Science.gov

Sample records for high-resolution angle-resolved measurements

  1. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE < 10 meV, Δθ ~ +/- 0.2 °) compatible with the SARPES measurement. By placing two VLEED spin detectors orthogonally we have realized the polarization measurement of all spin components (x, y and z) with the high resolution. Some examples of the three-dimensional spin observation will be presented. This work is supported by KAKENHI (23244066), Grant-in-Aid for Scientific Research (A) of Japan Society for the Promotion of Science.

  2. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    SciTech Connect

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  3. High Resolution Angle Resolved Photoemission Studies on Quasi-Particle Dynamics in Graphite

    SciTech Connect

    Leem, C.S.

    2010-06-02

    We obtained the spectral function of the graphite H point using high resolution angle resolved photoelectron spectroscopy (ARPES). The extracted width of the spectral function (inverse of the photo-hole lifetime) near the H point is approximately proportional to the energy as expected from the linearly increasing density of states (DOS) near the Fermi energy. This is well accounted by our electron-phonon coupling theory considering the peculiar electronic DOS near the Fermi level. And we also investigated the temperature dependence of the peak widths both experimentally and theoretically. The upper bound for the electron-phonon coupling parameter is 0.23, nearly the same value as previously reported at the K point. Our analysis of temperature dependent ARPES data at K shows that the energy of phonon mode of graphite has much higher energy scale than 125K which is dominant in electron-phonon coupling.

  4. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    SciTech Connect

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun; Liu, Zhongkai; Zong, Alfred; Jefferson, C. Michael; Merriam, Andrew J.; Moore, Robert G.; Kirchmann, Patrick S.

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  5. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser.

    PubMed

    He, Yu; Vishik, Inna M; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J; Chen, Sudi; Rebec, Slavko N; Leuenberger, Dominik; Zong, Alfred; Jefferson, C Michael; Moore, Robert G; Kirchmann, Patrick S; Merriam, Andrew J; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10(12) photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å(-1), respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å(-1), granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  6. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    NASA Astrophysics Data System (ADS)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Zong, Alfred; Jefferson, C. Michael; Moore, Robert G.; Kirchmann, Patrick S.; Merriam, Andrew J.; Shen, Zhi-Xun

    2016-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 1012 photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å-1, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å-1, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  7. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  8. High resolution-angle resolved photoemission studies of high temperature superconductors

    SciTech Connect

    Olson, C.G.; Liu, R.; Lynch, D.W.; Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Liu, J.Z.; Paulikas, A.P.; Arko, A.J.; List, R.S.; Argonne National Lab., IL; Los Alamos National Lab., NM )

    1989-08-01

    Recent photoemission studies of Y 123 and Bi 2212 performed with high energy and angular resolution have provided detailed information on the nature of the states near the Fermi level. Measurements of the superconducting gap, band dispersion, and the density of states near the Fermi level in the normal state all support a Fermi liquid description of these materials. 5 refs., 4 figs.

  9. Angle resolved scatter measurement of bulk scattering in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Sharma, Saurabh; Miller, J. Keith; Shori, Ramesh K.; Goorsky, Mark S.

    2015-02-01

    Bulk scattering in polycrystalline laser materials (PLM), due to non-uniform refractive index across the bulk, is regarded as the primary loss mechanism leading to degradation of laser performance with higher threshold and lower output power. The need for characterization techniques towards identifying bulk scatter and assessing the quality. Assessment of optical quality and the identification of bulk scatter have been by simple visual inspection of thin samples of PLMs, thus making the measurements highly subjective and inaccurate. Angle Resolved Scatter (ARS) measurement allows for the spatial mapping of scattered light at all possible angles about a sample, mapping the intensity for both forward scatter and back-scatter regions. The cumulative scattered light intensity, in the forward scatter direction, away from the specular beam is used for the comparison of bulk scattering between samples. This technique employ the detection of scattered light at all angles away from the specular beam directions and represented as a 2-D polar map. The high sensitivity of the ARS technique allows us to compare bulk scattering in different PLM samples which otherwise had similar transmitted beam wavefront distortions.

  10. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    SciTech Connect

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Jozwiak, C.; Lanzara, A.

    2013-09-15

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E{sub F} spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  11. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7∘ angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  12. High-resolution three-dimensional spin- and angle-resolved photoelectron spectrometer using vacuum ultraviolet laser light.

    PubMed

    Yaji, Koichiro; Harasawa, Ayumi; Kuroda, Kenta; Toyohisa, Sogen; Nakayama, Mitsuhiro; Ishida, Yukiaki; Fukushima, Akiko; Watanabe, Shuntaro; Chen, Chuangtian; Komori, Fumio; Shin, Shik

    2016-05-01

    We describe a spin- and angle-resolved photoelectron spectroscopy (SARPES) apparatus with a vacuum-ultraviolet (VUV) laser (hν = 6.994 eV) developed at the Laser and Synchrotron Research Center at the Institute for Solid State Physics, The University of Tokyo. The spectrometer consists of a hemispherical photoelectron analyzer equipped with an electron deflector function and twin very-low-energy-electron-diffraction-type spin detectors, which allows us to analyze the spin vector of a photoelectron three-dimensionally with both high energy and angular resolutions. The combination of the high-performance spectrometer and the high-photon-flux VUV laser can achieve an energy resolution of 1.7 meV for SARPES. We demonstrate that the present laser-SARPES machine realizes a quick SARPES on the spin-split band structure of a Bi(111) film even with 7 meV energy and 0.7(∘) angular resolutions along the entrance-slit direction. This laser-SARPES machine is applicable to the investigation of spin-dependent electronic states on an energy scale of a few meV.

  13. Temperature-Induced Electronic Structure Evolution of ZrTe5 Revealed by High resolution & Laser Angle-Resolved Photoemission Spectroscopy (ARPES)

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Chenlu; Liu, Guodong; Chen, Genfu; Yu, Li; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    The transition metal pentatellurides ZrTe5 have attracted consideration attention since the 70s, due to the unusual transport properties like resistivity peak at ~140K and the sign change of the Hall coefficient and thermopower. The origin of the most peculiar resistivity peak remains controversial. In this talk we will present high resolution angle-resolved photoemission (ARPES) study on the Fermi surface and band structure of ZrTe5, by using our high resolution ARPES system equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer. Upon cooling down, we found a gradual transition from hole-like band into electron-like band around the Brillouin zone center. Such an electron state transition forms the underlying physics for the abnormal transport properties. We will also comment on the possibility of a Dirac semimetal in ZrTe5.

  14. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer.

    PubMed

    Berntsen, M H; Götberg, O; Tjernberg, O

    2011-09-01

    We present an experimental setup for laser-based angle-resolved time-of-flight photoemission. Using a picosecond pulsed laser, photons of energy 10.5 eV are generated through higher harmonic generation in xenon. The high repetition rate of the light source, variable between 0.2 and 8 MHz, enables high photoelectron count rates and short acquisition times. By using a time-of-flight analyzer with angle-resolving capabilities, electrons emitted from the sample within a circular cone of up to ±15° can be collected. Hence, simultaneous acquisition of photoemission data for a complete area of the Brillouin zone is possible. The current photon energy enables bulk sensitive measurements, high angular resolution, and the resulting covered momentum space is large enough to enclose the entire Brillouin zone in cuprate high-T(c) superconductors. Fermi edge measurements on polycrystalline Au shows an energy resolution better than 5 meV. Data from a test measurement of the Au(111) surface state are presented along with measurements of the Fermi surface of the high-T(c) superconductor Bi(2)Sr(2)CaCu(2)O(8 + δ) (Bi2212).

  15. Valence band dispersion measurements of perovskite single crystals using angle-resolved photoemission spectroscopy.

    PubMed

    Wang, Congcong; Ecker, Benjamin R; Wei, Haotong; Huang, Jinsong; Meng, Jian-Qiao; Gao, Yongli

    2017-02-15

    The electronic structure of a cleaved perovskite (CH3NH3PbBr3) single crystal was studied in an ultra-high vacuum (UHV) system using angle-resolved photoemission spectroscopy (ARPES) and inverse photoelectron spectroscopy (IPES). Highly reproducible dispersive features of the valence bands were observed with symmetry about the Brillouin zone center and boundaries. The largest dispersion width was found to be ∼0.73 eV and ∼0.98 eV along the ΓX and ΓM directions, respectively. The effective mass of the holes was estimated to be ∼0.59m0. The quality of the surface was verified using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The elemental composition was investigated using high resolution X-ray photoelectron spectroscopy (XPS). The experimental electronic structure shows a good agreement with the theoretical calculation.

  16. High-resolution angle-resolved photoemission studies of high Tc superconductor Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8

    SciTech Connect

    Liu, Rong.

    1990-09-21

    An angle-resolved photoemission study of the normal and superconducting states in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} was performed. Measurements in the normal state show bands dispersing through the Fermi level from at least 350 meV below E{sub F}. The Fermi level crossings are consistant with local-density band calculation, including a point calculated to be of Bi-O character. Additional measurements were made where bands crossed the Fermi level between 100 and 250K, along with measurements on an adjacent Pt foil. The Fermi edges of both materials agree to within the noise. Below the Fermi level, the spectra show correlation effects on the form of an increased effective mass. The shape of the spectra can be explained by a lifetime-broadened photohole and secondary electrons. The effective inverse photohole lifetime is linear in energy. A superconducting gap has been measured at a number of points where there is density at the Fermi level in the normal state. By proper modeling, a gap of 24 meV was obtained for all these points, including points of Cu-O and Bi-O character respectively, according to band calculation. The lack of gap anisotropy in the basal plane suggests that pinning in this material is not d-wave pairing.

  17. Comparison of models and measurements of angle-resolved scatter from irregular aerosols

    NASA Astrophysics Data System (ADS)

    Milstein, Adam B.; Richardson, Jonathan M.

    2015-01-01

    We have developed and validated a method for modeling the elastic scattering properties of biological and inert aerosols of irregular shape at near- and mid-wave infrared wavelengths. The method, based on Gaussian random particles, calculates the ensemble-average optical cross section and Mueller scattering matrix, using the measured aerodynamic size distribution and previously-reported refractive index as inputs. The utility of the Gaussian particle model is that it is controlled by only two parameters (σ and Γ) which we have optimized such that the model best reproduces the full angle-resolved Mueller scattering matrices measured at λ=1.55 μm in the Standoff Aerosol Active Signature Testbed (SAAST). The method has been applied to wet-generated singlet biological spore samples, dry-generated biological spore clusters, and kaolin. The scattering computation is performed using the Discrete Dipole Approximation (DDA), which requires significant computational resources, and is thus implemented on LLGrid, a large parallel grid computer. For the cases presented, the best fit Gaussian particle model is in good qualitative correspondence with microscopy images of the corresponding class of particles. The measured and computed cross sections agree well within a factor of two overall, with certain cases bearing closer correspondence. In particular, the DDA reproduces the shape of the measured scatter function more accurately than Mie predictions. The DDA-computed depolarization factors are also in good agreement with measurement.

  18. Complete Fermi Surface and Surface State in WTe2 Revealed by High-Resolution Laser-Based Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Zhang, Yan; Liu, Guodong; Mao, Zhiqiang; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    WTe2, an unique transition metal dichalcogenide, attracts considerable attention recently, which shows an extremely large magnetoresistance (MR) with no saturation under very high field. In this talk, we will present our high resolution laser-ARPES study on WTe2. Our distinctive ARPES system is equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer, being featured by super-high energy resolution, simultaneous data acquisition for two-dimensional momentum space and much reduced nonlinearity effect. With this advanced apparatus, the very high quality of electronic structure data are obtained for WTe2 which gives a full picture of the Fermi surface. Meanwhile, the obtained systematic temperature dependence of its electronic state leads us to a better understanding on the origin of large magnetoresistance in WTe2.

  19. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  20. Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry.

    PubMed

    Chalut, Kevin J; Chen, Sulin; Finan, John D; Giacomelli, Michael G; Guilak, Farshid; Leong, Kam W; Wax, Adam

    2008-06-01

    Accurate measurements of nuclear deformation, i.e., structural changes of the nucleus in response to environmental stimuli, are important for signal transduction studies. Traditionally, these measurements require labeling and imaging, and then nuclear measurement using image analysis. This approach is time-consuming, invasive, and unavoidably perturbs cellular systems. Light scattering, an emerging biophotonics technique for probing physical characteristics of living systems, offers a promising alternative. Angle-resolved low-coherence interferometry (a/LCI), a novel light scattering technique, was developed to quantify nuclear morphology for early cancer detection. In this study, a/LCI is used for the first time to noninvasively measure small changes in nuclear morphology in response to environmental stimuli. With this new application, we broaden the potential uses of a/LCI by demonstrating high-throughput measurements and by probing aspherical nuclei. To demonstrate the versatility of this approach, two distinct models relevant to current investigations in cell and tissue engineering research are used. Structural changes in cell nuclei due to subtle environmental stimuli, including substrate topography and osmotic pressure, are profiled rapidly without disrupting the cells or introducing artifacts associated with traditional measurements. Accuracy > or = 3% is obtained for the range of nuclear geometries examined here, with the greatest deviations occurring for the more complex geometries. Given the high-throughput nature of the measurements, this deviation may be acceptable for many biological applications that seek to establish connections between morphology and function.

  1. Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-12-01

    We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.

  2. The band structure of VO2 measured by angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Moreschini, Luca; Chang, Young Jun; Innocenti, Davide; Walter, Andrew L.; Kim, Young Su; Gaines, Geoffrey; Bostwick, Aaron; Denlinger, Jonathan; Rotenberg, Eli

    2011-03-01

    The origin of the 340K metal-insulator transition (MIT) in VO2 is still under debate. the main reason is that no direct experimental verifications of the electronic structure of VO2 exist up to this point. The quality of the available single crystals is not sufficient for ARPES measurements, so that photoemission is limited to angle-integrated mode. New opportunities are offered by oxide films, on which data of equal or even higher quality have been reported (Saeki et al., PRB 2009). WIth the in situ pulsed-laser-deposition (PLD) system available on beamline 7.0.1 at the Advanced Light Source we have grown VO2(001) films on a TiO2 substrate and measured the Fermi surface of the metallic phase. These results will permit a direct comparison with the existing band calculations and open the way to the study of the MIT as a function, e.g., of film thickness or electron doping with Cr. Work supported by U.S. DOE (DE-AC02-05CH11231 for ALS), the Max Planck Society, and the Swiss National Science Foundation (PBELP2-125484).

  3. Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects.

    PubMed

    Tittl, Andreas; Harats, Moshe G; Walter, Ramon; Yin, Xinghui; Schäferling, Martin; Liu, Na; Rapaport, Ronen; Giessen, Harald

    2014-10-28

    Plasmonic devices with absorbance close to unity have emerged as essential building blocks for a multitude of technological applications ranging from trace gas detection to infrared imaging. A crucial requirement for such elements is the angle independence of the absorptive performance. In this work, we develop theoretically and verify experimentally a quantitative model for the angular behavior of plasmonic perfect absorber structures based on an optical impedance matching picture. To achieve this, we utilize a simple and elegant k-space measurement technique to record quantitative angle-resolved reflectance measurements on various perfect absorber structures. Particularly, this method allows quantitative reflectance measurements on samples where only small areas have been nanostructured, for example, by electron-beam lithography. Combining these results with extensive numerical modeling, we find that matching of both the real and imaginary parts of the optical impedance is crucial to obtain perfect absorption over a large angular range. Furthermore, we successfully apply our model to the angular dispersion of perfect absorber geometries with disordered plasmonic elements as a favorable alternative to current array-based designs.

  4. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    SciTech Connect

    Huff, Welcome Rex Anthony

    1996-02-01

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2x2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field Xα scattered wave calculation confirm that the Fe1-Fe2 space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2x2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-ℓ partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5° off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

  5. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  6. Measuring the electronic structure of atomically uniform silver films grown on silicon using angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Speer, Nathan James

    Electronic structures derived from Valence electrons in thin films and at surfaces are often much different from those of their bulk counter parts. When the film thickness is less than the electron-coherence length, the boundary conditions at the surface and interface can give rise to standing-wave-like quantum-well states. Electrons in these states are often described as particles in a box. Confinement in the perpendicular direction gives rise to a quantized band structure along the same direction, where the energy spacing is determined by the film thickness. Changing the film by a single atomic layer can cause properties derived from the band structure to vary like ˜ 1/N , where N is the number of monolayers. Recent advances in thin film techniques have made it possible to fabricate films with atomically uniform thickness. Because the electronic structure is a function of film thickness, such techniques are crucial to efforts for a comprehensive understanding of thin films. In this thesis, the electronic properties of atomically uniform Ag films grown on Si(111) substrates are studied using angle-resolved photoemission spectroscopy (ARPES). Using molecular beam epitaxy (MBE) deposition at low temperatures, we are able to fabricate atomically uniform, ultra-thin Ag films on Si substrates for the first time, and the electronic structures are measured using ARPES. The electrons in these uniform film systems have very long coherence lengths and occupy standing-wave-like quantum-well states that propagate through the film and, surprisingly, can reach deep into the substrate despite a lattice mismatched, incommensurate interface. This interaction with the substrate is so strong that it can produce an electronic interference pattern in the photoemission spectra. As the film thickness increases, the electronic structure evolves to form the bulk band continuum plus separates surfaces states. A careful analysis of this evolution allows us to separate surface from bulk

  7. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  8. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  9. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  10. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  11. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  12. Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography.

    PubMed

    Kim, Sanghoon; Heflin, Stephanie; Kresty, Laura A; Halling, Meredith; Perez, Laura N; Ho, Derek; Crose, Michael; Brown, William; Farsiu, Sina; Arshavsky, Vadim; Wax, Adam

    2016-04-01

    Angle-resolved low coherence interferometry (a/LCI) is an optical technique used to measure nuclear morphology in situ. However, a/LCI is not an imaging modality and can produce ambiguous results when the measurements are not properly oriented to the tissue architecture. Here we present a 2D a/LCI system which incorporates optical coherence tomography imaging to guide the measurements. System design and characterization are presented, along with example cases which demonstrate the utility of the combined measurements. In addition, future development and applications of this dual modality approach are discussed.

  13. Analyzing spatial correlations in tissue using angle-resolved low coherence interferometry measurements guided by co-located optical coherence tomography

    PubMed Central

    Kim, Sanghoon; Heflin, Stephanie; Kresty, Laura A.; Halling, Meredith; Perez, Laura N.; Ho, Derek; Crose, Michael; Brown, William; Farsiu, Sina; Arshavsky, Vadim; Wax, Adam

    2016-01-01

    Angle-resolved low coherence interferometry (a/LCI) is an optical technique used to measure nuclear morphology in situ. However, a/LCI is not an imaging modality and can produce ambiguous results when the measurements are not properly oriented to the tissue architecture. Here we present a 2D a/LCI system which incorporates optical coherence tomography imaging to guide the measurements. System design and characterization are presented, along with example cases which demonstrate the utility of the combined measurements. In addition, future development and applications of this dual modality approach are discussed. PMID:27446664

  14. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  15. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Vriend, N. M.; Sovilla, B.; Keylock, C. J.; Brennan, P.; Ash, M.

    2012-12-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallée de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  16. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  17. High resolution spectroscopy to support atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Smith, Mary Ann H.; Devi, V. Malathy; Rinsland, Curtis P.; Benner, D. Chris; Harvey, Gale A.

    1990-01-01

    Detailed knowledge of the molecular spectra of ozone and other infrared-active atmospheric species is needed for accurate calculation of atmospheric heating and cooling rates in climate models. Remote sensing experiments on the Nimbus-7 satellites and the Spacelab-3 Space Shuttle Mission have shown that space-based measurements of infrared absorption or emission can be used to accurately determine the concentrations and distributions of stratospheric species on a global scale. The objective of this research task is to improve knowledge of the spectroscopic line parameters (positions, intensities, assignments, halfwidths, and pressure-induced shifts) of key atmospheric constituents through laboratory measurements.

  18. High resolution X-ray scattering measurements

    NASA Technical Reports Server (NTRS)

    Zombeck, M. V.; Braeuninger, H.; Ondrusch, A.; Predehl, P.

    1982-01-01

    The results of high angular resolution grazing incidence scattering measurements of highly polished, coated optical flats in the X-ray spectral range of 1.5 to 6.4 keV are reported. The interpretation of these results in terms of surface microtopography is presented and the implications for grazing incidence X-ray imaging are discussed.

  19. High resolution image measurements of nuclear tracks

    NASA Technical Reports Server (NTRS)

    Shirk, E. K.; Price, P. B.

    1980-01-01

    The striking clarity and high contrast of the mouths of tracks etched in CR-39 plastic detectors allow automatic measurement of track parameters to be made with simple image-recognition equipment. Using a commercially available Vidicon camera system with a microprocessor-controlled digitizer, resolution for normally incident C-12 and N-14 ions at 32 MeV/amu equivalent to a 14sigma separation of adjacent charges was demonstrated.

  20. High resolution pollutant measurements in complex urban ...

    EPA Pesticide Factsheets

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced instrumentation, such as a quantum cascade laser utilized to resolve carbon monoxide and real-time optical detection of black carbon. An equally challenging area of development is processing and visualization of complex geospatial air monitoring data to decipher key trends of interest. EPA’s Office of Research and Development staff have applied air monitoring to evaluate community air quality in a variety of environments, including assessing air quality surrounding rail yards, evaluating noise wall or tree stand effects on roadside and on-road air quality, and surveying of traffic-related exposure zones for comparison with land-use regression estimates. ORD has ongoing efforts to improve mobile monitoring data collection and interpretation, including instrumentation testing, evaluating the effect of post-processing algorithms on derived trends, and developing a web-based tool called Real-Time Geospatial Data Viewer (RETIGO) allowing for a simple plug-and-play of mobile monitoring data. Example findings from mobile data sets include an estimated 50% in roadside ultrafine particle levels when immediately downwind of a noise barrier, increases in neighborhood-wide black carbon levels (3

  1. Omnidirectional Measurements of Angle-Resolved Heat Capacity for Complete Detection of Superconducting Gap Structure in the Heavy-Fermion Antiferromagnet UPd_{2}Al_{3}.

    PubMed

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige; Homma, Yoshiya; Aoki, Dai

    2016-07-15

    Quasiparticle excitations in UPd_{2}Al_{3} were studied by means of heat-capacity (C) measurements under rotating magnetic fields using a high-quality single crystal. The field dependence shows C(H)∝H^{1/2}-like behavior at low temperatures for both two hexagonal crystal axes, i.e., H∥[0001] (c axis) and H∥[112[over ¯]0] (a axis), suggesting the presence of nodal quasiparticle excitations from heavy bands. At low temperatures, the polar-angle (θ) dependence of C exhibits a maximum along H∥[0001] with a twofold symmetric oscillation below 0.5 T, and an unusual shoulder or hump anomaly has been found around 30°-60° from the c axis in C(θ) at intermediate fields (1≲μ_{0}H≲2  T). These behaviors in UPd_{2}Al_{3} purely come from the superconducting nodal quasiparticle excitations, and can be successfully reproduced by theoretical calculations assuming the gap symmetry with a horizontal linear line node. We demonstrate the whole angle-resolved heat-capacity measurements done here as a novel spectroscopic method for nodal gap determination, which can be applied to other exotic superconductors.

  2. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology.

    PubMed

    Zhu, Yizheng; Terry, Neil G; Woosley, John T; Shaheen, Nicholas J; Wax, Adam

    2011-01-01

    We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.3-m-long coherent fiber bundle and is compatible with the standard 2.8-mm-diam biopsy channel of a gastroscope. The probe allows for real-time data acquisition by collecting the scattering from multiple angles in parallel, enabled by the Fourier domain approach. The performance of the probe is characterized through measurement of critical parameters. The depth-resolved sizing capability of the system is demonstrated using single- and double-layer microsphere phantoms with subwavelength sizing precision and accuracy achieved. Initial results from a clinical feasibility test are also presented to show in vivo application in the human esophagus.

  3. Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology

    NASA Astrophysics Data System (ADS)

    Zhu, Yizheng; Terry, Neil G.; Woosley, John T.; Shaheen, Nicholas J.; Wax, Adam

    2011-01-01

    We present a novel Fourier-domain angle-resolved low-coherence interferometry (a /LCI) fiber probe designed for in vivo clinical application in gastrointestinal endoscopy. The a/LCI technique measures the depth-resolved angular scattering distribution to determine the size distribution and optical density of cell nuclei for assessing the health of epithelial tissues. Clinical application is enabled by an endoscopic fiber-optic probe that employs a 2.3-m-long coherent fiber bundle and is compatible with the standard 2.8-mm-diam biopsy channel of a gastroscope. The probe allows for real-time data acquisition by collecting the scattering from multiple angles in parallel, enabled by the Fourier domain approach. The performance of the probe is characterized through measurement of critical parameters. The depth-resolved sizing capability of the system is demonstrated using single- and double-layer microsphere phantoms with subwavelength sizing precision and accuracy achieved. Initial results from a clinical feasibility test are also presented to show in vivo application in the human esophagus.

  4. Angle-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Desjardins, Adrien Emmanuel

    Optical coherence tomography (OCT) has emerged as a powerful tool for probing the microstructure of biological tissue non-invasively at high-speed. OCT measures depth-resolved reflectance of infrared light, generating cross-sectional images non-invasively with micron-scale resolution. As with other imaging modalities that employ coherent detection, OCT images are confounded by speckle noise. Speckle imposes a grainy texture on images that reduces the signal-to-noise ratio to near unity values. As a result, it conceals subtle differences in scattering properties known to be crucial for differentiating normal from diseased tissue states. In this thesis, we developed a novel OCT modality called "Angle-Resolved OCT" in which depth scans (A-lines) are obtained simultaneously from a broad range of backscattering angles. We demonstrated that high levels of speckle reduction can be achieved by averaging the magnitudes of A-lines corresponding to the same transverse locations. With both experimental and analytic approaches, we demonstrated that this averaging method does not lead to a substantial loss in spatial resolution. We developed two different imaging systems for performing Angle-Resolved OCT. With the first system, angular data was acquired simultaneously; with the second, it was acquired sequentially. The first system had superior speckle-reduction capabilities but image quality degraded significantly with small sample movements. The second system allowed for in vivo imaging, as demonstrated with Resolved OCT systems, the speckle-reduced images showed hitherto unprecedented delineation of tissue microstructure.

  5. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  6. Arterial diameter measurement using high resolution ultrasonography: in vitro validation.

    PubMed

    Brum, Javier; Bia, Daniel; Benech, Nicolas; Balay, Guillermo; Armentano, Ricardo L; Negreira, Carlos

    2011-01-01

    Simultaneous measurement of pressure and diameter in blood vessels or vascular prosthesis is of great importance in cardiovascular research. Knowledge of diameter changes as response to intravascular pressure is the basis to estimate the biomechanical properties of blood vessel. In this work a new method to quantify arterial diameter based in high resolution ultrasonography is proposed. Measurements on an arterial phantom placed on a cardiovascular simulator were performed. The results were compared to sonomicrometry measurements considered as gold standard technique. The obtained results indicate that the new method ensure an optimal diameter quantification. This method presents two main advantages respect to sonomicrometry: is noninvasive and the vessel wall strain can be measured directly.

  7. Angle-resolved photoemission extended fine structure

    SciTech Connect

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  8. Multifractal analysis of high resolution solar wind proton density measurements

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.

  9. Bulk Electronic Structure of Superconducting LaRu2P2 Single Crystals Measured by Soft-X-Ray Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Razzoli, E.; Kobayashi, M.; Strocov, V. N.; Delley, B.; Bukowski, Z.; Karpinski, J.; Plumb, N. C.; Radovic, M.; Chang, J.; Schmitt, T.; Patthey, L.; Mesot, J.; Shi, M.

    2012-06-01

    We present a soft x-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. However, it is significantly different from its counterpart in high-temperature superconducting Fe pnictides. In particular, the bandwidth renormalization present in the Fe pnictides (˜2-3) is negligible in LaRu2P2 even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu2P2 has a different origin with respect to the iron pnictides. Finally, we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.

  10. Wind measurements with the High Resolution Doppler Imager (HRDI)

    NASA Technical Reports Server (NTRS)

    Skinner, W. R.; Hays, P. B.; Abreu, V. J.

    1985-01-01

    The Upper Atmosphere Research Satellite (UARS), to be launched in 1989, is to provide a global data set required to understand the mechanisms controlling upper atmosphere structure and processes, as well as the response of the upper atmosphere to natural and human perturbations. The High Resolution Doppler Imager (HRDI) is the primary instrument for measuring the dynamics of the stratosphere and mesosphere. The goal of HRDI is to measure wind velocities in the stratosphere and mesosphere during the day and the mesosphere and thermosphere at night with an accuracy of 5 m/sec. HRDI will determine winds by measuring Doppler shifts of atmosphere absorption and emission features. Line of sight winds will be taken in two directions, thus allowing the wind vector to be formed. The HRDI instrument is overviewed. The basis of the measurement is explained, as is an outline of the instrument. Since neither instrument nor observational techniques is fully mature, only a brief sketch is presented.

  11. Measuring Large-Scale Social Networks with High Resolution

    PubMed Central

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359

  12. Wide and high resolution tension measurement using FRET in embryo

    PubMed Central

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  13. Determining Small Scale Albedos Using High Resolution Multiangle Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Markowski, G. R.; Davies, R.

    2005-05-01

    Current satellite short-wave (SW) albedo measurements, such as CERES's, have only a broad spatial resolution and cannot by themselves accurately measure reflectance (roughly solar "forcing") on small space and time scales. The major difficulty is that earth's surface reflectivity, including the atmosphere and clouds, is substantially anisotropic. However, accurate regional and time-dependent albedos are needed for studying causes of climate variability and change, and improving models from global to at least cloud resolving scales. A first step to obtain these albedos, for which we show results, is to accurately relate (and verify) the high resolution spatial and angular surface narrow-band MISR (Multi-Angle Imaging Spectroradiometer) radiance measurements aboard the Terra satellite to coincident total shortwave broadband (SWB) low resolution measurements from the onboard CERES instrument. Because MISR measures radiance of the same points along an orbital swath, it becomes possible to check and improve Angular (reflection) Distribution Models (ADMs) at small scales (< 1 km). The ADMs can later be used to invert a measured angular radiance to a local albedo. The difficulty lies in obtaining accurate ADMs for earth's highly varied surface and lighting conditions. We show prediction accuracy examples of CERES SWB vs. single and multiple band MISR data regressions. We include view angle dependence (9 angles: nadir plus 26, 46, 60, and 70 degrees fore and aft) and show improved accuracy when surface data, e.g., solar zenith and scattering angle, and surface type are included. In many cases, we predict angular (bidirectional) reflectance to ~ 0.01, or about 10 watts/sq m in irradiance. We also show examples of "difficult" scene types, such as varying levels of broken clouds, where accuracy degrades by a factor of ~2.

  14. High-resolution measurements of humidity and temperature with lidar

    NASA Astrophysics Data System (ADS)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  15. Spectral angle resolved scattering of thin film coatings.

    PubMed

    Schröder, Sven; Unglaub, David; Trost, Marcus; Cheng, Xinbin; Zhang, Jinlong; Duparré, Angela

    2014-02-01

    The light scattering of interference coatings is strongly dependent on the wavelength. In addition to the general strong increase of scattering as the wavelengths get shorter, dramatic scatter effects in and around the resonance regions can occur. This is discussed in detail for highly reflective and chirped mirrors. A new instrument is presented which enables spectral angle resolved scatter measurements of high-quality optical components to be performed between 250 and 1500 nm.

  16. High-resolution optical fiber heterodyne interferometer for measuring displacement

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Jia; Cao, Mang; Li, Dacheng

    1990-07-01

    Many Methods have been developed to .easure displace.ent with high accuracy, for exap1e, with a dual frequency laser interferometer (AC interferometer) and an classic interferoseter (DC interferoeter) which use a stabilized laser and fringe counter, and an AC interfero.eter has ore advantage over the DC one. An AC interfero.eter with a Zee.an laser can get a high resolution, in the order of nanoMeters, but its resolution extension liRited by nonlinear relation between phase and displace.ent which caused by the two-frequency coRponents in interferoaeter[1]. Because the fundaaental length scale of the interferometer is the wavelength of the light source in the air. The accuracy of an interferoeter is li.ited by the operating envireaent, teRperature, husidity, pressure, etc. because the aiRs of interferoseters expose in the air. A high resolution optical fiber heterodyne interfermeter is described in the paper.

  17. Joint Measurements of Terahertz Wave Generation and High-Harmonic Generation from Aligned Nitrogen Molecules Reveal Angle-Resolved Molecular Structures

    NASA Astrophysics Data System (ADS)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We report the synchronized measurements of terahertz wave generation and high-harmonic generation from aligned nitrogen molecules in dual-color laser fields. Both yields are found to be alignment dependent, showing the importance of molecular structures in the generation processes. By calibrating the angular ionization rates with the terahertz yields, we present a new way of retrieving the angular differential photoionization cross section (PICS) from the harmonic signals which avoids specific model calculations or separate measurements of the alignment-dependent ionization rates. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures.

  18. Angle-resolved diffraction grating biosensor based on porous silicon

    NASA Astrophysics Data System (ADS)

    Lv, Changwu; Jia, Zhenhong; Liu, Yajun; Mo, Jiaqing; Li, Peng; Lv, Xiaoyi

    2016-03-01

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  19. Kramer-Pesch approximation for analyzing field-angle-resolved measurements made in unconventional superconductors: a calculation of the zero-energy density of states.

    PubMed

    Nagai, Yuki; Hayashi, Nobuhiko

    2008-08-29

    By measuring the angular-oscillations behavior of the heat capacity with respect to the applied field direction, one can detect the details of the gap structure. We introduce the Kramer-Pesch approximation as a new method to analyze the field-angle-dependent experiments, which improves the previous Doppler-shift technique. We show that the Fermi-surface anisotropy is an indispensable factor for identifying the superconducting gap symmetry.

  20. Kramer-Pesch Approximation for Analyzing Field-Angle-Resolved Measurements Made in Unconventional Superconductors: A Calculation of the Zero-Energy Density of States

    NASA Astrophysics Data System (ADS)

    Nagai, Yuki; Hayashi, Nobuhiko

    2008-08-01

    By measuring the angular-oscillations behavior of the heat capacity with respect to the applied field direction, one can detect the details of the gap structure. We introduce the Kramer-Pesch approximation as a new method to analyze the field-angle-dependent experiments, which improves the previous Doppler-shift technique. We show that the Fermi-surface anisotropy is an indispensable factor for identifying the superconducting gap symmetry.

  1. HIGH RESOLUTION EMITTANCE MEASUREMENTS AT SNS FRONT END

    SciTech Connect

    Aleksandrov, Alexander V; Zhukov, Alexander P

    2013-01-01

    The Spallation Neutron Source (SNS) linac accelerates an H- beam from 2.5MeV up to 1GeV. Recently the emittance scanner in the MEBT (2.5 MeV) was upgraded. In addition to the slit - harp measurement, we now can use a slit installed on the same actuator as the harp. In combination with a faraday cup located downstream in DTL part of the linac, it represents a classical slit-slit emittance measurement device. While a slit slit scan takes much longer, it is immune to harp related problems such as wire cross talk, and thus looks promising for accurate halo measurements. Time resolution of the new device seems to be sufficient to estimate the amount of beam in the chopper gap (the scanner is downstream of the chopper), and probably to measure its emittance. This paper describes the initial measurements with the new device and some model validation data.

  2. High resolution measurement of water levels in optical components

    NASA Astrophysics Data System (ADS)

    Murrieta-Rico, Fabian N.; Petranovskii, Vitalii; Sergiyenko, Oleg; Hernandez-Balbuena, Daniel; Raymond-Herrera, Oscar

    2016-09-01

    Systems for optical analysis use vacuum chambers, where low pressures are reached. Remaining water molecules are the prevalent contaminant in high vacuum chambers. For this reason measurement of water levels is an important task that allows correct equipment operation. In this work, a different approach is presented for detecting and quantifying the water molecules inside a the vacuum chamber used in optical systems. A zeolite coated quartz crystal microbalance is used for detecting the water molecules, and the change in the resonance frequency is measured using a novel technique known as the principle of rational approximations. Theoretical results show how nanograms of adsorbed molecules are measured, and the number of molecules are quantified.

  3. High-resolution near-field measurements of microwave circuits

    NASA Astrophysics Data System (ADS)

    Kantor, R.; Shvets, I. V.

    2004-04-01

    In this paper we report on measurements of electric field intensities of microwave field above surface of microwave circuits using miniaturized coaxial antennas. During the scanning process the antenna is driven at various distances above the sample surface according to topographic data acquired prior to the field measurement. A position/signal difference method is used to increase the spatial resolution of the antenna to about 20 μm (λ/104) -- one order of magnitude better than contemporary microwave scanning systems. For measurement of the tangential field components parallel to the sample surface the antenna is tilted by about 45° relative to the sample surface. By its rotation about the vertical axis various components of the field are measured, vertical and horizontal electric field intensities are recalculated. Performance of our scanning system utilizing these methods is tested using a PCB surface capacitor, a microstrip filter and a microstrip transmission line.

  4. High resolution wind measurements for offshore wind energy development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son Van (Inventor); Neumann, Gregory (Inventor)

    2013-01-01

    A method, apparatus, system, article of manufacture, and computer readable storage medium provide the ability to measure wind. Data at a first resolution (i.e., low resolution data) is collected by a satellite scatterometer. Thin slices of the data are determined. A collocation of the data slices are determined at each grid cell center to obtain ensembles of collocated data slices. Each ensemble of collocated data slices is decomposed into a mean part and a fluctuating part. The data is reconstructed at a second resolution from the mean part and a residue of the fluctuating part. A wind measurement is determined from the data at the second resolution using a wind model function. A description of the wind measurement is output.

  5. High resolution redox potential measurements: techniques, interpretation and value

    NASA Astrophysics Data System (ADS)

    Vorenhout, Michel; van der Geest, Harm G.

    2013-04-01

    The ongoing improvement of techniques for the in situ measurement of redox potentials has led to a large number of studies on redox variability in various environments. These studies originate from a wide array of scientific disciplines, amongst which ecology (sediment biogeochemistry), environmental chemistry (degradation studies) and archaeology (in situ preservation). To gain insight in the potential applications, this paper presents three examples of studies in which a newly developed measurement technique was used in soils and where spatial and temporal variation plays an important role. The first one is a microcosm study on the effects of biota on the dynamics of redox conditions in the toplayer of aquatic sediments, showing that the presence of microbiota has a direct influence on biogeochemical parameters. The second is the study of the redox potential in the world heritage site of Bryggen (Bergen, NO) that is under threat of oxidation. The oxidation, caused by a lowered groundwater table, causes soil degradation and unstable conditions for the monumental buildings of the Medieval site. The third study shows variability in a sandy flood plain in Bangladesh, where redox processes dictate the environmental behaviour of Arsenic. This toxic metal is present in many wells used for drinking water, but shows very local variation in dissolution dynamics. In these three studies, continuous measurements of (changes in) redox conditions revealed a strong variability in these systems and consequences for the interpretation of single point measurements or low frequency sampling campaigns are discussed. In these and many other cases, the continuous measurement of the redox potential in soil media will aid in the understanding of the system under study.

  6. High resolution DNA content measurements of mammalian sperm

    SciTech Connect

    Pinkel, D.; Lake, S.; Gledhill, B.L.; Van Dilla, M.A.; Stephenson, D.; Watchmaker, G.

    1982-01-01

    The high condensation and flat shape of the mammalian sperm nucleus present unique difficulties to flow cytometric measurement of DNA content. Chromatin compactness makes quantitative fluorescent staining for DNA difficult and causes a high index of refraction. The refractive index makes optical measurements sensitive to sperm head orientation. We demonstrate that the optical problems can be overcome using the commercial ICP22 epiillumination flow cytometer (Ortho Instruments, Westwood, MA) or a specially built cell orientating flow cytometer (OFCM). The design and operation of the OFCM are described. Measurements of the angular dependence of fluorescence from acriflavine stained rabbit sperm show that it is capable of orienting flat sperm with a tolerance of +-7/sup 0/. Differences in the angular dependence for the similarly shaped bull and rabbit sperm allow discrimination of these cells. We show that DNA staining with 4-6 diamidino-2-phenylindole (DAPI) or an ethidium bromide mithramycin combination allows resolution of the X and Y populations in mouse sperm. They have also been successful with sperm from the bull, ram, rabbit, and boar. Reliable results with human sperm are not obtained. The accuracy of the staining and measurement techniques are verified by the correct determination of the relative content of these two populations in sperm from normal mice and those with the Cattanach (7 to X) translocation. Among the potential uses of these techniques are measurement of DNA content errors induced in sperm due to mutagen exposure, and assessment of the fractions of X and Y sperm in semen that may have one population artifically enriched.

  7. High Resolution Viscosity Measurement by Thermal Noise Detection.

    PubMed

    Sandoval, Felipe Aguilar; Sepúlveda, Manuel; Bellon, Ludovic; Melo, Francisco

    2015-11-03

    An interferometric method is implemented in order to accurately assess the thermal fluctuations of a micro-cantilever sensor in liquid environments. The power spectrum density (PSD) of thermal fluctuations together with Sader's model of the cantilever allow for the indirect measurement of the liquid viscosity with good accuracy. The good quality of the deflection signal and the characteristic low noise of the instrument allow for the detection and corrections of drawbacks due to both the cantilever shape irregularities and the uncertainties on the position of the laser spot at the fluctuating end of the cantilever. Variation of viscosity below 0:03mPa·s was detected with the alternative to achieve measurements with a volume as low as 50 µL.

  8. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, Peter

    1992-01-01

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity.

  9. Toroidal magnetic detector for high resolution measurement of muon momenta

    DOEpatents

    Bonanos, P.

    1992-01-07

    A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

  10. High Resolution Thermal Conductivity Measurements of Wide Gap Semiconductors

    NASA Astrophysics Data System (ADS)

    Pollak, Fred

    2002-03-01

    Despite the considerable amount of work on the electronic, optical, and structural properties of wide gap semiconductors (e.g. GaN, AlN, SiC, ZnO) relatively few thermal conductivity (κ)results have been reported. κ is a function of both intrinsic (anharmonic phonon-phonon scattering) and extrinsic (phonon scattering by dislocations, imputities, process-induced damage). Thus κ provides a measure of a material's quality and hence is important from both applied (device heat management, sample quality) and fundamental perspectives. κ can be evaluated by a number of methods including steady-state longitudinal heat flow, modified Angstrom's method, optical pump-probe, laser flash, third harmonic, and scanning thermal microscopy (SThM). With the exception of SThM these approaches require either contacts (destructive) and/or samples thicker than about 100 microns. SThM is essentially nondestructive. flexible, and has a spatial/depth resolution of 2-3 microns. The latter is important for examining low-defect techniques such as LEO in addition to mapping variations in κ across a wafer. This talk will review recent SThM thermal conductivity results on (0001) GaN [LEO (2.0-2.1 W/cm-K), for OMCVD materials sample thickness, n-type doping, grain boundaries, process-induced effects], thick free standing films of (0001) AlN (3.0-3.3 W/cm-K), (0001) SiC wafers including mapping (3.8-3.9 W/cm-K), and the Zn (1.16 W/cm-K) and O (1.02 W/cm-K) faces of bulk (0001) ZnO. Work supported by ONR contract N00014-99-C-0663 administered by Dr. Colin Wood

  11. Small-size, high-resolution angular displacement measurement technology based on an imaging detector.

    PubMed

    Yu, Hai; Wan, Qiuhua; Lu, Xinran; Du, Yingcai; Yang, Shouwang

    2017-01-20

    It is challenging to design a photoelectric encoder that is small in size while ensuring it has sufficiently high resolution and accuracy. Traditional displacement measurement via the moiré fringe signal does not facilitate high resolution at small grate sizes; photoelectric and digital photo processing can significantly improve the angle measurement resolution over traditional techniques. The primary focus of this paper includes grating displacement coding and decoding, as well as the corresponding high-resolution subdivision and measurement error factors. A small-size absolute photographic encoder was designed (50 mm diameter) that exhibits resolution of 1.24'' (20 bit) with a standard deviation of error of 14.3''. The results presented here may provide a theoretical and technological foundation for further research on small-size, high-resolution photographic rotary encoders.

  12. Angle resolved photoemission spectroscopy and surface states

    NASA Astrophysics Data System (ADS)

    Kar, Nikhiles

    2016-10-01

    Angle Resolved Photo Emission Spectroscopy (ARPES) has been a very effective tool to study the electronic states of solids, from simple metals to complex systems like cuprate superconductors. For photon energy in the range of 10 - 100 eV, it is a surface sensitive process as the free path of the photo emitted electrons is of the order of a few lattice parameters. However to interpret the experimental data one needs to have a theoretical foundation for the photoemission process. From the theory of photoemission it may be seen that one can get information about the state from which the electron has been excited. As the translational periodicity is broken normal to the surface, a new type of electron state in the forbidden energy gap can exist localized in the surface region. ARPES can reveal the existence and the property of such surface states. We shall also discuss briefly how the electromagnetic field of the photons are influenced by the presence of the surface and how one can try to take that into account in photoemission theory.

  13. Tachometer Derived From Brushless Shaft-Angle Resolver

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Smith, Dennis A.

    1995-01-01

    Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.

  14. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    SciTech Connect

    Vaskuri, Anna Kärhä, Petri; Heikkilä, Anu

    2015-10-15

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with a silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3–8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.

  15. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials.

    PubMed

    Vaskuri, Anna; Kärhä, Petri; Heikkilä, Anu; Ikonen, Erkki

    2015-10-01

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with a silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3-8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.

  16. High-resolution setup for measuring wavelength sensitivity of photoyellowing of translucent materials

    NASA Astrophysics Data System (ADS)

    Vaskuri, Anna; Kärhä, Petri; Heikkilä, Anu; Ikonen, Erkki

    2015-10-01

    Polystyrene and many other materials turn yellow when exposed to ultraviolet (UV) radiation. All photodegradation mechanisms including photoyellowing are functions of the exposure wavelength, which can be described with an action spectrum. In this work, a new high-resolution transmittance measurement setup based on lasers has been developed for measuring color changes, such as the photoyellowing of translucent materials aged with a spectrograph. The measurement setup includes 14 power-stabilized laser lines between 325 nm and 933 nm wavelengths, of which one at a time is directed on to the aged sample. The power transmitted through the sample is measured with a silicon detector utilizing an integrating sphere. The sample is mounted on a high-resolution XY translation stage. Measurement at various locations aged with different wavelengths of exposure radiation gives the transmittance data required for acquiring the action spectrum. The combination of a UV spectrograph and the new high-resolution transmittance measurement setup enables a novel method for studying the UV-induced ageing of translucent materials with a spectral resolution of 3-8 nm, limited by the adjustable spectral bandwidth range of the spectrograph. These achievements form a significant improvement over earlier methods.

  17. High-resolution gamma-ray measurement systems using a compact electro- mechanically cooled detector system and intelligent software

    SciTech Connect

    Buckley, W.M.; Carlson, J.B.; Neufeld, K.W.

    1995-09-27

    Obtaining high-resolution gamma-ray measurements using high-purity germanium (HPGe) detectors in the field has been of limited practicality due to the need to use and maintain a supply of liquid nitrogen (LN{sub 2}). This same constraint limits high-resolution gamma measurements in unattended safeguards or treaty Verification applications. We are developing detectors and software to greatly extend the applicability of high-resolution germanium-based measurements for these situations.

  18. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    NASA Astrophysics Data System (ADS)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  19. Comparative Analysis of two Methods for High-Resolution Differential Conductance Measurement

    NASA Astrophysics Data System (ADS)

    Cusick, David; Naito, Michio; Ramos, Roberto

    We compare two methods of differential conductance measurement. The first is a traditional method in which current and voltage data is acquired via four-wire measurement, then averaged and differentiated numerically. The second method calculates dI / dV in real time by superimposing a small DC signal dI on the input step function, alternating between addition and subtraction of the signal with each step, then averaging the small signal voltage response over three steps to obtain dV . This requires two instruments: a DC current source and a high-resolution voltmeter. Keithley Instruments has commercially promoted the Keithley 622x current source and 2182A nanovoltmeter as means to achieve this measurement; we therefore refer to it as the Keithley method. We compare the two methods by performing high-resolution measurements of the energy gap of MgB2 thin film Josephson junctions. We show that the Keithley method has advantages of cleaner data, easier implementation, and overall faster data collection, but may lack the traditional method's high resolution. R.C.R. acknowledges support from National Science Foundation Grant # DMR-1555775.

  20. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  1. High-Resolution UV Holography Lens for Particle Size Distribution Measurements

    SciTech Connect

    Malone, Morris Kaufman; Capelle, Gene; Grover, Mike; Sorenson, Dan; Pazuchanics, Pete

    2010-01-01

    A high-resolution UV holography relay lens, shown in Figure 1, has been developed for measuring particle size distributions down to 0.5 μm in a 12-mm-diameter by 5-mm-thick volume. This work has been selected by an independent judging panel and editors of R&D Magazine as a recipient of a 2009 R&D 100 Award. This award recognizes the 100 most technologically significant products introduced during the past year.

  2. High-resolution measurement of fiber length by using a mode-locked fiber laser configuration.

    PubMed

    Hu, Y L; Zhan, L; Zhang, Z X; Luo, S Y; Xia, Y X

    2007-06-15

    A simple method to precisely measure fiber length has been experimentally demonstrated by using a mode-locked fiber laser configuration. Since the transit time in a cavity is exactly proportional to the cavity length, it is easy to obtain the fiber length from the generation of mode-locked pulses in the fiber laser with a long-range nonlinear optical loop mirror that includes the measured fiber. Our new method has a large measurement range, over hundreds of kilometers, and a high resolution, of the order of centimeters, as well as no measurement dead zone.

  3. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values

    NASA Astrophysics Data System (ADS)

    Alderman, D. W.

    1998-12-01

    A sensitive, high-resolution 'FIREMAT' two-dimensional (2D) magic-angle-turning experiment is described that measures chemical shift tensor principal values in powdered solids. The spectra display spinning-sideband patterns separated by their isotropic shifts. The new method's sensitivity and high resolution in the isotropic-shift dimension result from combining the 5pi magic-angle-turning pulse sequence, an extension of the pseudo-2D sideband-suppression data rearrangement, and the TIGER protocol for processing 2D data. TPPM decoupling is used to enhance resolution. The method requires precise synchronization of the pulses and sampling to the rotor position. It is shown that the technique obtains 35 natural-abundance 13C tensors from erythromycin in 19 hours, and high quality naturalabundance 15N tensors from eight sites in potassium penicillin V in three days on a 400MHz spectrometer.

  4. High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings.

    PubMed

    Daou, Ramzy; Weickert, Franziska; Nicklas, Michael; Steglich, Frank; Haase, Ariane; Doerr, Mathias

    2010-03-01

    We report on a new high resolution apparatus for measuring magnetostriction suitable for use at cryogenic temperatures in pulsed high magnetic fields which we have developed at the Hochfeld-Magnetlabor Dresden. Optical fiber strain gauges based on fiber Bragg gratings are used to measure the strain in small (approximately 1 mm) samples. We describe the implementation of a fast measurement system capable of resolving strains in the order of 10(-7) with a full bandwidth of 47 kHz, and demonstrate its use on single crystal samples of GdSb and GdSi.

