim, A. G.; Kowalski, M.; Krechmer, E.; Lidman, C.; Linder, E.; Meyers, J.; Morokuma, T.; Nordin, J.; Perlmutter, S.; Rykoff, E. S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Takanashi, N.; Yasuda, N.; Cosmology Project, Supernova

    2013-01-01

    Building on the work presented in Amanullah et al. (ApJ, 2010) and Suzuki et al. (ApJ, 2012), adding new z > 1 supernovae discovered in ground-based work and a new analysis of existing HST SNe, we present an updated high-redshift dataset. We update the SCP Union compilation with this and other recent datasets and present updated cosmological fits. This work has been supported by the Office of Science, U.S. Department of Energy (through contract DE-AC02-05CH11231), and in part by NASA through grants associated with HST-GO-10496.

  10. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars

  11. Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra

    NASA Astrophysics Data System (ADS)

    McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.

    2015-01-01

    X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.

  12. A supernova origin for dust in a high-redshift quasar.

    PubMed

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  13. The environments of high-redshift radio galaxies and quasars: probes of protoclusters

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro A.; Fanidakis, Nikos; Lacey, Cedric G.; Baugh, Carlton M.

    2016-03-01

    We use the GALFORM semi-analytical model to study high-density regions traced by radio galaxies and quasars at high redshifts. We explore the impact that baryonic physics has upon the properties of galaxies in these environments. Star-forming emission-line galaxies (Ly α and H α emitters) are used to probe the environments at high redshifts. Radio galaxies are predicted to be hosted by more massive haloes than quasars, and this is imprinted on the amplitude of galaxy overdensities and cross-correlation functions. We find that Ly α radiative transfer and active galactic nucleus feedback indirectly affect the clustering on small scales and also the stellar masses, star formation rates and gas metallicities of galaxies in dense environments. We also investigate the relation between protoclusters associated with radio galaxies and quasars, and their present-day cluster descendants. The progenitors of massive clusters associated with radio galaxies and quasars allow us to determine an average protocluster size in a simple way. Overdensities within the protoclusters are found to correlate with the halo descendant masses. We present scaling relations that can be applied to observational data. By computing projection effects due to the wavelength resolution of modern spectrographs and narrow-band filters, we show that the former have enough spectral resolution to map the structure of protoclusters, whereas the latter can be used to measure the clustering around radio galaxies and quasars over larger scales to determine the mass of dark matter haloes hosting them.

  14. Distance Estimates for High Redshift Clusters SZ and X-Ray Measurements

    NASA Technical Reports Server (NTRS)

    Joy, Marshall K.

    1999-01-01

    I present interferometric images of the Sunyaev-Zel'dovich effect for the high redshift (z $ greater than $ 0.5) galaxy clusters in the \\emph(Einstein) Medium Sensitivity Survey: MS0451.5-0305 (z = 0.54), MS0015.9+1609 (z = 0.55), MS2053.7-0449 (z = 0.58), MS1 137.5+6625 (z = 0.78), and MS 1054.5-0321 (z = 0.83). Isothermal $\\beta$ models are applied to the data to determine the magnitude of the Sunyaev-Zel'dovich (S-Z) decrement in each cluster. Complementary ROSAT PSPC and HRI x-ray data are also analyzed, and are combined with the S-Z data to generate an independent estimate of the cluster distance. Since the Sunyaev-Zel'dovich Effect is invariant with redshift, sensitive S-Z imaging can provide an independent determination of the size, shape, density, and distance of high redshift galaxy clusters; we will discuss current systematic uncertainties with this approach, as well as future observations which will yield stronger constraints.

  15. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng; Ashby, Matthew L. N.; Gurwell, Mark A.; Petitpas, Glen R.; Wilner, David J.; Yun, Min S.; Wilson, Grant W.; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Peck, Alison B.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Lowenthal, James D.

    2009-10-10

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.

  16. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  17. THE MID-INFRARED ENVIRONMENTS OF HIGH-REDSHIFT RADIO GALAXIES

    SciTech Connect

    Galametz, Audrey; Stern, Daniel; De Breuck, Carlos; Vernet, Joeel; Hatch, Nina; Mayo, Jack; Miley, George; Rettura, Alessandro; Seymour, Nick; Adam Stanford, S.

    2012-04-20

    Taking advantage of the impressive sensitivity of Spitzer to detect massive galaxies at high redshift, we study the mid-infrared environments of powerful, high-redshift radio galaxies at 1.2 < z < 3. Galaxy cluster member candidates were isolated using a single Spitzer/IRAC mid-infrared color criterion, [3.6]-[4.5] > -0.1 (AB), in the fields of 48 radio galaxies at 1.2 < z < 3. Using a counts-in-cell analysis, we identify a field as overdense when 15 or more red IRAC sources are found within 1' (i.e., 0.5 Mpc at 1.2 < z < 3) of the radio galaxy to the 5{sigma} flux density limits of our IRAC data (f{sub 4.5} = 13.4 {mu}Jy). We find that radio galaxies lie preferentially in medium to dense regions, with 73% of the targeted fields denser than average. Our (shallow) 120 s data permit the rediscovery of previously known clusters and protoclusters associated with radio galaxies as well as the discovery of new promising galaxy cluster candidates at z > 1.2.

  18. The high-redshift galaxy population in hierarchical galaxy formation models

    NASA Astrophysics Data System (ADS)

    Kitzbichler, M. G.; White, S. D. M.

    2007-03-01

    We compare observations of the high-redshift galaxy population to the predictions of the galaxy formation model of Croton et al. and De Lucia & Blaizot. This model, implemented on the Millennium Simulation of the concordance Lambda cold dark matter cosmogony, introduces `radio mode' feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the present-day galaxy population. Here we construct deep light cone surveys in order to compare model predictions to the observed counts and redshift distributions of distant galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment agrees moderately well with most of the data. The predicted abundance of relatively massive (~M*) galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this model than in the real Universe. An independent galaxy formation model implemented on the same simulation matches the observed mass functions slightly better, so the discrepancy probably reflects incomplete or inaccurate galaxy formation physics rather than problems with the underlying cosmogony.

  19. A critical analysis of high-redshift, massive, galaxy clusters. Part I

    SciTech Connect

    Hoyle, Ben; Jimenez, Raul; Verde, Licia; Hotchkiss, Shaun E-mail: licia.verde@icc.ub.edu E-mail: shaun.hotchkiss@helsinki.fi

    2012-02-01

    We critically investigate current statistical tests applied to high redshift clusters of galaxies in order to test the standard cosmological model and describe their range of validity. We carefully compare a sample of high-redshift, massive, galaxy clusters with realistic Poisson sample simulations of the theoretical mass function, which include the effect of Eddington bias. We compare the observations and simulations using the following statistical tests: the distributions of ensemble and individual existence probabilities (in the > M, > z sense), the redshift distributions, and the 2d Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al. (2011), and Jee et al. (2011) and assuming the same survey geometry as in Jee et al. (2011, which is less conservative than Hoyle et al. 2011), we find that the ( > M, > z) existence probabilities of all clusters are fully consistent with ΛCDM. However assuming the same survey geometry, we use the 2d K-S test probability to show that the observed clusters are not consistent with being the least probable clusters from simulations at > 95% confidence, and are also not consistent with being a random selection of clusters, which may be caused by the non-trivial selection function and survey geometry. Tension can be removed if we examine only a X-ray selected sub sample, with simulations performed assuming a modified survey geometry.

  20. Awakening of The High-Redshift Blazar CGRaBS J0809+5341

    NASA Astrophysics Data System (ADS)

    Paliya, Vaidehi S.; Parker, M. L.; Stalin, C. S.; Fabian, A. C.; Ramya, S.; Covino, S.; Tagliaferri, G.; Sahayanathan, S.; Ravikumar, C. D.

    2015-04-01

    CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ˜5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of -30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. A high optical polarization of ˜10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 1045 erg s-1 and 108.4 M⊙, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.

  1. Where stars form and live at high redshift: clues from the infrared

    NASA Astrophysics Data System (ADS)

    Béthermin, M.; Doré, O.; Lagache, G.

    2012-01-01

    The relation between dark matter halos and the loci of star formation at high redshift is a pressing question in contemporary cosmology. Matching the abundance of halos to the abundance of infrared (IR) galaxies, we explore the link between dark matter halo mass (Mh), stellar mass (M⋆) and star-formation rate (SFR) up to a redshift of 2. Our findings are five-fold. First, we find a strong evolution of the relation between M⋆ and SFR as a function of redshift with an increase of sSFR = SFR/M⋆ by a factor ~30 between z = 0 and z = 2.3. Second, we observe a decrease of sSFR with stellar mass. These results reproduce observed trends at redshift z > 0.3. Third, we find that the star formation is most efficient in dark matter halos with Mh ≃ 5 × 1011 M⊙, with hints of an increase of this mass with redshift. Fourth, we find that SFR/Mh increases by a factor ~15 between z = 0 and z = 2.3. Finally we find that the SFR density is dominated by halo masses close to ~7 × 1011 M⊙ at all redshift, with a rapid decrease at lower and higher halo masses. Despite its simplicity, our novel use of IR observations unveils some characteristic mass-scales governing star formation at high redshift.

  2. Understanding the Physical Conditions in Local Analogs of High-Redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Erb, Dawn; Tremonti, Christina A.; Berg, Danielle

    2016-01-01

    Observations of strong nebular emission lines in high-redshift galaxies (z~2) can be illuminated through the use of analogous local galaxies (z<0.4), for which many more emission lines can be measured. The observed offset in the "BPT" ([N II]λ6584/Hα vs. [O III]λ5007/Hβ) nebular diagnostic diagram between the locus of high redshift galaxies and that of typical local galaxies indicates a change in the physical conditions of the galaxies with redshift; the cause of this offset is unknown, but it may be associated with the ionization parameter, the hardness of the ionizing spectrum, or the N/O abundance ratio. To study the offset, we have selected a sample of local galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (SDSS-III/BOSS DR12), which occupies the same space in the [N II]λ6584/Hα vs. [O III]λ5007/Hβ diagnostic diagram as the z~2 sample. Using a suite of >50 different emission lines, most of which are unavailable in analyses of higher redshift galaxies, and a novel method of improving the spectrophotometric calibration of BOSS data, we investigate the metallicity, ionization state, and abundance ratios of this offset sample in order to shed light on the physical conditions in galaxies in the early universe.

  3. Exploring the stellar populations of nearby and high redshift galaxies with ELTs

    NASA Astrophysics Data System (ADS)

    Gullieuszik, M.; Falomo, R.; Greggio, L.; Uslenghi, M.; Fantinel, D.

    The high sensitivity and spatial resolution of future ELTs facilities will offer the unique opportunity to probe directly the stellar populations of the very inner regions of galaxies in the local Universe and to derive morphological and photometric information for high redshift galaxies. We present our project aimed at assessing the expected capabilities of ELTs in the study of nearby and high-redshift stellar populations. To this end, we simulated imaging observations of different stellar populations in the local Universe and in high-redhshift galaxies with the MICADO camera at the E-ELT. Detailed photometric analyses of these images were used to probe the feasibility of science cases dealing with photometry of resolved stars in crowded fields, and with surface photometry of distant galaxies. We find that the future facilities will allow us to greatly improve our knowledge of the stellar populations in galaxies, especially in the innermost and most crowded regions. Accurate photometry of turn-off stars in nuclear star clusters of intermediate age will be possible up to distances of ˜ 3 Mpc. The exquisite spacial resolution will also drive great progress in unresolved stellar populations studies, enabling the detailed measurement of structural parameters, colour profiles, and the detection of signature of star formation sub-structures in galaxies at redshifts up to z=3.

  4. Imaging of Three Possible Low-redshift Analogs to High-redshift Compact Red Galaxies

    NASA Astrophysics Data System (ADS)

    Shih, Hsin-Yi; Stockton, Alan

    2011-05-01

    As part of a larger program to identify and characterize possible low-redshift analogs to massive compact red galaxies found at high redshift, we have examined the morphologies of three low-redshift compact galaxies drawn from the sample of Trujillo et al. Using deeper and higher resolution images, we have found faint and relatively extensive outer structures in addition to the compact cores identified in the earlier measurements. One object appears to have a small companion that may be involved in an ongoing minor merger of the sort that could be responsible for building up the outer parts of these galaxies. The ages of the dominant stellar populations in these objects are found to be around 2-4 Gyr, in good agreement with the previous estimates. The presence of diffuse outer structures in these galaxies indicates that truly compact and massive red galaxies are exceedingly rare at low redshift. The relatively young stellar populations suggest that the accretion of the extensive outer material must occur essentially universally on relatively short timescales of a few billion years or less. These results confirm and extend previous suggestions that the driving mechanism behind the size evolution of high-redshift compact galaxies cannot be highly stochastic processes such as major mergers, which would inevitably leave a non-negligible fraction of survivors at low redshift.

  5. AWAKENING OF THE HIGH-REDSHIFT BLAZAR CGRaBS J0809+5341

    SciTech Connect

    Paliya, Vaidehi S.; Stalin, C. S.; Parker, M. L.; Fabian, A. C.; Ramya, S.; Covino, S.; Tagliaferri, G.; Sahayanathan, S.; Ravikumar, C. D.

    2015-04-20

    CGRaBS J0809+5341, a high-redshift blazar at z = 2.144, underwent a giant optical outburst on 2014 April 19 when it brightened by ∼5 mag and reached an unfiltered apparent magnitude of 15.7 mag. This implies an absolute magnitude of −30.5 mag, making it one of the brightest quasars in the universe. This optical flaring triggered us to carry out observations during the decaying part of the flare covering a wide energy range using the Nuclear Spectroscopic Telescope Array, Swift, and ground-based optical facilities. For the first time, the source is detected in γ-rays by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. A high optical polarization of ∼10% is also observed. Using the Sloan Digital Sky Survey spectrum, the accretion disk luminosity and black hole mass are estimated as 1.5 × 10{sup 45} erg s{sup −1} and 10{sup 8.4} M{sub ⊙}, respectively. Using a single zone leptonic emission model, we reproduce the spectral energy distribution of the source during the flaring activity. This analysis suggests that the emission region is probably located outside the broad-line region, and the jet becomes radiatively efficient. We also show that the overall properties of CGRaBS J0809+5341 seem to not be in agreement with the general properties observed in high-redshift blazars up to now.

  6. Atomic and molecular far-infrared lines from high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Vallini, L.

    2015-03-01

    The advent of Atacama Large Millimeter-submillimeter Array (ALMA), with its unprecedented sensitivity, makes it possible the detection of far-infrared (FIR) metal cooling and molecular lines from the first galaxies that formed after the Big Bang. These lines represent a powerful tool to shed light on the physical properties of the interstellar medium (ISM) in high-redshift sources. In what follows we show the potential of a physically motivated theoretical approach that we developed to predict the ISM properties of high redshift galaxies. The model allows to infer, as a function of the metallicity, the luminosities of various FIR lines observable with ALMA. It is based on high resolution cosmological simulations of star-forming galaxies at the end of the Epoch of Reionization (z˜eq6) , further implemented with sub-grid physics describing the cooling and the heating processes that take place in the neutral diffuse ISM. Finally we show how a different approach based on semi-analytical calculations can allow to predict the CO flux function at z>6.

  7. Delayed star formation in high-redshift stream-fed galaxies

    NASA Astrophysics Data System (ADS)

    Gabor, J. M.; Bournaud, Frédéric

    2014-01-01

    We propose that star formation (SF) is delayed relative to the inflow rate in rapidly accreting galaxies at very high redshift (z > 2) because of the energy conveyed by the accreting gas. Accreting gas streams provide fuel for SF, but they stir the disc and increase turbulence above the usual levels compatible with gravitational instability, reducing the SF efficiency in the available gas. After the specific inflow rate has sufficiently decreased - typically at z < 3 - galaxies settle in a self-regulated regime with efficient SF. An analytic model shows that this interaction between infalling gas and young galaxies can significantly delay SF and maintain high gas fractions (>40 per cent) down to z ≈ 2, in contrast to other galaxy formation models. Idealized hydrodynamic simulations of infalling gas streams on to primordial galaxies confirm the efficient energetic coupling at z > 2 and suggest that this effect is largely under-resolved in existing cosmological simulations.

  8. Studying high redshift galaxy groups with the Athena Wide-Field-Imager

    NASA Astrophysics Data System (ADS)

    Pacaud, Florian; Reiprich, Thomas; Ramos Ceja, Miriam Elizabeth; Lovisari, Lorenzo

    2016-07-01

    In this contribution, we will discuss the potential of Athena to study high redshift galaxy groups (1

  9. A high-redshift IRAS galaxy with huge luminosity - Hidden quasar or protogalaxy?

    NASA Technical Reports Server (NTRS)

    Rowan-Robinson, M.; Broadhurst, T.; Oliver, S. J.; Taylor, A. N.; Lawrence, A.; Mcmahon, R. G.; Lonsdale, C. J.; Hacking, P. B.; Conrow, T.

    1991-01-01

    An emission line galaxy with the enormous far-IR luminosity of 3 x 10 to the 14th solar has been found at z = 2.286. The spectrum is very unusual, showing lines of high excitation but with very weak Lyman-alpha emission. A self-absorbed synchrotron model for the IR energy distribution cannot be ruled out, but a thermal origin seems more plausible. A radio-quiet quasar embedded in a very dusty galaxy could account for the IR emission, as might a starburst embedded in 1-10 billion solar masses of dust. The latter case demands so much dust that the object would probably be a massive galaxy in the process of formation. The presence of a large amount of dust in an object of such high redshift implies the generation of heavy elements at an early cosmological epoch.

  10. A Detailed Study of Two Optically-Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2002-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z=0.76 and CL1604+4304 at z=0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifics of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  11. A Detailed Study of Two Optically Selected, High-Redshift Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Lubin, Lori M.

    2000-01-01

    We are obtaining detailed X-ray spectral and structural data for two distant, optically-selected clusters of galaxies which are known X-ray emitters, CL1324+3011 at z = 0.76 and CL,1604+4304 at z = 0.90. These observations will allow us to place accurate constraints on the temperature, surface-brightness profile, and mass fraction of the intracluster medium in rich, optically-selected clusters at very high redshift. The two target clusters are the most well-studied systems at z greater than 0.7 in the optical and infrared regimes; therefore, with the addition of the XMM data, we plan to study the specifies of the relationship between the X-ray and optical properties and their implications for galaxy and cluster evolution.

  12. VizieR Online Data Catalog: KMOS AGN Survey at High redshift (KASHz) (Harrison+, 2016)

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-08-01

    KASHz is designed to ultimately obtain spatially resolved emission-line kinematics of ~(100-200) high-redshift (z~0.6-3.6) AGN. For our target selection we make use of deep X-ray surveys performed in extragalactic fields (COSMOS, see Scoville et al., 2007, Cat. J/ApJS/171/1; CDF-S, see Giacconi et al. 2001ApJ...551..624G and Xue et al., 2011, Cat. J/ApJS/195/10 (CDFS); UDS, SXDS: see Furusawa et al. 2008, Cat. J/ApJS/176/1 (UDS) and SSA22, see Steidel et al. 1998ApJ...492..428S). (1 data file).

  13. The Evolution of Metals and Dust in the High-Redshift Universe (z greater than 6)

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2007-01-01

    Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above approx. 6, when the universe was less than approx. 1 Gyr old, dust could have only condensed in the explosive ejecta of Type-II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence. I will present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at $z = 6.4$. I will also discuss possible star formation scenarios consistent with observational constraints on the dust and gas content of this object.

  14. On the road to precision cosmology with high-redshift H II galaxies

    NASA Astrophysics Data System (ADS)

    Terlevich, R.; Terlevich, E.; Melnick, J.; Chávez, R.; Plionis, M.; Bresolin, F.; Basilakos, S.

    2015-08-01

    We report the first results of a programme aimed at studying the properties of high-redshift galaxies with ongoing massive and dominant episodes of star formation (H II galaxies). We use the L(Hβ)-σ distance estimator based on the correlation between the ionized gas velocity dispersions and Balmer emission line luminosities of H II galaxies and Giant H II regions to trace the expansion of the Universe up to z ˜ 2.33. This approach provides an independent constraint on the equation of state of dark energy and its possible evolution with look-back time. Here we present high-dispersion (8000 to 10 000 resolution) spectroscopy of H II galaxies at redshifts between 0.6 and 2.33, obtained at the Very Large Telescope (VLT) using XShooter. Using six of these H II galaxies we obtain broad constraints on the plane Ωm-w0. The addition of 19 high-z H II galaxies from the literature improves the constraints and highlights the need for high-quality emission line profiles, fluxes and reddening corrections. The 25 high-z H II galaxies plus our local compilation of 107 H II galaxies up to z = 0.16 were used to impose further constraints. Our results are consistent with recent studies, although weaker due to the as yet small sample and low quality of the literature data of high-z H II galaxies. We show that much better and competitive constraints can be obtained using a larger sample of high-redshift H II galaxies with high quality data that can be easily obtained with present facilities like K-band Multi Object Spactrograph (KMOS) at the VLT.

  15. THE PRESENCE OF WEAK ACTIVE GALACTIC NUCLEI IN HIGH REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wright, Shelley A.; Graham, James R.; Ma, C-P; Larkin, James E.

    2010-03-10

    We present [O III 5007 A] observations of the star-forming galaxy (SFG) HDF-BMZ1299 (z = 1.598) using Keck Observatory's adaptive optics system with the near-infrared {integral} field spectrograph OSIRIS. Using previous Halpha and [N II] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional H II diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central {approx}1.5 kpc (0.''2) are best explained by the presence of an active galactic nucleus (AGN): log ([N II]/Halpha) = -0.22 +- 0.05 and 2sigma limit of log ([O III]/Hbeta) {approx}>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and H II regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift SFGs, and we suggest that this may be a source of the 'elevated' nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L{sub Halpha} = (3.7 +- 0.5) x 10{sup 41} erg s{sup -1} and L{sub [O{sub III}]} = (5.8 +- 1.9) x 10{sup 41} erg s{sup -1}, making it one of the lowest luminosity AGNs discovered at this early epoch.

  16. A new method to search for high-redshift clusters using photometric redshifts

    SciTech Connect

    Castignani, G.; Celotti, A.; Chiaberge, M.; Norman, C.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  17. Lyalpha RADIATIVE TRANSFER WITH DUST: ESCAPE FRACTIONS FROM SIMULATED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Laursen, Peter; Sommer-Larsen, Jesper; Andersen, Anja C. E-mail: jslarsen@astro.ku.d

    2009-10-20

    The Lyalpha emission line is an essential diagnostic tool for probing galaxy formation and evolution. Not only is it commonly the strongest observable line from high-redshift galaxies, but from its shape detailed information about its host galaxy can be revealed. However, due to the scattering nature of Lyalpha photons increasing their path length in a nontrivial way, if dust is present in the galaxy, the line may be severely suppressed and its shape altered. In order to interpret observations correctly, it is thus of crucial significance to know how much of the emitted light actually escapes the galaxy. In the present work, using a combination of high-resolution cosmological hydrosimulations and an adaptively refinable Monte Carlo Lyalpha radiative transfer code including an environment dependent model of dust, the escape fractions f {sub esc} of Lyalpha radiation from high-redshift (z = 3.6) galaxies are calculated. In addition to the average escape fraction, the variation of f {sub esc} in different directions and from different parts of the galaxies is investigated, as well as the effect on the emergent spectrum. Escape fractions from a sample of simulated galaxies of representative physical properties are found to decrease for increasing galaxy virial mass M {sub vir}, from f {sub esc} approaching unity for M {sub vir} approx 10{sup 9} M {sub sun} to f {sub esc} less than 10% for M {sub vir} approx 10{sup 12} M {sub sun}. In spite of dust being almost gray, it is found that the emergent spectrum is affected nonuniformly, with the escape fraction of photons close to the line center being much higher than of those in the wings, thus effectively narrowing the Lyalpha line.

  18. Gravitational wave source counts at high redshift and in models with extra dimensions

    NASA Astrophysics Data System (ADS)

    García-Bellido, Juan; Nesseris, Savvas; Trashorras, Manuel

    2016-07-01

    Gravitational wave (GW) source counts have been recently shown to be able to test how gravitational radiation propagates with the distance from the source. Here, we extend this formalism to cosmological scales, i.e. the high redshift regime, and we discuss the complications of applying this methodology to high redshift sources. We also allow for models with compactified extra dimensions like in the Kaluza-Klein model. Furthermore, we also consider the case of intermediate redshifts, i.e. 0 < z lesssim 1, where we show it is possible to find an analytical approximation for the source counts dN/d(S/N). This can be done in terms of cosmological parameters, such as the matter density Ωm,0 of the cosmological constant model or the cosmographic parameters for a general dark energy model. Our analysis is as general as possible, but it depends on two important factors: a source model for the black hole binary mergers and the GW source to galaxy bias. This methodology also allows us to obtain the higher order corrections of the source counts in terms of the signal-to-noise S/N. We then forecast the sensitivity of future observations in constraining GW physics but also the underlying cosmology by simulating sources distributed over a finite range of signal-to-noise with a number of sources ranging from 10 to 500 sources as expected from future detectors. We find that with 500 events it will be possible to provide constraints on the matter density parameter at present Ωm,0 on the order of a few percent and with the precision growing fast with the number of events. In the case of extra dimensions we find that depending on the degeneracies of the model, with 500 events it may be possible to provide stringent limits on the existence of the extra dimensions if the aforementioned degeneracies can be broken.

  19. COSMIC RAYS CAN DRIVE STRONG OUTFLOWS FROM GAS-RICH HIGH-REDSHIFT DISK GALAXIES

    SciTech Connect

    Hanasz, M.; Kowalik, K.; Wóltański, D.; Lesch, H.; Naab, T.; Gawryszczak, A.

    2013-11-10

    We present simulations of the magnetized interstellar medium (ISM) in models of massive star-forming (40 M {sub ☉} yr{sup –1}) disk galaxies with high gas surface densities (Σ{sub gas} ∼ 100 M {sub ☉} pc{sup –2}) similar to observed star-forming high-redshift disks. We assume that type II supernovae deposit 10% of their energy into the ISM as cosmic rays (CRs) and neglect the additional deposition of thermal energy or momentum. With a typical Galactic diffusion coefficient for CRs (3 × 10{sup 28} cm{sup 2} s{sup –1}), we demonstrate that this process alone can trigger the local formation of a strong low-density galactic wind maintaining vertically open field lines. Driven by the additional pressure gradient of the relativistic fluid, the wind speed can exceed 10{sup 3} km s{sup –1}, much higher than the escape velocity of the galaxy. The global mass loading, i.e., the ratio of the gas mass leaving the galactic disk in a wind to the star formation rate, becomes of order unity once the system has settled into an equilibrium. We conclude that relativistic particles accelerated in supernova remnants alone provide a natural and efficient mechanism to trigger winds similar to observed mass-loaded galactic winds in high-redshift galaxies. These winds also help in explaining the low efficiencies for the conversion of gas into stars in galaxies, as well as the early enrichment of the intergalactic medium with metals. This mechanism may be at least of similar importance to the traditionally considered momentum feedback from massive stars and thermal and kinetic feedback from supernova explosions.

  20. Scheduled discoveries of 7+ high-Redshift supernovae: First cosmology results and bounds on q{sub 0}

    SciTech Connect

    Perlmutter, S., FNAL

    1998-09-01

    Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0} , {Lambda}, {Omega}{sub 0} , and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0} , of these first high-redshift supernovae from our ongoing search.

  1. The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Weisz, Daniel R.; Johnson, Benjamin D.; Bullock, James S.; Conroy, Charlie; Fitts, Alex

    2015-10-01

    We infer the UV luminosities of Local Group galaxies at early cosmic times (z ˜ 2 and z ˜ 7) by combining stellar population synthesis modelling with star formation histories derived from deep colour-magnitude diagrams constructed from Hubble Space Telescope (HST) observations. Our analysis provides a basis for understanding high-z galaxies - including those that may be unobservable even with the James Webb Space Telescope (JWST) - in the context of familiar, well-studied objects in the very low-z Universe. We find that, at the epoch of reionization, all Local Group dwarfs were less luminous than the faintest galaxies detectable in deep HST observations of blank fields. We predict that JWST will observe z ˜ 7 progenitors of galaxies similar to the Large Magellanic Cloud today; however, the HST Frontier Fields initiative may already be observing such galaxies, highlighting the power of gravitational lensing. Consensus reionization models require an extrapolation of the observed blank-field luminosity function (LF) at z ≈ 7 by at least 2 orders of magnitude in order to maintain reionization. This scenario requires the progenitors of the Fornax and Sagittarius dwarf spheroidal galaxies to be contributors to the ionizing background at z ˜ 7. Combined with numerical simulations, our results argue for a break in the UV LF from a faint-end slope of α ˜ -2 at MUV ≲ -13 to α ˜ -1.2 at lower luminosities. Applied to photometric samples at lower redshifts, our analysis suggests that HST observations in lensing fields at z ˜ 2 are capable of probing galaxies with luminosities comparable to the expected progenitor of Fornax.

  2. The evolution of the diffuse cosmic ultraviolet background constrained by the Hubble Space Telescope observations of 3C 273

    NASA Technical Reports Server (NTRS)

    Ikeuchi, Satoru; Turner, Edwin L.

    1991-01-01

    Results are presented of recent HST UV spectroscopy of 3C 273, which revealed more low-redshift Lyman-alpha absorption lines (IGM clouds) than expected from the extrapolation from high-redshift (not less than 1.6) observations. It is shown on the basis of the standard pressure confined cloud model of the Lyman-alpha forest that this result indicates a sharp drop in the diffuse cosmic UV background from 2 to 0 redshift. It is predicted that the H I optical depth will drop slowly or perhaps even increase with decreasing redshift at less than 2 redshift. The implied constraints on the density and pressure of the diffuse IGM at 0 redshift are also derived. The inferred evolution of the diffuse UV flux bears a striking resemblance to the most recent direct determinations of the volume emissivity of the quasar population.

  3. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  4. Swift multi-wavelength observations of the high-redshift Blazar S5 0836+710 (4C 71.07)

    NASA Astrophysics Data System (ADS)

    Vercellone, Stefano; Romano, Patrizia; Raiteri, Claudia Maria; Acosta Pulido, Jose; Villata, Massimo; Carnerero Martin, Maria Isabel

    2016-04-01

    We present the preliminary results of a year-long Swift monitoring campaign of the high-redshift (z=2.172) flat-spectrum radio quasar (FSRQ) S5 0836+710 (4C 71.07). The campaign, based on one observation per month, 5 ks each observation, for 12 months, allowed us to investigate the synchrotron and nuclear emission contributions to the optical-UV frequency range of its spectral energy distribution and the X-ray spectral variations along a baseline of a year. We obtained a high-accuracy determination of UVOT magnitudes, an X-ray photon index with an uncertainty of the order of 5%, and well-sampled light curves both in the optical-UV and X-ray energy bands to study their possible modulations and correlations. Our study allowed us to exploit the unique Swift capabilities in terms of both simultaneous energy coverage and schedule flexibility. The Swift monitoring campaign was supported by observations by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) Collaboration, which provided radio, near-infrared, and optical photometric data as well as optical polarimetry. Moreover, a spectroscopic monitoring was obtained at the William Herschel Telescope (WHT) and the Nordic Optical Telescope (NOT). All these observations will allow us to obtain a comprehensive picture of the jet as well as of the nuclear source emission.

  5. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    SciTech Connect

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u{sup '} g{sup '} r{sup '} i{sup '} z{sup '}) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from {approx}250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i{sup *} <20.2 with absolute magnitude - 28.8

  6. THE GEOMETRY EFFECTS OF AN EXPANDING UNIVERSE ON THE DETECTION OF COOL NEUTRAL GAS AT HIGH REDSHIFT

    SciTech Connect

    Curran, S. J.

    2012-03-20

    Recent high-redshift surveys for 21 cm absorption in damped Ly{alpha} absorption systems (DLAs) take the number of published searches at z{sub abs} > 2 to 25, the same number as at z{sub abs} < 2, although the detection rate at high redshift remains significantly lower (20% compared to 60%). Using the known properties of the DLAs to estimate the unknown profile widths of the 21 cm non-detections and including the limits via a survival analysis, we show that the mean spin temperature/covering factor degeneracy at high redshift is, on average, double that of the low-redshift sample. This value is significantly lower than the previous factor of eight for the spin temperatures and is about the same factor as in the angular diameter distance ratios between the low- and high-redshift samples. That is, without the need for the several pivotal assumptions, which lead to an evolution in the spin temperature, we show that the observed distribution of 21 cm detections in DLAs can be accounted for by the geometry effects of an expanding universe. That is, as yet there is no evidence of the spin temperature of gas-rich galaxies evolving with redshift.

  7. Nearby Clumpy, Gas Rich, Star-forming Galaxies: Local Analogs of High-redshift Clumpy Galaxies

    NASA Astrophysics Data System (ADS)

    Garland, C. A.; Pisano, D. J.; Mac Low, M.-M.; Kreckel, K.; Rabidoux, K.; Guzmán, R.

    2015-07-01

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%) (2) clumpy spirals (∼40%) and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  8. A stellar feedback origin for neutral hydrogen in high-redshift quasar-mass haloes

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Feldmann, Robert; Quataert, Eliot; Kereš, Dušan; Hopkins, Philip F.; Murray, Norman

    2016-09-01

    Observations reveal that quasar host haloes at z ˜ 2 have large covering fractions of cool dense gas (≳60 per cent for Lyman limit systems within a projected virial radius). Most simulations have so far failed to explain these large observed covering fractions. We analyse a new set of 15 simulated massive haloes with explicit stellar feedback from the FIRE project, covering the halo mass range Mh ≈ 2 × 1012 - 1013 M⊙ at z = 2. This extends our previous analysis of the circum-galactic medium of high-redshift galaxies to more massive haloes. Active galactic nuclei (AGN) feedback is not included in these simulations. We find Lyman limit system covering fractions consistent with those observed around quasars. The large H I covering fractions arise from star formation-driven galactic winds, including winds from low-mass satellite galaxies that interact with cosmological filaments. We show that it is necessary to resolve these satellite galaxies and their winds to reproduce the large Lyman limit system covering fractions observed in quasar-mass haloes. Our simulations predict that galaxies occupying dark matter haloes of mass similar to quasars but without a luminous AGN should have Lyman limit system covering fractions comparable to quasars.

  9. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  10. Warm molecular Hydrogen at high redshift with the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Guillard, P.; Boulanger, F.; Lehnert, M. D.; Appleton, P. N.; Pineau des Forêts, G.

    2015-12-01

    The build-up of galaxies is regulated by a complex interplay between gravitational collapse, galaxy merging and feedback related to AGN and star formation. The energy released by these processes has to dissipate for gas to cool, condense, and form stars. How gas cools is thus a key to understand galaxy formation. Spitzer Space Telescope infrared spectroscopy revealed a population of galaxies with weak star formation and unusually powerful H_2 line emission. This is a signature of turbulent dissipation, sustained by large-scale mechanical energy injection. The cooling of the multiphase interstellar medium is associated with emission in the H_2 lines. These results have profound consequences on our understanding of regulation of star formation, feedback and energetics of galaxy formation in general. The fact that H_2 lines can be strongly enhanced in high-redshift turbulent galaxies will be of great importance for the James Webb Space Telescope observations which will unveil the role that H_2 plays as a cooling agent in the era of galaxy assembly.

  11. Millimeter Detection of Spitzer-selected High Redshift Hyperluminus Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Omont, A.; del Carmen Polletta, M.; Zylka, R.; Shupe, D.; Smith, H. E., Jr.; Berta, S.; Bavouzet, N.; Lagache, G.; Farrah, D.; Bertoldi, F.; Cox, P.; de Breuck, C.; Dole, H.; Lutz, D.; Tacconi, L.; Perez-Fournon, I.; Aussel, H.; McCracken, H.; Clements, D.; Rowan-Robinson, M.; Franceschini, A.; Frayer, D.; Surace, J.; Siana, B.

    2006-12-01

    We have used the Mambo instrument on the IRAM 30m telescope to observe at 1.2mm 63 Spitzer-selected z>1 hyperluminous infrared galaxy candidates (HLIRGs) with starburst-dominated mid-infrared (MIR) spectral energy distributions from the SWIRE Legacy survey. The primary selection criteria are a peak in the IRAC 5.8μm band due to the rest frame near-infrared spectrum of evolved stars, a bright detection at 24μm, and very faint optical counterparts. The detection rate with Mambo is very high at 45%, and both the detection rate and the average 1.2mm/24μm flux ratio are much higher than found for previous Spitzer MIR-selected samples, due to the fact that earlier samples favored systems with AGN-dominated MIR emission. Our sample, on the other hand, shows systematically lower 1.2mm/24μm ratios than a sample of Spitzer-detected submillimeter-selected galaxies (SMGs) in a similar redshift range. Thus Spitzer MIR selection complements submillimeter selection of high redshift starburst-dominated HLIRGs, finding a population with substantially different SED shapes. The large MIR/submillimeter flux ratios probably indicate exceptionally luminous 7.7μm PAH emission, based on Spitzer IRS spectra for a subset of these objects (Weedman et al. 2007).

  12. WEAK LINE QUASARS AT HIGH REDSHIFT: EXTREMELY HIGH ACCRETION RATES OR ANEMIC BROAD-LINE REGIONS?

    SciTech Connect

    Shemmer, Ohad; Trakhtenbrot, Benny; Netzer, Hagai; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Lira, Paulina; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A.

    2010-10-20

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad H{beta} line and place tight upper limits on the strengths of their [O III] lines. Virial, H{beta}-based black hole mass determinations indicate normalized accretion rates of L/L {sub Edd}=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of {Gamma} = 1.91{sup +0.24} {sub -0.22}, which supports the virial L/L {sub Edd} determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  13. Weak Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, Benny; Anderson, Scott F.; Brandt, W. N.; Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Lira, Paulina; Netzer, Hagai; Plotkin, Richard M.; Richards, Gordon T.; Schneider, Donald P.; Strauss, Michael A.

    2010-10-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z = 3.55 and SDSS J123743.08+630144.9 at z = 3.49. In both sources, we detect an unusually weak broad Hβ line and place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black hole mass determinations indicate normalized accretion rates of L/L Edd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ = 1.91+0.24 -0.22, which supports the virial L/L Edd determination in this source. Our results suggest that the weakness of the broad emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad emission line region properties.

  14. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  15. The Origin and Evolution of Interstellar Dust in the Local and High-Redshift Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. Using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that - 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of SN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history.

  16. The high-redshift gamma-ray burst GRB 140515A

    SciTech Connect

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; Sanchez-Ramirez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thone, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.

  17. Inflow velocities of cold flows streaming into massive galaxies at high redshifts

    NASA Astrophysics Data System (ADS)

    Goerdt, Tobias; Ceverino, Daniel

    2015-07-01

    We study the velocities of the accretion along streams from the cosmic web into massive galaxies at high redshift with the help of three different suites of AMR hydrodynamical cosmological simulations. The results are compared to free-fall velocities and to the sound speeds of the hot ambient medium. The sound speed of the hot ambient medium is calculated using two different methods to determine the medium's temperature. We find that the simulated cold stream velocities are in violent disagreement with the corresponding free-fall profiles. The sound speed is a better albeit not always correct description of the cold flows' velocity. Using these calculations as a first order approximation for the gas inflow velocities vinflow = 0.9 vvir is given. We conclude from the hydrodynamical simulations as our main result that the velocity profiles for the cold streams are constant with radius. These constant inflow velocities seem to have a `parabola-like' dependency on the host halo mass in units of the virial velocity that peaks at Mvir = 1012 M⊙ and we also propose that the best-fitting functional form for the dependency of the inflow velocity on the redshift is a square root power-law relation: v_inflow ∝ √{z + 1} v_vir.

  18. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  19. The gas distribution in the high-redshift cluster MS 1054-0321

    NASA Astrophysics Data System (ADS)

    Mirakhor, M. S.; Birkinshaw, M.

    2016-04-01

    We investigate the gas mass distribution in the high-redshift cluster MS 1054-0321 using Chandra X-ray and One Centimetre Receiver array Sunyaev-Zel'dovich (SZ) effect data. We use a superposition of offset β-type models to describe the composite structure of MS 1054-0321. We find gas mass fractions f_{gas}^{X {-}ray} = 0.087_{-0.001}^{+0.005} and f_{gas}^SZ=0.094_{-0.001}^{+0.003} for the (main) eastern component of MS 1054-0321 using X-ray or SZ data, but f_{gas}^{X {-}ray}=0.030_{-0.014}^{+0.010} for the western component. The gas mass fraction for the eastern component is in agreement with some results reported in the literature, but inconsistent with the cosmic baryon fraction. The low-gas mass fraction for the western component is likely to be a consequence of gas stripping during the ongoing merger. The gas mass fraction of the integrated system is 0.060_{-0.009}^{+0.004}: we suggest that the missing baryons from the western component are present as hot diffuse gas which is poorly represented in existing X-ray images. The missing gas could appear in sensitive SZ maps.

  20. H-ATLAS: a candidate high redshift cluster/protocluster of star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Clements, D. L.; Braglia, F.; Petitpas, G.; Greenslade, J.; Cooray, A.; Valiante, E.; De Zotti, G.; O'Halloran, B.; Holdship, J.; Morris, B.; Pérez-Fournon, I.; Herranz, D.; Riechers, D.; Baes, M.; Bremer, M.; Bourne, N.; Dannerbauer, H.; Dariush, A.; Dunne, L.; Eales, S.; Fritz, J.; Gonzalez-Nuevo, J.; Hopwood, R.; Ibar, E.; Ivison, R. J.; Leeuw, L. L.; Maddox, S.; Michałowski, M. J.; Negrello, M.; Omont, A.; Oteo, I.; Serjeant, S.; Valtchanov, I.; Vieira, J. D.; Wardlow, J.; van der Werf, P.

    2016-09-01

    We investigate the region around the Planck-detected z = 3.26 gravitationally lensed galaxy HATLAS J114637.9-001132 (hereinafter HATLAS12-00) using both archival Herschel data from the H-ATLAS survey and using submm data obtained with both LABOCA and SCUBA2. The lensed source is found to be surrounded by a strong overdensity of both Herschel-SPIRE sources and submm sources. We detect 17 bright (S870 > ˜7 mJy) sources at >4σ closer than 5 arcmin to the lensed object at 850/870 μm. 10 of these sources have good cross-identifications with objects detected by Herschel-SPIRE which have redder colours than other sources in the field, with 350 μm flux >250 μm flux, suggesting that they lie at high redshift. Submillimeter Array (SMA) observations localise one of these companions to ˜1 arcsec, allowing unambiguous cross identification with a 3.6 and 4.5 μm Spitzer source. The optical/near-IR spectral energy distribution of this source is measured by further observations and found to be consistent with z > 2, but incompatible with lower redshifts. We conclude that this system may be a galaxy cluster/protocluster or larger scale structure that contains a number of galaxies undergoing starbursts at the same time.

  1. The discovery of high-redshift supernovae and their cosmological implications

    SciTech Connect

    Kim, A G

    1997-09-01

    In this thesis the author discusses the methodology for doing photometry: from procedure of extracting supernova counts from images that contain combined supernova plus galaxy flux, to standard star calibration, to additional instrumental corrections that arise due to the multiple telescopes used for observations. He discusses the different sources of photometric error and their correlations, and the construction of the covariance matrix for all the points in the light curve. He then describes the K corrections which account for the redshifting of spectra that are necessary to compare the photometry of the high-redshift data with those from nearby (z < 0.1) supernovae. Finally, he uses the first seven of the supernovae to test the hypothesis that they live in an under-dense bubble where the locally measured Hubble constant differs significantly from the true Hubble constant. He also uses the data to place limits on the value of the Hubble constant. Discussions of several other important aspects of the data analysis are or will be included in other papers. These topics include a description of how the covariance matrix is used to generate light-curve fits, a discussion of non-photometric systematic errors that also effect the measurements, and a discussion of the application of the supernovae to address other scientific/cosmological problems.

  2. Dark bubbles around high-redshift radio-loud active galactic nucleus

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Sbarrato, T.

    2016-09-01

    At redshift larger than 3 there is a disagreement between the number of blazars (whose jet is pointing at us) and the number of expected parents (whose jet is pointing elsewhere). Now we strengthen this claim because (i) the number of blazars identified within the Sloan Digital Sky Survey (SDSS)+Faint Images of the Radio Sky at Twenty-cm (FIRST) survey footprint increased, demanding a more numerous parent population, and (ii) the detected blazars have a radio flux large enough to be above the FIRST flux limit even if the jet is slightly misaligned. The foreseen number of these slightly misaligned jets, in principle detectable, is much larger than the radio-detected sources in the FIRST+SDSS survey (at redshift larger than 4). This argument is independent of the presence of an isotropic radio component, such as the hotspot or the radio lobe, and does not depend on the bulk Lorentz factor Γ. We propose a scenario that ascribes the lack of slightly misaligned sources to an overobscuration of the nucleus by a `bubble' of dust, possibly typical of the first high-redshift quasars.

  3. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGES

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; Sanchez-Ramirez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; et al

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in amore » very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  4. High Redshift Dust Obscured Galaxies, A Morphology-SED Connection Revealed by Keck Adaptive Optics Imaging

    NASA Astrophysics Data System (ADS)

    Melbourne, Jason

    2009-01-01

    Keck Adaptive Optics (AO) K'-band images reveal the morphologies of 15 high redshift (z 2) dust obscured galaxies (DOGs). DOGs are defined by an optical to mid-IR color of fν(24) / fν(R) > 1000, redder than Arp 220 at any redshift. With ultra-luminous infrared luminosities, DOGs are thought to be powered by a combination of AGN and star formation. We use high spatial resolution (0.5 - 1 kpc at these redshifts) AO images to help disentangle the dominant energy source in each DOG and to look for triggers, such as evidence of ongoing mergers. We find evidence for ongoing merging in 10-20% of the sample. We also find a statistically significant correlation between galaxy compactness and 24 micron flux (luminosity), with the brightest DOGs exhibiting more compact morphologies than fainter DOGs. The most diffuse systems tend to show a 1.6 micron stellar bump in their spectral energy distributions redshifted to the Spitzer IRAC bands (4.5 - 8.0 microns). The imaging results lend further support to the idea that the highest luminosity DOGs are AGN dominated (resulting in compact morphology), while the lower luminosity, diffuse, DOGs tend to be star formation dominated.

  5. DIFFERENT STAR FORMATION LAWS FOR DISKS VERSUS STARBURSTS AT LOW AND HIGH REDSHIFTS

    SciTech Connect

    Daddi, E.; Elbaz, D.; Bournaud, F.; Salmi, F.; Dannerbauer, H.; Carilli, C.; Dickinson, M.; Monaco, P.; Riechers, D.

    2010-05-01

    We present evidence that bona fide disks and starburst systems occupy distinct regions in the gas mass versus star formation rate (SFR) plane, both for the integrated quantities and for the respective surface densities. This result is based on carbon monoxide (CO) observations of galaxy populations at low and high redshifts, and on the current consensus for the CO luminosity to gas mass conversion factors. The data suggest the existence of two different SF regimes: a long-lasting mode for disks and a more rapid mode for starbursts, the latter probably occurring during major mergers or in dense nuclear SF regions. Both modes are observable over a large range of SFRs. The detection of CO emission from distant near-IR selected galaxies reveals such bimodal behavior for the first time, as they allow us to probe gas in disk galaxies with much higher SFRs than are seen locally. The different regimes can potentially be interpreted as the effect of a top-heavy initial mass function in starbursts. However, we favor a different physical origin related to the fraction of molecular gas in dense clouds. The IR luminosity to gas mass ratio (i.e., the SF efficiency) appears to be inversely proportional to the dynamical (rotation) timescale. Only when accounting for the dynamical timescale, a universal SF law is obtained, suggesting a direct link between global galaxy properties and the local SFR.

  6. The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom

    2015-09-01

    The observed high covering fractions of neutral hydrogen (H I) with column densities above ˜1017 cm-2 around Lyman-Break Galaxies (LBGs) and bright quasars at redshifts z ˜ 2-3 has been identified as a challenge for simulations of galaxy formation. We use the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulation, which has been shown to reproduce a wide range of galaxy properties and for which the subgrid feedback was calibrated without considering gas properties, to study the distribution of H I around high-redshift galaxies. We predict the covering fractions of strong H I absorbers (N_{H I}≳ 10^{17} cm^{-2}) inside haloes to increase rapidly with redshift but to depend only weakly on halo mass. For massive (M200 ≳ 1012M⊙) haloes, the covering fraction profiles are nearly scale-invariant and we provide fitting functions that reproduce the simulation results. While efficient feedback is required to increase the H I covering fractions to the high observed values, the distribution of strong absorbers in and around haloes of a fixed mass is insensitive to factor of 2 variations in the strength of the stellar feedback. In contrast, at fixed stellar mass the predicted H I distribution is highly sensitive to the feedback efficiency. The fiducial EAGLE simulation reproduces both the observed global column density distribution function of H I and the observed radial covering fraction profiles of strong H I absorbers around LBGs and bright quasars.

  7. Colour gradients of high-redshift early-type galaxies from hydrodynamical monolithic models

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Pipino, A.; D'Ercole, A.; Napolitano, N. R.; Matteucci, F.

    2013-10-01

    We analyse the evolution of colour gradients predicted by the hydrodynamical models of early-type galaxies (ETGs) in Pipino et al., which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and ɛSF, i.e. the normalization of SF rate. From the comparison with high-redshift data, a full agreement with optical rest-frame observations at z ≲ 1 is found, for models with low ɛSF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high ɛSF systems with the shallower colour gradients observed at lower z we suggest intervention of one to two dry mergers. We suggest that future studies should explore the impact of wet galaxy merging, interactions with environment, dust content and a variation of the initial mass function from the galactic centres to the peripheries.

  8. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black-hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-08-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7% confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion onto SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  9. The deepest X-ray view of high-redshift galaxies: constraints on low-rate black hole accretion

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Brandt, W. N.; Comastri, A.; Yang, G.; Lehmer, B. D.; Luo, B.; Basu-Zych, A.; Bauer, F. E.; Cappelluti, N.; Koekemoer, A.; Mainieri, V.; Paolillo, M.; Ranalli, P.; Shemmer, O.; Trump, J.; Wang, J. X.; Xue, Y. Q.

    2016-11-01

    We exploit the 7 Ms Chandra observations in the Chandra Deep Field-South (CDF-S), the deepest X-ray survey to date, coupled with CANDELS/GOODS-S data, to measure the total X-ray emission arising from 2076 galaxies at 3.5 ≤ z < 6.5. This aim is achieved by stacking the Chandra data at the positions of optically selected galaxies, reaching effective exposure times of ≥109s. We detect significant (>3.7σ) X-ray emission from massive galaxies at z ≈ 4. We also report the detection of massive galaxies at z ≈ 5 at a 99.7 per cent confidence level (2.7σ), the highest significance ever obtained for X-ray emission from galaxies at such high redshifts. No significant signal is detected from galaxies at even higher redshifts. The stacking results place constraints on the BHAD associated with the known high-redshift galaxy samples, as well as on the SFRD at high redshift, assuming a range of prescriptions for X-ray emission due to X- ray binaries. We find that the X-ray emission from our sample is likely dominated by processes related to star formation. Our results show that low-rate mass accretion on to SMBHs in individually X-ray-undetected galaxies is negligible, compared with the BHAD measured for samples of X-ray detected AGN, for cosmic SMBH mass assembly at high redshift. We also place, for the first time, constraints on the faint-end of the AGN X-ray luminosity function (logLX ˜ 42) at z > 4, with evidence for fairly flat slopes. The implications of all of these findings are discussed in the context of the evolution of the AGN population at high redshift.

  10. Lyman alpha emitting galaxies at high redshift: Direct detection of young galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Dawson, Steven Arthur

    An early result of galaxy formation theory was the prediction that the copious ionizing radiation produced in nascent galaxies undergoing their first starbursts should in turn produce a strong Lya emission line. We report on our efforts to detect and characterize primeval galaxies by searching for this expected Lya signature with two observational techniques: serendipitous slit spectroscopy, and narrowband imaging selection. In Part I, we describe our serendipitous slit spectroscopy survey of the Hubble Deep Field and its environs, which resulted in a catalog of 74 spectroscopic redshifts spanning 0.10 < z < 5.77, including a galaxy cluster at z = 0.85 and five galaxies at z > 5. Follow-up observations at higher resolution resulted in the additional serendipitous detection of a strong Lya-emitting galaxy at z = 5.190 (ES1). At the time of its discovery, ES1 was one of only nine known galaxies at z > 5, and was the sixth most distant known galaxy. The unprecedented spectral purity of the observation offers evidence for a galaxy-scale outflow with a. velocity of v > 300 km s -1 , consistent with wind speeds observed in powerful local starbursts (typically 10 2 to 10 3 km s -1 ), and with simulations of the late- stage evolution of Lya emission in star-forming systems. Our final serendipitous detection is the remarkable source CXOHDFN J123635.6+621424, which is both the highest redshift known spiral galaxy, and a rare example of a high redshift, hard X-ray-emitting Type II AGN. Significantly, all of these results were acquired with no direct allocation of telescope time. In Part II, we report on our implementation of narrowband imaging selection, with which we traded redshift coverage for survey volume, focusing on the systematic study of galaxies at a particular epoch in favor of chasing that rare, most-distant object. This effort resulted in a catalog of 76 z [approximate] 4.5 Lya-emitting galaxies spectroscopically-confirmed in campaigns of Keck/LRIS and Keck

  11. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  12. Gravitational lensing of extended high-redshift sources by dark matter haloes

    NASA Astrophysics Data System (ADS)

    Perrotta, F.; Baccigalupi, C.; Bartelmann, M.; De Zotti, G.; Granato, G. L.

    2002-01-01

    High-redshift galaxies and quasi-stellar objects (QSOs) are most likely to be strongly lensed by intervening haloes between the source and the observer. In addition, a large fraction of lensed sources is expected to be seen in the submillimetre region, as a result of the enhanced magnification bias on the steep intrinsic number counts. We extend in three directions Blain's earlier study of this effect. First, we use a modification of the Press-Schechter mass function and detailed lens models to compute the magnification probability distribution. We compare the magnification cross-sections of populations of singular isothermal spheres and Navarro, Frenk & White (NFW) haloes and find that they are very similar, in contrast to the image-splitting statistics which were recently investigated in other studies. The distinction between the two types of density profile is therefore irrelevant for our purposes. Secondly, we discuss quantitatively the maximum magnification, μmax, that can be achieved for extended sources (galaxies) with realistic luminosity profiles, taking into account the possible ellipticity of the lensing potential. We find that μmax plausibly falls into the range 10-30 for sources of 1-10h-1kpc effective radius at redshifts within 1-4. Thirdly, we apply our model for the lensing magnification to a class of sources following the luminosity evolution typical for a unified scheme of QSO formation. As a result of the peculiar steepness of their intrinsic number counts, we find that the lensed source counts at a fiducial wave length of 850μm can exceed the unlensed counts by several orders of magnitude at flux densities >~100mJy, even with a conservative choice of the maximum magnification.

  13. How absorption selected galaxies trace the general high-redshift galaxy population

    NASA Astrophysics Data System (ADS)

    Christensen, Lise

    2015-08-01

    Strong absorption lines seen in quasar spectra arise when the lines of sight to the quasars intersect intervening galaxies. The associated metal absorption lines from the strongest absorption lines, the damped Lyman alpha absorbers (DLAs), allow us to trace the metallicity of galaxies back to redshifts z>5. Typical metallicities range from 0.1-100% solar metallicities with a huge scatter at any given redshift. Understanding the nature of galaxies that host DLAs is one strategy to probe the early phase and origin of stars in the outskirts of present-day galaxy disks.The search for emission from the elusive high-redshift DLA galaxies has reached a mature state now that we have determined how to best identify the absorbing galaxies. From a growing number of emission-line detections from DLA galaxies at redshifts ranging between 0.1 and 3, we can analyse galaxies in both absorption and emission, and probe the gas-phase metallicities in the outskirts and halos of the galaxies.By combining information for galaxies seen in emission and absorption, I will show that there is a relation between DLA metallicities and the host galaxy luminosities similar to the well-known the mass-metallicity relation for luminosity selected galaxies. This implies that DLA galaxies are drawn from the general population of low- to intermediate mass galaxies. We can determine a metallicity gradient in the extended halo of the galaxies out to ~40 kpc, and this allows us to reproduce observed galaxy correlation functions derived from conventional samples of luminosity selected galaxies.

  14. THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY

    SciTech Connect

    Civano, F.; Elvis, M.; Hao, H.; Brusa, M.; Comastri, A.; Zamorani, G.; Gilli, R.; Mignoli, M.; Salvato, M.; Capak, P.; Kakazu, Y.; Masters, D.; Fiore, F.; Ikeda, H.; Kartaltepe, J. S.; Miyaji, T.; Puccetti, S.; Shankar, F.; Silverman, J.; Vignali, C.

    2011-11-10

    We present the high-redshift (3 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L{sub (2-10keV)} > 44.15 erg s{sup -1}) space density up to z {approx} 5 and a fainter luminosity range (43.5 erg s{sup -1} < log L{sub (2-10keV)} < 44.15 erg s{sup -1}) than previous studies, up to z = 3.5. We weighted the contribution to the number counts and the space density of the sources with photometric redshift by using their probability of being at z > 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys.

  15. The Coevolution of Supermassive Black Holes and Massive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Negrello, M.; Celotti, A.; De Zotti, G.; Danese, L.

    2014-02-01

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z >~ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale <~ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L Edd <~ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  16. Globular clusters as the relics of regular star formation in `normal' high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Kruijssen, J. M. Diederik

    2015-12-01

    We present an end-to-end, two-phase model for the origin of globular clusters (GCs). In the model, populations of stellar clusters form in the high-pressure discs of high-redshift (z > 2) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day (a slow-disruption phase due to tidal evaporation). The high galaxy merger rates of z > 2 galaxies allow these clusters to be `liberated' into the galaxy haloes before they are disrupted within the high-density discs. This physically motivated toy model is the first to include the rapid-disruption phase, which is shown to be essential for simultaneously reproducing the wide variety of properties of observed GC systems, such as their universal characteristic mass-scale, the dependence of the specific frequency on metallicity and galaxy mass, the GC system mass-halo mass relation, the constant number of GCs per unit supermassive black hole mass, and the colour bimodality of GC systems. The model predicts that most of these observables were already in place at z = 1-2, although under rare circumstances GCs may still form in present-day galaxies. In addition, the model provides important constraints on models for multiple stellar populations in GCs by putting limits on initial GC masses and the amount of pristine gas accretion. The paper is concluded with a discussion of these and several other predictions and implications, as well as the main open questions in the field.

  17. Hard X-Ray Detection of the High Redshift Quasar 4C 71.07

    NASA Technical Reports Server (NTRS)

    Malizia, A.; Bassani, L.; Dean, A. J.; McCollough, M. L.; Stephen, J. B.; Zhang, S. N.

    1999-01-01

    BATSE/OSSE observations of the high redshift quasar 4C 71.07 indicate that this is the brightest and furthest AGN so far detected 20 keV. BATSE Earth occultation data have been used to search for emission from 4C 71.07 from nearly 3 years of observation. The mean source flux over the- whole period in the BATSE energy range 20-100 keV is (13.2 +/- 1.06) x 10(exp -11) erg/square cm/s corresponding to a luminosity of 2 x 10(exp 48 erg/s. The BATSE light curve over the 3 years of observations shows several flare-like events, one of which (in January 1996) is associated with an optical flare (R=16.1) but with a delay of 55 days. The OSSE/BATSE spectral analysis indicates that the source is characterized by a flat power spectrum (Gamma is approximately 1.1- 1.3) when in a low state: this spectral form is consistent within errors with the ASCA and ROSAT spectra. This means that the power law observed from 0.1 to 10 keV extends up to at least 1 MeV but steepens soon after to meet EGRET high energy data. BATSE data taken around the January 1996 flare suggests that the spectrum could be steeper when the source is in a bright state. The upsilon-F-upsilon representation of the source is typical of a low frequency peaked/ gamma- ray dominated blazar, with the synchrotron peak in the mm-FIR band and the Compton peak in the MeV band. The BATSE and OSSE spectral data seem to favour a model in which the high energy - flux is due to the sum of the synchrotron self-Compton and the external Compton contributions: this is also supported by the- variability behaviour of the source.

  18. FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS

    SciTech Connect

    Dekel, Avishai; Sari, Re'em; Ceverino, Daniel E-mail: sari@phys.huji.ac.i

    2009-09-20

    We present a simple theoretical framework for massive galaxies at high redshift, where the main assembly and star formation occurred, and report on the first cosmological simulations that reveal clumpy disks consistent with our analysis. The evolution is governed by the interplay between smooth and clumpy cold streams, disk instability, and bulge formation. Intense, relatively smooth streams maintain an unstable dense gas-rich disk. Instability with high turbulence and giant clumps, each a few percent of the disk mass, is self-regulated by gravitational interactions within the disk. The clumps migrate into a bulge in {approx}<10 dynamical times, or {approx}<0.5 Gyr. The cosmological streams replenish the draining disk and prolong the clumpy phase to several Gigayears in a steady state, with comparable masses in disk, bulge, and dark matter within the disk radius. The clumps form stars in dense subclumps following the overall accretion rate, {approx}100 M{sub sun} yr{sup -1}, and each clump converts into stars in {approx}0.5 Gyr. While the clumps coalesce dissipatively to a compact bulge, the star-forming disk is extended because the incoming streams keep the outer disk dense and susceptible to instability and because of angular momentum transport. Passive spheroid-dominated galaxies form when the streams are more clumpy: the external clumps merge into a massive bulge and stir up disk turbulence that stabilize the disk and suppress in situ clump and star formation. We predict a bimodality in galaxy type by z {approx} 3, involving giant-clump star-forming disks and spheroid-dominated galaxies of suppressed star formation. After z {approx} 1, the disks tend to be stabilized by the dominant stellar disks and bulges. Most of the high-z massive disks are likely to end up as today's early-type galaxies.

  19. The coevolution of supermassive black holes and massive galaxies at high redshift

    SciTech Connect

    Lapi, A.; Raimundo, S.; Aversa, R.; Cai, Z.-Y.; Celotti, A.; De Zotti, G.; Danese, L.; Negrello, M.

    2014-02-20

    We exploit the recent, wide samples of far-infrared (FIR) selected galaxies followed up in X-rays and of X-ray/optically selected active galactic nuclei (AGNs) followed up in the FIR band, along with the classic data on AGNs and stellar luminosity functions at high redshift z ≳ 1.5, to probe different stages in the coevolution of supermassive black holes (BHs) and host galaxies. The results of our analysis indicate the following scenario: (1) the star formation in the host galaxy proceeds within a heavily dust-enshrouded medium at an almost constant rate over a timescale ≲ 0.5-1 Gyr and then abruptly declines due to quasar feedback, over the same timescale; (2) part of the interstellar medium loses angular momentum, reaches the circum-nuclear regions at a rate proportional to the star formation, and is temporarily stored in a massive reservoir/proto-torus wherefrom it can be promptly accreted; (3) the BH grows by accretion in a self-regulated regime with radiative power that can slightly exceed the Eddington limit L/L {sub Edd} ≲ 4, particularly at the highest redshifts; (4) for massive BHs, the ensuing energy feedback at its maximum exceeds the stellar one and removes the interstellar gas, thus stopping the star formation and the fueling of the reservoir; (5) afterward, if the latter has retained enough gas, a phase of supply-limited accretion follows, exponentially declining with a timescale of about two e-folding times. We also discuss how the detailed properties and the specific evolution of the reservoir can be investigated via coordinated, high-resolution observations of star-forming, strongly lensed galaxies in the (sub-)mm band with ALMA and in the X-ray band with Chandra and the next-generation X-ray instruments.

  20. The Abundance of Low-Luminosity Lyα Emitters at High Redshift

    NASA Astrophysics Data System (ADS)

    Santos, Michael R.; Ellis, Richard S.; Kneib, Jean-Paul; Richard, Johan; Kuijken, Konrad

    2004-05-01

    We derive the luminosity function of high-redshift Lyα-emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near nine clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5L)~L-1 over 1041-1042.5 ergs s-1. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. RED-SEQUENCE GALAXIES AT HIGH REDSHIFT BY THE COMBO-17+4 SURVEY

    SciTech Connect

    Nicol, Marie-Helene; Meisenheimer, Klaus; Wolf, Christian; Tapken, Christian E-mail: meise@mpia.de E-mail: ctapken@aip.de

    2011-01-20

    We investigate the evolution of the galaxy population since redshift 2 with a focus on the color bimodality and mass density of the red sequence. We obtain precise and reliable photometric redshifts up to z = 2 by supplementing the optical survey COMBO-17 with observations in four near-infrared bands on 0.2 deg{sup 2} of the COMBO-17 A901-field. Our results are based on an H-band-selected catalog of 10,692 galaxies complete to H = 21fm7. We measure the rest-frame color (U{sub 280}-V) of each galaxy, which across the redshift range of our interest requires no extrapolation and is robust against moderate redshift errors by staying clear of the 4000 A break. We measure the color-magnitude relation of the red sequence as a function of look-back time from the peak in a color-error-weighted histogram, and thus trace the galaxy bimodality out to z {approx_equal} 1.65. The (U{sub 280}-V) of the red sequence is found to evolve almost linearly with look-back time. At high redshift, we find massive galaxies in both the red and the blue population. Red-sequence galaxies with log M{sub *}/M{sub sun}>11 increase in mass density by a factor of {approx}4 from z {approx} 2 to 1 and remain nearly constant at z < 1. However, some galaxies as massive as log M{sub *}/M{sub sun} = 11.5 are already in place at z {approx} 2.

  2. A high-redshift quasar absorber without C IV. A galactic outflow caught in the act?

    NASA Astrophysics Data System (ADS)

    Fox, Anne; Richter, Philipp

    2016-04-01

    We present a detailed analysis of a very unusual sub-damped Lyman α (sub-DLA) system at redshift z = 2.304 towards the quasar Q 0453-423, based on high signal-to-noise (S/N), high-resolution spectral data obtained with VLT/UVES. With a neutral hydrogen column density of log N(H i) = 19.23 and a metallicity of -1.61 as indicated by [O i/H i] the sub-DLA mimics the properties of many other optically thick absorbers at this redshift. A very unusual feature of this system is, however, the lack of any C iv absorption at the redshift of the neutral hydrogen absorption, although the relevant spectral region is free of line blends and has very high S/N. Instead, we find high-ion absorption from C iv and O vi in another metal absorber at a velocity more than 220 km s-1 redwards of the neutral gas component. We explore the physical conditions in the two different absorption systems using Cloudy photoionisation models. We find that the weakly ionised absorber is dense and metal-poor while the highly ionised system is thin and more metal-rich. The absorber pair towards Q 0453-423 mimics the expected features of a galactic outflow with highly ionised material that moves away with high radial velocities from a (proto)galactic gas disk in which star-formation takes place. We discuss our findings in the context of C iv absorption line statistics at high redshift and compare our results to recent galactic-wind and outflow models.

  3. Bayesian High-redshift Quasar Classification from Optical and Mid-IR Photometry

    NASA Astrophysics Data System (ADS)

    Richards, Gordon T.; Myers, Adam D.; Peters, Christina M.; Krawczyk, Coleman M.; Chase, Greg; Ross, Nicholas P.; Fan, Xiaohui; Jiang, Linhua; Lacy, Mark; McGreer, Ian D.; Trump, Jonathan R.; Riegel, Ryan N.

    2015-08-01

    We identify 885,503 type 1 quasar candidates to i≲ 22 using the combination of optical and mid-IR photometry. Optical photometry is taken from the Sloan Digital Sky Survey-III: Baryon Oscillation Spectroscopic Survey (SDSS-III/BOSS), while mid-IR photometry comes from a combination of data from the Wide-field Infrared Survey Explorer (WISE) “AllWISE” data release and several large-area Spitzer Space Telescope fields. Selection is based on a Bayesian kernel density algorithm with a training sample of 157,701 spectroscopically confirmed type 1 quasars with both optical and mid-IR data. Of the quasar candidates, 733,713 lack spectroscopic confirmation (and 305,623 are objects that we have not previously classified as photometric quasar candidates). These candidates include 7874 objects targeted as high-probability potential quasars with 3.5\\lt z\\lt 5 (of which 6779 are new photometric candidates). Our algorithm is more complete to z\\gt 3.5 than the traditional mid-IR selection “wedges” and to 2.2\\lt z\\lt 3.5 quasars than the SDSS-III/BOSS project. Number counts and luminosity function analysis suggest that the resulting catalog is relatively complete to known quasars and is identifying new high-z quasars at z\\gt 3. This catalog paves the way for luminosity-dependent clustering investigations of large numbers of faint, high-redshift quasars and for further machine-learning quasar selection using Spitzer and WISE data combined with other large-area optical imaging surveys.

  4. QSO Metal Absorption Systems at High Redshift and the Signature of Hierarchical Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Rauch, Michael; Haehnelt, Martin G.; Steinmetz, Matthias

    1997-05-01

    In a hierarchical cosmogony, galaxies build up by continuous merging of smaller structures. At z = 3, the matter content of a typical present-day galaxy is dispersed over several individual clumps embedded in sheetlike structures, often aligned along filaments. We have used hydrodynamical simulations to investigate the spatial distribution and absorption properties of metal-enriched gas in such regions of ongoing galaxy formation. The metal and hydrogen absorption features produced by the collapsing structures closely resemble observed QSO absorption systems over a wide range in H I column density. Strong C II and Si IV absorption occurs for lines of sight passing the densest regions close to the center of the protogalactic clumps, while C IV is a good tracer of the prominent filamentary structures and O VI becomes the strongest absorption feature for lines of sight passing through low-density regions far away from fully collapsed objects. The observed column density ratios of the different ionic species at z = 3 can be well reproduced if a mean metallicity [Z/H] = -2.5, relative abundances as found in metal-poor stars, a UV background with intensity J-22 = 3 at the Lyman limit, and either a power-law spectrum (J ~ ν-1.5) or the spectral shape proposed by Haardt & Madau are assumed. The observed scatter in [C/H] is about a magnitude larger than that in the simulations, which suggests an inhomogeneous metal distribution. Observed and simulated Doppler parameter distributions of H I and C IV absorption lines are in good agreement, which indicates that shock heating due to gravitational collapse is a second important heating agent in addition to photoionization heating. The large velocity spreads seen in some C IV systems may be due to the occasional alignments of the observer's line of sight with expanding large-scale filaments. Both high-ionization multicomponent heavy-element absorbers and damped Lyα systems can arise from groups of moderately sized protogalactic

  5. A PARAMETRIC STUDY OF POSSIBLE SOLUTIONS TO THE HIGH-REDSHIFT OVERPRODUCTION OF STARS IN MODELED DWARF GALAXIES

    SciTech Connect

    White, Catherine E.; Somerville, Rachel S.; Ferguson, Henry C.

    2015-02-01

    Both numerical hydrodynamic and semi-analytic cosmological models of galaxy formation struggle to match observed star formation histories of galaxies in low-mass halos (M {sub H} ≲ 10{sup 11} M {sub ☉}), predicting more star formation at high redshift and less star formation at low redshift than observed. The fundamental problem is that galaxies' gas accretion and star formation rates are too closely coupled in the models: the accretion rate largely drives the star formation rate. Observations point to gas accretion rates that outpace star formation at high redshift, resulting in a buildup of gas and a delay in star formation until lower redshifts. We present three empirical adjustments of standard recipes in a semi-analytic model motivated by three physical scenarios that could cause this decoupling: (1) the mass-loading factors of outflows driven by stellar feedback may have a steeper dependence on halo mass at earlier times, (2) the efficiency of star formation may be lower in low-mass halos at high redshift, and (3) gas may not be able to accrete efficiently onto the disk in low-mass halos at high redshift. These new recipes, once tuned, better reproduce the evolution of f {sub *}≡ M {sub *}/M {sub H} as a function of halo mass as derived from abundance matching over redshifts z = 0 to 3, though they have different effects on cold gas fractions, star formation rates, and metallicities. Changes to gas accretion and stellar-driven winds are promising, while direct modification of the star formation timescale requires drastic measures that are not physically well motivated.

  6. The Cycle of Dust in the Milky Ways: Clues from the High-Redshift and the Local Universe

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2008-01-01

    Massive amount of dust has been observed at high-redshifts when the universe was a mere 900 Myr old. The formation and evolution of dust is there dominated by massive stars and interstellar processes. In contrast, in the local universe lower mass stars, predominantly 2-5 Msun AGB stars, play the dominant role in the production of interstellar dust. These two extreme environments offer fascinating clues about the evolution of dust in the Milky Way galaxy

  7. On the consequences of a Virial star formation criterion and radiation hydrodynamics in simulations of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Perret, Valentin; Teyssier, Romain; Devriendt, Julien; Rosdahl, Joakim; Slyz, Adrianne

    2015-08-01

    The last decade has seen a data deluge coming from observational facilities targeting the young universe. These data has revealed that high redshift galaxies are substantially different from their local counterpart that populates the Hubble sequence. High redshift star-forming galaxies often display clumpy morphologies associated to disk-like kinematics with a high level of turbulence. Star formation essentially occurs in these giant massive clumps and is therefore a crucial step in the life of galaxies. Reproducing the fragmentation of high redshift disk galaxies in numerical simulations is mandatory if one wants to get a realistic picture of the Hubble sequence shaping. We present state-of-the-art parsec scale idealised simulations of high redshift analogue galaxies that resolve the supersonic turbulent and clumpy multi-phase interstellar medium. These simulations are performed with the adaptive mesh refinement code RAMSES (Teyssier et al. 2002) using its new radiation hydrodynamics module (Rosdahl et al. 2013). We are therefore able to model the radiative pressure from the young massive stars population settled in the star forming clumps which is suspected to play a subsequent role in the onset of outflowing gas in such galaxies. Furthermore, our model includes a star formation criterion inspired from molecular cloud simulations and which is based on a local analysis of the turbulent support of the gas clouds. The star formation efficiency associated to this approach is two order of magnitudes higher than the one using the standard density threshold and has therefore major implications for the evolution of the galaxy. We will review through a comparative study the consequences of using radiative transfer combined with such a Virial star formation criterion for the star formation history, the gas and stellar morphology of the disk and clumps as well as the properties of the galactic fountain induced by stellar feedback. A first set of simulation presents

  8. BROAD-LINE REGION PHYSICAL CONDITIONS IN EXTREME POPULATION A QUASARS: A METHOD TO ESTIMATE CENTRAL BLACK HOLE MASS AT HIGH REDSHIFT

    SciTech Connect

    Negrete, C. Alenka; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W. E-mail: deborah@astro.unam.mx E-mail: sulentic@iaa.es

    2012-09-20

    We describe a method for estimating physical conditions in the broad-line region (BLR) for a significant subsample of Seyfert 1 nuclei and quasars. Several diagnostic ratios based on intermediate (Al III {lambda}1860, Si III] {lambda}1892) and high (C IV {lambda}1549, Si IV {lambda}1397) ionization lines in the UV spectra of quasars are used to constrain density, ionization, and metallicity of the emitting gas. We apply the method to two extreme Population A quasars-the prototypical NLSy1 I Zw 1 and higher z source SDSS J120144.36+011611.6. Under assumptions of spherical symmetry and pure photoionization we infer BLR physical conditions: low ionization (ionization parameter <10{sup -2}), high density (10{sup 12}-10{sup 13} cm{sup -3}), and significant metal enrichment. Ionization parameter and density can be derived independently for each source with an uncertainty that is less than {+-}0.3 dex. We use the product of density and ionization parameter to estimate the BLR radius and derive an estimation of the virial black hole mass (M{sub BH}). Estimates of M{sub BH} based on the 'photoionization' analysis described in this paper are probably more accurate than those derived from the mass-luminosity correlations widely employed to compute black hole masses for high-redshift quasars.