  5. Sulphur Dioxide: High Resolution Ultra-Violet Photoabsorption Cross Section Measurements at 200K.

    NASA Astrophysics Data System (ADS)

    Blackie, D.; Blackwell-Whitehead, R.; Stark, G.; Pickering, J. C.; Rufus, J.; Thorne, A.; Smith, P. L.

    2007-12-01

    Sulphur Dioxide plays an important role not only within the Earth's atmosphere but also within the complex chemistry of both the upper atmosphere of Venus and the volcanically active Jovian moon Io. The lack of high resolution laboratory studies has prevented the full, accurate determination of absorption cross sections which are the basis for reliable photochemical models. High resolution laboratory measurements of SO2 are essential to resolve the complex SO2 spectrum and yield accurate photoabsorption cross sections. Using the Imperial College UV Fourier Transform Spectrometer new high resolution (λ/δλ ~ 450,000) measurements have been recorded over a range of temperatures and pressures. As part of an on-going series of measurements, current laboratory work focused on photoabsorption cross sections of SO2 at 200K across the wavelength range 220 → 325 nm. These measurements not only compliment previous room temperature measurements obtained at Imperial College in the 190 → 220 nm and 220 → 328 nm ranges (Stark et al., JGR Planets 104, 16, 585 (1999) and Rufus et al.,( JGR Planets 108, 2, 5 (2003)), but also coincide with the wavelength regions being recorded by the Venus Express mission through the UV-IR spectrometer SPICAV (ESA-SCI(2001)6). Our new measurements will allow accurate analysis of the chemical processes in the upper atmosphere of Venus. These absorption cross section measurements are the first to be acquired at this resolution, temperature and pressure. Results will be presented. This work was supported in part by NASA Grant NNG05GA03G, PPARC (UK), and the Leverhulme Trust.

  6. Materials characterisation by angle-resolved scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F.; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-01

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1‑x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1‑x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16–255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  7. Materials characterisation by angle-resolved scanning transmission electron microscopy

    PubMed Central

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F.; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-01-01

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1−x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1−x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16–255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering. PMID:27849001

  8. Materials characterisation by angle-resolved scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-16

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaNxAs1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with GexSi1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  9. High-Resolution Group Quantization Phase Processing Method in Radio Frequency Measurement Range

    NASA Astrophysics Data System (ADS)

    Du, Baoqing; Feng, Dazheng; Tang, Yaohua; Geng, Xin; Zhang, Duo; Cai, Chaofeng; Wan, Maoquan; Yang, Zhigang

    2016-07-01

    Aiming at the more complex frequency translation, the longer response time and the limited measurement precision in the traditional phase processing, a high-resolution phase processing method by group quantization higher than 100 fs level is proposed in radio frequency measurement range. First, the phase quantization is used as a step value to quantize every phase difference in a group by using the fixed phase relationships between different frequencies signals. The group quantization is formed by the results of the quantized phase difference. In the light of frequency drift mainly caused by phase noise of measurement device, a regular phase shift of the group quantization is produced, which results in the phase coincidence of two comparing signals which obtain high-resolution measurement. Second, in order to achieve the best coincidences pulse, a subtle delay is initiatively used to reduce the width of the coincidences fuzzy area according to the transmission characteristics of the coincidences in the specific medium. Third, a series of feature coincidences pulses of fuzzy area can be captured by logic gate to achieve the best phase coincidences information for the improvement of the measurement precision. The method provides a novel way to precise time and frequency measurement.

  10. High resolution and stability roll angle measurement method for precision linear displacement stages

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  11. High-resolution surface temperature measurements on rotating turbine blades with an infrared pyrometer

    NASA Technical Reports Server (NTRS)

    Uguccini, O. W.; Pollack, F. G.

    1976-01-01

    A high-resolution pyrometer was developed and tested on a modified turbine engine. The pyrometer was used to obtain temperature profiles of the viewed surface of turbine blades in the engine at tip speeds up to 366 meters per second. The combination of coherent fiber optics, a silicon avalanche detector, and high-speed electronics enabled surface resolution of a spot diameter of 0.05 centimeter. The data, in the form of temperature profiles, was obtained in near real time as a hard copy output from a computer display terminal. Temperatures measured with the pyrometer and with thermocouples agreed within 2 percent at temperatures between 977 to 1144 K.

  12. Pharyngeal swallow adaptations to bolus volume measured with high resolution manometry

    PubMed Central

    Hoffman, Matthew R.; Ciucci, Michelle R.; Mielens, Jason D.; Jiang, Jack J.; McCulloch, Timothy M.

    2012-01-01

    Objective To determine the effect of bolus volume on pharyngeal swallowing using high resolution manometry (HRM). Study design Repeated measures with subjects serving as own controls. Methods Twelve subjects swallowed four bolus volumes in the neutral head position: saliva; 5 ml water; 10 ml water; and 20 ml water. Pressure measurements were taken along the length of the pharynx using a high resolution manometer, with emphasis placed on the velopharynx, tongue base, and upper esophageal sphincter (UES). Variables were analyzed across bolus volumes using three-way repeated measures analysis of co-variance (ANCOVA) investigating the effect of sex, bolus volume, and pharynx length. Pearson’s product moment tests were performed to evaluate how pharyngeal pressure and timing events changed across bolus volume. Results Velopharyngeal duration, maximum tongue base pressure, tongue base pressure rise rate, UES opening duration, and total swallow duration varied significantly across bolus volume. Sex did not have an effect, while pharynx length appeared to affect tongue base pressure duration. Maximum velopharyngeal pressure and minimum UES pressure had a direct relationship with bolus volume, while maximum tongue base pressure had an inverse relationship. Velopharyngeal pressure duration, UES opening duration, and total swallow duration increased as bolus volume increased. Conclusions Differences in pharyngeal pressures and timing of key pressure events were detected across varying bolus volumes. Knowing the relationships between bolus volume and pharyngeal pressure activity can be valuable when diagnosing and treating dysphagic patients. Level of evidence N/A. PMID:21108425

  13. High-resolution measurement of absolute {alpha}-decay widths in {sup 16}O

    SciTech Connect

    Wheldon, C.; Ashwood, N. I.; Barr, M.; Curtis, N.; Freer, M.; Kokalova, Tz.; Malcolm, J. D.; Spencer, S. J.; Ziman, V. A.; Faestermann, Th.; Kruecken, R.; Wirth, H.-F.; Hertenberger, R.; Lutter, R.; Bergmaier, A.

    2011-06-15

    By using a large-acceptance position-sensitive silicon detector array in coincidence with the high-resolution Munich Q3D spectrograph, unambiguous measurements have been made of the absolute {alpha}-particle decay widths from excited states in {sup 16}O* in the energy range 13.85 to 15.87 MeV. Carbon targets have been bombarded with 42-MeV {sup 6}Li beams to induce {sub 6}{sup 12}C({sub 3}{sup 6}Li, d){sub 8}{sup 16}O* reactions. The deuteron ejectiles were measured in the Q3D and the results gated by {sup 4}He+{sup 12}C breakup products detected in the silicon array, the efficiency of which was modeled using Monte Carlo simulations. By comparing total population and breakup-gated spectra, the following absolute {alpha}-decay widths have been measured with high resolution: {Gamma}{sub {alpha}}0/{Gamma}{sub tot} = 0.87{+-}0.11 (13.980 MeV), 1.04{+-}0.15 (14.302 MeV), 0.92{+-}0.10 (14.399 MeV), 0.59{+-}0.04 (14.815 MeV), 0.88{+-}0.18 (15.785 MeV), and {Gamma}{sub {alpha}}1/{Gamma}{sub tot}=1.14{+-}0.08 (14.660 MeV), 0.46{+-}0.06 (14.815 MeV).

  14. Reconstructing seasonal climate from high-resolution carbon and oxygen isotope measurements across tree rings

    NASA Astrophysics Data System (ADS)

    Schubert, B.; Jahren, H.

    2014-12-01

    Intra-annual records of carbon (δ13C) and oxygen (δ18O) isotope measurements across tree rings reveal significant changes in δ13C and δ18O value across each growing season. We previously found that across a broad range of climate regimes, the seasonal change in δ13C measured within tree rings reflects changes in seasonal precipitation amount, and demonstrated its utility for quantifying seasonal paleo-precipitation from non-permineralized, fossil wood. Here we produce an equation relating intra-ring changes in δ18O to seasonal changes in temperature and precipitation amount, but the equation yields for unknowns (summer and winter precipitation amounts, and cold and warm month mean temperatures). By combining high-resolution δ13C and δ18O records with independent estimates of mean annual temperature and mean annual precipitation, we show how our general, global relationships could be used to quantify seasonal climate information from fossil sites. We validate our approach using high-resolution δ13C and δ18O data from trees growing at five modern sites (Hawaii, Alaska, Norway, Guyana, and Kenya). The reconstructed estimates of seasonal precipitation and temperature showed excellent agreement with the known climate data for each site (precipitation: R2 = 0.98; temperature: R2 = 0.91). These results confirm that across diverse sites and tree species, seasonal climate information can be accurately quantified using a combination of carbon and oxygen intra-ring isotope profiles.

  15. Marvel Analysis of the Measured High-resolution Rovibronic Spectra of TiO

    NASA Astrophysics Data System (ADS)

    McKemmish, Laura K.; Masseron, Thomas; Sheppard, Samuel; Sandeman, Elizabeth; Schofield, Zak; Furtenbacher, Tibor; Császár, Attila G.; Tennyson, Jonathan; Sousa-Silva, Clara

    2017-02-01

    Accurate, experimental rovibronic energy levels, with associated labels and uncertainties, are reported for 11 low-lying electronic states of the diatomic {}48{{Ti}}16{{O}} molecule, determined using the Marvel (Measured Active Rotational-Vibrational Energy Levels) algorithm. All levels are based on lines corresponding to critically reviewed and validated high-resolution experimental spectra taken from 24 literature sources. The transition data are in the 2–22,160 cm‑1 region. Out of the 49,679 measured transitions, 43,885 are triplet–triplet, 5710 are singlet–singlet, and 84 are triplet–singlet transitions. A careful analysis of the resulting experimental spectroscopic network (SN) allows 48,590 transitions to be validated. The transitions determine 93 vibrational band origins of {}48{{Ti}}16{{O}}, including 71 triplet and 22 singlet ones. There are 276 (73) triplet–triplet (singlet–singlet) band-heads derived from Marvel experimental energies, 123(38) of which have never been assigned in low- or high-resolution experiments. The highest J value, where J stands for the total angular momentum, for which an energy level is validated is 163. The number of experimentally derived triplet and singlet {}48{{Ti}}16{{O}} rovibrational energy levels is 8682 and 1882, respectively. The lists of validated lines and levels for {}48{{Ti}}16{{O}} are deposited in the supporting information to this paper.

  16. High-resolution laboratory measurements of coronal lines in the 198-218 å region

    SciTech Connect

    Beiersdorfer, Peter; Träbert, Elmar; Lepson, Jaan K.; Brickhouse, Nancy S.; Golub, Leon

    2014-06-10

    We present high-resolution laboratory measurements of the emission from various ions of C, N, O, F, Ne, S, Ar, Fe, and Ni in the extreme ultraviolet wavelength band centered around the λ211 Fe XIV channel of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. While all of the strong iron lines in this region are well known, we note many weaker lines of iron that are not yet identified. The high resolution of our measurements also allows us to resolve several lines in Fe XI, Fe XII, and Fe XIII between 200 and 205 Å, whose identities were in question based on a disagreement between different databases. The spectra of the elements other than iron are much less known, and we find a multitude of lines that are not yet in the databases. For example, the CHIANTI database clearly disagrees with the NIST data listings on several of the argon lines we observe and also it contains only about half of the observed sulfur lines.

  17. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  18. Measurement of water content in polymer electrolyte membranes using high resolution neutron imaging

    SciTech Connect

    Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Davey, John; Mukherjee, Partha P; Hussey, Daniel S; Jacobson, David

    2010-01-01

    Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electro-osmotic drag depend on the water content. Membrane's water uptake is conventionally measured ex situ by weighing free-swelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion{reg_sign} membranes were measured using the high-resolution neutron imaging. The state-of-the-art, 10 {micro}m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ.

  19. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  20. High Resolution Measurements In U-Channel Technique And Implications For Sedimentological Purposes

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Cagatay, Namık; Sarı, Erol; Eris, Kadir; Biltekin, Demet; Akcer, Sena; Meydan Gokdere, Feray; Makaroglu, Ozlem; Bulkan, Ozlem; Arslan, Tugce; Albut, Gulum; Yalamaz, Burak; Yakupoglu, Nurettin; Sabuncu, Asen; Fillikci, Betul; Yıldız, Guliz

    2016-04-01

    Mechanical features in-stu drilling for sediment cores and vacuum forces that affect while obtaining the sediments to the core tube are formed concave shaped deformations. Even in the half sections, concave deformation form still appears. During MCSL measurements, Laminae which forms concave shaped deformation, show interference thus, values indicate overall results for several laminae instead of single lamina. These interferenced data is not appropriate for paleoceanography studies which require extend accuracy and high frequency data set to describe geochemical and climatological effects in high resolution. U-Channel technique provides accurate location and isolated values for each lamina. In EMCOL Laboratories, U-channel provide well saturated and air-free environment for samples and, by using these technique U-channels are prepared with modificated MCSL for data acquisition. Even below millimeter scale sampling rate provides the separation of each lamina and, physical properties of every each lamina. Cover of u-channel is made by homogenous plastic in shape of rectangular prism geometry. Thus, during measurement, MSCL sensors may harm the sediment; however u-channel covers the sediment from this unwanted deformation from MSCL itself. U-channel technique can present micro scale angular changes in the laminae. Measurements that have been taken from U-channel are compared with the traditional half core measurements. Interestingly, accuracy of the positions for each lamina is much more detailed and, the resolution is progressively higher. Results from P Wave and Gamma ray density provide removed interference effects on each lamina. In this technique, it is high recommended that U-channel widens the resolution of core logging and generates more cleansed measurements in MCSL. For P- Wave Used Synthetic seismograms that modelled by MSCL data set which created from U-channel technique dictates each anomalies related with climatological and geological changes. Keywords

  1. High-resolution, continuous method for measurement of acidity in ice cores.

    PubMed

    Pasteris, Daniel R; McConnell, Joseph R; Edwards, Ross

    2012-02-07

    The acid content of ice core samples provides information regarding the history of volcanism, biogenic activity, windblown dust, forest fires, and pollution-induced acid rain. A continuous ice core analysis allows for collection of high-resolution data in a very efficient manner, but this technique has not been readily applied to the measurement of pH and acidity in ice cores. The difficulty arises because the sample is highly undersaturated with respect to carbon dioxide (CO(2)) immediately after melting, making it difficult to maintain stable concentrations of dissolved carbon dioxide and carbonic acid (H(2)CO(3)). Here, we present a solution to this problem in the form of a small flow-through bubbling chamber that is supplied with a known concentration of CO(2). The bubbling action allows for quick equilibration while the small size of the chamber limits sample mixing in order to maintain high resolution. Thorough error analysis provides a measurement uncertainty of ±0.20 μM or ±5% of the acidity value, whichever is greater, and the T95 signal response time is determined to be 1.25 min. The performance of the technique is further evaluated with data from a 63-year ice core from northwest Greenland for which all major ion species were also measured. The measured acidity closely matches the acidity derived from a charge balance calculation, indicating that all of the analytes were measured accurately. The performance specifications that we provide are applicable to ice cores with low concentrations of alkaline dust (<500 ppb), which includes the vast majority of ice cores that are collected. To date, the method has not been evaluated with samples containing high alkaline dust concentrations, such as Greenland cores from the last glacial period, where measurement could be made difficult by memory effects as particles coat the internal surfaces of the sample stream.

  2. Precision angle-resolved autoionization resonances in Ar and Ne

    SciTech Connect

    Berrah, N.; Langer, B.; Gorczyca, T.W.

    1997-04-01

    Theoretical work has shown that the electron angular distribution and the shape of the autoionization resonances are crucial to the understanding of certain types of electron-electron correlation. Autoionization resonances in Ne (Ar) result from the decay of the excited discrete state Ne{sup *} 2s2p{sup 6} np (Ar{sup *} 3s3p{sup 6} np) into the continuum state Ne{sup +} 2s{sup 2}2p{sup 5} + e{sup {minus}} (ks,kd) (Ar{sup +} 3s{sup 2}3p{sup 5} + e{sup {minus}} (ks,kd)). Since the continuum can also be reached by direct photoionization, both paths add coherently, giving rise to interferences that produce the characteristic Beutler-Fano line shape. In this work, the authors report on quantitative angle-resolved electron spectrometry studies of (a) the Ne 2s{sup 2}2p{sup 6} {r_arrow} 2s2p{sup 6} np (n=3-5) autoionizing resonances and the 2s{sup 2}2p{sup 6} {r_arrow} 2p{sup 4}3s3p doubly excited resonance, (b) the Ar 3s{sup 2}3p{sup 6} {r_arrow} 3s3p{sup 6} np (n=4-9) autoionization resonances and extended R-matrix calculations of the angular-distribution parameters for both Ne and Ar measurements. Their results are compared with previous theoretical work by Taylor.

  3. A high-resolution x-ray spectrometer for a kaon mass measurement

    NASA Astrophysics Data System (ADS)

    Phelan, Kevin; Suzuki, Ken; Zmeskal, Johann; Tortorella, Daniele; Bühler, Matthias; Hertrich, Theo

    2017-02-01

    The ASPECT consortium (Adaptable Spectrometer Enabled by Cryogenic Technology) is currently constructing a generalised cryogenic platform for cryogenic detector work which will be able to accommodate a wide range of sensors. The cryogenics system is based on a small mechanical cooler with a further adiabatic demagnetisation stage and will work with cryogenic detectors at sub-Kelvin temperatures. The commercial aim of the consortium is to produce a compact, user-friendly device with an emphasis on reliability and portability which can easily be transported for specialised on-site work, such as beam-lines or telescope facilities. The cryogenic detector platform will accommodate a specially developed cryogenic sensor, either a metallic magnetic calorimeter or a magnetic penetration-depth thermometer. The detectors will be designed to work in various temperatures regions with an emphasis on optimising the various detector resolutions for specific temperatures. One resolution target is of about 10 eV at the energies range typically created in kaonic atoms experiments (soft x-ray energies). A following step will see the introduction of continuous, high-power, sub-Kelvin cooling which will bring the cryogenic basis for a high resolution spectrometer system to the market. The scientific goal of the project will produce an experimental set-up optimised for kaon-mass measurements performing high-resolution x-ray spectroscopy on a beam-line provided foreseeably by the J-PARC (Tokai, Japan) or DAΦNE (Frascati, Italy) facilities.

  4. [Microdiffraction measurements of natural tooth by high resolution X-ray diffraction equipment].

    PubMed

    Xue, Jing; Li, Wei; Liao, Yunmao; Zhou, Jinglin; Song, Jukun

    2008-02-01

    The main mineral component of natural tooth was determined as calcium apatite many years ago; most of them exist in the form of hydroxyapatite with different crystallites. If a tooth decayed, the crystalline of hydroxyapatite would be changed and decomposed. In our experiment, a natural tooth with caries was measured by high resolution XRD equipment: X'pert Pro. Three spots which included normal enamel, normal dentin and caries tissue were analyzed. The results showed that tooth was a kind of biological mixed crystal composed of many crystal phases, the main crystal phase was hydroxyapatite. From normal enamel to normal dentin and to caries tissue, the length of the a-axis of hydroxyapatite crystallite increased, the length of the c-axis of hydroxyapatite crystallite remained unchanged. The crystal sizes were: normal enamel D002 = 27.600 nm; normal dentin D002 = 16.561 nm; caries tissue D002 = 13.163 nm. Crystallinity: normal enamel>normal dentin>caries tissue. According to our experiment, tooth could be conveniently studied by high resolution microdiffracion XRD equipment.

  5. Shuttle high resolution accelerometer package experiment results - Atmospheric density measurements between 60-160 km

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hinson, E. W.; Nicholson, J. Y.

    1988-01-01

    Indirect or inferred values of atmospheric density encountered by the Shuttle Orbiter during reentry have been calculated from acceleration measurements made by the High Resolution Accelerometer Package (HiRAP) and the Orbiter Inertial Measurement Unit (IMU) liner accelerometers. The atmospheric density data developed from this study represent a significant gain with respect to the body of data collected to date by various techniques in the altitude range of 60 to 160 km. The data are unique in that they cover a very wide horizontal range during each flight and provide insight into the actual density variations encountered along the reentry flight path. The data, which were collected over about 3 years, are also characterized by variations in solar activity, geomagnetic index, and local solar time. Comparison of the flight-derived densities with various atmospheric models have been made, and analyses have attempted to characterize the data and to show correlation with selected physical variables.

  6. Fall speed measurement and high-resolution multi-angle photography of hydrometeors in free fall

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Fallgatter, C.; Shkurko, K.; Howlett, D.

    2012-11-01

    We describe here a new instrument for imaging hydrometeors in free fall. The Multi-Angle Snowflake Camera (MASC) captures high-resolution photographs of hydrometeors from three angles while simultaneously measuring their fall speed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fall speed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than heavily rimed graupel particles of similar size.

  7. Fallspeed measurement and high-resolution multi-angle photography of hydrometeors in freefall

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Fallgatter, C.; Shkurko, K.; Howlett, D.

    2012-07-01

    We describe here a new instrument for imaging hydrometeors in freefall. The Multi-Angle Snowflake Camera (MASC) captures high resolution photographs of hydrometeors from three angles while simultaneously measuring their fallspeed. Based on the stereoscopic photographs captured over the two months of continuous measurements obtained at a high altitude location within the Wasatch Front in Utah, we derive statistics for fallspeed, hydrometeor size, shape, orientation and aspect ratio. From a selection of the photographed hydrometeors, an illustration is provided for how the instrument might be used for making improved microwave scattering calculations. Complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than graupel particles of similar size.

  8. TOTAL: a rocket-borne instrument for high resolution measurements of neutral air turbulence during DYANA

    NASA Astrophysics Data System (ADS)

    Hillert, W.; Lübken, F.-J.; Lehmacher, G.

    1994-12-01

    An improved version of a rocket-borne instrument ('TOTAL'), optimized for high resolution measurements of relative density variations, was successfully employed during the DYANA campaign in winter 1990. Both the inertial-convective subrange and the viscous-diffusive subrange of turbulence were observed in the power spectra derived from density fluctuations. An extended spectral model which comprises both subranges has been used to analyse the data. In this paper we present altitude profiles of turbulent parameters, such as turbulent energy dissipation rates ɛ and turbulent diffusion coefficients K, which were derived from a total of eight successfully launched instruments at high (Andoya, 69°N) and middle (Biscarosse, 44°N) latitudes. The limitations of the measurement technique as well as instrumental errors are discussed. The results mainly show small values of ɛ and K throughout the whole campaign period. The turbopause was found at an altitude of 95 ± 3 km.

  9. Studying Vortex Dynamics of Rotating Convection with High-resolution PIV Measurement

    NASA Astrophysics Data System (ADS)

    Fu, Hao; Sun, Shiwei; Wang, Yu; Zhou, Bowen; Wang, Yuan

    2016-11-01

    A novel experimental setup for studying vortex dynamics in rotating Rayleigh-Benard convection has been made in School of Atmospheric Sciences, Nanjing University. With water as the working fluid, three lasers with different frequencies and the corresponding three CCDs have been placed to complete 2D2C (two dimensions, two components) PIV measurement. The lasers are fixed on two crossing guiding ways and can move up and down to scan the flow field. An algorithm has been made to reconstruct 3D velocity field based on multiple 2D2C PIV data. This time, we are going to present the details of this new machine and algorithm, as well as some scientific understanding of vortex dynamics owing to this high-resolution velocity measurement system. This work was supported by "LMSWE Lab Funding No. 14380001".

  10. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    NASA Astrophysics Data System (ADS)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-03-01

    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  11. High-resolution FTIR measurement of the ν4 band of methylene fluoride-d 2

    NASA Astrophysics Data System (ADS)

    Shastri, Aparna; Deo, M. N.; Kawaguchi, K.

    2004-10-01

    A high-resolution (0.002 cm -1) infrared absorption spectrum of methylene fluoride-d 2 (CD 2F 2) of the lowest fundamental mode ν4 in the region from 460 to 610 cm -1 has been measured on a Bruker IFS 120-HR Fourier transform infrared spectrometer. More than 3500 transitions have been assigned in this B-type band centered at 521.9 cm -1. The data have been combined with upper state pure rotational measurements in a weighted least-squares fit to obtain molecular constants for the upper state resulting in an overall standard deviation of 0.00018 cm -1. Accurate value for the band origin (521.9578036 cm -1) has been obtained and inclusion of transitions with very high J (⩽60) and Ka (⩽34) values has resulted in improved precision for sextic centrifugal distortion constants, in particular DK, HKJ, and HK.

  12. Instrument for high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures

    NASA Astrophysics Data System (ADS)

    Koyama, K.; Hane, S.; Kamishima, K.; Goto, T.

    1998-08-01

    An instrument has been developed for the first time that makes high resolution magnetization measurements at high pressures, high magnetic fields and low temperatures. The instrument consists of an extraction-type magnetometer, a nonmagnetic high pressure clamp cell and a 20 T superconducting magnet with a 3He refrigerator and is able to precisely measure the magnetization of weakly magnetic materials. TiCu alloy with 3 wt % Ti is employed as a nonmagnetic material with high mechanical strength for the high pressure clamp cell. This apparatus can be used in the pressure range 0⩽P⩽13 kbar, the field range 0⩽H⩽200 kOe and the temperature range 0.5⩽T⩽4.2 K. The resolution of the instrument is estimated to be ±0.002 emu. For demonstrating the ability of the instrument, the experimental results on a heavy fermion antiferromagnet Ce7Ni3 is presented.

  13. Initial Development of a sub-micron Angle Resolved Photoemission Microscope

    NASA Astrophysics Data System (ADS)

    Bostwick, Aaron; McChesney, Jessica; Rotenberg, Eli

    2007-03-01

    -abstract- We have begun initial development of a sub-micron angle resolved photoemmision microscope. The current test system consists of an SES-200 detector and a zone plate based focusing system operating at 180eV photon energy. We have measured angle resolved spectra using the SES-200 angle-dispersive collection mode at resolution of ˜500nm. We have used this to show orientational contrast on highly oriented pyrolytic graphite (HOPG). The domains on HOPG are on the order of 1-20 microns and are well orientated along the c-axis but show random azimuthal order. We are able to clearly image these domains even though they show no chemical contrast, and can measure the single crystal band structure on disordered polycrystalline sample. We believe this demonstrates the promise of such a system for the measurement of materials which cannot be found in bulk single crystals.

  14. Fossil Fuel Combustion Fingerprint in High-Resolution Urban Water Vapor Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Gorski, G.; Good, S. P.; Bowen, G. J.

    2014-12-01

    Increasing energy consumption and rapid urbanization have many important and poorly understood consequences for the hydrologic cycle in urban and suburban areas. Wide use of fossil fuels for transportation and heating releases isotopically distinctive water vapor that contributes to the overall water vapor budget in varying, usually unknown, concentrations. The use of long term, high resolution isotopic measurements can help determine different sources and proportions of water vapor at various time scales. We present two months of high-resolution water vapor isotope measurements coupled with CO2 concentrations and co-located meteorological observations from December 2013 - January 2014 in Salt Lake City, UT. Periods of atmospheric stagnation (cold-air inversions) show a buildup of CO2 from baseline values of 420 ppm to as high as 600 ppm and an associated decrease in water vapor deuterium-excess values from a baseline of approx. 10‰ to values as low as -10‰ (where d = δ2H - 8*δ18O, in per mil units). We suggest that the strong relationship between CO2and d during inversion periods is driven by the build-up of fossil fuel combustion-derived water vapor with very low d values (≤ -150‰). Based on our measurements of its isotopic composition, combustion-derived water vapor could contribute as much as 15% to the total water vapor budget during inversion periods. We present evidence of this effect at both the multi-day scale and the diurnal scale, where periods of increased automobile use and home heating can be identified. This study provides the first isotopic evidence that accumulation of water of combustion can be identified in boundary layer water vapor, suggests that an appreciable fraction of boundary layer vapor can be derived from combustion under certain atmospheric conditions, and indicates that the distinctive d values of combustion-derived vapor may be a useful tracer for this component of the atmospheric water budget in other urban regions.

  15. Broadband acoustic backscatter and high-resolution morphology of fish: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Reeder, D. Benjamin; Jech, J. Michael; Stanton, Timothy K.

    2004-08-01

    Broadband acoustic backscattering measurements, advanced high-resolution imaging of fish morphology using CT scans and phase-contrast x rays (in addition to traditional x rays), and associated scattering modeling using the images have been conducted involving alewife (Alosa pseudoharengus), a swimbladder-bearing fish. A greater-than-octave bandwidth (40-95 kHz) signal was used to insonify live, individual, adult alewife that were tethered while being rotated in 1-deg increments over all angles in two planes of rotation (lateral and dorsal/ventral). These data, in addition to providing the orientation dependence of the scattering over a continuous band of frequencies, were also used (after pulse compression) to identify dominant scattering features of the fish (including the skull and swimbladder). The x-ray and CT scan images of the swimbladder were digitized and incorporated into two scattering models: (1) Kirchhoff-ray mode (KRM) model [Clay and Horne, J. Acoust. Soc. Am. 96, 1661-1668 (1994)] and (2) conformal-mapping-based Fourier matching method (FMM), which has recently been extended to finite-length bodies [Reeder and Stanton, J. Acoust. Soc. Am. 116. 729-746 (2004)]. Comparisons between the scattering predictions and data demonstrate the utility of the CT scan imagery for use in scattering models, as it provided a means for rapidly and noninvasively measuring the fish morphology in three dimensions and at high resolution. In addition to further validation of the KRM model, the potential of the new FMM formulation was demonstrated, which is a versatile approach, valid over a wide range of shapes, all frequencies and all angles of orientation.

  16. Potassium Stable Isotopic Compositions Measured by High-Resolution MC-ICP-MS

    NASA Technical Reports Server (NTRS)

    Morgan, Leah E.; Lloyd, Nicholas S.; Ellam, Robert M.; Simon, Justin I.

    2012-01-01

    Potassium isotopic (K-41/K-39) compositions are notoriously difficult to measure. TIMS measurements are hindered by variable fractionation patterns throughout individual runs and too few isotopes to apply an internal spike method for instrumental mass fractionation corrections. Internal fractionation corrections via the K-40/K-39 ratio can provide precise values but assume identical K-40/K-39 ratios (e.g. 0.05% (1sigma) in [1]); this is appropriate in some cases (e.g. identifying excess K-41) but not others (e.g., determining mass fractionation effects and metrologically traceable isotopic abundances). SIMS analyses have yielded measurements with 0.25% precisions (1sigma) [2]. ICP-MS analyses are significantly affected by interferences from molecular species such as Ar-38H(+) and Ar-40H(+) and instrument mass bias. Single collector ICP-MS instruments in "cold plasma" mode have yielded uncertainties as low as 2% (1sigma, e.g. [3]). Although these precisions may be acceptable for some concentration determinations, they do not resolve isotopic variation in terrestrial materials. Here we present data from a series of measurements made on the Thermo Scientific NEPTUNE Plus multi-collector ICP-MS that demonstrate the ability to make K-41/K-39 ratio measurements with 0.07% precisions (1sigma). These data, collected on NIST K standards, indicate the potential for MC-ICP-MS measurements to look for K isotopic variations at the sub-permil level. The NEPTUNE Plus can sufficiently resolve 39K and 41K from the interfering 38ArH+ and 40ArH+ peaks in wet cold plasma and high-resolution mode. Measurements were made on small but flat, interference-free, plateaus (ca. 50 ppm by mass width for K-41). Although ICP-MS does not yield accurate K-41/K-39 values due to significant instrumental mass fractionation (ca. 6%), this bias can be sufficiently stable over the time required for several measurements so that relative K-41/K-39 values can be precisely determined via sample

  17. High resolution optical surface metrology with the slope measuring portable optical test system

    NASA Astrophysics Data System (ADS)

    Maldonado, Alejandro V.

    New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an

  18. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    PubMed Central

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10−9 fs2/Hz (equivalent to −174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources. PMID:28102352

  19. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Kwon, Dohyeon; Jeon, Chan-Gi; Shin, Junho; Heo, Myoung-Sun; Park, Sang Eon; Song, Youjian; Kim, Jungwon

    2017-01-01

    Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10‑9 fs2/Hz (equivalent to ‑174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

  20. High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurements

    NASA Astrophysics Data System (ADS)

    Rogiers, B.; Winters, P.; Huysmans, M.; Beerten, K.; Mallants, D.; Gedeon, M.; Batelaan, O.; Dassargues, A.

    2014-09-01

    Saturated hydraulic conductivity ( K s) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. The hand-held air permeameter technique was investigated for high-resolution hydraulic conductivity determination on borehole cores using a spatial resolution of ˜0.05 m. The suitability of such air permeameter measurements on friable to poorly indurated sediments was tested to improve the spatial prediction of classical laboratory-based K s measurements obtained at a much lower spatial resolution (˜2 m). In total, 368 K s measurements were made on ˜350 m of borehole cores originating from the Campine basin, northern Belgium, while ˜5,230 air permeability measurements were performed on the same cores, resulting in a K s range of seven orders of magnitude. Cross-validation demonstrated that, using air permeameter data as the secondary variable for laboratory based K s measurements, the performance increased from R 2 = 0.35 for ordinary kriging (laboratory K s only) to R 2 = 0.61 for co-kriging. The separate treatment of horizontal and vertical hydraulic conductivity revealed considerable anisotropy in certain lithostratigraphical units, while others were clearly isotropic at the sample scale. Air permeameter measurements on borehole cores provide a cost-effective way to improve spatial predictions of traditional laboratory based K s.

  1. Concentration-Discharge Patterns Revealed from High Resolution Nitrate Measurements in Agricultural Landscapes

    NASA Astrophysics Data System (ADS)

    Boland, S. J.; Basu, N. B.

    2012-12-01

    Riverine export of nutrients is a major component of nutrient cycles, particularly with respect to nitrogen; ~ 25 percent of terrestrially applied nitrogen (N) is removed via riverine export. Understanding the patterns in N export during a storm event is critical for developing a conceptual model of the dominant processes and pathways of N transformation, and designing appropriate management strategies to mitigate N pollution in streams and receiving water bodies. Most studies however, are limited by the lack of high-resolution water quality data to elucidate these pathways and mechanisms. We explored concentration-discharge relationships using high-resolution (15 minute) discharge (Q) and nitrate concentration (C) data (measured using an in-situ Nitratax Sonde) at multiple nested scales (from 151.3 km2 to 8900 km2) in two watersheds in Iowa: Clear Creek Watershed and the Raccoon River watershed. Three distinct regimes of nitrate transport were revealed: (1) a linear regime in which C increases with increasing Q, (2) a saturation regime in which C remains constant against increasing Q, and (3) a dilution regime in which concentration decreases as Q increases. The tight clustering of the data along these patterns is indicative of emergent behavior in such human-dominated systems. All three regimes were apparent in the Raccoon River Watershed, while only the saturation and dilution regimes were apparent in the Clear Creek Watershed. We hypothesize that surface flow is dominant in the Clear Creek Watershed leading to a saturation/dilution regimes, while subsurface flow is dominant in the more heavily tile-drained Raccoon River Watershed, leading to the occurrence of all three regimes. A parsimonious model was developed to test the hypothesis and develop C-Q patterns as a function of the partitioning of flow through the different pathways.

  2. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  3. On the measurement of frequency and of its sample variance with high-resolution counters

    SciTech Connect

    Rubiola, Enrico

    2005-05-15

    A frequency counter measures the input frequency {nu} averaged over a suitable time {tau}, versus the reference clock. High resolution is achieved by interpolating the clock signal. Further increased resolution is obtained by averaging multiple frequency measurements highly overlapped. In the presence of additive white noise or white phase noise, the square uncertainty improves from {sigma}{sub {nu}}{sup 2}{proportional_to}1/{tau}{sup 2} to {sigma}{sub {nu}}{sup 2}{proportional_to}1/{tau}{sup 3}. Surprisingly, when a file of contiguous data is fed into the formula of the two-sample (Allan) variance {sigma}{sub y}{sup 2}({tau})=E{l_brace}(1/2)(y{sub k+1}-y{sub k}){sup 2}{r_brace} of the fractional frequency fluctuation y, the result is the modified Allan variance mod {sigma}{sub y}{sup 2}({tau}). But if a sufficient number of contiguous measures are averaged in order to get a longer {tau} and the data are fed into the same formula, the results is the (nonmodified) Allan variance. Of course interpretation mistakes are around the corner if the counter internal process is not well understood. The typical domain of interest is the the short-term stability measurement of oscillators.

  4. A high resolution DIC technique for measuring small thermal expansion of film specimens

    NASA Astrophysics Data System (ADS)

    Wang, Y. G.; Tong, W.

    2013-01-01

    In this study, we develop a high-resolution digital image correlation (HRDIC) platform for measuring small thermal deformation of film specimens with some negative factors eliminated which may affect the measurement accuracy, such as image noise, heat radiation and out-of-plane deformation. Firstly, to reduce the image noise level, the images acquired by the high-speed camera at a frame rate of 1000 fps at each temperature are first averaged and then analyzed by linear digital image correlation with bias correction. Secondly, a pneumatic device is added on the one side of the oven to eliminate the distortion effect of heat radiation from the heated oven on acquired images. Finally, by using a reference material with a known coefficient of thermal expansion (CTE) with the test sample during the thermal loading and imaging, the effect of out-of-plane deformation on in-plane thermal strain measurement is corrected. Based on above improvements in the experimental set-up and post digital image processing, the proposed HRDIC technique is demonstrated to be able to reliably measure the very low CTEs of thin silicon film and Invar-like material.

  5. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction

    SciTech Connect

    Kuechler, R.; Bauer, T.; Brando, M.; Steglich, F.

    2012-09-15

    We describe the design, construction, calibration, and two different applications of a miniature capacitance dilatometer. The device is suitable for thermal expansion and magnetostriction measurements from 300 K down to about 25 mK, with a resolution of 0.02 A at low temperatures. The main body of the dilatometer is fabricated from a single block of a Be-Cu alloy by electrical discharge milling. This creates an extremely compact high-resolution measuring cell. We have successfully tested and operated dilatometers of this new type with the commonly used physical property measurement system by quantum design, as well as with several other cryogenic refrigeration systems down to 25 mK and in magnetic fields up to 20 T. Here, the capacitance is measured with a commercially available capacitance bridge. Using a piezoelectric rotator from Attocube Systems, the cell can be rotated at T= 25 mK inside of an inner vacuum chamber of 40 mm diameter. The miniaturized design for the one-axis rotation setup allows a rotation of 360 Degree-Sign .

  6. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction.

    PubMed

    Küchler, R; Bauer, T; Brando, M; Steglich, F

    2012-09-01

    We describe the design, construction, calibration, and two different applications of a miniature capacitance dilatometer. The device is suitable for thermal expansion and magnetostriction measurements from 300 K down to about 25 mK, with a resolution of 0.02 Å at low temperatures. The main body of the dilatometer is fabricated from a single block of a Be-Cu alloy by electrical discharge milling. This creates an extremely compact high-resolution measuring cell. We have successfully tested and operated dilatometers of this new type with the commonly used physical property measurement system by quantum design, as well as with several other cryogenic refrigeration systems down to 25 mK and in magnetic fields up to 20 T. Here, the capacitance is measured with a commercially available capacitance bridge. Using a piezoelectric rotator from Attocube Systems, the cell can be rotated at T = 25 mK inside of an inner vacuum chamber of 40 mm diameter. The miniaturized design for the one-axis rotation setup allows a rotation of 360°.

  7. A modified high-resolution TEM for thermoelectric properties measurements of nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Dames, C.; Chen, S.; Harris, C. T.; Huang, J. Y.; Ren, Z. F.; Dresselhaus, M. S.; Chen, G.

    2006-10-01

    Nanowires are interesting candidates for thermoelectric applications because of their potentially low thermal conductivity and high power factor. However, measurements at the single-wire level are challenging and tend to lack detailed information about the atomic-level structure of the sample and contacts. We are modifying a high-resolution transmission electron microscope (HRTEM) with integrated scanning tunneling microscope (STM) for in-situ measurements of the thermoelectric properties of individual nanowires and nanotubes. A slender hot-wire probe is used to make electrical and thermal contact to the free end of a nanowire or nanotube. The electrical conductance of the nanowire/nanotube can be measured with the usual STM mode of operation. The Seebeck coefficient can be extracted from the transient response to a step change in the joule heating of the hot-wire probe. The thermal conductance can be calculated from the temperature and heat leakage of the hot-wire probe. These measurements are combined with detailed HRTEM observations.

  8. High-resolution gamma ray attenuation density measurements on mining exploration drill cores, including cut cores

    NASA Astrophysics Data System (ADS)

    Ross, P.-S.; Bourke, A.

    2017-01-01

    Physical property measurements are increasingly important in mining exploration. For density determinations on rocks, one method applicable on exploration drill cores relies on gamma ray attenuation. This non-destructive method is ideal because each measurement takes only 10 s, making it suitable for high-resolution logging. However calibration has been problematic. In this paper we present new empirical, site-specific correction equations for whole NQ and BQ cores. The corrections force back the gamma densities to the "true" values established by the immersion method. For the NQ core caliber, the density range extends to high values (massive pyrite, 5 g/cm3) and the correction is thought to be very robust. We also present additional empirical correction factors for cut cores which take into account the missing material. These "cut core correction factors", which are not site-specific, were established by making gamma density measurements on truncated aluminum cylinders of various residual thicknesses. Finally we show two examples of application for the Abitibi Greenstone Belt in Canada. The gamma ray attenuation measurement system is part of a multi-sensor core logger which also determines magnetic susceptibility, geochemistry and mineralogy on rock cores, and performs line-scan imaging.

  9. A compact and miniaturized high resolution capacitance dilatometer for measuring thermal expansion and magnetostriction

    NASA Astrophysics Data System (ADS)

    Küchler, R.; Bauer, T.; Brando, M.; Steglich, F.

    2012-09-01

    We describe the design, construction, calibration, and two different applications of a miniature capacitance dilatometer. The device is suitable for thermal expansion and magnetostriction measurements from 300 K down to about 25 mK, with a resolution of 0.02 Å at low temperatures. The main body of the dilatometer is fabricated from a single block of a Be-Cu alloy by electrical discharge milling. This creates an extremely compact high-resolution measuring cell. We have successfully tested and operated dilatometers of this new type with the commonly used physical property measurement system by quantum design, as well as with several other cryogenic refrigeration systems down to 25 mK and in magnetic fields up to 20 T. Here, the capacitance is measured with a commercially available capacitance bridge. Using a piezoelectric rotator from Attocube Systems, the cell can be rotated at T = 25 mK inside of an inner vacuum chamber of 40 mm diameter. The miniaturized design for the one-axis rotation setup allows a rotation of 360°.

  10. Non-equilibrium Dirac carrier dynamics in graphene investigated with time- and angle-resolved photoemission spectroscopy.

    PubMed

    Gierz, Isabella; Link, Stefan; Starke, Ulrich; Cavalleri, Andrea

    2014-01-01

    We have used time- and angle-resolved photoemission spectroscopy (tr-ARPES) to assess the influence of many-body interactions on the Dirac carrier dynamics in graphene. From the energy-dependence of the measured scattering rates we directly determine the imaginary part of the self-energy, visualizing the existence of a relaxation bottleneck associated with electron-phonon coupling. A comparison with static line widths obtained by high-resolution ARPES indicates that the dynamics of photo-excited carriers in graphene are solely determined by the equilibrium self-energy. Furthermore, the subtle interplay of different many-body interactions in graphene may allow for carrier multiplication, where the absorption of a single photon generates more than one electron-hole pair via impact ionization. We find that, after photo-excitation, the number of carriers in the conduction band along the ΓK-direction keeps increasing for about 40 fs after the pump pulse is gone. A definite proof of carrier multiplication in graphene, however, requires a more systematic study, carefully taking into account the contribution of momentum relaxation on the measured rise time.

  11. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality.

    PubMed

    MacNeil, Joshua A; Boyd, Steven K

    2008-07-01

    A human high-resolution peripheral quantitative computed tomography scanner (HR-pQCT) (XtremeCT, Scanco Medical, Switzerland) capable of measuring three important indicators of bone quality (micro-architectural morphology, mineralization and mechanical stiffness) has been developed. The goal of this study was to evaluate the reproducibility of male and female HR-pQCT in vivo measurements, and elucidate the causes of error in these measurements through a comparison with in vitro measurements. The best possible short-term reproducibility was found using a set of 10 in vitro measurements without repositioning, and a set of 10 with repositioning. Subsequently, in vivo measurements were performed on 15 male and 15 female subjects at baseline and follow-ups of 1 week and 4 months to determine the short- and long-term reproducibility of the system. In addition to the 2D area matching method used in the standard evaluation protocol, a custom developed 3D registration method was used to find the common region between repeated scans. The best possible reproducibility without movement artifacts and repositioning error was less than 0.5%, while the reproducibility with repositioning error was less than 1.5%. The in vivo reproducibility of density (<1%), morphological (<4.5%) and stiffness (<3.5) measurements was consistently poorer than the reproducibility of cadaver measurements, presumably due to small movement artifacts and repositioning errors. Using 3D image registration, repositioning error was reduced on average by 23% and 8% for measurements of the radius and tibia sites, respectively. This study has provided bounds for the reproducibility of HR-pQCT to monitor bone quality longitudinally, and a basis for clinical study design to determine detectable changes.

  12. UDECON: deconvolution optimization software for restoring high-resolution records from pass-through paleomagnetic measurements

    NASA Astrophysics Data System (ADS)

    Xuan, Chuang; Oda, Hirokuni

    2015-11-01

    The rapid accumulation of continuous paleomagnetic and rock magnetic records acquired from pass-through measurements on superconducting rock magnetometers (SRM) has greatly contributed to our understanding of the paleomagnetic field and paleo-environment. Pass-through measurements are inevitably smoothed and altered by the convolution effect of SRM sensor response, and deconvolution is needed to restore high-resolution paleomagnetic and environmental signals. Although various deconvolution algorithms have been developed, the lack of easy-to-use software has hindered the practical application of deconvolution. Here, we present standalone graphical software UDECON as a convenient tool to perform optimized deconvolution for pass-through paleomagnetic measurements using the algorithm recently developed by Oda and Xuan (Geochem Geophys Geosyst 15:3907-3924, 2014). With the preparation of a format file, UDECON can directly read pass-through paleomagnetic measurement files collected at different laboratories. After the SRM sensor response is determined and loaded to the software, optimized deconvolution can be conducted using two different approaches (i.e., "Grid search" and "Simplex method") with adjustable initial values or ranges for smoothness, corrections of sample length, and shifts in measurement position. UDECON provides a suite of tools to view conveniently and check various types of original measurement and deconvolution data. Multiple steps of measurement and/or deconvolution data can be compared simultaneously to check the consistency and to guide further deconvolution optimization. Deconvolved data together with the loaded original measurement and SRM sensor response data can be saved and reloaded for further treatment in UDECON. Users can also export the optimized deconvolution data to a text file for analysis in other software.

  13. Measurement of a velocity field in microvessels using a high resolution PIV technique.

    PubMed

    Sugii, Yasuhiko; Nishio, Shigeru; Okamoto, Koji

    2002-10-01

    Because endothelial cells are subject to flow shear stress, it is important to determine the velocity distribution in microvessels during studies of the mechanical interactions between the blood and the endothelium. Particle image velocimetry (PIV) is a quantitative method for measuring velocity fields instantaneously in experimental fluid mechanics. The authors have developed a high-resolution PIV technique that improves the dynamic flow range, spatial resolution, and measurement accuracy. The proposed method was applied to images of the arteriole in the rat mesentery, using an intravital microscope and high-speed digital video system. Taking the mesentery motion into account, the PIV technique was improved to measure red blood cell (RBC) velocity. Velocity distributions with spatial resolutions of 0.8 3 0.8 mm were obtained even near the wall in the center plane of the arteriole. The arteriole velocity profile was blunt in the center region of the vessel cross-section and sharp in the near-wall region. Typical flow features for non-Newtonian fluid are shown.

  14. Single CMOS sensor system for high resolution double volume measurement applied to membrane distillation system

    NASA Astrophysics Data System (ADS)

    Lorenz, M. G.; Izquierdo-Gil, M. A.; Sanchez-Reillo, R.; Fernandez-Pineda, C.

    2007-01-01

    Membrane distillation (MD) [1] is a relatively new process that is being investigated world-wide as a low cost, energy saving alternative to conventional separation processes such as distillation and reverse osmosis (RO). This process offers some advantages compared to other more popular separation processes, such as working at room conditions (pressure and temperature); low-grade, waste and/or alternative energy sources such as solar and geothermal energy may be used; a very high level of rejection with inorganic solutions; small equipment can be employed, etc. The driving force in MD processes is the vapor pressure difference across the membrane. A temperature difference is imposed across the membrane, which results in a vapor pressure difference. The principal problem in this kind of system is the accurate measurement of the recipient volume change, especially at very low flows. A cathetometer, with up to 0,05 mm resolution, is the instrument used to take these measurements, but the necessary human intervention makes this instrument not suitable for automated systems. In order to overcome this lack, a high resolution system is proposed, that makes automatic measurements of the volume of both recipients, cold and hot, at a rate of up to 10 times per second.

  15. High resolution acoustic measurement system and beam pattern reconstruction method for bat echolocation emissions.

    PubMed

    Gaudette, Jason E; Kloepper, Laura N; Warnecke, Michaela; Simmons, James A

    2014-01-01

    Measurements of the transmit beam patterns emitted by echolocating bats have previously been limited to cross-sectional planes or averaged over multiple signals using sparse microphone arrays. To date, no high-resolution measurements of individual bat transmit beams have been reported in the literature. Recent studies indicate that bats may change the time-frequency structure of their calls depending on the task, and suggest that their beam patterns are more dynamic than previously thought. To investigate beam pattern dynamics in a variety of bat species, a high-density reconfigurable microphone array was designed and constructed using low-cost ultrasonic microphones and custom electronic circuitry. The planar array is 1.83 m wide by 1.42 m tall with microphones positioned on a 2.54 cm square grid. The system can capture up to 228 channels simultaneously at a 500 kHz sampling rate. Beam patterns are reconstructed in azimuth, elevation, and frequency for visualization and further analysis. Validation of the array measurement system and post-processing functions is shown by reconstructing the beam pattern of a transducer with a fixed circular aperture and comparing the result with a theoretical model. To demonstrate the system in use, transmit beam patterns of the big brown bat, Eptesicus fuscus, are shown.