  9. AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Bournaud, Frederic; Juneau, Stephanie; Le Floc'h, Emeric; Mullaney, James; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Salmi, Fadia; Dekel, Avishai; Dickinson, Mark

    2012-09-20

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 10{sup 8}-10{sup 9} M{sub Sun} arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z {approx} 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] {lambda}5007 emission line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] {lambda}3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 10{sup 43} erg s{sup -1}, BH growth rates m-dot{sub BH}{approx}10{sup -2} M{sub Sun} yr{sup -1}, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of

  10. Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation

    NASA Technical Reports Server (NTRS)

    Henry, Alaina; Scarlata, Claudia; Dominguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc; Ross, Nathaniel; Teplitz, Harry; Bunker, Andrew J.; Dressler, Alan; Hathi, Nimish; Masters, Daniel; McCarthy, Patrick; Straughn, Amber

    2013-01-01

    We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10(exp 8) < M/Stellar Mass < or approx. 10(exp 10), obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 < or approx. z < or approx. 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R23 metallicity diagnostic: ([O II] (lambda)(lambda)3726, 3729 + [OIII] (lambda)(lambda)4959, 5007)/H(beta). Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10(exp 9.8) Stellar Mass to 12+log(O/H)= 8.2 at M = 10(exp 8.2) Stellar Mass. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M > or approx. 10(exp 9.5) Stellar Mass and z approx. 2.3. Within the statistical uncertainties, our MZ relation agrees with the z approx. 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M* relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.

  11. High-redshift blazar identification for Swift J1656.3-3302

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Mason, E.; Landi, R.; Giommi, P.; Bassani, L.; Malizia, A.; Bird, A. J.; Bazzano, A.; Dean, A. J.; Gehrels, N.; Palazzi, E.; Ubertini, P.

    2008-03-01

    We report on the high-redshift blazar identification of a new gamma-ray source, Swift J1656.3-3302, detected with the BAT imager onboard the Swift satellite and the IBIS instrument on the INTEGRAL satellite. Follow-up optical spectroscopy has allowed us to identify the counterpart as an R˜ 19 mag source that shows broad Lyman-α, Si iv, He ii, C iv, and C iii] emission lines at redshift z = 2.40 ± 0.01. Spectral evolution is observed in X-rays when the INTEGRAL/IBIS data are compared to the Swift/BAT results, with the spectrum steepening when the source gets fainter. The 0.7-200 keV X-ray continuum, observed with Swift/XRT and INTEGRAL/IBIS, shows the power law shape typical of radio loud (broad emission line) active galactic nuclei (with a photon index Γ ˜ 1.6) and a hint of spectral curvature below ~2 keV, possibly due to intrinsic absorption (NH ˜ 7× 10 22 cm-2) local to the source. Alternatively, a slope change (Δ Γ ˜ 1) around 2.7 keV can describe the X-ray spectrum equally well. At this redshift, the observed 20-100 keV luminosity of the source is ~1048 erg s-1 (assuming isotropic emission), making Swift J1656.3-3302 one of the most X-ray luminous blazars. This source is yet another example of a distant gamma-ray loud quasar discovered above 20 keV. It is also the farthest object, among the previously unidentified INTEGRAL sources, whose nature has been determined a posteriori through optical spectroscopy. Partly based on X-ray observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA, and on optical observations collected at ESO (La Silla, Chile) under programme 079.A-0171(A).

  12. On the Radiative Efficiencies, Eddington Ratios, and Duty Cycles of Luminous High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Crocce, Martin; Miralda-Escudé, Jordi; Fosalba, Pablo; Weinberg, David H.

    2010-07-01

    We investigate the characteristic radiative efficiency epsilon, Eddington ratio λ, and duty cycle P 0 of high-redshift active galactic nuclei (AGNs), drawing on measurements of the AGN luminosity function at z = 3-6 and, especially, on recent measurements of quasar clustering at z = 3-4.5 from the Sloan Digital Sky Survey. The free parameters of our models are epsilon, λ, and the normalization, scatter, and redshift evolution of the relation between black hole (BH) mass M BH and halo virial velocity V vir. We compute the luminosity function from the implied growth of the BH mass function and the quasar correlation length from the bias of the host halos. We test our adopted formulae for the halo mass function and halo bias against measurements from the large N-body simulation developed by the MICE collaboration. The strong clustering of AGNs observed at z = 3 and, especially, at z = 4 implies that massive BHs reside in rare, massive dark matter halos. Reproducing the observed luminosity function then requires high efficiency epsilon and/or low Eddington ratio λ, with a lower limit (based on 2σ agreement with the measured z = 4 correlation length) epsilon >~ 0.7λ/(1 + 0.7λ), implying epsilon >~ 0.17 for λ>0.25. Successful models predict high duty cycles, P 0 ~ 0.2, 0.5, and 0.9 at z = 3.1, 4.5, and 6, respectively, and they require that the fraction of halo baryons locked in the central BH is much larger than the locally observed value. The rapid drop in the abundance of the massive and rare host halos at z > 7 implies a proportionally rapid decline in the number density of luminous quasars, much stronger than simple extrapolations of the z = 3-6 luminosity function would predict. For example, our most successful model predicts that the highest redshift quasar in the sky with true bolometric luminosity L > 1047.5 erg s-1 should be at z ~ 7.5, and that all quasars with higher apparent luminosities would have to be magnified by lensing.

  13. Superluminous Supernovae as Standardizable Candles and High-redshift Distance Probes

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Smartt, S. J.

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = -21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM 20 decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  14. Low Masses and High Redshifts: The Evolution of the Mass-Metallicity Relation

    NASA Astrophysics Data System (ADS)

    Henry, Alaina; Scarlata, Claudia; Domínguez, Alberto; Malkan, Matthew; Martin, Crystal L.; Siana, Brian; Atek, Hakim; Bedregal, Alejandro G.; Colbert, James W.; Rafelski, Marc; Ross, Nathaniel; Teplitz, Harry; Bunker, Andrew J.; Dressler, Alan; Hathi, Nimish; Masters, Daniel; McCarthy, Patrick; Straughn, Amber

    2013-10-01

    We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 108 <~ M/M ⊙ <~ 1010, obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 <~ z <~ 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R 23 metallicity diagnostic: ([O II] λλ3726, 3729 + [O III] λλ4959, 5007)/Hβ. Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 109.8 M ⊙, to 12+log(O/H) = 8.2 at M = 108.2 M ⊙. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M >~ 109.5 M ⊙ and z ~ 2.3. Within the statistical uncertainties, our MZ relation agrees with the z ~ 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M * relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. An Observed Link between Active Galactic Nuclei and Violent Disk Instabilities in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bournaud, Frédéric; Juneau, Stéphanie; Le Floc'h, Emeric; Mullaney, James; Daddi, Emanuele; Dekel, Avishai; Duc, Pierre-Alain; Elbaz, David; Salmi, Fadia; Dickinson, Mark

    2012-09-01

    We provide evidence for a correlation between the presence of giant clumps and the occurrence of active galactic nuclei (AGNs) in disk galaxies. Giant clumps of 108-109 M ⊙ arise from violent gravitational instability in gas-rich galaxies, and it has been proposed that this instability could feed supermassive black holes (BHs). We use emission line diagnostics to compare a sample of 14 clumpy (unstable) disks and a sample of 13 smoother (stable) disks at redshift z ~ 0.7. The majority of clumpy disks in our sample have a high probability of containing AGNs. Their [O III] λ5007 emission line is strongly excited, inconsistent with low-metallicity star formation (SF) alone. [Ne III] λ3869 excitation is also higher. Stable disks rarely have such properties. Stacking ultra sensitive Chandra observations (4 Ms) reveals an X-ray excess in clumpy galaxies, which confirms the presence of AGNs. The clumpy galaxies in our intermediate-redshift sample have properties typical of gas-rich disk galaxies rather than mergers, being in particular on the main sequence of SF. This suggests that our findings apply to the physically similar and numerous gas-rich unstable disks at z > 1. Using the observed [O III] and X-ray luminosities, we conservatively estimate that AGNs hosted by clumpy disks have typical bolometric luminosities of the order of a few 1043 erg s-1, BH growth rates \\dot{m}_BH \\sim 10^{-2}\\,M_\\odot yr-1, and that these AGNs are substantially obscured in X-rays. This moderate-luminosity mode could provide a large fraction of today's BH mass with a high duty cycle (>10%), accretion bursts with higher luminosities being possible over shorter phases. Violent instabilities at high redshift (giant clumps) are a much more efficient driver of BH growth than the weak instabilities in nearby spirals (bars), and the evolution of disk instabilities with mass and redshift could explain the simultaneous downsizing of SF and of BH growth.

  16. LOW MASSES AND HIGH REDSHIFTS: THE EVOLUTION OF THE MASS-METALLICITY RELATION

    SciTech Connect

    Henry, Alaina; Straughn, Amber; Scarlata, Claudia; Bedregal, Alejandro G.; Domínguez, Alberto; Siana, Brian; Masters, Daniel; Malkan, Matthew; Ross, Nathaniel; Martin, Crystal L.; Atek, Hakim; Colbert, James W.; Rafelski, Marc; Teplitz, Harry; Bunker, Andrew J.; Dressler, Alan; Hathi, Nimish; McCarthy, Patrick

    2013-10-20

    We present the first robust measurement of the high redshift mass-metallicity (MZ) relation at 10{sup 8} ∼< M/M {sub ☉} ∼< 10{sup 10}, obtained by stacking spectra of 83 emission-line galaxies with secure redshifts between 1.3 ∼< z ∼< 2.3. For these redshifts, infrared grism spectroscopy with the Hubble Space Telescope Wide Field Camera 3 is sensitive to the R {sub 23} metallicity diagnostic: ([O II] λλ3726, 3729 + [O III] λλ4959, 5007)/Hβ. Using spectra stacked in four mass quartiles, we find a MZ relation that declines significantly with decreasing mass, extending from 12+log(O/H) = 8.8 at M = 10{sup 9.8} M {sub ☉}, to 12+log(O/H) = 8.2 at M = 10{sup 8.2} M {sub ☉}. After correcting for systematic offsets between metallicity indicators, we compare our MZ relation to measurements from the stacked spectra of galaxies with M ∼> 10{sup 9.5} M {sub ☉} and z ∼ 2.3. Within the statistical uncertainties, our MZ relation agrees with the z ∼ 2.3 result, particularly since our somewhat higher metallicities (by around 0.1 dex) are qualitatively consistent with the lower mean redshift (z = 1.76) of our sample. For the masses probed by our data, the MZ relation shows a steep slope which is suggestive of feedback from energy-driven winds, and a cosmological downsizing evolution where high mass galaxies reach the local MZ relation at earlier times. In addition, we show that our sample falls on an extrapolation of the star-forming main sequence (the SFR-M {sub *} relation) at this redshift. This result indicates that grism emission-line selected samples do not have preferentially high star formation rates (SFRs). Finally, we report no evidence for evolution of the mass-metallicity-SFR plane; our stack-averaged measurements show excellent agreement with the local relation.

  17. Superluminous supernovae as standardizable candles and high-redshift distance probes

    SciTech Connect

    Inserra, C.; Smartt, S. J.

    2014-12-01

    We investigate the use of type Ic superluminous supernovae (SLSN Ic) as standardizable candles and distance indicators. Their appeal as cosmological probes stems from their remarkable peak luminosities, hot blackbody temperatures, and bright rest-frame ultraviolet emission. We present a sample of 16 published SLSN, from redshifts 0.1 to 1.2, and calculate accurate K corrections to determine uniform magnitudes in 2 synthetic rest-frame filter bandpasses with central wavelengths at 400 nm and 520 nm. At 400 nm, we find an encouragingly low scatter in their uncorrected, raw mean magnitudes with M(400) = –21.86 ± 0.35 mag for the full sample of 16 objects. We investigate the correlation between their decline rates and peak magnitude and find that the brighter events appear to decline more slowly. In a manner similar to the Phillips relation for type Ia SNe (SNe Ia), we define a ΔM {sub 20} decline relation. This correlates peak magnitude and decline over 20 days and can reduce the scatter in standardized peak magnitudes to ±0.22 mag. We further show that M(400) appears to have a strong color dependence. Redder objects are fainter and also become redder faster. Using this peak magnitudecolor evolution relation, a surprisingly low scatter of between ±0.08 mag and ±0.13 mag can be found in peak magnitudes, depending on sample selection. However, we caution that only 8 to 10 objects currently have enough data to test this peak magnitudecolor evolution relation. We conclude that SLSN Ic are promising distance indicators in the high-redshift universe in regimes beyond those possible with SNe Ia. Although the empirical relationships are encouraging, the unknown progenitor systems, how they may evolve with redshift, and the uncertain explosion physics are of some concern. The two major measurement uncertainties are the limited numbers of low-redshift, well-studied objects available to test these relationships and internal dust extinction in the host galaxies.

  18. A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega(0) = 1

    NASA Technical Reports Server (NTRS)

    Donahue, Megan; Voit, G. Mark; Gioia, Isabella; Luppino, Gerry; Hughes, John P.; Stocke, John T.

    1998-01-01

    We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 (sup +3.1) (sub -2.2)keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approx. 7.4 x 10 (sup 14) h (sup -1) M (circle dot), if the mean matter density in the universe equals the critical value (OMEGA (sub 0) = 1), or larger if OMEGA (sub 0) is less than 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA (sub 0) = 1 universe. Combining the assumptions that OMEGA (sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10 (sup -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z greater than 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA (sub 0) = 1, we find that each one is improbable at the less than 10 (sup -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L (sub X) - T (sub X) relation, argue strongly that OMEGA (sub 0) less than 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.

  19. Comparing cosmological hydrodynamic simulations with observations of high- redshift galaxy formation

    NASA Astrophysics Data System (ADS)

    Finlator, Kristian Markwart

    We use cosmological hydrodynamic simulations to study the impact of outflows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a "constant-wind" model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum-driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then "leaks" directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the

  20. Measurements of Extragalactic Background Light from the Far UV to the Far IR from Deep Ground- and Space-based Galaxy Counts

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Andrews, Stephen K.; Davies, Luke J.; Robotham, Aaron S. G.; Wright, Angus H.; Windhorst, Rogier A.; Cohen, Seth; Emig, Kim; Jansen, Rolf A.; Dunne, Loretta

    2016-08-01

    We combine wide and deep galaxy number-count data from the Galaxy And Mass Assembly, COSMOS/G10, Hubble Space Telescope (HST) Early Release Science, HST UVUDF, and various near-, mid-, and far-IR data sets from ESO, Spitzer, and Herschel. The combined data range from the far UV (0.15 μm) to far-IR (500 μm), and in all cases the contribution to the integrated galaxy light (IGL) of successively fainter galaxies converges. Using a simple spline fit, we derive the IGL and the extrapolated IGL in all bands. We argue that undetected low-surface-brightness galaxies and intracluster/group light are modest, and that our extrapolated-IGL measurements are an accurate representation of the extragalactic background light (EBL). Our data agree with most earlier IGL estimates and with direct measurements in the far IR, but disagree strongly with direct estimates in the optical. Close agreement between our results and recent very high-energy experiments (H.E.S.S. and MAGIC) suggests that there may be an additional foreground affecting the direct estimates. The most likely culprit could be the adopted model of zodiacal light. Finally we use a modified version of the two-component model to integrate the EBL and obtain measurements of the cosmic optical background (COB) and cosmic infrared background of {24}-4+4 nW m-2 sr-1 and {26}-5+5 nW m-2 sr-1 respectively (48%:52%). Over the next decade, upcoming space missions such as Euclid and the Wide Field Infrared Space Telescope will have the capacity to reduce the COB error to <1%, at which point comparisons to the very high-energy data could have the potential to provide a direct detection and measurement of the reionization field.

  1. Measurements of Extragalactic Background Light from the Far UV to the Far IR from Deep Ground- and Space-based Galaxy Counts

    NASA Astrophysics Data System (ADS)

    Driver, Simon P.; Andrews, Stephen K.; Davies, Luke J.; Robotham, Aaron S. G.; Wright, Angus H.; Windhorst, Rogier A.; Cohen, Seth; Emig, Kim; Jansen, Rolf A.; Dunne, Loretta

    2016-08-01

    We combine wide and deep galaxy number-count data from the Galaxy And Mass Assembly, COSMOS/G10, Hubble Space Telescope (HST) Early Release Science, HST UVUDF, and various near-, mid-, and far-IR data sets from ESO, Spitzer, and Herschel. The combined data range from the far UV (0.15 μm) to far-IR (500 μm), and in all cases the contribution to the integrated galaxy light (IGL) of successively fainter galaxies converges. Using a simple spline fit, we derive the IGL and the extrapolated IGL in all bands. We argue that undetected low-surface-brightness galaxies and intracluster/group light are modest, and that our extrapolated-IGL measurements are an accurate representation of the extragalactic background light (EBL). Our data agree with most earlier IGL estimates and with direct measurements in the far IR, but disagree strongly with direct estimates in the optical. Close agreement between our results and recent very high-energy experiments (H.E.S.S. and MAGIC) suggests that there may be an additional foreground affecting the direct estimates. The most likely culprit could be the adopted model of zodiacal light. Finally we use a modified version of the two-component model to integrate the EBL and obtain measurements of the cosmic optical background (COB) and cosmic infrared background of {24}-4+4 nW m‑2 sr‑1 and {26}-5+5 nW m‑2 sr‑1 respectively (48%:52%). Over the next decade, upcoming space missions such as Euclid and the Wide Field Infrared Space Telescope will have the capacity to reduce the COB error to <1%, at which point comparisons to the very high-energy data could have the potential to provide a direct detection and measurement of the reionization field.

  2. PROBING HIGH-REDSHIFT GALAXY FORMATION AT THE HIGHEST LUMINOSITIES: NEW INSIGHTS FROM DEIMOS SPECTROSCOPY

    SciTech Connect

    Lee, Kyoung-Soo; Dey, Arjun; Cooper, Michael C.; Reddy, Naveen; Jannuzi, Buell T.

    2013-07-01

    We present Keck DEIMOS spectroscopic observations of the most UV-luminous star-forming galaxies at redshifts 3.2 < z < 4.6. Our sample, selected in the Booetes field of the NOAO Deep Wide-Field Survey, contains galaxies with luminosities of L* {approx}< L{sub UV} {approx}< 7 L* and is one of the largest samples to date of the most UV-luminous galaxies at these redshifts. Our spectroscopic data confirm 41 candidates as star-forming galaxies at 3.2 < z < 4.6 and validate the relatively clean selection of the photometric candidates with a contamination rate of 11%-28%. We find that the fraction of Ly{alpha} emitting galaxies increases with decreasing UV luminosity. None of the 12 galaxies with M{sub UV} < -22 (i.e., L{sub UV} > 3 L*) exhibit strong Ly{alpha} emission. We find strong evidence of large-scale outflows, transporting the neutral/ionized gas in the interstellar medium away from the galaxy. Galaxies exhibiting both interstellar absorption and Ly{alpha} emission lines show a significant offset between the two features, with a relative velocity of 200-1150 km s{sup -1}. We find tentative evidence that this measure of the outflow velocity increases with UV luminosity and/or stellar mass. The luminosity- and mass-dependent outflow strengths suggest that the efficiency of feedback and enrichment of the surrounding medium depend on these galaxy parameters. We also stack the individual spectra to construct composite spectra of the absorption-line-only and Ly{alpha}-emitting subsets of the UV luminous galaxies at z {approx_equal} 3.7. The composite spectra are very similar to those of lower-redshift and lower-luminosity Lyman break galaxy (LBG) samples, but with some subtle differences. Analyses of the composite spectra suggest that the UV luminous LBGs at z {approx_equal} 3.7 may have a higher covering fraction of absorbing gas, and may be older (or have had more prolonged star formation histories) than their lower-redshift and lower-luminosity counterparts. In

  3. Imaging of High Redshift Starburst galaxies in the light of Lyman alpha

    NASA Astrophysics Data System (ADS)

    Beckwith, Steven

    1997-07-01

    The PI is the designated director for STScI but has no experience with HST. The purpose of this proposal is to gain experience with the facility by carrying out a modest observational program that is unique and will not conflict with any community programs. The proposed science is divided into priority 1 and priority 2, for 6 + 4 orbits. This division will allow allocation in parts, if the pressure on DDT is large and the total of 10 orbits unusually difficult to schedule. The priority 1 science is rather predictable and, hence, conservative, consisting of the brightest of the objects under study. The priority 2 science is somewhat riskier, because it is more difficult to estimate object brightnesses in the filters to be used on HST. Both priority 1 and priority 2 observations allow for a large degree of serendipity, because the fields are likely to have more starburst galaxies at the observed redshifts that may show up in Lyman alpha. Exploration of the high redshift u niverse and discovery of the most distant objects is still in its infancy. Only recently have the tools been available to detect normal galaxies at redshifts larger than one when the first galaxies were created {Pescarelle et al. 1996; Hu & McMahon 1996; Cowie & Hu 1998; Steidel et al. 1996}. It seems likely that young galaxies will have a variety of different signatures {Franceschini et al. 1998; Guideroni et al. 1997}, so that it will be necessary to use several diverse techniques to uncover all of them: searches at optical, infrared, x-ray, and radio wavelengths, for example. It is already known that many of the optically selected galaxies using the "dropout" technique are reddened by dust {Pettini et al. 1997}. We carried out two surveys for infrared emission-line galaxies by imaging through narrow {Resolving power 100} and broad band filters between 1 and 2.5 microns and identifying objects that appeared brighter in the narrow filters. Our first survey was designed to uncover emission lines at

  4. Millimeter Observations of a Sample of High-Redshift Obscured Quasars

    NASA Astrophysics Data System (ADS)

    Martínez-Sansigre, Alejo; Karim, Alexander; Schinnerer, Eva; Omont, Alain; Smith, Daniel J. B.; Wu, Jingwen; Hill, Gary J.; Klöckner, Hans-Rainer; Lacy, Mark; Rawlings, Steve; Willott, Chris J.

    2009-11-01

    earlier evolutionary phase than those of unobscured quasars. For one source at z = 2.767, we detect the CO(3-2) transition, with S COΔν = 630 ± 50 mJy km s-1, corresponding to L CO(3-2) = 3.2 ×107 L sun, or a brightness-temperature luminosity of L'CO(3-2) = 2.4 × 1010 K km s-1 pc2. For another source at z = 4.17, the lack of detection of the CO(4-3) line suggests the line to have a brightness-temperature luminosity L'CO(4-3) < 1 × 1010 K km s-1 pc2. Under the assumption that in these objects the high-J transitions are thermalized, we can estimate the molecular gas contents to be M_H_{2}=1.9× 10^{10} M sun and <8 × 109 M sun, respectively. The estimated gas depletion timescales are τg = 4 Myr and <16 Myr, and low gas-to-dust mass ratios of M g/M d = 19 and <20 are inferred. These values are at the low end but consistent with those of other high-redshift galaxies. Based on observations carried out with the IRAM 30 m Telescope and the Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  5. SUPERMASSIVE BLACK HOLE FORMATION AT HIGH REDSHIFTS VIA DIRECT COLLAPSE: PHYSICAL PROCESSES IN THE EARLY STAGE

    SciTech Connect

    Choi, Jun-Hwan; Shlosman, Isaac; Begelman, Mitchell C. E-mail: shlosman@pa.uky.edu

    2013-09-10

    We use numerical simulations to explore whether direct collapse can lead to the formation of supermassive black hole (SMBH) seeds at high redshifts. Using the adaptive mesh refinement code ENZO, we follow the evolution of gas within slowly tumbling dark matter (DM) halos of M{sub vir} {approx} 2 Multiplication-Sign 10{sup 8} M{sub Sun} and R{sub vir} {approx} 1 kpc. For our idealized simulations, we adopt cosmologically motivated DM and baryon density profiles and angular momentum distributions. Our principal goal is to understand how the collapsing flow overcomes the centrifugal barrier and whether it is subject to fragmentation which can potentially lead to star formation, decreasing the seed SMBH mass. We find that the collapse proceeds from inside out and leads either to a central runaway or to off-center fragmentation. A disk-like configuration is formed inside the centrifugal barrier, growing via accretion. For models with a more cuspy DM distribution, the gas collapses more and experiences a bar-like perturbation and a central runaway on scales of {approx}< 1-10 pc. We have followed this inflow down to {approx}10{sup -4} pc ({approx}10 AU), where it is estimated to become optically thick. The flow remains isothermal and the specific angular momentum, j, is efficiently transferred by gravitational torques in a cascade of nested bars. This cascade is triggered by finite perturbations from the large-scale mass distribution and by gas self-gravity, and supports a self-similar, disk-like collapse where the axial ratios remain constant. The mass accretion rate shows a global minimum on scales of {approx}1-10 pc at the time of the central runaway. In the collapsing phase, virial supersonic turbulence develops and fragmentation is damped. Models with progressively larger initial DM cores evolve similarly, but the timescales become longer. In models with more organized initial rotation-when the rotation of spherical shells is constrained to be coplanar-a torus forms

  6. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    SciTech Connect

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch', Emeric; Dekel, Avishai; Elmegreen, Bruce G.; Elmegreen, Debra M.; Teyssier, Romain

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  7. An 80-kpc Lyα halo around a high-redshift type-2 quasi-stellar object

    NASA Astrophysics Data System (ADS)

    Smith, D. J. B.; Jarvis, M. J.; Simpson, C.; Martínez-Sansigre, A.

    2009-02-01

    We announce the discovery of an extended emission-line region associated with a high-redshift type-2 quasi-stellar object (QSO). The halo, which was discovered in our new wide-field narrow-band survey, resides at z = 2.85 in the Spitzer First Look Survey region and is extended over ~80 kpc. Deep very long baseline interferometry (VLBI) observations imply that approximately 50 per cent of the radio emission is extended on scales >200pc. The inferred active galactic nuclei (AGN) luminosity is sufficient to ionize the extended halo, and the optical emission is consistent with being triggered coevally with the radio source. The Lyα halo is as luminous as those found around high-redshift radio galaxies; however, the active nucleus is several orders of magnitude less luminous at radio wavelengths than those Fanarof-Riley type II (FRIIs) more commonly associated with extended emission-line regions. AMS05 appears to be a high-redshift analogue to the radio-quiet quasar E1821+643 which is core dominated, but which also exhibits extended Fanarof-Riley type I (FRI)-like structure and contains an optically powerful AGN. We also find evidence for more quiescent kinematics in the Lyα emission line in the outer regions of the halo, reminiscent of the haloes around the more powerful FRIIs. The optical to mid-infrared spectral energy distribution is well described by a combination of an obscured QSO (Lbol ~ 3.4 +/- 0.2 × 1013Lsolar) and a 1.4 Gyr old simple stellar population with mass ~3.9 +/- 0.3 × 1011Msolar.

  8. Star-forming galactic contrails as a source of metal enrichment and ionizing radiation at high redshift

    NASA Astrophysics Data System (ADS)

    Rauch, Michael; Becker, George D.; Haehnelt, Martin G.; Gauthier, Jean-Rene

    2014-06-01

    A spectroscopically detected Lyman α emitting halo at redshift 3.216 in the GOODS-N field is found to reside at the convergence of several line-emitting filaments. Spatially extended emission apparently by He II 1640 Å and several metal transitions is seen within several arcseconds from the position of the central galaxy. The V = 24.9 galaxy mainly responsible for the continuum emission at the centre of the halo has broad-band colours and spectral features consistent with a z = 3.216 star-forming galaxy. Hubble Space Telescope images show that some of the filaments coincide, in projection, with several, mostly blue galaxies, with pronounced head-tail structures partly aligned with each other. These objects, for which we cannot rule that they are foreground, chance projections in front of the high-redshift halo, are seen over an area with a linear extent of at least 12 arcsec. The broad-band images of some galaxies suggest the presence of ram-pressure stripping, including possible evidence for recent star formation in the stripped contrails. Spatial gradients in the appearance of several galaxies may represent a stream of galaxies passing from a colder to a hotter intergalactic medium. The release of the enriched interstellar medium from galaxies and the occurrence of star formation and stellar feedback in the galactic contrails suggest a mechanism for the metal enrichment of the high-redshift intergalactic medium that does not require long-range galactic winds. If these galaxies are at the same redshift as the Lyα halo, their very blue colours may be a consequence of the stripping of gas. A stripped stellar population and star formation in galactic contrails suggest promising sites for the escape of ionizing radiation from high-redshift galaxies.

  9. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Hamilton, Donald

    1993-01-01

    We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.

  10. BRIGHT lights, BIG city: high redshift radio galaxies, giant Ly-a halos, and proto-clusters

    NASA Astrophysics Data System (ADS)

    van Breugel, Willem J.; Reuland, Michiel A.; de Vries, Willem H.; Stanford, Adam; Dey, Arjun; Kurk, Jaron; Venemans, Bram; Roettgering, Huub J. A.; Miley, George; De Breuck, Carlos; Dopita, Mike; Sutherland, Ralph; Bland-Hawthorn, Jonathan

    2003-02-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. We report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-α nebulae centered on the galaxies and to search for over-dense regions around them. We discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  11. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E. J.

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  12. MILLIMETER OBSERVATIONS OF A SAMPLE OF HIGH-REDSHIFT OBSCURED QUASARS

    SciTech Connect

    Martinez-Sansigre, Alejo; Karim, Alexander; Schinnerer, Eva E-mail: karim@mpia.d

    2009-11-20

    quasars must have higher cool-dust masses and are therefore often found at an earlier evolutionary phase than those of unobscured quasars. For one source at z = 2.767, we detect the CO(3-2) transition, with S{sub CO}DELTAnu = 630 +- 50 mJy km s{sup -1}, corresponding to L{sub CO(3-2)} = 3.2 x10{sup 7} L{sub sun}, or a brightness-temperature luminosity of L'{sub CO(3-2)} = 2.4 x 10{sup 10} K km s{sup -1} pc{sup 2}. For another source at z = 4.17, the lack of detection of the CO(4-3) line suggests the line to have a brightness-temperature luminosity L'{sub CO(4-3)} < 1 x 10{sup 10} K km s{sup -1} pc{sup 2}. Under the assumption that in these objects the high-J transitions are thermalized, we can estimate the molecular gas contents to be M{sub H{sub 2}}=1.9x10{sup 10} M {sub sun} and <8 x 10{sup 9} M{sub sun}, respectively. The estimated gas depletion timescales are tau{sub g} = 4 Myr and <16 Myr, and low gas-to-dust mass ratios of M{sub g}/M {sub d} = 19 and <20 are inferred. These values are at the low end but consistent with those of other high-redshift galaxies.

  13. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE PAGES

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  14. The Star Formation History of Local Starbursts as Benchmark for High Redshifts

    NASA Astrophysics Data System (ADS)

    Schmitt, Henrique R.; Calzetti, Daniela; Armus, Lee

    2001-08-01

    We propose to use the WIYN telescope and MIMO to obtain broad band B and R, and narrow band H(alpha) and H(beta) images for a sample of 13 local starburst galaxies detected by ISO at 170-200(micron) and for which we are obtaining ultraviolet (1600Å) images with an approved HST/STIS program. With these observations we will complete the ground based portion of this project. This sample spans a wide range in the luminosity, star formation rate, metallicity and morphology parameters, and will be used as a low-redshift benchmark to explore the relationship between the Lyman-break and the SCUBA galaxies at z~3. The broad- band ground-based and HST images will be used to characterize the stellar populations and determine the ages of the star forming regions of these galaxies, while the H(alpha)/H(beta) ratio will be used to determine the reddening and gas morphology of these regions. We will study the conditions for the escape of UV light from a dusty galaxy, as a function of the sample parameters. The H(alpha) and UV HST images will be combined to derive a relative empirical calibration between these two star formation indicators. We will measure the fraction of nuclear and disk emission, the fraction of star formation in massive clusters and the properties of those star clusters, the structural properties of star forming bars, rings, and tidally-driven star formation in IR-bright galaxies.

  15. The Star Formation History of Local Starbursts as Benchmark for High Redshifts

    NASA Astrophysics Data System (ADS)

    Schmitt, Henrique R.; Calzetti, Daniela; Armus, Lee

    2001-02-01

    We propose to use the WIYN telescope and MIMO to obtain broad band B and R, and narrow band H(alpha) and H(beta) images for a sample of 22 local starburst galaxies detected by ISO at 170-200(micron) and for which we are obtaining ultraviolet (1600Å) images with an approved HST/STIS program. This sample spans a wide range in the luminosity, star formation rate, metallicity and morphology parameters, and will be used as a low-redshift benchmark to explore the relationship between the Lyman-break and the SCUBA galaxies at z~3. The broad-band ground- based and HST images will be used to characterize the stellar populations and determine the ages of the star forming regions of these galaxies, while the H(alpha)/H(beta) ratio will be used to determine the reddening and gas morphology of these regions. We will study the conditions for the escape of UV light from a dusty galaxy, as a function of the sample parameters. The H(alpha) and UV HST images will be combined to derive a relative empirical calibration between these two star formation indicators. We will measure the fraction of nuclear and disk emission, the fraction of star formation in massive clusters and the properties of those star clusters, the structural properties of star forming bars, rings, and tidally-driven star formation in IR-bright galaxies.

  16. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    NASA Technical Reports Server (NTRS)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E.

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  17. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE

    NASA Astrophysics Data System (ADS)

    Wisotzki, L.; Bacon, R.; Blaizot, J.; Brinchmann, J.; Herenz, E. C.; Schaye, J.; Bouché, N.; Cantalupo, S.; Contini, T.; Carollo, C. M.; Caruana, J.; Courbot, J.-B.; Emsellem, E.; Kamann, S.; Kerutt, J.; Leclercq, F.; Lilly, S. J.; Patrício, V.; Sandin, C.; Steinmetz, M.; Straka, L. A.; Urrutia, T.; Verhamme, A.; Weilbacher, P. M.; Wendt, M.

    2016-03-01

    We report the detection of extended Lyα emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1σ) of ~1 × 10-19 erg s-1 cm-2 arcsec-2 in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Lyα-emitting, but mostly continuum-faint (mAB ≳ 27) galaxies. In most objects the Lyα emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Lyα haloes, the derived upper limits suggest that this is due to insufficient S/N. Lyα haloes therefore appear to be ubiquitous even for low-mass (~ 108-109 M⊙) star-forming galaxies at z > 3. We decompose the Lyα emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Lyα emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor ~5, than Lyα haloes around low-redshift star-forming galaxies. Between ~40% and ≳90% of the observed Lyα flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Lyα halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.

  18. THE A2667 GIANT ARC AT z = 1.03: EVIDENCE FOR LARGE-SCALE SHOCKS AT HIGH REDSHIFT

    SciTech Connect

    Yuan, T.-T.; Kewley, L. J.; Swinbank, A. M.; Richard, J.

    2012-11-01

    We present the spatially resolved emission line ratio properties of a {approx}10{sup 10} M {sub Sun} star-forming galaxy at redshift z = 1.03. This galaxy is gravitationally lensed as a triple-image giant arc behind the massive lensing cluster A2667. The main image of the galaxy has magnification factors of 14 {+-} 2.1 in flux and {approx}2 Multiplication-Sign 7 in area, yielding an intrinsic spatial resolution of 115-405 pc after adaptive optics correction with OSIRIS at KECK II. The Hubble Space Telescope morphology shows a clumpy structure and the H{alpha} kinematics indicates a large velocity dispersion with V {sub max} sin (i)/{sigma} {approx} 0.73, consistent with high-redshift disk galaxies of similar masses. From the [N II]/H{alpha} line ratios, we find that the central 350 pc of the galaxy is dominated by star formation. The [N II]/H{alpha} line ratios are higher in the outer disk than in the central regions. Most noticeably, we find a blueshifted region of strong [N II]/H{alpha} emission in the outer disk. Applying our recent H II region and slow-shock models, we propose that this elevated [N II]/H{alpha} ratio region is contaminated by a significant fraction of shock excitation due to galactic outflows. Our analysis suggests that shocked regions may mimic flat or inverted metallicity gradients at high redshift.

  19. The hard X-ray luminosity function of high-redshift (3 < z ≲ 5) active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.; Brusa, M.; Cappelluti, N.; Iwasawa, K.