  16. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  17. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  18. High Resolution Measurement of Light in Terrestrial Ecosystems Using Photodegrading Dyes

    PubMed Central

    Roales, Javier; Durán, Jorge; Bechtold, Heather A.; Groffman, Peter M.; Rosi-Marshall, Emma J.

    2013-01-01

    Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem. PMID:24069440

  19. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    PubMed

    Roales, Javier; Durán, Jorge; Bechtold, Heather A; Groffman, Peter M; Rosi-Marshall, Emma J

    2013-01-01

    Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem.

  20. A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances

    NASA Technical Reports Server (NTRS)

    Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

    2000-01-01

    A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

  1. Quantitative analysis of angle-resolved scattering properties of ovarian tissue using optical coherence tomography

    PubMed Central

    Yang, Yi; Wang, Tianheng; Brewer, Molly

    2012-01-01

    Abstract. Angle-resolved optical scattering properties of ovarian tissue, on different optical coherence tomography (OCT) imaging planes, were quantitatively measured by fitting the compounded OCT A-lines into a single scattering model. Higher cross correlation value of angle-resolved scattering coefficients between different OCT imaging planes was found in normal ovaries than was present in malignant ovaries. The mean cross correlation coefficient (MCC) was introduced in this pilot study to characterize and differentiate normal, n=6, and malignant, n=4, ovaries. A specificity of 100 percent and a sensitivity of 100 percent were achieved by setting MCC threshold at 0.6. Collagen properties, within the OCT imaging penetration depth, were also qualitatively studied in terms of their content, structure and directivity. The homogeneous three-dimensional collagen fiber network, observed in the normal ovary, effectively explains the stronger cross correlation of angle-resolved scattering properties on different imaging planes while the heterogeneity, observed in the malignant ovary, suggests a weaker correlation. PMID:23085900

  2. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  3. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production.

    PubMed

    Krumschnabel, Gerhard; Fontana-Ayoub, Mona; Sumbalova, Zuzana; Heidler, Juliana; Gauper, Kathrin; Fasching, Mario; Gnaiger, Erich

    2015-01-01

    Mitochondrial respiration is associated with the formation of reactive oxygen species, primarily in the form of superoxide (O2 (•-)) and particularly hydrogen peroxide (H2O2). Since H2O2 plays important roles in physiology and pathology, measurement of hydrogen peroxide has received considerable attention over many years. Here we describe how the well-established Amplex Red assay can be used to detect H2O2 production in combination with the simultaneous assessment of mitochondrial bioenergetics by high-resolution respirometry. Fundamental instrumental and methodological parameters were optimized for analysis of the effects of various substrate, uncoupler, and inhibitor titrations (SUIT) on respiration versus H2O2 production. The sensitivity of the H2O2 assay was strongly influenced by compounds contained in different mitochondrial respiration media, which also exerted significant effects on chemical background fluorescence changes. Near linearity of the fluorescence signal was restricted to narrow ranges of accumulating resorufin concentrations independent of the nature of mitochondrial respiration media. Finally, we show an application example using isolated mouse brain mitochondria as an experimental model for the simultaneous measurement of mitochondrial respiration and H2O2 production in SUIT protocols.

  4. Using High-Resolution Hand-Held Radiometers To Measure In-Situ Thermal Resistance

    NASA Astrophysics Data System (ADS)

    Burch, Douglas M.; Krintz, Donald F.

    1984-03-01

    A field study was carried out to investigate the accuracy of using high-resolution radiometers to determine the in situ thermal resistance of building components having conventional residential construction. Two different types of radiometers were used to determine the thermal resistances of the walls of six test buildings located at the National Bureau of Standards. These radiometer thermal resistance measurements were compared to reference thermal resistance values determined from steady-state series resistance predictions, time-averaged heat-flow-sensor measurements, and guarded-hot-box measurements. When measurements were carried out 5 hours after sunset when the outdoor temperature was relatively steady and the heating plant was operated in a typical cyclic fashion, the following results were obtained: for lightweight wood-frame cavity walls, the radiometer procedures were found to distinguish wall thermal resistance 4.4 h.ft2- °F/Btu (0.77 m2•K/W) systematically higher than corresponding reference values. Such a discrimination will per-mit insulated and uninsulated walls to be distinguished. However, in the case of walls having large heat capacity (e.g., masonry and log), thermal storage effects produced large time lags between the outdoor diurnal temperature variation and the heat-flow response at the inside surface. This phenomenon caused radiometer thermal resistances to deviate substantially from corresponding reference values. This study recommends that the ANSI/ASHRAE Standard 101-1981 be modified requiring the heating plant to be operated in a typical cyclic fashion instead of being turned off prior to and during radiometer measurements.

  5. High resolution measurements of aerial rainfall with X-band radars in New Zealand

    NASA Astrophysics Data System (ADS)

    Sutherland-Stacey, Luke; Shucksmith, Paul; Austin, Geoff

    2010-05-01

    The Atmospheric Physics Group runs a number of high resolution X-band mobile rain radars. The radars are unusual in that they operate at very high spatial and temporal resolution but short range (100m/20sec/20km) as compared with the C-band radars of the New Zealand Meteorological Service (2km/7min/240km). Portability was a key design criterion for the radars, which can either be towed by a personal four wheel drive vehicle or carted by a container truck. Past deployments include the slopes of an erupting volcano, the path of a tropical storm and overwintering in a mountain range. It is well known that sampling and representativeness problems associated with sparse gauge networks and C-band radars can result in high uncertainty in estimates of aerial rainfall. Some of this error is associated with poor sampling of the spatial and temporal scales which are important to precipitation processes. In the case of long range radar, the beam height increase with range also introduces uncertainty when trying to infer precipitation at the ground, even after reflectivity profile correction methods are applied. This paper describes a recently completed field campaign in a hydro power catchment in the North Island of New Zealand. The radar was deployed in a pasture on a farm overlooking the catchment which is about 15km x 10km in size. The catchment is about 150km from the nearest national C-band radar. A number of rain gauges, including high resolution drop counters, were deployed nearby. X-band and comparative C-band radar observations of particular events including orographically initiated convection, frontal systems and widespread rain types are presented. The convective events are characterised by short length scales and rapid evolution, but even the widespread rain has embedded structure. The observations indicate that the evolution time and spatial scales associated with many of the hydrometeors observed in this work precludes aerial estimates being made with sparse

  6. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality.

    PubMed

    MacNeil, Joshua A; Boyd, Steven K

    2007-12-01

    The introduction of three-dimensional high-resolution peripheral in vivo quantitative computed tomography (HR-pQCT) (XtremeCT, Scanco Medical, Switzerland; voxel size 82 microm) provides a new approach to monitor micro-architectural bone changes longitudinally. The accuracy of HR-pQCT for three important determinants of bone quality, including bone mineral density (BMD), architectural measurements and bone mechanics, was determined through a comparison with micro-computed tomography (microCT) and dual energy X-ray absorptiometry (DXA). Forty measurements from 10 cadaver radii with low bone mass were scanned using the three modalities, and image registration was used for 3D data to ensure identical regions were analyzed. The areal BMD of DXA correlated well with volumetric BMD by HR-pQCT despite differences in dimensionality (R(2) = 0.69), and the correlation improved when non-dimensional bone mineral content was assessed (R(2) = 0.80). Morphological parameters measured by HR-pQCT in a standard patient analysis, including bone volume ratio, trabecular number, derived trabecular thickness, derived trabecular separation, and cortical thickness correlated well with muCT measures (R(2) = 0.59-0.96). Additionally, some non-metric parameters such as connectivity density (R(2) = 0.90) performed well. The mechanical stiffness assessed by finite element analysis of HR-pQCT images was generally higher than for microCT data due to resolution differences, and correlated well at the continuum level (R(2) = 0.73). The validation here of HR-pQCT against gold-standards microCT and DXA provides insight into the accuracy of the system, and suggests that in addition to the standard patient protocol, additional indices of bone quality including connectivity density and mechanical stiffness may be appropriate to include as part of a standard patient analysis for clinical monitoring of bone quality.

  7. High-resolution surface connectivity measurements and runoff dynamics in five urban watersheds in Knoxville, TN

    NASA Astrophysics Data System (ADS)

    Epps, T.

    2015-12-01

    Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.

  8. High resolution measurement of neutron inelastic scattering cross-sections for 23Na

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.

    2012-04-01

    The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.

  9. New method for measuring myocardial blood flow by high resolution scintigraphy in the excised dog heart.

    PubMed

    Hung, C Y; Burow, R D; Scherlag, B J; Basmadjian, G P; Lazzara, R

    1986-10-01

    The standard method for measuring myocardial blood flow (MBF) with radioactive microspheres requires processing of selected tissue samples usually from the excised heart, and consequent loss of exact relation to myocardial morphology. A computer-based image processing method was developed by using [99mTc]microspheres (mean particle size 20 microns) for quantitative analysis of MBF in 25 dogs. A computer-controlled gamma camera was used to obtain the images of radioactive microsphere distribution in transaxial slices of the ex vivo heart. Any portion of these slice images could be quantitated by using a computer program based on modification of the formula for determining MBF by the standard microsphere method. Regional myocardial perfusion calculated by this technique correlated well with values obtained with reference microspheres (r = 0.96) over a broad range of MBF. The results show that our new method, accurately and with high resolution, delineated zones of differing MBF and confirmed the increase of MBF in surviving myocardium with healing.

  10. Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.

    2016-02-01

    Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.

  11. Consistency in the long-term environmental measurements with NOAA: Advanced Very High Resolution Radiometer

    NASA Astrophysics Data System (ADS)

    Ciren, Pubu; Cao, Changyong; Sullivan, Jerry

    2006-08-01

    Lone-term satellite observations, such as Advanced Very High Resolution Radiometer (AVHRR), provide an irreplaceable means in monitoring Earth system through a series of satellites. However, to be able to detect the signal related to climate change, one of the critical requirements is the consistency and stability of calibration among the satellites. Applying Simultaneous Nadir Overpass (SNOs) method (Cao et al., 2002)., we fully accessed instrument-related consistency of AVHRR measurements covering all channels (from visible to IR) and time period from 1978 to 2003. It is seen that the inter-satellite biases in visible channels (channel 1 and 2) show larger inconsistency among satellites especially between NOAA-14 and NOAA-12. The inconsistency is shown as both the large bias and trend in the biases, mostly due to the lack of onboard calibration. Comparatively, the biases in IR channels, i.e., channel 4 and 5 are generally smaller, there are within +/- 1 k. However, the difference in the magnitude of the biases among satellites and the dependence of biases on the scene temperature may affect the quality of long term trend derived from such dataset. Analyses of bias root causes indicate that the effect from the difference in Spectral Response Function may not be large enough to account for the observed biases.

  12. High-Resolution X-Ray and Light Beam Induced Current (LBIC) Measurements of Multcrystalline Silicon Solar Cells

    SciTech Connect

    Jellison Jr, Gerald Earle; Budai, John D; Bennett, Charlee J C; Tischler, Jonathan Zachary; Duty, Chad E; Yelundur, V.; Rohatgi, A.

    2010-01-01

    High-resolution, spatially-resolved x-ray Laue patterns and high-resolution light beam induced current (LBIC) measurements are combined to study two multicrystalline solar cells made from the Heat Exchanger Method (HEM) and the Sting Ribbon Growth technique. The LBIC measurements were made at 4 different wavelengths (488, 633, 780, and 980 nm), resulting in penetration depths ranging from <1 {mu}m to >100 {mu}m. There is a strong correlation between the x-ray and LBIC measurements, showing that some twins and grain boundaries are effective in the reduction of local quantum efficiency, while others are benign.

  13. Differential membrane-based nanocalorimeter for high-resolution measurements of low-temperature specific heat.

    PubMed

    Tagliati, S; Krasnov, V M; Rydh, A

    2012-05-01

    A differential, membrane-based nanocalorimeter for general specific heat studies of very small samples, ranging from 0.5 mg to sub-μg in mass, is described. The calorimeter operates over the temperature range from above room temperature down to 0.5 K. It consists of a pair of cells, each of which is a stack of heaters and thermometer in the center of a silicon nitride membrane, in total giving a background heat capacity less than 100 nJ/K at 300 K, decreasing to 10 pJ/K at 1 K. The device has several distinctive features: (i) The resistive thermometer, made of a Ge(1 - x)Au(x) alloy, displays a high dimensionless sensitivity ∣dlnR∕dlnT∣ ≳ 1 over the entire temperature range. (ii) The sample is placed in direct contact with the thermometer, which is allowed to self-heat. The thermometer can thus be operated at high dc current to increase the resolution. (iii) Data are acquired with a set of eight synchronized lock-in amplifiers measuring dc, 1st and 2nd harmonic signals of heaters and thermometer. This gives high resolution and allows continuous output adjustments without additional noise. (iv) Absolute accuracy is achieved via a variable-frequency-fixed-phase technique in which the measurement frequency is automatically adjusted during the measurements to account for the temperature variation of the sample heat capacity and the device thermal conductance. The performance of the calorimeter is illustrated by studying the heat capacity of a small Au sample and the specific heat of a 2.6 μg piece of superconducting Pb in various magnetic fields.

  14. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Wade, G. A.; Catala, C.; Grunhut, J. H.; Landstreet, J. D.; Bagnulo, S.; Böhm, T.; Folsom, C. P.; Marsden, S.; Waite, I.

    2013-02-01

    This is the first in a series of papers in which we describe and report the analysis of a large survey of Herbig Ae/Be stars in circular spectropolarimetry. Using the ESPaDOnS and Narval high-resolution spectropolarimeters at the Canada-France-Hawaii and Bernard Lyot Telescopes, respectively, we have acquired 132 circularly polarized spectra of 70 Herbig Ae/Be stars and Herbig candidates. The large majority of these spectra are characterized by a resolving power of about 65 000, and a spectral coverage from about 3700 Å to 1 μm. The peak signal-to-noise ratio per CCD pixel ranges from below 100 (for the faintest targets) to over 1000 (for the brightest). The observations were acquired with the primary aim of searching for magnetic fields in these objects. However, our spectra are suitable for a variety of other important measurements, including rotational properties, variability, binarity, chemical abundances, circumstellar environment conditions and structure, etc. In this paper, we describe the sample selection, the observations and their reduction, and the measurements that will comprise the basis of much of our following analysis. We describe the determination of fundamental parameters for each target. We detail the least-squares deconvolution (LSD) that we have applied to each of our spectra, including the selection, editing and tuning of the LSD line masks. We describe the fitting of the LSD Stokes I profiles using a multicomponent model that yields the rotationally broadened photospheric profile (providing the projected rotational velocity and radial velocity for each observation) as well as circumstellar emission and absorption components. Finally, we diagnose the longitudinal Zeeman effect via the measured circular polarization, and report the longitudinal magnetic field and Stokes V Zeeman signature detection probability. As an appendix, we provide a detailed review of each star observed.

  15. Angle-resolved effective potentials for disk-shaped molecules

    SciTech Connect

    Heinemann, Thomas Klapp, Sabine H. L.; Palczynski, Karol Dzubiella, Joachim

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  16. Angle-resolved effective potentials for disk-shaped molecules.

    PubMed

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H L

    2014-12-07

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  17. Angle-resolved effective potentials for disk-shaped molecules

    NASA Astrophysics Data System (ADS)

    Heinemann, Thomas; Palczynski, Karol; Dzubiella, Joachim; Klapp, Sabine H. L.

    2014-12-01

    We present an approach for calculating coarse-grained angle-resolved effective pair potentials for uniaxial molecules. For integrating out the intramolecular degrees of freedom we apply umbrella sampling and steered dynamics techniques in atomistically-resolved molecular dynamics (MD) computer simulations. Throughout this study we focus on disk-like molecules such as coronene. To develop the methods we focus on integrating out the van der Waals and intramolecular interactions, while electrostatic charge contributions are neglected. The resulting coarse-grained pair potential reveals a strong temperature and angle dependence. In the next step we fit the numerical data with various Gay-Berne-like potentials to be used in more efficient simulations on larger scales. The quality of the resulting coarse-grained results is evaluated by comparing their pair and many-body structure as well as some thermodynamic quantities self-consistently to the outcome of atomistic MD simulations of many-particle systems. We find that angle-resolved potentials are essential not only to accurately describe crystal structures but also for fluid systems where simple isotropic potentials start to fail already for low to moderate packing fractions. Further, in describing these states it is crucial to take into account the pronounced temperature dependence arising in selected pair configurations due to bending fluctuations.

  18. High resolution magnetic Barkhausen noise measurements of slit defects in steel

    SciTech Connect

    Krause, T.W.; Atherton, D.L.

    1993-12-31

    During the magnetization process of a ferromagnetic material magnetic Barkhausen noise (MBN) occurs as a consequence of either (1) irreversible domain wall motion or (2) irreversible rotation of the domain vector magnetization. Conventionally, MBN measurements for NDT applications are performed with a pick-up coil and U core magnet applied to the surface of the sample. The pick-up coil is constructed by winding fine wire around a small cylindrical bobbin. Placed on a steel surface the pick-up coil senses perpendicular changes in flux from the induced voltages. Given that the diameter of the pick-up coil may be of the order of 10 mm and that the changing magnetic fields which the coil detects fall off as 1/r{sup 3}, where r is the distance from the center of the coil, high resolution in the MBN signal cannot be expected from this method. Read head technology in contrast, attempts to localize the measurement of the signal to as small a region as possible and, therefore, maximize the resolutions. This is accomplished by coupling the ``demagnetization`` fields, that are produced by the medium to be measured and that extend above the surface, through a narrow slit into the read head. MBN signals are detected by the abrupt localized changes of flux which produce voltages in pick-up coils threading the read head. In an effort to localize the range over which MBN signals are measured, and, therefore, increase the resolution of the MBN signal a small magnetic disk read head was mounted within a laminate U shaped sweep field core. When this was placed on a ferromagnetic test piece the application of a sweep field to the U core magnet induced MBN within the sample. The resolution of the read head device was tested by performing measurements across various slits and through cuts in several steel samples. The depression of the MBN signal in the vicinity of the slit or through cut was interpreted in terms of the corresponding depression of the magnetic fields in their vicinity.

  19. Spatial representativeness of ground-based solar radiation measurements estimated from high-resolution Meteosat data

    NASA Astrophysics Data System (ADS)

    Zyta Hakuba, Maria; Folini, Doris; Sanchez-Lorenzo, Arturo; Wild, Martin

    2014-05-01

    The validation of gridded surface solar radiation (SSR) data often relies on the comparison with ground-based in-situ measurements. This poses the question on how representative a point measurement is for a larger-scale surrounding. We use the high-resolution (0.03° ) SIS MVIRI data from the Satellite Application Facility on Climate Monitoring (CM SAF) to study the spatial sub-grid variability in all-sky surface solar radiation (SSR) over Europe, Africa, and parts of South America as covered by the Meteosat disk. This is done for the CERES EBAF 1° standard grid and two equal-angle grids of 0.25° and 3° resolution. Furthermore, we quantify the spatial representativeness of numerous surface sites from the BSRN and the GEBA for their site-centered larger surroundings varying in size from 0.25° to 3°, as well as with respect to the given standard grids. These analyses are done on a climatological annual and monthly mean basis over the period 2001-2005. The annual mean sub-grid variability (mean absolute deviation) in the 1° standard grid over European land is on average 1.6% (2.4 Wm¯²), with a maximum of up to 10% in Northern Spain (Hakuba et al. 2013). As expected, highest sub-grid variability is found in mountainous and coastal regions. The annual mean representation error of point values at 143 surface sites in Europe with respect to their 1° surrounding and the 1° standard grid is on average 2% (3 Wm¯² ). For larger surroundings of 3°, the representation error increases to 3% (4.8 Wm¯²), which is of similar order as the measurement accuracy of in-situ observations. Most of the sites can thus be considered as representative for their larger surroundings of up to 3°, which holds also true for the majority of BSRN sites located in Africa and South America. This representation error can be reduced if site-specific correction factors are applied or when multiple sites are available in the same grid cell, i.e., three more sites reduce the error by 50

  20. Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Kuno, M.; Yamauchi, K.; Souma, S.; Sugawara, K.; Oguchi, T.; Sato, T.; Takahashi, T.

    2017-03-01

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on trigonal tellurium consisting of helical chains in the crystal. Through the band-structure mapping in the three-dimensional Brillouin zone, we found a definitive evidence for the band splitting originating from the chiral nature of crystal. A direct comparison of the band dispersion between the ARPES results and the first-principles band-structure calculations suggests the presence of Weyl nodes and tiny spin-polarized hole pockets around the H point. The present result opens a pathway toward studying the interplay among crystal symmetry, band structure, and exotic physical properties in chiral crystals.

  1. Angle-resolved photoemission spectroscopy of the insulating NaxWO3: Anderson localization, polaron formation, and remnant Fermi surface.

    PubMed

    Raj, S; Hashimoto, D; Matsui, H; Souma, S; Sato, T; Takahashi, T; Sarma, D D; Mahadevan, Priya; Oishi, S

    2006-04-14

    The electronic structure of the insulating sodium tungsten bronze, Na(0.025)WO(3), is investigated by high-resolution angle-resolved photoemission spectroscopy. We find that near-E(F) states are localized due to the strong disorder arising from random distribution of Na+ ions in the WO(3) lattice, which makes the system insulating. The temperature dependence of photoemission spectra provides direct evidence for polaron formation. The remnant Fermi surface of the insulator is found to be the replica of the real Fermi surface in the metallic system.

  2. Identification and classification of structural soil conservation measures based on very high resolution stereo satellite data.

    PubMed

    Eckert, Sandra; Tesfay Ghebremicael, Selamawit; Hurni, Hans; Kohler, Thomas

    2017-05-15

    Land degradation affects large areas of land around the globe, with grave consequences for those living off the land. Major efforts are being made to implement soil and water conservation measures that counteract soil erosion and help secure vital ecosystem services. However, where and to what extent such measures have been implemented is often not well documented. Knowledge about this could help to identify areas where soil and water conservation measures are successfully supporting sustainable land management, as well as areas requiring urgent rehabilitation of conservation structures such as terraces and bunds. This study explores the potential of the latest satellite-based remote sensing technology for use in assessing and monitoring the extent of existing soil and water conservation structures. We used a set of very high resolution stereo Geoeye-1 satellite data, from which we derived a detailed digital surface model as well as a set of other spectral, terrain, texture, and filtered information layers. We developed and applied an object-based classification approach, working on two segmentation levels. On the coarser level, the aim was to delimit certain landscape zones. Information about these landscape zones is useful in distinguishing different types of soil and water conservation structures, as each zone contains certain specific types of structures. On the finer level, the goal was to extract and identify different types of linear soil and water conservation structures. The classification rules were based mainly on spectral, textural, shape, and topographic properties, and included object relationships. This approach enabled us to identify and separate from other classes the majority (78.5%) of terraces and bunds, as well as most hillside terraces (81.25%). Omission and commission errors are similar to those obtained by the few existing studies focusing on the same research objective but using different types of remotely sensed data. Based on our results

  3. Emerging Trends on the Volatile Chemistry in Comets as Measured with High-Resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J., Jr.; Weaver, Harold A.

    2016-10-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, and C2H2 may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Optical and infrared comparisons indicate that mixing ratios of daughter species and potential parents from cometary ices are sometimes but not always consistent with one another. This suggests that in many comets there are significant sources of C2 and/or CN from grains, and that the importance of these

  4. Angle-Resolved Second-Harmonic Light Scattering from Colloidal Particles

    SciTech Connect

    Yang, N.; Angerer, W. E.; Yodh, A. G.

    2001-09-03

    We report angle-resolved second-harmonic generation (SHG) measurements from suspensions of centrosymmetric micron-size polystyrene spheres with surface-adsorbed dye (malachite green). The second-harmonic scattering profiles differ qualitatively from linear light scattering profiles of the same particles. We investigated these radiation patterns using several polarization configurations and particle diameters. We introduce a simple Rayleigh-Gans-Debye model to account for the SHG scattering anisotropy. The model compares favorably with our experimental data. Our measurements suggest scattering anisotropy may be used to isolate particle nonlinear optics from other bulk nonlinear optical effects in suspension.

  5. Collision cross section measurements for biomolecules within a high-resolution FT-ICR cell: theory.

    PubMed

    Guo, Dan; Xin, Yi; Li, Dayu; Xu, Wei

    2015-04-14

    In this study, an energetic hard-sphere ion-neutral collision model was proposed to bridge-link ion collision cross section (CCS) with the image current collected from a high-resolution Fourier transform ion cyclotron resonance (FT-ICR) cell. By investigating the nonlinear effects induced by high-order electric fields and image charge forces, the energetic hard-sphere collision model was validated through experiments. Suitable application regions for the energetic hard-sphere collision model, as well as for the conventional Langevin and hard-sphere collision models, were also discussed. The energetic hard-sphere collision model was applied in the extraction of ion CCSs from high-resolution FT-ICR mass spectra. Discussions in the present study also apply to FT-Orbitraps and FT-quadrupole ion traps.

  6. Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated with Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, J. L.; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-05-01

    The unusual transport properties of graphene are the direct consequence of a peculiar band structure near the Dirac point. We determine the shape of the π bands and their characteristic splitting, and find the transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved photoemission. By detailed measurements of the π bands we derive the stacking order, layer-dependent electron potential, screening length, and strength of interlayer interaction by comparison with tight binding calculations, yielding a comprehensive description of multilayer graphene’s electronic structure.

  7. Angle-resolved magnetotransport studies in anisotropic MgB2 single crystals

    NASA Astrophysics Data System (ADS)

    Pradhan, A. K.; Tokunaga, M.; Shi, Z. X.; Takano, Y.; Togano, K.; Kito, H.; Ihara, H.; Tamegai, T.

    2002-04-01

    We report the angle-resolved magnetotransport measurements on MgB2 single crystals that exhibit moderate anisotropy (γ) in upper critical fields with γ=2.6+/-0.1. Unusual ``kink'' features in resistivity are observed, which appear most clearly for field parallel to the c axis. We discuss the origin of the ``kink'' features in relation with the vortex-lattice melting and the recently proposed model of two-gap superconductivity. The influences of anisotropy on superconducting properties including the kink features are also demonstrated.

  8. Measurement method for roll angular displacement with a high resolution by using diffraction gratings and a heterodyne interferometer

    SciTech Connect

    Tang, Shanzhi; Wang, Zhao; Gao, Jianmin; Guo, Junjie

    2014-04-15

    The roll angle measurement is difficult to be achieved directly using a typical commercial interferometer due to its low sensitivity in axial direction, where the axial direction is orthogonal to the plane of the roll angular displacement. A roll angle measurement method combined diffraction gratings with a laser heterodyne interferometer is discussed in this paper. The diffraction grating placed in the plane of a roll angular displacement and the interferometer arranged in the plane's orthogonal direction, constitute the measurement pattern for the roll angle with high resolution. The roll angular displacement, considered as the linear, can be tested precisely when the corresponding angle is very small. Using the proposed method, the angle roll measurement obtains the high resolution of 0.002{sup ″}. Experiment has proved its feasibility and practicability.

  9. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  10. The optimization of super-high resolution frequency measurement techniques based on phase quantization regularities between any frequencies.

    PubMed

    Li, Zhiqi; Zhou, Wei; Zhou, Hui; Zhang, Xueping; Zhao, Jie

    2013-02-01

    Step phase quantization regularity between different nominal frequency signals is introduced in this paper. Based on this regularity, an optimized high resolution frequency measurement technique is presented. The key features and issues of phase quantization characteristics and measurements are described. Based on the relationship between the same or multiple nominal signals with a certain differences, the resolution of frequency measurements is developed and the range is widened. Several measurement results are provided to support the concepts with experimental evidence. The resolution of frequency measurement can reach 10(-12) (s(-1)) over a wide range or higher for specific frequency signals.

  11. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K.; Hell, N.

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  12. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Hell, N; Träbert, E; Widmann, K

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  13. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trapa)

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Hell, N.; Träbert, E.; Widmann, K.

    2014-11-01

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 μm wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  14. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    NASA Astrophysics Data System (ADS)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias

    2017-02-01

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  15. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    PubMed Central

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias

    2017-01-01

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices. PMID:28165445

  16. Study of M1 and E1 excitations by high-resolution proton inelastic scattering measurement at forward angles

    SciTech Connect

    Tamii, A.; Adachi, T.; Hatanaka, K.; Hashimoto, H.; Kaneda, T.; Matsubara, H.; Okamura, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Carter, J.; Dozono, M.; Fujita, H.; Fujita, Y.; Itoh, M.; Kawabata, T.; Nakanishi, K.; Sasamoto, Y.; Neumann-Cosel, P. von

    2007-06-13

    Experimental technique for measuring proton inelastic scattering with high-resolution at 295 MeV and at forward angles including zero degrees is described. The method is useful for extracting spin part of the M1 strength via nuclear excitation as well as E1 strength via Coulomb excitation. An excitation energy resolution of 20 keV, good scattering angle resolution, and low background condition have been achieved. The experimental technique was applied for several sd and pf shell nuclei.

  17. High-Resolution UV Relay Lens for Particle Size Distribution Measurements Using Holography

    SciTech Connect

    Malone, Robert M.; Capelle, Gene A.; Frogget, Brent C.; Grover, Mike; Kaufman, Morris I.; Pazuchanics, Peter; Sorenson, Danny S.; Stevens, Gerald D.; Tibbits, Aric; Turley, William D.

    2008-08-29

    Shock waves passing through a metal sample can produce ejecta particulates at a metal-vacuum interface. Holography records particle size distributions by using a high-power, short-pulse laser to freeze particle motion. The sizes of the ejecta particles are recorded using an in-line Fraunhofer holography technique. Because the holographic plate would be destroyed in an energetic environment, a high-resolution lens has been designed to relay the interference fringes to a safe environment. Particle sizes within a 12-mm-diameter, 5-mm-thick volume are recorded onto holographic film. To achieve resolution down to 0.5 μm, ultraviolet laser (UV) light is needed. The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution and operates at f/0.89 will be described. To set up this lens system, a doublet lens is temporarily attached that enables operation with 532-nm laser light and 1100 lp/mm resolution. Thus, the setup and alignment are performed with green light, but the dynamic recording is done with UV light. During setup, the 532-nm beam provides enough focus shift to accommodate the placement of a resolution target outside the ejecta volume; this resolution target does not interfere with the calibrated wires and pegs surrounding the ejecta volume. A television microscope archives images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens will be presented, and resolution variation through the 5-mm depth of field will be discussed.

  18. High-Resolution UV Relay Lens for Particle Size Distribution Measurements Using Holography

    SciTech Connect

    Robert M. Malone, Brent C. Frogget, Morris I. Kaufman, Aric Tibbits, Gene A. Capelle, Mike Grover, Gerald D. Stevens, William D. Turley

    2008-03-01

    Shock waves passing through a metal sample can produce ejecta particulates at a metal-vacuum interface. Holography records particle size distributions by using a highpower, short-pulse laser to freeze particle motion. The sizes of the ejecta particles are recorded using an in-line Fraunhofer holography technique. Because the holographic plate would be destroyed in this energetic environment, a high-resolution lens has been designed to relay the interference fringes to a safe environment. Particle sizes within a 12-mm-diameter, 5-mm-thick volume are recorded on holographic film. To achieve resolution down to 0.5 microns, ultraviolet (UV) light (in this case supplied by a tripled Nd:YAG laser) is needed. The design and assembly of a nine-element lens that achieves >2000 lp/mm resolution and operates at f/0.85 will be described. To set up this lens system, a doublet lens is temporarily attached that enables operation with 532-nm (green) light and 1100 lp/mm resolution. Thus, the setup and alignment is performed with green light, but the dynamic recording is done with UV light. During setup, the 532-nm beam provides enough focus shift to accommodate the placement of a resolution pattern outside the ejecta volume; this resolution pattern does not interfere with the calibrated wires and pegs surrounding the ejecta volume. A television microscope archives images of resolution patterns that prove that the calibration wires, interference filter, holographic plate, and relay lenses are in their correct positions. Part of this lens is under vacuum, at the point where the laser illumination passes through a focus. Alignment and tolerancing of this high-resolution lens will be presented, and resolution variation through the 5-mm depth of field will be discussed.

  19. Measurement of Pyrethroid, Organophosphorus, and Carbamate Insecticides in Human Plasma using Isotope Dilution Gas Chromatography-High Resolution Mass Spectrometry

    PubMed Central

    Pérez, José J.; Williams, Megan K.; Weerasekera, Gayanga; Smith, Kimberly; Whyatt, Robin M.; Needham, Larry L.; Barr, Dana Boyd

    2010-01-01

    We have developed a gas chromatography-high resolution mass spectrometry method for measuring pyrethroid, organophosphorus, carbamate and fipronil pesticides and the synergist piperonyl butoxide in human plasma. Plasma samples were extracted using solid phase extraction and were then concentrated for injection and analysis using isotope dilution gas chromatography-high resolution mass spectrometry. The limits of detection ranged from 10 to 158 pg/mL with relative recoveries at concentrations near the LODs (e.g., 25 or 250 pg/mL) ranging from 87% to 156% (9 of the 16 compounds were withing ± 15% of 100%). The extraction recoveries ranged from 20% to 98% and the overall method relative standard deviations were typically less than 20% with some exceptions. Analytical characteristics were determined at 25, 250, and 1000 pg/mL. PMID:20434413

  20. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential

    PubMed Central

    2014-01-01

    Current musculoskeletal imaging techniques usually target the macro-morphology of articular cartilage or use histological analysis. These techniques are able to reveal advanced osteoarthritic changes in articular cartilage but fail to give detailed information to distinguish early osteoarthritis from healthy cartilage, and this necessitates high-resolution imaging techniques measuring cells and the extracellular matrix within the multilayer structure of articular cartilage. This review provides a comprehensive exploration of the cellular components and extracellular matrix of articular cartilage as well as high-resolution imaging techniques, including magnetic resonance image, electron microscopy, confocal laser scanning microscopy, second harmonic generation microscopy, and laser scanning confocal arthroscopy, in the measurement of multilayer ultra-structures of articular cartilage. This review also provides an overview for micro-structural analysis of the main components of normal or osteoarthritic cartilage and discusses the potential and challenges associated with developing non-invasive high-resolution imaging techniques for both research and clinical diagnosis of early to late osteoarthritis. PMID:24946278

  1. Angle-resolved photoemission extended fine structure: Multiple layers of emitters and multiple initial states

    SciTech Connect

    Huff, W.R.A.; Kellar, S.A.; Moler, E.J. |; Chen, Y.; Wu, H.; Shirley, D.A.; Hussain, Z.

    1995-08-01

    Recently, angle-resolved photoemission extended fine structure (ARPEFS) has been applied to experimental systems involving multiple layers of emitters and non-s core-level photoemission in an effort to broaden the utility of the technique. Most of the previous systems have been comprised of atomic or molecular overlayers adsorbed onto a single-crystal, metal surface and the photoemission data were taken from an s atomic core-level in the overlayer. For such a system, the acquired ARPEFS data is dominated by the p{sub o} final state wave backscattering from the substrate atoms and is well understood. In this study, we investigate ARPEFS as a surface-region structure determination technique when applied to experimental systems comprised of multiple layers of photoemitters and arbitrary initial state core-level photoemission. Understanding the data acquired from multiple layers of photoemitters is useful for studying multilayer interfaces, ''buried'' surfaces, and clean crystals in ultra- high vacuum. The ability to apply ARPEFS to arbitrary initial state core-level photoemission obviously opens up many systems to analysis. Efforts have been ongoing to understand such data in depth. We present clean Cu(111) 3s, 3p, and 3d core-level, normal photoemission data taken on a high resolution soft x-ray beamline 9.3.2 at the Advanced Light Source in Berkeley, California and clean Ni(111) 3p normal photoemission data taken at the National Synchrotron Light Source in Upton, New York, USA.

  2. High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil-plant interface.

    PubMed

    Volkmann, Till H M; Haberer, Kristine; Gessler, Arthur; Weiler, Markus

    2016-05-01

    Plants rely primarily on rainfall infiltrating their root zones - a supply that is inherently variable, and fluctuations are predicted to increase on most of the Earth's surface. Yet, interrelationships between water availability and plant use on short timescales are difficult to quantify and remain poorly understood. To overcome previous methodological limitations, we coupled high-resolution in situ observations of stable isotopes in soil and transpiration water. We applied the approach along with Bayesian mixing modeling to track the fate of (2) H-labeled rain pulses following drought through soil and plants of deciduous tree ecosystems. We resolve how rainwater infiltrates the root zones in a nonequilibrium process and show that tree species differ in their ability to quickly acquire the newly available source. Sessile oak (Quercus petraea) adjusted root uptake to vertical water availability patterns under drought, but readjustment toward the rewetted topsoil was delayed. By contrast, European beech (Fagus sylvatica) readily utilized water from all soil depths independent of water depletion, enabling faster uptake of rainwater. Our results demonstrate that species-specific plasticity and responses to water supply fluctuations on short timescales can now be identified and must be considered to predict vegetation functional dynamics and water cycling under current and future climatic conditions.

  3. Variability of the North Atlantic Current: high resolution model data versus in situ measurements

    NASA Astrophysics Data System (ADS)

    Breckenfelder, Tilia; Rhein, Monika; Roessler, Achim; Behrens, Erik; Böning, Claus; Biastoch, Arne; Mertens, Christian

    2015-04-01

    The North Atlantic Current (NAC) provides an important heat source for the relatively warm winters in Western Europe by bringing warm and salty tropical/subtropical water into the subpolar gyre of the North Atlantic. The NAC is the northward extension of the Gulfstream and its warm and salty water form the warm upper branch of the Atlantic Meridional Overturning Circulation (AMOC). The NAC crosses the Mid-Atlantic Ridge (MAR) via the Charlie-Gibbs, Faraday and Maxwell Fracture Zones between 47° and 53°N. Along that section an array of four inverted echo sounders with bottom pressure sensors (PIES) are deployed since 2006 and combined with altimetry to quantify the NAC transport and its variability. The observed transport time series is compared to the high resolution output of the VIKING20 model, a 1/20° North Atlantic model which is embedded in a global model of 1/4° resolution (ORCA25) via a two-way nesting. We compare the horizontal and vertical flow fields, the mean transport and the variability as well as the water mass characteristics.

  4. Top-down modulation of hippocampal encoding activity as measured by high-resolution functional MRI.

    PubMed

    Carr, Valerie A; Engel, Stephen A; Knowlton, Barbara J

    2013-08-01

    Memory formation is known to be critically dependent upon the medial temporal lobe (MTL). Despite this well-characterized role, it remains unclear whether and how MTL encoding processes are affected by top-down goal states. Here, we examined the manner in which task demands at encoding affect MTL activity and its relation to subsequent memory performance. Participants were scanned using high-resolution neuroimaging of the MTL while engaging in two incidental encoding tasks: one that directed participants' attention to stimulus distinctiveness, and the other requiring evaluation of similarities across stimuli. We hypothesized that attending to distinctiveness would lead to the formation of more detailed memories and would more effectively engage the hippocampal circuit than attending to similarity. In line with our hypotheses, higher rates of subsequent recollection were observed for stimuli studied under the Distinctiveness than Similarity task. Critically, within the hippocampus, CA1 and the subiculum demonstrated an interaction between memory performance and task such that a significant subsequent memory effect was found only when task goals required attention to stimulus distinctiveness. To this end, robust engagement of the hippocampal circuit may underlie the observed behavioral benefits of attending to distinctiveness. Taken together, these findings advance understanding of the effects of top-down intentional information on successful memory formation across subregions of the MTL.

  5. High Resolution Bathymetric LIDAR Measurements at San Luis Obispo Bay, CA

    NASA Astrophysics Data System (ADS)

    Bensky, T.; Seck, C.; Smith, D.

    2007-12-01

    The movement of sand by ocean currents is an invisible but critically important phenomenon to coastal communities and sea-vessel-dependent economies such as in San Luis Obispo Bay. Over time, sand (or sediment) can cause beaches to erode or rebuild and harbors to "silt up." Dredging harbors is an obvious control mechanism, but the process is messy and expensive. Thus, such "coastal management" decisions should be well informed. Unfortunately, the effect of ocean currents on sand and sediment levels on the ocean floor is poorly understood in part because it is hard to observe: it occurs at the bottom of the ocean. But questions remain: What are the sand movement dynamics at the bottom of San Luis Obispo Bay? Is the bay filling in? Emptying out? What effects do persistent wind and wave patterns have on the ocean bottom? What about large storms? In order to answer these questions, we have installed a bathymetric Light Detection And Ranging (LIDAR) system on the Cal Poly Center for Costal Marine Sciences Pier in Port San Luis Obispo, California. Using a 1 Watt ocean floor (benthic boundary layer or BBL). The photon detector is attached to a high resolution, multiple-stop timer, with 15 picoseconds of event-to-event resolution. This yields an approximate 1 cm resolution of LIDAR ranging and hence sediment transport dynamics. In this poster, we will present preliminary results of our work including evidence of surface- and BBL-scattered photons.

  6. Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy

    DOE PAGES

    Jin, Wencan; Yeh, Po -Chun; Zaki, Nader; ...

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS₂) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS₂ elucidate the effects of interaction with a substrate. Thus, a suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS₂ crystals. For suspended MoS₂, a careful investigation of the measured uppermost valence band gives an effective mass at Γ¯ and Κ¯ of 2.00m₀ and 0.43m₀, respectively. We also measure an increase in the band linewidth from the midpoint of Γ¯Κ¯ to the vicinity of Κ¯ and briefly discussmore » its possible origin.« less

  7. Measurement of low radioactivity background in a high voltage cable by high resolution inductively coupled plasma mass spectrometry

    SciTech Connect

    Vacri, M. L. di; Nisi, S.; Balata, M.

    2013-08-08

    The measurement of naturally occurring low level radioactivity background in a high voltage (HV) cable by high resolution inductively coupled plasma mass spectrometry (HR ICP MS) is presented in this work. The measurements were performed at the Chemistry Service of the Gran Sasso National Laboratory. The contributions to the radioactive background coming from the different components of the heterogeneous material were separated. Based on the mass fraction of the cable, the whole contamination was calculated. The HR ICP MS results were cross-checked by gamma ray spectroscopy analysis that was performed at the low background facility STELLA (Sub Terranean Low Level Assay) of the LNGS underground lab using HPGe detectors.

  8. Surface structure of imidazolium-based ionic liquids: Quantitative comparison between simulations and high-resolution RBS measurements

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Lísal, Martin; Kimura, Kenji

    2016-03-01

    Elemental depth profiles of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n = 4, 6, 8) are measured using high-resolution Rutherford backscattering spectroscopy (HRBS). The profiles are compared with the results of molecular dynamics (MD) simulations. Both MD simulations and HRBS measurements show that the depth profiles deviate from the uniform stoichiometric composition in the surface region, showing preferential orientations of ions at the surface. The MD simulations qualitatively reproduce the observed HRBS profiles but the agreement is not satisfactory. The observed discrepancy is ascribed to the capillary waves. By taking account of the surface roughness induced by the capillary waves, the agreement becomes almost perfect.

  9. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1997-01-01

    An account is given of progress during the period 8/l/96-7/31/97 on work on (a) cross section measurements of O2 S-R using a Fourier transform spectrometer (FTS) at the Photon Factory in Japan; (b) the determination of the predissociation linewidths of the Schumann-Runge bands (S-R) of 02; (c) cross section measurements of 02 Herzberg bands using a Fourier transform spectrometer (FTS) at Imperial College; and (d) cross section measurements of H2O in the wavelength region 120-188 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer and with the Fourier transform spectrometer. Below 175 nm, synchrotron radiation is most suitable for cross section measurements in combination with spectrometers at the Photon Factory Japan. Cross section measurements of the Doppler limited bands depend on using the very high resolution, available with the Fourier transform spectrometer, (0.025/cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen, the penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  10. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    SciTech Connect

    Palczewski, Ari Deibert

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent

  11. High resolution measurement of water drip rates in caves using an accoustic drip counter

    NASA Astrophysics Data System (ADS)

    Collister, C.; Mattey, D.

    2005-12-01

    Stable isotope records in speleothem provide one of the most promising means of reconstructing precipitation and temperature variations back into the past. The interpretation of speleothem oxygen isotope records in terms of a climate signal is not straightforward and much progress has been made through cave monitoring programs, where knowledge of the response of cave seepage rates to rain input on the surface provides vital information on aquifer processes. Continuous monitoring of drip rates at sites of active speleothem growth provides imortant constraints on processes that cause chemical and isotopic change in precipitation during its passage through the aquifer and into the cave environment. A widely used method of continuously monitoring drip rates employs tipping bucket devices which provide time integrated output dependent on the volume of the bucket and drip rate. Mechanical counting devices are sometimes unreliable in cave environments owing to condensation and carbonate precipitation interfering with the mechanism and unattended long term monitoring may be problematic. Accoustic drip counting is an attractive alternative method and we have designed an simple integrated acoustic drip counter/logger which counts the number of drips falling on the lid of the device over a user-defined time interval. This device provides a high resolution record of changing drip rates that is insensitive to spurious noise, deposition of calcite films, and can collect data for periods of 1-2 years without user intervention. The drip counter and logger is entirely solid state and fully self-contained in a rugged enclosure approximately 60mm x 60mm x 40mm. The lid of the box acts as a microphone which is tuned to record falling drops and exclude spurious signals. Low power electronics are used throughout, giving a battery life of approximately two years. The sensor will record drips falling from heights as low as 25 cm and drips at the rate of 5 per second can be resolved. Very

  12. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue

    PubMed Central

    Sakadžić, Sava; Roussakis, Emmanuel; Yaseen, Mohammad A.; Mandeville, Emiri T.; Srinivasan, Vivek J.; Arai, Ken; Ruvinskaya, Svetlana; Devor, Anna; Lo, Eng H.; Vinogradov, Sergei A.; Boas, David A.

    2010-01-01

    The ability to measure oxygen partial pressure (pO2) with high temporal and spatial resolution in three dimensions is crucial for understanding oxygen delivery and consumption in normal and diseased brain. Among existing pO2 measurement methods, phosphorescence quenching is optimally suited for the task. However, previous attempts to couple phosphorescence with two-photon laser scanning microscopy have faced substantial difficulties because of extremely low two-photon absorption cross-sections of conventional phosphorescent probes. Here, we report the first practical in vivo two-photon high-resolution pO2 measurements in small rodents’ cortical microvasculature and tissue, made possible by combining an optimized imaging system with a two-photon-enhanced phosphorescent nanoprobe. The method features a measurement depth of up to 250 µm, sub-second temporal resolution and requires low probe concentration. Most importantly, the properties of the probe allowed for the first direct high-resolution measurement of cortical extravascular (tissue) pO2, opening numerous possibilities for functional metabolic brain studies. PMID:20693997

  13. Improved determination of seafloor absolute magnetization from uneven, near-seafloor magnetic measurements and high-resolution bathymetry

    NASA Astrophysics Data System (ADS)

    Szitkar, F.; Dyment, J.; Choi, Y.; Fouquet, Y.

    2012-12-01

    Vector magnetometers installed on deep-sea submersibles offer a unique opportunity to achieve high resolution magnetic investigations at the scale of hundred to thousand meters. Once corrected for the vehicle induced and remanent magnetization, the measurements mostly reflect variations of the topography and the submersible path - i.e. the distance between the sources and the observation points. The interesting parameter, however, is the seafloor magnetization that can be interpreted in terms of geological processes. Here we present methods to compute absolute magnetization of the seafloor by taking advantage of the uneven track of the submersible. In these methods, synthetic anomalies are computed for a unit magnetization assuming the geometry of the experiment, i.e. the source and the submersible path. The absolute magnetization is determined by a comparison between the observed anomalies and the synthetic ones along sliding windows. The coherency between the two signals gives an estimation of the quality of the determination, and the phase provides information on the magnetic polarity, and therefore the age of volcanic features. Such a method has been developed by Honsho et al. (JGR, 2009) using deep-sea submersible data only, i.e. magnetic anomaly, depth and altitude of the submersible. The synthetic anomalies are computed using 2D forward modeling, i.e. assuming the structures to be infinite in the direction perpendicular to the submersible path. The method has been applied with success to linear profiles crossing elongated structures such as mid-ocean ridges, but may fail for structures departing from the 2D assumption. The adaptation of improving multibeam systems to autonomous underwater vehicles (AUVs) has opened the way to the collection of very high resolution bathymetric data (around 2m between each measurement). This development has triggered a new strategy to explore the seafloor using manned submersibles: an AUV is operated during night time to

  14. Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin light scattering

    SciTech Connect

    Gubbiotti, G.; Tacchi, S.; Madami, M.; Carlotti, G.; Ding, J.; Adeyeye, A. O.

    2015-06-29

    The Brillouin light scattering technique has been exploited to study the angle-resolved spin wave band diagrams of squared Permalloy antidot lattice. Frequency dispersion of spin waves has been measured for a set of fixed wave vector magnitudes, while varying the wave vector in-plane orientation with respect to the applied magnetic field. The magnonic band gap between the two most dispersive modes exhibits a minimum value at an angular position, which exclusively depends on the product between the selected wave vector magnitude and the lattice constant of the array. The experimental data are in very good agreement with predictions obtained by dynamical matrix method calculations. The presented results are relevant for magnonic devices where the antidot lattice, acting as a diffraction grating, is exploited to achieve multidirectional spin wave emission.

  15. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    PubMed

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  16. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; McMillen, Colin D.; Kolis, Joseph; Giesber, Henry G.; Egan, John J.; Kaminski, Adam

    2014-03-01

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 1014 photon/s. We demonstrate that this energy range is sufficient to measure the kz dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  17. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures

    PubMed Central

    Park, Sang Han; Kwon, Soonnam

    2016-01-01

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow. PMID:27164313

  18. Angle-resolved photoemission spectroscopy of liquid water at 29.5 eV

    PubMed Central

    Nishitani, Junichi; West, Christopher W.; Suzuki, Toshinori

    2017-01-01

    Angle-resolved photoemission spectroscopy of liquid water was performed using extreme ultraviolet radiation at 29.5 eV and a time-of-flight photoelectron spectrometer. SiC/Mg coated mirrors were employed to select the single-order 19th harmonic from laser high harmonics, which provided a constant photon flux for different laser polarizations. The instrument was tested by measuring photoemission anisotropy for rare gases and water molecules and applied to a microjet of an aqueous NaI solution. The solute concentration was adjusted to eliminate an electric field gradient around the microjet. The observed photoelectron spectra were analyzed considering contributions from liquid water, water vapor, and an isotropic background. The anisotropy parameters of the valence bands (1b1, 3a1, and 1b2) of liquid water are considerably smaller than those of gaseous water, which is primarily attributed to electron scattering in liquid water.

  19. Preparation of layered thin film samples for angle-resolved photoemission spectroscopy

    SciTech Connect

    Harrison, S. E.; Zhou, B.; Huo, Y.; Harris, J. S.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Chen, Y.; Hesjedal, T.

    2014-09-22

    Materials with layered van der Waals crystal structures are exciting research topics in condensed matter physics and materials science due to outstanding physical properties associated with their strong two dimensional nature. Prominent examples include bismuth tritelluride and triselenide topological insulators (TIs), which are characterized by a bulk bandgap and pairwise counter-propagating spin-polarized electronic surface states. Angle-resolved photoemission spectroscopy (ARPES) of ex-situ grown thin film samples has been limited by the lack of suitable surface preparation techniques. We demonstrate the shortcomings of previously successful conventional surface preparation techniques when applied to ternary TI systems which are susceptible to severe oxidation. We show that in-situ cleaving is a simple and effective technique for preparation of clean surfaces on ex-situ grown thin films for high quality ARPES measurements. The method presented here is universally applicable to other layered van der Waals systems as well.

  20. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    SciTech Connect

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam; McMillen, Colin D.; Kolis, Joseph; Giesber, Henry G.; Egan, John J.

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  1. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  2. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1988-01-01

    Progress is given on work on: cross section measurements in the transmission window regions of the Schumann-Runge bands of oxygen; the determinations of predissociation linewidths; the theoretical calculation of band oscillator strengths of the Schumann-Runge absorption bands of O-16O-18; the determination of molecular spectroscopic constants; and the combined Herzberg continuum cross sections. The experimental investigations relevant to the cross section measurements, predissociation linewidths, and molecular spectroscopic constants are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), suitable for cross section measurements of molecular bands with discrete rotational structure. Such measurements are needed for accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photo-predissociation of O-16O-18 by solar radiation penetrating between the absorption lines of O-16(sub 2).

  3. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  4. Remote sounding of stratospheric temperatures using high resolution radiance measurements from the IRIS-D. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gallery, W. O.

    1974-01-01

    Remote sounding of stratospheric temperatures up to 3.2 millibars is attempted using high resolution (unapodized) radiance measurements in the 15 micron CO2 band from the Infrared Interferometer Spectrometer on Nimbus 4. Inversions are performed using the Chahine relaxation technique. Radiance data and simultaneous in situ temperature profiles are obtained from the Rocket/Nimbus Sounder Comparison. Numerical tests with synthetic radiance data show that the uncertainty in the retrieved temperatures due to random instrument noise is about 1.1 K when averaged over layers about 10 km thick. However, comparison of the measured radiances with the radiances calculated from the in situ profiles show the calculated radiances to be systematically higher than the measured radiances. The evidence indicates that systematic errors exist in both the radiance and the in situ measurements.

  5. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    PubMed Central

    Devesse, Wim; De Baere, Dieter; Guillaume, Patrick

    2017-01-01

    A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764

  6. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  7. High-resolution OH LIF velocity measurement technique for high-speed reacting flows

    NASA Technical Reports Server (NTRS)

    Klavuhn, K. G.; Gauba, G.; Mcdaniel, J. C.

    1992-01-01

    A nonintrusive optical technique was developed for the quantitative study of velocity fields in steady, high-speed, reacting flows. A narrow-linewidth laser source was tuned through an isolated OH absorption line to measure the Doppler-shifted linecenter frequency relative to an iodine reference line. A counterpropagating beam approach was used to eliminate collisional impact shift effects. Pointwise measurements of velocity were made in a unique reacting underexpanded jet facility as an extensive calibration of the technique over a wide range of flow conditions. The extension of the technique to planar measurements is also discussed.

  8. High-Resolution Measurements of Photoionization of Ions Using Synchrotron Radiation

    SciTech Connect

    Aguilar, A.; Covington, A.M.; Emmons, E.D.; Gharaibeh, M.F.; Phaneuf, R.A.; Alvarez, I.; Cisneros, C.; Hinojosa, G.; Dominguez, I.; Ackerman, G.; Bozek, J.D.; Canton, S.; Rude, B.; Sant'Anna, M.M.; Schlachter, A. S.; Folkmann, F.

    2003-08-26

    Measurement of absolute cross sections for photoionization of ions has become feasible by merging a well-collimated ion beam with a monochromatic beam of synchrotron radiation. An electron cyclotron resonance (ECR) ion source permits such measurements to be extended to multiply charged ions, and makes possible systematic studies along isoelectronic sequences. The evolution of atomic spectra along such sequences is commonly studied theoretically, but the predictive ability of the theoretical methods remains largely untested. Absolute cross-section measurements are presented for the first three ionic members of the isoelectronic sequence of nitrogen (O+, F2+ and Ne3+)

  9. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution.

    PubMed

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  10. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    SciTech Connect

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-15

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  11. A simple technique for high resolution time domain phase noise measurement

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Donahoe, T.

    1977-01-01

    A new time domain phase comparator is described. The device uses a novel technique to allow time domain phase measurements to be made with period and time interval counters without the use of offset reference oscillators. The device uses a single reference oscillator and allows measurements with a phase resolution greater than the noise floor of the reference. Data is presented showing a phase resolution of 0.02ps at 5 MHz with a crystal reference. The device has application in measuring the phase stability of systems where approximate phase quadrature can be maintained.

  12. High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume

    NASA Astrophysics Data System (ADS)

    Crimaldi, J. P.; Koseff, J. R.

    Two techniques are described for measuring the scalar structure of turbulent flows. A planar laser-induced fluorescence technique is used to make highly resolved measurements of scalar spatial structure, and a single-point laser-induced fluorescence probe is used to make highly resolved measurements of scalar temporal structure. The techniques are used to measure the spatial and temporal structure of an odor plume released from a low-momentum, bed-level source in a turbulent boundary layer. For the experimental setup used in this study, a spatial resolution of 150μm and a temporal resolution of 1,000Hz are obtained. The results show a wide range of turbulent structures in rich detail; the nature of the structure varies significantly in different regions of the plume.

  13. Axial nano-displacement measurement with high resolution and wide range based on asymmetrical illumination.

    PubMed

    Li, Shuai; Kuang, Cuifang; Ge, Jianhong; Liu, Xu

    2013-03-25

    We propose a novel axial nano-displacement measuring approach. Based on asymmetrical illumination, the axial drifts of the sample plane can be measured by detecting the position of the centroid of the focal spot. Both CCD and QD are used as the detector in the system and two data processing models are designed. With a relatively simple and applicable configuration, the proposed system can realize a wide measuring range of >4λand a high axial resolution of 2nm. Moreover, the presented approach is immune to the influence caused by the energy fluctuation of the laser source. Possessing these advantages, this measuring method has big potential to be applied in modern engineering and scientific researches.

  14. Flow Velocimetry for Weakly Conducting Electrolytes Based on High Resolution Lorentzforce Measurement

    NASA Astrophysics Data System (ADS)

    Ebert, R.; Vasilyan, S.; Wiederhold, A.

    We demonstrate that a flow velocity measurement can be transformed into a non-invasive force measurement by metering the dragforce acting on a system of magnets that is arranged around a flow channel. This method is called Lorentzforce velocimetry and has been developed in the last years in our institute. It is a highly feasible principle for materials with large conductivity like liquid metals. To evolve this method for weakly conducting fluids like salt water or molten glass the dragforce measurement is the challenging bottleneck. Here forces of 10-8 and less of the weightforce of the magnet system have to be resolved in the rather noisy environment of the flow channel. In this paper different force measurement techniques get tested and compared. In the first setup the drag-force is acting on the magnets that are hanging as a pendulum with 0.5 m long wires on a mounting. Here the displacement in the range of a few μm can be detected with a laser interferometer and another optical positioning sensor. For the second setup the magnet system is attached to a state of the art electromagnetic force compensation balance. The balance is used in an unusual orientation: It is turned by 90 degrees to measure the horizontally acting Lorentzforce. Different ways of getting the correct force signal out of the two measurement setups will be presented and discussed. For generalization of the measurement principle the Lorentzforce is determined for different fluid profiles. In addition to that we have developed new systematic noise reduction methods to increase the resolution of both force measurement techniques by a factor of ten or larger which we will present here.

  15. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  16. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  17. Bulk and surface electronic structure of hexagonal structured PtBi2 studied by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Du, Y. P.; Yang, X. J.; Zheng, Y.; Xu, D. F.; Niu, X. H.; Shen, X. P.; Yang, H. F.; Dudin, P.; Kim, T. K.; Hoesch, M.; Vobornik, I.; Xu, Z.-A.; Wan, X. G.; Feng, D. L.; Shen, D. W.

    2016-12-01

    PtBi2 with a layered hexagonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high-resolution angle-resolved photoemission spectroscopy, we present a systematic study on its bulk and surface electronic structure. Through careful comparison with first-principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real composition of samples. We find significant electron doping in PtBi2, implying a substantial Bi-deficiency-induced disorder therein. Intriguingly, we discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude linear band dispersion in the quantum limit as the cause of the unconventional large linear magnetoresistance but give support to the classical disorder model from the perspective of the electronic structure.

  18. The Kinect as a low cost high resolution small scale LiDAR for water surface and shallow subsurface measurements

    NASA Astrophysics Data System (ADS)

    Mankoff, K. D.; Russo, T. A.

    2012-04-01

    The Microsoft Kinect, a video game input device designed for the Xbox system, can be used by earth scientists as a low cost high resolution LiDAR sensor. The device can see through at least 1 m of clear still water, or image the surface of opaque water. When observing through water the measurement is distorted by the refraction at the air/water interface. We present initial results of a calibration for sub-aqueous measurements, and describe a method for measuring sub-aqueous features and water height. When waves exist on the surface the signal is further convoluted and both the waves and subsurface are captured in the signal. We discuss signal deconvolution and techniques for capturing the relative and/or absolute values of surface waves and subsurface features.

  19. Determination of Spectroscopic Properties of Atmospheric Molecules from High Resolution Vacuum Ultraviolet Cross Section and Wavelength Measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.

    1999-01-01

    We have studied the spectroscopy and the cross sections of the simple molecules of atmospheric interest such as oxygen, nitric oxide, carbon dioxide, and water. We have made cross section measurements on an absolute base without the effects from the limited instrumental resolution. We have used the following different instruments- the grating spectrometer (6.65-m at CfA, 3-m at Photon Factory), VUV Fourier transform spectrometer at Imperial College, and then moved the same one to the Photon Factory. Selection of the instruments depend on the appearance of molecular bands, and their wavelength region. For example, the cross section measurements of Doppler limited bands can been done with the Fourier transform spectrometer at the very high resolution (0.025/ cm resolution). All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen penetration of solar radiation into the Earth's atmosphere, and photochemistry of minor molecules.

  20. High-resolution differential mode delay measurement for a multimode optical fiber using a modified optical frequency domain reflectometer.

    PubMed

    Ahn, T-J; Kim, D

    2005-10-03

    A novel differential mode delay (DMD) measurement technique for a multimode optical fiber based on optical frequency domain reflectometry (OFDR) has been proposed. We have obtained a high-resolution DMD value of 0.054 ps/m for a commercial multimode optical fiber with length of 50 m by using a modified OFDR in a Mach-Zehnder interferometer structure with a tunable external cavity laser and a Mach-Zehnder interferometer instead of Michelson interferometer. We have also compared the OFDR measurement results with those obtained using a traditional time-domain measurement method. DMD resolution with our proposed OFDR technique is more than an order of magnitude better than a result obtainable with a conventional time-domain method.

  1. Deflection Measurements of a Thermally Simulated Nuclear Core Using a High-Resolution CCD-Camera

    NASA Technical Reports Server (NTRS)

    Stanojev, B. J.; Houts, M.

    2004-01-01

    Space fission systems under consideration for near-term missions all use compact. fast-spectrum reactor cores. Reactor dimensional change with increasing temperature, which affects neutron leakage. is the dominant source of reactivity feedback in these systems. Accurately measuring core dimensional changes during realistic non-nuclear testing is therefore necessary in predicting the system nuclear equivalent behavior. This paper discusses one key technique being evaluated for measuring such changes. The proposed technique is to use a Charged Couple Device (CCD) sensor to obtain deformation readings of electrically heated prototypic reactor core geometry. This paper introduces a technique by which a single high spatial resolution CCD camera is used to measure core deformation in Real-Time (RT). Initial system checkout results are presented along with a discussion on how additional cameras could be used to achieve a three- dimensional deformation profile of the core during test.

  2. Ice fog and light snow measurements using a high resolution camera system

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-04-01

    In this presentation, measurements collected by the ice crystal imaging (ICI) probe employed during FRAM (Fog Remote Sensing and Modeling) project for the Winter of 2010-2011 in Yellowknife, NWT, Canada are analysed to study small ice crystal impact on aviation operations. Ice fog, diamond dust, and light snow form during cold weather conditions and they affect aviation operations through visibility and deposition over the surfaces. In addition, these events influence the local heat budget through radiative cooling. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges. These phenomena need to be better represented in forecast and climate models and this can only be done using accurate measurements from ground-based instrumentation. Imaging of ice particles' properties can complement other in-situ measurements being collected routinely. The newly developed ICI probe, aimed at measuring ice fog and light snow particles, is presented here. The ICI probe samples ice particles through a vertical inlet, where a laser beam and photodetector detect ice crystals contained in the flow. The detected particles are then imaged with high optical resolution between 10 to 1000 micron size range. An illuminating LED flash and image capturing for measurements are triggered by the photodetector. The results suggested that the majority of ice particles during the two-month long campaign were small with sizes between 300 μm and 800 μm. During ice fog events, the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm. In this presentation, challenges and issues related to small ice crystals are described and their importance for aviation operations and climate change are discussed.

  3. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    NASA Astrophysics Data System (ADS)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  4. High-Resolution Measurements of e++H2O Total Cross Section

    NASA Astrophysics Data System (ADS)

    Loreti, A.; Kadokura, R.; Fayer, S. E.; Kövér, Á.; Laricchia, G.

    2016-12-01

    Using a purely electrostatic positron beam, the total cross section of positrons scattering from H2O has been measured for the first time with a high angular discrimination (≃1 ° ) against forward scattered projectiles. Results are presented in the energy range (10-300) eV. Significant deviations from previous measurements are found which are, if ascribed entirely to the angular acceptances of various experimental systems, in quantitative accord with ab initio theoretical predictions of the differential elastic scattering cross section.

  5. Small scale high resolution LiDAR measurements of a subglacial conduit

    NASA Astrophysics Data System (ADS)

    Mankoff, K. D.; Gulley, J.

    2012-04-01

    We present direct measurements of surface roughness in a sub-glacial conduit system underneath the Rieperbreen Glacier, Svalbard, Norway. Data was collected with a low-cost (129 USD) Microsoft Kinect video game device used as a LIDAR sensor. Surface roughness is a primary control on water flow in rivers, channels, and cave conduit systems and understanding the effects of surface roughness on water flow has been problematic due to lack of direct measurements of roughness in natural systems. We use the ice scallop dimensions to derive flow velocity and explore implications of the changing roughness parameters as the cave grows and shrinks.

  6. High-resolution TALIF measurements of atomic oxygen: determination of gas temperature and collisional broadening coefficients

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Marinov, Daniil; Guaitella, Olivier; Drag, Cyril; Engeln, Richard; Golda, Judith; Schultz-von der Gathern, Volker

    2016-09-01

    Two-photon Absorption Laser-Induced Fluorescence (TALIF) is a well-established technique to measure relative (and with appropriate calibration techniques, absolute) densities of atoms in plasmas and flames. The excitation line profiles can provide additional information, but this is usually overlooked due to the mediocre spectral resolution of commercial pulsed dye laser systems. We have investigated O-atom TALIF excitation line profiles using a house-built narrow line-width pulsed UV laser system, based on pulsed Ti:Sa ring laser seeded by a cw infrared diode laser. The observed Doppler profiles allow unambiguous measurement of gas temperature with high precision in O2 and CO2 DC glow discharges. Sub-Doppler measurements, performed by reflecting the laser beam back through excitation zone, allow the pressure-broadened line shapes to be observed, both in a pure O2 DC discharge (up to 10 Torr pressure) and in an atmospheric pressure RF plasma jet in He/O2. Pressure broadening coefficients of the 3p3PJ state of O were determined for O2 and He bath gases, and were found to be an order of magnitude bigger than that predicted from the measured quenching rate. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).

  7. Prediction of sugarcane sucrose content with high resolution, hyperspectral leaf reflectance measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to determine if leaf reflectance measurements could be used to predict theoretically recoverable sugar (TRS) levels in sugarcane prior to harvest. Leaf and stalk samples were collected from multi-variety first-ratoon (FR) sugarcane maturity studies in 2005 at three sample ...

  8. Prediction of sugarcane sucrose content with high resolution, hyperspectral leaf reflectance measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing for crop maturity parameters may offer sugarcane producers a method to develop harvest schedules that maximize sucrose production. Several tests were conducted to determine if leaf reflectance measurements could be used to predict theoretically recoverable sugar (TRS) levels (crop mat...

  9. High resolution pollutant measurements in complex urban environments using mobile monitoring

    EPA Science Inventory

    Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires advanced in...

  10. A high-resolution multi-slit phase space measurement technique for low-emittance beams

    SciTech Connect

    Thangaraj, J. C. T.; Piot, P.

    2012-12-21

    Precise measurement of transverse phase space of a high-brightness electron beamis of fundamental importance in modern accelerators and free-electron lasers. Often, the transverse phase space of a high-brightness, space-charge-dominated electron beam is measured using a multi-slit method. In this method, a transverse mask (slit/pepperpot) samples the beaminto a set of beamlets, which are then analyzed on to a screen downstream. The resolution in this method is limited by the type of screen used which is typically around 20 {mu}m for a high-sensitivity Yttrium Aluminum Garnet screen. Accurate measurement of sub-micron transverse emittance using this method would require a long drift space between the multi-slit mask and observation screen. In this paper, we explore a variation of the technique that incorporates quadrupole magnets between the multi-slit mask and the screen. It is shown that this arrangement can improve the resolution of the transverse-phase-space measurement with in a short footprint.

  11. High-resolution wind speed measurements using actively heated fiber optics

    NASA Astrophysics Data System (ADS)

    Sayde, Chadi; Thomas, Christoph K.; Wagner, James; Selker, John

    2015-11-01

    We present a novel technique to simultaneously measure wind speed (U) at thousands of locations continuously in time based on measurement of velocity-dependent heat transfer from a heated surface. Measuring temperature differences between paired passive and actively heated fiber-optic (AHFO) cables with a distributed temperature sensing system allowed estimation of U at over 2000 sections along the 230 m transect (resolution of 0.375 m and 5.5 s). The underlying concept is similar to that of a hot wire anemometer extended in space. The correlation coefficient between U measured by two colocated sonic anemometers and the AHFO were 0.91 during the day and 0.87 at night. The combination of classical passive and novel AHFO provides unprecedented dynamic observations of both air temperature and wind speed spanning 4 orders of magnitude in spatial scale (0.1-1000 m) while resolving individual turbulent motions, opening new opportunities for testing basic theories for near-surface geophysical flows.

  12. Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Förster, E.

    2014-09-01

    The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.

  13. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    PubMed

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  14. Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping.

    USGS Publications Warehouse

    Paillet, Frederick L.; Hess, A.E.; Cheng, C.H.; Hardin, E.

    1987-01-01

    The distribution of fracture permeability in granitic rocks was investigated by measuring the distribution of vertical flow in boreholes during periods of steady pumping. Pumping tests were conducted at two sites chosen to provide examples of moderately fractured rocks near Mirror Lake, New Hampshire and intensely fractured rocks near Oracle, Arizona. A sensitive heat-pulse flowmeter was used for accurate measurements of vertical flow as low as 0.2 liter per minute. Results indicate zones of fracture permeability in crystalline rocks are composed of irregular conduits that cannot be approximated by planar fractures of uniform aperture, and that the orientation of permeability zones may be unrelated to the orientation of individual fractures within those zones.-Authors

  15. High resolution direct measurement of temperature distribution in silicon nanophotonics devices.

    PubMed

    Tzur, Mor; Desiatov, Boris; Goykhman, Ilya; Grajower, Meir; Levy, Uriel

    2013-12-02

    Following the miniaturization of photonic devices and the increase in data rates, the issues of self heating and heat removal in active nanophotonic devices should be considered and studied in more details. In this paper we use the approach of Scanning Thermal Microscopy (SThM) to obtain an image of the temperature field of a silicon micro ring resonator with sub-micron spatial resolution. The temperature rise in the device is a result of self heating which is caused by free carrier absorption in the doped silicon. The temperature is measured locally and directly using a temperature sensitive AFM probe. We show that this local temperature measurement is feasible in the photonic device despite the perturbation that is introduced by the probe. Using the above method we observed a significant self heating of about 10 degrees within the device.

  16. Kerr effect measurements in the high temperature superconductor LBCO using high resolution Sagnac interferometry

    NASA Astrophysics Data System (ADS)

    Karapetyan, Hovnatan; Kapitulnik, Aharon; Hucker, Markus; Gu, Genda; Tranquada, John

    2012-02-01

    Polar Kerr effect in LBCO high-Tc superconductor system was measured at zero magnetic field with high precision using a cryogenic Sagnac fiber interferometer with zero-area. We observed non-zero Kerr rotations of order ˜10 μrad appearing in charge ordered phase of LBCO-1/8. In this talk we will review our work on La1.875Ba0.125CuO4. In particular, we observe an emergence of Kerr signal that appears at temperature ˜ 54K, which is near charge ordering phase transition in this system. The signal peaks to 10 μrad at temperatures 30K to 40K and drops to a saturated value of ˜5 μrad at 5K. In addition, we we will present magnetic field training data of the Kerr signal. Through birefringence measurement, we also observe the first order structural phase transition in this system at ˜55K.

  17. Measuring high-resolution sky luminance distributions with a CCD camera.

    PubMed

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  18. Achieving High Resolution Measurements Within Limited Bandwidth Via Sensor Data Compression

    DTIC Science & Technology

    2013-06-01

    Ground, MD 21005-5066 8. PERFORMING ORGANIZATION REPORT NUMBER ARL-RP-444 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...Diego, CA, 22–25 October 2012. 14. ABSTRACT The U.S. Army Research Laboratory (ARL) is developing an onboard instrument and telemetry system to obtain...Army Research Laboratory (ARL) is developing an onboard instrument and telemetry system to obtain measurements of the 30mm MK310 projectile’s in

  19. High Resolution Measurements of Nonlinear Internal Waves and Mixing on the Washington Continental Shelf

    DTIC Science & Technology

    2015-09-30

    ocean mixing. Knowledge of these is important for advancing the performance of operational and climate models, as well as for understanding local... Chang et al (2011) using shipboard measurements has proven difficult, and further work is required. Based on the velocity data from NEMO-SS (deployed...Oceanography, 25(2):66–79, 2012. Ming-Huei Chang , Ren-Chieh Lien, Yiing Jang Yang, and Tswen Yung Tang, 2011: Nonlinear Internal Wave Properties Estimated

  20. High Resolution Measurements of Nonlinear Internal Waves and Mixing on the Washington Continental Shelf

    DTIC Science & Technology

    2014-09-30

    SWIMS ) and shipboard acoustics (Biosonics). Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...used our Shallow Water Integrated Mapping System ( SWIMS ) and Modular Microstructure Profiler (MMP) instruments to directly measure their spatial...towed and dropped profilers, the Shallow Water Integrated Mapping System ( SWIMS ) and the Modular Microstructure Profiler (MMP), as well as moorings

  1. Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions

    PubMed Central

    Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz

    2014-01-01

    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217

  2. SU-E-I-40: New Method for Measurement of Task-Specific, High-Resolution Detector System Performance

    SciTech Connect

    Loughran, B; Singh, V; Jain, A; Bednarek, D; Rudin, S

    2014-06-01

    Purpose: Although generalized linear system analytic metrics such as GMTF and GDQE can evaluate performance of the whole imaging system including detector, scatter and focal-spot, a simplified task-specific measured metric may help to better compare detector systems. Methods: Low quantum-noise images of a neuro-vascular stent with a modified ANSI head phantom were obtained from the average of many exposures taken with the high-resolution Micro-Angiographic Fluoroscope (MAF) and with a Flat Panel Detector (FPD). The square of the Fourier Transform of each averaged image, equivalent to the measured product of the system GMTF and the object function in spatial-frequency space, was then divided by the normalized noise power spectra (NNPS) for each respective system to obtain a task-specific generalized signal-to-noise ratio. A generalized measured relative object detectability (GM-ROD) was obtained by taking the ratio of the integral of the resulting expressions for each detector system to give an overall metric that enables a realistic systems comparison for the given detection task. Results: The GM-ROD provides comparison of relative performance of detector systems from actual measurements of the object function as imaged by those detector systems. This metric includes noise correlations and spatial frequencies relevant to the specific object. Additionally, the integration bounds for the GM-ROD can be selected to emphasis the higher frequency band of each detector if high-resolution image details are to be evaluated. Examples of this new metric are discussed with a comparison of the MAF to the FPD for neuro-vascular interventional imaging. Conclusion: The GM-ROD is a new direct-measured task-specific metric that can provide clinically relevant comparison of the relative performance of imaging systems. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  3. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy.

    PubMed

    Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X J

    2014-06-20

    The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net.

  4. Band alignment of HfO2/In0.18Al0.82N determined by angle-resolved x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Owen, Man Hon Samuel; Bhuiyan, Maruf Amin; Zhang, Zheng; Pan, Ji Sheng; Tok, Eng Soon; Yeo, Yee-Chia

    2014-07-01

    The band-alignment of atomic layer deposited (ALD)-HfO2/In0.18Al0.82N was studied by high resolution angle-resolved X-ray photoelectron spectroscopy measurements. The band bending near the HfO2/In0.18Al0.82N interface was investigated, and the potential variation across the interface was taken into account in the band alignment calculation. It is observed that the binding energies for N 1s and Al 2p in In0.18Al0.82N decreases and the corresponding extracted valence band offsets increases with increasing θ (i.e., closer to the HfO2/In0.18Al0.82N interface), as a result of an upward energy band bending towards the HfO2/In0.18Al0.82N interface. The resultant valence band offset and the conduction band offset for the ALD-HfO2/In0.18Al0.82N interface calculated was found to be 0.69 eV and 1.01 eV, respectively.

  5. Strong Anisotropy of Dirac Cones in SrMnBi2 and CaMnBi2 Revealed by Angle-Resolved Photoemission Spectroscopy

    PubMed Central

    Feng, Ya; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Xie, Zhuojin; Yi, Hemian; Liang, Aiji; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2014-01-01

    The Dirac materials, such as graphene and three-dimensional topological insulators, have attracted much attention because they exhibit novel quantum phenomena with their low energy electrons governed by the relativistic Dirac equations. One particular interest is to generate Dirac cone anisotropy so that the electrons can propagate differently from one direction to the other, creating an additional tunability for new properties and applications. While various theoretical approaches have been proposed to make the isotropic Dirac cones of graphene into anisotropic ones, it has not yet been met with success. There are also some theoretical predictions and/or experimental indications of anisotropic Dirac cone in novel topological insulators and AMnBi2 (A = Sr and Ca) but more experimental investigations are needed. Here we report systematic high resolution angle-resolved photoemission measurements that have provided direct evidence on the existence of strongly anisotropic Dirac cones in SrMnBi2 and CaMnBi2. Distinct behaviors of the Dirac cones between SrMnBi2 and CaMnBi2 are also observed. These results have provided important information on the strong anisotropy of the Dirac cones in AMnBi2 system that can be governed by the spin-orbital coupling and the local environment surrounding the Bi square net. PMID:24947490

  6. Characterization of Biogeochemical Variability in a Tidal Estuary Using High Resolution Optical Measurements

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C.; Martin, T.

    2015-12-01

    The Berry's Creek Study Area (BCSA) is a tidal estuary located in New Jersey. Several chemicals of potential concern (COPCs) are present in the BCSA waterway and marshes, including mercury, methyl mercury, and polychlorinated biphenyls. Concentrations of COPCs and suspended solids in the BCSA vary temporally and spatially due to tidal variability, freshwater flow events, and interaction of marsh, waterway, and sediment bed materials. This system-wide variability confounds evaluation of COPC sources and transport mechanisms when using conventional laboratory-based analysis of discrete water column samples. Therefore, an optically-based biogeochemical monitoring program was conducted using near-continuous measurements of optical properties and an optical-biogeochemical partial least-squares regression model pioneered by B. Bergamaschi (USGS) and colleagues. The objective of the study was to characterize COPC concentration dynamics in the BCSA water column and relate the analysis to sediment bed processes. Optical-biogeochemical model results indicated that, in general, measured optical properties were sufficient for predicting COPC concentrations to within 10% of the accuracy of laboratory-based analytical measurements. The continuous, high temporal resolution time series of COPC concentrations determined by the optical-biogeochemical model enabled evaluation of the sediment bed dynamics and variability of COPCs in the surface water of the BCSA. Results indicate that tidally-induced resuspension of waterway sediment bed particulates is the primary mechanism for transport of COPCs to surface water. Waterway-marsh tidal exchange shows a net mass flux of particulate COPCs from waterway to marsh, indicating that particulate COPCs are retained and accumulate in the marshes with relatively little net export of dissolved COPCs from the marshes to the waterway.

  7. High-resolution methane emission estimates using surface measurements and the InTEM inversion system.

    NASA Astrophysics Data System (ADS)

    Connors, Sarah; Manning, Alistair; Robinson, Andrew; Riddick, Stuart; Forster, Grant; Oram, Dave; O'Doherty, Simon; Harris, Neil

    2015-04-01

    High quality GHG emission estimates will be required to successfully tackle climate change. There is a growing need for comparisons between emission estimates produced using bottom-up and top-down techniques at high spatial resolution. Here, a top-down inversion approach combining multi-year atmospheric measurements and an inversion model, InTEM, was used to estimate methane emissions for a region in the South East of the UK (~100 x 150 km). We present results covering a 2-year period (July 2012 - July 2014) in which atmospheric methane concentrations were recorded at 1 - 2 minute time-steps at four locations within the region of interest. Precise measurements were obtained using gas chromatography with flame ionisation detection (GC-FID) for all sites except one, which used a PICARRO Cavity Ring-Down Spectrometer (CRDS). These observations, along with the UK Met Office's Lagrangian particle dispersion model, NAME, were used within InTEM to produce the methane emission fields. We present results from both Bayesian and non-prior based inversion analysis at varying spatial resolutions, for annual, seasonal and monthly time frames. These results are compared with the UK National Atmospheric Emissions Inventory (NAEI) which is compiled using bottom-up methods and available at 1x1 km resolution. A thorough assessment of uncertainty is incorporated into this technique which is represented in the results. This project is part of the UK GAUGE campaign which aims to produce robust estimates of the UK GHG budget using new and existing measurement networks (e.g. the UK DECC GHG network) and modelling activities at a range of scales.

  8. A new instrument for high resolution stereoscopic photography of falling hydrometeors with simultaneous measurement of fallspeed

    NASA Astrophysics Data System (ADS)

    Yuter, S. E.; Garrett, T. J.; Fallgatter, C.; Shkurko, K.; Howlett, D.; Dean, J.; Hardin, N.

    2012-12-01

    We introduce a new instrument, the Fallgatter Technologies Multi-Angle Snowflake Camera (MASC), that provides <30 micron resolution stereoscopic photographic images of individual large falling hydrometeors with accurate measurements of their fallspeed. Previously, identification of hydrometeor form has required initial collection on a flat surface, a process that is somewhat subjective and remarkably finicky due to the fragile nature of the particles. Other hydrometeor instruments such as the 2DVD, are automated and leave the particle untouched and provide fallspeed data. However, they provide only 200 micron resolution silhouettes, which can be insufficient for habit and riming identification and the requirements of microwave scattering calculations. The MASC is like the 2DVD but uses a sensitive IR motion sensor for a trigger and actually photographs the particle surface from multiple angles. Field measurements from Alta Ski Area near Salt Lake City are providing beautiful images and fallspeed data, suggesting that MASC measurements may help development of improved parameterizations for hydrometeor microwave scattering. Hundreds of thousands of images have been collected enabling comparisons of hydrometeor development, morphology and fallspeed with a co-located vertically pointing 24 GHz MicroRainRadar radar. Here we show multi-angle images from the MASC, size fallspeed relationships, and discrete dipole approximation scattering calculations for a range of hydrometeor forms at the frequencies of 24 GHz, 94 GHz and 183 GHz. The scattering calculations indicate that complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than graupel particles of similar size.

  9. High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Yi, H. T.; Podzorov, V.

    2016-03-01

    We describe a high resolving power technique for Hall-effect measurements, efficient in determining Hall mobility and carrier density in organic field-effect transistors and other low-mobility systems. We utilize a small low-frequency ac magnetic field (Brms<0.25 T ) and a phase-sensitive (lock-in) detection of Hall voltage, with the necessary corrections for Faraday induction. This method significantly enhances the signal-to-noise ratio and eliminates the necessity of using high magnetic fields in Hall-effect studies. With the help of this method, we are able to obtain the Hall mobility and carrier density in organic transistors with a mobility as low as μ ˜0.3 cm2 V-1 s-1 by using a compact desktop apparatus and low magnetic fields. We find a good agreement between Hall-effect and electric-field-effect measurements, indicating that, contrary to the common belief, certain organic semiconductors with mobilities below 1 cm2 V-1 s-1 can still exhibit a fully developed, band-semiconductor-like Hall effect, with the Hall mobility and carrier density matching those obtained in longitudinal transistor measurements. This suggests that, even when μ <1 cm2 V-1 s-1 , charges in organic semiconductors can still behave as delocalized coherent carriers. This technique paves the way to ubiquitous Hall-effect studies in a wide range of low-mobility materials and devices, where it is typically very difficult to resolve the Hall effect even in very high dc magnetic fields.

  10. High resolution hydrological modeling with measured precipitation data for the city of Amsterdam

    NASA Astrophysics Data System (ADS)

    van Vossen, Jojanneke; Schuurmans, Hanneke; Siemerink, Martijn; van Leeuwen, Elgard; Oudhuis, Richard

    2014-05-01

    Assessing measures to reduce flooding in densely populated urban areas require a high level of detail to properly analyse the hydrological response to precipitation events. This means detailed data (for example elevation and landuse) and fast models that can cope with this level of detail. This also indicates the value of having a similar level of detail in precipitation data. We present an approach in which Dutch National Rainfall Radar data are combined with a new approach to hydrological modeling called 3di. This is illustrated for a case in the city of Amsterdam to assess the effects of precipitation events and the possibilities for suitable measures in the public space to reduce the effects of flooding. Dutch National Rainfall Radar is a consortium of water authorities and the industry and scientific experts/universities/research centers to improve the available radar data in the Netherlands. This is achieved by making a composite of the radar stations in The Netherlands together with German and Belgian radar stations. In addition, the composite image is calibrated with local rainfall stations. 3Di is a novel approach to calculate the hydrological response of catchments as a function of properties, such as surface elevation and land use. Because of the ability of the model to take the detail of the elevation and land-use (both 0,5x0m5 meter) into the calculations, this model allows for a very detailed modeling of the hydrological response of urban areas to precipitation events. In addition, the model is extremely fast and allows for real-time and interactive changes in the geometry, making it a very powerful tool to assess the effects of measures in the public space for reducing flooding. We illustrate this approach for a case for the city of Amsterdam, a densely populated, low-lying city in The Netherlands. The obtained level of detail allows to study which houses are flooded, which roads remain available for emergency services etc. The model is used to show

  11. A High Resolution Radar Altimeter to Measure the Topography of Ice Sheets

    NASA Technical Reports Server (NTRS)

    Pawul, Rudolf A.

    1997-01-01

    This thesis is a reference for the Advanced Application Flight Experiment (AAFE) altimeter. The transmitter and receiver subsections are described and measurements of their current state is provided. During the 1994 NASA Greenland Experiment, the altimeter experienced several hardware malfunctions. The process of returning the radar to its fully operational state is presented in detail and necessary design modifications are explained. An updated radar user's manual is included along with various circuit designs which need to be implemented. The thesis is intended to provide an incoming graduate student with a solid foundation of the fundamentals of AAFE altimeter operation.

  12. High resolution measurements of dune movement in a scale model of the River Oder

    NASA Astrophysics Data System (ADS)

    Hüsener, Thorsten; Henning, Martin

    2010-05-01

    The paper presents the analysis of three dimensional river bed topographies of high spatial and temporal resolution, obtained from scale model experiments with movable bed. The use of a stereo photogrammetric system allowed for measuring the submerged river bed during the laboratory experiments. The system is based on three synchronized cameras and a bar code system for orientation and can be used in both dry and wet conditions. For bed surface elevation measurements, a grid is projected onto the channel bed, defining the bed surface via slide projection. When applied to subaqueous problems, the system provides reliable data and insight in the distribution and migration of bed forms and the impact of steady and unsteady discharges on bed topography. The presented data has been obtained from a hydraulic scale model with moveable bed, concerning an 8km long reach of the River Oder at the German-Polish border. The model has been set up in order to investigate the influence of river training measures on accessible water depths and on the development of river bed forms. To determine the movement of the dunes, a 3 x 3 m² area of the model, representing 90,000 m² in field scale, has been recorded over a time of 11 h, providing 4000 topographic data sets of about 10,000 data points each. To simulate nature like transport conditions, the natural bedload material was substituted by synthetic granules (polystyrene) with lesser density and coarser diameter. Due to the small density of polystyrene the dune migration was considerably faster than it would have been for the use of sand as bed load material. In theory, flow is often assumed to be steady and uniform. However, during sediment transport, bed topography changes continuously. The presented analysis of the data shows the wide spatial and temporal variety of occurring dunes and the correlation between dune dimen-sions and dune migration speed. Possible future analysis of the three-dimensional data will be discussed and

  13. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  14. High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations

    NASA Astrophysics Data System (ADS)

    Hudgins, Robert R.; Woenckhaus, Jürgen; Jarrold, Martin F.

    1997-11-01

    Our high resolution ion mobility apparatus has been modified by attaching an electrospray source to perform measurements for biological molecules. While the greater resolving power permits the resolution of more conformations for BPTI and cytochrome c, the resolved features are generally much broader than expected for a single rigid conformation. A major advantage of the new experimental configuration is the much gentler introduction of ions into the drift tube, so that the observed gas phase conformations appear to more closely reflect those present in solution. For example, it is possible to distinguish between the native state of cytochrome c and the methanol-denatured form on the basis of the ion mobility measurements; the mass spectra alone are not sensitive enough to detect this change. Thus this approach may provide a quick and sensitive tool for probing the solution phase conformations of biological molecules.

  15. Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements

    NASA Astrophysics Data System (ADS)

    Wagner, Enno; Sodtke, Christof; Schweizer, Nils; Stephan, Peter

    2006-08-01

    Heat transfer in nucleate boiling is strongly influenced by a very small circular area in the vicinity of the three phase contact line where a thin liquid film approaches the heated wall. This area is characterised by high evaporation rates which trigger a local temperature drop in the wall. The wall temperature drop can be computed using an existing nucleate boiling model. To verify the complex model and the underlying assumptions, an experiment was designed with an artificial nucleation site in a thin electrically heated wall featuring a two-dimensional, high resolution temperature measurement technique using unencapsulated thermochromic liquid crystals and a high speed colour camera. The shape of the bubble is observed simultaneously with a second high speed camera. Experiments were conducted in a low gravity environment of a parabolic flight, causing larger bubble departure diameters than in normal gravity environments. Thus, it was possible to measure the evolution of the predicted temperature drop in a transient boiling process.

  16. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    NASA Astrophysics Data System (ADS)

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-03-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

  17. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers.

    PubMed

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-03-17

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach.

  18. A simple fiber-optic microprobe for high resolution light measurements: application in marine sediment

    NASA Technical Reports Server (NTRS)

    Jorgensen, B. B.; Des Marais, D. J.

    1986-01-01

    A fiber-optic microphobe is described which is inexpensive and simple to build and use. It consists of an 80-micrometers optical fiber which at the end is tapered down to a rounded sensing tip of 20-30-micrometers diameter. The detector is a hybrid photodiode/amplifier. The probe has a sensitivity of 0.01 microEinst m-2 s-1 and a spectral range of 300-1,100 nm. Spectral light gradients were measured in fine-grained San Francisco Bay sediment that had an undisturbed diatom coating on the surface. The photic zone of the mud was only 0.4 mm deep. Measured in situ spectra showed extinction maxima at 430-520, 620-630, 670, and 825-850 nm due to absorption by chlorophyll a, carotenoids, phycocyanin, and bacterio-chlorophyll a. Maximum light penetration in the visible range was found in both the violet and the red < or = 400 and > or = 700 nm.

  19. Real-time digital heterodyne interferometer for high resolution plasma density measurements at ISTTOK

    SciTech Connect

    Marques, T. G.; Gouveia, A.; Pereira, T.; Fortunato, J.; Carvalho, B. B.; Sousa, J.; Silva, C.; Fernandes, H.

    2008-10-15

    With the implementation of alternating discharges (ac) at the ISTTOK tokamak, the typical duration of the discharges increased from 35 to 250 ms. This time increase created the need for a real-time electron density measurement in order to control the plasma fueling. The diagnostic chosen for the real-time calculation was the microwave interferometer. The ISTTOK microwave interferometer is a heterodyne system with quadrature detection and a probing frequency of 100 GHz ({lambda}{sub 0}=3 mm). In this paper, a low-cost approach for real-time diagnostic using a digital signal programable intelligent computer embedded system is presented, which allows the measurement of the phase with a 1% fringe accuracy in less than 6 {mu}s. The system increases its accuracy by digitally correcting the offsets of the input signals and making use of a judicious lookup table optimized to improve the nonlinear behavior of the transfer curve. The electron density is determined at a rate of 82 kHz (limited by the analog to digital converter), and the data are transmitted for each millisecond although this last parameter could be much lower (around 12 {mu}s--each value calculated is transmitted). In the future, this same system is expected to control plasma actuators, such as the piezoelectric valve of the hydrogen injection system responsible for the plasma fueling.

  20. Real-time digital heterodyne interferometer for high resolution plasma density measurements at ISTTOK.

    PubMed

    Marques, T G; Gouveia, A; Pereira, T; Fortunato, J; Carvalho, B B; Sousa, J; Silva, C; Fernandes, H

    2008-10-01

    With the implementation of alternating discharges (ac) at the ISTTOK tokamak, the typical duration of the discharges increased from 35 to 250 ms. This time increase created the need for a real-time electron density measurement in order to control the plasma fueling. The diagnostic chosen for the real-time calculation was the microwave interferometer. The ISTTOK microwave interferometer is a heterodyne system with quadrature detection and a probing frequency of 100 GHz (lambda(0)=3 mm). In this paper, a low-cost approach for real-time diagnostic using a digital signal programmable intelligent computer embedded system is presented, which allows the measurement of the phase with a 1% fringe accuracy in less than 6 micros. The system increases its accuracy by digitally correcting the offsets of the input signals and making use of a judicious lookup table optimized to improve the nonlinear behavior of the transfer curve. The electron density is determined at a rate of 82 kHz (limited by the analog to digital converter), and the data are transmitted for each millisecond although this last parameter could be much lower (around 12 micros--each value calculated is transmitted). In the future, this same system is expected to control plasma actuators, such as the piezoelectric valve of the hydrogen injection system responsible for the plasma fueling.

  1. Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers

    PubMed Central

    Sugavanam, Srikanth; Fabbri, Simon; Le, Son Thai; Lobach, Ivan; Kablukov, Sergey; Khorev, Serge; Churkin, Dmitry

    2016-01-01

    Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatio-temporal intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach. PMID:26984634

  2. High-resolution Tangential AXUV Arrays for Radiated Power Density Measurements on NSTX-U

    SciTech Connect

    Delgado-Aparicio, L; Bell, R E; Faust, I; Tritz, K; Diallo, A; Gerhardt, S P; Kozub, T A; LeBlanc, B P; Stratton, B C

    2014-07-01

    Precise measurements of the local radiated power density and total radiated power are a matter of the uttermost importance for understanding the onset of impurity-induced instabilities and the study of particle and heat transport. Accounting of power balance is also needed for the understanding the physics of various divertor con gurations for present and future high-power fusion devices. Poloidal asymmetries in the impurity density can result from high Mach numbers and can impact the assessment of their flux-surface-average and hence vary the estimates of P[sub]rad (r, t) and (Z[sub]eff); the latter is used in the calculation of the neoclassical conductivity and the interpretation of non-inductive and inductive current fractions. To this end, the bolometric diagnostic in NSTX-U will be upgraded, enhancing the midplane coverage and radial resolution with two tangential views, and adding a new set of poloidally-viewing arrays to measure the 2D radiation distribution. These systems are designed to contribute to the near- and long-term highest priority research goals for NSTX-U which will integrate non-inductive operation at reduced collisionality, with high-pressure, long energy-confinement-times and a divertor solution with metal walls.

  3. Rotation and winds of exoplanet HD 189733 b measured with high-resolution transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Brogi, Matteo

    2015-12-01

    At the dawn of exoplanet science, the first discoveries revealed the existence of giant planets orbiting very close to their parent stars, called hot Jupiters. Early theories suggested that these planets should be tidally locked, although their spin rotation has never been measured directly. On top of rotation, hot Jupiters can show equatorial super-rotation via eastward jet streams and/or high-altitude winds flowing from the day- to the night-side hemisphere. All these patterns broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution.High-dispersion observations have recently excelled in robustly detecting molecules in the atmospheres of transiting and non-transiting hot Jupiters, and in measuring their relative abundances. Here the method is applied to the transmission spectrum of HD 189733 b, a Jupiter-size planet orbiting a K1-2V star in 2.2 days, observed around 2.3μm with CRIRES at the ESO Very Large Telescope. At a spectral resolution of R~100,000, the combined absorption of carbon monoxide and water vapor is detected in the planet spectrum at a confidence level of 7σ. The signal is obtained by cross correlating with theoretical spectra and it is maximized for a planet rotational velocity of 3.5+1.1-2.6 km/s. This corresponds to a planet rotational period of 1.7+4.9-0.4 days, consistent with the known orbital period of 2.2 days and therefore with tidal locking. Although planet rotations faster than 1.1 days can be ruled out at high confidence (3σ), sub-synchronous rotational velocities (Vrot < 2.7 km/s) or no-rotation are only marginally excluded (1.2σ). Finally, no significant day-to-night side winds are detected. When compared to the recent detection of sodium Doppler shifted by -8 km/s, this likely implies a strong wind shear between the atmospheric levels probed by these high-dispersion observations and the outermost atmospheric layers where the core of the sodium lines are formed.

  4. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility.

    PubMed

    Gupta, Y M; Turneaure, Stefan J; Perkins, K; Zimmerman, K; Arganbright, N; Shen, G; Chow, P

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization∕x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  5. Real-time, high-resolution x-ray diffraction measurements on shocked crystals at a synchrotron facility

    NASA Astrophysics Data System (ADS)

    Gupta, Y. M.; Turneaure, Stefan J.; Perkins, K.; Zimmerman, K.; Arganbright, N.; Shen, G.; Chow, P.

    2012-12-01

    The Advanced Photon Source (APS) at Argonne National Laboratory was used to obtain real-time, high-resolution x-ray diffraction measurements to determine the microscopic response of shock-compressed single crystals. Disk shaped samples were subjected to plane shock wave compression by impacting them with half-inch diameter, flat-faced projectiles. The projectiles were accelerated to velocities ranging between 300 and 1200 m/s using a compact powder gun designed specifically for use at a synchrotron facility. The experiments were designed to keep the sample probed volume under uniaxial strain and constant stress for a duration longer than the 153.4 ns spacing between x-ray bunches. X-rays from a single pulse (<100 ps duration) out of the periodic x-ray pulses emitted by the synchrotron were used for the diffraction measurements. A synchronization and x-ray detection technique was developed to ensure that the measured signal was obtained unambiguously from the desired x-ray pulse incident on the sample while the sample was in a constant uniaxial strain state. The synchronization and x-ray detection techniques described can be used for a variety of x-ray measurements on shock compressed solids and liquids at the APS. Detailed procedures for applying the Bragg-Brentano parafocusing approach to single crystals at the APS are presented. Analytic developments to determine the effects of crystal substructure and non-ideal geometry on the diffraction pattern position and shape are presented. Representative real-time x-ray diffraction data, indicating shock-induced microstructural changes, are presented for a shock-compressed Al(111) sample. The experimental developments presented here provided, in part, the impetus for the Dynamic Compression Sector (DCS) currently under development at the APS. Both the synchronization/x-ray detection methods and the analysis equations for high-resolution single crystal x-ray diffraction can be used at the DCS.

  6. First measurements with new high-resolution gadolinium-GEM neutron detectors

    NASA Astrophysics Data System (ADS)

    Pfeiffer, D.; Resnati, F.; Birch, J.; Etxegarai, M.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Llamas-Jansa, I.; Oliveri, E.; Oksanen, E.; Robinson, L.; Ropelewski, L.; Schmidt, S.; Streli, C.; Thuiner, P.

    2016-05-01

    European Spallation Source instruments like the macromolecular diffractometer (NMX) require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The μTPC analysis, proven to improve the spatial resolution in the case of 10B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with a measured efficiency of 11.8% at a wavelength of 2 Åand a position resolution better than 250 μm.

  7. Fast, high-resolution surface potential measurements in air with heterodyne Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Joseph L.; Munday, Jeremy N.

    2016-06-01

    Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

  8. High resolution measurement of the carbon localized vibrational mode in gallium arsenide

    SciTech Connect

    Nagai, Naoto

    2001-06-15

    The localized vibrational mode of carbon substituted at arsenic sites in gallium arsenide (GaAs) was measured with infrared absorption spectroscopy at 0.005 cm{sup {minus}1} resolution. Well-resolved fine structures were observed, yielding quantitative information on the line half widths and intensities. The relative intensities of the isotope lines are well fitted to a probability factor calculation using a natural abundance of 55.3% {sup 69}Ga. One explanation considered is that the dipole moment due to the relative displacement of carbon with respect to the gallium atoms has a tendency to be larger when the neighboring gallium atoms are heavier ({sup 71}Ga). {copyright} 2001 American Institute of Physics.

  9. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  10. A Slightly-Cooled, High-Resolution Michelson Interferometer For Limb Emission Measurements From Space

    NASA Astrophysics Data System (ADS)

    Fergg, F.; Fischer, H.

    1985-12-01

    Spaceborne Fourier Transform Spectrometers can be used to obtain IR limb emission spectra from which profiles of temperature and minor constituents can be derived simultaneously in the middle atmosphere. A corresponding experiment, called MIPAS (Michelson Interferometer for Passive Atmospheric SoundiTig) is und-6- development in Winich. MTPAS utilize? a novel type of interfero-meter which uses two double passed triple mirrors both being fixed to a rotating structure to produce optical path difference (P. Burkert, F. Fergg and H. Fischer, IEEE Transact. on Geosc. and Remote Sens. Vol GE-21, 345, 1983). A He-cooled version of MIPAS for broadband emission measurements was described previously (H. Fischer, F. Fergg, H. Oelhaf, D. Rabus, W. Volker and P. Burkert, Beitr. Phys. Atm. Vol. 56, 260, 1983).