    2014-12-01

    We present the hard-band (2-10 keV) X-ray luminosity function (HXLF) of 0.5-2 keV band selected active galactic nuclei (AGN) at high redshift. We have assembled a sample of 141 AGN at 3 < z ≲ 5 from X-ray surveys of different size and depth, in order to sample different regions in the LX - z plane. The HXLF is fitted in the range log LX ˜ 43-45 with standard analytical evolutionary models through a maximum likelihood procedure. The evolution of the HXLF is well described by a pure density evolution, with the AGN space density declining by a factor of ˜10 from z = 3 to 5. A luminosity-dependent density evolution model, which, normally, best represents the HXLF evolution at lower redshift, is also consistent with the data, but a larger sample of low-luminosity (log LX < 44), high-redshift AGN is necessary to constrain this model. We also estimated the intrinsic fraction of AGN obscured by a column density log NH ≥ 23 to be 0.54 ± 0.05, with no strong dependence on luminosity. This fraction is higher than the value in the Local Universe, suggesting an evolution of the luminous (LX > 1044 erg s-1) obscured AGN fraction from z = 0 to z > 3.

  20. PROSPECTS FOR MEASURING THE MASS OF BLACK HOLES AT HIGH REDSHIFTS WITH RESOLVED KINEMATICS USING GRAVITATIONAL LENSING

    SciTech Connect

    Hezaveh, Yashar D.

    2014-08-20

    Application of the most robust method of measuring black hole masses, spatially resolved kinematics of gas and stars, is presently limited to nearby galaxies. The Atacama Large Millimeter/sub-millimeter Array (ALMA) and 30m class telescopes (the Thirty Meter Telescope, the Giant Magellan Telescope, and the European Extremely Large Telescope) with milli-arcsecond resolution are expected to extend such measurements to larger distances. Here, we study the possibility of exploiting the angular magnification provided by strong gravitational lensing to measure black hole masses at high redshifts (z ∼ 1-6), using resolved gas kinematics with these instruments. We show that in ∼15% and ∼20% of strongly lensed galaxies, the inner 25 and 50 pc could be resolved, allowing the mass of ≳ 10{sup 8} M {sub ☉} black holes to be dynamically measured with ALMA, if moderately bright molecular gas is present at these small radii. Given the large number of strong lenses discovered in current millimeter surveys and future optical surveys, this fraction could constitute a statistically significant population for studying the evolution of the M-σ relation at high redshifts.

  1. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    SciTech Connect

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W. E-mail: hsshih@ifa.hawaii.edu E-mail: amann@ifa.hawaii.edu

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.

  2. The abundance and colours of galaxies in high-redshift clusters in the cold dark matter cosmology

    NASA Astrophysics Data System (ADS)

    Merson, Alexander I.; Baugh, Carlton M.; Gonzalez-Perez, Violeta; Abdalla, Filipe B.; Lagos, Claudia del P.; Mei, Simona

    2016-02-01

    High-redshift galaxy clusters allow us to examine galaxy formation in extreme environments. Here we compile data for 15 z > 1 galaxy clusters to test the predictions from a state-of-the-art semi-analytical model of galaxy formation. The model gives a good match to the slope and zero-point of the cluster red sequence. The model is able to match the cluster galaxy luminosity function at faint and bright magnitudes, but underestimates the number of galaxies around the break in the cluster luminosity function. We find that simply assuming a weaker dust attenuation improves the model predictions for the cluster galaxy luminosity function, but worsens the predictions for the red sequence at bright magnitudes. Examination of the properties of the bright cluster galaxies suggests that the default dust attenuation is large due to these galaxies having large reservoirs of cold gas as well as small radii. We find that matching the luminosity function and colours of high-redshift cluster galaxies, whilst remaining consistent with local observations, poses a challenge for galaxy formation models.

  3. SMA observations on faint submillimeter galaxies with S {sub 850} < 2 mJy: Ultra dusty low-luminosity galaxies at high redshift

    SciTech Connect

    Chen, Chian-Chou; Cowie, Lennox L.; Barger, Amy J.; Williams, Jonathan P.; Wang, Wei-Hao

    2014-07-01

    We obtained Submillimeter Array (SMA) observations of eight faint (intrinsic 850 μm fluxes < 2 mJy) submillimeter galaxies (SMGs) discovered in SCUBA images of the massive lensing cluster fields A370, A2390, and A1689 and detected five. In total, we obtain five SMA detections, all of which have de-lensed fluxes <1 mJy with estimated total infrared luminosities 10{sup 10}-10{sup 12} L {sub ☉}, comparable to luminous infrared galaxies and normal star-forming galaxies. Based on the latest number counts, these galaxies contribute ∼70% of the 850 μm extragalactic background light and represent the dominant star-forming galaxy population in the dusty universe. However, only 40{sub −16}{sup +30}% of our faint SMGs would be detected in deep optical or near-infrared surveys, which suggests many of these sources are at high redshifts (z ≳ 3) or extremely dusty, and they are not included in current star formation history estimates.

  4. Investigating the Physical Cause Behind a Constant Characteristic Magnitude at High Redshift

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven L.; Ryan, Russell E.; Papovich, Casey J.; Dickinson, Mark; Song, Mimi; Behroozi, Peter; Somerville, Rachel S.; Closson Ferguson, Henry; Candels Team, S-Candels Team

    2015-01-01

    The combination of deep and wide Hubble Space Telescope surveys have allowed the first robust cosmic census of galaxies in the distant universe. We use a combination of datasets from the CANDELS, Hubble Ultra Deep Field, and Hubble Frontier Field surveys to construct a rest-frame ultraviolet luminosity function at z = 4, 5, 6, 7 and 8, over a large dynamic range in UV luminosity. In contrast to studies from the past few years, we find little evolution in the characteristic magnitude M* with redshift, while the characteristic number density decreases significantly towards earlier times. We examine bright galaxies in our sample, and find that contamination by lower redshift galaxies appears minimal. We use abundance matching to derive the typical halo masses for bright galaxies at z > 4, and finding that M_UV=-21 galaxies live in halos with log (Mhalo/Msol) = 11.3 (11.9) at z=7 (z=4). Combining the halo masses with the measured stellar masses of these galaxies, we find that the stellar-to-halo mass fraction increases significantly (3-sigma) from z=4 to 8, in contrast to expectations from a decreasing halo mass. This could be a signature that decreased feedback is resulting in an increased star-formation efficiency. Finally, we examine the evolution of the cosmic star-formation rate density from our integrated luminosity functions, and find that at z > 4 it is proportional to (1+z)^-4.7, and that this trend is consistent with current results at z=9 and 10 without a need to invoke a steep dropoff.

  5. Morphologies of High-Redshift Dust-Obscured Galaxies from Keck Laser Guide Star Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Melbourne, J.; Desai, V.; Armus, Lee; Dey, Arjun; Brand, K.; Thompson, D.; Soifer, B. T.; Matthews, K.; Jannuzi, B. T.; Houck, J. R.

    2008-09-01

    Spitzer MIPS images in the Boötes field of the NOAO Deep Wide-Field Survey have revealed a class of extremely dust-obscured galaxy (DOG) at z ~ 2. The DOGs are defined by very red optical to mid-infrared (IR; observed-frame) colors, R - [24 μm]>14 mag, i.e. f ν(24 μm)/f ν(R)>1000. They are ultra-luminous infrared galaxies with L 8-1000 μm > 1012-1014 L sun, but typically have very faint optical (rest-frame UV) fluxes. We imaged three DOGs with the Keck laser guide star adaptive optics (LGSAO) system, obtaining ~0.06'' resolution in the K'-band. One system was dominated by a point source, while the other two were clearly resolved. Of the resolved sources, one can be modeled as a exponential disk system. The other is consistent with a de Vaucouleurs profile typical of elliptical galaxies. The nonparametric measures of their concentration and asymmetry show the DOGs to be both compact and smooth. The AO images rule out double nuclei with separations of greater than 0.1'' (<1 kpc at z = 2), making it unlikely that ongoing major mergers (mass ratios of 1/3 and greater) are triggering the high-IR luminosities. By contrast, high-resolution images of z ~ 2 SCUBA sources tend to show multiple components and a higher degree of asymmetry. We compare near-IR morphologies of the DOGs with a set of z = 1 luminous infrared galaxies (LIRGs; L IR ~ 1011 L sun) imaged with Keck LGSAO by the Center for Adaptive Optics Treasury Survey. The DOGs in our sample have significantly smaller effective radii, ~1/4 the size of the z = 1 LIRGs, and tend toward higher concentrations. The small sizes and high concentrations may help explain the globally obscured rest-frame blue-to-UV emission of the DOGs.

  6. LOW-METALLICITY STAR FORMATION IN HIGH-REDSHIFT GALAXIES AT z {approx} 8

    SciTech Connect

    Taniguchi, Y.; Shioya, Y.; Trump, J. R.

    2010-12-01

    Based on the recent very deep near-infrared imaging of the Hubble Ultra Deep Field with WFC3 on the Hubble Space Telescope, five groups published the most probable samples of galaxies at z {approx} 8, selected by the so-called dropout method or photometric redshift; e.g., Y{sub 105}-dropouts (Y{sub 105} - J{sub 125} > 0.8). These studies are highly useful for investigating both the early star formation history of galaxies and the sources of cosmic re-ionization. In order to better understand these issues, we carefully examine whether there are low-z interlopers in the samples of z {approx} 8 galaxy candidates. We focus on the strong emission-line galaxies at z {approx} 2 in this paper. Such galaxies may be selected as Y{sub 105}-dropouts since the [O III] {lambda}5007 emission line is redshifted into the J{sub 125} band. We have found that the contamination from such low-z interlopers is negligibly small. Therefore, all objects found by the five groups are free from this type of contamination. However, it remains difficult to extract real z {approx} 8 galaxies because all the sources are very faint and the different groups have found different candidates. With this in mind, we construct a robust sample of eight galaxies at z {approx} 8 from the objects found by the five groups: each of these eight objects has been selected by at least two groups. Using this sample, we discuss their UV continuum slope. We also discuss the escape fraction of ionizing photons adopting various metallicities. Our analysis suggests that massive stars forming in low-metallicity gas (Z {approx} 5 x 10{sup -4} Z{sub sun}) can be responsible for the completion of cosmic re-ionization if the escape fraction of the ionizing continuum from galaxies is as large as 0.5, and this is consistent with the observed blue UV continua.

  7. The spectral slope and escape fraction of bright quasars at z ˜ 3.8: the contribution to the cosmic UV background

    NASA Astrophysics Data System (ADS)

    Cristiani, Stefano; Serrano, Luisa Maria; Fontanot, Fabio; Vanzella, Eros; Monaco, Pierluigi

    2016-11-01

    We use a sample of 1669 quasars (r < 20.15, 3.6 < z < 4.0) from the Baryon Oscillation Spectroscopic Survey to study the intrinsic shape of their continuum and the Lyman continuum photon escape fraction (fesc,q), estimated as the ratio between the observed flux and the expected intrinsic flux (corrected for the intergalactic medium absorption) in the wavelength range 865-885 Å rest frame. Modelling the intrinsic quasar (QSO) continuum shape with a power law, Fλ ∝ λ-γ, we find a median γ = 1.30 (with a dispersion of 0.38, no dependence on the redshift and a mild intrinsic luminosity dependence) and a mean fesc,q = 0.75 (independent of the QSO luminosity and/or redshift). The fesc,q distribution shows a peak around zero and a long tail of higher values, with a resulting dispersion of 0.7. If we assume for the QSO continuum a double power-law shape (also compatible with the data) with a break located at λbr = 1000 Å and a softening Δγ = 0.72 at wavelengths shorter than λbr, the mean fesc,q rises to 0.82. Combining our γ and fesc,q estimates with the observed evolution of the active galactic nucleus (AGN) luminosity function (LF), we compute the AGN contribution to the UV ionizing background (UVB) as a function of redshift. AGN brighter than one-tenth of the characteristic luminosity of the LF are able to produce most of it up to z ˜ 3, if the present sample is representative of their properties. At higher redshifts, a contribution of the galaxy population is required. Assuming an escape fraction of Lyman continuum photons from galaxies between 5.5 and 7.6 per cent, independent of the galaxy luminosity and/or redshift, a remarkably good fit to the observational UVB data up to z ˜ 6 is obtained. At lower redshift, the extrapolation of our empirical estimate agrees well with recent UVB observations, dispelling the so-called Photon Underproduction Crisis.

  8. RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY

    SciTech Connect

    Damjanov, Ivana; Abraham, Roberto G.; Carlberg, Raymond G.; Mentuch, Erin; Glazebrook, Karl; Caris, Evelyn; Green, Andrew W.; McCarthy, Patrick J.; Chen, Hsiao-Wen; Crampton, David; Murowinski, Richard; Joergensen, Inger; Roth, Kathy; Juneau, Stephanie; Marzke, Ronald O.; Savaglio, Sandra; Yan Haojing

    2011-10-01

    We present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2 < z < 2.7. The size evolution of passively evolving galaxies over this redshift range is gradual and continuous, with no evidence for an end or change to the process around z {approx} 1, as has been hinted at by some surveys which analyze subsets of the data in isolation. The size growth appears to be independent of stellar mass, with the mass-normalized half-light radius scaling with redshift as R{sub e} {proportional_to}(1 + z){sup -1.62{+-}0.34}. Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z {approx} 0.5-3.5. It is also in accordance with the predictions from recent theoretical models.

  9. Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    2015-08-01

    Carefully accounting for cosmological surface-brightness dimming and K-corrections are two important steps in teasing out the underlying properties of evolving high-z galaxy populations. Another potential effect is worthy of scrutiny simply because of its profound physical implications, if seen. In the last decade or so there has been debate over the possibility that the fuzzy quantum nature of spacetime might decohere wavefronts emanating from very distant sources. Consequences of that could be "blurred" or "faded" images of compact structures in galaxies, primarily at z>1 for their emitted X-rays and gamma-rays, but perhaps even in UV through optical light at higher redshift. So far there are only inconclusive hints of this from z~4 active-galactic nucleii and gamma-ray bursts viewed with Fermi and Hubble Space Telescope. If correct though, that would impose a significant, fundamental resolution limit for galaxies out to z~8 in the era of the James Webb Space Telescope and the next generation of ground-based telescopes using adaptive optics. I consider what to look for (and maybe not see).

  10. Scintillation noise power spectrum and its impact on high-redshift 21-cm observations

    NASA Astrophysics Data System (ADS)

    Vedantham, H. K.; Koopmans, L. V. E.

    2016-05-01

    Visibility scintillation resulting from wave propagation through the turbulent ionosphere can be an important source of noise at low radio frequencies (ν ≲ 200 MHz). Many low-frequency experiments are underway to detect the power spectrum of brightness temperature fluctuations of the neutral-hydrogen 21-cm signal from the Epoch of Reionization (EoR: 12 ≳ z ≳ 7, 100 ≲ ν ≲ 175 MHz). In this paper, we derive scintillation noise power spectra in such experiments while taking into account the effects of typical data processing operations such as self-calibration and Fourier synthesis. We find that for minimally redundant arrays such as LOFAR and MWA, scintillation noise is of the same order of magnitude as thermal noise, has a spectral coherence dictated by stretching of the snapshot uv-coverage with frequency, and thus is confined to the well-known wedge-like structure in the cylindrical (two-dimensional) power spectrum space. Compact, fully redundant (dcore ≲ rF ≈ 300 m at 150 MHz) arrays such as HERA and SKA-LOW (core) will be scintillation noise dominated at all baselines, but the spatial and frequency coherence of this noise will allow it to be removed along with spectrally smooth foregrounds.

  11. Observing quasars and galaxies at high redshifts: Searching for the formation epoch

    SciTech Connect

    Weedman, D.W. )

    1990-07-05

    Recent results are reviewed which demonstrate that finding the earliest quasars and galaxies in the universe will require infrared spectroscopy between 1 and 10 microns. Technical limitations on such observations from the Moon are summarized, which depend primarily on background emission from the telescope and the zodiacal dust. Detection of the most distant star forming galaxies will require exceptional background stability for which angular resolution better than about 1 arcsecond is not critical, so a large filled-aperture telescope of nominal image quality will be adequate. For quasars, detection improves with increasing angular resolution, so the best possible image quality is important, particularly to obtain diffraction limited performance shortward of 3 microns. A summary is given of what could be seen as a function of available telescope aperture.

  12. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Alexander, David M.; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Gabor, Jared; Mullaney, James; Pannella, Maurilio; Aussel, Herve; Bournaud, Frederic; Dasyra, Kalliopi; Hwang, Ho Seong; Ivison, Rob; Scott, Douglas; Altieri, Bruno; Coia, Daniela; Buat, Veronique; Dannerbauer, Helmut; and others

    2012-11-10

    We explore the effects of active galactic nuclei (AGNs) and star formation activity on the infrared (0.3-1000 {mu}m) spectral energy distributions (SEDs) of luminous infrared galaxies from z = 0.5 to 4.0. We have compiled a large sample of 151 galaxies selected at 24 {mu}m (S {sub 24} {approx}> 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-IR spectrum into contributions from star formation and AGN activity. A significant portion ({approx}25%) of our sample is dominated by an AGN (>50% of the mid-IR luminosity) in the mid-IR. Based on the mid-IR classification, we divide our full sample into four sub-samples: z {approx} 1 star-forming (SF) sources, z {approx} 2 SF sources, AGNs with clear 9.7 {mu}m silicate absorption, and AGNs with featureless mid-IR spectra. From our large spectroscopic sample and wealth of multi-wavelength data, including deep Herschel imaging at 100, 160, 250, 350, and 500 {mu}m, we use 95 galaxies with complete spectral coverage to create a composite SED for each sub-sample. We then fit a two-temperature component modified blackbody to the SEDs. We find that the IR SEDs have similar cold dust temperatures, regardless of the mid-IR power source, but display a marked difference in the warmer dust temperatures. We calculate the average effective temperature of the dust in each sub-sample and find a significant ({approx}20 K) difference between the SF and AGN systems. We compare our composite SEDs to local templates and find that local templates do not accurately reproduce the mid-IR features and dust temperatures of our high-redshift systems. High-redshift IR luminous galaxies contain significantly more cool dust than their local counterparts. We find that a full suite of photometry spanning the IR peak is necessary to accurately account for the dominant dust temperature components in high-redshift IR luminous galaxies.

  13. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Perrett, K.; Bronder, T. J.; Hook, I. M.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Knop, R.; McMahon, R. G.; Perlmutter, S.; Walton, N. A.

    2005-12-01

    We present new techniques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing 5 year project with the goal of measuring the equation of state of dark energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, in which the median SN Ia redshift is z=0.81 (0.155<=z<=1.01). These improvements were realized because we use the unprecedented color coverage and light curve sampling of the SNLS to predict whether a candidate is a SN Ia and to estimate its redshift, before obtaining a spectrum, using a new technique called the ``SN photo-z.'' In addition, we have improved techniques for galaxy subtraction and SN template χ2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum-when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe in bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55", the candidate was identified 88% of the time. Over the 5 year course of the survey, using the selection techniques presented here, we will be able to add ~170 more confirmed SNe Ia than would be possible using previous methods. APC, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.

  14. Atomic Data for Zn II: Improving Spectral Diagnostics of Chemical Evolution in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Kisielius, Romas; Kulkarni, Varsha P.; Ferland, Gary J.; Bogdanovich, Pavel; Som, Debopam; Lykins, Matt L.

    2015-05-01

    Damped Lyα (DLA) and sub-DLA absorbers in quasar spectra provide the most sensitive tools for measuring the element abundances of distant galaxies. The estimation of abundances from absorption lines depends sensitively on the accuracy of the atomic data used. We have started a project to produce new atomic spectroscopic parameters for optical and UV spectral lines using state-of-the-art computer codes employing a very broad configuration interaction (CI) basis. Here we report our results for Zn ii, an ion used widely in studies of the interstellar medium (ISM) as well as DLAs and sub-DLAs. We report new calculations of many energy levels of Zn ii and the line strengths of the resulting radiative transitions. Our calculations use the CI approach within a numerical Hartree-Fock framework. We use both nonrelativistic and quasi-relativistic one-electron radial orbitals. We have incorporated the results of these atomic calculations into the plasma simulation code Cloudy and applied them to a lab plasma and examples of a DLA and a sub-DLA. Our values of the Zn ii λ λ 2026, 2062 oscillator strengths are higher than previous values by 0.10 dex. The Cloudy calculations for representative absorbers with the revised Zn atomic data imply ionization corrections lower than calculated earlier by 0.05 dex. The new results imply that Zn metallicities should be lower by 0.1 dex for DLAs and by 0.13-0.15 dex for sub-DLAs than in past studies. Our results can be applied to other studies of Zn ii in the Galactic and extragalactic ISM.

  15. An Deficiency of High Redshift, High Luminosity X-ray Clusters: Evidence for a High Value for Omega.

    NASA Astrophysics Data System (ADS)

    Nichol, R. C.; Reichart, D.; Romer, A. Kathy; Collins, C. A.; Burke, D. J.; Holden, B. P.; Ulmer, M. P.

    1997-12-01

    There have been several recent analyses of clusters taken from the EMSS sample (Henry et al 1997) that have yielded yield low values (Omega_0<0.3) for the cosmic density (Donahue et al 1997, Carlberg et al 1997). By contrast, the results from a new analysis - which takes full account of the evolution in the luminosity temperature relationship - supports values of Omega_0 close to unity. We present our method and its application to two flux limited samples of high redshift clusters; the revised EMSS sample from Nichol et al (1997) and the SHARC South sample of Burke et al (1997). We go on to discuss possible systematic errors in our method and in the two cluster samples that might be mimicing a high value of Omega.

  16. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    SciTech Connect

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  17. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2016-08-01

    The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C ii] line and the far-infrared luminosity and find that the same correlation between the [C ii]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C ii] deficit.”

  18. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  19. Non-linear violent disc instability with high Toomre's Q in high-redshift clumpy disc galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Dekel, Avishai; Mandelker, Nir; Ceverino, Daniel; Bournaud, Frédéric; Primack, Joel

    2016-02-01

    We utilize zoom-in cosmological simulations to study the nature of violent disc instability in clumpy galaxies at high redshift, z = 1-5. Our simulated galaxies are not in the ideal state assumed in Toomre instability, of linear fluctuations in an isolated, uniform, rotating disc. There, instability is characterized by a Q parameter below unity, and lower when the disc is thick. Instead, the high-redshift discs are highly perturbed. Over long periods they consist of non-linear perturbations, compact massive clumps and extended structures, with new clumps forming in interclump regions. This is while the galaxy is subject to frequent external perturbances. We compute the local, two-component Q parameter for gas and stars, smoothed on a ˜1 kpc scale to capture clumps of 108-9 M⊙. The Q < 1 regions are confined to collapsed clumps due to the high surface density there, while the interclump regions show Q significantly higher than unity. Tracing the clumps back to their relatively smooth Lagrangian patches, we find that Q prior to clump formation typically ranges from unity to a few. This is unlike the expectations from standard Toomre instability. We discuss possible mechanisms for high-Q clump formation, e.g. rapid turbulence decay leading to small clumps that grow by mergers, non-axisymmetric instability, or clump formation induced by non-linear perturbations in the disc. Alternatively, the high-Q non-linear VDI may be stimulated by the external perturbations such as mergers and counter-rotating streams. The high Q may represent excessive compressive modes of turbulence, possibly induced by tidal interactions.

  20. The Connection between Stellar Populations and the Baryon Cycle and Ionizing Escape Fractions of Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen; Steidel, Charles

    2016-08-01

    We propose Spitzer IRAC 3.6 micron observations to cover the three remaining fields of a large spectroscopic survey of galaxies, AGN, and QSOs in the same cosmic volumes at z~2-3. The IRAC data will be used to probe the stellar populations in these galaxies and to understand how galaxy properties (e.g., stellar masses, ages, reddening, star-formation rates) depend on the flow of baryons into and out of galaxies, as well as identify those properties of galaxies that are conducive to the escape of ionizing radiation at high redshift. The dense spectroscopic sampling of the targeted fields have provided unique insights into metal enrichment as a function of galactocentric radius and the statistical correlation between galaxies and metals in the inter-galactic medium. Our goal is to quantify how the distribution of metals in the circum-galactic and inter-galactic media (CGM/IGM) depend on the stellar masses, ages, and star formation rates of galaxies. Moreover, in an effort to clarify the role of galaxies in reionizing the Universe (and keeping it ionized), we wish to understand the types of stellar populations (e.g., stellar masses, ages) that influence the propensity of galaxies to leak ionizing radiation. Our preliminary observations suggest that bluer galaxies with lower star-formation rates have larger escape fractions, but the results are tentative without the inclusion of the IRAC data proposed here. A modest investment of just 13.1 hours (including overhead), divided among the three fields will cover a total of approximately 200 spectroscopically-confirmed z~2-3 galaxies that span two orders of magnitude in bolometric luminosity and stellar mass. The proposed IRAC imaging will allow us to fully leverage the existing spectroscopic samples that form the backbone of our survey of the baryon cycle and escaping ionizing radiation at high redshift.

  1. A Survey of Luminous High-redshift Quasars with SDSS and WISE. I. Target Selection and Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; Yang, Jinyi; Yi, Weimin; Bian, Fuyan; McGreer, Ian D.; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Jiang, Linhua; Green, Richard; Wang, Shu; Cai, Zheng; Wang, Ran; Yue, Minghao

    2016-03-01

    High-redshift quasars are important tracers of structure and evolution in the early universe. However, they are very rare and difficult to find when using color selection because of contamination from late-type dwarfs. High-redshift quasar surveys based on only optical colors suffer from incompleteness and low identification efficiency, especially at z≳ 4.5. We have developed a new method to select 4.7≲ z≲ 5.4 quasars with both high efficiency and completeness by combining optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data, and are conducting a luminous z˜ 5 quasar survey in the whole Sloan Digital Sky Survey (SDSS) footprint. We have spectroscopically observed 99 out of 110 candidates with z-band magnitudes brighter than 19.5, and 64 (64.6%) of them are quasars with redshifts of 4.4≲ z≲ 5.5 and absolute magnitudes of -29≲ {M}1450≲ -26.4. In addition, we also observed 14 fainter candidates selected with the same criteria and identified 8 (57.1%) of them as quasars with 4.7\\lt z\\lt 5.4. Among 72 newly identified quasars, 12 of them are at 5.2\\lt z\\lt 5.7, which leads to an increase of ˜36% of the number of known quasars at this redshift range. More importantly, our identifications doubled the number of quasars with {M}1450\\lt -27.5 at z\\gt 4.5, which will set strong constraints on the bright end of the quasar luminosity function. We also expand our method to select quasars at z ≳ 5.7. In this paper we report the discovery of four new luminous z ≳ 5.7 quasars based on SDSS-WISE selection.

  2. THE RELATION BETWEEN EJECTA VELOCITY, INTRINSIC COLOR, AND HOST-GALAXY MASS FOR HIGH-REDSHIFT TYPE Ia SUPERNOVAE

    SciTech Connect

    Foley, Ryan J.

    2012-04-01

    Recently, using a large low-redshift sample of Type Ia supernovae (SNe Ia), we discovered a relation between SN Ia ejecta velocity and intrinsic color that improves the distance precision of SNe Ia and reduces potential systematic biases related to dust reddening. No SN Ia cosmological results have yet made a correction for the 'velocity-color' relation. To test the existence of such a relation and constrain its properties at high redshift, we examine a sample of 75 SNe Ia discovered and observed by the Sloan Digital Sky Survey-II Supernova Survey and Supernova Legacy Survey. From each spectrum, we measure ejecta velocities at maximum brightness for the Ca H and K and Si II {lambda}6355 features, v{sup 0}{sub CaHandK} and v{sup 0}{sub SiII}, respectively. Using SN light curve parameters, we determine the intrinsic B{sub max} - V{sub max} for each SN. Similar to what was found at low redshift, we find that SNe Ia with higher ejecta velocity tend to be intrinsically redder than SNe Ia with lower ejecta velocity. The distributions of ejecta velocities for SNe Ia at low and high redshift are similar, indicating that current cosmological results should have little bias related to the velocity-color relation. Additionally, we find a slight (2.4{sigma} significant) trend between SN Ia ejecta velocity and host-galaxy mass such that SNe Ia in high-mass host galaxies tend to have lower ejecta velocities as probed by v{sup 0}{sub CaHandK}. These results emphasize the importance of spectroscopy for SN Ia cosmology.

  3. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    SciTech Connect

    Shemmer, Ohad; Stein, Matthew S.; Brandt, W. N.; Schneider, Donald P.; Paolillo, Maurizio; Kaspi, Shai; Vignali, Cristian; Lira, Paulina; Gibson, Robert R.

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  4. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-08-15

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z {approx} 1.5 and 46 galaxies at z {approx} 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z {approx} 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z {approx} 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M {sub 20}), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M {sub 20} with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M {sub 20} 20/30% of real/simulated galaxies at z {approx} 1.5 and 37/12% at z {approx} 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z {approx} 1.5 and z {approx} 4 real galaxies are exponential disks or bulge-like with n>0.8, and {approx} 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with {approx} 35% bulge or exponential at z {approx} 1.5 and 4. Therefore, {approx} 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n < 0.8 and M {sub 20}> - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z {approx} 1.5 and 4.

  5. Unusual high-redshift radio broad absorption-line quasar 1624+3758

    NASA Astrophysics Data System (ADS)

    Benn, C. R.; Carballo, R.; Holt, J.; Vigotti, M.; González-Serrano, J. I.; Mack, K.-H.; Perley, R. A.

    2005-07-01

    We present observations of the most radio-luminous broad absorption-line (BAL) quasar known, 1624+3758, at redshift z= 3.377. The quasar has several unusual properties. (1) The FeII UV191 1787-Åemission line is very prominent. (2) The BAL trough (BALnicity index 2990 km s-1) is detached by 21000 km s-1 and extends to velocity v=-29000 km s-1. There are additional intrinsic absorbers at -1900 and -2800 km s-1. (3) The radio rotation measure of the quasar, 18350 rad m-2, is the second highest known. The radio luminosity is P1.4GHz= 4.3 × 1027 W Hz-1 (H0= 50 km s-1 Mpc-1, q0= 0.5) and the radio loudness is R*= 260. The radio source is compact and the radio spectrum is GHz-peaked, consistent with it being relatively young. The width of the CIV emission line, in conjunction with the total optical luminosity, implies a black hole mass MBH~ 109Msolar, L/LEddington~ 2. The high Eddington ratio and the radio-loudness place this quasar in one corner of Boroson's two-component scheme for the classification of active galactic nuclei, implying a very high accretion rate, and this may account for some of the unusual observed properties. The v=-1900km s-1 absorber is a possible Lyman-limit system, with N(HI) = 4 × 1018 cm-2, and a covering factor of 0.7. A complex mini-BAL absorber at v=-2200 to -3400 km s-1 is detected in each of CIV, NV and OVI. The blue and red components of the CIV doublet happen to be unblended, allowing both the covering factor and optical depth to be determined as a function of velocity. Variation of the covering factor with velocity dominates the form of the mini-BAL, with the absorption being saturated (e-τ~ 0) over most of the velocity range. The velocity dependence of the covering factor and the large velocity width imply that the mini-BAL is intrinsic to the quasar. There is some evidence of line-locking between velocity components in the CIV mini-BAL, suggesting that radiation pressure plays a role in accelerating the outflow.

  6. Applying Observational Methods to Images of a Simulated High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Scannapieco, E.; Thacker, R.; Windhorst, R. A.

    2011-01-01

    Flexible Image Transport (FITS) images produced from numerical cosmological simulations of dark and baryonic matter are analyzed using Source Extractor (SExtractor), a tool frequently used in observational image analysis. The goal is to assist the interpretation of simulation by better understanding how simulation data might appear in the observational domain. The simulation model, based on Gadget-2 (Springel and Hernquist, 2003) includes gas heating, cooling and star formation. The stellar components of the model are processed by the Bruzual-Charlot (BC03) stellar population models to produce SEDs (Spectral Energy Distributions). These are then folded with different infrared filters, including selected filters from WFC3 and the proposed Near Infrared Camera (NIRCam) for the James Webb Space Telescope (JWST). The simulation data are taken at different redshifts from z 4 to 11, re-sized according to their comoving distances, converted to FITS format files and combined with noise to simulate instrument and background effects. The images are then analyzed with SExtractor to find groupings which are identified as galaxies or galaxy building blocks. Photometry is performed on these objects using SExtractor to extract luminosity functions in the emitted rest frames. Initially, minimal noise levels are used to allow fine details of the model to be "observed.” More realistic sky background levels are then added to estimate the effect of artifacts of observation. We use these models to predict the faint-end Schechter slope evolution alpha(z). We compare these models to the most recent Hathi et al. (2010, ApJ, 720, 1708 ) data, and find good agreement in the faint end slope evolution: predicted alpha (7>z>5) = -1.7 to -1.8, observed alpha (z>5) = -1.75 .

  7. Dark Matter annihilations in halos and high-redshift sources of reionization of the universe

    NASA Astrophysics Data System (ADS)

    Poulin, Vivian; Serpico, Pasquale D.; Lesgourgues, Julien

    2015-12-01

    It is well known that annihilations in the homogeneous fluid of dark matter (DM) can leave imprints in the cosmic microwave background (CMB) anisotropy power spectrum. However, the relevance of DM annihilations in halos for cosmological observables is still subject to debate, with previous works reaching different conclusions on this point. Also, all previous studies used a single type of parameterization for the astrophysical reionization, and included no astrophysical source for the heating of the intergalactic medium. In this work, we revisit these problems. When standard approaches are adopted, we find that the ionization fraction does exhibit a very particular (and potentially constraining) pattern, but the currently measurable τreio is left almost unchanged: in agreement with most of the previous literature, for plausible halo models we find that the modification of the signal with respect to the one coming from annihilations in the smooth background is tiny, below cosmic variance within currently allowed parameter space. However, if different and probably more realistic treatments of the astrophysical sources of reionization and heating are adopted, a more pronounced effect of the DM annihilation in halos is possible. We thus conclude that within currently adopted baseline models the impact of the virialised DM structures cannot be uncovered by CMB power spectra measurements, but a larger impact is possible if peculiar models are invoked for the redshift evolution of the DM annihilation signal or different assumptions are made for the astrophysical contributions. A better understanding (both theoretical and observational) of the reionization and temperature history of the universe, notably via the 21 cm signal, seems the most promising way for using halo formation as a tool in DM searches, improving over the sensitivity of current cosmological probes.

  8. Unveiling the nature of dark matter with high redshift 21 cm line experiments

    SciTech Connect

    Evoli, C.; Mesinger, A.; Ferrara, A. E-mail: andrei.mesinger@sns.it

    2014-11-01

    Observations of the redshifted 21 cm line from neutral hydrogen will open a new window on the early Universe. By influencing the thermal and ionization history of the intergalactic medium (IGM), annihilating dark matter (DM) can leave a detectable imprint in the 21 cm signal. Building on the publicly available 21cmFAST code, we compute the 21 cm signal for a 10 GeV WIMP DM candidate. The most pronounced role of DM annihilations is in heating the IGM earlier and more uniformly than astrophysical sources of X-rays. This leaves several unambiguous, qualitative signatures in the redshift evolution of the large-scale (k ≅ 0.1 Mpc{sup -1}) 21 cm power amplitude: (i) the local maximum (peak) associated with IGM heating can be lower than the other maxima; (ii) the heating peak can occur while the IGM is in emission against the cosmic microwave background (CMB); (iii) there can be a dramatic drop in power (a global minimum) corresponding to the epoch when the IGM temperature is comparable to the CMB temperature. These signatures are robust to astrophysical uncertainties, and will be easily detectable with second generation interferometers. We also briefly show that decaying warm dark matter has a negligible role in heating the IGM.

  9. Contemporaneous Broadband Observations of Three High-redshift BL LAC Objects

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; An, H.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bonino, R.; Bregeon, J.; Britto, R. J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Katsuragawa, M.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Okada, C.; Orlando, E.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, O.; Rau, A.; Romani, R. W.; Schady, P.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stern, D.; Takahashi, H.; Thayer, J. B.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.

    2016-03-01

    We have collected broadband spectral energy distributions (SEDs) of three BL Lac objects 3FGL J0022.1-1855 (z = 0.689), 3FGL J0630.9-2406 (z\\quad ≳ 1.239), and 3FGL J0811.2-7529 (z = 0.774), detected by Fermi with relatively flat gigaelectronvolt spectra. By observing simultaneously in the near-infrared to hard X-ray band, we can well characterize the high end of the synchrotron component of the SED. Thus, fitting the SEDs to synchro-Compton models of the dominant emission from the relativistic jet, we can constrain the underlying particle properties and predict the shape of the gigaelectronvolt Compton component. Standard extragalactic background light (EBL) models explain the high-energy absorption well, with poorer fits for high-ultraviolet models. The fits show clear evidence for EBL absorption in the Fermi spectrum of our highest-redshift source 3FGL J0630.9-2406. While synchrotron self-Compton models adequately describe the SEDs, the situation may be complicated by possible external Compton components. For 3FGL J0811.2-7529, we also discover a nearby serendipitous source in the X-ray data, which is almost certainly another lower synchrotron peak frequency ({ν }{{pk}}{{sy}}) BL Lac, that may contribute flux in the Fermi band. Since our sources are unusual high-luminosity, moderate {ν }{{pk}}{{sy}} BL Lacs, we compare these quantities and the Compton dominance, the ratio of peak inverse Compton to peak synchrotron luminosities ({L}{{pk}}{{IC}}/{L}{{pk}}{{sy}}), with those of the full Fermi BL Lac population.

  10. THE ORIGIN OF [O II] IN POST-STARBURST AND RED-SEQUENCE GALAXIES IN HIGH-REDSHIFT CLUSTERS

    SciTech Connect

    Lemaux, B. C.; Lubin, L. M.; Kocevski, D.; Shapley, A.; Gal, R. R.; Squires, G. K.

    2010-06-20

    We present the first results from a near-IR spectroscopic campaign of the Cl1604 supercluster at z {approx} 0.9 and the cluster RX J1821.6+6827 at z {approx} 0.82 to investigate the nature of [O II] {lambda}3727 emission in cluster galaxies at high redshift. Of the 401 members in Cl1604 and RX J1821+6827 confirmed using the Keck II/DEIMOS spectrograph, 131 galaxies have detectable [O II] emission with no other signs of current star formation activity, as well as strong absorption features indicative of a well-established older stellar population. The combination of these features suggests that the primary source of [O II] emission in these galaxies is not a result of star formation processes, but rather due to the presence of a low-ionization nuclear emission-line region (LINER) or Seyfert component. Using the NIRSPEC spectrograph on the Keck II 10 m telescope, 19 such galaxies were targeted, as well as 6 additional [O II]-emitting cluster members that exhibited signs of ongoing star formation activity. Nearly half ({approx}47%) of the 19 [O II]-emitting, absorption-line-dominated galaxies exhibit [O II] to H{alpha} equivalent width (EW) ratios higher than unity, the typical observed value for star-forming galaxies, with an EW distribution similar to that observed for LINERs at low redshift. A majority ({approx}68%) of these 19 galaxies are classified as LINER/Seyfert based primarily on the emission-line ratio of [N II] {lambda}6584 and H{alpha}. The fraction of LINER/Seyferts increases to {approx}85% for red [O II]-emitting, absorption-line-dominated galaxies. The LINER/Seyfert galaxies in our Cl1604 sample exhibit average L([O II])/L(H{alpha}) ratios that are significantly higher than that observed in populations of star-forming galaxies, suggesting that [O II] is a poor indicator of star formation in a significant fraction of high-redshift cluster members. From the prevalence of [O II]-emitting, absorption-line-dominated galaxies in both systems and the fraction

  11. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    SciTech Connect

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F. E-mail: dekel@phys.huji.ac.il

    2012-01-20

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses {approx}10{sup 3} M{sub Sun} to submillimeter galaxies with masses {approx}10{sup 11} M{sub Sun }, fall on a single star formation law in which the star formation rate is simply {approx}1% of

  12. THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT

    SciTech Connect

    Bournaud, Frederic; Martig, Marie; Elmegreen, Bruce G.

    2009-12-10

    The formation of thick stellar disks in spiral galaxies is studied. Simulations of gas-rich young galaxies show formation of internal clumps by gravitational instabilities, clump coalescence into a bulge, and disk thickening by strong stellar scattering. The bulge and thick disks of modern galaxies may form this way. Simulations of minor mergers make thick disks too, but there is an important difference. Thick disks made by internal processes have a constant scale height with galactocentric radius, but thick disks made by mergers flare. The difference arises because in the first case, perpendicular forcing and disk-gravity resistance are both proportional to the disk column density, so the resulting scale height is independent of this density. In the case of mergers, perpendicular forcing is independent of the column density and the low-density regions get thicker; the resulting flaring is inconsistent with observations. Late-stage gas accretion and thin-disk growth are shown to preserve the constant scale heights of thick disks formed by internal evolution. These results reinforce the idea that disk galaxies accrete most of their mass smoothly and acquire their structure by internal processes, in particular through turbulent and clumpy phases at high redshift.

  13. Escape of about five per cent of Lyman-alpha photons from high-redshift star-forming galaxies.

    PubMed

    Hayes, Matthew; Ostlin, Göran; Schaerer, Daniel; Mas-Hesse, J Miguel; Leitherer, Claus; Atek, Hakim; Kunth, Daniel; Verhamme, Anne; de Barros, Stéphane; Melinder, Jens

    2010-03-25

    The Lyman-alpha (Lyalpha) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of the line, however, means that Lyalpha photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be greatly enhanced. This implies that the Lyalpha luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f(esc)) of Lyalpha photons has been performed at high redshifts. Here we report that the average f(esc) from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lyalpha and Halpha. This implies that numerous conclusions based on Lyalpha-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lyalpha to be detected by standard selection criteria. Both samples show an anti-correlation of f(esc) with dust content, and we show that Lyalpha- and Halpha-selection recovers populations that differ substantially in dust content and f(esc).

  14. Discovery of an Obscured Broad-Line Region in the High-Redshift Radio Galaxy MRC 2025-218.

    PubMed

    Larkin; McLean; Graham; Becklin; Figer; Gilbert; Levenson; Teplitz; Wilcox; Glassman

    2000-04-10

    This Letter presents infrared spectra taken with the newly commissioned near-infrared spectrometer (NIRSPEC) on the Keck II telescope of the high-redshift radio galaxy MRC 2025-218 (z=2.63). These observations represent the deepest infrared spectra of a radio galaxy to date and have allowed for the detection of Hbeta, [O iii] lambdalambda4959, 5007, [O i] lambda6300, Halpha, [N ii] lambdalambda6548, 6583, and [S ii] lambdalambda6716, 6713. The Halpha emission is very broad (FWHM=9300 km s-1) and luminous (2.6x1044 ergs s-1), and it is very comparable to the line widths and strengths of radio-loud quasars at the same redshift. This strongly supports active galactic nucleus unification models linking radio galaxies and quasars, although we discuss some of the outstanding differences. The line [O iii] lambda5007 is extremely strong and has extended emission with large relative velocities toward the nucleus. We also derive that if the extended emission is due to star formation, each knot has a star formation rate comparable to a Lyman-break galaxy at the same redshift.

  15. Weak-Line Quasars at High Redshift: Extremely High Accretion Rates or Anemic Broad-Line Regions?

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad; Trakhtenbrot, B.; Anderson, S. F.; Brandt, W. N.; Diamond-Stanic, A. M.; Fan, X.; Lira, P.; Netzer, H.; Plotkin, R. M.; Richards, G. T.; Schneider, D. P.; Strauss, M. A.

    2011-01-01

    We present Gemini-North K-band spectra of two representative members of the class of high-redshift quasars with exceptionally weak rest-frame ultraviolet emission lines (WLQs), SDSS J114153.34+021924.3 at z=3.55 and SDSS J123743.08+630144.9 at z=3.49. In both sources we detect an unusually weak broad Hβ line and we place tight upper limits on the strengths of their [O III] lines. Virial, Hβ-based black-hole mass determinations indicate normalized accretion rates of L/LEdd=0.4 for these sources, which is well within the range observed for typical quasars with similar luminosities and redshifts. We also present high-quality XMM-Newton imaging spectroscopy of SDSS J114153.34+021924.3 and find a hard-X-ray photon index of Γ=1.91+0.24-0.22which supports the virial L/LEdd determination in this source. Our results suggest that the weakness of the broad-emission lines in WLQs is not a consequence of an extreme continuum-emission source but instead due to abnormal broad-emission line region properties.

  16. Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array

    NASA Technical Reports Server (NTRS)

    Muchovej, Stephen; Carlstrom, John E.; Cartwright, John; Greer, Christopher; Hawkins, David; Hennessey, Ryan; Joy, Marshall; Lamb, James; Leitch, Erik M.; Loh, Michael; Miller, Amber D.; Mroczkowski, Tony; Pryke, Clem; Reddall, Ben; Runyan, Marcus; Sharp, Matthew; Woody, David

    2006-01-01

    We report measurements of the Sunyaev-Zel'dovich (SZ) effect in three high redshift (0.89 less than or equal to z less than or equal to 1.03), X-ray selected galaxy clusters. The observations were obtained at 30 GHz during the commissioning period of a new, eight-element interferometer - the Sunyaev-Zel'dovich Array (SZA) - built for dedicated SZ effect observations. The SZA observations are sensitive to angular scales larger than those subtended by the virial radii of the clusters. Assuming isothermality and hydrostatic equilibrium for the intracluster medium, and gas-mass fractions consistent with those for clusters at moderate redshift, we calculate electron temperatures, gas masses, and total cluster masses from the SZ data. The SZ-derived masses, integrated approximately to the virial radii, are 1.9 (sup +0.5)(sub -0.4) x 10(exp 14) solar mass for Cl J1415.1+3612, 3.4 (sup +0.6)(sub -0.5) x 10(exp 14) solar mass for Cl J1429.0+4241 and 7.2 (sup +1.3)(sub -0.9) x 10(exp 14) solar mass for Cl J1226.9+3332. The SZ-derived quantities are in good agreement with the cluster properties derived from X-ray measurements.

  17. Chemical Enrichment at High Redshifts: Understanding the Nature of Damped Lyα Systems in Hierarchical Models

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Lambas, Diego G.; Mosconi, Mirta B.; Cora, Sofia

    2001-08-01

    We use cosmological hydrodynamical simulations including star formation and metal enrichment to study the evolution of the chemical properties of galaxy-like objects at high redshift in the range 0.25

  18. Clustering at High Redshift

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Mazure, A.

    1999-12-01

    Conference was held in Marseille, France, from 1999 June 29 to July 7. The Proceedings will be edited by O. Le Fèvre and A. Mazure and published in the ASP Conference Series. We thank H. J. McCracken for his suggestions and language proofing of the manuscript and L. Tresse and M. A. Treyer for useful comments.

  19. GOODS-HERSCHEL: SEPARATING HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI AND STAR-FORMING GALAXIES USING INFRARED COLOR DIAGNOSTICS

    SciTech Connect

    Kirkpatrick, Allison; Pope, Alexandra; Charmandaris, Vassilis; Daddi, Emmanuele; Elbaz, David; Pannella, Maurilio; Aussel, Herve; Dasyra, Kalliopi; Leiton, Roger; Scott, Douglas; Magnelli, Benjamin; Popesso, Paola; Altieri, Bruno; Coia, Daniela; Valtchanov, Ivan; Dannerbauer, Helmut; Dickinson, Mark; Kartaltepe, Jeyhan; Magdis, Georgios

    2013-02-15

    We have compiled a large sample of 151 high-redshift (z = 0.5-4) galaxies selected at 24 {mu}m (S {sub 24} > 100 {mu}Jy) in the GOODS-N and ECDFS fields for which we have deep Spitzer IRS spectroscopy, allowing us to decompose the mid-infrared spectrum into contributions from star formation and activity in the galactic nuclei. In addition, we have a wealth of photometric data from Spitzer IRAC/MIPS and Herschel PACS/SPIRE. We explore how effective different infrared color combinations are at separating our mid-IR spectroscopically determined active galactic nuclei from our star-forming galaxies. We look in depth at existing IRAC color diagnostics, and we explore new color-color diagnostics combining mid-IR, far-IR, and near-IR photometry, since these combinations provide the most detail about the shape of a source's IR spectrum. An added benefit of using a color that combines far-IR and mid-IR photometry is that it is indicative of the power source driving the IR luminosity. For our data set, the optimal color selections are S {sub 250}/S {sub 24} versus S {sub 8}/S {sub 3.6} and S {sub 100}/S {sub 24} versus S {sub 8}/S {sub 3.6}; both diagnostics have {approx}10% contamination rate in the regions occupied primarily by star-forming galaxies and active galactic nuclei, respectively. Based on the low contamination rate, these two new IR color-color diagnostics are ideal for estimating both the mid-IR power source of a galaxy when spectroscopy is unavailable and the dominant power source contributing to the IR luminosity. In the absence of far-IR data, we present color diagnostics using the Wide-field Infrared Survey Explorer mid-IR bands which can efficiently select out high-z (z {approx} 2) star-forming galaxies.

  20. GALAXY EVOLUTION IN OVERDENSE ENVIRONMENTS AT HIGH REDSHIFT: PASSIVE EARLY-TYPE GALAXIES IN A CLUSTER AT z {approx} 2

    SciTech Connect

    Strazzullo, V.; Gobat, R.; Daddi, E.; Onodera, M.; Carollo, M.; Dickinson, M.; Renzini, A.; Arimoto, N.; Cimatti, A.; Finoguenov, A.; Chary, R.-R.

    2013-08-01

    We present a study of galaxy populations in the central region of the IRAC-selected, X-ray-detected galaxy cluster Cl J1449+0856 at z = 2. Based on a sample of spectroscopic and photometric cluster members, we investigate stellar populations and the morphological structure of cluster galaxies over an area of {approx}0.7 Mpc{sup 2} around the cluster core. The cluster stands out as a clear overdensity both in redshift space and in the spatial distribution of galaxies close to the center of the extended X-ray emission. The cluster core region (r < 200 kpc) shows a clearly enhanced passive fraction with respect to field levels. However, together with a population of massive, passive galaxies mostly with early-type morphologies, the cluster core also hosts massive, actively star-forming, often highly dust reddened sources. Close to the cluster center, a multi-component system of passive and star-forming galaxies could represent the future brightest cluster galaxy still forming. We observe a clear correlation between passive stellar populations and an early-type morphology, in agreement with field studies at similar redshift. Passive early-type galaxies in this cluster are typically a factor of 2-3 smaller than similarly massive early types at z {approx} 0. On the other hand, these same objects are on average larger by a factor of {approx}2 than field early-types at similar redshift, lending support to recent claims of an accelerated structural evolution in high-redshift dense environments. These results point toward the early formation of a population of massive galaxies, already evolved both in their structure and stellar populations, coexisting with still actively forming massive galaxies in the central regions of young clusters 10 billion years ago.

  1. QUEST FOR COSMOS SUBMILLIMETER GALAXY COUNTERPARTS USING CARMA AND VLA: IDENTIFYING THREE HIGH-REDSHIFT STARBURST GALAXIES

    SciTech Connect

    Smolcic, V.; Navarrete, F.; Bertoldi, F.; Aravena, M.; Sheth, K.; Ilbert, O.; Yun, M. S.; Salvato, M.; Finoguenov, A.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Hughes, D.; Wilson, G.; Riechers, D. A.; Capak, P.; Scoville, N. Z.; Karim, A.; Schinnerer, E.

    2012-05-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F{sub 1m} > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, {approx}10''-30'', resolution. All three sources-AzTEC/C1, Cosbo-3, and Cosbo-8-are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution ({approx}2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z {approx}> 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 {+-} 1.2, 1.9{sup +0.9}{sub -0.5}, and {approx}4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of {approx}> 1000 M{sub Sun} yr{sup -1}and IR luminosities of {approx}10{sup 13} L{sub Sun} consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z {approx} 2 and today's passive galaxies.

  2. THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT

    SciTech Connect

    Stott, J. P.; Collins, C. A.; Hilton, M.; Capozzi, D.; Sahlen, M.; Lloyd-Davies, E.; Hosmer, M.; Liddle, A. R.; Mehrtens, N.; Romer, A. K.; Miller, C. J.; Stanford, S. A.; Viana, P. T. P.; Davidson, M.; Hoyle, B.; Kay, S. T.; Nichol, R. C.

    2010-07-20

    We present deep J- and K{sub s} -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at {approx}9 x 10{sup 11} M {sub sun} since z {approx} 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.

  3. Quest for COSMOS Submillimeter Galaxy Counterparts using CARMA and VLA: Identifying Three High-redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Smolčić, V.; Navarrete, F.; Aravena, M.; Ilbert, O.; Yun, M. S.; Sheth, K.; Salvato, M.; McCracken, H. J.; Diener, C.; Aretxaga, I.; Riechers, D. A.; Finoguenov, A.; Bertoldi, F.; Capak, P.; Hughes, D.; Karim, A.; Schinnerer, E.; Scoville, N. Z.; Wilson, G.

    2012-05-01

    We report on interferometric observations at 1.3 mm at 2''-3'' resolution using the Combined Array for Research in Millimeter-wave Astronomy. We identify multi-wavelength counterparts of three submillimeter galaxies (SMGs; F 1 mm > 5.5 mJy) in the COSMOS field, initially detected with MAMBO and AzTEC bolometers at low, ~10''-30'', resolution. All three sources—AzTEC/C1, Cosbo-3, and Cosbo-8—are identified to coincide with positions of 20 cm radio sources. Cosbo-3, however, is not associated with the most likely radio counterpart, closest to the MAMBO source position, but with that farther away from it. This illustrates the need for intermediate-resolution (~2'') mm-observations to identify the correct counterparts of single-dish-detected SMGs. All of our three sources become prominent only at NIR wavelengths, and their mm-to-radio flux based redshifts suggest that they lie at redshifts z >~ 2. As a proof of concept, we show that photometric redshifts can be well determined for SMGs, and we find photometric redshifts of 5.6 ± 1.2, 1.9+0.9 - 0.5, and ~4 for AzTEC/C1, Cosbo-3, and Cosbo-8, respectively. Using these we infer that these galaxies have radio-based star formation rates of >~ 1000 M ⊙ yr-1and IR luminosities of ~1013 L ⊙ consistent with properties of high-redshift SMGs. In summary, our sources reflect a variety of SMG properties in terms of redshift and clustering, consistent with the framework that SMGs are progenitors of z ~ 2 and today's passive galaxies.

  4. Quasars as the formation sites of high-redshift ellipticals: a signature in the `associated' absorption-line systems?

    NASA Astrophysics Data System (ADS)

    Franceschini, A.; Gratton, R.

    1997-03-01

    Published data on the average metallicities and abundance ratios for absorption-line systems in high-redshift quasars suggest that a dichotomy may exist between the chemical composition of damped Lyman alpha (Lyalpha) systems (interpreted as intervening galaxies in the QSO line of sight) and the z_abs~=z_em absorption- line systems associated with the quasar. Intervening systems have smaller than solar metallicities, whereas associated absorbers have solar or greater than solar metallicities and small N/C ratios. While these results have to be confirmed by more precise abundance determinations, we argue that they may be explained by an early phase of efficient metal enrichment occurring only in the close environment of high-z QSOs, and characterized by an excess type-II supernova (SNII) activity. This is reminiscent of the SNII phase required to explain the abundance ratios (favouring alpha- over Fe-group elements) observed in the intracluster (IC) medium of local galaxy clusters. We explore the following scenario, to be tested by forthcoming observations of QSO absorption lines using very large optical telescopes. (a) Well-studied damped- Lyalpha, Lyalpha and metal lines in intervening systems trace only part of the history of metal production in the Universe - the one concerning slowly star-forming discs or dwarf irregulars. (b) The complementary class of early-type and bulge-dominated galaxies formed quickly (at z>~4-5) through a huge episode of star formation favouring high-mass stars. (c) The nucleus of the latter is the site of the subsequent formation of a quasar, which partly hides from view the dimmer host galaxy. (d) The products of a galactic wind, following the violent episode of star formation in the host galaxy and metal pollution of the IC medium in the forming cluster, could be directly observable in the z_abs~=z_em associated absorption systems on the QSO line of sight.

  5. RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP

    SciTech Connect

    Morgan, A. N.; Richards, Joseph W.; Butler, Nathaniel R.; Bloom, Joshua S.; Long, James; Broderick, Tamara

    2012-02-20

    As the number of observed gamma-ray bursts (GRBs) continues to grow, follow-up resources need to be used more efficiently in order to maximize science output from limited telescope time. As such, it is becoming increasingly important to rapidly identify bursts of interest as soon as possible after the event, before the afterglows fade beyond detectability. Studying the most distant (highest redshift) events, for instance, remains a primary goal for many in the field. Here, we present our Random Forest Automated Triage Estimator for GRB redshifts (RATE GRB-z ) for rapid identification of high-redshift candidates using early-time metrics from the three telescopes onboard Swift. While the basic RATE methodology is generalizable to a number of resource allocation problems, here we demonstrate its utility for telescope-constrained follow-up efforts with the primary goal to identify and study high-z GRBs. For each new GRB, RATE GRB-z provides a recommendation-based on the available telescope time-of whether the event warrants additional follow-up resources. We train RATE GRB-z using a set consisting of 135 Swift bursts with known redshifts, only 18 of which are z > 4. Cross-validated performance metrics on these training data suggest that {approx}56% of high-z bursts can be captured from following up the top 20% of the ranked candidates, and {approx}84% of high-z bursts are identified after following up the top {approx}40% of candidates. We further use the method to rank 200 + Swift bursts with unknown redshifts according to their likelihood of being high-z.

  6. A universal, turbulence-regulated star formation law: from Milky Way clouds to high-redshift disk and starburst galaxies

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Salim, Diane; Kewley, Lisa

    2015-08-01

    Whilst the star formation rate (SFR) of molecular clouds and galaxies is key in understanding galaxy evolution, the physical processes which determine the SFR remain unclear. This uncertainty about the underlying physics has resulted in various different star formation laws, all having substantial intrinsic scatter. Extending upon previous works that define the column density of star formation (ΣSFR) by the gas column density (Σgas), we develop a new universal star formation (SF) law based on the multi-freefall prescription of gas. This new SF law relies predominantly on the probability density function (PDF) and on the sonic Mach number of the turbulence in the star-forming clouds. By doing so we derive a relation where the star formation rate (SFR) correlates with the molecular gas mass per multi-freefall time, whereas previous models had used the average, single-freefall time. We define a new quantity called maximum (multi-freefall) gas consumption rate (MGCR) and show that the actual SFR is only about 0.4% of this maximum possible SFR, confirming the observed low efficiency of star formation. We show that placing observations in this new framework (ΣSFR vs. MGCR) yields a significantly improved correlation with 3-4 times reduced scatter compared to previous SF laws and a goodness-of-fit parameter R2 = 0.97. By inverting our new relationship, we provide sonic Mach number predictions for kpc-scale observations of Local Group galaxies as well as unresolved observations of local and high-redshift disk and starburst galaxies that do not have independent, reliable estimates for the turbulent cloud Mach number.

  7. A universal, turbulence-regulated star formation law: from Milky Way clouds to high-redshift disk and starburst galaxies

    NASA Astrophysics Data System (ADS)

    Malinda Salim, Diane; Federrath, Christoph; Kewley, Lisa

    2015-08-01

    Whilst the star formation rate (SFR) of molecular clouds and galaxies is key in understanding galaxy evolution, the physical processes that determine the SFR remain unclear, with significant intrinsic scatter arising from previous approaches at describing its functional dependencies. In lieu of this, we extend upon preceding parameterisations which had defined the column density of star formation, ΣSFR by either the gas column density Σgas or the ratio between Σgas and the average, single-freefall time. We develop a new universal star formation (SF) law that relies predominantly on the probability density function (PDF) and the sonic Mach number of the turbulence in star-forming clouds. By doing so we derive a relation where the SFR correlates with the molecular gas mass per multi-freefall time. We define a new quantity called maximum (multi-freefall) gas consumption rate (MGCR) and show that the actual SFR is only about 0.4% of the MGCR, confirming the observed low efficiency of star formation. We show that placing observations in this new framework (ΣSFR vs. MGCR) yields a significantly improved correlation with 3-4 times reduced scatter compared to previous SF laws and a goodness-of-fit parameter R2=0.97, close to a perfect fit of R2=1. By inverting our new relationship, we provide sonic Mach number predictions for kpc-scale observations of Local Group galaxies as well as unresolved observations of local and high-redshift disk and starburst galaxies that do not have independent, reliable estimates for the turbulent cloud Mach number.

  8. A Universal, Turbulence-regulated Star Formation Law: From Milky Way Clouds to High-redshift Disk and Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Salim, Diane M.; Federrath, Christoph; Kewley, Lisa J.

    2015-06-01

    While the star formation rate (SFR) of molecular clouds and galaxies is key in understanding galaxy evolution, the physical processes that determine the SFR remain unclear. This uncertainty about the underlying physics has resulted in various different star formation (SF) laws, all having substantial intrinsic scatter. Extending upon previous works that define the column density of star formation ({{{Σ }}}{SFR}) by the gas column density ({{{Σ }}}{gas}), we develop a new universal SF law based on the multi-freefall prescription of gas. This new SF law relies predominantly on the probability density function and on the sonic Mach number of the turbulence in the star-forming clouds. By doing so we derive a relation where the SFR correlates with the molecular gas mass per multi-freefall time, whereas previous models had used the average, single-freefall time. We define a new quantity called maximum (multi-freefall) gas consumption rate (MGCR) and show that the actual SFR is only about 0.4% of this maximum possible SFR, confirming the observed low efficiency of SF. We show that placing observations in this new framework ({{{Σ }}}{SFR} versus MGCR) yields a significantly improved correlation with 3-4 times reduced scatter compared to previous SF laws and a goodness-of-fit parameter {R}2=0.97. By inverting our new relationship, we provide sonic Mach number predictions for kiloparsec-scale observations of Local Group galaxies as well as unresolved observations of local and high-redshift disk and starburst galaxies that do not have independent, reliable estimates for the turbulent cloud Mach number.

  9. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    SciTech Connect

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai; Tanvir, Nial; Wiersema, Klaas; Levan, Andrew; Perley, Daniel; Menten, Karl; Hrudkova, Marie

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  10. Dark-ages Reionization and Galaxy formation simulation - I. The dynamical lives of high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Poole, Gregory B.; Angel, Paul W.; Mutch, Simon J.; Power, Chris; Duffy, Alan R.; Geil, Paul M.; Mesinger, Andrei; Wyithe, Stuart B.

    2016-07-01

    We present the Dark-ages Reionization and Galaxy formation Observables from Numerical Simulations (DRAGONS) programme and Tiamat, the collisionless N-body simulation programme upon which DRAGONS is built. The primary trait distinguishing Tiamat from other large simulation programme is its density of outputs at high redshift (100 from z = 35 to z = 5; roughly one every 10 Myr) enabling the construction of very accurate merger trees at an epoch when galaxy formation is rapid and mergers extremely frequent. We find that the friends-of-friends halo mass function agrees well with the prediction of Watson et al. at high masses, but deviates at low masses, perhaps due to our use of a different halo finder or perhaps indicating a break from `universal' behaviour. We then analyse the dynamical evolution of galaxies during the Epoch of Reionization finding that only a small fraction (˜20 per cent) of galactic haloes are relaxed. We illustrate this using standard relaxation metrics to establish two dynamical recovery time-scales: (i) haloes need ˜1.5 dynamical times following formation, and (ii) ˜2 dynamical times following a major (3:1) or minor (10:1) merger to be relaxed. This is remarkably consistent across a wide mass range. Lastly, we use a phase-space halo finder to illustrate that major mergers drive long-lived massive phase-space structures which take many dynamical times to dissipate. This can yield significant differences in the inferred mass build-up of galactic haloes and we suggest that care must be taken to ensure a physically meaningful match between the galaxy formation physics of semi-analytic models and the halo finders supplying their input.

  11. THE MOST METAL-POOR DAMPED Lyα SYSTEMS: AN INSIGHT INTO DWARF GALAXIES AT HIGH-REDSHIFT

    SciTech Connect

    Cooke, Ryan J.; Pettini, Max; Jorgenson, Regina A.

    2015-02-10

    In this paper we analyze the kinematics, chemistry, and physical properties of a sample of the most metal-poor damped Lyα systems (DLAs), to uncover their links to modern-day galaxies. We present evidence that the DLA population as a whole exhibits a ''knee'' in the relative abundances of the α-capture and Fe-peak elements when the metallicity is [Fe/H] ≅ –2.0, assuming that Zn traces the buildup of Fe-peak elements. In this respect, the chemical evolution of DLAs is clearly different from that experienced by Milky Way halo stars, but resembles that of dwarf spheroidal galaxies in the Local Group. We also find a close correspondence between the kinematics of Local Group dwarf galaxies and of high-redshift metal-poor DLAs, which further strengthens this connection. On the basis of such similarities, we propose that the most metal-poor DLAs provide us with a unique opportunity to directly study the dwarf galaxy population more than ten billion years in the past, at a time when many dwarf galaxies were forming the bulk of their stars. To this end, we have measured some of the key physical properties of the DLA gas, including their neutral gas mass, size, kinetic temperature, density, and turbulence. We find that metal-poor DLAs contain a warm neutral medium with T {sub gas} ≅ 9600 K predominantly held up by thermal pressure. Furthermore, all of the DLAs in our sample exhibit a subsonic turbulent Mach number, implying that the gas distribution is largely smooth. These results are among the first empirical descriptions of the environments where the first few generations of stars may have formed in the universe.

  12. Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA

    NASA Astrophysics Data System (ADS)

    Adam, R.; Comis, B.; Macías-Pérez, J.-F.; Adane, A.; Ade, P.; André, P.; Beelen, A.; Belier, B.; Benoît, A.; Bideaud, A.; Billot, N.; Blanquer, G.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Cruciani, A.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Goupy, J.; Kramer, C.; Leclercq, S.; Martino, J.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pointecouteau, E.; Ponthieu, N.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Savini, G.; Schuster, K.; Sievers, A.; Tucker, C.; Zylka, R.

    2015-04-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. The tSZ observations have proven to be a powerful tool for detecting and studying them, but high angular resolution observations are now needed to push their investigation to a higher redshift. In this paper, we report high angular (<20 arcsec) resolution tSZ observations of the high-redshift cluster CL J1226.9+3332 (z = 0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-m telescope. The 150 GHz map shows that CL J1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster's radial pressure, density, temperature, and entropy distributions. The total mass profile of the cluster is derived, and we find M500 = 5.96+1.02-0.79 × 1014M⊙ within the radius R500 = 930+50-43 kpc, at a 68% confidence level. (R500 is the radius within which the average density is 500 times the critical density at the cluster's redshift.) NIKA is the prototype camera of NIKA2, a KIDs (kinetic inductance detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs. The FITS file of the published maps is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A12

  13. An Empirical Determination of the Intergalactic Background Light from UV to FIR Wavelengths Using FIR Deep Galaxy Surveys and the Gamma-Ray Opacity of the Universe

    NASA Astrophysics Data System (ADS)

    Stecker, Floyd W.; Scully, Sean T.; Malkan, Matthew A.

    2016-08-01

    We have previously calculated the intergalactic background light (IBL) as a function of redshift from the Lyman limit in the far-ultraviolet to a wavelength of 5 μm in the near-infrared range, based purely on data from deep galaxy surveys. Here, we use similar methods to determine the mid- and far-infrared IBL from 5 to 850 μm. Our approach enables us to constrain the range of photon densities by determining the uncertainties in observationally determined luminosity densities and spectral gradients. By also including the effect of the 2.7 K cosmic background photons, we determine upper and lower limits on the opacity of the universe to γ-rays up to PeV energies within a 68% confidence band. Our direct results on the IBL are consistent with those from complimentary γ-ray analyses using observations from the Fermi γ-ray space telescope and the H.E.S.S. air Čerenkov telescope. Thus, we find no evidence of previously suggested processes for the modification of γ-ray spectra other than that of absorption by pair production alone.

  14. Clues to the nature of high-redshift O vi absorption systems from their lack of small-scale structure

    NASA Astrophysics Data System (ADS)

    Lopez, S.; Ellison, S.; D'Odorico, S.; Kim, T.-S.

    2007-07-01

    We present results of the first survey of high-redshift (< z>˜ 2.3) O VI absorption systems along parallel lines of sight toward two lensed QSOs. After a careful and well-defined search, we find ten intervening O VI systems - identified by the presence of the λλ1031, 1037 doublet lines, H I, and in most cases C IV, Si IV, and C III - and eight candidate systems for which we do not detect H I nor other metals. We assess the veracity of these systems by applying a classification scheme. Within the errors, all O VI systems appear at the same redshift and have similar line strengths in front of both QSO images, whereas in most cases C IV or Si IV show more differences across the lines of sight, either in radial velocity or line strength. We conclude that (1) the coherence length of O VI must be much larger than ≈ 1 h70-1 kpc, and (2) an important fraction of the C IV absorbers may not reside in the same volume as O VI. Given the inhomogeneous character of the data - different S/N ratios and degrees of blending - we pay special attention to the observational errors and their impact on the above conclusions. Since Doppler parameters are consistent with photoionization, we propose a model in which V IV occurs in two different photoionized phases, one large, with characteristic sizes of a few hundred kpc and bearing O VI, and another one a factor of ten smaller and containing C III. This model is able to explain the various transverse differences observed in column density and kinematics. We apply the model successfully to 2 kinds of absorbers, with low and high metallicity. In the low-metallicity regime, [C/H]~ -2, we find that [C/O] ≈ -0.7 is required to explain the observations, which hints at late (z⪉ 6) rather than early metal enrichment. In the high-metallicity regime, the observed dissociation between O VI and C IV gas might be produced by galactic outflows. Altogether, the relative abundances, inhomogeneous C IV and featureless O VI are consistent with gas

  15. High-energy properties of the high-redshift flat spectrum radio quasar PKS 2149-306

    NASA Astrophysics Data System (ADS)

    D'Ammando, F.; Orienti, M.

    2016-01-01

    We investigate the γ-ray and X-ray properties of the flat spectrum radio quasar PKS 2149-306 at redshift z = 2.345. A strong γ-ray flare from this source was detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope satellite in 2013 January, reaching on January 20 a daily peak flux of (301 ± 36) × 10-8 ph cm-2 s-1 in the 0.1-100 GeV energy range. This flux corresponds to an apparent isotropic luminosity of (1.5 ± 0.2) × 1050 erg s-1, comparable to the highest values observed by a blazar so far. During the flare the increase of flux was accompanied by a significant change of the spectral properties. Moreover significant flux variations on a 6-h time-scale were observed, compatible with the light crossing time of the event horizon of the central black hole. The broad-band X-ray spectra of PKS 2149-306 observed by Swift-XRT and NuSTAR are well described by a broken power-law model, with a very hard spectrum (Γ1 ˜ 1) below the break energy, at E break = 2.5-3.0 keV, and Γ2 ˜ 1.4-1.5 above the break energy. The steepening of the spectrum below ˜3 keV may indicate that the soft X-ray emission is produced by the low-energy relativistic electrons. This is in agreement with the small variability amplitude and the lack of spectral changes in that part of the X-ray spectrum observed between the two NuSTAR and Swift joint observations. As for the other high-redshift FSRQ detected by both Fermi-LAT and Swift-BAT, the photon index of PKS 2149-306 in hard X-ray is 1.6 or lower and the average γ-ray luminosity higher than 2 × 1048 erg s-1.

  16. The high-redshift gamma-ray burst GRB 140515A. A comprehensive X-ray and optical study

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P.; Sánchez-Ramírez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thöne, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-01

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile (proposal code: 093.A-0069), on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme 49-008), and on observations made with the Italian 3.6-m Telescopio Nazionale Galileo (TNG), operated by the Fundación Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme A26TAC_63).Appendix A is available in electronic form at

  17. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The

  18. Spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. I. An improved classification for high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Lamareille, F.

    2010-01-01

    Aims: We study the spectral classification of emission-line galaxies as starforming galaxies or active galactic nuclei (AGNs). With the high-quality data from the Sloan Digital Sky Survey (SDSS) we define an improved classification to be used for high-redshift galaxies. Methods: We classify emission-line galaxies of the SDSS according to the latest standard recipe using [Oiii]λ5007, [Nii]λ6584, [Sii]λ6717+6731, Hα, and Hβ emission lines. We obtain four classes: starforming galaxies, Seyfert 2, LINERs, and composites. We then examine where these galaxies fall in the blue diagram used at high redshift (i.e. log([Oiii]λ5007/Hβ) vs. log([Oii]λλ3726+3729/Hβ). Results: We define new improved boundaries in the blue diagram for starforming galaxies, Seyfert 2, LINERs, SF/Sy2, and SF-LIN/comp classes. We maximize the success rate to 99.7% for the detection of starforming galaxies to 86% for the Seyfert 2 (including the SF/Sy2 region) and to 91% for the LINERs. We also minimize the contamination to 16% in the region of starforming galaxies. We cannot reliably separate composites from starforming galaxies and LINERs, but we define an SF-LIN/comp region where most of them fall (64%).

  19. HerMES: a search for high-redshift dusty galaxies in the HerMES Large Mode Survey - catalogue, number counts and early results

    NASA Astrophysics Data System (ADS)

    Asboth, V.; Conley, A.; Sayers, J.; Béthermin, M.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Farrah, D.; Glenn, J.; Golwala, S. R.; Halpern, M.; Ibar, E.; Ivison, R. J.; Maloney, P. R.; Marques-Chaves, R.; Martinez-Navajas, P. I.; Oliver, S. J.; Pérez-Fournon, I.; Riechers, D. A.; Rowan-Robinson, M.; Scott, Douglas; Siegel, S. R.; Vieira, J. D.; Viero, M.; Wang, L.; Wardlow, J.; Wheeler, J.

    2016-10-01

    Selecting sources with rising flux densities towards longer wavelengths from Herschel/Spectral and Photometric Imaging Receiver (SPIRE) maps is an efficient way to produce a catalogue rich in high-redshift (z > 4) dusty star-forming galaxies. The effectiveness of this approach has already been confirmed by spectroscopic follow-up observations, but the previously available catalogues made this way are limited by small survey areas. Here we apply a map-based search method to 274 deg2 of the Herschel Multi-tiered Extragalactic Survey (HerMES) Large Mode Survey and create a catalogue of 477 objects with SPIRE flux densities S500 > S350 > S250 and a 5σ cut-off S500 > 52 mJy. From this catalogue we determine that the total number of these `red' sources is at least an order of magnitude higher than predicted by galaxy evolution models. These results are in agreement with previous findings in smaller HerMES fields; however, due to our significantly larger sample size we are also able to investigate the shape of the red source counts for the first time. We have obtained spectroscopic redshift measurements for two of our sources using the Atacama Large Millimeter/submillimeter Array. The redshifts z = 5.1 and 3.8 confirm that with our selection method we can indeed find high-redshift dusty star-forming galaxies.