  11. Functional exploratory data analysis for high-resolution measurements of urban particulate matter.

    PubMed

    Ranalli, M Giovanna; Rocco, Giorgia; Jona Lasinio, Giovanna; Moroni, Beatrice; Castellini, Silvia; Crocchianti, Stefano; Cappelletti, David

    2016-09-01

    In this work we propose the use of functional data analysis (FDA) to deal with a very large dataset of atmospheric aerosol size distribution resolved in both space and time. Data come from a mobile measurement platform in the town of Perugia (Central Italy). An OPC (Optical Particle Counter) is integrated on a cabin of the Minimetrò, an urban transportation system, that moves along a monorail on a line transect of the town. The OPC takes a sample of air every six seconds and counts the number of particles of urban aerosols with a diameter between 0.28 μm and 10 μm and classifies such particles into 21 size bins according to their diameter. Here, we adopt a 2D functional data representation for each of the 21 spatiotemporal series. In fact, space is unidimensional since it is measured as the distance on the monorail from the base station of the Minimetrò. FDA allows for a reduction of the dimensionality of each dataset and accounts for the high space-time resolution of the data. Functional cluster analysis is then performed to search for similarities among the 21 size channels in terms of their spatiotemporal pattern. Results provide a good classification of the 21 size bins into a relatively small number of groups (between three and four) according to the season of the year. Groups including coarser particles have more similar patterns, while those including finer particles show a more different behavior according to the period of the year. Such features are consistent with the physics of atmospheric aerosol and the highlighted patterns provide a very useful ground for prospective model-based studies.

  12. New Measurement of Singly Ionized Selenium Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hala, Noman; Nave, G.; Kramida, A.; Ahmad, T.; Nahar, S.; Pradhan, A.

    2015-05-01

    We report new measurements of singly ionised selenium, an element of the iron group detected in nearly twice as many planetary nebulae as any other trans-iron element. We use the NIST 2 m UV/Vis/IR and FT700 UV/Vis Fourier transform spectrometers over the wavelength range of 2000 Å-2.5 μm, supplemented in the lower wavelength region 300-2400 Å with grating spectra taken on a 3-m normal incidence vacuum spectrograph. The analysis of Se II is being extended, covering the wide spectral region from UV to IR. From our investigation, we found serious inconsistency and incompleteness in the previously published results, where several levels were reported without any designation. The analysis is being revised and extended with the help of semiempirical quasi-relativistic Hartree-Fock calculations, starting with the 4s24p3- [4s24p2(4d +5d +5s +6s) +4s4p4] transition array. Out of fifty-two previously reported levels, we rejected thirteen and found several new level values. With the new measurements, we expect to observe transitions between 4s24p2(4d +5s) and 4s24p2(5p +4f), lying in the visible and IR region. A complete interpretation of the level system of both parities will be assisted by least squares fitted parametric calculations. In all, we have already classified about 450 observed lines involving 89 energy levels.

  13. Improving high resolution emission inventories with local proxies and urban eddy covariance flux measurements

    NASA Astrophysics Data System (ADS)

    Gioli, Beniamino; Gualtieri, Giovanni; Busillo, Caterina; Calastrini, Francesca; Zaldei, Alessandro; Toscano, Piero

    2015-08-01

    Emission inventories are the fundamental official data on atmospheric emissions of pollutants and greenhouse gases at a variety of spatial and temporal scales worldwide. This study makes use of direct CO2 emission measurements made with the eddy covariance technique over a completely urbanized area, with no confounding effect of vegetation, where emissions are mostly controlled by natural gas combustion processes and road traffic. Objectives are: i) to validate top-down spatially and temporally disaggregated emission inventories at yearly, monthly, weekly and hourly time scales; ii) to quantify the improvement achieved in official inventories when replacing built-in temporal disaggregation proxies with customized proxies based on local data of road traffic and natural gas consumption. We demonstrate that the overall performance of official inventory at yearly scale is rather good with an emission of 3.08 g CO2 m-2 h-1 against a measured emission of 3.21 ± 0.12 g CO2 m-2 h-1. When temporally disaggregating annual emissions, the agreement between inventory and observations always significantly improves when using local proxies, by 47% (from 0.70 to 0.37 g CO2 m-2 h-1 RMSE) at monthly scale, by 26% (from 0.58 to 0.43 g CO2 m-2 h-1 RMSE) at weekly scale, and by 32% (from 1.26 to 0.85 g CO2 m-2 h-1 RMSE), at hourly scale. The validity of this analysis goes beyond CO2 since the temporal proxies used by the inventories mimic the intensity of specific emission processes, therefore species emitted in the same processes as CO2, would benefit from the improved parameterization of temporal proxies shown here. These results indicate that effort should be put into developing improved temporal proxies based on local rather than national scale data, that can better mimic site dependent behaviors.

  14. High resolution space characterization of water vapor from satellite measurements and local area model

    NASA Astrophysics Data System (ADS)

    Montopoli, M.; Marzano, F. S.; Pichelli, E.; Cimini, D.; Ferretti, R.; Bonafoni, S.; Perissin, D.; Rocca, F.; Pierdicca, N.

    2009-04-01

    Synthetic Aperture Radar (SAR) is a well established microwave imaging system from which measurements of surface deformations of the order of centimeters can be derived and than several useful land applications (e.g.: the analysis of progressive tectonic motions, or to the improvement of a Digital Terrain Model) can be provided to the community. Among the main limitations affecting the Interferometric SAR (InSAR) measurements, especially at C and X frequency bands, the atmosphere surely plays a relevant role. When two interferometric SAR images are not simultaneously acquired, the electromagnetic wave received from the SAR sensor, mounted on a satellite platform, after interactions with the ground, may be differently affected by the atmosphere which induces an unwanted component on the received signal. In particular, the random nature of the atmospheric state (i.e.: different humidity, temperature and pressure) between the two acquired SAR observations will have a visible and fatal consequences on the interferometric phase. Among others, the water vapor is an important contributor to the error budget of InSAR data and for this reason its spatial and temporal characterization plays an important role. In this work, the spatial characterization of vertical Integrated Water Vapor (IWV), as seen from various satellite sensors, will be dealt with. Data acquired from Envisat-Meris, and Terra-Modis and Aqua-Modis spectrometer, operating at infrared frequencies at spatial resolution of 0.3, 1 and 1 km respectively, will be compared with simulations derived from MM5 weather forecast model at 1km resolution as well. The InSAR signal from ASAR of Envisat platform and RadarSat is also exploited to derive estimates of differential IWV (dIWV) at very high spatial resolutions (about 100 m). dIWV estimates are analyzed as well and compared together with those derived from previously mentioned spectrometers in terms of correlation structures. The results of the comparisons here

  15. Hybrid Young interferometer for high resolution measurement of dynamic speckle using high birefringence liquid crystal

    NASA Astrophysics Data System (ADS)

    Bennis, N.; Holdynski, Z.; Merta, I.; Marc, P.; Kula, P.; Mazur, R.; Piecek, W.; Jaroszewicz, L. R.

    2015-08-01

    It is well known that the Young interference experiment is the fundamental setup to combine two beams and to construct the phase modulated light. Moreover, homodyne phase demodulator is based on signal decoding in back Fourier focal plane using bicell photodetector (B-PD). On the above base, we propose a novel experimental approach to the signals demodulation by using the optical interferometer which operates in homodyne mode, combined with liquid crystal spatial light modulators operating both phase as speckle modulator. Dynamic phase changes between the two beams can be controlled by monopixel liquid crystals cell placed in one branch of the interferometer. A phase modulation effect in a signal arm of interferometer is observed as a dynamic shift of the speckle pattern. Simple arithmetic combination of signals from B-PD placed in speckle pattern plane is only one necessary numerical manipulation to obtain exactly phase difference. Concept of signals demodulation in the Fourier focal plane can be only used for exactly defined geometrical (B-PD as well as Young interferometer) and physical parameters (polarization, wavelength). We optimize the setup geometry to obtain extremely high measurement resolution. In this paper we focus on the principles of operation of each part of the system as well as discussion their requirement in order to increase the signal to noise ratio.

  16. An instrument for rapidly measuring plasma distribution functions with high resolution

    NASA Technical Reports Server (NTRS)

    Carlson, C. W.; Curtis, D. W.; Paschmann, G.; Michael, W.

    1982-01-01

    An instrument which can rapidly measure plasma particle distribution functions has been developed based upon recent innovations in electrostatic analyzer design and position sensitive particle detection. The new analyzer uses a quadrispherical geometry, but has a completely uniform 360 deg fan-shaped field of view. The polar angular distribution of entering particles is spatially imaged onto a position sensitive detector at the annular exit aperture after a deflection through 90 deg. Several methods of position sensitive detection have been successfully used in conjunction with this analyzer. The simplest is individual channel multipliers spaced around the annular exit. Microchannel plate electron multipliers permit greater position resolution to be obtained, and a detector using microchannel plates followed by a resistive anode image converter obtains angular resolution of about one degree, i.e., 360 individual angle pixels. Instruments of this type were flown on a sounding rocket in early 1982 and will be included on the Giotto comet mission and the AMPTE ion release module (IRM).

  17. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  18. High-resolution emission inventory of the Lombardy region: development and comparison with measurements

    NASA Astrophysics Data System (ADS)

    Dommen, J.; Prevot, A. S. H.; Baertsch-Ritter, N.; Maffeis, G.; Longoni, M. G.; Grüebler, F. C.; Thielmann, A.

    In the framework of the EUROTRAC-2 subproject limitation of oxidant production an emission inventory was developed for the Lombardy region in Italy with a 1 h temporal and 3 km spatial resolution. The emissions were processed in a bottom-up approach. We outline the emissions processing strategy used and summarize the inventory characteristics. Spatial maps and diurnal series charts of the total emissions of nitrogen oxides (NO x), carbon monoxide CO, volatile organic compounds (VOC) are provided. The emission inventory shows distinct patterns for the urban area and the non-metropolitan region. We compare ratios of CO to NO x and CO to different VOC-classes between the emission inventory and measurements performed at two sites representative for the urban and non-metropolitan areas. Ratios were determined from the slopes of correlations between CO and the respective species class. Observed CO/NO x ratios are higher in the urban and non-metropolitan area by factors of 2 and 3, respectively. CO/VOC ratios show different discrepancies depending on the VOC-class but are generally lower in the emission inventory. Observations at the two sites yielded similar concentration ratios opposite to the inventory.

  19. High Frequency Acoustic Sensor Dedicated to the High Resolution Measurement of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Meignen, Pierre-Antoine; Le Clézio, Emmanuel; Despaux, Gilles

    Through acoustic signature, scanning acoustic microscopy can be used to quantify local mechanical properties of a medium thanks to the generation of surface waves, mostly Rayleigh waves. Despite being quite effective, this method requires to evaluate the mechanical properties of a single point the acquisition of many ultrasonic signals. This process is then time-consuming and is hardly adaptable to quantitative imaging. The solution considered in this paper to speed-up the method is to design a multi-element sensor allowing the extraction of information on Rayleigh waves with a reduced number of acquisitions. The work is conducted along two axes. As a first step, a model allowing the simulation of the acoustic wave behavior at a fluid/solid interface is developed. This model leads to a better understanding of the characterization of the mechanical properties and to the definition of an adapted sensor's design. As a second step, an experimental method for acoustic field reconstruction is used to characterize the multi-elements sensor and measurements of mechanical properties were done.

  20. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  1. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  2. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  3. Characterization of the Abydos region through OSIRIS high-resolution images in support of CIVA measurements

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Jorda, L.; Poulet, F.; Bibring, J.-P.; Pajola, M.; La Forgia, F.; Massironi, M.; El-Maarry, M. R.; Oklay, N.; Sierks, H.; Barbieri, C.; Lamy, P.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hviid, S. F.; Ip, W.-H.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Marzari, F.; Mottola, S.; Naletto, G.; Preusker, F.; Scholten, F.; Thomas, N.; Tubiana, C.; Vincent, J.-B.

    2016-01-01

    Context. On 12 November 2014, the European mission Rosetta delivered the Philae lander on the nucleus of comet 67P/Churyumov-Gerasimenko (67P). After the first touchdown, the lander bounced three times before finally landing at a site named Abydos. Aims: We provide a morphologically detailed analysis of the Abydos landing site to support Philae's measurements and to give context for the interpretation of the images coming from the Comet Infrared and Visible Analyser (CIVA) camera system onboard the lander. Methods: We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 6 December 2014 to perform the analysis of the Abydos landing site, which provided the geomorphological map, the gravitational slope map, the size-frequency distribution of the boulders. We also computed the albedo and spectral reddening maps. Results: The morphological analysis of the region could suggest that Philae is located on a primordial terrain. The Abydos site is surrounded by two layered and fractured outcrops and presents a 0.02 km2 talus deposit rich in boulders. The boulder size frequency distribution gives a cumulative power-law index of -4.0 + 0.3/-0.4, which is correlated with gravitational events triggered by sublimation and/or thermal fracturing causing regressive erosion. The average value of the albedo is 5.8% at λ1 = 480.7 nm and 7.4% at λ2 = 649.2 nm, which is similar to the global albedos derived by OSIRIS and CIVA, respectively.

  4. Merging Field Measurements and High Resolution Modeling to Predict Possible Societal Impacts of Permafrost Degradation

    NASA Astrophysics Data System (ADS)

    Romanovsky, V. E.; Nicolsky, D.; Marchenko, S. S.; Cable, W.; Panda, S. K.

    2015-12-01

    A general warming trend in permafrost temperatures has triggered permafrost degradation in Alaska, especially at locations influenced by human activities. Various phenomena related to permafrost degradation are already commonly observed, including increased rates of coastal and riverbank erosion, increased occurrences of retrogressive thaw slumps and active layer detachment slides, and the disappearance of tundra lakes. The combination of thawing permafrost and erosion is damaging local community infrastructure such as buildings, roads, airports, pipelines, water and sanitation facilities, and communication systems. The potential scale of direct ecological and economical damage due to degrading permafrost has just begun to be recognized. While the projected changes in permafrost are generally available on global and regional scales, these projections cannot be effectively employed to estimate the societal impacts because of their coarse resolution. Intrinsic problems with the classical "spatial grid" approach in spatially distributed modeling applications preclude the use of this modeling approach to solve the above stated problem. Two types of models can be used to study permafrost dynamics in this case. One approach is a site-specific application of the GIPL2.0 permafrost model and another is a very high (tens to hundred meter) resolution spatially distributed version of the same model. The results of properly organized field measurements are also needed to calibrate and validate these models for specific locations and areas of interest. We are currently developing a "landscape unit" approach that allows practically unlimited spatial resolution of the modeling products. Classification of the study area into particular "landscape units" should be performed in accordance with the main factors controlling the expression of climate on permafrost in the study area, typically things such as vegetation, hydrology, soil properties, topography, etc. In areas with little

  5. New turbidity current model based on high-resolution monitoring of the longest flow ever measured

    NASA Astrophysics Data System (ADS)

    Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed

    2016-04-01

    Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting

  6. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing

  7. Application of an ultra-high-resolution FBG strain sensor for crustal deformation measurements at the Aburatsubo Bay, Japan

    NASA Astrophysics Data System (ADS)

    Tokunaga, T.; Liu, Q.; He, Z.; Mogi, K.; Matsui, H.; Wang, H. F.; Kato, T.

    2011-12-01

    For crustal deformation measurements, high-resolution strain sensors on the order of tens of nano-strains are desirable. Current sensors for this purpose include quartz-tube extensometers, free-space laser interferometers, and borehole strainmeters. The former two sensors show quite high strain resolution, however, these are large in size, from tens to hundreds of meter long, and hence, are difficult to measure spatial strain distribution. The optical fiber strain sensors have advantages of multiplexing capability and relatively low cost, and are widely adopted in the applications for structural health monitoring of civil structures such as bridges and buildings. Thus, as long as the strain resolution can be high enough to meet the requirement of crustal deformation measurements, fiber strain sensors can be an attractive tool. We have been developing an ultra-high strain-resolution fiber Bragg grating (FBG) sensor for static strain measurement, interrogated by a narrow line-width tunable laser. The sensor consists of a pair of FBGs, one for strain sensing and the other for temperature compensation. The Bragg wavelength difference between the two FBGs is evaluated using a cross-correlation algorithm. We already demonstrated that an ultra-high resolution corresponding to 2.6 nano-strain was obtained in the case where no strain was applied to the sensor, which was considered to be the ultimate performance of our measurement system. By directly applying variable strains to the developed sensor with a piezo-stage, a resolution of 17.6 nano-strain was demonstrated. This time, the sensor was installed into the vault at Aburatsubo, Japan, to measure crustal deformation caused by ocean tide, and the measured data were compared with the results obtained by a quartz-tube extensometer at the site, which has been measured by the University of Tokyo's Earthquake Research Institute. The deformation induced by oceanic tide was measured by the FBG sensor with the resolution about

  8. A scanning, all-fiber Sagnac interferometer for high resolution magneto-optic measurements at 820 nm

    SciTech Connect

    Fried, Alexander; Fejer, Martin; Kapitulnik, Aharon

    2014-10-15

    The Sagnac Interferometer has historically been used for detecting non-reciprocal phenomena, such as rotation. We demonstrate an apparatus in which this technique is employed for high resolution measurements of the Magneto-Optical Polar Kerr effect—a direct indicator of magnetism. Previous designs have incorporated free-space components which are bulky and difficult to align. We improve upon this technique by using all fiber-optic coupled components and demonstrate operation at a new wavelength, 820 nm, with which we can achieve better than 1 μrad resolution. Mounting the system on a piezo-electric scanner allows us to acquire diffraction limited images with 1.5 μm spatial resolution. We also provide extensive discussion on the details and of the Sagnac Interferometer's construction.

  9. Venous elastography: validation of a novel high-resolution ultrasound method for measuring vein compliance using finite element analysis.

    PubMed

    Biswas, Rohan; Patel, Prashant; Park, Dae W; Cichonski, Thomas J; Richards, Michael S; Rubin, Jonathan M; Hamilton, James; Weitzel, William F

    2010-01-01

    Ultrasonography for the noninvasive assessment of tissue properties has enjoyed widespread success. With the growing emphasis in recent years on arteriovenous fistulae (AVFs) for dialysis vascular access in patients with end-stage renal disease, and on reducing AVF failures, there is increasing interest in ultrasound for the preoperative evaluation of the mechanical and elastic properties of arteries and veins. This study used high-resolution ultrasound with phase-sensitive speckle tracking to obtain in vivo vein elasticity measurements during dilation. The results of this novel ultrasound technique were then compared to a computer model of venous strain. The computer model and ultrasound analysis of the vessel wall demonstrated internally consistent positive and negative longitudinal strain values as the vein wall underwent dilation. These results support further investigation of the use of phase-sensitive speckle tracking for ultrasound venous mapping for preoperative vascular access evaluation.

  10. New High-Resolution Absorption Cross-Section Measurements of HCFC-142B in the Mid-Ir

    NASA Astrophysics Data System (ADS)

    Le Bris, Karine; Strong, Kimberly; Melo, Stella

    2009-06-01

    HCFC-142b (1-chloro-1,1-difluoroethane) is a temporary substitute for ozone-depleting chlorofluorocarbons (CFCs). However, due to its high absorption cross-sections in the mid-IR, HCFC-142b is also a highly potent greenhouse gas, now detectable from space by satellite missions. So far, the accuracy of the retrieval has been limited by the lack of reference data in a range of temperatures compatible with atmospheric observations. We present new absorption cross section measurements of HCFC-142b at high-resolution (0.02 cm^{-1}) from 223 K to 283 K in the 600 cm^{-1}- 4000 cm^{-1} spectral window. The composite spectra are calculated for each temperature from a set of acquisitions at different pressures by Fourier transform spectroscopy.

  11. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI.

    PubMed

    Gomez, Arnold D; Merchant, Samer S; Hsu, Edward W

    2014-06-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.

  12. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  13. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  14. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  15. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.

    PubMed

    Tang, Yat T; Marshall, Garland R

    2011-02-28

    Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable

  16. Investigation of wadeable and unwadeable natural hydraulic jumps by integrating high resolution field surveying, digital terrain modeling, and process measurements

    NASA Astrophysics Data System (ADS)

    Vallé, B. L.; Pasternack, G. B.

    2002-12-01

    Recent research in fluvial geomorphology has emphasized the development of three-dimensional digital terrain models (DTMs) to better understand the interrelationship between river processes and channel form. However, no attempts have previously been made to apply DTMs to bedrock-controlled boulder-bed channels. Recent advances in integrating CAD techniques with intensive and iterative field surveys has allowed for the development of high-resolution digital terrain models for the bed and water surface topographies of two wadeable hydraulic jumps in the upper South Fork American River basin, CA, and one unwadeable hydraulic jump in the Cache Creek basin, CA. Field surveys varied based on the presence of subaerial, subaqueous, and wadeable conditions, and were conducted at two discharges. For unwadeable conditions, a new high-resolution mechanical surveying system was used to sample the bed and water surface. In addition, process measurements such as air content were recorded. Average point densities ranged from 4 to 22 pts per sq. m over a 6 to 68 sq. m area. Maximum point densities ranged from 33 to 64 pts per sq. m. Bed DTMs for all sites indicate a sub-channel width control on jump formation. Water surface DTMs indicate the presence of a strong stage-dependence on water surface topography, with shifts in the nappe profile and downstream water surface slopes at higher discharges. Further, rapidly varying supercritical flows had planar or convex shapes that could be empirically related to underlying bed topography. Air content DTMs showed significant spatial and temporal variability as well as rapid air entrainment at the jump toe. Air detrainment varied considerably. Subsequently, DTMs and process data were used to test a series of simple empirical relationships not previously investigated for natural hydraulic jumps. Further study will emphasize the development and deployment of process-based instrumentation such that the complex turbulent air-water flow dynamics

  17. The Reliability of Pharyngeal High Resolution Manometry with Impedance for Derivation of Measures of Swallowing Function in Healthy Volunteers

    PubMed Central

    Omari, Taher I.; Savilampi, Johanna; Kokkinn, Karmen; Schar, Mistyka; Lamvik, Kristin; Doeltgen, Sebastian; Cock, Charles

    2016-01-01

    Purpose. We evaluated the intra- and interrater agreement and test-retest reliability of analyst derivation of swallow function variables based on repeated high resolution manometry with impedance measurements. Methods. Five subjects swallowed 10 × 10 mL saline on two occasions one week apart producing a database of 100 swallows. Swallows were repeat-analysed by six observers using software. Swallow variables were indicative of contractility, intrabolus pressure, and flow timing. Results. The average intraclass correlation coefficients (ICC) for intra- and interrater comparisons of all variable means showed substantial to excellent agreement (intrarater ICC 0.85–1.00; mean interrater ICC 0.77–1.00). Test-retest results were less reliable. ICC for test-retest comparisons ranged from slight to excellent depending on the class of variable. Contractility variables differed most in terms of test-retest reliability. Amongst contractility variables, UES basal pressure showed excellent test-retest agreement (mean ICC 0.94), measures of UES postrelaxation contractile pressure showed moderate to substantial test-retest agreement (mean Interrater ICC 0.47–0.67), and test-retest agreement of pharyngeal contractile pressure ranged from slight to substantial (mean Interrater ICC 0.15–0.61). Conclusions. Test-retest reliability of HRIM measures depends on the class of variable. Measures of bolus distension pressure and flow timing appear to be more test-retest reliable than measures of contractility. PMID:27190520

  18. Determination of spectroscopic properties of atmospheric molecules from high resolution vacuum ultraviolet cross section and wavelength measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Yoshino, K.; Freeman, D. E.

    1993-01-01

    An account is given of progress during the six-month period 1 Nov. 1992 to 30 Apr. 1993 on work on (1) cross section measurements of the Schumann-Runge continuum; (2) the determination of the predissociation linewidths of the Schumann-Runge bands of O2; (3) the determination of the molecular constants of the ground state of O2; (4) cross section measurements of CO2 in wavelength region 120-170 nm; and (4) determination of dissociation energy of O2. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (FWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Below 175 nm and in the region of the S-R continuum, synchrotron radiation is suitable for cross section measurements. All of these spectroscopic measurements are needed for accurate calculations of the production of atomic oxygen and penetration of solar radiation into the Earth's atmosphere.

  19. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    PubMed Central

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutation type, position, and concentration on HRM scores. The impact of amplicon length and G/C content on HRM scores was also evaluated. Different mutation types affected HRM scores to varying degrees (1-bp deletion < 1-bp change < 3-bp insertion < 9-bp insertion). The impact of mutations on HRM scores was influenced by amplicon length and the position of the mutation within the amplicon. Mutations were detected at concentrations of 5% to 95%, with the greatest impact at 50%. The G/C content altered melting temperature values of amplicons but had no impact on HRM scores. These data are relevant to the design of assays that measure genetic diversity using HRM technology. PMID:23178437

  20. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    PubMed Central

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  1. Validation of high-resolution gamma-ray computed tomography for quantitative gas holdup measurements in centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Bieberle, André; Schäfer, Thomas; Neumann, Martin; Hampel, Uwe

    2015-09-01

    In this article, the capability of high-resolution gamma-ray computed tomography (HireCT) for quantitative gas-liquid phase distribution measurements in commercially available industrial pumps is experimentally investigated. The object of interest thereby operates under two-phase flow conditions. HireCT System comprises a collimated 137Cs isotopic source, a radiation detector arc with a multi-channel signal processing unit, and a rotary unit enabling CT scans of objects with diameters of up to 700 mm. The accuracy of gas holdup measurements was validated on a sophisticated modular test mockup replicating defined gas-liquid distributions, which are expected in impeller chambers of industrial centrifugal pumps under two-phase operation. Stationary as well as rotation-synchronized CT scanning techniques have been analyzed, which are both used to obtain sharply resolved gas phase distributions in rotating structures as well as non-rotating zones. A measuring accuracy of better than 1% absolute for variously distributed static gas holdups in the rotating frame has been verified with the modular test mockup using HireCT.

  2. Digital tomosynthesis and high resolution computed tomography as clinical tools for vertebral endplate topography measurements: Comparison with microcomputed tomography.

    PubMed

    Oravec, Daniel; Quazi, Abrar; Xiao, Angela; Yang, Ellen; Zauel, Roger; Flynn, Michael J; Yeni, Yener N

    2015-12-01

    Endplate morphology is understood to play an important role in the mechanical behavior of vertebral bone as well as degenerative processes in spinal tissues; however, the utility of clinical imaging modalities in assessment of the vertebral endplate has been limited. The objective of this study was to evaluate the ability of two clinical imaging modalities (digital tomosynthesis, DTS; high resolution computed tomography, HRCT) to assess endplate topography by correlating the measurements to a microcomputed tomography (μCT) standard. DTS, HRCT, and μCT images of 117 cadaveric thoracolumbar vertebrae (T10-L1; 23 male, 19 female; ages 36-100 years) were segmented, and inferior and superior endplate surface topographical distribution parameters were calculated. Both DTS and HRCT showed statistically significant correlations with μCT approaching a moderate level of correlation at the superior endplate for all measured parameters (R(2)Adj=0.19-0.57), including averages, variability, and higher order statistical moments. Correlation of average depths at the inferior endplate was comparable to the superior case for both DTS and HRCT (R(2)Adj=0.14-0.51), while correlations became weak or nonsignificant for higher moments of the topography distribution. DTS was able to capture variations in the endplate topography to a slightly better extent than HRCT, and taken together with the higher speed and lower radiation cost of DTS than HRCT, DTS appears preferable for endplate measurements.

  3. Digital Tomosynthesis and High Resolution Computed Tomography as Clinical Tools for Vertebral Endplate Topography Measurements: Comparison with Microcomputed Tomography

    PubMed Central

    Oravec, Daniel; Quazi, Abrar; Xiao, Angela; Yang, Ellen; Zauel, Roger; Flynn, Michael J.; Yeni, Yener N.

    2015-01-01

    Endplate morphology is understood to play an important role in the mechanical behavior of vertebral bone as well as degenerative processes in spinal tissues; however, the utility of clinical imaging modalities in assessment of the vertebral endplate has been limited. The objective of this study was to evaluate the ability of two clinical imaging modalities (digital tomosynthesis, DTS; high resolution computed tomography, HRCT) to assess endplate topography by correlating the measurements to a microcomputed tomography (µCT) standard. DTS, HRCT, and µCT images of 117 cadaveric thoracolumbar vertebrae (T10-L1; 23 male, 19 female; ages 36–100 years) were segmented, and inferior and superior endplate surface topographical distribution parameters were calculated. Both DTS and HRCT showed statistically significant correlations with µCT approaching a moderate level of correlation at the superior endplate for all measured parameters (R2Adj=0.19–0.57), including averages, variability, and higher order statistical moments. Correlation of average depths at the inferior endplate was comparable to the superior case for both DTS and HRCT (R2Adj=0.14–0.51), while correlations became weak or nonsignificant for higher moments of the topography distribution. DTS was able to capture variations in the endplate topography to a slightly better extent than HRCT, and taken together with the higher speed and lower radiation cost of DTS than HRCT, DTS appears preferable for endplate measurements. PMID:26220145

  4. Determination of accurate protein monoisotopic mass with the most abundant mass measurable using high-resolution mass spectrometry.

    PubMed

    Chen, Ya-Fen; Chang, C Allen; Lin, Yu-Hsuan; Tsay, Yeou-Guang

    2013-09-01

    While recent developments in mass spectrometry enable direct evaluation of monoisotopic masses (M(mi)) of smaller compounds, protein M(mi) is mostly determined based on its relationship to average mass (Mav). Here, we propose an alternative approach to determining protein M(mi) based on its correlation with the most abundant mass (M(ma)) measurable using high-resolution mass spectrometry. To test this supposition, we first empirically calculated M(mi) and M(ma) of 6158 Escherichia coli proteins, which helped serendipitously uncover a linear correlation between these two protein masses. With the relationship characterized, liquid chromatography-mass spectrometry was employed to measure M(ma) of protein samples in its ion cluster with the highest signal in the mass spectrum. Generally, our method produces a short series of likely M(mi) in 1-Da steps, and the probability of each likely M(mi) is assigned statistically. It is remarkable that the mass error of this M(mi) is as miniscule as a few parts per million, indicating that our method is capable of determining protein M(mi) with high accuracy. Benefitting from the outstanding performance of modern mass spectrometry, our approach is a significant improvement over others and should be of great utility in the rapid assessment of protein primary structures.

  5. High-resolution measurements, line identification, and spectral modeling of K-alpha transitions in Fe XVIII-Fe XXV

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Phillips, T.; Jacobs, V. L.; Hill, K. W.; Bitter, M.; Von Goeler, S.; Kahn, S. M.

    1993-01-01

    A detailed analysis of the iron K-alpha emission spectrum covering the wavelength region from 1.840 to 1.940 A is presented. Measurements are made with a high-resolution Bragg crystal spectrometer on the Princeton Large Torus (PLT) tokamak for plasma conditions which closely resemble those of solar flares. A total of 40 features are identified, consisting of either single or multiple lines from eight charge states in iron, Fe XVIII - Fe XXV, and their wavelengths are determined with an accuracy of 0.1-0.4 mA. Many of these features are identified for the first time. In the interpretation of our observations we rely on model calculations that determine the ionic species abundances from electron density and temperature profiles measured independently with nonspectroscopic techniques and that incorporate theoretical collisional excitation and dielectronic recombination rates resulting in the excitation of the 1s2sr2ps configurations. The model calculations also include the effect of diffusive ion transport. Good overall agreement between the model calculations and the observations is obtained, which gives us confidence in our line identifications and spectral modeling capabilities. The results are compared with earlier analyses of the K-alpha emission from the Sun.

  6. In situ measurement of ions parameters of laser produced ion source using high resolution Thomson Parabola Spectrometer

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Kaur, C.; Rastogi, V.; Poswal, A. K.; Munda, D. S.; Bhatia, R. K.; Nataraju, V.

    2016-08-01

    The laser produced plasma based heavy ion source has become an outstanding front end for heavy ion accelerators. Before being implemented in the heavy ion accelerators its detailed characterization is required. For this purpose, a high resolution and high dispersion Thomson parabola spectrometer comprising of Time-of-Flight diagnostics has been developed for the characterization of ions with energy in the range from 1 keV to 1 MeV/nucleon and incorporated in the Laser plasma experimental chamber. The ion spectrometer is optimized with graphite target. The carbon ions of charge states C1+ to C6+ are observed in the energy range from 3 keV to 300 keV, which has also been verified by Time-of-Flight measurement. Experimental results were matched with simulation done by SIMION 7.0 code which is used for the design of the spectrometer. We also developed data analysis software using Python language to measure in situ ion's parameters and the results are in better agreement to the experimental results than the commercially available software SIMION 7.0. The resolution of the spectrometer is ΔE/E = 0.026 @ 31 keV for charge state (C4+) of carbon.

  7. Combining High Resolution Measurements and Simulations of Near-Bed Sediment Transport Processes Under Large-Scale Breaking Waves

    NASA Astrophysics Data System (ADS)

    Finn, J. R.; Hurther, D.; van der Zanden, J.; van der A, D. A.; Ribberink, J.; O'Donoghue, T.; Li, M.

    2015-12-01

    Physical processes involved in near-bed sediment transport under regular, breaking waves are investigated using a combined framework of high resolution measurement and numerical simulation. Experiments are carried out at full scale (0.85 m wave height, 4 s period) in the CIEM wave flume above a mobile sand bed (d10, d50, d90 = 0.15 mm, 0.25 mm, 0.37 mm). Vertical profiles of co-located, two component (u, w) velocity and particle concentration are measured in the bottom boundary layer (BBL) using a multi-frequency acoustic concentration velocity profiler (ACVP) at several locations along the beach. The intra-wave free stream velocity measurements are provided as input to three dimensional Euler-Lagrange point-particle simulations of the BBL. Using a series of feedback controllers, the simulation forcing is adjusted to match the measured orbital velocity and turbulent intensities at an elevation of z~8 cm above the bed. The simulations treat sand grains both in the bed and in suspension as Lagrangian particles that respond to hydrodynamic and inter-particle forces. Particles are coupled to the near-bed hydrodynamics through the volume filtered Navier Stokes equations, which are solved in a finite volume LES framework at near particle scale. Several wave cycles are simulated in order to make direct comparisons of the mean and turbulent statistics with the measurements and to explore the near-bed particle response to wave breaking. Statistics of the space-time dependent grain-size distribution, a natural output of the particle-based simulations, are fed back into the acoustic calibration of the ACVP, improving the instrument's response to grain size sorting induced by the near bed flow. This cross validation and calibration of measurement and simulation allows for detailed interrogation of near-bed transport processes with minimal empirical assumptions relating to bed shear, particle pickup, or surface wave breaking.

  8. A new method for high-resolution methane measurements on polar ice cores using continuous flow analysis.

    PubMed

    Schüpbach, Simon; Federer, Urs; Kaufmann, Patrik R; Hutterli, Manuel A; Buiron, Daphné; Blunier, Thomas; Fischer, Hubertus; Stocker, Thomas F

    2009-07-15

    Methane (CH4) is the second most important anthropogenic greenhouse gas in the atmosphere. Rapid variations of the CH4 concentration, as frequently registered, for example, during the last ice age, have been used as reliable time markers for the definition of a common time scale of polar ice cores. In addition, these variations indicate changes in the sources of methane primarily associated with the presence of wetlands. In order to determine the exact time evolution of such fast concentration changes, CH4 measurements of the highest resolution in the ice core archive are required. Here, we present a new, semicontinuous and field-deployable CH4 detection method, which was incorporated in a continuous flow analysis (CFA) system. In CFA, samples cut along the axis of an ice core are melted at a melt speed of typically 3.5 cm/min. The air from bubbles in the ice core is extracted continuously from the meltwater and forwarded to a gas chromatograph (GC) for high-resolution CH4 measurements. The GC performs a measurement every 3.5 min, hence, a depth resolution of 15 cm is achieved atthe chosen melt rate. An even higher resolution is not necessary due to the low pass filtering of air in ice cores caused by the slow bubble enclosure process and the diffusion of air in firn. Reproducibility of the new method is 3%, thus, for a typical CH4 concentration of 500 ppb during an ice age, this corresponds to an absolute precision of 15 ppb, comparable to traditional analyses on discrete samples. Results of CFA-CH4 measurements on the ice core from Talos Dome (Antarctica) illustrate the much higher temporal resolution of our method compared with established melt-refreeze CH4 measurements and demonstrate the feasibility of the new method.

  9. A high-resolution, multi-stop, time-to-digital converter for nuclear time-of-flight measurements

    NASA Astrophysics Data System (ADS)

    Spencer, D. F.; Cole, J.; Drigert, M.; Aryaeinejad, R.

    2006-01-01

    A high-resolution, multi-stop, time-to-digital converter (TDC) was designed and developed to precisely measure the times-of-flight (TOF) of incident neutrons responsible for induced fission and capture reactions on actinide targets. The minimum time resolution is ±1 ns. The TDC design was implemented into a single, dual-wide CAMAC module. The CAMAC bus is used for command and control as well as an alternative data output. A high-speed ECL interface, compatible with LeCroy FERA modules, was also provided for the principle data output path. An Actel high-speed field programmable gate array (FPGA) chip was incorporated with an external oscillator and an internal multiple clock phasing system. This device implemented the majority of the high-speed register functions, the state machine for the FERA interface, and the high-speed counting circuit used for the TDC conversion. An external microcontroller was used to monitor and control system-level changes. In this work we discuss the performance of this TDC module as well as its application.

  10. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment.

    PubMed

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  11. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Lin, Yung-Ya; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin; Chen, Zhong

    2016-03-01

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  12. High-cycle fatigue of micromachined single-crystal silicon measured using high-resolution patterned specimens

    NASA Astrophysics Data System (ADS)

    Ikehara, T.; Tsuchiya, T.

    2008-07-01

    A single-crystal silicon fatigue test structure was fabricated using high-resolution lithography to improve smoothness and morphological uniformity. An on-chip test structure, including a notched test piece, a resonator, an electrostatic actuator and a deflection sensor, was fabricated using 0.6 µm resolution lithography. Fatigue tests were performed under different deflection amplitudes and humidity conditions. The lifetime scattering was limited nearly within 1 order at each condition, and this was a large improvement over other reported studies. Our test results indicated a clear tendency for the lifetime to lengthen when the strain amplitude or ambient humidity was decreased. Strain-life behaviors at two different humidity conditions were analyzed using Paris law and crack propagation exponents of 19.6 and 23.0 were obtained at 50%RH and 25%RH, respectively. A humidity dependence was clearly confirmed by the results of our low-scattering experiment. Moreover, for this measurement, a new parallel test system was built in which fatigue tests on up to 12 samples could be performed simultaneously. The drive circuit, which enables a deflection-controlled fatigue test, is described and its performance was demonstrated.

  13. Electron-electron correlation in graphite: a combined angle-resolved photoemission and first-principles study.

    PubMed

    Grüneis, A; Attaccalite, C; Pichler, T; Zabolotnyy, V; Shiozawa, H; Molodtsov, S L; Inosov, D; Koitzsch, A; Knupfer, M; Schiessling, J; Follath, R; Weber, R; Rudolf, P; Wirtz, L; Rubio, A

    2008-01-25

    The full three-dimensional dispersion of the pi bands, Fermi velocities, and effective masses are measured with angle-resolved photoemission spectroscopy and compared to first-principles calculations. The band structure by density-functional theory underestimates the slope of the bands and the trigonal warping effect. Including electron-electron correlation on the level of the GW approximation, however, yields remarkable improvement in the vicinity of the Fermi level. This demonstrates the breakdown of the independent electron picture in semimetallic graphite and points toward a pronounced role of electron correlation for the interpretation of transport experiments and double-resonant Raman scattering for a wide range of carbon based materials.

  14. Simultaneous measurements of indoor radon, radon-thoron progeny and high-resolution gamma spectrometry in Greek dwellings.

    PubMed

    Clouvas, A; Xanthos, S; Antonopoulos-Domis, M

    2006-01-01

    Simultaneous indoor radon, radon-thoron progeny and high-resolution in situ gamma spectrometry measurements, with portable high-purity Ge detector were performed in 26 dwellings of Thessaloniki, the second largest town of Greece, during March 2003-January 2005. The radon gas was measured with an AlphaGUARD ionisation chamber (in each of the 26 dwellings) every 10 min, for a time period between 7 and 10 d. Most of the values of radon gas concentration are between 20 and 30 Bq m(-3), with an arithmetic mean of 34 Bq m(-3). The maximum measured value of radon gas concentration is 516 Bq m(-3). The comparison between the radon gas measurements, performed with AlphaGUARD and short-term electret ionisation chamber, shows very good agreement, taking into account the relative short time period of the measurement and the relative low radon gas concentration. Radon and thoron progeny were measured with a SILENA (model 4s) instrument. From the radon and radon progeny measurements, the equilibrium factor F could be deduced. Most of the measurements of the equilibrium factor are within the range 0.4-0.5. The mean value of the equilibrium factor F is 0.49 +/- 0.10, i.e. close to the typical value of 0.4 adopted by UNSCEAR. The mean equilibrium equivalent thoron concentration measured in the 26 dwellings is EEC(thoron) = 1.38 +/- 0.79 Bq m(-3). The mean equilibrium equivalent thoron to radon ratio concentration, measured in the 26 dwellings, is 0.1 +/- 0.06. The mean total absorbed dose rate in air, owing to gamma radiation, is 58 +/- 12 nGy h(-1). The contribution of the different radionuclides to the total indoor gamma dose rate in air is 38% due to 40K, 36% due to thorium series and 26% due to uranium series. The annual effective dose, due to the different source terms (radon, thoron and external gamma radiation), is 1.05, 0.39 and 0.28 mSv, respectively.

  15. Angle-resolved reflectance of obliquely aligned silver nanorods.

    PubMed

    Wang, X J; Abell, J L; Zhao, Y-P; Zhang, Z M

    2012-04-01

    Arrays of silver nanorods (AgNRs) formed by oblique-angle deposition (OAD) are strongly anisotropic, with either metallic or dielectric characteristics depending on the polarization of incident light, and may be used to enhance Raman scattering and surface plasmon polaritons. This work investigates the polarization-dependent reflectance of inclined AgNR arrays at the wavelengths of 635 and 977 nm. The specular reflectance at various incidence angles and the bidirectional reflectance distribution function were measured with a laser scatterometer, while the directional-hemispherical reflectance was measured with an integrating sphere. The AgNR layer is modeled as an effectively homogenous, optically uniaxial material using the effective medium theory to elucidate the dielectric or metallic response for differently polarized incidence. The thin-film optics formulation is modified considering optical anisotropy and surface scattering. This study helps gain a better understanding of optical properties of nanostructured materials.

  16. A new method using evaporation for high-resolution measurements of soil thermal conductivity at changing water contents

    NASA Astrophysics Data System (ADS)

    Markert, A.; Trinks, S.; Facklam, M.; Wessolek, G.

    2012-04-01

    The thermal conductivity of soils is a key parameter to know if their use as heat source or sink is planned. It is required to calculate the efficiency of ground-source heat pump systems in combination with soil heat exchangers. Apart from geothermal energy, soil thermal conductivity is essential to estimate the ampacity for buried power cables. The effective thermal conductivity of saturated and unsaturated soils, as a function of water transport, water vapour transport and heat conduction, mainly depends on the soil water content, its bulk density and texture. The major objectives of this study are (i) to describe the thermal conductivity of soil samples with a non-steady state measurement at changing water contents and for different bulk densities. Based on that it is (ii) tested if available soil thermal conductivity models are able to describe the measured data for the whole range of water contents. The new method allows a continuous measurement of thermal conductivity for soil from full water saturation to air-dryness. Thermal conductivity is measured with a thermal needle probe in predefined time intervals while the change of water content is controlled by evaporation. To relate the measured thermal conductivity to the current volumetric water content, the decrease in weight of the sample, due to evaporation, is logged with a lab scale. Soil texture of the 11 soil substrates tested in this study range between coarse sand and silty clay. To evaluate the impact of the bulk density on heat transport processes, thermal conductivity at 20°C was measured at 1.5g/cm3; 1.7g/cm3 and 1.9g/cm3 for each soil substrate. The results correspond well to literature values used to describe heat transport in soils. Due to the high-resolution and non-destructive measurements, the specific effects of the soil texture and bulk density on thermal conductivity could be proved. Decreasing water contents resulted in a non-linear decline of the thermal conductivity for all samples

  17. A new method to measure bowen ratios using high resolution vertical dry and wet bulb temperature profiles

    NASA Astrophysics Data System (ADS)

    Euser, T.; Luxemburg, W.; Everson, C.; Mengistu, M.; Clulow, A.; Bastiaanssen, W.

    2013-06-01

    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. Despite its simplicity, the Bowen ratio method is generally considered to be unreliable due to the use of two-level sensors that are installed by default in operational Bowen ratio systems. In this paper we present the concept of a new measurement methodology to estimate the Bowen ratio from high resolution vertical dry and wet bulb temperature profiles. A short field experiment with Distributed Temperature Sensing (DTS) in a fibre optic cable having 13 levels was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and temperature at 0.20 m intervals was established. These data allows the computation of the Bowen ratio with a high precision. By linking the Bowen ratio to net radiation and soil heat flux, the daytime latent heat flux was estimated. The latent heat flux derived from DTS-based Bowen ratio (BR-DTS) showed consistent agreement (correlation coefficients between 0.97 and 0.98) with results derived from eddy covariance, surface layer scintillometer and surface renewal techniques. The latent heat from BR-DTS overestimated the latent heat derived with the eddy covariance by 4% and the latent heat derived with the surface layer scintillometer by 8%. Through this research, a new window is opened to engage on simplified, inexpensive and easy to interpret in situ measurement techniques for measuring evaporation.

  18. Angle-resolved heat capacity of heavy fermion superconductors

    NASA Astrophysics Data System (ADS)

    Sakakibara, Toshiro; Kittaka, Shunichiro; Machida, Kazushige

    2016-09-01

    Owing to a strong Coulomb repulsion, heavy electron superconductors mostly have anisotropic gap functions which have nodes for certain directions in the momentum space. Since the nodal structure is closely related to the pairing mechanism, its experimental determination is of primary importance. This article discusses the experimental methods of the gap determination by bulk heat capacity measurements in a rotating magnetic field. The basic idea is based on the fact that the quasiparticle density of states in the vortex state of nodal superconductors is field and direction dependent. We present our recent experimental results of the field-orientation dependence of the heat capacity in heavy fermion superconductors CeTIn5 (T  =  Co, Ir), UPt3, CeCu2Si2, and UBe13 and discuss their gap structures.

  19. Angle-resolved heat capacity of heavy fermion superconductors.

    PubMed

    Sakakibara, Toshiro; Kittaka, Shunichiro; Machida, Kazushige

    2016-09-01

    Owing to a strong Coulomb repulsion, heavy electron superconductors mostly have anisotropic gap functions which have nodes for certain directions in the momentum space. Since the nodal structure is closely related to the pairing mechanism, its experimental determination is of primary importance. This article discusses the experimental methods of the gap determination by bulk heat capacity measurements in a rotating magnetic field. The basic idea is based on the fact that the quasiparticle density of states in the vortex state of nodal superconductors is field and direction dependent. We present our recent experimental results of the field-orientation dependence of the heat capacity in heavy fermion superconductors CeTIn5 (T  =  Co, Ir), UPt3, CeCu2Si2, and UBe13 and discuss their gap structures.

  20. Angle-Resolved Polarimetry of Antenna-Mediated Fluorescence

    NASA Astrophysics Data System (ADS)

    Mohtashami, Abbas; Osorio, Clara I.; Koenderink, A. Femius

    2015-11-01

    Optical phase-array antennas can be used to control not only the angular distribution but also the polarization of fluorescence from quantum emitters. The emission pattern of the resulting system is determined by the properties of the antenna, the properties of the emitters, and the strength of the antenna-emitter coupling. Here we show that Fourier polarimetry can be used to characterize these three contributions. To this end, we measure the angle- and Stokes-parameter-resolved emission of bullseye plasmon antennas as well as spiral antennas excited by an ensemble of emitters. We estimate the average antenna-emitter coupling on the basis of the degree of polarization and determine the effect of anisotropy in the intrinsic emitter orientation on polarization of the resulting emission pattern. Our results provide not only new insights into the behavior of bullseye and spiral antennas but also demonstrate the potential of Fourier polarimetry when characterizing antenna-mediated fluorescence.

  1. Extracting the temperature of hot carriers in time- and angle-resolved photoemission.

    PubMed

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  2. Extracting the temperature of hot carriers in time- and angle-resolved photoemission

    SciTech Connect

    Ulstrup, Søren; Hofmann, Philip; Johannsen, Jens Christian; Grioni, Marco

    2014-01-15

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  3. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  4. Comparison of SMOS measurements of sea surface salinity during SPURS using a high-resolution, vertical profiler

    NASA Astrophysics Data System (ADS)

    Walesby, Kieran; Sutherland, Graigory; Ten Doeschate, Anneke; Reverdin, Gilles; Font, Jordi; Ward, Brian

    2014-05-01

    The European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite was launched in 2009 and, for the first time, provides measurements of sea surface salinity on a global scale. Ocean salinity is a key parameter for climate change, being closely associated with the global hydrological cycle and an important driver in determining overall ocean circulation. This makes the advent of satellite measurements of salinity a significant advance. During the Salinity Processes in the Upper Ocean Regional Study (SPURS) field experiments, in September 2012 and March 2013, a variety of in-situ platforms were deployed with the purpose of validating the salinity observations from SMOS. One of these platforms was the Air-Sea Interaction Profiler, a microstructure profiler which provides high-resolution profiles of salinity, temperature and turbulence right up to the surface. This last capability is crucial. Most oceanic microstructure profilers operate when travelling downwards, and are therefore unable to accurately observe the layer of the ocean immediately below the surface. It is this top layer, approximately 1 cm in thickness, which satellites observe. In contrast, ASIP is upwardly-rising, allowing it to sample the same part of the water column as satellites, such as SMOS. This is important since large thermal and haline stratifications can develop close to the surface, particularly under conditions of strong evaporation. Although sea surface salinity in the open ocean is largely determined by the balance between evaporation and precipitation, the effects of various vertical mixing processes also contribute. ASIP is extremely well-suited to understanding the impact of these on differences between ASIP and SMOS, and some results are also presented here which demonstrate the important effect of such processes.

  5. Angle-Resolved Auger Spectroscopy as a Sensitive Access to Vibronic Coupling

    NASA Astrophysics Data System (ADS)

    Knie, A.; Patanen, M.; Hans, A.; Petrov, I. D.; Bozek, J. D.; Ehresmann, A.; Demekhin, Ph. V.

    2016-05-01

    In the angle-averaged excitation and decay spectra of molecules, vibronic coupling may induce the usually weak dipole-forbidden transitions by the excitation intensity borrowing mechanism. The present complementary theoretical and experimental study of the resonant Auger decay of core-to-Rydberg excited CH4 and Ne demonstrates that vibronic coupling plays a decisive role in the formation of the angle-resolved spectra by additionally involving the decay rate borrowing mechanism. Thereby, we propose that the angle-resolved Auger spectroscopy can in general provide very insightful information on the strength of the vibronic coupling.

  6. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    NASA Technical Reports Server (NTRS)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  7. High-Resolution Synchrotron-Source FTIR measurements of hydration rinds on volcanic glasses as applied to archaeology

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Watkins, J. M.; Renne, P. R.; Manga, M.; Shackley, M.; Martin, M. C.

    2006-12-01

    High-resolution synchrotron-source Fourier Transform Infrared (SR-FTIR) data on hydration rinds of obsidian clasts from sedimentary hosts are presented. Since SR-FTIR spectroscopy is a nondestructive technique, we use overlapping steps to obtain high spatial resolutions (1-3 microns). Variations in H2O and OH concentrations are represented by profiles of absorbance peaks at wavenumbers of ~1630 cm-1 and ~3570 cm-1, respectively. The spatial pattern of these inferred uptake profiles suggest a diffusion mechanism over the outermost 20-40 microns of the clast edge. In addition, intensity ratios of the two peaks vary systematically across hydrations rinds but are relatively constant in the interior of each sample. These measurements are relevant for archaeological applications in several ways. First, the lengthscales over which water concentrations vary do not coincide with visible hydration rind thicknesses. This is consistent with results from SIMS analyses by Anovitz et al. (1999) and suggests that diffusion of atmospheric water vapor into obsidian is not solely responsible for the growth of visible hydration rinds (c.f. Friedman et al 1997, and Stevenson et al. 1998). Second, when combined with independently obtained age data from archaeological sites, the data collected here should allow us to extend the temperature-dependent diffusivity of water in rhyolitic glasses to ambient surface conditions. Third, future work will seek to correlate these findings with cation mobility, particularly of K, which has proven to compromise the K-Ar system for dating in the case of glass shards with high surface area-to-volume ratios. Moreover, water speciation data via FTIR as well as D/H isotopic analyses via SIMS techniques should allow us to distinguish between meteoric water and water from a magmatic or hydrothermal source.

  8. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  9. High resolution imaging Fourier transform spectrometer with no moving components for the measurement of atmospheric trace gases

    NASA Astrophysics Data System (ADS)

    Mortimer, H.

    2014-12-01

    A high resolution Static Imaging Fourier Transform Spectrometer, SIFTS, with no moving parts has been developed for the detection of atmospheric gases. The instrument has been shown to have high spectral resolution (4 cm-1) and temporal resolution (10kHz) resolution in both the mid and near infrared and moderate spectral resolution (14cm-1) in the visible. This instrument has been developed for the remote sensing and in-situ measurements of atmospheric gases. It has been identified that due to the low mass and compact size of the instrument system, that the SIFTS could be deployed as a remote sensing instrument onboard a Earth Observation satellite or Unmanned Aerial Vehicle (UAV), or conversely as a radiosonde instrument for in-situ measurements of atmospheric gases. The technique is based on a static optical configuration whereby light is split into two paths and made to recombine along a focal plane producing an interference pattern. The spectral information is returned using a detector array to digitally capture the interferogram which can then be processed into a spectrum by applying a Fourier transform. As there are no moving components, the speed of measurement is determined by the frame rate of the detector array. Thus, this instrument has a temporal advantage over common Michelson FTIR instruments. Using a high speed Toshiba CCD line array, sensitive over the spectral region of 400 - 1100nm, spectra have been recorded at a rate of one every 100 microseconds. Using an uncooled microbolometer infrared detector array, sensitive over the spectral region of 2 to 15μm, the gases NH3, O3 and CH4 have been used to demonstrate the sensitivity of the SIFTS instrument. It has been shown that the Signal to Noise of the SIFTSMIR is >1200 using an integration time of 77msec. The novel optical design has reduced the optics to only 3 optical components, and the detector array, to generate and measure the interferogram. The experimental performance of the SIFTS instrument

  10. High-Resolution Aerosol Mass Spectrometric Measurements of the Arctic Troposphere on-board the NASA DC-8 during ARCTAS

    NASA Astrophysics Data System (ADS)

    Cubison, M. J.; Jimenez, J. L.

    2009-04-01

    A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, DeCarlo et al., Anal. Chem., 2006) was deployed aboard the NASA DC-8 research aircraft as part of the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign during the spring and summer of 2008. The main focus of the spring phase, operated out of Fairbanks, Alaska, was to investigate the composition and sources of Arctic Haze (e.g. Quinn et al., Tellus B, 2007), a persistent pollution layer that accumulates under the stable springtime Polar High anti-cyclonic weather pattern. The sulphate-dominated aerosol in the Arctic Haze almost always contained smaller amounts of organic matter. Multiple biomass-burning plumes and some plumes from North-American pollution were observed. Comparison of tracers for biomass-burning in both the gas- and aerosol-phases show good correlation and point to the long-term persistence of organic aerosol of biomass-burning origin in the springtime Arctic. The organic aerosol was typically highly oxidized. During the summer phase, operated out of Palmdale, California, and Cold Lake, Canada, the focus was investigating California pollution and the composition and evolution of the outflow from large-scale boreal forest fires, respectively. However, the numerous fires burning in Northern California during the project timeframe allowed for the sampling of biomass-burning plumes from both locations. The persistence and correlation of the gas- and aerosol-phase fire markers observed during the spring phase was once again apparent. This observation, over a range of transport timescales and geographical locations, suggests that certain components of the AMS mass spectrum can be used as robust markers for biomass-burning in the organic aerosol composition. Measurements from multiple fires of aerosol chemical composition, including volatility profiles of important organic components, are compared to monitor the evolution of biomass

  11. Feasibility study of high-resolution DCE-MRI for glomerular filtration rate (GFR) measurement in a routine clinical modal.

    PubMed

    Zhang, Yu-Dong; Wu, Chen-Jiang; Zhang, Jing; Wang, Xiao-Ning; Liu, Xi-Sheng; Shi, Hai-Bin

    2015-10-01

    Dynamic contrast enhanced (DCE) MR renography has been identified as an interesting tool to determine single-kidney GFR. However, a fundamental issue for the applicability of MR-based estimate of single-kidney GFR is selecting a balance between spatial and temporal resolution of DCE-MRI data. The purpose is to assess the feasibility of GFR estimate from high-resolution (HR) dynamic contrast-enhanced (DCE) MRI in a routine clinical modal. Standard MR renography (2.4s/phase, total 4min; 4-ml Gd) and five-phase, HR-based imaging protocol (0, 30, 70, 120, and 240s; 0.05mmol/kg Gd) were prospectively performed in twelve volunteers who were scheduled for routine renal MRI. Data were plotted with Patlak, two-compartment modified Tofts model (2CTM), and two-compartment filtration model (2CFM) for GFR estimate. During all the measurements, only the signal intensities in the aorta and whole kidney parenchyma were considered. Standard 2CFM and 2CTM produced lower residuals over the fitted interval than HR-based measures (p<0.05); and HR-bases 2CFM and 2CTM did not reflect significant correlation to standard values. Standard Patlak plots with 0-240s data points produced significantly lower GFR and higher residuals than that plots with 0-120s data points (p<0.05). HR-based Patlak plots with 0, 30, 70, and 120s data points significantly correlated with reference values (Pearson ρ=0.97, p<0.01), and produced a 33.2% underestimation of reference value, which was better than that plots with 0, 30, 70, 120, and 240s data points (ρ=0.92, p<0.01; 58.6% underestimation of reference value). It concludes that it is feasible to estimate GFR with HR-based DCE-MRI and appreciate kinetic model. Patlak plots from 0, 30, 70, and 120s data points is better than plots from 0, 30, 70, 120, and 240s data points.

  12. Fast Airborne Aerosol Size and Chemistry Measurements with the High Resolution Aerosol Mass Spectrometer during the MILAGRO Campaign

    NASA Technical Reports Server (NTRS)

    DeCarlo, P. F.; Dunlea, E. J.; Kimmel, J. R.; Aiken, A. C.; Sueper, D.; Crounse, J.; Wennberg, P. O.; Emmons, L.; Shinozuka, Y.; Clarke, A.; Zhou, J.; Tomlinson, J.; Collins,D. R.; Knapp, D.; Weinheimer, A. J.; Montzka,D. D.; Campos,T.; Jimenez, J. L.

    2007-01-01

    The concentration, size, and composition of non-refractory submicron aerosol (NR-PM(sub l)) was measured over Mexico City and central Mexico with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) onboard the NSF/NCAR C-130 aircraft as part of the MILAGRO field campaign. This was the first aircraft deployment of the HR-ToF-AMS. During the campaign the instrument performed very well, and provided 12 s data. The aerosol mass from the AMS correlates strongly with other aerosol measurements on board the aircraft. Organic aerosol (OA) species dominate the NR-PM(sub l) mass. OA correlates strongly with CO and HCN indicating that pollution (mostly secondary OA, SOA) and biomass burning (BB) are the main OA sources. The OA to CO ratio indicates a typical value for aged air of around 80 microg/cubic m (STP) ppm(exp -1). This is within the range observed in outflow from the Northeastern US, which could be due to a compensating effect between higher BB but lower biogenic VOC emissions during this study. The O/C atomic ratio for OA is calculated from the HR mass spectra and shows a clear increase with photochemical age, as SOA forms rapidly and quickly overwhelms primary urban OA, consistent with Volkamer et al. (2006) and Kleinman et al. (2008). The stability of the OA/CO while O/C increases with photochemical age implies a net loss of carbon from the OA. BB OA is marked by signals at m/z 60 and 73, and also by a signal enhancement at large m/z indicative of larger molecules or more resistance to fragmentation. The main inorganic components show different spatial patterns and size distributions. Sulfate is regional in nature with clear volcanic and petrochemical/power plant sources, while the urban area is not a major regional source for this species. Nitrate is enhanced significantly in the urban area and immediate outflow, and is strongly correlated with CO indicating a strong urban source. The importance of nitrate decreases with distance from the city

  13. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  14. Development of a portable frequency-domain angle-resolved low coherence interferometry system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.; Wax, Adam

    2007-02-01

    Improved methods for detecting dysplasia, or pre-cancerous growth, are a current clinical need. Random biopsy and subsequent diagnosis through histological analysis is the current gold standard in endoscopic surveillance for dysplasia. However, this approach only allows limited examination of the at-risk tissue and has the drawback of a long delay in time-to-diagnosis. In contrast, optical scattering spectroscopy methods offer the potential to assess cellular structure and organization in vivo, thus allowing for instantaneous diagnosis and increased coverage of the at-risk tissue. Angle-resolved low coherence interferometry (a/LCI), a novel scattering spectroscopy technique, combines the ability of low-coherence interferometry to isolate scattered light from sub-surface tissue layers with the ability of light scattering spectroscopy to obtain structural information on sub-wavelength scales, specifically by analyzing the angular distribution of the backscattered light. In application to examining tissue, a/LCI enables depthresolved quantitative measurements of changes in the size and texture of cell nuclei, which are characteristic biomarkers of dysplasia. The capabilities of a/LCI were demonstrated initially by detecting pre-cancerous changes in epithelial cells within intact, unprocessed, animal tissues. Recently, we have developed a new frequency-domain a/LCI system, with sub-second acquisition time and a novel fiber optic probe. Preliminary results using the fa/LCI system to examine human esophageal tissue in Barrett's esophagus patients demonstrate the clinical viability of the approach. In this paper, we present a new portable system which improves upon the design of the fa/LCI system to allow for higher quality data to be collected in the clinic. Accurate sizing of polystyrene microspheres and cell nuclei from ex vivo human esophageal tissue is presented. These results demonstrate the promise of a/LCI as a clinically viable diagnostic tool.

  15. Substrate interactions with suspended and supported monolayer MoS2: Angle-resolved photoemission spectroscopy

    SciTech Connect

    Jin, Wencan; Yeh, Po -Chun; Zaki, Nader; Zhang, Datong; Liou, Jonathan T.; Dadap, Jerry I.; Barinov, Alexey; Yablonskikh, Mikhail; Sadowski, Jerzy T.; Sutter, Peter; Herman, Irving P.; Osgood, Jr., Richard M.

    2015-03-17

    We report the directly measured electronic structure of exfoliated monolayer molybdenum disulfide (MoS₂) using micrometer-scale angle-resolved photoemission spectroscopy. Measurements of both suspended and supported monolayer MoS₂ elucidate the effects of interaction with a substrate. Thus, a suggested relaxation of the in-plane lattice constant is found for both suspended and supported monolayer MoS₂ crystals. For suspended MoS₂, a careful investigation of the measured uppermost valence band gives an effective mass at Γ¯ and Κ¯ of 2.00m₀ and 0.43m₀, respectively. We also measure an increase in the band linewidth from the midpoint of Γ¯Κ¯ to the vicinity of Κ¯ and briefly discuss its possible origin.

  16. Angle-resolved photoemission and first-principles studies of topological thin films

    NASA Astrophysics Data System (ADS)

    Bian, Guang

    Dirac cones centered at the time-reversal-invariant M¯ points at the zone boundary. The critical behavior of the TI film near the quantum critical point is also studied theoretically. When the strength of the spin-orbit coupling (SOC) is tuned across the critical point, the topological surface states, while protected by symmetry in the bulk limit, can be missing completely in topological films even at large film thicknesses. We have observed, using angle-resolved photoemission, a structural phase transformation of Bi films deposited on Si(111)-(7x7). Films with thicknesses 20 to ~100 A, upon annealing, first order into a metastable pseudocubic (PC) phase and then transform into a stable rhombohedral (RH) phase with very different topologies for the quantum well subband structures. The PC phase shows a surface band with a maximum near the Fermi level at G , whereas the RH phase shows a Dirac-like subband around M¯ along K¯ -- M¯ -- K¯ . The formation of the metastable phase over a wide thickness range can be attributed to a surface nucleation mechanism. Finally, we have studied the electronic structure of the Bi/Ag surface alloy, a system possessing a huge Rashba splitting in its surface bands. The Bi/Ag surface alloy is prepared by depositing Bi onto ultrathin Ag films followed by annealing. The electronic structure of the system is measured using circular angle resolved photoemission spectroscopy (CARPES). The results reveal two interesting phenomena: the hybridization of spin polarized surface states with Ag bulk quantum well states and the umklapp scattering by the perturbed surface potential. In addition, our CARPES spectra show clearly a unique dichroism pattern which is closely related to the spin texture of this 2D strongly spin-orbit coupled electron system.

  17. New High Resolution Ion Mobility Mass Spectrometer Capable of Measurements of Collision Cross Sections from 150 to 520 K.

    PubMed

    Ujma, Jakub; Giles, Kevin; Morris, Michael; Barran, Perdita E

    2016-10-04

    We present a new variable temperature (VT), high resolution ion mobility (IM) drift tube coupled to a commercial mass spectrometer (MS). Ions are generated in an electrospray ion source with a sampling cone interface and two stacked ring RF guides which transfer ions into the mobility analyzer located prior to a quadrupole time-of-flight mass spectrometer. The drift cell can be operated over a pressure range of 0.5-3 Torr and a temperature range of 150-520 K with applied fields typically between 3 and 14 V cm(-1). This makes the instrument suitable for rotationally averaged collision cross section (CCS) measurements at low E/N ratios where ions are near thermal equilibrium with the buffer gas. Fundamental studies of the effective ion temperatures can be performed at high E/N ratios. An RF ion trap/buncher is located at the beginning of the drift region, which modulates the continuous ion beam into spatially narrow packets. Packets of ions then drift in a linear electric field, which is 50.5 cm long, and are separated according to their mobility in an inert buffer gas. Post-drift, an ion funnel focuses the radially spread pulses of ions into the inlet of a commercial MS platform (Micromass QToF2). We present the novel features of this instrument and results from VT-IM-MS experiments on a range of model systems-IMS CCS standards (Agilent ESI Tune Mix), the monomeric protein Ubiquitin (8.6 kDa), and the tetrameric protein complex Concanavalin A (103 kDa). We evaluate the performance of the instrument by comparing ambient (DT)CCSHe values of model compounds with those found in the literature. Several effects of temperature on collision cross sections and resolution are observed. For small rigid molecules, changes in resolution are consistent with anticipated thermal diffusion effects. Changes in measured (DT)CCSHe for these rigid systems at different temperatures are attributed primarily to the effect of temperature on the long-range attractive interaction. Similar

  18. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering.

    PubMed

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-05-28

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  19. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    PubMed Central

    Jo, YoungJu; Jung, JaeHwang; Lee, Jee Woong; Shin, Della; Park, HyunJoo; Nam, Ki Tae; Park, Ji-Ho; Park, YongKeun

    2014-01-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from −70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth. PMID:24867385

  20. Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering

    NASA Astrophysics Data System (ADS)

    Jo, Youngju; Jung, Jaehwang; Lee, Jee Woong; Shin, Della; Park, Hyunjoo; Nam, Ki Tae; Park, Ji-Ho; Park, Yongkeun

    2014-05-01

    Two-dimensional angle-resolved light scattering maps of individual rod-shaped bacteria are measured at the single-cell level. Using quantitative phase imaging and Fourier transform light scattering techniques, the light scattering patterns of individual bacteria in four rod-shaped species (Bacillus subtilis, Lactobacillus casei, Synechococcus elongatus, and Escherichia coli) are measured with unprecedented sensitivity in a broad angular range from -70° to 70°. The measured light scattering patterns are analyzed along the two principal axes of rod-shaped bacteria in order to systematically investigate the species-specific characteristics of anisotropic light scattering. In addition, the cellular dry mass of individual bacteria is calculated and used to demonstrate that the cell-to-cell variations in light scattering within bacterial species is related to the cellular dry mass and growth.

  1. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  2. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  3. Angle-resolved PED and AED calculations for different structures of the diamond C(111) surface

    NASA Astrophysics Data System (ADS)

    Niebergall, L.; Rennert, P.; Chassé, A.; Kucherenko, Yu

    1998-05-01

    Angle-resolved (AR) photoelectron diffraction (PED) spectra for electrons excited from the C 1s core state and angle-resolved KVV Auger electron diffraction (AED) spectra are calculated for the Pandey and the Tsai stucture models of diamond C(111) which extend previous investigations of the ideal structure. It is shown how to decide on the structure model by comparing PE spectra for different directions and by comparing PED and AED spectra. Calculations have been performed by evaluating the scattering path operator for a finite cluster in a curved-wave approximation. The different matrix elements for the photoelectron excitation and for the Auger process, respectively, are included. It is shown that the PED intensities are very sensitive to the surface reconstruction for polar angles in the range of 80°. In the AED intensities, polar scans in the plane perpendicular to the chain direction can be considered.

  4. Optical coherence tomography-based angle-resolved backscattering studies on bovine tendon and cartilage

    NASA Astrophysics Data System (ADS)

    Kasaragod, Deepa K.; Lu, Zenghai; Matcher, Stephen J.

    2012-01-01

    The difference in the genetic make up of the constituent molecules in collagen fibers in tendon and articular cartilage is what makes them mechanically and functionally different. A comparative study carried out on the differences in the angle-resolved back-scattering properties obtained from optical coherence tomography based studies on the two different types of scatterers: collagen I and collagen II fibers in bovine tendon and bovine articular cartilage sample, respectively, is reported here. Tendon sample shows greater anisotropy in the angle-resolved scattering profile compared to that obtained from articular cartilage sample. Rayleigh-Gans scattering approximation is used to provide the qualitative support needed to substantiate differences in the light scattering profiles obtained from the two tissues based on the size and type of the scatterers involved.

  5. High-harmonic XUV source for time- and angle-resolved photoemission spectroscopy

    SciTech Connect

    Dakovski, Georgi L; Li, Yinwan; Durakiewicz, Tomasz; Rodriguez, George

    2009-01-01

    We present a laser-based apparatus for visible pump/XUV probe time- and angle-resolved photoemission spectroscopy (TRARPES) utilizing high-harmonic generation from a noble gas. Femtosecond temporal resolution for each selected harmonic is achieved by using a time-delay-compensated monochromator (TCM). The source has been used to obtain photoemission spectra from insulators (UO{sub 2}) and ultrafast pump/probe processes in semiconductors (GaAs).

  6. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    PubMed

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  7. Angle-resolved scattering spectroscopy of explosives using an external cavity quantum cascade laser

    SciTech Connect

    Suter, Jonathan D.; Bernacki, Bruce E.; Phillips, Mark C.

    2012-04-01

    Investigation of angle-resolved scattering from solid explosives residues on a car door for non-contact sensing geometries. Illumination with a mid-infrared external cavity quantum cascade laser tuning between 7 and 8 microns was detected both with a sensitive single point detector and a hyperspectral imaging camera. Spectral scattering phenomena were discussed and possibilities for hyperspectral imaging at large scattering angles were outlined.

  8. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Functions, ICCES 2010, Las Vegas. 17. David Fullwood, Brent Adams, Mike Miles, Stuart Rogers, Ali Khosravani, Raj Mishra, Design for Ductility : Defect... Pseudo -Symmetries by High Resolution EBSD Methods, MS&T. 2009: Pittsburgh. 27. Oliver Johnson, Calvin Gardner, David Fullwood, Brent Adams, George...applied to strain measurements ................................... 6 2.3 Recovery of Lattice Tetragonality and Pseudo -Symmetry Resolution

  9. Developing a clinically viable angle-resolved low coherence interferometry optical biopsy system

    NASA Astrophysics Data System (ADS)

    Pyhtila, John W.

    2007-12-01

    Non-invasive optical biopsy techniques, which interrogate tissue in situ, offer a potential method to improve the detection of dysplasia, a pre-cancerous tissue state. Specifically, monitoring of Barrett's esophagus (BE) patients for dysplasia, currently done through systematic biopsy, can be improved by increasing the proportion of at-risk tissue examined. Angle-resolved low coherence interferometry (a/LCI) is an optical spectroscopic technique which measures the depth resolved nuclear morphology of tissue, a key biomarker for identifying dysplasia. Using an animal carcinogenesis model, it was shown that a/LCI can detect dysplasia with great sensitivity and specificity. However, for the clinical application of a/LCI, numerous hurdles must be overcome. This dissertation presents the development of three new a/LCI systems which incrementally address the three main obstacles preventing the clinical application of a/LCI. First, data acquisition time is reduced by implementing a frequency-domain detection scheme using an imaging spectrograph that collects the complete depth resolved angular scattering distribution in parallel. This advance reduces data collection time to a clinically acceptable 40 ms. Second, a fiber probe is developed to enable the endoscopic application of a/LCI. The probe incorporates a single fiber for delivering light and a coherent fiber bundle for collecting the angular distribution of scattered light. Third, a portable device is created through miniaturization of the optical design, and a flexible fiber probe is created using polarization maintaining fiber to deliver the light. These advances allow for the clinical application of the system to ex vivo human tissue samples. The performance of each described system is evaluated through a number of validation studies, including the sizing of polystyrene microspheres, a typical model used in light scattering studies, and the measurement of in vitro cell nuclear diameters, accomplished with sub

  10. Surface segregation in a binary mixture of ionic liquids: Comparison between high-resolution RBS measurements and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji

    2016-11-01

    Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2C1Im][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2C1Im][BF4]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf2N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf2N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.

  11. Surface segregation in a binary mixture of ionic liquids: Comparison between high-resolution RBS measurements and moleculardynamics simulations.

    PubMed

    Nakajima, Kaoru; Nakanishi, Shunto; Chval, Zdeněk; Lísal, Martin; Kimura, Kenji

    2016-11-14

    Surface structure of equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2C1Im][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2C1Im][BF4]) is studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and molecular dynamics (MD) simulations. Both HRBS and MD simulations show enrichment of [Tf2N] in the first molecular layer although the degree of enrichment observed by HRBS is more pronounced than that predicted by the MD simulation. In the subsurface region, MD simulation shows a small depletion of [Tf2N] while HRBS shows a small enrichment here. This discrepancy is partially attributed to the artifact of the MD simulations. Since the number of each ion is fixed in a finite-size simulation box, surface enrichment of particular ion results in its artificial depletion in the subsurface region.

  12. High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording

    PubMed Central

    Zhao, Dong-Jie; Chen, Yang; Wang, Zi-Yang; Xue, Lin; Mao, Tong-Lin; Liu, Yi-Min; Wang, Zhong-Yi; Huang, Lan

    2015-01-01

    The limitations of conventional extracellular recording and intracellular recording make high-resolution multisite recording of plant bioelectrical activity in situ challenging. By combining a cooled charge-coupled device camera with a voltage-sensitive dye, we recorded the action potentials in the stem of Helianthus annuus and variation potentials at multiple sites simultaneously with high spatial resolution. The method of signal processing using coherence analysis was used to determine the synchronization of the selected signals. Our results provide direct visualization of the phloem, which is the distribution region of the electrical activities in the stem and leaf of H. annuus, and verify that the phloem is the main action potential transmission route in the stems of higher plants. Finally, the method of optical recording offers a unique opportunity to map the dynamic bioelectrical activity and provides an insight into the mechanisms of long-distance electrical signal transmission in higher plants. PMID:26333536

  13. Comparison of Methods to Map and Measure River Terraces using High-Resolution Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Hopkins, A. J.; Snyder, N. P.

    2013-12-01

    Fluvial terraces are important recorders of land-use, climate, and tectonic history that form in both erosional and depositional landscapes and consist of a flat surface bounded by valley walls and a steep-sloping scarp adjacent to the river channel. Combining these defining characteristics with high-resolution digital elevation models (DEMs) derived from airborne light detection and ranging (lidar) surveys, several methods have been developed to identify and map terraces. The goals of this research are to compare some of these existing techniques and develop an objective approach to map terraces over entire watersheds using lidar DEMs. Additionally, we aim to quantify the thickness and volume of fill terrace deposits. Our preliminary application is to the Sheepscot River watershed, Maine, where strath and fill terraces are present and record Pleistocene deglaciation, Holocene eustatic forcing, and Anthropocene land-use change. We identify terraces along the longitudinal profile using an algorithm developed by Finnegan and Balco (2013), that computes the elevation frequency distribution at regularly spaced cross-sections normal to the channel. Next, we delineate terrace spatial extent using three separate methodologies: (1) image processing using Matlab, (2) feature classification algorithms developed by Wood (1996), and (3) image interpretation using manually placed points on known terraces to construct interpolated surfaces (Walter and Merritts, 2008). Lastly, we determine the thickness and volume of fill terrace sediments by subtracting an interpolated, adjacent water surface elevation from the defined terrace points. We compare our LiDAR-based results with field mapping, stratigraphic columns of terrace landforms, and ground penetrating radar over terrace surfaces. These findings suggest powerful new ways to rapidly analyze landscape history over large regions using high-resolution lidar DEMs, with less reliance on detailed and costly field data collection.

  14. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators.

    PubMed

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2016-03-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300-2500 nm at incidence angles 15-60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0-60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350-1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article "Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators" in Solar Energy Materials and Solar Cells.

  15. Spectral data of specular reflectance, narrow-angle transmittance and angle-resolved surface scattering of materials for solar concentrators

    PubMed Central

    Good, Philipp; Cooper, Thomas; Querci, Marco; Wiik, Nicolay; Ambrosetti, Gianluca; Steinfeld, Aldo

    2015-01-01

    The spectral specular reflectance of conventional and novel reflective materials for solar concentrators is measured with an acceptance angle of 17.5 mrad over the wavelength range 300−2500 nm at incidence angles 15–60° using a spectroscopic goniometry system. The same experimental setup is used to determine the spectral narrow-angle transmittance of semi-transparent materials for solar collector covers at incidence angles 0–60°. In addition, the angle-resolved surface scattering of reflective materials is recorded by an area-scan CCD detector over the spectral range 350–1050 nm. A comprehensive summary, discussion, and interpretation of the results are included in the associated research article “Spectral reflectance, transmittance, and angular scattering of materials for solar concentrators” in Solar Energy Materials and Solar Cells. PMID:26862556

  16. Placido disk-based topography versus high-resolution rotating Scheimpflug camera for corneal power measurements in keratoconic and post-LASIK eyes: reliability and agreement

    PubMed Central

    Penna, Rachele R.; de Sanctis, Ugo; Catalano, Martina; Brusasco, Luca; Grignolo, Federico M.

    2017-01-01

    AIM To compare the repeatability/reproducibility of measurement by high-resolution Placido disk-based topography with that of a high-resolution rotating Scheimpflug camera and assess the agreement between the two instruments in measuring corneal power in eyes with keratoconus and post-laser in situ keratomileusis (LASIK). METHODS One eye each of 36 keratoconic patients and 20 subjects who had undergone LASIK was included in this prospective observational study. Two independent examiners worked in a random order to take three measurements of each eye with both instruments. Four parameters were measured on the anterior cornea: steep keratometry (Ks), flat keratometry (Kf), mean keratometry (Km), and astigmatism (Ks-Kf). Intra-examiner repeatability and inter-examiner reproducibility were evaluated by calculating the within-subject standard deviation (Sw) the coefficient of repeatability (R), the coefficient of variation (CoV), and the intraclass correlation coefficient (ICC). Agreement between instruments was tested with the Bland-Altman method by calculating the 95% limits of agreement (95% LoA). RESULTS In keratoconic eyes, the intra-examiner and inter-examiner ICC were >0.95. As compared with measurement by high-resolution Placido disk-based topography, the intra-examiner R of the high-resolution rotating Scheimpflug camera was lower for Kf (0.32 vs 0.88), Ks (0.61 vs 0.88), and Km (0.32 vs 0.84) but higher for Ks-Kf (0.70 vs 0.57). Inter-examiner R values were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The 95% LoA were -1.28 to +0.55 for Kf, -1.36 to +0.99 for Ks, -1.08 to +0.50 for Km, and -1.11 to +1.48 for Ks-Kf. In the post-LASIK eyes, the intra-examiner and inter-examiner ICC were >0.87 for all parameters. The intra-examiner and inter-examiner R were lower for all parameters measured using the high-resolution rotating Scheimpflug camera. The intra-examiner R was 0.17 vs 0.88 for Kf, 0.21 vs 0.88 for Ks, 0.17 vs 0

  17. High-Resolution Transmission Measurements of 233U Using a Cooled Sample at the Temperature T=11 K

    SciTech Connect

    Guber, Klaus H; Spencer, R. R.; Leal, Luiz C; Koehler, Paul Edward; Harvey, John A; Sayer, Royce O; Derrien, Herve; Valentine, Timothy E; Pierce, D. E.; Cauley, V Mike; Lewis, T A

    2001-01-01

    For the first time, high-resolution transmission data of {sup 233}U have been obtained using a cooled sample. The samples were cooled to T = 11 K using a cryogenic device, which reduced the Doppler broadening of resonances by 50% compared to room-temperature measurements. The measurements were carried out at the Oak Ridge Electron Linear Accelerator over the energy range from 0.6 eV to 300 keV at the 80-m flight path station. Corrections were made for experimental effects, and the average total cross section in this energy range was determined. Results are compared to previous measurements.

  18. Determining Methane Emissions From the Elgin North Sea Rig Using Ship-track Measurements and High Resolution Mesoscale Models

    NASA Astrophysics Data System (ADS)

    Vermeulen, A. T.; Hensen, A.; Bulk, P. V.; Rodink, R.

    2012-12-01

    On 27 March 2012 the natural gas exploitation rig "Elgin" on the North Sea, operated by Total, started leaking considerable amounts (company estimate 200 000 m3 per day) of methane to the atmosphere. A passenger ferry, daily sailing between IJmuiden (Netherlands) and Newcastle upon Tyne (United Kingdom) on a track just South of the Elgin rig was equipped with a high precision CRDS CH4/CO2 monitor. During April 2012 several cruises were made where the Elgin methane plume could be identified next to methane plumes from other rigs on the North Sea. Also at some land based observatories in NW Europe the Elgin methane plume could be detected. In this paper we deploy two high resolution models, WRF V3 and Flexpart, to derive emission estimates based on the observations. Despite the unique opportunity of trying to detect a single large point source on a relatively homogeneous surface, considerable model uncertainties remain; implications for inverse emission verification on more complex surface (land) areas will be discussed.

  19. Waterline Detection and Monitoring in the German Wadden Sea Using High Resolution Satellite-Based Radar Measurements

    NASA Astrophysics Data System (ADS)

    Wiehle, S.; Lehner, S.; Pleskachevsky, A.

    2015-04-01

    High resolution TerraSAR-X/TanDEM-X as well as Sentinel-1 remote sensing Synthetic Aperture Radar (SAR) data are used to determine and monitor the waterline in the Wadden Sea. In this very unique and dynamic coastal region in the southeastern North Sea, tidal flats extend several kilometers away from the coast during low tide with features like tidal inlets and sand banks. Under the influence of tidal water currents transporting large amounts of eroded material, inlets and sand banks move over time; heavy storms can even cause large variations in their extensions in merely a few hours. Observation of these obstacles is crucial for maritime security as high ship traffic is caused by the ports of Hamburg, Bremerhaven, Wilhelmshaven and others. Conventional monitoring campaigns with ships or airplanes are economically expensive and can only provide limited coverage. We present an automatic algorithm with Near Real-Time capability for extracting the waterline at the time of recording from SAR images, which allows for a fast and large scale determination of changes in coastal outlines. The comparison of recent acquisitions of TerraSAR-X and Sentinel-1 to bathymetry data of the Elbe estuary obtained in 2010 reveals significant changes in tidal flat structures.

  20. High-resolution Impedance Manometry Measurement of Bolus Flow Time in Achalasia and its Correlation with Dysphagia

    PubMed Central

    Lin, Zhiyue; Carlson, Dusty; Dykstra, Kristina; Sternbach, Joel; Hungness, Eric; Kahrilas, Peter J.; Ciolino, Jody D.; Pandolfino, John E.

    2015-01-01

    Background We assessed whether a high-resolution impedance manometry (HRIM) metric, bolus flow time (BFT) across the esophagogastric junction (EGJ), was abnormal in achalasia patients subtyped by the Chicago Classification and compared BFT to other HRM metrics. Methods HRIM studies were performed in 60 achalasia patients (14 type I, 36 type II and 10 type III) and 15 healthy controls. Studies were analyzed with a MATLAB program to calculate BFT using a virtual HRIM sleeve. Integrated relaxation pressure (IRP) and basal end-expiratory EGJ pressure were also calculated. The relationship between BFT and dysphagia symptom scores was assessed using the impaction dysphagia questionnaire (IDQ). Key Results Median BFT was significantly lower in achalasia patients (0.5 s, range 0.0 to 3.5 s) compared to controls (3.5 s, range 2.0 to 5.0 s) (P<0.05). BFT was significantly lower in types I and II than in type III achalasia in both the supine and upright positions (p<0.0001). BFT was the only HRIM metric significantly associated with IDQ score in both the supine (R2 =0.20, p=0.0046) and upright positions (R2 =0.27, p=0.0002). Conclusions & Inferences BFT was significantly reduced in all subtypes of achalasia and complementary to the IRP as a diagnostic discriminant in equivocal achalasia cases. Additionally, BFT had a more robust correlation with dysphagia severity compared to other metrics of EGJ function. PMID:26088614

  1. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  2. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  3. Electronic structure, Dirac points and Fermi arc surface states in three-dimensional Dirac semimetal Na3Bi from angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Aiji, Liang; Chaoyu, Chen; Zhijun, Wang; Youguo, Shi; Ya, Feng; Hemian, Yi; Zhuojin, Xie; Shaolong, He; Junfeng, He; Yingying, Peng; Yan, Liu; Defa, Liu; Cheng, Hu; Lin, Zhao; Guodong, Liu; Xiaoli, Dong; Jun, Zhang; M, Nakatake; H, Iwasawa; K, Shimada; M, Arita; H, Namatame; M, Taniguchi; Zuyan, Xu; Chuangtian, Chen; Hongming, Weng; Xi, Dai; Zhong, Fang; Xing-Jiang, Zhou

    2016-07-01

    The three-dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction band and valence band are connected. They have isolated 3D Dirac nodes in the whole Brillouin zone and can be viewed as a 3D counterpart of graphene. Recent theoretical calculations and experimental results indicate that the 3D Dirac semimetal state can be realized in a simple stoichiometric compound A 3Bi (A = Na, K, Rb). Here we report comprehensive high-resolution angle-resolved photoemission (ARPES) measurements on the two cleaved surfaces, (001) and (100), of Na3Bi. On the (001) surface, by comparison with theoretical calculations, we provide a proper assignment of the observed bands, and in particular, pinpoint the band that is responsible for the formation of the three-dimensional Dirac cones. We observe clear evidence of 3D Dirac cones in the three-dimensional momentum space by directly measuring on the k x -k y plane and by varying the photon energy to get access to different out-of-plane k z s. In addition, we reveal new features around the Brillouin zone corners that may be related with surface reconstruction. On the (100) surface, our ARPES measurements over a large momentum space raise an issue on the selection of the basic Brillouin zone in the (100) plane. We directly observe two isolated 3D Dirac nodes on the (100) surface. We observe the signature of the Fermi-arc surface states connecting the two 3D Dirac nodes that extend to a binding energy of ˜150 meV before merging into the bulk band. Our observations constitute strong evidence on the existence of the Dirac semimetal state in Na3Bi that are consistent with previous theoretical and experimental work. In addition, our results provide new information to clarify on the nature of the band that forms the 3D Dirac cones, on the possible formation of surface reconstruction of the (001) surface, and on the issue of basic Brillouin zone selection for the (100) surface. Project supported by the

  4. Coexistence of two sharp-mode couplings and their unusual momentum dependence in the superconducting state of Bi2Sr2CaCu2O(8+δ) revealed by laser-based angle-resolved photoemission.

    PubMed

    He, Junfeng; Zhang, Wentao; Bok, Jin Mo; Mou, Daixiang; Zhao, Lin; Peng, Yingying; He, Shaolong; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Wen, J S; Xu, Z J; Gu, G D; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Choi, H-Y; Varma, C M; Zhou, X J

    2013-09-06

    High-resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CaCu2O(8+δ) (Bi2212) superconductors to investigate momentum dependence of electron coupling with collective excitations (modes). Two coexisting energy scales are clearly revealed over a large momentum space for the first time in the superconducting state of the overdoped Bi2212 superconductor. These two energy scales exhibit distinct momentum dependence: one keeps its energy near 78 meV over a large momentum space while the other changes its energy from ∼40  meV near the antinodal region to ∼70  meV near the nodal region. These observations provide a new picture on momentum evolution of electron-boson coupling in Bi2212 that electrons are coupled with two sharp modes simultaneously over a large momentum space in the superconducting states. Their unusual momentum dependence poses a challenge to our current understanding of electron-mode-coupling and its role for high-temperature superconductivity in cuprate superconductors.

  5. Angle-resolved photoemission spectra, electronic structure and spin dependent scattering in Ni_1-xFex permalloys

    NASA Astrophysics Data System (ADS)

    Sahrakorpi, S.; Mijnarends, P. E.; Lindroos, M.; Bansil, A.

    2002-03-01

    We present the all electron charge and spin self-consistent electronic structure of Ni_1-xFex permalloys for a range of Fe concentrations, using the first principles Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) scheme to treat disorder and the local spin density (LSD) approximation to incorporate exchange-correlation effects. Recent high resolution angle-resolved photoemission spectroscopy (ARPES) experiments on Ni_0.90Fe_0.10 and Ni_0.80Fe_0.20 permalloys are analyzed in terms of the spectral density function, A_B( k_allel, k_⊥= 0,E_F), computed from the KKR-CPA Green function for k_allel values varying along the Γ-K direction in the Brillouin zone (BZ). The widths of the majority as well as the minority spin peaks in the theoretical spectra are in excellent accord with the corresponding ARPES results in all cases, suggesting that spin-dependent disorder scattering constitutes the main scattering mechanism for the carriers in the permalloys. Majority spin states of Ni are virtually undamped by the Fe impurities, while the minority spins at the Fermi energy (E_F) are heavily damped. The nature of the Ni and Fe potentials in the permalloys is explored in detail. The effective disorder parameter in the alloy is found to be strongly dependent on the energy, momentum, spin and symmetry of the specific states involved. The evolution of the electronic states on the Ni and Fe sites as a function of Fe concentration is discussed. The magnetic moments on Ni as well as on Fe are found to remain essentially unchanged with increasing Fe content.

  6. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements

    NASA Astrophysics Data System (ADS)

    Verhulst, Tobias G. W.; Sapundjiev, Danislav; Stankov, Stanimir M.

    2016-06-01

    The ionospheric behavior over Belgium during the partial solar eclipse of 20 March 2015 is analyzed based on high-resolution solar radio flux, vertical incidence sounding, and GPS TEC measurements. First results of ionosonde-based ionospheric plasma drift and tilt observations are presented and analyzed, including some traveling ionospheric disturbances caused by the eclipse. Also, collocated ionosonde and GPS measurements are used to reconstruct the time evolution of the vertical electron density distribution using the Royal Meteorological Institute (RMI) ionospheric specification system, called Local Ionospheric Electron Density profile Reconstruction (LIEDR).

  7. Angle-Resolved Photoemission of Solvated Electrons in Sodium-Doped Clusters.

    PubMed

    West, Adam H C; Yoder, Bruce L; Luckhaus, David; Saak, Clara-Magdalena; Doppelbauer, Maximilian; Signorell, Ruth

    2015-04-16

    Angle-resolved photoelectron spectroscopy of the unpaired electron in sodium-doped water, methanol, ammonia, and dimethyl ether clusters is presented. The experimental observations and the complementary calculations are consistent with surface electrons for the cluster size range studied. Evidence against internally solvated electrons is provided by the photoelectron angular distribution. The trends in the ionization energies seem to be mainly determined by the degree of hydrogen bonding in the solvent and the solvation of the ion core. The onset ionization energies of water and methanol clusters do not level off at small cluster sizes but decrease slightly with increasing cluster size.

  8. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    SciTech Connect

    Zheng, Y. |; Shirley, D.A.

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  9. Electron self-energy of high temperature superconductors as revealed by angle-resolved photoemission.

    SciTech Connect

    Ding, H.; Norman, M. R.; Randeria, M.

    1997-12-05

    In this paper, we review some of the work our group has done in the past few years to obtain the electron self-energy of high temperature superconductors by analysis of angle-resolved photoemission data. We focus on three examples which have revealed: (1) a d-wave superconducting gap, (2) a collective mode in the superconducting state, and (3) pairing correlations in the pseudogap phase. In each case, although a novel result is obtained which captures the essence of the data, the conventional physics used leads to an incomplete picture. This indicates that new physics needs to be developed to obtain a proper understanding of these materials.

  10. Water erosion as a cause for agricultural soil loss: modeling of dynamic processes using high-resolution ground based LiDAR measurements

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Filin, Sagi; Assouline, Shmuel; Shtain, Zachi; Furman, Alexander

    2016-04-01

    Soil erosion by rainfall and water flow is a frequent natural geomorphic process shaping the earth's surface at various scales. Conventional agrotechnical methods enhance soil erosion at the field scale and are at the origin of the reduction of the upper soil layer depth. This reduction is expressed in two aspects: decrease of soil depth, mainly due to erosion, and the diminution of soil quality, mainly due to the loss of fine material, nutrients and organic matter. Rain events, not even the most extremes, cause detachment and transport of fertile soil rich in organic matter and nutrients away from the fields, filling and plugging drainage channels, blocking infrastructure and contaminating water sources. Empirical, semi-empirical and mechanistic models are available to estimate soil erosion by water flow and sediment transport (e.g. WEPP, KINEROSS, EUROSEM). Calibration of these models requires data measured at high spatial and temporal resolutions. Development of high-resolution measurement tools (for both spatial and temporal aspects) should improve the calibration of functions related to particles detachment and transport from the soil surface. In addition, despite the great impact of different tillage systems on the soil erosion process, the vast majority of the models ignore this fundamental factor. The objective of this study is to apply high-resolution ground-based LiDAR measurements to different tillage schemes and scales to improve the ability of models to accurately describe the process of soil erosion induced by rainfall and overland flow. Ground-based laser scans provide high resolution accurate and subtle geomorphic changes, as well as larger-scale deformations. As such, it allows frequent monitoring, so that even the effect of a single storm can be measured, thus improving the calibration of the erosion models. Preliminary results for scans made in the field show the potential and limitations of ground-based LiDAR, and at this point qualitatively can

  11. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT

    SciTech Connect

    Shi Linxi; Vedantham, Srinivasan; Karellas, Andrew; O'Connell, Avice M.

    2013-03-15

    Purpose: To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients. Methods: This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al.['The effect of skin thickness determined using breast CT on mammographic dosimetry,' Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied. Results: The study mean ({+-} interbreast SD) for breast skin thickness was 1.44 {+-} 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p= 0.223), benign vs hyperplasia (p= 0.651), hyperplasia vs malignant (p= 0.229), and malignant vs nonmalignant (p= 0.172). Conclusions: Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin thickness

  12. High-resolution measurement and mapping of tungstate in waters, soils and sediments using the low-disturbance DGT sampling technique.

    PubMed

    Guan, Dong-Xing; Williams, Paul N; Xu, Hua-Cheng; Li, Gang; Luo, Jun; Ma, Lena Q

    2016-10-05

    Increasing tungsten (W) use for industrial and military applications has resulted in greater W discharge into natural waters, soils and sediments. Risk modeling of W transport and fate in the environment relies on measurement of the release/mobilization flux of W in the bulk media and the interfaces between matrix compartments. Diffusive gradients in thin-films (DGT) is a promising passive sampling technique to acquire such information. DGT devices equipped with the newly developed high-resolution binding gels (precipitated zirconia, PZ, or ferrihydrite, PF, gels) or classic/conventional ferrihydrite slurry gel were comprehensively assessed for measuring W in waters. (Ferrihydrite)DGT can measure W at various ionic strengths (0.001-0.5molL(-1) NaNO3) and pH (4-8), while (PZ)DGT can operate across slightly wider environmental conditions. The three DGT configurations gave comparable results for soil W measurement, showing that typically W resupply is relatively poorly sustained. 1D and 2D high-resolution W profiling across sediment-water and hotspot-bulk media interfaces from Lake Taihu were obtained using (PZ)DGT coupled with laser ablation ICP-MS measurement, and the apparent diffusion fluxes across the interfaces were calculated using a numerical model.

  13. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  14. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  15. SAFE for PTSD: noncontact psychophysiological measure based on high-resolution thermal imaging to aid in PTSD diagnosis and assessment of treatment

    NASA Astrophysics Data System (ADS)

    Familoni, Babajide O.; Ma, Lein; Hutchinson, J. Andrew; Morgan, C. Andrew, III; Rasmusson, Ann; O'Kane, Barbara L.

    2012-06-01

    Post Traumatic Stress Disorder (PTSD) sometimes develops following exposure to very stressful or traumatic events such as motor vehicle accidents, rape, and war. It is arguably the signature injury of the conflicts in Iraq and Afghanistan. Previous studies have demonstrated that PTSD sufferers exhibit autonomic hyper-responsiveness to both neutral and trauma-related stimuli. In this study, we propose using high resolution thermal imaging of sweat-pores to obtain a noncontact, remote, and quantifiable measure of the sympathetic autonomic nervous reactivity to guide diagnosis, assess response to treatment, and tease out important cues to suicidality as a PTSD comorbidity.

  16. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra

    NASA Astrophysics Data System (ADS)

    Perfetto, E.; Sangalli, D.; Marini, A.; Stefanucci, G.

    2016-12-01

    In this work we put forward a first-principles approach and propose an accurate diagrammatic approximation to calculate the time-resolved (TR) and angle-resolved photoemission spectrum of systems with excitons. We also derive an alternative formula to the TR photocurrent which involves a single time-integral of the lesser Green's function. The diagrammatic approximation applies to the relaxed regime characterized by the presence of quasistationary excitons and vanishing polarization. The nonequilibrium self-energy diagrams are evaluated using excited Green's functions; since this is not standard, the analytic derivation is presented in detail. The final result is an expression for the lesser Green's function in terms of quantities that can all be calculated in a first-principles manner. The validity of the proposed theory is illustrated in a one-dimensional model system with a direct gap. We discuss possible scenarios and highlight some universal features of the exciton peaks. Our results indicate that the exciton dispersion can be observed in TR and angle-resolved photoemission.

  17. Is the Separable Propagator Perturbation Approach Accurate in Calculating Angle Resolved Photoelectron Diffraction Spectra?

    NASA Astrophysics Data System (ADS)

    Ng, C. N.; Chu, T. P.; Wu, Huasheng; Tong, S. Y.; Huang, Hong

    1997-03-01

    We compare multiple scattering results of angle-resolved photoelectron diffraction spectra between the exact slab method and the separable propagator perturbation method. In the slab method,footnote C.H. Li, A.R. Lubinsky and S.Y. Tong, Phys. Rev. B17, 3128 (1978). the source wave and multiple scattering within the strong scattering atomic layers are expanded in spherical waves while interlayer scattering is expressed in plane waves. The transformation between spherical waves and plane waves is done exactly. The plane waves are then matched across the solid-vacuum interface to a single outgoing plane wave in the detector's direction. The separable propagator perturbation approach uses two approximations: (i) A separable representation of the Green's function propagator and (ii) A perturbation expansion of multiple scattering terms. Results of c(2x2) S-Ni(001) show that this approximate method fails to converge due to the very slow convergence of the separable representation for scattering angles less than 90^circ. However, this method is accurate in the backscattering regime and may be applied to XAFS calculations.(J.J. Rehr and R.C. Albers, Phys. Rev. B41, 8139 (1990).) The use of this method for angle-resolved photoelectron diffraction spectra is substantially less reliable.

  18. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    SciTech Connect

    Widmann, K. Beiersdorfer, P.; Magee, E. W.; Boyle, D. P.; Kaita, R.; Majeski, R.

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  19. Measurement of the retinal arteriolar response to a hyperoxic provocation in nonsmokers and smokers, using a high-resolution confocal scanning laser ophthalmoscope

    NASA Astrophysics Data System (ADS)

    O' Halloran, Margaret; O'Donoghue, Eamonn; Dainty, Chris

    2014-07-01

    We used a high-resolution confocal scanning laser ophthalmoscope to measure the magnitude of change in retinal arteriolar diameters in response to oxygen breathing in young, healthy nonsmokers and smokers. Image sequences were obtained before and during oxygen breathing. Image sequences were desinusoided, registered, and averaged, before vessel diameters were measured using a sliding linear regression filter. Arteriole diameters were observed to constrict during the first 5 min. of oxygen breathing, plateau, and remain stable while hyperoxia was maintained, returning to baseline at the end of the hyperoxic period. Blood flow to the temporal retina was found to be higher than to the nasal retina (p=0.008). The percentage constriction of vessels did not vary across retinal quadrants (p=0.372, analysis of variance) and did not depend on vessel size (p=0.538). Baseline diameters were unaffected by acute cigarette smoking. The magnitude of vasoconstriction was diminished in smokers compared to nonsmokers (p=0.017), while acute smoking did not influence the percentage constriction attained by the vessels (p=0.621). Using a high-resolution imaging technique allowed us to measure reactivity to a high degree of accuracy and to assess it in vessels of smaller caliber than were previously studied.