  20. The cosmic microwave background radiation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1981-01-01

    Because angular anisotropies and spectral distortions of the cosmic microwave background radiation are judged to be inevitable at some level, in a realistic cosmological model, the evidence for spectral distortions and its theoretical implications are described. The evidence for anisotropy is then discussed, and theoretical predictions of radiation anisotropy are summarized and compared with the data available. It is found that spectral distortions at the 3-sigma level near the peak of the blackbody spectrum, although inconsistent with the predicted distortions due to Compton scattering in the early universe, are elegantly interpreted in terms of radiation from an early, pregalactic generation of massive stars which had been thermalized by a modest amount of dust at high redshift. The quadrupole anisotropy at the 4-sigma level is most simply interpreted in terms of the large-scale structure of the universe.

  1. THE EXTRAGALACTIC BACKGROUND LIGHT FROM THE MEASUREMENTS OF THE ATTENUATION OF HIGH-ENERGY GAMMA-RAY SPECTRUM

    SciTech Connect

    Gong Yan; Cooray, Asantha

    2013-07-20

    The attenuation of high-energy gamma-ray spectrum due to the electron-positron pair production against the extragalactic background light (EBL) provides an indirect method to measure the EBL of the universe. We use the measurements of the absorption features of the gamma-rays from blazars as seen by the Fermi Gamma-ray Space Telescope to explore the EBL flux density and constrain the EBL spectrum, star formation rate density (SFRD), and photon escape fraction from galaxies out to z = 6. Our results are basically consistent with the existing determinations of the quantities. We find a larger photon escape fraction at high redshifts, especially at z = 3, compared to the result from recent Ly{alpha} measurements. Our SFRD result is consistent with the data from both gamma-ray burst and ultraviolet (UV) observations in the 1{sigma} level. However, the average SFRD we obtain at z {approx}> 3 matches the gamma-ray data better than the UV data. Thus our SFRD result at z {approx}> 6 favors the fact that star formation alone is sufficiently high enough to reionize the universe.

  2. Herschel-ATLAS Galaxy Counts and High-redshift Luminosity Functions: The Formation of Massive Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Lapi, A.; González-Nuevo, J.; Fan, L.; Bressan, A.; De Zotti, G.; Danese, L.; Negrello, M.; Dunne, L.; Eales, S.; Maddox, S.; Auld, R.; Baes, M.; Bonfield, D. G.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; Dye, S.; Fritz, J.; Herranz, D.; Hopwood, R.; Ibar, E.; Ivison, R.; Jarvis, M. J.; Kaviraj, S.; López-Caniego, M.; Massardi, M.; Michałowski, M. J.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Serjeant, S.; Smith, D. J. B.; Temi, P.; Wardlow, J.; van der Werf, P.

    2011-11-01

    Exploiting the Herschel Astrophysical Terahertz Large Area Survey Science Demonstration Phase survey data, we have determined the luminosity functions (LFs) at rest-frame wavelengths of 100 and 250 μm and at several redshifts z >~ 1, for bright submillimeter galaxies with star formation rates (SFRs) >~ 100 M ⊙ yr-1. We find that the evolution of the comoving LF is strong up to z ≈ 2.5, and slows down at higher redshifts. From the LFs and the information on halo masses inferred from clustering analysis, we derived an average relation between SFR and halo mass (and its scatter). We also infer that the timescale of the main episode of dust-enshrouded star formation in massive halos (M H >~ 3 × 1012 M ⊙) amounts to ~7 × 108 yr. Given the SFRs, which are in the range of 102-103 M ⊙ yr-1, this timescale implies final stellar masses of the order of 1011-1012 M ⊙. The corresponding stellar mass function matches the observed mass function of passively evolving galaxies at z >~ 1. The comparison of the statistics for submillimeter and UV-selected galaxies suggests that the dust-free, UV bright phase is >~ 102 times shorter than the submillimeter bright phase, implying that the dust must form soon after the onset of star formation. Using a single reference spectral energy distribution (SED; the one of the z ≈ 2.3 galaxy SMM J2135-0102), our simple physical model is able to reproduce not only the LFs at different redshifts >1 but also the counts at wavelengths ranging from 250 μm to ≈1 mm. Owing to the steepness of the counts and their relatively broad frequency range, this result suggests that the dispersion of submillimeter SEDs of z > 1 galaxies around the reference one is rather small. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Modelling UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Sreejith, A. G.; Safanova, M.; Mohan, R.; Murthy, Jayant

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse galactic light, is dependent on various factors. Airglow is dependent on the time of day, zodiacal light on the time of year, angle from the Sun and from the ecliptic, and diffuse UV emission depends on the look direction. To provide a full description of any line of sight, we have also added stars. The diffuse UV background light can dominate in many areas of the sky and severely impact space telescopes viewing directions due to over brightness. The simulator, available as a downloadable package and as a simple web-based tool, can be applied to separate missions and instruments. For demonstration, we present the example used for two UV missions: the UVIT instrument on the Indian ASTROSAT mission to be launched in the next year and a prospective wide-field mission to search for transients in the UV.

  4. Exotic UV astronomy

    NASA Astrophysics Data System (ADS)

    Brosch, Noah

    2009-04-01

    After considering a number of historical but somewhat “forgotten” UV astronomy experiments, I discuss a number of ways of non-conventional astronomy in the ultraviolet that, on first considerations, could be viable alternatives and valuable complements to classical space observations. These are (a) UV astronomy from the Antarctic or the Arctic regions that take advantage of the “ozone hole”, (b) the use of high-altitude stratospheric balloon-borne telescopes, and (c) the operation of UV telescopes on the Moon. The advantages of these options are discussed and evaluated against the costs of each option and, one by one, are mostly rejected as not fully justifying the specific alternative. The possibility to achieve valuable (but limited) UV science, such as imaging at ˜2000 Å, using long-duration stratospheric balloons is described. The option of lunar UV observatories is retained to be implemented for the case of a UV interferometer, where the stability of the lunar regolith is seen as a significant advantage in comparison to free-flying interferometers. A location beyond the main asteroid belt, where the background due zodiacal light may be negligible, is advocated as an ideal location for a UV observatory in the Solar System.

  5. Atomic data for S II—toward better diagnostics of chemical evolution in high-redshift galaxies

    SciTech Connect

    Kisielius, Romas; Bogdanovich, Pavel; Kulkarni, Varsha P.; Ferland, Gary J.; Lykins, Matt L.

    2014-01-01

    Absorption-line spectroscopy is a powerful tool used to estimate element abundances in both the nearby and distant universe. The accuracy of the abundances thus derived is naturally limited by the accuracy of the atomic data assumed for the spectral lines. We have recently started a project to perform new extensive atomic data calculations used for optical/UV spectral lines in the plasma modeling code Cloudy using state of the art quantal calculations. Here, we demonstrate our approach by focussing on S II, an ion used to estimate metallicities for Milky Way interstellar clouds as well as distant damped Lyman-alpha (DLA) and sub-DLA absorber galaxies detected in the spectra of quasars and gamma-ray bursts. We report new extensive calculations of a large number of energy levels of S II, and the line strengths of the resulting radiative transitions. Our calculations are based on the configuration interaction approach within a numerical Hartree-Fock framework, and utilize both non-relativistic and quasirelativistic one-electron radial orbitals. The results of these new atomic calculations are then incorporated into Cloudy and applied to a lab plasma, and a typical DLA, for illustrative purposes. The new results imply relatively modest changes (≈0.04 dex) to the metallicities estimated from S II in past studies. These results will be readily applicable to other studies of S II in the Milky Way and other galaxies.

  6. Evolution and constrains in the star formation histories of IR-bright star forming galaxies at high redshift

    NASA Astrophysics Data System (ADS)

    Sklias, Panos; Schaerer, Daniel; Elbaz, David

    2015-08-01

    Understanding and constraining the early cosmic star formation history of the Universe is a key question of galaxy evolution. A large fraction of star formation is dust obscured, so it is crucial to have access to the IR emission of galaxies to properly study them.Utilizing the multi-wavelength photometry from GOODS-Herschel, we perform SED fitting with different variable star formation histories (SFHs), which we constrain thanks to the observed IR luminosities, on a large sample of individually IR-detected sources from z~1 to 4. We explore how (and to which extent) constraining dust attenuation thanks to the IR luminosities allows to reduce the scatter (expected when using variable SFHs, in contrast to IR+UV standard calibrations) in physical properties and relations such as mass-SFR and the so-called star-forming Main Sequence (MS).Although limited at the high-z end, our analysis shows a change of trends in SFHs between low and high z, that follows the established cosmic SFR density, with galaxies found to prefer rising SFRs at z~3-4, and declining SFRs at z≤1. We show that a fraction of galaxies (~20%), mainly at z≤2, can have lower SFRs than IR-inferred, but still being compatible with the observations, indicative of being post-starbursts/undergoing quenching while bright in the IR, in agreement with theoretical work. The IR-constrained stellar population models we obtain also indicate that the two main modes of star formation - MS and starburst - evolve differently with time, with the former being mostly slow evolving and lying on the MS for long lasting periods, and the latter being very recent, rapidly increasing bursts (or on the decline, when belonging to the aforementioned "quenched" category). Finally, we illustrate how spectroscopic observation of nebular emission lines further enables as to constrain effectively the SFHs of galaxies.

  7. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  8. BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS

    SciTech Connect

    Bournaud, Frederic; Teyssier, Romain; Daddi, Emanuele; Dekel, Avishai; Cacciato, Marcello; Juneau, Stephanie; Shankar, Francesco E-mail: dekel@phys.huji.ac.il

    2011-11-10

    Disk galaxies at high redshift have been predicted to maintain high gas surface densities due to continuous feeding by intense cold streams leading to violent gravitational instability, transient features, and giant clumps. Gravitational torques between the perturbations drive angular momentum out and mass in, and the inflow provides the energy for keeping strong turbulence. We use analytic estimates of the inflow for a self-regulated unstable disk at a Toomre stability parameter Q {approx} 1, and isolated galaxy simulations capable of resolving the nuclear inflow down to the central parsec. We predict an average inflow rate {approx}10 M{sub Sun} yr{sup -1} through the disk of a 10{sup 11} M{sub Sun} galaxy, with conditions representative of z {approx} 2 stream-fed disks. The inflow rate scales with disk mass and (1 + z){sup 3/2}. It includes clump migration and inflow of the smoother component, valid even if clumps disrupt. This inflow grows the bulge, while only a fraction of {approx}> 10{sup -3} of it needs to accrete onto a central black hole (BH), in order to obey the observed BH-bulge relation. A galaxy of 10{sup 11} M{sub Sun} at z {approx} 2 is expected to host a BH of {approx}10{sup 8} M{sub Sun }, accreting on average with moderate sub-Eddington luminosity L{sub X} {approx} 10{sup 42}-10{sup 43} erg s{sup -1}, accompanied by brighter episodes when dense clumps coalesce. We note that in rare massive galaxies at z {approx} 6, the same process may feed {approx}10{sup 9} M{sub Sun} BH at the Eddington rate. High central gas column densities can severely obscure active galactic nuclei in high-redshift disks, possibly hindering their detection in deep X-ray surveys.

  9. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  10. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  11. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar.

    PubMed

    Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio; Prochaska, J Xavier; Hennawi, Joseph F; Madau, Piero

    2014-02-01

    Simulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission-about 10(12.0 ± 0.5)/C(1/2) solar masses, where C is the gas clumping factor-is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models.

  12. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar.

    PubMed

    Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio; Prochaska, J Xavier; Hennawi, Joseph F; Madau, Piero

    2014-02-01

    Simulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission-about 10(12.0 ± 0.5)/C(1/2) solar masses, where C is the gas clumping factor-is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models. PMID:24463517

  13. Predicting UV sky for future UV missions

    NASA Astrophysics Data System (ADS)

    Safonova, M.; Mohan, R.; Sreejith, A. G.; Murthy, Jayant

    2013-02-01

    Software simulators are now widely used in all areas of science, especially in application to astronomical missions: from instrument design to mission planning, and to data interpretation. We present a simulator to model the diffuse ultraviolet sky, where the different contributors are separately calculated and added together to produce a sky image of the size specified by the instrument requirements. Each of the contributors to the background, instrumental dark current, airglow, zodiacal light and diffuse Galactic light, depends on different factors. Airglow is dependent on the time of day; zodiacal light depends on the time of year, angle from the Sun and from the ecliptic; diffuse UV emission depends on the line of sight. To provide a full description of the sky along any line of sight, we have also added stars. The UV background light can dominate in many areas of the sky and severely limit viewing directions due to overbrightness. The simulator, available as a downloadable package and as a web-based tool, can be applied to preparation of real space missions and instruments. For demonstration, we present the example use for the two near-future UV missions: UVIT instrument on the Indian Astrosat mission and a new proposed wide-field (∼1000 square degrees) transient explorer satellite.

  14. Supermassive black hole pairs in clumpy galaxies at high redshift: delayed binary formation and concurrent mass growth

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Capelo, Pedro R.; Mayer, Lucio; Bellovary, Jillian M.; Wadsley, James W.

    2016-10-01

    Massive gas-rich galaxy discs at z ˜ 1 - 3 host massive star-forming clumps with typical baryonic masses in the range 107 - 108 M⊙ which can affect the orbital decay and concurrent growth of supermassive black hole (BH) pairs. Using a set of high-resolution simulations of isolated clumpy galaxies hosting a pair of unequal-mass BHs, we study the interaction between massive clumps and a BH pair at kpc scales, during the early phase of the orbital decay. We find that both the interaction with massive clumps and the heating of the cold gas layer of the disc by BH feedback tend to delay significantly the orbital decay of the secondary, which in many cases is ejected and then hovers for a whole Gyr around a separation of 1-2 kpc. In the envelope, dynamical friction is weak and there is no contribution of disc torques: these lead to the fastest decay once the orbit of the secondary BH has circularised in the disc midplane. In runs with larger eccentricities the delay is stronger, although there are some exceptions. We also show that, even in discs with very sporadic transient clump formation, a strong spiral pattern affects the decay time-scale for BHs on eccentric orbits. We conclude that, contrary to previous belief, a gas-rich background is not necessarily conducive to a fast BH decay and binary formation, which prompts more extensive investigations aimed at calibrating event-rate forecasts for ongoing and future gravitational-wave searches, such as with Pulsar Timing Arrays and the future evolved Laser Interferometer Space Antenna.

  15. Prologue: A behind the scenes view of the ``UV Universe'' conference

    NASA Astrophysics Data System (ADS)

    Waller, William H.; Fanelli, Michael N.; Hollis, Joan E.; Danks, Anthony C.

    1997-05-01

    These Proceedings culminate an exciting year of brainstorming, collaborating, and communicating. Our primary aim for the ``UV Universe'' conference was to bring together researchers of the local and remote universe with the hope that the two cultures would gain new insights on the evolution of galaxies and the intergalactic medium (IGM) through cosmic time. The UV theme came from the fact that recent deep views of extremely distant galaxies are revealing restframe UV emission that has been redshifted into the visible spectrum. By comparing the UV properties of local galaxies and the IGM with the restframe UV properties of their high-redshift counterparts, we hoped to address whether or not there is compelling evidence for significant evolution of galaxies over the last 10-15 billion years. Fortunately, the conference itself evolved over a much shorter timescale. The following are some recollections along the way.

  16. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  17. Near-Infrared Spectroscopy of Two Galaxies at z=2.3 and z=2.9: New Probes of Chemical and Dynamical Evolution at High Redshift

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Koo, David C.

    2000-12-01

    This study presents Keck optical and infrared spectroscopy of the rest-frame ultraviolet and optical emission lines in two Lyα-emitting galaxies at z>2. These data provide insight on the evolution of fundamental galaxy scaling relations at early epochs, especially the luminosity-velocity and luminosity-metallicity relations. Spectral diagnostics suggest that the Coup Fourré galaxy at z=2.3 and Lynx 2-9691, a serendipitously discovered, luminous Lyman drop galaxy at z=2.9, are star-forming galaxies without active nuclei. Lynx 2-9691 exhibits extended [O III] emission over a diameter of greater than 28 kpc, reminiscent of the Lyα nebulae discovered near Lyman drop galaxies. We estimate star formation rates of 59 and 111 Msolar yr-1, respectively, from Balmer recombination line luminosities, 2-3 times higher than inferred from the ultraviolet continuum. The ratios of strong nebular emission lines indicate subsolar oxygen abundances in the range 8.2<12+log(O/H)<8.8 (Z=0.25-0.95 Zsolar). Interestingly, Galactic metal-rich globular clusters have similar metallicities, consistent with the idea that we could be seeing the formation of galaxies like the Milky Way at z~3. The measured gas-phase oxygen abundances are greater than 4-10 times higher than the Z<0.1 Zsolar metallicities found in damped Lyα (DLA) absorbers at similar redshifts, indicating that DLA systems trace fundamentally different environments than the vigorously star-forming objects observed here. If this intense star formation activity represents the dominant formation episodes for stars in today's spiral bulges or ellipticals, then the evolved descendants in the local universe should exhibit similarly subsolar metallicities in their dominant stellar populations that formed 8-10 Gyr ago. When these new data are combined with a sample of four other high-redshift spectroscopic results from the literature, we find that star-forming galaxies at z~3 are 2-4 mag more luminous than local spiral galaxies of

  18. AMiBA: Array for Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Umetsu, Keiichi

    2003-07-01

    AMiBA (Array for Microwave Background Anisotropy) is a dual-channel 85-105 GHz interferometric array with full polarization capabilities sited on Mauna-Loa in Hawaii, being built by collaboration between ASIAA/NTU in Taiwan and the Australia Telescope Facility. AMiBA is specifically designed to probe the polarization properties of the Cosmic Microwave Background (CMB) as well as to search for high redshift galaxy clusters via Sunyaev-Zel'dovich effect. Here we review the basic concepts and design details of AMiBA, and explore its potential especially for measuring the CMB temperature and polarization power spectra.

  19. Star formation and obscuration in AGN: A sub-mm study of high-redshift mid-IR selected type-2 QSOs

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Stevens, Jason; Coppin, Kristen; Geach, James

    2016-08-01

    The AGN unification model describes unobscured and obscured AGN (AGN1 and AGN2) as identical sources, with their different observed properties explained solely by orientation effects; as a result, it predicts no difference in the host galaxies. As an alternative, a second scenario has been proposed in which type-2 AGN represent an earlier stage in the life of AGN characterized by dust-enshrouded host galaxies which contribute to the obscuration and higher star formation activity, at least at earlier epochs. To test this scenario we employ Herschel data at three different wavelengths (250, 350, 500 um) to study the far-IR-to-submm properties of a sample of mid-IR selected type 2 QSOs at high redshift (1.5

  20. First Detections of the [N II] 122 μm Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-10-01

    We report the first detections of the [N II] 122 μm line from a high-redshift galaxy. The line was strongly (>6σ) detected from SMMJ02399-0136, and H1413+117 (the Cloverleaf QSO) using the Redshift (z) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are ~7.0 × 10-4 (Cloverleaf) and 2.1 × 10-3 (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, ~8%-17% of the molecular gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using our previous detection of the [O III] 88 μm line, the [O III]/[N II] line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of ~200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II] line. The remainder may come from the NLR. This work demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.

  1. The Star Formation History of BCGs to z = 1.8 from the SpARCS/SWIRE Survey: Evidence for Significant In Situ Star Formation at High Redshift

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; Muzzin, Adam; Noble, Allison; Bonaventura, Nina; Geach, James; Hezevah, Yashar; Lidman, Chris; Wilson, Gillian; Yee, H. K. C.; Surace, Jason; Shupe, David

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (Ngal > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of LIR > 1012 L⊙, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  2. Star formation quenching in high-redshift large-scale structure: post-starburst galaxies in the Cl 1604 supercluster at z ∼ 0.9

    SciTech Connect

    Wu, Po-Feng; Gal, Roy R.; Lemaux, Brian C.; Kocevski, Dale D.; Lubin, Lori M.; Rumbaugh, Nicholas; Squires, Gordon K.

    2014-09-01

    The Cl 1604 supercluster at z ∼ 0.9 is one of the most extensively studied high-redshift large-scale structures, with more than 500 spectroscopically confirmed members. It consists of eight clusters and groups, with members numbering from a dozen to nearly a hundred, providing a broad range of environments for investigating the large-scale environmental effects on galaxy evolution. Here we examine the properties of 48 post-starburst galaxies in Cl 1604, comparing them to other galaxy populations in the same supercluster. Incorporating photometry from ground-based optical and near-infrared imaging, along with Spitzer mid-infrared observations, we derive stellar masses for all Cl 1604 members. The colors and stellar masses of the K+A galaxies support the idea that they are progenitors of red sequence galaxies. Their morphologies, residual star formation rates, and spatial distributions suggest that galaxy mergers may be the principal mechanism producing post-starburst galaxies. Interaction between galaxies and the dense intracluster medium (ICM) is also effective, but only in the cores of dynamically evolved clusters. The prevalence of post-starburst galaxies in clusters correlates with the dynamical state of the host cluster, as both galaxy mergers and the dense ICM produce post-starburst galaxies. We also investigate the incompleteness and contamination of K+A samples selected by means of Hδ and [O II] equivalent widths. K+A samples may be up to ∼50% incomplete due to the presence of LINERs/Seyferts, and up to ∼30% of K+A galaxies could have substantial star formation activity.

  3. Megahertz peaked-spectrum sources in the Boötes field I - a route towards finding high-redshift AGN

    NASA Astrophysics Data System (ADS)

    Coppejans, Rocco; Cseh, David; Williams, Wendy L.; van Velzen, Sjoert; Falcke, Heino

    2015-06-01

    We present a 324.5 MHz image of the National Optical Astronomy Observatory Boötes field that was made using Very Large Array P-band observations. The image has a resolution of 5.6 × 5.1 arcsec, a radius of 2.05° and a central noise of ˜0.2 mJy beam-1. Both the resolution and noise of the image are an order of magnitude better than what was previously available at this frequency and will serve as a valuable addition to the already extensive multiwavelength data that are available for this field. The final source catalogue contains 1370 sources and has a median 325-1400 MHz spectral index of -0.72. Using a radio colour-colour diagram of the unresolved sources in our catalogue, we identify 33 megahertz peaked-spectrum (MPS) sources. Based on the turnover frequency linear size relation for the gigahertz peaked-spectrum and compact steep-spectrum sources, we expect that the MPS sources that are compact on scales of tens of milliarcseconds should be young radio loud active galactic nuclei at high (z > 2) redshifts. Of the 33 MPS sources, we were able to determine redshifts for 24, with an average redshift of 1.3. Given that five of the sources are at z > 2, that the four faint sources for which we could not find redshifts are likely at even higher redshifts and that we could only select sources that are compact on a scale of ˜5 arcsec, there is encouraging evidence that the MPS method can be used to search for high-redshift sources.

  4. COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/XMM-NEWTON DEEP SURVEY

    SciTech Connect

    Hiroi, Kazuo; Ueda, Yoshihiro; Akiyama, Masayuki; Watson, Mike G.

    2012-10-10

    We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts (3 < z < 5) in the Subaru/XMM-Newton Deep Survey field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at z > 3 with intrinsic (de-absorbed and rest-frame 2-10 keV) luminosities of L{sub X} = 10{sup 44-45} erg s{sup -1} detected in the 0.5-2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the 1/V{sub max} method, we confirm that the comoving space density of luminous AGNs decreases with redshift above z > 3. When combined with the Chandra-COSMOS result of Civano et al., the density decline of AGNs with L{sub X} = 10{sup 44-45} erg s{sup -1} is well represented by a power law of (1 + z){sup -6.2{+-}0.9}. We also determine the fraction of X-ray obscured AGNs with N{sub H} > 10{sup 22} cm{sup -2} in the Compton-thin population to be 0.54{sup +0.17}{sub -0.19}, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59 {+-} 0.09. Comparing our result with that obtained in the local universe, we conclude that the obscured fraction of luminous AGNs increases significantly from z = 0 to z > 3 by a factor of 2.5 {+-} 1.1.

  5. HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Semler, D. R.; Suhada, R.; Bazin, G.; Bocquet, S.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; and others

    2012-12-20

    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg{sup 2} observed with the South Pole Telescope (SPT) and followed up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (>3 Multiplication-Sign 10{sup 14} M{sub Sun} h {sup -1}{sub 70}) spanning redshifts 0.3 < z < 1.1. Using previously published X-ray-selected cluster samples, we compare two proxies of cool-core strength: surface brightness concentration (c{sub SB}) and cuspiness ({alpha}). We find that c{sub SB} is better constrained. We measure c{sub SB} for the SPT sample and find several new z > 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4{sigma} level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z c{sub SB} distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time.

  6. RadioAstron space VLBI imaging of polarized radio emission in the high-redshift quasar 0642+449 at 1.6 GHz

    NASA Astrophysics Data System (ADS)

    Lobanov, A. P.; Gómez, J. L.; Bruni, G.; Kovalev, Y. Y.; Anderson, J.; Bach, U.; Kraus, A.; Zensus, J. A.; Lisakov, M. M.; Sokolovsky, K. V.; Voytsik, P. A.

    2015-11-01

    Context. Polarization of radio emission in extragalactic jets at a sub-milliarcsecond angular resolution holds important clues for understanding the structure of the magnetic field in the inner regions of the jets and in close vicinity of the supermassive black holes in the centers of active galaxies. Aims: Space VLBI observations provide a unique tool for polarimetric imaging at a sub-milliarcsecond angular resolution and studying the properties of magnetic field in active galactic nuclei on scales of less than 104 gravitational radii. Methods: A space VLBI observation of high-redshift quasar TXS 0642+449 (OH 471), made at a wavelength of 18 cm (frequency of 1.6 GHz) as part of the early science programme (ESP) of the RadioAstron mission, is used here to test the polarimetric performance of the orbiting Space Radio Telescope (SRT) employed by the mission, to establish a methodology for making full Stokes polarimetry with space VLBI at 1.6 GHz, and to study the polarized emission in the target object on sub-milliarcsecond scales. Results: Polarization leakage of the SRT at 18 cm is found to be within 9% in amplitude, demonstrating the feasibility of high fidelity polarization imaging with RadioAstron at this wavelength. A polarimetric image of 0642+449 with a resolution of 0.8 mas (signifying an ~4 times improvement over ground VLBI observations at the same wavelength) is obtained. The image shows a compact core-jet structure with low (≈2%) polarization and predominantly transverse magnetic field in the nuclear region. The VLBI data also uncover a complex structure of the nuclear region, with two prominent features possibly corresponding to the jet base and a strong recollimation shock. The maximum brightness temperature at the jet base can be as high as 4 × 1013 K.

  7. First Detections of the [NII] 122 Micrometer Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [NIl] 122 {\\mu} m line from a high redshift galaxy. The line was strongly (> 6{\\sigma}) detected from SMMJ02399-0136, and HI413+ 117 (the Cloverleaf QSO) using the Redshift(z) and Early Universe Spectrometer (ZEUS) on the CSO. The lines from both sources are quite bright with line-to-FIR continuum luminosity ratios that are approx.7.0x10(exp -4) (Cloverleaf) and 2.1x10(exp -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line-to-continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8 to 17% of the molecular gas mass. The [OIII]/[NII] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an AGN. Using our previous detection of the [01II] 88 {\\mu}m line, the [OIII]/ [NIl] line ratio for SMMJ02399-0136 indicates the dominant source of the line emission is either stellar HII regions ionized by 09.5 stars, or the NLR of the AGN with ionization parameter 10g(U) = -3.3 to -4.0. A composite system, where 30 to 50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82like starbursts accounting for all of the FIR emission and 43% of the [NIl] line. The remainder may come from the NLR. This work demonstrates the utility of the [NIl] and [OIII] lines in constraining properties of the ionized medium.

  8. First Detections of the [N II] 122 micron Line at High Redshift: Demonstrating the Utility of the Line for Studying Galaxies in the Early Universe

    NASA Technical Reports Server (NTRS)

    Ferkinhoff, Carl; Brisbin, Drew; Nikola, Thomas; Parshley, Stephen C.; Stacey, Gordon J.; Phillips, Thomas G.; Falgarone, Edith; Benford, Dominic J.; Staguhn, Johannes G.; Tucker, Carol E.

    2011-01-01

    We report the first detections of the [N II] 122 micron line from a high-redshift galaxy. The line was strongly (>6(sigma)) detected from SMMJ02399-0136, and H1413 + 117 (the Cloverleaf QSO) using the Redshift (zeta) and Early Universe Spectrometer on the Caltech Submillimeter Observatory. The lines from both sources are quite bright with line to far-infrared (FIR) continuum luminosity ratios that are approx.7.0 x 10(exp -4) (Cloverleaf) and 2.1 x 10(exo -3) (SMMJ02399). With ratios 2-10 times larger than the average value for nearby galaxies, neither source exhibits the line to continuum deficits seen in nearby sources. The line strengths also indicate large ionized gas fractions, approx.8%-17% of the molecUlar gas mass. The [O III]/[N II] line ratio is very sensitive to the effective temperature of ionizing stars and the ionization parameter for emission arising in the narrow-line region (NLR) of an active galactic nucleus (AGN). Using Our previous detection of the [O III] 88 micron line, the [O III]/[N II]line ratio for SMMJ02399-0136 indicates that the dominant source of the line emission is either stellar H II regions ionized by O9.5 stars, or the NLR of the AGN with ionization parameter log(U) = -3.3 to -4.0. A composite system, where 30%-50% of the FIR lines arise in the NLR also matches the data. The Cloverleaf is best modeled by a superposition of approx.200 M82-like starbursts accounting for all of the FIR emission and 43% of the [N II]line. The remainder may come from the NLR. This war!< demonstrates the utility of the [N II] and [O III] lines in constraining properties of the ionized medium.

  9. Unexpectedly low UV-sensitivity in a bird, the budgerigar.

    PubMed

    Chavez, Johanna; Kelber, Almut; Vorobyev, Misha; Lind, Olle

    2014-11-01

    Photoreceptor adaptation ensures appropriate visual responses during changing light conditions and contributes to colour constancy. We used behavioural tests to compare UV-sensitivity of budgerigars after adaptation to UV-rich and UV-poor backgrounds. In the latter case, we found lower UV-sensitivity than expected, which could be the result of photon-shot noise corrupting cone signal robustness or nonlinear background adaptation. We suggest that nonlinear adaptation may be necessary for allowing cones to discriminate UV-rich signals, such as bird plumage colours, against UV-poor natural backgrounds. PMID:25376799

  10. Distortion of the cosmic background radiation by superconducting strings

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Thompson, C.

    1987-01-01

    Superconducting cosmic strings can be significant energy sources, keeping the universe ionized past the commonly assumed epoch of recombination. As a result, the spectrum of the cosmic background radiation is distorted in the presence of heated primordial gas via the Suniaev-Zel'dovich effect. Thiis distortion can be relatively large: the Compton y parameter attains a maximum in the range 0.001-0.005, with these values depending on the mass scale of the string. A significant contribution to y comes from loops decaying at high redshift when the universe is optically thick to Thomson scattering. Moreover, the isotropic spectral distortion is large compared to fluctuations at all angular scales.

  11. Evolution of the mass, size, and star formation rate in high redshift merging galaxies. MIRAGE - A new sample of simulations with detailed stellar feedback

    NASA Astrophysics Data System (ADS)

    Perret, V.; Renaud, F.; Epinat, B.; Amram, P.; Bournaud, F.; Contini, T.; Teyssier, R.; Lambert, J.-C.

    2014-02-01

    Context. In Λ-CDM models, galaxies are thought to grow both through continuous cold gas accretion coming from the cosmic web and episodic merger events. The relative importance of these different mechanisms at different cosmic epochs is nevertheless not yet understood well. Aims: We aim to address questions related to galaxy mass assembly through major and minor wet merging processes in the redshift range 1 < z < 2, an epoch that corresponds to the peak of cosmic star formation history. A significant fraction of Milky Way-like galaxies are thought to have undergone an unstable clumpy phase at this early stage. We focus on the behavior of the young clumpy disks when galaxies are undergoing gas-rich galaxy mergers. Methods: Using the adaptive mesh-refinement code RAMSES, we build the Merging and Isolated high redshift Adaptive mesh refinement Galaxies (MIRAGE) sample. It is composed of 20 mergers and 3 isolated idealized disks simulations, which sample disk orientations and merger masses. Our simulations can reach a physical resolution of 7 parsecs, and include star formation, metal line cooling, metallicity advection, and a recent physically-motivated implementation of stellar feedback that encompasses OB-type stars radiative pressure, photo-ionization heating, and supernovae. Results: The star formation history of isolated disks shows a stochastic star formation rate, which proceeds from the complex behavior of the giant clumps. Our minor and major gas-rich merger simulations do not trigger starbursts, suggesting a saturation of the star formation due to the detailed accounting of stellar feedback processes in a turbulent and clumpy interstellar medium fed by substantial accretion from the circumgalactic medium. Our simulations are close to the normal regime of the disk-like star formation on a Schmidt-Kennicutt diagram. The mass-size relation and its rate of evolution in the redshift range 1 < z < 2 matches observations, suggesting that the inside-out growth

  12. REVEALING THE HEAVILY OBSCURED ACTIVE GALACTIC NUCLEUS POPULATION OF HIGH-REDSHIFT 3CRR SOURCES WITH CHANDRA X-RAY OBSERVATIONS

    SciTech Connect

    Wilkes, Belinda J.; Kuraszkiewicz, Joanna; Willner, S. P.; Ashby, M. L. N.; Fazio, G. G.; Haas, Martin; Chini, Rolf; Barthel, Peter; Leipski, Christian; Worrall, D. M.; Birkinshaw, Mark; Antonucci, Robert; Lawrence, Charles; Ogle, Patrick; Schulz, Bernhard

    2013-08-10

    Chandra observations of a complete, flux-limited sample of 38 high-redshift (1 < z < 2), low-frequency-selected (and so unbiased in orientation) 3CRR radio sources are reported. The sample includes 21 quasars (=broad-line radio galaxies) and 17 narrow-line radio galaxies (NLRGs) with matched 178 MHz radio luminosity (log L{sub R}(5 GHz) {approx}44-45). The quasars have high radio core fraction, high X-ray luminosities (log L{sub X} {approx}45-46), and soft X-ray hardness ratios (HR {approx}-0.5) indicating low obscuration. The NLRGs have lower core fraction, lower apparent X-ray luminosities (log L{sub X} {approx}43-45), and mostly hard X-ray hardness ratios (HR >0) indicating obscuration (N{sub H} {approx}10{sup 22}-10{sup 24} cm{sup -2}). These properties and the correlation between obscuration and radio core fraction are consistent with orientation-dependent obscuration as in unification models. About half the NLRGs have soft X-ray hardness ratios and/or a high [O III] emission line to X-ray luminosity ratio suggesting obscuration by Compton thick (CT) material so that scattered nuclear or extended X-ray emission dominates (as in NGC 1068). The ratios of unobscured to Compton-thin (10{sup 22} cm{sup -2} < N{sub H}(int) <1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) to CT (N{sub H}(int) >1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) is 2.5:1.4:1 in this high-luminosity, radio-selected sample. The obscured fraction is 0.5, higher than is typically reported for active galactic nuclei at comparable luminosities from multi-wavelength surveys (0.1-0.3). Assuming random nuclear orientation, the unobscured half-opening angle of the disk/wind/torus structure is {approx}60 Degree-Sign and the obscuring material covers 30 Degree-Sign , {approx}12 Degree-Sign of which is CT. The multi-wavelength properties reveal that many NLRGs have intrinsic absorption 10-1000 Multiplication-Sign higher than indicated by their X-ray hardness ratios, and their true L{sub X} values are

  13. X-RAY AND RADIO FOLLOW-UP OBSERVATIONS OF HIGH-REDSHIFT BLAZAR CANDIDATES IN THE FERMI-LAT UNASSOCIATED SOURCE POPULATION

    SciTech Connect

    Takahashi, Y.; Kataoka, J.; Nakamori, T.; Maeda, K.; Niinuma, K.; Honma, M.; Inoue, Y.; Totani, T.; Inoue, S.

    2013-08-10

    We report on the results of X-ray and radio follow-up observations of two GeV gamma-ray sources 2FGL J0923.5+1508 and 2FGL J1502.1+5548, selected as candidates for high-redshift blazars from unassociated sources in the Fermi Large Area Telescope Second Source Catalog. We utilize the Suzaku satellite and the VLBI Exploration of Radio Astrometry (VERA) telescopes for X-ray and radio observations, respectively. For 2FGL J0923.5+1508, a possible radio counterpart NVSS J092357+150518 is found at 1.4 GHz from an existing catalog, but we do not detect any X-ray emission from it and derive a flux upper limit F{sub 2-8{sub keV}} < 1.37 Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1}. Radio observations at 6.7 GHz also result in an upper limit of S{sub 6.7{sub GHz}} < 19 mJy, implying a steep radio spectrum that is not expected for a blazar. On the other hand, we detect X-rays from NVSS J150229+555204, the potential 1.4 GHz radio counterpart of 2FGL J1502.1+5548. The X-ray spectrum can be fitted with an absorbed power-law model with a photon index {gamma} = 1.8{sup +0.3}{sub -0.2} and the unabsorbed flux is F{sub 2-8{sub keV}} = 4.3{sup +1.1}{sub -1.0} Multiplication-Sign 10{sup -14} erg cm{sup -2} s{sup -1}. Moreover, we detect unresolved radio emission at 6.7 GHz with flux S{sub 6.7{sub GHz}} = 30.1 mJy, indicating a compact, flat-spectrum radio source. If NVSS J150229+555204 is indeed associated with 2FGL J1502.1+5548, then we find that its multiwavelength spectrum is consistent with a blazar at redshift z {approx} 3-4.