  20. Developing and testing a low cost method for high resolution measurements of volcanic water vapour emissions at Vulcano and Mt. Etna

    NASA Astrophysics Data System (ADS)

    Pering, Tom D.; McGonigle, Andrew J. S.; Tamburello, Giancarlo; Aiuppa, Alessandro; Bitetto, Marcello; Rubino, Cosimo

    2015-04-01

    The most voluminous of emissions from volcanoes are from water vapour (H2O) (Carroll and Holloway, 1994), however, measurements of this species receive little focus due to the difficulty of independent measurement, largely a result of high atmospheric background concentrations which often undergo rapid fluctuations. A feasible method of measuring H2O emissions at high temporal and spatial resolutions would therefore be highly valuable. We describe a new and low-cost method combining modified web cameras (i.e. with infrared filters removed) with measurements of temperature and relative humidity to produce high resolution measurements (≈ 0.25 Hz) of H2O emissions. The cameras are affixed with near-infrared filters at points where water vapour absorbs (940 nm) and doesn't absorb (850 nm) incident light. Absorption of H2O is then determined by using Lambert-Beer's law on a pixel by pixel basis, producing a high spatial resolution image. The system is then calibrated by placing a Multi-GAS unit within the gas source and camera field-of-view, which measures; SO2, CO2, H2S and relative humidity. By combining the point measurements of the Multi-GAS unit with pixel values for absorption, first correcting for the width of the gas source (generally a Gaussian distribution), a calibration curve is produced which allows the conversion of absorption values to mass of water within a pixel. In combination with relative humidity measurements made outside of the plume it is then possible to subtract the non-volcanic background H2O concentration to produce a high resolution calibrated volcanic H2O flux. This technique is demonstrated in detail at the active fumarolic system on Vulcano (Aeolian Islands, Italy). Data processing and image acquisition was completed in Matlab® using a purpose built code. The technique is also demonstrated for the plume of the North-East Crater of Mt. Etna (Sicily, Italy). Here, contemporaneously acquired measurements of SO2 using a UV camera, combined

  1. X-ray rocking curve measurements of bent crystals. [used in High Resolution Spectrometer in Advanced X-ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Hakim, M. B.; Muney, W. S.; Fowler, W. B.; Woodgate, B. E.

    1988-01-01

    A three-crystal laboratory X-ray spectrometer is used to measure the Bragg reflection from concave cylindrically curved crystals to be used in the high-resolution X-ray spectrometer of the NASA Advanced X-ray Astrophysics Facility (AXAF). The first two crystals, in the dispersive (1.1) arrangement, select a narrow collimated monochromatic beam in the Cu K-alpha(1) line at 1.5 A (8.1 keV), which illuminates the test crystal. The angular centroids of rocking curves measured along the surface provide a measure of the conformity of the crystal to the desired radius of curvature. Individual and combined rocking-curve widths and areas provide a measure of the resolution and efficiency at 1.54 A. The crystals analyzed included LiF(200), PET, and acid phthalates such as TAP.

  2. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  3. Assessment of climatic and seismic cycles in southern chile from high resolution XRF and magnetic susceptibility measurements of historic lake sediments.

    NASA Astrophysics Data System (ADS)

    Boes, X.; Hubert-Ferrari, A.; Fagel, N.

    2006-12-01

    The high-resolution sedimentological studies performed on the sediment cores collected in the oceans or in the lakes constitutes the basis for inter-comparison of past climate variability. Among the new high-resolution approaches, the X-Ray Fluorescence (XRF) analysis of varved marine and lacustrine cores represents some of the best resolution. These data are particularly useful for tracking short-term climate changes expressed with calibrated time scales. However, the XRF results obtain on the fresh cores surface may be of low resolution because the core material is wet and unconsolidated. One particularly attractive method to solve this problem consists of impregnating the sediment cores with polymers in order to polish the core surface for XRF analyses. This step is essential for being able to get significant XRF and Magnetic Susceptibility (MS) results in the muddy cores. Since the 1960s, the evolution of sediment impregnation methods has been strongly linked to the development of innovative techniques (e.g., sampling devices, cryogenic and vacuum technologies, polymers, etc.). In this communication, we first propose a revised method that may be applied to prepare sediment cores for high-resolution XRF and MS data acquisition. Then we show an example of XRF and MS results obtain on laminated lake sediments from South America (Lago Puyehue, 40°S). As this area is very sensitive in terms of precipitation change (i.e., Southern Westerlies); the XRF data are compared with the regional instrumental precipitation database. The results are discussed in terms of climate and sismo- tectonic impacts over historic times. Our results shows that, in order to better interpret XRF tool over long sequences, the measurements should be first "calibrated" according to instrumental data such as precipitation, temperatures, and earthquake magnitudes.

  4. Obtaining biophysical measurements of woody vegetation from high resolution digital aerial photography in tropical and arid environments: Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Staben, G. W.; Lucieer, A.; Evans, K. G.; Scarth, P.; Cook, G. D.

    2016-10-01

    Biophysical parameters obtained from woody vegetation are commonly measured using field based techniques which require significant investment in resources. Quantitative measurements of woody vegetation provide important information for ecological studies investigating landscape change. The fine spatial resolution of aerial photography enables identification of features such as trees and shrubs. Improvements in spatial and spectral resolution of digital aerial photographic sensors have increased the possibility of using these data in quantitative remote sensing. Obtaining biophysical measurements from aerial photography has the potential to enable it to be used as a surrogate for the collection of field data. In this study quantitative measurements obtained from digital aerial photography captured at ground sampling distance (GSD) of 15 cm (n = 50) and 30 cm (n = 52) were compared to woody biophysical parameters measured from 1 ha field plots. Supervised classification of the aerial photography using object based image analysis was used to quantify woody and non-woody vegetation components in the imagery. There was a high correlation (r ≥ 0.92) between all field measured woody canopy parameters and aerial derived green woody cover measurements, however only foliage projective cover (FPC) was found to be statistically significant (paired t-test; α = 0.01). There was no significant difference between measurements derived from imagery captured at either GSD of 15 cm and 30 cm over the same field site (n = 20). Live stand basal area (SBA) (m2 ha-1) was predicted from the aerial photographs by applying an allometric equation developed between field-measured live SBA and woody FPC. The results show that there was very little difference between live SBA predicted from FPC measured in the field or from aerial photography. The results of this study show that accurate woody biophysical parameters can be obtained from aerial photography from a range of woody vegetation

  5. High-Resolution Temperature-Dependent Photoabsorption Cross Section Measurements of S2, with Application to HST UV Spectra of SL9/Jupiter

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. Robert

    1997-01-01

    The Hubble Space Telescope (HST) UV spectra of Jupiter after the collision of Comet SL9 show predominantly molecular features of S2, CS2, NH3, and H2S in the 1800-3200 A region. The HST observations were made under various phases of impact conditions which gave temperatures higher than 1000 K. It is thus clear that temperature-dependent laboratory cross section data are required in order to determine the molecular abundances in Jupiter's atmosphere after the impact of Comet Shoemaker-Levy 9. The required high-resolution temperature dependent S2 absorption cross sections have not been directly measured in the laboratory. To provide the required data for modelers our objective is to accurately measure the high-resolution (FWHM = 0.003 A) and medium resolution (FWHM - 0.08 A) temperature dependent S2 in the 2450-3200 A region. Using the experimental setup we have obtained absorbtion spectra of S2 under various temperature conditions.

  6. High resolution Microwave Spectrometer Sounder (HIMSS) instrument program. Appendix: TRMM study (an instrument for NASA's tropical rainfall measuring mission)

    NASA Technical Reports Server (NTRS)

    Lobl, E. (Editor)

    1991-01-01

    The TRMM (Tropical Rain Measuring Mission) Study shows the feasibility of a conically scanned, total power radiometer. The heritage of the TRMM radiometer is the Special Sensor Microwave/Imager (SSM/I) flying for the Air Force DMSP.

  7. High resolution positron Q-value measurements and nuclear structure studies far from the stability line. Progress report

    SciTech Connect

    Avignone, F.T. III

    1982-02-28

    Research progress in briefly described, and details are presented in the attached preprints and reprints: (1) precision mass differences in light rubidium and krypton isotopes utilizing beta endpoint measurements; (2) precision mass measurements utilizing beta endpoints; (3) Monte Carlo calculations predicting the response of intrinsic GE detectors to electrons and positrons; and (4) reactor antineutrino spectra and nuclear spectroscopy of isotopes far from beta stability. (WHK)

  8. High-resolution measurements of morphodynamics in rapidly changing PROglacial Systems of the Alps - results from the PROSA project

    NASA Astrophysics Data System (ADS)

    Hilger, Ludwig; Dusik, Jana-Marie; Heckmann, Tobias; Haas, Florian; Näher, Martin; Philipp, Rumohr; Philipp, Glira; Lucas, Vehling; Michael, Becht

    2016-04-01

    In June 2012, the PROSA-project was initiated with the goal to construct a sediment budget of the Upper Kaunertal Valley, Ötztal Alps, Austria. A unique feature of the project being the dedicated usage of study-area wide multi-volume LiDAR survey data of relatively high density on a meso-scale catchment resulting in a data base of over 4 billion LiDAR measurement points. A high effort was undertaken to produce classified point data as a methodological backbone of the project. Both ALS and georeferenced TLS data as well as other remote sensing and mapping products were used in addition to extensive fieldwork as basis for a regionalization of monitoring-site based measurements to arrive at basin-wide sediment production rates and identification of sediment pathways. Results can now be presented for: Rock fall (plot-based measurement and subsequent model-based regionalization), debris flows (study area-wide direct measurement from LiDAR and analysis of historical orthophotos), rock glaciers (feature-tracking and direct differencing), hillslope channels (plot-based measurements and model-based regionalization) and avalanches (sample site measurement, mapping and extrapolation). Sediment budgets were subsequently constructed for different representative subsystems within the 62.5 km2 catchment. Although also glacier and main channel transport was looked into by the PROSA-project, the presentation will focus on the processes mentioned above.

  9. Angle Resolved Photoemission Spectroscopy Studies of the Mott Insulator to Superconductor Evolution in Ca2-xNaxCuO2Cl2

    SciTech Connect

    Shen, Kyle Michael

    2005-09-02

    It is widely believed that many of the exotic physical properties of the high-T{sub c} cuprate superconductors arise from the proximity of these materials to the strongly correlated, antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions in the field of high-temperature superconductivity is to understand the insulator-to-superconductor transition and precisely how the electronic structure of Mott insulator evolves as the first holes are doped into the system. This dissertation presents high-resolution, doping dependent angle-resolved photoemission (ARPES) studies of the cuprate superconductor Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}, spanning from the undoped parent Mott insulator to a high-temperature superconductor with a T{sub c} of 22 K. A phenomenological model is proposed to explain how the spectral lineshape, the quasiparticle band dispersion, and the chemical potential all progress with doping in a logical and self-consistent framework. This model is based on Franck-Condon broadening observed in polaronic systems where strong electron-boson interactions cause the quasiparticle residue, Z, to be vanishingly small. Comparisons of the low-lying states to different electronic states in the valence band strongly suggest that the coupling of the photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening mechanism for the lower Hubbard band states. Combining this polaronic framework with high-resolution ARPES measurements finally provides a resolution to the long-standing controversy over the behavior of the chemical potential in the high-T{sub c} cuprates. This scenario arises from replacing the conventional Fermi liquid quasiparticle interpretation of the features in the Mott insulator by a Franck-Condon model, allowing the reassignment of the position of the quasiparticle pole. As a function of hole doping, the chemical potential shifts smoothly into the valence band while spectral weight is transferred

  10. High Frequency Transducer Dedicated to the High-resolution in Situ Measurement of the Distance between Two Nuclear Fuel Plates

    NASA Astrophysics Data System (ADS)

    Zaz, G.; Dekkious, A.; Meignen, P. A.; Calzavara, Y.; Le Clézio, E.; Despaux, G.

    Most high flux reactors for research purposes have fuel elements composed of plates and not pencils. The measure of inter-plate distance of a fuel element is tricky since a resolution of a micron is searched to measure plate swellings of about ten microns while the dimension between the plates is close to the millimeter. This measure should provide information about the fuel and particularly its history of irradiation. That is the reason why a solution has been considered: a robust device based upon high frequency ultrasonic probes adapted to the high radiation environment and thinned to 1 mm to be inserted into a 1.8 mm width water channel between two fuel plates. To achieve the expected resolution, the system is excited with frequencies up to 150 MHz. Thanks to a specific signal processing, this device allows the distance measurement through an ultrasonic wave's time of flight. The feasibility of such challenging distance measurement has already been proved with success on a full size irradiated fuel element of the RHF.

  11. Temporal measurement and analysis of high-resolution spectral signatures of plants and relationships to biophysical characteristics

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; Rebbman, Jan; Hall, Carlton; Provancha, Mark; Vieglais, David

    1995-11-01

    Measurements of temporal reflectance signatures as a function of growing season for sand live oak (Quercus geminata), myrtle oak (Q. myrtifolia, and saw palmetto (Serenoa repens) were collected during a two year study period. Canopy level spectral reflectance signatures, as a function of 252 channels between 368 and 1115 nm, were collected using near nadir viewing geometry and a consistent sun illumination angle. Leaf level reflectance measurements were made in the laboratory using a halogen light source and an environmental optics chamber with a barium sulfate reflectance coating. Spectral measurements were related to several biophysical measurements utilizing optimal passive ambient correlation spectroscopy (OPACS) technique. Biophysical parameters included percent moisture, water potential (MPa), total chlorophyll, and total Kjeldahl nitrogen. Quantitative data processing techniques were used to determine optimal bands based on the utilization of a second order derivative or inflection estimator. An optical cleanup procedure was then employed that computes the double inflection ratio (DIR) spectra for all possible three band combinations normalized to the previously computed optimal bands. These results demonstrate a unique approach to the analysis of high spectral resolution reflectance signatures for estimation of several biophysical measures of plants at the leaf and canopy level from optimally selected bands or bandwidths.

  12. High resolution Hall measurements across the VO2 metal-insulator transition reveal impact of spatial phase separation

    PubMed Central

    Yamin, Tony; Strelniker, Yakov M.; Sharoni, Amos

    2016-01-01

    Many strongly correlated transition metal oxides exhibit a metal-insulator transition (MIT), the manipulation of which is essential for their application as active device elements. However, such manipulation is hindered by lack of microscopic understanding of mechanisms involved in these transitions. A prototypical example is VO2, where previous studies indicated that the MIT resistance change correlate with changes in carrier density and mobility. We studied the MIT using Hall measurements with unprecedented resolution and accuracy, simultaneously with resistance measurements. Contrast to prior reports, we find that the MIT is not correlated with a change in mobility, but rather, is a macroscopic manifestation of the spatial phase separation which accompanies the MIT. Our results demonstrate that, surprisingly, properties of the nano-scale spatially-separated metallic and semiconducting domains actually retain their bulk properties. This study highlights the importance of taking into account local fluctuations and correlations when interpreting transport measurements in highly correlated systems. PMID:26783076

  13. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source.

    PubMed

    Fletcher, L B; Zastrau, U; Galtier, E; Gamboa, E J; Goede, S; Schumaker, W; Ravasio, A; Gauthier, M; MacDonald, M J; Chen, Z; Granados, E; Lee, H J; Fry, A; Kim, J B; Roedel, C; Mishra, R; Pelka, A; Kraus, D; Barbrel, B; Döppner, T; Glenzer, S H

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  14. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  15. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy.

    PubMed

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  16. A new method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles

    NASA Astrophysics Data System (ADS)

    Euser, T.; Luxemburg, W. M. J.; Everson, C. S.; Mengistu, M. G.; Clulow, A. D.; Bastiaanssen, W. G. M.

    2014-06-01

    The Bowen ratio surface energy balance method is a relatively simple method to determine the latent heat flux and the actual land surface evaporation. The Bowen ratio method is based on the measurement of air temperature and vapour pressure gradients. If these measurements are performed at only two heights, correctness of data becomes critical. In this paper we present the concept of a new measurement method to estimate the Bowen ratio based on vertical dry and wet bulb temperature profiles with high spatial resolution. A short field experiment with distributed temperature sensing (DTS) in a fibre optic cable with 13 measurement points in the vertical was undertaken. A dry and a wetted section of a fibre optic cable were suspended on a 6 m high tower installed over a sugar beet trial plot near Pietermaritzburg (South Africa). Using the DTS cable as a psychrometer, a near continuous observation of vapour pressure and air temperature at 0.20 m intervals was established. These data allowed the computation of the Bowen ratio with a high spatial and temporal precision. The daytime latent and sensible heat fluxes were estimated by combining the Bowen ratio values from the DTS-based system with independent measurements of net radiation and soil heat flux. The sensible heat flux, which is the relevant term to evaluate, derived from the DTS-based Bowen ratio (BR-DTS) was compared with that derived from co-located eddy covariance (R2 = 0.91), surface layer scintillometer (R2 = 0.81) and surface renewal (R2 = 0.86) systems. By using multiple measurement points instead of two, more confidence in the derived Bowen ratio values is obtained.

  17. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.

    PubMed

    Liang, Xin M; Ding, Weiping; Chen, Hsiu-hung; Shu, Zhiquan; Zhao, Gang; Zhang, Hai-feng; Gao, Dayong

    2011-10-01

    Obtaining accurate thermal properties of biomaterials plays an important role in the field of cryobiology. Currently, thermal needle, which is constructed by enclosing a manually winded thin metal wire with an insulation coating in a metallic sheath, is the only available device that is capable of measuring thermal conductivity of biomaterials. Major drawbacks, such as macroscale sensor size, lack of versatile format to accommodate samples with various shapes and sizes, neglected effects of heat transfer inside the probe and thermal contact resistance between the sensing element and the probe body, difficult to mass produce, poor data repeatability and reliability and labor-intense sensor calibration, have significantly reduced their potential to be an essential measurement tool to provide key thermal property information of biological specimens. In this study, we describe the development of an approach to measure thermal conductivity of liquids and soft bio-tissues using a proof-of-concept MEMS based thermal probe. By employing a microfabricated closely-packed gold wire to function as the heater and the thermistor, the presented thermal sensor can be used to measure thermal conductivities of fluids and natural soft biomaterials (particularly, the sensor may be directly inserted into soft tissues in living animal/plant bodies or into tissues isolated from the animal/plant bodies), where other more standard approaches cannot be used. Thermal standard materials have been used to calibrate two randomly selected thermal probes at room temperature. Variation between the obtained system calibration constants is less than 10%. By incorporating the previously obtained system calibration constant, three randomly selected thermal probes have been successfully utilized to measure the thermal conductivities of various solutions and tissue samples under different temperatures. Overall, the measurements are in agreement with the recommended values (percentage error less than 5

  18. A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mathias; Schulz-Hanke, Maximilian; Garcia Alba, Juana; Jurisch, Nicole; Hagemann, Ulrike; Sachs, Torsten; Sommer, Michael; Augustin, Jürgen

    2017-01-01

    Processes driving the production, transformation and transport of methane (CH4) in wetland ecosystems are highly complex. We present a simple calculation algorithm to separate open-water CH4 fluxes measured with automatic chambers into diffusion- and ebullition-derived components. This helps to reveal underlying dynamics, to identify potential environmental drivers and, thus, to calculate reliable CH4 emission estimates. The flux separation is based on identification of ebullition-related sudden concentration changes during single measurements. Therefore, a variable ebullition filter is applied, using the lower and upper quartile and the interquartile range (IQR). Automation of data processing is achieved by using an established R script, adjusted for the purpose of CH4 flux calculation. The algorithm was validated by performing a laboratory experiment and tested using flux measurement data (July to September 2013) from a former fen grassland site, which converted into a shallow lake as a result of rewetting. Ebullition and diffusion contributed equally (46 and 55 %) to total CH4 emissions, which is comparable to ratios given in the literature. Moreover, the separation algorithm revealed a concealed shift in the diurnal trend of diffusive fluxes throughout the measurement period. The water temperature gradient was identified as one of the major drivers of diffusive CH4 emissions, whereas no significant driver was found in the case of erratic CH4 ebullition events.

  19. High-resolution δ13C measurements on ancient air extracted from less than 10 cm3 of ice

    NASA Astrophysics Data System (ADS)

    Leuenberger, M. C.; Eyer, M.; Nyfeler, P.; Stauffer, B.; Stocker, T. F.

    2003-04-01

    A new method for δ13C analysis of very small air amounts of less than 0.5 cm3 STP was developed. This corresponds to less than 10 g of ice. It is based on the needle-crasher technique, which is routinely used for CO2 concentration measurements by infrared laser absorption. The extracted air is slowly expanded into a large volume through a water trap held at -70 °C where the pressure is measured. This sampled air is then carried by a high helium flux through a preconcentration system to separate CO2 cryogenically from the air. The small CO2 amount is then released into a low helium stream which forces the CO2 via an open split device to a mass spectrometer. The overall precision, based on replicates of standard air without crushing, is significantly better than 0.1‰ for a single analysis, and is further improved by a triplicate measurement of the same sample through a specially designed gas splitter. Performing δ13C measurements on ice air through the whole system, we reach a reproducibility of 0.12‰. Additional information is obtained through amplitude vs. pressure ratio determination, which results in a good control of the CO2 concentration (1 ppm precision for 1σ). The new method allows us to produce highly resolved records of atmospheric δ13C from air enclosed in ice, which is required to better understand the evolution and the temporal variability of the global carbon cycle.

  20. Velocity and Temperature Structure Functions in the Upper Troposphere and Lower Stratosphere From High-Resolution Aircraft Measurements

    DTIC Science & Technology

    2010-04-01

    campaign was conducted over Darwin, Australia, during the winter of 2002 to study cirrus clouds . These two cam- paigns employed the Rosemont probe under...10.1029/ 2003GL018207. ——, and Coauthors, 2003b: Results from Emerald-2: Measure- ments in the cirrus outflow from tropical convection above Darwin

  1. Global characterisation of the GELINA facility for high-resolution neutron time-of-flight measurements by Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ene, D.; Borcea, C.; Kopecky, S.; Mondelaers, W.; Negret, A.; Plompen, A. J. M.

    2010-06-01

    A comprehensive set of Monte Carlo simulations was performed with the MCNP5 code to provide a generic characterisation of the neutron and photon fluxes for time-of-flight measurements at all flight paths of the GELINA facility. Simulations were performed for the direct flux configuration (DFC, 10 keV-20 MeV) and the moderated flux configuration (MFC, 10 meV-1 MeV). Fluxes and flux energy spectra were obtained for both neutrons and photons. For neutrons, additionally, detailed resolution functions and figures of merit were obtained. The validity of the approach for the photon spectra is shown by comparison with a dedicated measurement. Also, a verification is presented of the validity of the neutron resolution function by comparison with measured capture and transmission data for 103Rh and 56Fe in the incident neutron energy range from 70 eV to 50 keV. This comprehensive overview will facilitate the planning and analysis of measurements at the GELINA facility with an improved knowledge of its physical characteristics.

  2. MEASURING OF PROTEIN SYNTHESIS USING METABOLIC 2H-LABELING, HIGH-RESOLUTION MASS SPECTROMETRY AND AN ALGORITHM

    PubMed Central

    Kasumov, Takhar; Ilchenko, Sergey; Li, Ling; Rachdaoui, Nadia; Sadigov, Rovshan; Willard, Belinda; McCullough, Arthur J.; Previs, Stephen

    2013-01-01

    We recently developed a method for estimating protin dynamics in vivo with 2H2O using MALDI-TOF MS (Rachdaoui N. et al., MCP, 8, 2653-2662, 2009) and we confirmed that 2H-labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the 2H-enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In this study we have used nanospray LTQ-FTICR mass spectrometry to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor:product labeling ratio can be obtained by measuring the labeling of water and a protein(s) (or peptides) of interest, therein minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given 2H2O. PMID:21256107

  3. Measuring protein synthesis using metabolic ²H labeling, high-resolution mass spectrometry, and an algorithm.

    PubMed

    Kasumov, Takhar; Ilchenko, Serguey; Li, Ling; Rachdaoui, Nadia; Sadygov, Rovshan G; Willard, Belinda; McCullough, Arthur J; Previs, Stephen

    2011-05-01

    We recently developed a method for estimating protein dynamics in vivo with heavy water ((2)H(2)O) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) [16], and we confirmed that (2)H labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the (2)H enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In the current study, we used nanospray linear trap Fourier transform ion cyclotron resonance mass spectrometry (LTQ FT-ICR MS) to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor/product labeling ratio can be obtained by measuring the labeling of water and a protein (or peptide) of interest, thereby minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given (2)H(2)O.

  4. Performance of high-resolution SEM/EDX systems equipped with transmission mode (TSEM) for imaging and measurement of size and size distribution of spherical nanoparticles.

    PubMed

    Hodoroaba, Vasile-Dan; Motzkus, Charles; Macé, Tatiana; Vaslin-Reimann, Sophie

    2014-04-01

    The analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a "single-unit" TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the "conventional" STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart-Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution.

  5. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelley V.; Johnson, David G.; Jucks, Kenneth W.; Wofsy, Steven C.; Xue, Changqin; Ciarpallini, Paola

    1994-01-01

    This report covers the time period 1 Jul. to 31 Dec. 1993. There were no balloon or airplane flights during this reporting period, instead we concentrated on analyzing our existing data. This was facilitated by a recently completed program of enhancements made in our data reduction software. We are using our data sets to examine the changes in stratospheric chemistry over a variety of time scales. Ongoing projects include investigating the diurnal variation of OH, HO2, and H2O2 and exploring their relationships with other simultaneously measured species; measuring long term trends in HF and HCl; and looking for changes caused by the June 1991 Pinatubo eruption. We are also continuing to analyze the large set of data collected during the AASE 2.

  6. Plans for a high-resolution measurement of the tritium. beta. -spectrum end point to determine the neutrino mass

    SciTech Connect

    Graham, R.L.; Lone, M.A.; Andrews, H.R.; Geiger, J.S.; Gallant, J.L.; Knowles, J.W.; Lee, H.C.; Lee-Whiting, G.E.

    1983-01-01

    The Chalk River ..pi.. ..sqrt..2 iron-free ..beta.. spectrometer is being recommissioned and upgraded for a precise measurement of the shape of the tritium spectrum near the end point. With a multiple strip source and 60-element detector array an overall energy resolution of less than or equal to 19 eV FWHM is expected. Computer simulations of the expected experimental Kurie plots are presented for various anti-neutrino mass assumptions.

  7. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    SciTech Connect

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  8. Assignment of resonances in dissociative recombination of HD{sup +} ions: High-resolution measurements compared with accurate computations

    SciTech Connect

    Waffeu Tamo, F. O.; Buhr, H.; Schwalm, D.; Motapon, O.; Altevogt, S.; Andrianarijaona, V. M.; Grieser, M.; Lammich, L.; Lestinsky, M.; Motsch, M.; Novotny, S.; Orlov, D. A.; Pedersen, H. B.; Sprenger, F.; Weigel, U.; Wolf, A.; Nevo, I.; Urbain, X.; Schneider, I. F.

    2011-08-15

    The collision-energy resolved rate coefficient for dissociative recombination of HD{sup +} ions in the vibrational ground state is measured using the photocathode electron target at the heavy-ion storage ring TSR. Rydberg resonances associated with rovibrational excitation of the HD{sup +} core are scanned as a function of the electron collision energy with an instrumental broadening below 1 meV in the low-energy limit. The measurement is compared to calculations using multichannel quantum defect theory, accounting for rotational structure and interactions and considering the six lowest rotational energy levels as initial ionic states. Using thermal-equilibrium-level populations at 300 K to approximate the experimental conditions, close correspondence between calculated and measured structures is found up to the first vibrational excitation threshold of the cations near 0.24 eV. Detailed assignments, including naturally broadened and overlapping Rydberg resonances, are performed for all structures up to 0.024 eV. Resonances from purely rotational excitation of the ion core are found to have similar strengths as those involving vibrational excitation. A dominant low-energy resonance is assigned to contributions from excited rotational states only. The results indicate strong modifications in the energy dependence of the dissociative recombination rate coefficient through the rotational excitation of the parent ions, and underline the need for studies with rotationally cold species to obtain results reflecting low-temperature ionized media.

  9. CAD-II: the second version current-mode readout ASIC for high-resolution timing measurements

    NASA Astrophysics Data System (ADS)

    Yuan, Z. X.; Deng, Z.; Wang, Y.; Liu, Y. N.

    2016-07-01

    This paper presents the second version of a fully current-mode front-end ASIC, CAD (Current Amplifier and Discriminator), for MRPC detectors for TOF applications. Several upgrades have been made in this new version, including: 1). Using differential input stages with input impedance down to 30 Ω and LVDS compatible outputs; 2). Much higher current gain and bandwidth of 4.5 A/A and 380 MHz 3). Fabricated in 0.18 μ m CMOS process instead of 0.35 μ m CMOS technology used in CAD-I. The detailed design of the ASIC will be described as well as the measurement results. The single-ended input impedance could be as low as 32 Ω and the power consumption was measured to be 15 mW per channel. Input referred RMS noise current was about 0.56 μ A. The threshold could be set as low as 4.5 μ A referred to input, corresponding to 9 fC for the typical MRPC detector signal with 2 ns width. Sub-10 ps resolution has been measured for input signal above 200 μ A.

  10. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  11. An angle measurement system of high resolution for the upper limbs using a low-cost servomotor

    NASA Astrophysics Data System (ADS)

    Botero V., J.-S.; Restrepo Z., J.-P.; De Ossa J., M.-T.

    2016-07-01

    In the here presented study, the biomechanical design and coupling of a servomotor as measuring element for determining the angle of elbow flexion in humans is presented. This task requires a digital servomotor with a 12-bit low charge encoder type ’’contactless absolute”, which makes the holding torque negligible. Because the servomotor is used as a sensor and not as an actuator, and is expected to produce the least possible resistance to the movement of the elbow, this is a crucial point. Additionally, the biomechanical design of the structure for coupling the servomotor was carried out considering the different movements of the arm and forearm, and the necessity to not interfere with the natural movement of the arm. The measurement resolution allows obtaining the flexion angle to an accuracy of 0.088; and integrated into the embedded system used to communicate with the servomotor, that allows obtaining and analyzing data and temporarily integrating information for counting repeats or measuring the speed of movements, among others. This system will also be useful to calibrate and compare other compatible biomechanical analysis models, where the same movement is analyzed.

  12. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-04-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  13. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  14. Missing SO2 oxidant in the coastal atmosphere? - Evidence from high resolution measurements of OH and atmospheric sulfur compounds

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Adam, M.; Monahan, C.; O'Dowd, C.; Plane, J. M. C.; Bohn, B.; Rohrer, F.

    2014-01-01

    Diurnal and seasonal variations of gaseous sulfuric acid (H2SO4) and methane sulfonic acid (MSA) were measured in N.E. Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected ion/chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3 × 10 4 cm-3 at 5 min signal integration. The H2SO4 and MSA gas-phase concentrations were analysed in conjunction with the condensational sink for both compounds derived from 3 nm-10 μm (diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H2SO4 and 0.12 for MSA were assumed leading to estimated atmospheric lifetimes of the order of 7 min and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal evidence was obtained for the presence of one or more unknown oxidants of SO2 in addition to OH. Depending on the nature of the oxidant(s) their ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO2 oxidant was additionally confirmed by direct measurements of SO2 in conjunction with calculated H2SO4 concentrations. The calculated concentrations were consistently lower than the measured concentrations by a factor 4.8 ± 3.4 when considering the oxidation of SO2 by OH as the only source of H2SO4. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H2SO4 and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photo-oxidation of biogenic iodine compounds. As to the identity of the oxidant(s), we have been able to exclude ClO, BrO, IO, and OIO as possible candidates based on ab initio calculations. Stabilized Criegee intermediates (sCI) produced from

  15. Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Tomadin, Andrea; Principi, Alessandro; Song, Justin C W; Levitov, Leonid S; Polini, Marco

    2015-08-21

    Recently studied hyperbolic materials host unique phonon-polariton (PP) modes. The ultrashort wavelengths of these modes, as well as their low damping, hold promise for extreme subdiffraction nanophotonics schemes. Polar hyperbolic materials such as hexagonal boron nitride can be used to realize long-range coupling between PP modes and extraneous charge degrees of freedom. The latter, in turn, can be used to control and probe PP modes. Here we analyze coupling between PP modes and plasmons in an adjacent graphene sheet, which opens the door to accessing PP modes by angle-resolved photoemission spectroscopy (ARPES). A rich structure in the graphene ARPES spectrum due to PP modes is predicted, providing a new probe of PP modes and their coupling to graphene plasmons.

  16. Angle resolved photo-emission spectroscopy signature of the resonant excitonic state

    NASA Astrophysics Data System (ADS)

    Montiel, X.; Kloss, T.; Pépin, C.

    2016-09-01

    We calculate the angle resolved photo-emission spectroscopy (ARPES) signature of the resonant excitonic state (RES) that was proposed as the pseudo-gap state of cuprate superconductors (Kloss T. et al., arXiv:1510.03038 (2015)). This new state can be described as a set of excitonic (particle-hole) patches with an internal checkerboard modulation. Here, we modelize the RES as a charge order with 2\\textbf{p}F wave vectors, where 2\\textbf{p}F is the ordering vector connecting two opposite sides of the Fermi surface. We calculate the spectral weight and the density of states in the RES and we find that our model correctly reproduces the opening of the PG in Bi-2201.

  17. Resonant interaction between two Cu quantum wells investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Y. Z.; Won, C.; Rotenberg, E.; Zhao, H. W.; Xue, Qi-Kun; Kim, W.; Owens, T. L.; Smith, N. V.; Qiu, Z. Q.

    2006-03-01

    Double quantum wells (QWs) of Cu thin films were investigated using angle-resolved photoemission spectroscopy. The thickness ratio of the two Cu QW films was chosen to be 1:1 and 2:1 to purposely group the QW states of the two Cu films into degenerate and nondegenerate states. The energy spectra of the valence band show that only the degenerate QW states interact resonantly to split each degenerate state into two separate states. Furthermore, by investigating the interaction of two Cu films across a Ni/Cu [14 monolayer (ML)]/Ni QW, we show clearly that resonant splitting occurs at the quantized energy levels of the middle 14 ML Cu QW film.

  18. Angle-resolved Auger electron spectra induced by neon ion impact on aluminum

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.; Aron, P. R.

    1986-01-01

    Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.

  19. Stacking-Dependent Electronic Structure of Trilayer Graphene Resolved by Nanospot Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Bao, Changhua; Yao, Wei; Wang, Eryin; Chen, Chaoyu; Avila, José; Asensio, Maria C; Zhou, Shuyun

    2017-03-08

    The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic structure. In trilayer graphene, rhombohedral stacking (ABC) is particularly intriguing, exhibiting a flat band with an electric-field tunable band gap. Such electronic structure is distinct from simple hexagonal stacking (AAA) or typical Bernal stacking (ABA) and is promising for nanoscale electronics and optoelectronics applications. So far clean experimental electronic spectra on the first two stackings are missing because the samples are usually too small in size (μm or nm scale) to be resolved by conventional angle-resolved photoemission spectroscopy (ARPES). Here, by using ARPES with a nanospot beam size (NanoARPES), we provide direct experimental evidence for the coexistence of three different stackings of trilayer graphene and reveal their distinctive electronic structures directly. By fitting the experimental data, we provide important experimental band parameters for describing the electronic structure of trilayer graphene with different stackings.

  20. A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy

    SciTech Connect

    Frietsch, B.; Gahl, C.; Teichmann, M.; Weinelt, M.; Carley, R.; Döbrich, K.; Schwarzkopf, O.; Wernet, Ph.

    2013-07-15

    We present a table top setup for time- and angle-resolved photoelectron spectroscopy to investigate band structure dynamics of correlated materials driven far from equilibrium by femtosecond laser pulse excitation. With the electron-phonon equilibration time being in the order of 1–2 ps it is necessary to achieve sub-picosecond time resolution. Few techniques provide both the necessary time and energy resolution to map non-equilibrium states of the band structure. Laser-driven high-order harmonic generation is such a technique. In our experiment, a grating monochromator delivers tunable photon energies up to 40 eV. A photon energy bandwidth of 150 meV and a pulse duration of 100 fs FWHM allow us to cover the k-space necessary to map valence bands at different k{sub z} and detect outer core states.

  1. Anisotropic Superconducting Gap Revealed by Angle Resolved Specific Heat, Point Contact Tunneling and Scanning Tunneling Microscope in Iron Pnictide Superconductors

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu

    2011-03-01

    Angle resolved specific heat was measured in FeSe 0.55 Te 0.45 single crystals. A four-fold oscillation of C/T, with the minimum locating at the Fe-Fe bond direction, was observed when the sample was rotated at 9 T, which can be understood as due to the gap modulation on the electron pocket within the scheme of S +/- pairing. Accordingly, by measuring the point contact Andreev reflection spectrum on the BaFe 2-x Ni x As 2 single crystals in wide doping regimes, we found a crossover from nodeless to nodal feature of the superconducting gap. In K-doped BaFe 2 As 2 single crystals, we performed the low temperature STM measurements and observed a well ordered vortex lattice in local region. In addition, the statistics on over 3000 dI/dV spectra illustrate clear evidence of two gaps with magnitude of 7.6 meV and 3.3 meV, respectively. Detailed fitting to the tunneling spectrum shows an isotropic superconducting gap. Work collaborated with B. Zeng, C. Ren, L. Shan, Y. L. Wang, B. Shen, G. Mu, H. Q. Luo, T. Xiang, H. Yang, I. I. Mazin and P. C. Dai. This work was supported by the Natural Science Foundation of China, the Ministry of Science and Technology of China (2011CB605900, No. 2006CB921802), and Chinese Academy of Sciences. IIM was supported by the Office of the Naval Research.

  2. Simultaneous Measurement of Leaf and Whole-Canopy Solar-Induced Fluorescence using Very-High-Resolution Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Silva, C. E.; Cushman, K. C.; Wiseman, S. M.; Yang, X.; Kellner, J. R.

    2015-12-01

    Incoming solar radiation absorbed by chlorophyll molecules drives the light-dependent reactions of photosynthesis. However, a portion of the radiation absorbed by chlorophyll is dissipated as heat or emitted as fluorescence. Therefore, solar-induced fluorescence (SIF) is mechanistically linked with the instantaneous rate of photosynthesis at the molecular level. Recent studies have shown SIF is correlated with gross primary production (GPP) at the level of individual leaves as well as plant canopies, indicating SIF measurements via satellite and airborne remote sensing may improve estimates of terrestrial GPP. However, accurate inference of canopy GPP from SIF measurements requires resolving several challenges. One challenge is the contribution from leaves in the canopy interior to total canopy SIF. Remotely observed canopy SIF is dominated by the upper canopy, because photons fluoresced within the canopy interior are re-absorbed by other leaves. However, the contribution of interior canopy leaves to total canopy GPP is non-negligible. Models indicate that leaf-level GPP plateaus with increasing SIF, whereas the relationship between whole-canopy GPP and SIF does not saturate. Here we use hourly SIF measurements from a VNIR imaging spectrometer mounted on a canopy tower to quantify within-canopy variation in SIF. We examine leaf-level SIF at < 1 cm spatial resolution in directly illuminated leaves versus leaves in the canopy interior at different canopy heights over the course of several days. The within-canopy variation in SIF demonstrates how the leaf-level contribution to total canopy photosynthesis likely varies throughout the canopy volume. Our results can help inform SIF-derived GPP estimates, which are crucial to quantifying the response of terrestrial ecosystems to climate change.

  3. Edge impurity rotation profile measurement by using high-resolution ultraviolet/visible spectrometer on J-TEXT.

    PubMed

    Cheng, Z F; Luo, J; Wang, Z J; Zhang, Z P; Zhang, X L; Hou, S Y; Cheng, C; Li, Z; Zhuang, G

    2014-11-01

    An upgrade of the edge rotation diagnostic system is achieved by increasing the number of viewing channels to 17 on J-TEXT tokamak. With the upgrade, the spatial resolution reaches 1 cm. The bulk plasma is used as the calibration light source. And the toroidal velocity profile of C V (carbon V) at edge region is obtained by using a spatial deconvolution technique. The valid measurement region is at ρ = 0.6-0.9, corresponding to the emitting region of C V. The preliminary experimental results express that the velocity of plasma may have a zero point near ρ = 0.85.

  4. High-resolution tangential absolute extreme ultraviolet arrays for radiated power density measurements on NSTX-U

    SciTech Connect

    Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; Kozub, T. A.; LeBlanc, B. P.; Stratton, B. C.; Faust, I.; Tritz, K.

    2014-11-15

    The radiated-power-density diagnostic on the equatorial midplane for the NSTX-U tokamak will be upgraded to measure the radial structure of the photon emissivity profile with an improved radial resolution. This diagnostic will enhance the characterization and studies of power balance, impurity transport, and MHD. The layout and response expected of the new system is shown for different plasma conditions and impurity concentrations. The effect of toroidal rotation driving poloidal asymmetries in the core radiation from high-Z impurities is also addressed.

  5. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  6. Laser-Extinction and High-Resolution Atmospheric Transmission Measurements Conducted at White Sands Missile Range, New Mexico, March 1979.

    DTIC Science & Technology

    1980-11-19

    The infrared-derived values have a standard deviation of about ±6% of the average value, which is comparable to the values derived from dew -point...SCALE IN km MTNS ,I/ -_ I WSMR .,,,w POST AREA co j R 0PANAEN M /jORGAN *’ SMR HL[. -( v LAS CRUCES M TNS - MET S;E N M 40’ 106 30’ I 6° Fig, 17 Plan...significant, considering the measurement uncertainty of the dew -point mea- surement apparatus. The importance of continuous on-site meteorological monitoring

  7. Edge impurity rotation profile measurement by using high-resolution ultraviolet/visible spectrometer on J-TEXTa)

    NASA Astrophysics Data System (ADS)

    Cheng, Z. F.; Luo, J.; Wang, Z. J.; Zhang, Z. P.; Zhang, X. L.; Hou, S. Y.; Cheng, C.; Li, Z.; Zhuang, G.

    2014-11-01

    An upgrade of the edge rotation diagnostic system is achieved by increasing the number of viewing channels to 17 on J-TEXT tokamak. With the upgrade, the spatial resolution reaches 1 cm. The bulk plasma is used as the calibration light source. And the toroidal velocity profile of C V (carbon V) at edge region is obtained by using a spatial deconvolution technique. The valid measurement region is at ρ = 0.6-0.9, corresponding to the emitting region of C V. The preliminary experimental results express that the velocity of plasma may have a zero point near ρ = 0.85.

  8. High-resolution wave number spectrum using multi-point measurements in space - the Multi-point Signal Resonator (MSR) technique

    NASA Astrophysics Data System (ADS)

    Narita, Y.; Glassmeier, K.-H.; Motschmann, U.

    2011-02-01

    A new analysis method is presented that provides a high-resolution power spectrum in a broad wave number domain based on multi-point measurements. The analysis technique is referred to as the Multi-point Signal Resonator (MSR) and it benefits from Capon's minimum variance method for obtaining the proper power spectral density of the signal as well as the MUSIC algorithm (Multiple Signal Classification) for considerably reducing the noise part in the spectrum. The mathematical foundation of the analysis method is presented and it is applied to synthetic data as well as Cluster observations of the interplanetary magnetic field. Using the MSR technique for Cluster data we find a wave in the solar wind propagating parallel to the mean magnetic field with relatively small amplitude, which is not identified by the Capon spectrum. The Cluster data analysis shows the potential of the MSR technique for studying waves and turbulence using multi-point measurements.

  9. Automated Hydrogen/Deuterium Exchange Electron Transfer Dissociation High Resolution Mass Spectrometry Measured at Single-Amide Resolution

    NASA Astrophysics Data System (ADS)

    Landgraf, Rachelle R.; Chalmers, Michael J.; Griffin, Patrick R.

    2012-02-01

    Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a well established method for the measurement of solution-phase deuterium incorporation into proteins, which can provide insight into protein conformational mobility. However, most HDX measurements are constrained to regions of the protein where pepsin proteolysis allows detection at peptide resolution. Recently, single-amide resolution deuterium incorporation has been achieved by limiting gas-phase scrambling in the mass spectrometer. This was accomplished by employing a combination of soft ionization and desolvation conditions coupled with the radical-driven fragmentation technique electron transfer dissociation (ETD). Here, a hybrid LTQ-Orbitrap XL is systematically evaluated for its utility in providing single-amide deuterium incorporation for differential HDX analysis of a nuclear receptor upon binding small molecule ligands. We are able to show that instrumental parameters can be optimized to minimize scrambling and can be incorporated into an established and fully automated HDX platform making differential single-amide HDX possible for bottom-up analysis of complex systems. We have applied this system to determine differential single amide resolution HDX data for the peroxizome proliferator activated receptor bound with two ligands of interest.

  10. Techniques for wide range, high resolution and precision, thermal desorption measurements. I. Principles of apparatus and operation

    NASA Astrophysics Data System (ADS)

    Schlichting, H.; Menzel, D.

    1993-04-01

    We describe techniques and an apparatus with which thermal desorption measurements, both temperature-programmed and isothermal, can be considerably improved compared to the best measurements done to date. These constitute further development of a previously used scheme (detection of desorbing species in a separate small volume which is pumped by a geometrically defined conductance to the main chamber) by procedures for very accurate resetability of the sample before the cap aperture, and by an accurate correction procedure for readsorption. Direct application of these techniques leads to a range of 4 powers of 10 in rate which can be extended by another power of 10 by a simple background correction. The dynamic range of coverages that can be studied is even larger. The very good reproducibility makes calibration of rates and coverages in absolute terms possible. The high accuracy allows studies of majority species by direct logarithmic plots, of minority species encompassing only promilles of a monolayer, and of sticking coefficients at coverages down to 10 -3 and up to more than 10 monolayers, with high accuracy. While these techniques have been developed for the study of weakly adsorbed species desorbing at very low temperatures (6-100 K), they can be easily adapted to more strongly bound species, as long as the desorption products do not react with the system walls.

  11. Missing SO2 oxidant in the coastal atmosphere? - observations from high-resolution measurements of OH and atmospheric sulfur compounds

    NASA Astrophysics Data System (ADS)

    Berresheim, H.; Adam, M.; Monahan, C.; O'Dowd, C.; Plane, J. M. C.; Bohn, B.; Rohrer, F.

    2014-11-01

    Diurnal and seasonal variations of gaseous sulfuric acid (H2SO4) and methane sulfonic acid (MSA) were measured in NE Atlantic air at the Mace Head atmospheric research station during the years 2010 and 2011. The measurements utilized selected-ion chemical ionization mass spectrometry (SI/CIMS) with a detection limit for both compounds of 4.3 × 104 cm-3 at 5 min signal integration. The H2SO4 and MSA gas-phase concentrations were analyzed in conjunction with the condensational sink for both compounds derived from 3 nm to 10 μm (aerodynamic diameter) aerosol size distributions. Accommodation coefficients of 1.0 for H2SO4 and 0.12 for MSA were assumed, leading to estimated atmospheric lifetimes on the order of 7 and 25 min, respectively. With the SI/CIMS instrument in OH measurement mode alternating between OH signal and background (non-OH) signal, evidence was obtained for the presence of one or more unknown oxidants of SO2 in addition to OH. Depending on the nature of the oxidant(s), its ambient concentration may be enhanced in the CIMS inlet system by additional production. The apparent unknown SO2 oxidant was additionally confirmed by direct measurements of SO2 in conjunction with calculated H2SO4 concentrations. The calculated H2SO4 concentrations were consistently lower than the measured concentrations by a factor of 4.7 ± 2.4 when considering the oxidation of SO2 by OH as the only source of H2SO4. Both the OH and the background signal were also observed to increase significantly during daytime aerosol nucleation events, independent of the ozone photolysis frequency, J(O1D), and were followed by peaks in both H2SO4 and MSA concentrations. This suggests a strong relation between the unknown oxidant(s), OH chemistry, and the atmospheric photolysis and photooxidation of biogenic iodine compounds. As to the identity of the atmospheric SO2 oxidant(s), we have been able to exclude ClO, BrO, IO, and OIO as possible candidates based on {ab initio} calculations

  12. Validation of high-resolution WRF-ARW model runs against airborne measurements over complex terrain in central Italy

    NASA Astrophysics Data System (ADS)

    Carotenuto, Federico; Gioli, Beniamino; Toscano, Piero; Gualtieri, Giovanni; Miglietta, Franco; Wohlfahrt, Georg

    2015-04-01

    An intensive aerial campaign was flown in the context of the CARBIUS project (Maselli et al., 2010) between July 2004 and December 2005. The flights covered, over more than 240 Km, a target area in central Italy (between the regions of Lazio and Tuscany) characterized by various land uses and topography, ranging from coastal zones to mountainous landscapes (Colline Metallifere, Tuscany). The aerial vector (Sky Arrow 650 ERA) was equipped for high frequency (50 Hz) measurements of the three components of mean wind and turbulence, as well as air temperature, CO2 and H2O concentrations. While the aim of the CARBIUS campaign was focused on GHG fluxes, the dataset is used in the present work as a benchmark to assess the capability of mesoscale models to correctly simulate transport fields. A first assessment has been done by comparing the dataset to a coupled WRF-NMM-CALMET system (Gioli et al., 2014), but the aim of the present work is to expand on those foundations by comparing the data to higher resolution WRF-ARW simulations. WRF-ARW outputs are, in fact, frequently used as inputs to multiple dispersion models and any misrepresentation of the "real" situation is therefore propagated through the modelling chain. Our aim is to assess these potential errors keeping into account different topographic situations and seasons thanks to the existent aerial dataset. Moreover the sensitivity of the WRF-ARW model to different initial and boundary conditions (ECMWF vs. CFSR) is explored, since also the initial forcing may influence the representation of the transport field. Results show that the model is generally capable of reproducing the main features of the mean wind field independently from the choice of the initial forcing. Terrain features still show an impact on the model outputs (especially on wind directions), moreover the performance of the model is also influenced by seasonal effects. Gioli B., Gualtieri G., Busillo C., Calastrini F., Gozzini B., Miglietta F. (2014

  13. High resolution magnetic resonance imaging of the calcaneus: age-related changes in trabecular structure and comparison with dual X-ray absorptiometry measurements

    NASA Technical Reports Server (NTRS)

    Ouyang, X.; Selby, K.; Lang, P.; Engelke, K.; Klifa, C.; Fan, B.; Zucconi, F.; Hottya, G.; Chen, M.; Majumdar, S.; Genant, H. K.

    1997-01-01

    A high-resolution magnetic resonance imaging (MRI) protocol, together with specialized image processing techniques, was applied to the quantitative measurement of age-related changes in calcaneal trabecular structure. The reproducibility of the technique was assessed and the annual rates of change for several trabecular structure parameters were measured. The MR-derived trabecular parameters were compared with calcaneal bone mineral density (BMD), measured by dual X-ray absorptiometry (DXA) in the same subjects. Sagittal MR images were acquired at 1.5 T in 23 healthy women (mean age: 49.3 +/- 16.6 [SD]), using a three-dimensional gradient echo sequence. Image analysis procedures included internal gray-scale calibration, bone and marrow segmentation, and run-length methods. Three trabecular structure parameters, apparent bone volume (ABV/TV), intercept thickness (I.Th), and intercept separation (I.Sp) were calculated from the MR images. The short- and long-term precision errors (mean %CV) of these measured parameters were in the ranges 1-2% and 3-6%, respectively. Linear regression of the trabecular structure parameters vs. age showed significant correlation: ABV/TV (r2 = 33.7%, P < 0.0037), I.Th (r2 = 26.6%, P < 0.0118), I.Sp (r2 = 28.9%, P < 0.0081). These trends with age were also expressed as annual rates of change: ABV/TV (-0.52%/year), I.Th (-0.33%/year), and I.Sp (0.59%/year). Linear regression analysis also showed significant correlation between the MR-derived trabecular structure parameters and calcaneal BMD values. Although a larger group of subjects is needed to better define the age-related changes in trabecular structure parameters and their relation to BMD, these preliminary results demonstrate that high-resolution MRI may potentially be useful for the quantitative assessment of trabecular structure.