  14. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    SciTech Connect

    Webb, Tracy M. A.; Bonaventura, Nina; Muzzin, Adam; Noble, Allison; Yee, H. K. C.; Geach, James; Hezevah, Yashar; Lidman, Chris; Wilson, Gillian; Surace, Jason

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  15. The Hyperluminous Infrared Quasar 3C 318 and Its Implications for Interpreting Sub-MM Detections of High-Redshift Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Jarvis, Matt J.

    1999-01-01

    We present near-infrared spectroscopy and imaging of the compact steep-spectrum radio source 3C 318 which shows it to be a quasar at redshift z = 1.574 (the z = 0.752 value previously reported is incorrect). 3C 318 is an IRAS, ISO and SCUBA source so its new redshift makes it the most intrinsically luminous far-infrared (FIR) source in the 3C catalogue (there is no evidence of strong gravitational lensing effects). Its bolometric luminosity greatly exceeds the 10(exp 13) solar luminosity level above which an object is said to be hyperluminous. Its spectral energy distribution (SED) requires that the quasar heats the dust responsible for the FIR flux, as is believed to be the case in other hyperluminous galaxies, and contributes (at the greater than 10% level) to the heating of the CIA dust responsible for the sub-mm emission. We cannot determine whether a starburst makes an important contribution to the heating of the coolest dust, so evidence for a high star-formation rate is circumstantial being based on the high dust, and hence gas, C-1 mass required by its sub-mm detection. We show that the current sub-mm and FIR data available for the highest-redshift radio galaxies are consistent with SEDs similar to that of 3C 318. This indicates that at least some of this population may be detected in the sub-mm because of dust heated by the quasar nucleus, and that interpreting sub-mm detection as evidence for very high (approx. less than 1000 solar mass/yr) star-formation rates may not always be valid. We show that the 3C318 quasar is slightly reddened (A(sub v) approx. = 0.5), the most likely cause of which is SMC-type dust in the host galaxy. If very distant radio galaxies are reddened in a similar way then we show that only slightly greater amounts of dust could obscure the quasars in these sources. We speculate that the low fraction of quasars amongst the very high redshift (z approx. greater than 3) objects in low-frequency radio-selected samples is the result of

  16. What the UV SED Tells us About Stellar Populations and Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2011-01-01

    The UV SED parameter b as in f(sub 1) 1(sup b), is commonly used to estimate fundamental properties of high-redshift galaxies including age and metallicity. However, sources and processes other than age and metallicity can influence the value of b. We use the local starforming dwarf galaxy, I Zw 18, in a case study to investigate uncertainties in age and metallicity inferred from b due errors or uncertainties in: mode of star formation (instantaneous starburst vs. continuous SF), dust extinction, nebular continuous emission (2-photon emission, Balmer continuum flux), and presence of older stars.

  17. How realistic UV spectra and X-rays suppress the abundance of direct collapse black holes

    NASA Astrophysics Data System (ADS)

    Latif, M. A.; Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Spaans, M.

    2015-01-01

    Observations of high-redshift quasars at z > 6 indicate that they harbour supermassive black holes (SMBHs) of a billion solar masses. The direct collapse scenario has emerged as the most plausible way to assemble SMBHs. The nurseries for the direct collapse black holes are massive primordial haloes illuminated with an intense UV flux emitted by Population II (Pop II) stars. In this study, we compute the critical value of such a flux (J_{21}^crit) for realistic spectra of Pop II stars through three-dimensional cosmological simulations. We derive the dependence of J_{21}^crit on the radiation spectra, on variations from halo to halo, and on the impact of X-ray ionization. Our findings show that the value of J_{21}^crit is a few times 104 and only weakly depends on the adopted radiation spectra in the range between Trad = 2 × 104and105 K. For three simulated haloes of a few times 107 M⊙, J_{21}^crit varies from 2 × 104 to 5 × 104. The impact of X-ray ionization is almost negligible and within the expected scatter of J_{21}^crit for background fluxes of JX, 21 ≤ 0.1. The computed estimates of J_{21}^crit have profound implications for the quasar abundance at z = 10 as it lowers the number density of black holes forming through an isothermal direct collapse by a few orders of magnitude below the observed black hole density. However, the sites with moderate amounts of H2 cooling may still form massive objects sufficient to be compatible with observations.

  18. The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Bunker, Andrew J.; Wilkins, Stephen; Ellis, Richard S.; Stark, Daniel P.; Lorenzoni, Silvio; Chiu, Kuenley; Lacy, Mark; Jarvis, Matt J.; Hickey, Samantha

    2010-12-01

    to invoke a large contribution from galaxies below our detection limit (a steep faint-end slope). The apparent shortfall in ionizing photons might be alleviated if stellar populations at high redshift are of low metallicity or have a top-heavy initial mass function.

  19. Primordial helium and the cosmic background radiation

    SciTech Connect

    Steigman, Gary

    2010-04-01

    The products of primordial nucleosynthesis, along with the cosmic microwave background (CMB) photons, are relics from the early evolution of the Universe whose observations probe the standard model of cosmology and provide windows on new physics beyond the standard models of cosmology and of particle physics. According to the standard, hot big bang cosmology, long before any stars have formed a significant fraction ( ∼ 25%) of the baryonic mass in the Universe should be in the form of helium-4 nuclei. Since current observations of {sup 4}He are restricted to low redshift regions where stellar nucleosynthesis has occurred, an observation of high redshift, prestellar, truly primordial {sup 4}He would constitute a fundamental test of the hot, big bang cosmology. At recombination, long after big bang nucleosynthesis (BBN) has ended, the temperature anisotropy spectrum imprinted on the CMB depends on the {sup 4}He abundance through its connection to the electron density and the effect of the electron density on Silk damping. Since the relic abundance of {sup 4}He is relatively insensitive to the universal density of baryons, but is sensitive to a non-standard, early Universe expansion rate, the primordial mass fraction of {sup 4}He, Yp, offers a test of the consistency of the standard models of BBN and the CMB and, provides constraints on non-standard physics. Here, the WMAP seven year data (supplemented by other CMB experiments), which lead to an indirect determination of Yp at high redshift, are compared to the BBN predictions and to the independent, direct observations of {sup 4}He in low redshift, extragalactic HII regions. At present, given the very large uncertainties in the CMB-determined primordial {sup 4}He abundance (as well as for the helium abundances inferred from HII region observations), any differences between the BBN predictions and the CMB observations are small, at a level ∼<1.5σ.

  20. BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND

    SciTech Connect

    Marsden, Gaelen; Chapin, Edward L.; Halpern, Mark; Ngo, Henry; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Gundersen, Joshua O.; Hughes, David H.; Magnelli, Benjamin; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg{sup 2}, deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 mum sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 +- 0.59, 4.93 +- 0.34, and 2.27 +- 0.20 nW m{sup -2} sr{sup -1} at 250, 350, and 500 mum, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 mum-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z >= 1.2 increases with wavelength, with 60% from high-redshift sources at 500 mum. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 mum-faint sources than that for 24 mum-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 mum, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 mum-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.

  1. Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    NASA Astrophysics Data System (ADS)

    Salmon, Brett; Papovich, Casey; Long, James; Willner, S. P.; Finkelstein, Steven L.; Ferguson, Henry C.; Dickinson, Mark; Duncan, Kenneth; Faber, S. M.; Hathi, Nimish; Koekemoer, Anton; Kurczynski, Peter; Newman, Jeffery; Pacifici, Camilla; Pérez-González, Pablo G.; Pforr, Janine

    2016-08-01

    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ˜ 1.5–3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, {L}{TIR}/{L}{UV}) and UV slope (β). We generalize the shape of the dust law with an empirical model, {A}λ ,δ =E{(B-V){k}λ (λ /{λ }V)}δ where k λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62+/- 0.05){log}(E(B-V))+(0.26+/- 0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star–dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z\\gt 3).

  2. Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    NASA Astrophysics Data System (ADS)

    Salmon, Brett; Papovich, Casey; Long, James; Willner, S. P.; Finkelstein, Steven L.; Ferguson, Henry C.; Dickinson, Mark; Duncan, Kenneth; Faber, S. M.; Hathi, Nimish; Koekemoer, Anton; Kurczynski, Peter; Newman, Jeffery; Pacifici, Camilla; Pérez-González, Pablo G.; Pforr, Janine

    2016-08-01

    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ˜ 1.5-3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, {L}{TIR}/{L}{UV}) and UV slope (β). We generalize the shape of the dust law with an empirical model, {A}λ ,δ =E{(B-V){k}λ (λ /{λ }V)}δ where k λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62+/- 0.05){log}(E(B-V))+(0.26+/- 0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z\\gt 3).

  3. Powerful Activity in the Bright Ages. I. A Visible/IR Survey of High Redshift 3C Radio Galaxies and Quasars

    NASA Astrophysics Data System (ADS)

    Hilbert, B.; Chiaberge, M.; Kotyla, J. P.; Tremblay, G. R.; Stanghellini, C.; Sparks, W. B.; Baum, S.; Capetti, A.; Macchetto, F. D.; Miley, G. K.; O'Dea, C. P.; Perlman, E. S.; Quillen, A.

    2016-07-01

    We present new rest-frame UV and visible observations of 22 high-z (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope's Wide Field Camera 3 instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses reveal that brighter QSOs generally tend to be redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical and radio axes alignment.

  4. UV water disinfector

    DOEpatents

    Gadgil, Ashok; Garud, Vikas

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system, and an air-suspended bare UV lamp. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir.

  5. UV water disinfector

    DOEpatents

    Gadgil, A.; Garud, V.

    1998-07-14

    A UV disinfector with a gravity driven feed water delivery system and an air-suspended bare UV lamp are disclosed. The disinfector is hydrodynamically optimized with a laminerizing, perforated baffle wall, beveled treatment chamber, and outlet weir. 7 figs.

  6. NuSTAR AND MULTIFREQUENCY STUDY OF THE TWO HIGH-REDSHIFT BLAZARS S5 0836+710 AND PKS 2149–306

    SciTech Connect

    Tagliaferri, G.; Ghisellini, G.; Covino, S.; Sbarrato, T.; Perri, M.; Giommi, P.; Puccetti, S.; Hayashida, M.; Balokovic, M.; Harrison, F. A.; Madejski, G. M.; Chiang, J.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-07-10

    Powerful blazars are flat-spectrum radio quasars whose emission is dominated by a Compton component peaking between a few hundred keV and a few hundred MeV. We observed two bright blazars, PKS 2149–306 at redshift z = 2.345 and S5 0836+710 at z = 2.172, in the hard X-ray band with the Nuclear Spectroscopic Telescope Array satellite. Simultaneous soft-X-rays and UV–optical observations were performed with the Swift satellite, while near-infrared (near-IR) data were obtained with the Rapid Eye Mount telescope. To study their variability, we repeated these observations for both sources on a timescale of a few months. While no fast variability was detected during a single observation, both sources were variable in the X-ray band, up to 50%, between the two observations, with larger variability at higher energies. No variability was detected in the optical/NIR band. These data, together with Fermi-Large Area Telescope, Wide-field Infrared Survey Explorer, and other literature data, are then used to study the overall spectral energy distributions (SEDs) of these blazars. Although the jet nonthermal emission dominates the SED, it leaves the UV band unhidden, allowing us to detect the thermal emission of the disk and to estimate the black hole mass. The nonthermal emission is well reproduced by a one-zone leptonic model by the synchrotron, self-Compton, and external Compton processes. Our data are better reproduced if we assume that the location of the dissipation region of the jet, R{sub diss}, is in between the torus and the broad-line region. The observed variability is explained by changing a minimum number of model parameters by a very small amount.

  7. Micro UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-09-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  8. Micro-UV detector

    NASA Astrophysics Data System (ADS)

    Cabalo, Jerry B.; Sickenberger, Richard; Underwood, William J.; Sickenberger, David W.

    2004-12-01

    A lightweight, tactical biological agent detection network offers the potential for a detect-to-warn capability against biological aerosol attacks. Ideally, this capability can be achieved by deploying the sensors upwind from the protected assets. The further the distance upwind, the greater the warning time. The technological challenge to this concept is the biological detection technology. Here, cost, size and power are major factors in selecting acceptable technologies. This is in part due to the increased field densities needed to cover the upwind area and the fact that the sensors, when deployed forward, must operate autonomously for long periods of time with little or no long-term logistical support. The Defense Advanced Research Project Agency"s (DARPA) Solid-state Ultraviolet Optical Source (SUVOS) program offers an enabling technology to achieving a detector compatible with this mission. As an optical source, these devices emit excitation wavelengths known to be useful in the detection of biological aerosols. The wavelength band is absorbed by the biological aerosol and results in visible fluorescence. Detection of a biological aerosol is based on the observed intensity of this fluorescence signal compared to a background reference. Historically this has been accomplished with emission sources that are outside the boundaries for low cost, low power sensors. The SUVOS technology, on the other hand, provides the same basic wavelengths needed for the detection process in a small, low power package. ECBC has initiated an effort to develop a network array based on micro UV detectors that utilize the SUVOS technology. This paper presents an overview of the micro UV detector and some of the findings to date. This includes the overall design philosophy, fluid flow calculations to maximize presentation of aerosol particles to the sources, and the fluorescence measurements.

  9. THE REST-FRAME ULTRAVIOLET SPECTRA OF UV-SELECTED ACTIVE GALACTIC NUCLEI AT z {approx} 2-3

    SciTech Connect

    Hainline, Kevin N.; Shapley, Alice E.; Greene, Jenny E.; Steidel, Charles C.

    2011-05-20

    We present new results for a sample of 33 narrow-lined UV-selected active galactic nuclei (AGNs), identified in the course of a spectroscopic survey for star-forming galaxies at z {approx} 2-3. The rest-frame UV composite spectrum for our AGN sample shows several emission lines characteristic of AGNs, as well as interstellar absorption features detected in star-forming Lyman break galaxies (LBGs). We report a detection of N IV] {lambda}1486, which has been observed in high-redshift radio galaxies, as well as in rare optically selected quasars. The UV continuum slope of the composite spectrum is significantly redder than that of a sample of non-AGN UV-selected star-forming galaxies. Blueshifted Si IV absorption provides evidence for outflowing highly ionized gas in these objects at speeds of {approx}10{sup 3} km s{sup -1}, quantitatively different from what is seen in the outflows of non-AGN LBGs. Grouping the individual AGNs by parameters such as the Ly{alpha} equivalent width, redshift, and UV continuum magnitude allows for an analysis of the major spectroscopic trends within the sample. Stronger Ly{alpha} emission is coupled with weaker low-ionization absorption, which is similar to what is seen in the non-AGN LBGs, and highlights the role that cool interstellar gas plays in the escape of Ly{alpha} photons. However, the AGN composite does not show the same trends between Ly{alpha} strength and extinction seen in the non-AGN LBGs. These results represent the first such comparison at high redshift between star-forming galaxies and similar galaxies that host AGN activity.

  10. AMiBA: Array for Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Lo, K.; Martin, R.; Chiueh, T.

    As part of a 4-year Cosmology and Particle Astrophysics (CosPA) Research Excellence Initiative in Taiwan, AMiBA $-$ a 19-element dual-channel 85-105 GHz interferometer array is being specifically built to search for high redshift clusters of galaxies via the Sunyaev-Zeldovich Effect (SZE). In addition, AMiBA will have full polarization capabilities, in order to probe the polarization properties of the Cosmic Microwave Background. AMiBA, to be sited on Mauna Kea in Hawaii or in Chile, will reach a sensitivity of $\\sim 1$ mJy or 7$\\mu$K in 1 hour. The project involves extensive international scientific and technical collaborations. The construction of AMiBA is scheduled to starting operating in early 2004.

  11. AMiBA: Array for microwave background anisotropy

    NASA Astrophysics Data System (ADS)

    Lo, K. Y.; Chiueh, T. H.; Martin, R. N.; Ng, Kin-Wang; Liang, H.; Pen, Ue-Li; Ma, Chung-Pei; Kesteven, M.; Sault, R.; Subrahmanyan, R.; Wilson, W.; Peterson, J.

    2001-10-01

    As part of a 4-year Cosmology and Particle Astrophysics (CosPA) Research Excellence Initiative in Taiwan, AMiBA-a 19-element dual-channel 85-105 GHz interferometer array is being specifically built to search for high redshift clusters of galaxies via the Sunyaev-Zeldovich Effect (SZE). In addition, AMiBA will have full polarization capabilities, in order to probe the polarization properties of the Cosmic Microwave Background. AMiBA, to be sited on Mauna Kea in Hawaii or in Chile, will reach a sensitivity of ~1 mJy or 9 μK in 1 hour. The project involves extensive international scientific and technical collaborations. The construction of AMiBA is scheduled to start operating in early 2004. .

  12. Modelling the UV spectrum of SDSS-III/BOSS galaxies: hints towards the detection of the UV upturn at high-z

    NASA Astrophysics Data System (ADS)

    Le Cras, Claire; Maraston, Claudia; Thomas, Daniel; York, Donald G.

    2016-09-01

    We exploit stellar population models of absorption line indices in the ultraviolet (from 2000 to 3200 Å) to study the spectra of massive galaxies. Our central aim is to investigate the occurrence at high redshift of the UV upturn, i.e. the increased UV emission due to old stars observed in massive galaxies and spiral bulges in the local Universe. We use a large (˜275 000) sample of z ˜ 0.6 massive (M*/M⊙ > 11.5) galaxies using both individual spectra and stacks and employ a suite of models including a UV contribution from old populations, spanning various effective temperatures, fuel consumptions and metallicities. We find that a subset of our indices; Mg I, Fe I, and BL3096, are able to differentiate between old and young UV ages. We find evidence for old stars contributing to the UV in massive galaxies, rather than star formation. The data favour models with low/medium upturn temperatures (10 000-25 000 K) consistent with local galaxies, depending on the assumed metallicity, and with a larger fuel (f ˜ 6.5× 10^{-2} {M}_{⊙}). Models with one typical temperature are favoured over models with a temperature range, which would be typical of an extended horizontal branch. Old UV-bright populations are found in the whole galaxy sample (92 per cent), with a mass fraction peaking around 20-30 per cent. Upturn galaxies are massive and have redder colours, in agreement with findings in the local Universe. We find that the upturn phenomenon appears at z ˜ 1 and its frequency increases towards lower redshift, as expected by stellar evolution of low-mass stars. Our findings will help constrain stellar evolution in the exotic UV upturn phase.

  13. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  14. PROPERTIES OF QSO METAL-LINE ABSORPTION SYSTEMS AT HIGH REDSHIFTS: NATURE AND EVOLUTION OF THE ABSORBERS AND NEW EVIDENCE ON ESCAPE OF IONIZING RADIATION FROM GALAXIES

    SciTech Connect

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-15

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 ≲ z ≲ 4.4. With associated Si IV, C II, Si II  and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II  and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s{sup –1} out to 50,000 km s{sup –1}. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z ≲ 4.4.

  15. A Survey of Luminous High-redshift Quasars with SDSS and WISE. II. the Bright End of the Quasar Luminosity Function at z ≈ 5

    NASA Astrophysics Data System (ADS)

    Yang, Jinyi; Wang, Feige; Wu, Xue-Bing; Fan, Xiaohui; McGreer, Ian D.; Bian, Fuyan; Yi, Weimin; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Green, Richard; Jiang, Linhua; Wang, Shu; Wang, Ran; Yue, Minghao

    2016-09-01

    This is the second paper in a series on a new luminous z ˜ 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z ˜ 5. Combining our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z ˜ 5 quasar sample to date, with 99 quasars in the range of 4.7 ≤ z < 5.4 and -29 < M 1450 ≤ -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/V a method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as α = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope β = -3.58 ± 0.24 and a fainter break magnitude {M}1450* = -26.98 ± 0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a luminosity evolution and density evolution model. Using the best-fit QLF, the contribution of quasars to the ionizing background at z ˜ 5 is found to be 18%-45% with a clumping factor C of 2-5. Our sample suggests an evolution of radio loud fraction with optical luminosity but no obvious evolution with redshift.

  16. Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17

    NASA Astrophysics Data System (ADS)

    Greve, T. R.; Stern, D.; Ivison, R. J.; De Breuck, C.; Kovács, A.; Bertoldi, F.

    2007-11-01

    We present deep 350- and 1200-μm imaging of the region around 4C41.17 - one of the most-distant (z = 3.792) and luminous known radio galaxies - obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly detected at 350 and 1200μm, as are two nearby 850-μm-selected galaxies; a third 850-μm source is detected at 350μm and coincides with a ~2σ feature in the 1200-μm map. Farther away from the radio galaxy additional nine sources are detected at 1200μm, bringing the total number of detected (sub)millimetre-selected galaxies (SMGs) in this field to 14. Using radio images from the Very Large Array and Spitzer mid-infrared data, we find statistically robust radio and/or 24-μm counterparts to eight out of the 14 SMGs in the field around 4C41.17. Follow-up spectroscopy with Keck/Low-Resolution and Imaging Spectrograph (LRIS) has yielded redshifts for three out of the eight robustly identified SMGs, placing them in the redshift range 0.5 <~ z <~ 2.7 that is well below that of 4C41.17. We infer photometric redshifts for a further four sources using their 1.6-μm (rest-frame) stellar feature as probed by the IRAC bands; only one of them is likely to be at the same redshift as 4C41.17. Thus at least four, and as many as seven, of the SMGs within the 4C41.17 field are physically unrelated to the radio galaxy. With the redshift information at hand, we are able to constrain the observed overdensities of SMGs within radial bins stretching to R = 50 and 100arcsec (~0.4 and ~0.8Mpc at z ~= 3.8) from the radio galaxy to approximately five times and two times that of the field, dropping off to the background value at R = 150arcsec. We thus confirm that 4C41.17 resides in an overdense region of the Universe, but we have only been able to identify SMGs along the line of sight to the radio galaxy, typical of the blank-field SMG population. Finally, we report on the discovery of an

  17. UV-sensitive syndrome.

    PubMed

    Spivak, Graciela

    2005-09-01

    UV-sensitive syndrome (UV(S)S) is a human DNA repair-deficiency disorder with mild clinical manifestations. In contrast to other disorders with photosensitivity, no neurological or developmental abnormalities and no predisposition to cancer have been reported. The cellular and biochemical responses of UV(S)S and Cockayne syndrome (CS) cells to UV light are indistinguishable, and result from defective transcription-coupled repair of photoproducts in expressed genes [G. Spivak, T. Itoh, T. Matsunaga, O. Nikaido, P. Hanawalt, M. Yamaizumi, Ultra violet-sensitive syndrome cells are defective in transcription-coupled repair of cyclobutane pyrimidine dimers, DNA Repair, 1, 2002, 629-643]. The severe neurological and developmental deficiency characteristic of CS may arise from unresolved blockage of transcription at oxidative DNA lesions, which could result in excessive cell death and/or attenuated transcription. We have proposed that individuals with UV(S)S develop normally because they are proficient in repair of oxidative base damage or in transcriptional bypass of these lesions; consistent with this hypothesis, CS-B cells, but not UV(S)S cells, are deficient in host cell reactivation of plasmids containing oxidative base lesions [G. Spivak, P. Hanawalt, Host cell reactivation of plasmids containing oxidative DNA lesions is defective in Cockayne syndrome but normal in UV-sensitive syndrome, 2005, submitted for publication]. In this review, I will summarize the current understanding of the UV-sensitive syndrome and compare it with the Cockayne syndrome. PMID:15916784

  18. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs - abstract

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  19. [Erythemogenic UV rays].

    PubMed

    Sigurgeirsson, Bardur; Wulf, Hans Christian

    2011-07-01

    The UV-index is an international standard measurement of the strength of erythemogenic ultraviolet radiation. It is often published in the media and then refers to the highest expected UV radiation for that day. The highest UV-index value measured in Iceland is seven. Although this is similar to the maximum values from southern Scandinavia, the average UV-index is lower in Iceland compared to other Nordic countries. Around solar noon the UV index is roughly equivalent to the Standard Erythema Dose (SED). During a bright summer day in Iceland the number of Standard Erythema doses can go as high as 32, but is on average in June around twenty. The typical Icelander gets red after 4-6 SED and it is obvious that during solar noon it is easy to sunburn in Iceland if you stay outside without sun protection. PMID:21849709

  20. [O III] emission line as a tracer of star-forming galaxies at high redshifts: comparison between Hα and [O III] emitters at z=2.23 in HiZELS

    NASA Astrophysics Data System (ADS)

    Suzuki, T. L.; Kodama, T.; Sobral, D.; Khostovan, A. A.; Hayashi, M.; Shimakawa, R.; Koyama, Y.; Tadaki, K.-i.; Tanaka, I.; Minowa, Y.; Yamamoto, M.; Smail, I.; Best, P. N.

    2016-10-01

    We investigate the properties of z = 2.23 Hα and [O III] λ5007 emitters using the narrow-band-selected samples obtained from the High-z Emission Line Survey. We construct two samples of the Hα and [O III] emitters and compare their integrated physical properties. We find that the distribution of stellar masses, dust extinction, star formation rates (SFRs), and specific SFRs (sSFRs) is not statistically different between the two samples. When we separate the full galaxy sample into three subsamples according to the detections of the Hα and/or [O III] emission lines, most of the sources detected with both Hα and [O III] show log(sSFRUV) ≳ -9.5. The comparison of the three subsamples suggests that sources with strong [O III] line emission tend to have the highest star-forming activity out all galaxies that we study. We argue that the [O III] emission line can be used as a tracer of star-forming galaxies at high redshift, and that it is especially useful to investigate star-forming galaxies at z > 3, for which Hα emission is no longer observable from the ground.

  1. Polarimetric Imaging of the Cosmic Ultraviolet Background

    NASA Astrophysics Data System (ADS)

    Nordsieck, K. H.; Bershady, M. A.; Harris, W.

    1999-05-01

    The nature of (and even the existence of) the ultraviolet cosmic background is controversial, because of the uncertain contribution of light from bright UV stars scattered by dust within our Galaxy (the UV Diffuse Galactic Light, or "DGL"). Because the DGL consists of light scattered at large angles from a small number of stars, it should be highly polarized, while most proposed sources of extragalactic UV background would be unpolarized, providing a potential way of disentangling the two components. We will discuss such an experiment: an existing sounding rocket payload, the Wide-Field Imaging Survey Polarimeter ("WISP"), and a proposed payload, the Cosmic Ultraviolet Polarimetric Imaging Device ("CUPID"), which would have 20 times the sensitivity of WISP. WISP, a 20 cm off-axis Schmidt telescope with a stressed CaF2 waveplate and a Brewster-angle polarizer, has a 2x4 degree field of view with 1 arcmin resolution at 1700 Ang. The first DGL target for WISP is the "Sandage Region" near M81/M82, an area observed (with different results) by both the UC Berkeley and the JHU UVX UV background experiments. It has known visible-wavelength and IRAS-wavelength "cirrus" which has been identified with DGL. WISP should be able to measure the polarization of any UV cirrus and establish the presence of an unpolarized background. Preliminary data from this target may be available, depending on the actual launch time. CUPID, a 50 cm Paul Baker telescope using reflective filter coatings, should have adequate precision to perform a pixel-by-pixel separation of polarized UV cirrus from any unpolarized background, and its very much improved stray light rejection should allow an accurate zero-point for this putative extragalactic background. Thus the detailed structure of the cosmic background from 15 arcsec to degrees will be determined. We will discuss how such a measurement may be used to confirm or eliminate several possible sources of UV cosmic background. WISP is supported by

  2. UV, stress and aging.

    PubMed

    Debacq-Chainiaux, Florence; Leduc, Cedric; Verbeke, Alix; Toussaint, Olivier

    2012-07-01

    Skin is a model of choice in studies on aging. Indeed, skin aging can be modulated by internal and external factors, reflecting its complexity. Two types of skin aging have been identified: intrinsic, mainly genetically determined and extrinsic-also called "photo-aging"-resulting on the impact of environmental stress and more precisely of UV rays. Simplified in vitro models, based on cellular senescence, have been developed to study the relationship between UV and aging. These models vary on the cell type (fibroblasts or keratinocytes, normal or immortalized) and the type of UV used (UVA or UVB). PMID:23467762

  3. UV, stress and aging.

    PubMed

    Debacq-Chainiaux, Florence; Leduc, Cedric; Verbeke, Alix; Toussaint, Olivier

    2012-07-01

    Skin is a model of choice in studies on aging. Indeed, skin aging can be modulated by internal and external factors, reflecting its complexity. Two types of skin aging have been identified: intrinsic, mainly genetically determined and extrinsic-also called "photo-aging"-resulting on the impact of environmental stress and more precisely of UV rays. Simplified in vitro models, based on cellular senescence, have been developed to study the relationship between UV and aging. These models vary on the cell type (fibroblasts or keratinocytes, normal or immortalized) and the type of UV used (UVA or UVB).

  4. HETDEX: Measuring Dark Energy at High Redshift

    NASA Astrophysics Data System (ADS)

    Gebhardt, Karl; Hill, G.; Komatsu, E.; Drory, N.; DePoy, D.; Ciardullo, R.; Gronwall, C.; Fabricius, M.; Wisotzki, L.; HETDEX Collaboration

    2012-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey to map the evolution of dark energy using Lyman-alpha emitting galaxies as tracers. The survey instrument, VIRUS, consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each 50x50 sq. arcsec IFU is made up of 448 1.5-arcsec fibers, and feeds a pair of spectrographs with a fixed bandpass of 350-550 nm and resolving power R 700. Each exposure gathers 33,600 spectra. The baseline survey will deliver spectra of 0.8M LAEs in a 9 cubic Gpc volume with 1.9 < z < 3.5, and 1M [OII] emitters with z < 0.48. We expect to measure both the Hubble parameter and angular diameter distance to better than 1%. HETDEX will provide a unique window on the evolution of dark energy.

  5. Evolution of magnetic fields at high redshift

    NASA Astrophysics Data System (ADS)

    Zweibel, E. G.

    2006-06-01

    The origin of magnetic fields in the Universe is a cosmology problem. The evolution of the field is a plasma physics problem. I review these problems and focus on magnetogenesis in accretion disks, specifically, the transition from the Biermann battery, which creates seed fields, to amplification by turbulence driven by magnetorotational instability. In collisional disks, there is a gap between the fieldstrength characteristic of the battery and the fieldstrength necessary to sustain magnetorotational instability, but in collisionless disks the transition occurs at low fieldstrength. Because collisionless disks are generally hot, and have short dynamical times, they are likely to be small. Thus, in the battery scenario, magnetic fields on large scales were built from fields created in many small sources. Simple estimates based on turbulent diffusion suggest that galaxies and the cores of galaxy clusters can be magnetized in this way, but not the intergalactic medium at large. The problem of creating a large-scale field remains unsolved.

  6. Highly ionised absorbers at high redshift

    NASA Astrophysics Data System (ADS)

    Bergeron, Jacqueline; Herbert-Fort, Stéphane

    2005-03-01

    We build a sample of O VI absorption systems in the redshift range 2.0 ≲ z ≲ 2.6 using high spectral resolution data of ten quasars from the VLT-UVES large programme. We investigate the existence of a metal-rich O VI population and define observational criteria for this class of absorbers under the assumption of photoionisation. The low temperatures of nearly half of all O VI absorbers, implied by their line widths, are too low for collisional ionisation to be a dominant process. We estimate the oxygen abundance under the assumption of photoionisation; a striking result is the bimodal distribution of [o/h] with median values close to 0.01 and 0.5 solar for the metal-poor and metal-rich populations, respectively. Using the line widths to fix the temperature or assuming a constant, low gas density does not drastically change the metallicities of the metal-rich population. We present the first estimate of the O VI column density distribution. Assuming a single power-law distribution, f(n) ∝ n-α, yields α ˜ 1.7 and a normalisation of f(n) =2.3× 10-13 at log n(O VI) ˜ 13.5, both with a ˜30% uncertainty. The value of α is similar to that found for C IV surveys, whereas the normalisation factor is about ten times higher. We use f(n) to derive the number density per unit z and cosmic density ωb(O VI), selecting a limited column density range not strongly affected by incompleteness or sample variance. Comparing our results with those obtained at z˜0.1 for a similar range of column densities implies some decline of dn/dz with z. The cosmic O VI density derived from f(n), ωb(O VI)≈ (3.5± 3.20.9) × 10-7, is 2.3 times higher than the value estimated using the observed O VI sample (of which the metal-rich population contributes ˜35%), easing the problem of missing metals at high z (˜ 1/4 of the produced metals) but not solving it. We find that the majori ty of the metal-rich absorbers are located within ˜ 450 km s-1 of strong Ly-α lines and show that, contrary to the metal-poor absorbers, this population cannot be in hydrostatic equilibrium. All of the O VI absorber properties imply that there are two distinct populations: metal-poor absorbers tracing the intergalactic medium and metal-rich absorbers associated with active sites of star formation and most probably linked to galactic winds.

  7. Jets in AGN at extremely high redshifts

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid I.; Frey, Sándor; Paragi, Zsolt

    2015-03-01

    The jet phenomenon is a trademark of active galactic nuclei (AGN). In most general terms, the current understanding of this phenomenon explains the jet appearance by effects of relativistic plasma physics. The fundamental source of energy that feeds the plasma flow is believed to be the gravitational field of a central supermassive black hole. While the mechanism of energy transfer and a multitude of effects controlling the plasma flow are yet to be understood, major properties of jets are strikingly similar in a broad range of scales from stellar to galactic. They are supposed to be controlled by a limited number of physical parameters, such as the mass of a central black hole and its spin, magnetic field induction and accretion rate. In a very simplified sense, these parameters define the formation of a typical core-jet structure observed at radio wavelengths in the region of the innermost central tens of parsecs in AGN. These core-jet structures are studied in the radio domain by Very Long Baseline Interferometry (VLBI) with milli- and sub-milliarcsecond angular resolution. Such structures are detectable at a broad range of redshifts. If observed at a fixed wavelength, a typical core-jet AGN morphology would appear as having a steep-spectrum jet fading away with the increasing redshift while a flat-spectrum core becoming more dominant. If core-jet AGN constitute the same population of objects throughout the redshift space, the apparent ``prominence'' of jets at higher redshifts must decrease (Gurvits 1999): well pronounced jets at high z must appear less frequent than at low z.

  8. Studying the high redshift Universe with Athena

    NASA Astrophysics Data System (ADS)

    O'Brien, P. T.

    2016-04-01

    Athena is the second large mission selected in the ESA Cosmic Vision plan. With its large collecting area, high spectral-energy resolution (X-IFU instrument) and impressive grasp (WFI instrument), Athena will truly revolutionise X-ray astronomy. The most prodigious sources of high-energy photons are often transitory in nature. Athena will provide the sensitivity and spectral resolution coupled with rapid response to enable the study of the dynamic sky. Potential sources include: distant Gamma-Ray Bursts to probe the reionisation epoch and find ‘missing’ baryons in the cosmic web; tidal disruption events to reveal dormant supermassive and intermediate-mass black holes; and supernova explosions to understand progenitors and their environments.Using detailed simulations, we illustrate Athena’s extraordinary capabilities for transients out to the highest redshifts and show how it will be able to constrain the nature of explosive transients including gas metallicity and dynamics, constraining environments and progenitors.

  9. Constraining the redshifted 21-cm signal with the unresolved soft X-ray background

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Cohen, Aviad; Barkana, Rennan; Silk, Joseph

    2016-10-01

    We use the observed unresolved cosmic X-ray background (CXRB) in the 0.5 - 2 keV band and existing upper limits on the 21-cm power spectrum to constrain the high-redshift population of X-ray sources, focusing on their effect on the thermal history of the Universe and the cosmic 21-cm signal. Because the properties of these sources are poorly constrained, we consider hot gas, X-ray binaries and mini-quasars (i.e., sources with soft or hard X-ray spectra) as possible candidates. We find that (1) the soft-band CXRB sets an upper limit on the X-ray efficiency of sources that existed before the end of reionization, which is one-to-two orders of magnitude higher than typically assumed efficiencies, (2) hard sources are more effective in generating the CXRB than the soft ones, (3) the commonly-assumed limit of saturated heating is not valid during the first half of reionization in the case of hard sources, with any allowed value of X-ray efficiency, (4) the maximal allowed X-ray efficiency sets a lower limit on the depth of the absorption trough in the global 21-cm signal and an upper limit on the height of the emission peak, while in the 21-cm power spectrum it sets a minimum amplitude and frequency for the high-redshift peaks, and (5) the existing upper limit on the 21-cm power spectrum sets a lower limit on the X-ray efficiency for each model. When combined with the 21-cm global signal, the CXRB will be useful for breaking degeneracies and helping constrain the nature of high-redshift heating sources.

  10. UV Completion of Axion

    SciTech Connect

    Choi, Kang-Sin

    2008-11-23

    A multiple number of global U(1)s, arising from accidental symmetries up to a certain order of the potential, enjoy lowering the axion decay constant from UV-scale and evading supersymmetric Fayet-Illiopoulos term constraints.

  11. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  12. THE VERY FAINT END OF THE UV LUMINOSITY FUNCTION OVER COSMIC TIME: CONSTRAINTS FROM THE LOCAL GROUP FOSSIL RECORD

    SciTech Connect

    Weisz, Daniel R.; Johnson, Benjamin D.; Conroy, Charlie

    2014-10-10

    We present a new technique to estimate the evolution of the very faint end of the UV luminosity function (LF) out to z ∼ 5. Measured star formation histories (SFHs) from the fossil record of Local Group (LG) galaxies are used to reconstruct the LF down to M {sub UV} ∼–5 at z ∼ 5 and M {sub UV} ∼–1.5 at z < 1. Such faint limits are well beyond the current observational limits and are likely to remain beyond the limits of next-generation facilities. The reconstructed LFs, when combined with direct measurements of the LFs at higher luminosity, are well-fit by a standard Schechter function with no evidence of a break to the faintest limits probed by this technique. The derived faint-end slope, α, steepens from ≈ – 1.2 at z < 1 to ≈ – 1.6 at 4 < z < 5. We test the effects of burstiness in the SFHs and find the recovered LFs to be only modestly affected. Incompleteness corrections for the faintest LG galaxies and the (unlikely) possibility of significant luminosity-dependent destruction of dwarf galaxies between high redshift and the present epoch are important uncertainties. These and other uncertainties can be mitigated with more detailed modeling and future observations. The reconstructed faint end LF from the fossil record can therefore be a powerful and complementary probe of the high-redshift faint galaxies believed to play a key role in the reionization of the universe.

  13. UV filters for hair protection.

    PubMed

    Bernhardt, P; Giesen, M; Hollenberg, D; Hubbuch, M; Kalhöfer, V; Maier, H E; Martin, V; Münzing, H P; Oelschläger, T; Schwan, A; Sperling, K; Tennigkeit, J

    1993-10-01

    Synopsis Hair damage, caused by sunlight, and the possibility to protect hair against sunlight by means of cosmetic formulations was studied. For this, five UV-filters were tested: benzophenone-3 (UV-A/UV-B); benzophenone-4 (UV-A/UV-B); phenylbenzimidazole sulfonic acid (UV-B); butylmethoxydibenzoylmethane (UV-A); octyl dimethyl PABA (UV-B). The stability of the UV-filters was tested as pure substances as well as in two cosmetic formulations: a setting lotion and a shine spray. The degree of decolouration and stress strain behaviour were determined. The benzophenones had the best protection ability both on colour and on morphology. Stability data and UV-spectra are discussed.

  14. Degradation of antipyrine by UV, UV/H₂O₂ and UV/PS.

    PubMed

    Tan, Chaoqun; Gao, Naiyun; Deng, Yang; Zhang, Yongji; Sui, Minghao; Deng, Jing; Zhou, Shiqing

    2013-09-15

    Degradation of antipyrine (AP) in water by three UV-based photolysis processes (i.e., direct UV, UV/H₂O₂, UV/persulfate (UV/PS)) was studied. For all the oxidation processes, the AP decomposition exhibited a pseudo-first-order kinetics pattern. Generally, UV/H₂O₂ and UV/PS significantly improved the degradation rate relevant to UV treatment alone. The pseudo-first-order degradation rate constants (kobs) were, to different degrees, affected by initial AP concentration, oxidant dose, pH, UV irradiation intensity, and co-existing chemicals such as humic acid, chloride, bicarbonate, carbonate and nitrate. The three oxidation processes followed the order in terms of treatment costs: UV/PS>UV>UV/H₂O₂ if the energy and chemical costs are considered. Finally, the AP degradation pathways in the UV/H₂O₂ and UV/PS processes are proposed. Results demonstrated that UV/H₂O₂ and UV/PS are potential alternatives to control water pollution caused by emerging contaminants such as AP. PMID:23892168

  15. An Evaluation of UV-Monitoring Enhanced Skin Cancer Prevention among Farm Youth in Rural Virginia

    ERIC Educational Resources Information Center

    Chen, Yi-Chun; Ohanehi, Donatus C.; Redican, Kerry J.

    2015-01-01

    Background: Health districts in southwest Virginia have one of the highest ultraviolet (UV) radiation exposure and sunburn rate. Due to higher levels of UV exposure, rural farm youth are at higher risk for skin cancer than non-farm youth. Few studies have been published that explore best practices for decreasing UV exposure among this population.…

  16. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H(2)O(2).

    PubMed

    Yuan, Fang; Hu, Chun; Hu, Xuexiang; Qu, Jiuhui; Yang, Min

    2009-04-01

    The degradation of four pharmaceutical compounds (PhACs), ibuprofen (IBU), diphenhydramine (DP), phenazone (PZ), and phenytoin (PHT) was investigated via ultraviolet (UV) photolysis and UV/H(2)O(2) process with a low-pressure (LP) UV lamp. For each PhAC tested, direct photolysis quantum yields at 254 nm were found to be ranging from 6.32 x 10(-2) to 2.79 x 10(-1)molE(-1) at pH 7. The second-order rate constants of the reaction between the PhACs and OH were determined to be from 4.86 x 10(9) to 6.67 x 10(9)M(-1)s(-1) by using a competition kinetic model which utilized para-chlorobenzoic acid (pCBA) as a reference compound. The overall effect of OH radical scavenging from humic acid (HA) and anions HCO(3)(-), NO(3)(-) was measured utilizing R(OH,UV) method through examining the aqueous photodegradation of pCBA as a probe compound. Moreover, these fundamental direct and indirect photolysis parameters were applied in the model prediction for oxidation rate constants of the PhACs in UV/H(2)O(2) process. It was found that the predicted oxidation rate constants approximated the observed ones. The results indicated that the new R(OH,UV) probe compound method was applicable for measuring background OH radical scavenging effects in water treatment process of UV/H(2)O(2). Furthermore, by GC-MS analysis, most of the intermediates created during the photodegradation of the selected PhACs in UV/H(2)O(2) process were identified. For the photodegradation of PZ, a competition mechanism existed between the direct UV photolysis and the oxidation of OH. An appropriate dosage of H(2)O(2) could hinder the occurrence of the direct photolysis.

  17. UV-extending ghost inflation

    SciTech Connect

    Ivanov, Mikhail M.; Sibiryakov, Sergey E-mail: sergey.sibiryakov@cern.ch

    2014-05-01

    We present a setup that provides a partial UV-completion of the ghost inflation model up to a scale which can be almost as high as the Planck mass. This is achieved by coupling the inflaton to the Lorentz-violating sector described by the Einstein-aether theory or its khronometric version. Compared to previous works on ghost inflation our setup allows to go beyond the study of small perturbations and include the background dynamics in a unified framework. In the specific regime when the expansion of the Universe is dominated by the kinetic energy of the inflaton we find that the model predicts rather high tensor-to-scalar ratio r ∼ 0.02÷0.2 and non-Gaussianity of equilateral type with f{sub NL} in the range from -50 to -5.

  18. The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars

    NASA Technical Reports Server (NTRS)

    Sherwin, Blake D; Das, Sudeep; Haijian, Amir; Addison, Graeme; Bond, Richard; Crichton, Devin; Devlin, Mark J.; Dunkley, Joanna; Gralla, Megan B.; Halpern, Mark; Hill, J. Colin; Hincks, Adam D.; Hughes, John P.; Huffenberger, Kevin; Hlozek, Renee; Kosowsky, Arthur; Louis, Thibaut; Marriage, Tobias A.; Marsden, Danica; Menanteau, Felipe; Moodley, Kavilan; Niemack, Michael D.; Page, Lyman A.; Reese. Erik D.; Sehgal, Neelima; Sievers, Jon; Sifon, Cristobal; Spergel, David N.; Staggs, Suzanne T.; Switzer, Eric R.; Wollack, Ed.

    2012-01-01

    We measure the cross-correlation of Atacama cosmology telescope cosmic microwave background (CMB) lensing convergence maps with quasar maps made from the Sloan Digital Sky Survey DR8 SDSS-XDQSO photometric catalog. The CMB lensing quasar cross-power spectrum is detected for the first time at a significance of 3.8 sigma, which directly confirms that the quasar distribution traces the mass distribution at high redshifts z > 1. Our detection passes a number of null tests and systematic checks. Using this cross-power spectrum, we measure the amplitude of the linear quasar bias assuming a template for its redshift dependence, and find the amplitude to be consistent with an earlier measurement from clustering; at redshift z ap 1.4, the peak of the distribution of quasars in our maps, our measurement corresponds to a bias of b = 2.5 +/- 0.6. With the signal-to-noise ratio on CMB lensing measurements likely to improve by an order of magnitude over the next few years, our results demonstrate the potential of CMB lensing crosscorrelations to probe astrophysics at high redshifts.

  19. Are You UV Safe?

    ERIC Educational Resources Information Center

    Capobianco, Brenda; Thiel, Elizabeth Andrew

    2006-01-01

    Students may be slathered with SPF 30 sunscreen all summer at the beach or pool, but what do they know about ultraviolet (UV) light radiation and absorption? The authors of this article found the perfect opportunity to help students find out the science behind this important health precaution, when they developed a series of practical strategies…

  20. Four papers by the Supernova Cosmology Project: (1) Scheduled discoveries of 7+ high-redshift supernovae -- First cosmology results and bounds on q{sub 0}; (2) K corrections for Type Ia supernovae and a test for spatial variation of the Hubble constant; (3) Observation of cosmological time dilation using Type Ia supernovae as clocks; (4) The Type Ia supernova rate at z {approximately} 0.4

    SciTech Connect

    Perlmutter, S.; Deustua, S.; Gabi, S. |

    1995-06-01

    The search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35--0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0}, {Lambda}, {Omega}{sub 0}, and H{sub 0}. These four presentations discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0}, of these first high-redshift supernovae from the ongoing search.

  1. UV-optical from space

    NASA Technical Reports Server (NTRS)

    Illingworth, Garth; Savage, Blair; Angel, J. Roger; Blandford, Roger D.; Boggess, Albert; Bowyer, C. Stuart; Carruthers, George R.; Cowie, Lennox L.; Doschek, George A.; Dupree, Andrea K.

    1991-01-01

    The following subject areas are covered: (1) the science program (star formation and origins of planetary systems; structure and evolution of the interstellar medium; stellar population; the galactic and extragalactic distance scale; nature of galaxy nuclei, AGNs, and QSOs; formation and evolution of galaxies at high redshifts; and cosmology); (2) implementation of the science program; (3) the observatory-class missions (HST; LST - the 6m successor to HST; and next-generation 16m telescope); (4) moderate and small missions (Delta-class Explorers; imaging astrometric interferometer; small Explorers; optics development and demonstrations; and supporting ground-based capabilities); (5) prerequisites - the current science program (Lyman-FUSE; HTS optimization; the near-term science program; data analysis, modeling, and theory funding; and archives); (6) technologies for the next century; and (7) lunar-based telescopes and instruments.

  2. UV curable materials development

    SciTech Connect

    Parker, B.G.

    1996-12-01

    Adhesives, coatings, and inks were selected for evaluation based on literature search and possible production applications. A differential photocalorimeter was used to measure degree of cure and allow prediction of optimum processing conditions. UV cure equipment were characterized and the ability to size equipment to specific materials cure needs established. Adhesion tests procedures were developed for the adhesives and solvent resistance testing procedures developed for the coatings and inks.

  3. Transverse effects in UV FELs

    SciTech Connect

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-12-31

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.

  4. Standardization of UV LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Larason, T. C.; Yoon, H. W.

    2015-09-01

    Traditionally used source spectral-distribution or detector spectral-response based standards cannot be applied for accurate UV LED measurements. Since the CIE standardized rectangular-shape spectral response function for UV measurements cannot be realized with small spectral mismatch when using filtered detectors, the UV measurement errors can be several times ten percent or larger. The UV LEDs produce broadband radiation and both their peaks or spectral bandwidths can change significantly. The detectors used for the measurement of these LEDs also have different spectral bandwidths. In the discussed example, where LEDs with 365 nm peak are applied for fluorescent crack-recognition using liquid penetrant (non-destructive) inspection, the broadband radiometric LED (signal) measurement procedure is standardized. A UV LED irradiance-source was calibrated against an FEL lamp standard to determine its spectral irradiance. The spectral irradiance responsivity of a reference UV meter was also calibrated. The output signal of the reference UV meter was calculated from the spectral irradiance of the UV source and the spectral irradiance responsivity of the reference UV meter. From the output signal, both the integrated irradiance (in the reference plane of the reference meter) and the integrated responsivity of the reference meter were determined. Test UV meters calibrated for integrated responsivity against the reference UV meter, can be used to determine the integrated irradiance from a field UV source. The obtained 5 % (k=2) measurement uncertainty can be decreased when meters with spectral response close to a constant value are selected.

  5. Enhanced UV inactivation of adenoviruses under polychromatic UV lamps.

    PubMed

    Linden, Karl G; Thurston, Jeanette; Schaefer, Raymond; Malley, James P

    2007-12-01

    Adenovirus is recognized as the most UV-resistant waterborne pathogen of concern to public health microbiologists. The U.S. EPA has stipulated that a UV fluence (dose) of 186 mJ cm(-2) is required for 4-log inactivation credit in water treatment. However, all adenovirus inactivation data to date published in the peer-reviewed literature have been based on UV disinfection experiments using UV irradiation at 253.7 nm produced from a conventional low-pressure UV source. The work reported here presents inactivation data for adenovirus based on polychromatic UV sources and details the significant enhancement in inactivation achieved using these polychromatic sources. When full-spectrum, medium-pressure UV lamps were used, 4-log inactivation of adenovirus type 40 is achieved at a UV fluence of less than 60 mJ cm(-2) and a surface discharge pulsed UV source required a UV fluence of less than 40 mJ cm(-2). The action spectrum for adenovirus type 2 was also developed and partially explains the improved inactivation based on enhancements at wavelengths below 230 nm. Implications for water treatment, public health, and the future of UV regulations for virus disinfection are discussed. PMID:17933932

  6. Building Background Knowledge

    ERIC Educational Resources Information Center

    Neuman, Susan B.; Kaefer, Tanya; Pinkham, Ashley

    2014-01-01

    This article make a case for the importance of background knowledge in children's comprehension. It suggests that differences in background knowledge may account for differences in understanding text for low- and middle-income children. It then describes strategies for building background knowledge in the age of common core standards.

  7. UV radiation and the skin.

    PubMed

    D'Orazio, John; Jarrett, Stuart; Amaro-Ortiz, Alexandra; Scott, Timothy

    2013-01-01

    UV radiation (UV) is classified as a "complete carcinogen" because it is both a mutagen and a non-specific damaging agent and has properties of both a tumor initiator and a tumor promoter. In environmental abundance, UV is the most important modifiable risk factor for skin cancer and many other environmentally-influenced skin disorders. However, UV also benefits human health by mediating natural synthesis of vitamin D and endorphins in the skin, therefore UV has complex and mixed effects on human health. Nonetheless, excessive exposure to UV carries profound health risks, including atrophy, pigmentary changes, wrinkling and malignancy. UV is epidemiologically and molecularly linked to the three most common types of skin cancer, basal cell carcinoma, squamous cell carcinoma and malignant melanoma, which together affect more than a million Americans annually. Genetic factors also influence risk of UV-mediated skin disease. Polymorphisms of the melanocortin 1 receptor (MC1R) gene, in particular, correlate with fairness of skin, UV sensitivity, and enhanced cancer risk. We are interested in developing UV-protective approaches based on a detailed understanding of molecular events that occur after UV exposure, focusing particularly on epidermal melanization and the role of the MC1R in genome maintenance. PMID:23749111

  8. A Correlation between Lyα Spectral Line Profile and Rest-frame UV Morphology

    NASA Astrophysics Data System (ADS)

    U, Vivian; Hemmati, Shoubaneh; Darvish, Behnam; Mobasher, Bahram; Nayyeri, Hooshang; Dickinson, Mark; Stern, Daniel; Spinrad, Hyron; Mallery, Ryan

    2015-12-01

    We explore the relationship between the spectral shape of the Lyα emission and the UV morphology of the host galaxy using a sample of 304 Lyα-emitting BVi-dropouts at 3 < z < 7 in the Great Observatories Origins Deep Survey and Cosmic Evolution Survey fields. Using our extensive reservoir of high-quality Keck DEIMOS spectra combined with Hubble Space Telescope WFC3 data, we measure the Lyα line asymmetries for individual galaxies and compare them to axial ratios measured from observed J- and H-band (restframe UV) images. We find that the Lyα skewness exhibits a large scatter at small elongation (a/b < 2), and this scatter decreases as the axial ratio increases. Comparison of this trend to radiative transfer models and various results from the literature suggests that these high-redshift Lyα emitters are not likely to be intrinsically round and symmetric disks, but they probably host galactic outflows traced by Lyα emitting clouds. The ionizing sources are centrally located, and the optical depth is a good indicator of the absorption and scattering events on the escape path of Lyα photons from the source. Our results find no evidence of evolution in Lyα asymmetry or axial ratio with look-back time.

  9. A CORRELATION BETWEEN Lyα SPECTRAL LINE PROFILE AND REST-FRAME UV MORPHOLOGY

    SciTech Connect

    Vivian U; Hemmati, Shoubaneh; Darvish, Behnam; Mobasher, Bahram; Nayyeri, Hooshang; Mallery, Ryan; Dickinson, Mark; Stern, Daniel; Spinrad, Hyron

    2015-12-10

    We explore the relationship between the spectral shape of the Lyα emission and the UV morphology of the host galaxy using a sample of 304 Lyα-emitting BVi-dropouts at 3 < z < 7 in the Great Observatories Origins Deep Survey and Cosmic Evolution Survey fields. Using our extensive reservoir of high-quality Keck DEIMOS spectra combined with Hubble Space Telescope WFC3 data, we measure the Lyα line asymmetries for individual galaxies and compare them to axial ratios measured from observed J- and H-band (restframe UV) images. We find that the Lyα skewness exhibits a large scatter at small elongation (a/b < 2), and this scatter decreases as the axial ratio increases. Comparison of this trend to radiative transfer models and various results from the literature suggests that these high-redshift Lyα emitters are not likely to be intrinsically round and symmetric disks, but they probably host galactic outflows traced by Lyα emitting clouds. The ionizing sources are centrally located, and the optical depth is a good indicator of the absorption and scattering events on the escape path of Lyα photons from the source. Our results find no evidence of evolution in Lyα asymmetry or axial ratio with look-back time.

  10. Early-Time UV Spectroscopy of Stripped-Envelope Supernovae: A New Window

    NASA Astrophysics Data System (ADS)

    Filippenko, Alex

    2014-10-01

    We propose to continue our Cycle 19 and 20 Target-of-Opportunity (ToO) programs to obtain three early-time UV spectra of a stripped-envelope core-collapse supernova (SN Ib or SN Ic), starting well before maximum brightness. The underlying nature of these objects, from the mass-loss process stripping the envelope to the details of the explosion mechanism, remain mysterious. Connections to gamma-ray bursts and X-ray flashes further motivate this study. Many high-redshift SNe are being found in deep transient surveys, but the ability to distinguish between thermonuclear Type Ia SNe and stripped-envelope core-collapse SNe requires thorough knowledge of the latter at UV wavelengths. By comparing the evolution of the spectra as the photosphere recedes to deeper layers of the ejecta with our time series of spectral models, we will gain a better understanding of the explosion, and possibly of the progenitor star. Specifically, we may be able to determine the metal content of the progenitor through comparisons with our spectral models, and we should be able to probe the degree of mixing during the explosion. The heterogeneity seen in stripped-envelope SNe will allow us to choose objects with different characteristics than the ones observed in Cycles 19-20, gaining further insights into this unique class of cosmic explosion. We need to seize this opportunity now, while we still have access to the space UV, and indeed the UV is the Cycle 22 priority of HST.

  11. Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.

  12. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    SciTech Connect

    Mao, Xiao-Chun

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimated by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.

  13. The Cosmic Background Radiation circa ν2K

    NASA Astrophysics Data System (ADS)

    Bond, J. Richard; Pogosyan, Dmitry; Prunet, Simon

    We describe the implications of cosmic microwave background (CMB) observations and galaxy and cluster surveys of large scale structure (LSS) for theories of cosmic structure formation, especially emphasizing the recent Boomerang and Maxima CMB balloon experiments. The inflation-based cosmic structure formation paradigm we have been operating with for two decades has never been in better shape. Here we primarily focus on a simplified inflation parameter set, {ωb, ωcdm, Ωtot, ΩΛ, ns, τC, σ8}. Combining all of the current CMB+LSS data points to the remarkable conclusion that the local Hubble patch we can access has little mean curvature (Ωtot = 1.08 +/- 0.06) and the initial fluctuations were nearly scale invariant (ns = 1.03 +/- 0.08), both predictions of (non-baroque) inflation theory. The baryon density is found to be slightly larger than that preferred by independent Big Bang Nucleosynthesis estimates (ωb --- Ωbh2 = 0.030 +/- 0.005 cf. 0.019 +/- 0.002). The CDM density is in the expected range (ωcdm = 0.17+/-0.02). Even stranger is the CMB+LSS evidence that the density of the universe is dominated by unclustered energy akin to the cosmological constant (ΩΛ = 0.66 +/- 0.06), at the same level as that inferred from high redshift supernova observations. We also sketch the CMB+LSS implications for massive neutrinos.

  14. AMiBA: Array for Microwave Background Anisotropy

    NASA Astrophysics Data System (ADS)

    Lo, K. Y.; Chiueh, T.; Martin, R. N.

    2000-12-01

    As part of a 4-year US\\ 15 million Cosmology and Particle Astrophysics (CosPA) Research Excellence Initiative in Taiwan, AMiBA - a 19-element dual-channel 85-105 GHz interferometer array is being specifically built to survey for high redshift clusters of galaxies via the Sunyaev-Zeldovich Effect. In addition, the AMiBA will have full polarization capabilities in order to probe the polarization properties of the Cosmic Microwave Background. The AMiBA, to be sited on Mauna Kea in Hawaii or in Chile, will reach a sensitivity of 1.5 mJy or 7\\mu$K in 1 hour. The project involves scientific and technical collaborations with the Australia Telescope National Facilities (ATNF), the Canadian Institute of Theoretical Astrophysics (CITA), the Physics departments of the Carnegie-Mellon University (CMU) and the University of Pennsylvania (UPenn). The construction of the AMiBA is scheduled to be completed in 2003. Current status of the project will be discussed.

  15. Uvs Nuur, Mongolia

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Uvs Nuur Basin in Mongolia and the Russian Federation is the northernmost of the enclosed basins of Central Asia. It takes its name from Uvs Nuur Lake, a large, shallow and very saline lake, very important for migrating birds. Inscribed as a UNESCO World Heritage Site in 2003, the site is made up of twelve protected areas representing major biomes of eastern Eurasia. The steppe ecosystem supports a rich diversity of birds and the desert is home to a number of rare gerbil, jerboas and the marbled polecat. The mountains are an important refuge for the endangered snow leopard, mountain sheep, and the Asiatic ibex.

    The image covers an area of 46 x 47.8 km, was acquired on September 4, 2001, and is located near 50.3 degrees north latitude, 90.7 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. The Cosmic Background Explorer.

    ERIC Educational Resources Information Center

    Gulkis, Samuel; And Others

    1990-01-01

    Outlines the Cosmic Background Explorer (COBE) mission to measure celestial radiation. Describes the instruments used and experiments involving differential microwave radiometers, and a far infrared absolute spectrophotometer. (YP)

  17. Initial operation of the array for microwave background anisotropy (AMiBA)

    NASA Astrophysics Data System (ADS)

    Li, Chao-Te; Han, Chih-Chiang; Chen, Ming-Tang; Huang, Yau-De; Jiang, Homin; Hwang, Yuh-Jing; Chang, Su-Wei; Chang, Shu-Hao; Martin-Cocher, Pierre; Chang, Chia-Hao; Chen, Chung-Cheng; Wilson, Warwick; Umetsu, Keiichi; Lin, Kai-Yang; Koch, Patrick; Liu, Guo-Chin; Nishioka, Hiroaki; Ho, Paul T. P.

    2006-06-01

    AMiBA, as a dual-polarization 86-102 GHz interferometer array, is designed to measure the power spectrum of fluctuations in the cosmic microwave background (CMB) radiation, and to detect the high-redshift clusters of galaxies via the Sunyaev-Zel'dovich Effect (SZE). The operation of AMiBA is about to begin after installation of the first two receivers and correlators onto the 6-meter diameter platform by the end of 2005. The initial setup of the array will consist of 7 antennas with 60 cm diameter reflectors in a hexagonal configuration, aiming at multipoles l ~ 3000. Signals from receivers are cross-correlated in analog lag correlators. The initial operation will focus on characterizing the systematics by observing various known objects on the sky. The expansion to 13 elements with larger dishes will commence once the 7-element array testing is completed.

  18. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z {approx} 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN

    SciTech Connect

    Schenker, Matthew A.; Ellis, Richard S.; Robertson, Brant E.; Schneider, Evan; Ono, Yoshiaki; Ouchi, Masami; Stark, Daniel P.; McLure, Ross J.; Dunlop, James S.; Bowler, Rebecca A. A.; Curtis-Lake, Emma; Rogers, Alexander B.; Cirasuolo, Michele; Koekemoer, Anton; Charlot, Stephane; Furlanetto, Steven R.

    2013-05-10

    We present a catalog of high-redshift star-forming galaxies selected to lie within the redshift range z {approx_equal} 7-8 using the Ultra Deep Field 2012 (UDF12), the deepest near-infrared (near-IR) exposures yet taken with the Hubble Space Telescope (HST). As a result of the increased near-IR exposure time compared to previous HST imaging in this field, we probe {approx}0.65 (0.25) mag fainter in absolute UV magnitude, at z {approx} 7 (8), which increases confidence in a measurement of the faint end slope of the galaxy luminosity function. Through a 0.7 mag deeper limit in the key F105W filter that encompasses or lies just longward of the Lyman break, we also achieve a much-refined color-color selection that balances high redshift completeness and a low expected contamination fraction. We improve the number of dropout-selected UDF sources to 47 at z {approx} 7 and 27 at z {approx} 8. Incorporating brighter archival and ground-based samples, we measure the z {approx_equal} 7 UV luminosity function to an absolute magnitude limit of M{sub UV} = -17 and find a faint end Schechter slope of {alpha}=-1.87{sup +0.18}{sub -0.17}. Using a similar color-color selection at z {approx_equal} 8 that takes our newly added imaging in the F140W filter into account, and incorporating archival data from the HIPPIES and BoRG campaigns, we provide a robust estimate of the faint end slope at z {approx_equal} 8, {alpha}=-1.94{sup +0.21}{sub -0.24}. We briefly discuss our results in the context of earlier work and that derived using the same UDF12 data but with an independent photometric redshift technique.

  19. Correlators in nontrivial backgrounds

    SciTech Connect

    Mello Koch, Robert de; Ives, Norman; Stephanou, Michael

    2009-01-15

    Operators in N=4 super Yang-Mills theory with an R-charge of O(N{sup 2}) are dual to backgrounds which are asymtotically AdS{sub 5}xS{sup 5}. In this article we develop efficient techniques that allow the computation of correlation functions in these backgrounds. We find that (i) contractions between fields in the string words and fields in the operator creating the background are the field theory accounting of the new geometry, (ii) correlation functions of probes in these backgrounds are given by the free field theory contractions but with rescaled propagators and (iii) in these backgrounds there are no open string excitations with their special end point interactions; we have only closed string excitations.

  20. From Cosmic Microwave Background to Cosmic Infrared Background: dusty star-formation in the making

    NASA Astrophysics Data System (ADS)

    Lagache, Guilaine

    2015-08-01

    How the clumpy structured universe that we see today evolved from the smoothly distributed matter that existed during the dark ages is one of the most pressing questions of modern Cosmology. In the last few years, it has become clear that dusty star-forming galaxies are participating to this major change. Indeed they are a critical player in the assembly of stellar mass and the evolution of massive galaxies.Dusty star-forming galaxies at high redshift are very difficult to detect individually because they are so faint and numerous (compared to the angular resolution achievable in the far-IR to mm), that confusion plagues observations substantially. As a result, CMB experiments, such as Planck, can only see the brightest objects that represent the tip of the iceberg in terms of galaxy mass halos and star formation rates. But fortunately, those experiments are sensitive enough to measure the cumulative IR emission from all galaxies throughout cosmic history, the cosmic IR background. The anisotropies detected in this background trace the large-scale distribution of star-forming galaxies and, to some extent, the underlying distribution of the dark matter haloes in which galaxies reside. It is so bright that it represents (together with the shot noise) the main foreground contaminant to CMB temperature maps at small scales.I will review the current measurements of CIB anisotropies in Planck, but also in SPT, ACT and Herschel. I will discussed what we've learned from these measurements in the framework of galaxy evolution. I will show that most of the information from CIB anisotropies alone has been extracted; the future is now in cross-correlation. Because dusty galaxies trace the underlying dark matter, the CIB will correlate with any other tracer of the same dark matter field, provided that both overlap in redshift. The potential of Planck maps, covering the whole sky, is tremendous. A good illustration of this promising future is the fact that the Planck discovered

  1. The GLAST Background Model

    SciTech Connect

    Ormes, J.F.; Atwood, W.; Burnett, T.; Grove, E.; Longo, F.; McEnery, J.; Mizuno, T.; Ritz, S.; /NASA, Goddard

    2007-10-17

    In order to estimate the ability of the GLAST/LAT to reject unwanted background of charged particles, optimize the on-board processing, size the required telemetry and optimize the GLAST orbit, we developed a detailed model of the background particles that would affect the LAT. In addition to the well-known components of the cosmic radiation, we included splash and reentrant components of protons, electrons (e+ and e-) from 10 MeV and beyond as well as the albedo gamma rays produced by cosmic ray interactions with the atmosphere. We made estimates of the irreducible background components produced by positrons and hadrons interacting in the multilayered micrometeorite shield and spacecraft surrounding the LAT and note that because the orbital debris has increased, the shielding required and hence the background are larger than were present in EGRET. Improvements to the model are currently being made to include the east-west effect.

  2. Deep UV LEDs

    NASA Astrophysics Data System (ADS)

    Han, Jung; Amano, Hiroshi; Schowalter, Leo

    2014-06-01

    Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the

  3. III-Nitride UV Devices

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Shatalov, M.; Maruska, H. P.; Wang, H. M.; Kuokstis, E.

    2005-10-01

    The need for efficient, compact and robust solid-state UV optical sources and sensors had stimulated the development of optical devices based on III-nitride material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of high efficiency visible-blind and solar-blind photodetectors, deep-UV light-emitting diodes with emission from 400 to 250 nm, and UV laser diodes with operation wavelengths ranging from 340 to 350 nm. Applications of these UV optical devices include flame sensing; fluorescence-based biochemical sensing; covert communications; air, water and food purification and disinfection; and biomedical instrumentation. This paper provides a review of recent advances in the development of UV optical devices. Performance of state-of-the-art devices as well as future prospects and challenges are discussed.

  4. Impact of UV-A radiation on erythemal UV and UV-index estimation over Korea

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Lee, Yun Gon; Kim, Jung Hyun

    2015-12-01

    Because total UV (TUV) in the UV-A region is 100 times higher than in the UV-B region, UV-A is a considerable component when calculating erythemal UV (EUV) and UV-index. The ratio of EUV to TUV in the UV-A value [EUV(A)/TUV(A)] is investigated to convert the EUV(A) from TUV(A) for broadband observation. The representative value of EUV(A)/TUV(A), from the simulation study, is 6.9×10-4, changing from 6.1×10-4 to 7.0×10-4 as aerosol optical depth, total ozone and solar zenith angle change. By adopting the observational data of EUV(B) and TUV(A) from UV-biometer measurements at Yonsei University [(37.57°N, 126.95°E), 84 m above sea level], the EUV irradiance increases to 15% of EUV(B) due to the consideration of EUV(A) from the data of TUV(A) observation. Compared to the total EUV observed from the Brewer spectrophotometer at the same site, the EUV(B) from the UV-biometer observes only 95% of total EUV, and its underestimation is caused by neglecting the effect of UV-A. However, the sum of EUV(B) and EUV(A) [EUV(A+B)] from two UV-biometers is 10% larger than the EUV from the Brewer spectrophotometer because of the spectral overlap effect in the range 320-340 nm. The correction factor for the overlap effect adjusts 8% of total EUV.

  5. The mechanisms of UV mutagenesis.

    PubMed

    Ikehata, Hironobu; Ono, Tetsuya

    2011-01-01

    Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: "error-free" bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-prone bypass of CPDs and other UV-induced photolesions by combinations of TLS and replicative DNA polymerases--the latter model has also been known as the two-step model, in which the cooperation of two (or more) DNA polymerases as misinserters and (mis)extenders is assumed. Daylight UV induces a characteristic UV-specific mutation, a UV-signature mutation occurring preferentially at methyl-CpG sites, which is also observed frequently after exposure to either UVB or UVA, but not to UVC. The wavelengths relevant to the mutation are so consistent with the composition of daylight UV that the mutation is called solar-UV signature, highlighting the importance of this type of mutation for creatures with the cytosine-methylated genome that are exposed to the sun in the natural environment. UVA has also been suggested to induce oxidative types of mutation, which would be caused by oxidative DNA damage produced through the oxidative stress after the irradiation. Indeed, UVA produces oxidative DNA damage not only in cells but also in skin, which, however, does not seem sufficient to induce mutations in the normal skin genome. In contrast, it has been demonstrated that UVA exclusively induces the solar-UV signature mutations in vivo through CPD formation.

  6. UV spectrum of Enceladus

    NASA Astrophysics Data System (ADS)

    Zastrow, Mark; Clarke, John T.; Hendrix, Amanda R.; Noll, Keith S.

    2012-07-01

    We present a far ultraviolet (FUV) spectrum of Saturn’s moon Enceladus from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST). We have put upper limits on emission from C, N, and O lines in Enceladus’ atmosphere and column densities for the C lines assuming solar resonance scattering. We find these upper limits to be relatively low-on the order of tens to thousands of Rayleighs and with C column densities on the order of 108-1015 cm-2, depending on the assumed source size. We also present a segment of a reflectance spectrum in the FUV from ∼1900-2130 Å. This region was sensitive to the different ice mixtures in the model spectra reported by Hendrix et al. (Hendrix, A.R., Hansen, C.J., Holsclaw, G.M. [2010]. Icarus, 206, 608). We find the spectrum brightens quickly longward of ∼1900 Å, constraining the absorption band observed by Hendrix et al. from ∼170 to 190 nm. We find our data is consistent with the suggestion of Hendrix et al. of the presence of ammonia ice (or ammonia hydrate) to darken that region, and also possibly tholins to darken the mid-UV, as reported by Verbiscer et al. (Verbiscer, A.J., French, R.G., McGhee, C.A. [2005]. Icarus, 173, 66).

  7. [Ozone decline and UV increase].

    PubMed

    Winkler, P; Trepte, S

    2004-02-01

    The following results have been obtained from long-term observations on the ozone layer and UV at the Meteorological Observatory Hohenpeigenberg:The seasonally varying decline of the ozone layer determines the maximum exposure to UV. Since ozone decline shows the highest rates in the spring months the UV exposure has most strongly increased in this time of the year. This is especially important because in spring the human skin is not adapted to UV exposure. Weather changes from day to day can induce rapid ozone reductions in spring about -30% which in turn is followed by an increase in UV of about 40%. Clouds, especially the transparent cirrus clouds (high clouds consisting of ice particles) have increased in frequency during spring and fall while a decrease is observed in summer. This change in cloudiness reduces the daily UV dose in spring and fall while it is enhanced in summer. With increasing height above sea level UV rises by roughly 10% per 1000 m (rule of thumb). Snow reflects the UV-radiation by up to 80% enhancing the UV-doses at relevant conditions. Strong volcano eruptions destroy ozone in the stratosphere additionally during 1-2 years after the eruption. Therafter the ozone layer recovers. In April 1993, after the eruption of Mt. Pinatubo (1991), the UV burden was still 40% higher than average. Miniholes and streamers can appear unexpected on a short-time scale and cross over Central Europe within 1-2 days, thus enhancing UV irradiation. The human skin reacts to UV exposure depending on the type of skin. The campaign "Sonne(n) mit Verstand" of the Bavarian Ministries for Environment, for Health and for Education informs about the danger of UV radiation (see www.sonne-mit-ver-stand.de). The German Weather Service informs the public on present developments of the ozone layer and relevant topics byits ozone bulletin, which is also available via internet under (www.dwd.de/deFundE/Observator/MOHp/hp2/ozon/bulletin.htm).

  8. [Ozone decline and UV increase].

    PubMed

    Winkler, P; Trepte, S

    2004-02-01

    The following results have been obtained from long-term observations on the ozone layer and UV at the Meteorological Observatory Hohenpeigenberg:The seasonally varying decline of the ozone layer determines the maximum exposure to UV. Since ozone decline shows the highest rates in the spring months the UV exposure has most strongly increased in this time of the year. This is especially important because in spring the human skin is not adapted to UV exposure. Weather changes from day to day can induce rapid ozone reductions in spring about -30% which in turn is followed by an increase in UV of about 40%. Clouds, especially the transparent cirrus clouds (high clouds consisting of ice particles) have increased in frequency during spring and fall while a decrease is observed in summer. This change in cloudiness reduces the daily UV dose in spring and fall while it is enhanced in summer. With increasing height above sea level UV rises by roughly 10% per 1000 m (rule of thumb). Snow reflects the UV-radiation by up to 80% enhancing the UV-doses at relevant conditions. Strong volcano eruptions destroy ozone in the stratosphere additionally during 1-2 years after the eruption. Therafter the ozone layer recovers. In April 1993, after the eruption of Mt. Pinatubo (1991), the