  14. Background dust emission following grassland fire: a snapshot across the particle-size spectrum highlights how high-resolution measurements enhance detection

    SciTech Connect

    Whicker, Jeffrey J; Martin, Luis M; Field, Jason P; Villegas, Juan C; Brehsears, David D; Law, Darin J; Urgeghe, Anna M

    2009-01-01

    Dust emission rates vary temporally and with particle size. Many studies of dust emission focus on a particular temporal scale and the portion of the particle-size spectrum associated with a single instrument; fewer studies have assessed dust emission across the particle-size spectrum and associated temporal scales using multiple instruments. Particularly lacking are measurements following disturbances such as fire that are high-resolution and focused on finer particles - those with direct implications for human health and potential for long-distance biogeochemical transport - during less windy but more commonly occurring background conditions. We measured dust emissions in unburned and burned semiarid grassland using four different instruments spanning different combinations of temporal resolution and particle-size spectrum: Big Springs Number Eight (BSNE) and Sensit instruments for larger saltating particles, DustTrak instruments for smaller suspended particles, and Total Suspended Particulate (TSP) samplers for measuring the entire range of particle sizes. Unburned and burned sites differed in vegetation cover and aerodynamic roughness, yet surprisingly differences in dust emission rates were only detectable for saltation using BSNE and for smaller aerosols using DustTrak. Our results, surprising in the lack of consistently detected differences, indicate that high-resolution DustTrak measurements offered the greatest promise for detecting differences in background emission rates and that BSNE samplers, which integrate across height, were effective for longer intervals. More generally, our results suggest that interplay between particle size, temporal resolution, and integration across time and height can be complex and may need to be considered more explicitly for effective sampling for background dust emissions.

  15. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products

    DOE PAGES

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; ...

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore » groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of α-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm−3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  16. High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility

    SciTech Connect

    Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W.

    2012-10-15

    Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

  17. An X-ray Absorption Edge Detector for High-Resolution Measurement of Undulator Effective K-Parameter

    SciTech Connect

    Yang, B.; Galayda, J.N.; /SLAC

    2007-03-07

    The spectrum of angle-integrated undulator radiation displays a sharp edge at every harmonic photon energy. A technique utilizing this feature to measure minute changes in K-parameters of an undulator in a free-electron laser has been proposed. To date, this technique requires the use of crystal monochromators as bandpass filters whose energy centroid depends on the incident angle of the x-ray beam. In this work we propose to use the absorption edge of an appropriate element as an energy-selective detector whose response is truly independent of the angle of the x-ray beam, and hence independent of electron beam direction and emittance. We will discuss the basic design concept of the detection system and illustrate its projected performance with computer simulations.

  18. Development of a high-resolution automatic digital (urine/electrolytes) flow volume and rate measurement system of miniature size

    NASA Technical Reports Server (NTRS)

    Liu, F. F.

    1975-01-01

    To aid in the quantitative analysis of man's physiological rhythms, a flowmeter to measure circadian patterns of electrolyte excretion during various environmental stresses was developed. One initial flowmeter was designed and fabricated, the sensor of which is the approximate size of a wristwatch. The detector section includes a special type of dielectric integrating type sensor which automatically controls, activates, and deactivates the flow sensor data output by determining the presence or absence of fluid flow in the system, including operation under zero-G conditions. The detector also provides qualitative data on the composition of the fluid. A compact electronic system was developed to indicate flow rate as well as total volume per release or the cumulative volume of several releases in digital/analog forms suitable for readout or telemetry. A suitable data readout instrument is also provided. Calibration and statistical analyses of the performance functions required of the flowmeter were also conducted.

  19. Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.; Chance, Kelly V.; Johnson, David G.; Jucks, Kenneth W.; Salawitch, Ross J.; Xue, Jim Changqin; Ciarpallini, Paola

    1995-01-01

    This report covers the time period 1 January 1994 to 31 December 1994. During this reporting period we had our fourth Upper Atmosphere Research Satellite (UARS) correlative balloon flight; the data from this flight have been reduced and submitted to the UARS CDHF. We have spent most of the past year analyzing data from this and past flights. For example, using data from our September 1989 balloon flight we have demonstrated for the first time ever that the rates of production and loss of ozone are in balance in the upper stratosphere. As part of this analysis, we have completed the most detailed study to date of radical partitioning throughout the stratosphere. We have also produced the first measurement of HBr and HOBr mixing ratio profiles over a full diurnal cycle.

  20. Experimental validation of a coprime linear microphone array for high-resolution direction-of-arrival measurements.

    PubMed

    Xiang, Ning; Bush, Dane; Summers, Jason E

    2015-04-01

    Coprime linear microphone arrays allow for narrower beams with fewer sensors. A coprime microphone array consists of two staggered uniform linear subarrays with M and N microphones, where M and N are coprime with each other. By applying spatial filtering to both subarrays and combining their outputs, M+N-1 microphones yield M⋅N directional bands. In this work, the coprime sampling theory is implemented in the form of a linear microphone array of 16 elements with coprime numbers of 9 and 8. This coprime microphone array is experimentally tested to validate the coprime array theory. Both predicted and measured results are discussed. Experimental results confirm that narrow beampatterns as predicted by the coprime sampling theory can be obtained by the coprime microphone array.

  1. Kerr effect measurements in the pseudo-gap regime of LBCO and Pb-BSCO using high resolution Sagnac

    NASA Astrophysics Data System (ADS)

    Karapetyan, Hovnatan; Nathan, Vikram; He, Ruihua; Hashimoto, Makoto; Shen, Zhi-Xun; Kapitulnik, Aharon; Eisaki, Hiroshi; Koralek, Jake; Hinton, Jamie; Orenstein, Joe; Tranquada, John; Gu, Genda; Huecker, Markus

    2011-03-01

    Polar Kerr effect in several high-Tc superconductors systems was measured at zero magnetic field with high precision using a cryogenic Sagnac fiber interferometer with zero-area. We observed non-zero Kerr rotations of order ~ 1 μ rad appearing near the pseudogap temperature T* , and marking what appears to be a true phase transition. In this talk we will review our work on YBa2Cu3 O 6 + x , La1.875Ba0.125CuO4 and Pb0.55Bi1.5Sr1.6La0.4CuO6 + δ . In particular, in Pb-BSCO we observe an emergence of Kerr signal that coincides with ARPES data showing an abrupt change at T* from a relatively simple one- band metal into a state with profoundly-altered electronic structure.

  2. A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures.

    PubMed

    Gorgolewski, Krzysztof J; Mendes, Natacha; Wilfling, Domenica; Wladimirow, Elisabeth; Gauthier, Claudine J; Bonnen, Tyler; Ruby, Florence J M; Trampel, Robert; Bazin, Pierre-Louis; Cozatl, Roberto; Smallwood, Jonathan; Margulies, Daniel S

    2015-01-01

    Here we present a test-retest dataset of functional magnetic resonance imaging (fMRI) data acquired at rest. 22 participants were scanned during two sessions spaced one week apart. Each session includes two 1.5 mm isotropic whole-brain scans and one 0.75 mm isotropic scan of the prefrontal cortex, giving a total of six time-points. Additionally, the dataset includes measures of mood, sustained attention, blood pressure, respiration, pulse, and the content of self-generated thoughts (mind wandering). This data enables the investigation of sources of both intra- and inter-session variability not only limited to physiological changes, but also including alterations in cognitive and affective states, at high spatial resolution. The dataset is accompanied by a detailed experimental protocol and source code of all stimuli used.

  3. Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor.

    PubMed

    Eason, Eric V; Hawkes, Elliot W; Windheim, Marc; Christensen, David L; Libby, Thomas; Cutkosky, Mark R

    2015-02-02

    The adhesive systems of geckos have been widely studied and have been a great source of bioinspiration. Load-sharing (i.e. preventing stress concentrations through equal distribution of loads) is necessary to maximize the performance of an adhesive system, but it is not known to what extent load-sharing occurs in gecko toes. In this paper, we present in vivo measurements of the stress distribution and contact area on the toes of a tokay gecko (Gekko gecko) using a custom tactile sensor with 100 μm spatial resolution. We found that the stress distributions were nonuniform, with large variations in stress between and within lamellae, suggesting that load-sharing in the tokay gecko is uneven. These results may be relevant to the understanding of gecko morphology and the design of improved synthetic adhesive systems.

  4. Validation of high-resolution aerosol optical thickness simulated by a global non-hydrostatic model against remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Goto, Daisuke; Sato, Yousuke; Yashiro, Hisashi; Suzuki, Kentaroh; Nakajima, Teruyuki

    2017-02-01

    A high-performance computing resource allows us to conduct numerical simulations with a horizontal grid spacing that is sufficiently high to resolve cloud systems. The cutting-edge computational capability, which was provided by the K computer at RIKEN in Japan, enabled the authors to perform long-term, global simulations of air pollutions and clouds with unprecedentedly high horizontal resolutions. In this study, a next generation model capable of simulating global air pollutions with O(10 km) grid spacing by coupling an atmospheric chemistry model to the Non-hydrostatic Icosahedral Atmospheric Model (NICAM) was performed. Using the newly developed model, month-long simulations for July were conducted with 14 km grid spacing on the K computer. Regarding the global distributions of aerosol optical thickness (AOT), it was found that the correlation coefficient (CC) between the simulation and AERONET measurements was approximately 0.7, and the normalized mean bias was -10%. The simulated AOT was also compared with satellite-retrieved values; the CC was approximately 0.6. The radiative effects due to each chemical species (dust, sea salt, organics, and sulfate) were also calculated and compared with multiple measurements. As a result, the simulated fluxes of upward shortwave radiation at the top of atmosphere and the surface compared well with the observed values, whereas those of downward shortwave radiation at the surface were underestimated, even if all aerosol components were considered. However, the aerosol radiative effects on the downward shortwave flux at the surface were found to be as high as 10 W/m2 in a global scale; thus, simulated aerosol distributions can strongly affect the simulated air temperature and dynamic circulation.

  5. UAS and DTS: Using Drones and Fiber Optics to Measure High Resolution Temperature of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Predosa, R. A.; Darricau, B.; Higgins, C. W.

    2015-12-01

    The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that directly interacts with the planet's surface. The development of the ABL plays a vital role, as it affects the transport of atmospheric constituents such as air pollutants, water vapor, and greenhouse gases. Measurements of the processes in the ABL have been difficult due to the limitations in the spatial and temporal resolutions of the equipment as well as the height of the traditional flux tower. Recent advances in the unmanned aerial vehicle (UAV) and distributed temperature sensing (DTS) technologies have provided us with new tools to study the complex processes in ABL. We conducted a series of pioneering experiments in Eastern Oregon using a platform that combines UAV and DTS to collect data during morning and evening transitions in the ABL. The major components of this platform consists of a quad-copter, a DTS computer unit, and a set of customized fiber optic cables. A total of 75 flights were completed to investigate: (1) the capability of a duplexed fiber optic cable to reduce noise in the high spatial and temporal temperature measurements taken during the morning transition; (2) the possibility of using fiber optic cable as "wet bulb" thermometer to calculate relative humidity in the ABL at high spatial and temporal resolution. The preliminary results showed that using a fiber optic cable in a duplexed configuration with the UAV-DTS platform can effectively reduce noise level during the morning transition data collection. The customized "wet bulb" fiber optic cable is capable of providing information for the calculation of relative humidity in the ABL at unprecedented spatial and temporal resolutions. From this study, the UAV-DTS platform demonstrated great potential in collecting temperature data in the ABL and with the development of atmospheric sensor technologies, it will have more applications in the future.

  6. High resolution hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi

    2005-02-01

    Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

  7. Direct and High-Resolution Measurements of Retardation and Transport in Whole Rock Samples under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Wang, J.

    2001-12-01

    Evaluation of chemical sorption and transport is very important in the investigations of contaminant remediation, risk assessment, and waste disposal (e.g., the potential high-level nuclear waste repository at Yucca Mountain, Nevada). Characterization of transport parameters for whole rock samples has typically been performed in batch systems with arbitrary grain sizes and a high water/rock ratio. Measurement of these parameters under conditions more representative of fractured rocks in situ provides a better understanding of the processes occurring there. The effective Kd approach has been commonly employed to quantify the extent of contaminant-medium-fluid interactions. Unrepresentative Kd values will lead to unrealistic assessments of contaminant transport. Experimentally determined Kd values are predominantly obtained from batch experiments under saturated and well-mixed conditions. Batch-sorption experiments can be problematic because: (1) saturated conditions with large waterrock ratios are not representative of the in situ vadose condition, and (2) crushed rock samples are used, with the sample size (in the range of microns to sub-millimeters) chosen more or less arbitrarily and mainly for experimental convenience, and (3) for weakly sorbing contaminants, a batch-sorption approach can yield variable and even negative Kd values, because of the inherent methodology of calculating the Kd values by subtracting two large numbers (i.e., initial and final aqueous concentration). In this work, we use an unsaturated transport-sorption approach to quantify the sorption behavior of contaminants and evaluate the applicability of the conventional batch-sorption approach in unsaturated rock. Transient experiments are designed to investigate water imbibition and chemical transport into the rock sample (with size in the centimeter range) by contacting one end of a sample with water containing chemical tracers. Capillary-driven imbibition transports chemicals farther away

  8. High-resolution positron Q-value measurements and nuclear-structure studies far from the stability line. Progress report

    SciTech Connect

    Avignone, F.T. III.

    1981-02-28

    Extensive data analysis and theoretical analysis has been done to complete the extensive decay scheme investigation of /sup 206/ /sup 208/Fr and the level structures of /sup 206/ /sup 208/Rn. A final version of a journal article is presented in preprint form. Extensive Monte Carlo calculations have been made to correct the end point energies of positron spectra taken with intrinsic Ge detectors for annihilation radiation interferences. These calculations were tested using the decay of /sup 82/Sr which has previously measured positron branches. This technique was applied to the positron spectra collected at the on-line UNISOR isotope separator. The reactions used were /sup 60/Ni(/sup 20/Ne;p2n)/sup 77/Rb and /sup 60/Ni(/sup 20/Ne;pn)/sup 78/Rb. Values for 5, ..gamma..-..beta../sup +/ coincidence positron end point energies are given for the decay of /sup 77/Rb. The implied Q-value is 5.075 +- 0.010 MeV. A complete paper on the calculated corrections is presented. A flow chart of a more complete program which accounts for positrons scattering out of the detector and for bremsstralung radiation is also presented. End-point energies of four ..beta../sup +/ branches in /sup 77/Rb are given as well as a proposed energy level scheme of /sup 75/Kr based on ..gamma..-..gamma.. coincidence data taken at UNISOR.

  9. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  10. Prominent conjugate processes in the PCI recapture of photoelectrons revealed by high resolution Auger electron measurements of Xe

    NASA Astrophysics Data System (ADS)

    Azuma, Yoshiro; Kosugi, Satoshi; Suzuki, Norihiro; Shigemasa, Eiji; Iwayama, Hiroshi; Koike, Fumihiro

    2016-05-01

    The Xe (N5O2 , 3O2 , 3) Auger electron spectrum originating from 4d5/ 2 - 1 photoionization was measured with the photon energy tuned very close above the ionization threshold. As the photon energy approached the 4d5/ 2 - 1 photoionization threshold, Rydberg series structures including several angular momentum components were formed within the Auger profile by the recapture of the photoelectrons into high-lying final ion orbitals. Our spectrum with resolution much narrower than the lifetime width of the corresponding core excited state allowed us to resolve detailed structures due to the orbital angular momenta very clearly. Unexpectedly, conjugate peaks originating from the exchange of angular momentum between the photoelectron and the Auger electron through Post-Collision-Interaction were found to dominate the spectrum. The new assignments were in accord with the quantum defect values obtained for the high Rydberg series for singly charged ionic Xe + 5 p(1S0) ml. This work was supported by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research No. 23600009.

  11. Exploiting artificial intelligence for in-situ analysis of high-resolution radio emission measurements on a CubeSat

    NASA Astrophysics Data System (ADS)

    Isham, Brett; Bergman, Jan; Krause, Linda; Rincon-Charris, Amilcar; Bruhn, Fredrik; Funk, Peter; Stramkals, Arturs

    2016-07-01

    CubeSat missions are intentionally constrained by the limitations of their small platform. Mission payloads designed for low volume, mass, and power, may however be disproportionally limited by available telemetry allocations. In many cases, it is the data delivered to the ground which determines the value of the mission. However, transmitting more data does not necessarily guarantee high value, since the value also depends on data quality. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. This concept is being implemented on the Puerto Rico CubeSat, which will make measurements of ambient ionospheric radio waves and ion irregularities and turbulence. Principle project goals include providing aerospace and systems engineering experiences to students. Science objectives include the study of natural space plasma processes to aid in better understanding of space weather and the Sun to Earth connection, and in-situ diagnostics of ionospheric modification experiments using high-power ground-based radio transmitters. We hope that this project might point the way to the productive use of AI in space and other remote, low-data-bandwidth environments.

  12. Fiber optic confocal laser Doppler velocimeter using an all-fiber laser source for high resolution measurements.

    PubMed

    Sharma, Utkarsh; Chen, Gang; Kang, Jin; Ilev, Ilko; Waynant, Ronald

    2005-08-08

    We demonstrate and analyze a novel fiber optic confocal laser Doppler velocimeter using an ultra-narrow linewidth all-fiber laser source centered at around 1550 nm (eye-safe region). The narrow spectral linewidth of the fiber laser (<10 kHz) is used to achieve an extremely high velocity resolution (~0.0075 m/s), which is an order of magnitude better as compared to the commonly used semiconductor diode lasers or He-Ne lasers based systems. The directional optical circulator based design used in our system is much simpler to implement and is power conserving compared to the conventional Michelson interferometer based designs. We perform Gaussian beam propagation analysis by using the ABCD law to study the performance of the confocal design. The analysis is in good accord with our experimental results. The confocal design is capable of providing ultrahigh spatial resolution (~5microm, in both lateral and longitudinal directions) for high-precision velocity distribution measurement applications.

  13. Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks.

    PubMed

    Beiersdorfer, P; Magee, E W; Hell, N; Brown, G V

    2016-11-01

    We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of λ/Δλ ≥ 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo(34+), which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components.

  14. A practical implementation of high resolution relative spectral response measurement of CMOS IRFPAs using Fourier Transform Infrared Spectrometer (FTIR)

    NASA Astrophysics Data System (ADS)

    Barrat, Catherine; Lepot, Thierry; Ramamonjisoa, Michael; Fradcourt, Sébastien

    2016-10-01

    The accurate knowledge of IR detectors specifications becomes of higher importance whatever the application. Among these specifications is the relative spectral response. The usual method of relative spectral response measurement uses a source spectrally defined by the wavelength selection through a grating-based monochromator. This simple and proven method has a limited spectral resolution since the signal received by the tested detector is proportional to the width of the wavelength selection slit i.e. the spectral resolution. Another method consists in using a Fourier Transform IR Spectrometer (FTIR) easily allowing a 1 cm-1 spectral resolution even in the Long Wave IR range. However, the implementation of this method requires a meticulous analysis of all the elements of the bench and all the parameters to avoid any misinterpretation of the results. Among the potential traps are the frequency dependence of the signals and the parasitic fringes effect on the curves. Practical methods to correct the frequency dependence of the reference detector and to remove parasitic interference fringes are presented in this paper.

  15. Atomic Auger decay in core-excited HBr by angle-resolved two-dimensional photoelectron spectroscopy

    SciTech Connect

    Feng, Ximao; Wills, Antony A.; Wiedenhoeft, Marco; Berrah, Nora; Sokell, Emma

    2006-01-15

    Angle-resolved two-dimensional photoelectron spectroscopy has been used to study HBr in the vicinity of the Br 3d ionization thresholds. The energy positions of the two 3d{sub 5/2,3/2}{yields}{sigma}{sup *} resonances have been measured directly and found to be at 70.89(6) eV and 71.92(6) eV, respectively, giving a spin-orbit splitting of 1.03(3) eV for the two Br 3d components. Br Auger lines (26 eVmeasured before, have also been derived. The alignment parameters for the two intermediate atomic states ({sup 2}D{sub 5/2} and {sup 2}D{sub 3/2}) have been found and used to derive intrinsic anisotropy parameters {alpha}{sub 2} from the {beta} parameters. These were found to be similar to those of the equivalent M{sub 4,5}NN normal Auger lines in the isoelectronic counterpart Kr calculated by Tulkki et al. [Phys. Rev. A 48, 1277 (1993)].

  16. Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noh, Han-Jin; Jeong, Jinwon; Chang, Bin; Jeong, Dahee; Moon, Hyun Sook; Cho, En-Jin; Ok, Jong Mok; Kim, Jun Sung; Kim, Kyoo; Min, B. I.; Lee, Han-Koo; Kim, Jae-Young; Park, Byeong-Gyu; Kim, Hyeong-Do; Lee, Seongsu

    2014-03-01

    We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system. This work was supported by the National Research Foundation (NRF) of Korea Grant funded by the Korean Government (MEST) (Nos. 2010-0010771 and 2012M2B2A4029607). K.K. and B.I.M. acknowledge the support of NRF (Nos. 2009-0079947 and 2011-0025237) and KISTI.

  17. A strand specific high resolution normalization method for chip-sequencing data employing multiple experimental control measurements

    PubMed Central

    2012-01-01

    Background High-throughput sequencing is becoming the standard tool for investigating protein-DNA interactions or epigenetic modifications. However, the data generated will always contain noise due to e.g. repetitive regions or non-specific antibody interactions. The noise will appear in the form of a background distribution of reads that must be taken into account in the downstream analysis, for example when detecting enriched regions (peak-calling). Several reported peak-callers can take experimental measurements of background tag distribution into account when analysing a data set. Unfortunately, the background is only used to adjust peak calling and not as a pre-processing step that aims at discerning the signal from the background noise. A normalization procedure that extracts the signal of interest would be of universal use when investigating genomic patterns. Results We formulated such a normalization method based on linear regression and made a proof-of-concept implementation in R and C++. It was tested on simulated as well as on publicly available ChIP-seq data on binding sites for two transcription factors, MAX and FOXA1 and two control samples, Input and IgG. We applied three different peak-callers to (i) raw (un-normalized) data using statistical background models and (ii) raw data with control samples as background and (iii) normalized data without additional control samples as background. The fraction of called regions containing the expected transcription factor binding motif was largest for the normalized data and evaluation with qPCR data for FOXA1 suggested higher sensitivity and specificity using normalized data over raw data with experimental background. Conclusions The proposed method can handle several control samples allowing for correction of multiple sources of bias simultaneously. Our evaluation on both synthetic and experimental data suggests that the method is successful in removing background noise. PMID:22248020

  18. Sensitivity of Honeybee Hygroreceptors to Slow Humidity Changes and Temporal Humidity Variation Detected in High Resolution by Mobile Measurements

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between –1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  19. A statistical look at turbulence from high-resolution temperature measurements above a deep-ocean sloping seafloor.

    NASA Astrophysics Data System (ADS)

    Cimatoribus, Andrea; van Haren, Hans

    2016-04-01

    A detailed analysis of the statistics of temperature in an oceanographic observational dataset is presented. The data is collected using a moored array of 144 thermistors, 100m tall, deployed above the slopes of a seamount in the North Eastern Atlantic Ocean from April to August 2013. The thermistors are built in-house at the Royal Netherlands Institute for Sea Research, and provide a precision better than 10-3 K and very low noise levels. The thermistors measure temperature every second, synchronised throughout the moored array. The thermistor array ends 5m above the bottom, and no bottom mixed layer is visible in the data, indicating that restratification is constantly occurring and that a mixed layer is either absent or very thin. Intense turbulence is observed, and a strong dependence of turbulence parameters on the phase of the semidiurnal tidal wave (the dominant frequency in the power spectrum) is also evident. We present an overview of the results obtained form this dataset, exploiting the unprecedent detail of the observations. We compute the statistical moments (generalised structure functions) of order up to 10 of the distributions of temperature increments. Strong intermittency is observed, in particular, during the downslope phase of the tide, and farther from the seafloor. In the lower half of the mooring during the upslope phase, the temperature statistics are consistent with those of a passive scalar. In the upper half of the mooring, the temperature statistics deviate from those of a passive scalar, and evidence of turbulent convective activity is found. The downslope phase is generally thought to be more shear-dominated, but our results suggest on the other hand that convective activity is present. High-order moments also show that the turbulence scaling behaviour breaks at a well-defined scale (of the order of the buoyancy length scale), which is however dependent on the flow state (tidal phase, height above the bottom). At larger scales, wave

  20. Sensitivity of honeybee hygroreceptors to slow humidity changes and temporal humidity variation detected in high resolution by mobile measurements.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2014-01-01

    The moist cell and the dry cell on the antenna of the male honeybee were exposed to humidities slowly rising and falling at rates between -1.5%/s and +1.5%/s and at varying amplitudes in the 10 to 90% humidity range. The two cells respond to these slow humidity oscillations with oscillations in impulse frequency which depend not only on instantaneous humidity but also on the rate with which humidity changes. The impulse frequency of each cell was plotted as a function of these two parameters and regression planes were fitted to the data points of single oscillation periods. The regression slopes, which estimate sensitivity, rose with the amplitude of humidity oscillations. During large-amplitude oscillations, moist and dry cell sensitivity for instantaneous humidity and its rate of change was high. During small-amplitude oscillations, their sensitivity for both parameters was low, less exactly reflecting humidity fluctuations. Nothing is known about the spatial and temporal humidity variations a honeybee may encounter when flying through natural environments. Microclimatic parameters (absolute humidity, temperature, wind speed) were measured from an automobile traveling through different landscapes of Lower Austria. Landscape type affected extremes and mean values of humidity. Differences between peaks and troughs of humidity fluctuations were generally smaller in open grassy fields or deciduous forests than in edge habitats or forest openings. Overall, fluctuation amplitudes were small. In this part of the stimulus range, hygroreceptor sensitivity is not optimal for encoding instantaneous humidity and the rate of humidity change. It seems that honeybee's hygroreceptors are specialized for detecting large-amplitude fluctuations that are relevant for a specific behavior, namely, maintaining a sufficiently stable state of water balance. The results suggest that optimal sensitivity of both hygroreceptors is shaped not only by humidity oscillation amplitudes but also

  1. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.

    2004-05-01

    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  2. Angle-resolved photoemission with circularly polarized light in the nodal mirror plane of underdoped Bi2Sr2CaCu2O8+δ superconductor

    DOE PAGES

    He, Junfeng; Mion, Thomas R.; Gao, Shang; ...

    2016-10-31

    Unraveling the nature of pseudogap phase in high-temperature superconductors holds the key to understanding their superconducting mechanisms and potentially broadening their applications via enhancement of their superconducting transition temperatures. Angle-resolved photoemission spectroscopy (ARPES) experiments using circularly polarized light have been proposed to detect possible symmetry breaking state in the pseudogap phase of cuprates. Here, the presence (absence) of an electronic order which breaks mirror symmetry of the crystal would in principle induce a finite (zero) circular dichroism in photoemission. Different orders breaking reflection symmetries about different mirror planes can also be distinguished by the momentum dependence of the measured circularmore » dichroism.« less

  3. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  4. The last frontier? High-resolution, near-bottom measurements of the Hawaiian Jurassic magnetic anomaly sequence

    NASA Astrophysics Data System (ADS)

    Tivey, M.; Tominaga, M.; Sager, W. W.

    2012-12-01

    different spreading centers. In 2011, we undertook the next generation of near-bottom magnetic studies utilizing new autonomous underwater vehicle (AUV) technology (Sentry) and concurrent deeptow and seismic profiling surveys of the Hawaiian anomaly sequence. Preliminary results show a similar anomaly record to the Japanese sequence: an overall decrease in anomaly amplitude from M19 to M38 and a period of low amplitude, which in turn is preceded by a return to stronger amplitude anomalies. The magnetic anomaly correlations between Hawaiian and Japanese sea-surface level profiles confirm the reversal record back in time, at least, to M38. At the mid-water and near-bottom AUV levels, the magnetic data clearly show the short-wavelength anomaly character of the M29-M38 sequence, indicating that the fast reversals observed in the Japanese lineations are also present in the Hawaiian lineation set. The strong similarity of overall anomaly patterns between Japanese and Hawaiian sequences supports the preliminary conclusion that geomagnetic field behavior during the Jurassic was dynamic, with fast reversals and changing intensity, and certainly not "quiet". Finally, AUV surveys provide measurements of the marine magnetic anomaly record whose resolution is limited only by the crustal recording process and crustal magnetic architecture rather than spatial resolution.

  5. An in vitro approach for lipolysis measurement using high-resolution mass spectrometry and partial least squares based analysis.

    PubMed

    Chang, Wen-Qi; Zhou, Jian-Liang; Li, Yi; Shi, Zi-Qi; Wang, Li; Yang, Jie; Li, Ping; Liu, Li-Fang; Xin, Gui-Zhong

    2017-01-15

    The elevation of free fatty acids (FFAs) has been regarded as a universal metabolic signature of excessive adipocyte lipolysis. Nowadays, in vitro lipolysis assay is generally essential for drug screening prior to the animal study. Here, we present a novel in vitro approach for lipolysis measurement combining UHPLC-Orbitrap and partial least squares (PLS) based analysis. Firstly, the calibration matrix was constructed by serial proportions of mixed samples (blended with control and model samples). Then, lipidome profiling was performed by UHPLC-Orbitrap, and 403 variables were extracted and aligned as dataset. Owing to the high resolution of Orbitrap analyzer and open source lipid identification software, 28 FFAs were further screened and identified. Based on the relative intensity of the screened FFAs, PLS regression model was constructed for lipolysis measurement. After leave-one-out cross-validation, ten principal components have been designated to build the final PLS model with excellent performances (RMSECV, 0.0268; RMSEC, 0.0173; R(2), 0.9977). In addition, the high predictive accuracy (R(2) = 0.9907 and RMSEP = 0.0345) of the trained PLS model was also demonstrated using test samples. Finally, taking curcumin as a model compound, its antilipolytic effect on palmitic acid-induced lipolysis was successfully predicted as 31.78% by the proposed approach. Besides, supplementary evidences of curcumin induced modification in FFAs compositions as well as lipidome were given by PLS extended methods. Different from general biological assays, high resolution MS-based method provide more sophisticated information included in biological events. Thus, the novel biological evaluation model proposed here showed promising perspectives for drug evaluation or disease diagnosis.

  6. Interlayer-state-driven superconductivity in CaC6 studied by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Chul; Koh, Yoonyoung; Kim, Beomyoung; Kim, Youngwook; Kim, Jun Sung; Kim, Keun Su; Rotenberg, Eli; Denlinger, Jonathan D.; Kim, Changyoung

    2015-12-01

    We performed angle-resolved photoemission experiments on CaC6 and measured kz-dependent electronic structures to investigate the interlayer states. The results reveal a spherical interlayer Fermi surface centered at the Γ point. We also find that the graphene-driven band possesses a weak kz dispersion. The overall electronic structure shows a peculiar single-graphene-layer periodicity in the kz direction although the CaC6 unit cell is supposed to contain three graphene layers. This suggests that the c -axis ordering of Ca has little effect on the electronic structure of CaC6. In addition to CaC6, we also studied the a low-temperature superconductor BaC6. For BaC6, the graphene-band Dirac-point energy is smaller than that of CaC6. Based on data from CaC6 and BaC6, we rule out the Cx y phonon mode as the origin of the superconductivity in CaC6, which strongly suggests interlayer-state-driven superconductivity.

  7. Predicted electronic markers for polytypes of LaOBi S2 examined via angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoqing; Liu, Qihang; Waugh, J. A.; Li, Haoxiang; Nummy, T.; Zhang, Xiuwen; Zhu, Xiangde; Cao, Gang; Zunger, Alex; Dessau, D. S.

    2017-02-01

    The natural periodic stacking of symmetry-inequivalent planes in layered compounds can lead to the formation of natural superlattices; albeit close in total energy, (thus in their thermodynamic stability), such polytype superlattices can exhibit different structural symmetries, thus have markedly different electronic properties which can in turn be used as "structural markers". We illustrate this general principle on the layered LaOBi S2 compound where density-functional theory (DFT) calculations on the (Bi S2 )/(LaO)/(Bi S2 ) polytype superlattices reveal both qualitatively and quantitatively distinct electronic structure markers associated with the Rashba physics, yet the total energies are only ˜ 0.1 meV apart. This opens the exciting possibility of identifying subtle structural features via electronic markers. We show that the pattern of removal of band degeneracies in different polytypes by the different forms of symmetry breaking leads to Rashba "minigaps" with characteristic Rashba parameters that can be determined from spectroscopy, thereby narrowing down the physically possible polytypes. By identifying these distinct DFT-predicted fingerprints via angle-resolved photoemission spectroscopy (ARPES) measurements on LaBiO S2 we found the dominant polytype with small amounts of mixtures of other polytypes. This conclusion, consistent with neutron scattering results, establishes ARPES detection of theoretically established electronic markers as a powerful tool to delineate energetically quasidegenerate polytypes.

  8. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  9. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  10. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  11. High resolution measurements of methane and carbon dioxide in surface waters over a natural seep reveal dynamics of dissolved phase air-sea flux.

    PubMed

    Du, Mengran; Yvon-Lewis, Shari; Garcia-Tigreros, Fenix; Valentine, David L; Mendes, Stephanie D; Kessler, John D

    2014-09-02

    Marine hydrocarbon seeps are sources of methane and carbon dioxide to the ocean, and potentially to the atmosphere, though the magnitude of the fluxes and dynamics of these systems are poorly defined. To better constrain these variables in natural environments, we conducted the first high-resolution measurements of sea surface methane and carbon dioxide concentrations in the massive natural seep field near Coal Oil Point (COP), California. The corresponding high resolution fluxes were calculated, and the total dissolved phase air-sea fluxes over the surveyed plume area (∼363 km(2)) were 6.66 × 10(4) to 6.71 × 10(4) mol day(-1) with respect to CH4 and -6.01 × 10(5) to -5.99 × 10(5) mol day(-1) with respect to CO2. The mean and standard deviation of the dissolved phase air-sea fluxes of methane and carbon dioxide from the contour gridding analysis were estimated to be 0.18 ± 0.19 and -1.65 ± 1.23 mmol m(-2) day(-1), respectively. This methane flux is consistent with previous, lower-resolution estimates and was used, in part, to conservatively estimate the total area of the dissolved methane plume at 8400 km(2). The influx of carbon dioxide to the surface water refutes the hypothesis that COP seep methane appreciably influences carbon dioxide dynamics. Seeing that the COP seep field is one of the biggest natural seeps, a logical conclusion could be drawn that microbial oxidation of methane from natural seeps is of insufficient magnitude to change the resulting plume area from a sink of atmospheric carbon dioxide to a source.

  12. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  13. Measurement of toxaphene congeners in pooled human serum collected in three U.S. cities using high-resolution mass spectrometry.

    PubMed

    Barr, John R; Woolfitt, Adrian R; Maggio, Vincent L; Patterson, Donald G

    2004-05-01

    Because human toxaphene exposure data are largely lacking, we surveyed human serum pools collected from U.S. residents to determine the feasibility of measuring toxaphene in human samples and to determine whether additional analytical requirements were needed for routine measurement of toxaphene. We report a method for quantification of toxaphene congeners in human serum using a mixed-bed gradient solid-phase extraction and analysis using gas chromatography-high-resolution mass spectrometry with electron-impact ionization. In this method, we monitored low-mass fragment ions that were common to all 22 congeners. To verify the specific congeners detected, we further analyzed the extract using negative methane chemical ionization. We used this method to measure two specific congeners, Parlar 26 and 50, at concentrations ranging from about 3 to 30 pg/ml (0.7-7 ng/g lipid) in pooled human serum collected in Atlanta, Chicago, and Cincinnati. We identified several analytical parameters that must be strengthened to routinely measure toxaphene congeners in human samples.

  14. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer.

    PubMed

    Omote, Kazuhiko

    2010-12-01

    We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.

  15. Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer.

    PubMed

    May, Jody C; Goodwin, Cody R; Lareau, Nichole M; Leaptrot, Katrina L; Morris, Caleb B; Kurulugama, Ruwan T; Mordehai, Alex; Klein, Christian; Barry, William; Darland, Ed; Overney, Gregor; Imatani, Kenneth; Stafford, George C; Fjeldsted, John C; McLean, John A

    2014-02-18

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid "omni-omic" characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field.

  16. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer

    PubMed Central

    2014-01-01

    Ion mobility-mass spectrometry measurements which describe the gas-phase scaling of molecular size and mass are of both fundamental and pragmatic utility. Fundamentally, such measurements expand our understanding of intrinsic intramolecular folding forces in the absence of solvent. Practically, reproducible transport properties, such as gas-phase collision cross-section (CCS), are analytically useful metrics for identification and characterization purposes. Here, we report 594 CCS values obtained in nitrogen drift gas on an electrostatic drift tube ion mobility-mass spectrometry (IM-MS) instrument. The instrument platform is a newly developed prototype incorporating a uniform-field drift tube bracketed by electrodynamic ion funnels and coupled to a high resolution quadrupole time-of-flight mass spectrometer. The CCS values reported here are of high experimental precision (±0.5% or better) and represent four chemically distinct classes of molecules (quaternary ammonium salts, lipids, peptides, and carbohydrates), which enables structural comparisons to be made between molecules of different chemical compositions for the rapid “omni-omic” characterization of complex biological samples. Comparisons made between helium and nitrogen-derived CCS measurements demonstrate that nitrogen CCS values are systematically larger than helium values; however, general separation trends between chemical classes are retained regardless of the drift gas. These results underscore that, for the highest CCS accuracy, care must be exercised when utilizing helium-derived CCS values to calibrate measurements obtained in nitrogen, as is the common practice in the field. PMID:24446877

  17. Linking playa surface dust emission potential to feedbacks between surface moisture and salt crust expansion through high resolution terrestrial laser scanning measurements

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; King, J.; Wiggs, G.

    2012-12-01

    The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks

  18. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  19. Diversification of nanostructure morphology by modifying angle-resolved heterogeneous shadow mask.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Wang, Junfeng; Di, Di; Chen, Jian; Wang, Haoxu

    2013-12-01

    This article presents a facile and generally applicable methodology for the morphology diversification of two-dimensional (2D) nanostructure arrays by modifying angle-resolved heterogeneous shadow mask (AR-HSM). Colloid spheres are used to prepare scalable well-organized monolayer film by self-assembly method and then etched in oxygen plasma to reduce size. Subsequently, the heterogeneous layer is generated by tilted metal deposition technique, then utilized as shadow mask in the substrate etching process, and finally removed by wet etching technique. As a result, the controllable fabrication of a series of complex morphologies, ranging from the crescent structure to the hoof-like structure and the stripes with apexes, is realized. The morphology of the nanostructure array is depend on the profile of the heterogeneous shadow mask (HSM) which is correlated to the incidence angle of the metal vapor. Therefore, a theoretical model is built for the prediction and design of the nanostructure morphology. This AR-HSM aided approach provides a novel and accessible route for the diversification of nanostructure morphology; and can be readily extended to other functional substrates which may be applied in photovoltaic devices or bio-chemical sensors.

  20. Ultrafast electron dynamics in epitaxial graphene investigated with time- and angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulstrup, Søren; Johannsen, Jens Christian; Crepaldi, Alberto; Cilento, Federico; Zacchigna, Michele; Cacho, Cephise; Chapman, Richard T.; Springate, Emma; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Parmigiani, Fulvio; Grioni, Marco; Hofmann, Philip

    2015-04-01

    In order to exploit the intriguing optical properties of graphene it is essential to gain a better understanding of the light-matter interaction in the material on ultrashort timescales. Exciting the Dirac fermions with intense ultrafast laser pulses triggers a series of processes involving interactions between electrons, phonons and impurities. Here we study these interactions in epitaxial graphene supported on silicon carbide (semiconducting) and iridium (metallic) substrates using ultrafast time- and angle-resolved photoemission spectroscopy (TR-ARPES) based on high harmonic generation. For the semiconducting substrate we reveal a complex hot carrier dynamics that manifests itself in an elevated electronic temperature and an increase in linewidth of the π band. By analyzing these effects we are able to disentangle electron relaxation channels in graphene. On the metal substrate this hot carrier dynamics is found to be severely perturbed by the presence of the metal, and we find that the electronic system is much harder to heat up than on the semiconductor due to screening of the laser field by the metal.

  1. Identifying ferroelectric phase and domain structure using angle-resolved piezoresponse force microscopy

    SciTech Connect

    Kim, K. L.; Huber, J. E.

    2014-03-24

    We used angle-resolved piezoresponse force microscopy (AR-PFM), vertical PFM (VPFM), and electron backscatter diffraction (EBSD) to provide a systematic interpretation of domain patterns in polycrystalline, near-morphotropic lead zirconate titanate. This material was used to illustrate the power of AR-PFM methods in resolving complex domain patterns where multiple phases may be present. AR-PFM was carried out with a 30° rotation interval, and the resulting data were analysed to identify the orientation of the underlying axis of piezoelectricity. The additional information provided by AR-PFM was studied, comparing its capabilities to those of 3-dimensional PFM, consisting of one VPFM image and two orthogonal lateral PFM (LPFM) images. We show that, in certain conditions, using AR-PFM can identify the phases present at the sub-grain scale. This was confirmed using VPFM and EBSD data. Furthermore, the method can discriminate laminated domain patterns that appear similar in VPFM and can reliably expose domain patterns that may not be seen in LPFM data from a single orientation, or even in 3D PFM data.

  2. Mapping of ferroelectric domain structure using angle-resolved piezoresponse force microscopy

    SciTech Connect

    Kim, K. L.; Huber, J. E.

    2015-01-15

    Angle-resolved piezoresponse force microscopy (AR-PFM) was used in conjunction with electron backscatter diffraction (EBSD) to study ferroelectric domain structure in polycrystalline near-morphotropic lead zirconate titanate (PZT). We introduce the details of AR-PFM including experimental method, the process to generate AR-PFM maps, and the interpretation of AR-PFM map, using domain patterns observed in bulk PZT. The spatial distortion caused by scanner creep and non-linearity in scanning probe microscopy was corrected through image registration, taking advantage of the features present in topography images. Domain structures were mapped using AR-PFM data, and the maps consistently show alternating piezoresponse axes in a lamellar pattern of non-180° domain structure. Comparison of AR-PFM and EBSD data showed a discrepancy between the direction of lateral surface displacement and the in-plane polarization direction. Additionally, using suitable domain patterns, AR-PFM enabled discrimination between the tetragonal and rhombohedral phases at the sub-grain scale.

  3. Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture.

    PubMed

    Pialat, J B; Burghardt, A J; Sode, M; Link, T M; Majumdar, S

    2012-01-01

    Motion artifacts are a common finding during high-resolution peripheral quantitative computed tomography (HR-pQCT) image acquisitions. To date it is not clear (i) when to repeat an acquisition, (ii) when to exclude a motion-degraded dataset post hoc, and (iii) how motion induced artifacts impact measures of trabecular and cortical parameters. In this study we present inter- and intra-observer reproducibility of a qualitative image quality grading score and report the prevalence of repeat acquisitions in our population. Finally the errors in bone density and micro-architectural parameters estimated from repeat acquisitions with and without motion degradation are presented. The relationship between these errors and the image quality grade is evaluated for each parameter. Repeat acquisitions performed due to operator-observed motion in the reconstructed image occurred for 22.7% of the exams (29.7% radius, 15.7% tibia). Of this subset, 88 exams with repeat acquisitions had at least one acquisition graded 1 (best quality). In this subset, the percent differences in bone density and micro-architecture measures tended to increase as the relative image quality decreased. Micro-architectural parameters were more sensitive to motion compared to geometric and densitometric parameters. These results provide estimates of the error in bone quality measures due to motion artifacts and provide an initial framework for developing standardized quality control criteria for cross-sectional and longitudinal HR-pQCT studies.

  4. Non-contact distance measurement and profilometry using thermal near-field radiation towards a high resolution inspection and metrology solution

    NASA Astrophysics Data System (ADS)

    Bijster, Roy; Sadeghian, Hamed; van Keulen, Fred

    2016-03-01

    Optical near-field technologies such as solid immersion lenses and hyperlenses are candidate solutions for high resolution and high throughput wafer inspection and metrology for the next technology nodes. Besides sub-diffraction limited optical performance, these concepts share the necessity of extreme proximity to the sample at distances that are measured in tens of nanometers. For the instrument this poses two major challenges: 1) how to measure the distance to the sample? and 2) how to position accurately and at high speed? For the first challenge near-field thermal radiation is proposed as a mechanism for an integrated distance sensor (patent pending). This sensor is realized by making a sensitive calorimeter (accuracy of 2:31nW root sum squared). When used for distance measurement an equivalent uncertainty of 1nm can be achieved for distances smaller than 100 nm. By scanning the distance sensor over the sample, thermal profilometry is realized, which can be used to inspect surfaces in a non-intrusive and non-contact way. This reduces wear of the probe and minimizes the likelihood of damaging the sample.

  5. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  6. High resolution time interval counter

    NASA Technical Reports Server (NTRS)

    Zhang, Victor S.; Davis, Dick D.; Lombardi, Michael A.

    1995-01-01

    In recent years, we have developed two types of high resolution, multi-channel time interval counters. In the NIST two-way time transfer MODEM application, the counter is designed for operating primarily in the interrupt-driven mode, with 3 start channels and 3 stop channels. The intended start and stop signals are 1 PPS, although other frequencies can also be applied to start and stop the count. The time interval counters used in the NIST Frequency Measurement and Analysis System are implemented with 7 start channels and 7 stop channels. Four of the 7 start channels are devoted to the frequencies of 1 MHz, 5 MHz or 10 MHz, while triggering signals to all other start and stop channels can range from 1 PPS to 100 kHz. Time interval interpolation plays a key role in achieving the high resolution time interval measurements for both counters. With a 10 MHz time base, both counters demonstrate a single-shot resolution of better than 40 ps, and a stability of better than 5 x 10(exp -12) (sigma(sub chi)(tau)) after self test of 1000 seconds). The maximum rate of time interval measurements (with no dead time) is 1.0 kHz for the counter used in the MODEM application and is 2.0 kHz for the counter used in the Frequency Measurement and Analysis System. The counters are implemented as plug-in units for an AT-compatible personal computer. This configuration provides an efficient way of using a computer not only to control and operate the counters, but also to store and process measured data.

  7. On the Assessment and Uncertainty of Atmospheric Trace Gas Burden Measurements with High Resolution Infrared Solar Occultation Spectra from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Chang, A. Y.; Gunson, M. R.; Abbas, M. M.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; Stiller, G. P.; Zander, R.

    1996-01-01

    The Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument is a high resolution Fourier transform spectrometer that measures atmospheric composition from low Earth orbit with infrared solar occultation sounding in the limb geometry. Following an initial flight in 1985, ATMOS participated in the Atmospheric Laboratory for Applications and Science (ATLAS) 1, 2, and 3 Space Shuttle missions in 1992, 1993, and 1994 yielding a total of 440 occultation measurements over a nine year period. The suite of more than thirty atmospheric trace gases profiled includes CO2, O3, N2O, CH4, H2O, NO, NO2, HNO3, HCl, HF, ClONO2, CCl3F, CCl2F2, CHF2Cl, and N2O5. The analysis method has been revised throughout the mission years culminating in the 'version 2' data set. The spectroscopic error analysis is described in the context of supporting the precision estimates reported with the profiles; in addition, systematic uncertainties assessed from the quality of the spectroscopic database are described and tabulated for comparisons with other experiments.

  8. High-resolution storage-ring measurements of the dissociative recombination of H{sub 3}{sup +} using a supersonic expansion ion source

    SciTech Connect

    Kreckel, Holger; Crabtree, Kyle N.; Tom, Brian A.; Novotny, Oldrich; Lestinsky, Michael; Buhr, Henrik; Petrignani, Annemieke; Berg, Max H.; Bing, Dennis; Grieser, Manfred; Krantz, Claude; Mendes, Mario B.; Nordhorn, Christian; Repnow, Roland; Stuetzel, Julia; Wolf, Andreas; Thomas, Richard D.; McCall, Benjamin J.

    2010-10-15

    We have performed measurements of the dissociative electron recombination (DR) of H{sub 3}{sup +} at the ion storage ring TSR utilizing a supersonic expansion ion source. The ion source has been characterized by continuous wave cavity ring-down spectroscopy. We present high-resolution DR rate coefficients for different nuclear spin modifications of H{sub 3}{sup +} combined with precise fragment imaging studies of the internal excitation of the H{sub 3}{sup +} ions inside the storage ring. The measurements resolve changes in the energy dependence between the ortho-H{sub 3}{sup +} and para-H{sub 3}{sup +} rate coefficients at low center-of-mass collision energies. Analysis of the imaging data indicates that the stored H{sub 3}{sup +} ions may have higher rotational temperatures than previously assumed, most likely due to collisional heating during the extraction of the ions from the ion source. Simulations of the ion extraction shed light on possible origins of the heating process and how to avoid it in future experiments.

  9. A new measure of Δα/α at redshift z = 1.84 from very high resolution spectra of Q 1101-264

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Molaro, P.; Lopez, S.; D'Odorico, S.; Centurión, M.; Bonifacio, P.; Agafonova, I. I.; Reimers, D.

    2007-05-01

    Aims:We probe the evolution of the fine-structure constant α with cosmic time. Methods: Accurate positions of the Fe II lines λ1608, λ2382, and λ2600 are measured in the z_abs = 1.84 absorption system from a high-resolution (FWHM ~ 3.8 km s-1) and high signal-to-noise (S/N ⪆ 100) spectrum of the quasar Q 1101-264 (z_em = 2.15, V = 16.0), integrated for 15.4 h. The Single Ion Differential α Measurement (SIDAM) procedure and the Δ χ2 method are used to set constraints on Δα/α. Results: We have found a relative radial velocity shift between the λ1608 and λλ2382,2600 lines of Δ v = -180 ± 85 m s-1 (both random and systematic errors are included), which, if real, would correspond to Δα/α = (5.4±2.5) × 10-6 (1σ C.L.). Considering the strong implications of a such variability, additional observations with comparable accuracy at redshift z ˜ 1.8 are required to confirm this result. Based on observations performed at the VLT Kueyen telescope (ESO, Paranal, Chile), the ESO programme No. 076.A-0463.

  10. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  11. Spin-orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets.

    PubMed

    Heinzmann, Ulrich; Dil, J Hugo

    2012-05-02

    The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-