Science.gov

Sample records for high-resolution cathodoluminescence spectroscopy

  1. High resolution cathodoluminescence spectroscopy of carbonate cementation in Khurmala Formation (Paleocene-L. Eocene) from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.

    2014-12-01

    A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.

  2. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  3. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots

    NASA Astrophysics Data System (ADS)

    Yoon, Heayoung P.; Lee, Youngmin; Bohn, Christopher D.; Ko, Seung-Hyeon; Gianfrancesco, Anthony G.; Steckel, Jonathan S.; Coe-Sullivan, Seth; Talin, A. Alec; Zhitenev, Nikolai B.

    2013-06-01

    We report a fast, versatile photocurrent imaging technique to visualize the local photo response of solar energy devices and optoelectronics using near-field cathodoluminescence (CL) from a homogeneous quantum dot layer. This approach is quantitatively compared with direct measurements of high-resolution Electron Beam Induced Current (EBIC) using a thin film solar cell (n-CdS / p-CdTe). Qualitatively, the observed image contrast is similar, showing strong enhancement of the carrier collection efficiency at the p-n junction and near the grain boundaries. The spatial resolution of the new technique, termed Q-EBIC (EBIC using quantum dots), is determined by the absorption depth of photons. The results demonstrate a new method for high-resolution, sub-wavelength photocurrent imaging measurement relevant for a wide range of applications.

  4. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.

    PubMed

    Yamamoto, Naoki

    2016-08-01

    A high-resolution cathodoluminescence (CL) system for scanning transmission electron microscope (STEM) has been developed by employing a field emission gun and a spherical aberration corrector, which realizes a probe size of 1 nm even at an accelerating voltage of 80 kV and beam current of the order of 1 nA. Angle resolved measurement of light emission from a sample in the STEM is possible by combining a parabolic mirror and position-controlled pinhole. CL spectra are successively acquired by a highly sensitive charge-coupled device while scanning the incident electron beam or pinhole, which enables various detection modes, i.e. (i) angle resolved spectral pattern, (ii) beam scan spectral image and (iii) photon map. In order to calibrate the acquired spectrum, the correction function is created from the comparison between the observed and theoretical spectra of the transition radiation. Furthermore, the modification of polarization by the parabolic mirror is discussed. Some examples of the applications of the STEM-CL system to plasmonics are presented to demonstrate the unique measurement features of the CL system, i.e. (i) multipole modes in silver nanoparticles, (ii) surface plasmon polariton modes in a 2D plasmonic crystal and (iii) localized surface plasmon modes in a gold bow tie nano-antenna.

  5. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.

    PubMed

    Yamamoto, Naoki

    2016-08-01

    A high-resolution cathodoluminescence (CL) system for scanning transmission electron microscope (STEM) has been developed by employing a field emission gun and a spherical aberration corrector, which realizes a probe size of 1 nm even at an accelerating voltage of 80 kV and beam current of the order of 1 nA. Angle resolved measurement of light emission from a sample in the STEM is possible by combining a parabolic mirror and position-controlled pinhole. CL spectra are successively acquired by a highly sensitive charge-coupled device while scanning the incident electron beam or pinhole, which enables various detection modes, i.e. (i) angle resolved spectral pattern, (ii) beam scan spectral image and (iii) photon map. In order to calibrate the acquired spectrum, the correction function is created from the comparison between the observed and theoretical spectra of the transition radiation. Furthermore, the modification of polarization by the parabolic mirror is discussed. Some examples of the applications of the STEM-CL system to plasmonics are presented to demonstrate the unique measurement features of the CL system, i.e. (i) multipole modes in silver nanoparticles, (ii) surface plasmon polariton modes in a 2D plasmonic crystal and (iii) localized surface plasmon modes in a gold bow tie nano-antenna. PMID:27473259

  6. High Resolution Spectroscopy with Submillimeter-Wave

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Dave, Hemant

    2003-03-01

    In order to explain the characteristic features of planetary atmosphere, detection and precise measurements of environmentally important gases such as CO, CIO, No becomes necessary. Since most of the polyatomic molecules have (ro-vibrational) transitions in submillimeter region 100 μ-1000μ), probing in this wavelength region is vital. The specific rotational and vibrational states are the result of interactions between different atoms in the molecule. Since each molecule has a unique arrangement of atoms, it has an exclusive submillimeter signature. We are developing a portable heterodyne receiver system at Physical Research Laboratory, Ahmedabad to perform high-resolution spectroscopy in this wavelength region.

  7. Comparative Very-High-Resolution VUV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, B. R.; Gibson, S. T.; Baldwin, K. G. H.; Dooley, P. M.; Waring, K.

    Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann-Runge (SR) bands of O2, B3 Σ u- <- X3 Σ_g^- (v, 0) (1750-2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV) radiation for the measurements ( 7 × 105 resolving power) was generated by the two-photon-resonant difference-frequency four-wave mixing in Xe of excimer-pumped dye-laser radiation. With the aid of these cross-section measurements, rovibrational and line-shape analyses have led to new insights into the molecular structure and predissociation dynamics of O2. The current VUV laser-spectroscopic measurements are shown to compare favourably with results from two other very-high-resolution experimental techniques, namely laser-induced fluorescence spectroscopy and VUV Fourier-transform spectroscopy, the latter performed using a synchrotron source.

  8. Nanoscale optical tomography with cathodoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Atre, Ashwin C.; Brenny, Benjamin J. M.; Coenen, Toon; García-Etxarri, Aitzol; Polman, Albert; Dionne, Jennifer A.

    2015-05-01

    Tomography has enabled the characterization of the Earth's interior, visualization of the inner workings of the human brain, and three-dimensional reconstruction of matter at the atomic scale. However, tomographic techniques that rely on optical excitation or detection are generally limited in their resolution by diffraction. Here, we introduce a tomographic technique—cathodoluminescence spectroscopic tomography—to probe optical properties in three dimensions with nanometre-scale spatial and spectral resolution. We first obtain two-dimensional cathodoluminescence maps of a three-dimensional nanostructure at various orientations. We then use the method of filtered back-projection to reconstruct the cathodoluminescence intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. The experimental signal can be further correlated with the radiative local density of optical states in particular regions of the reconstruction. We demonstrate how cathodoluminescence tomography can be used to achieve nanoscale three-dimensional visualization of light-matter interactions by reconstructing a three-dimensional metal-dielectric nanoresonator.

  9. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  10. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  11. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  12. Fabrication and Cathodoluminescence Spectroscopy of Optical Nanostructures

    NASA Astrophysics Data System (ADS)

    Redinbo, Gregory Finley

    1995-01-01

    This thesis presents the fabrication of buried optical nanostructures in III-V materials by modifying semiconductor quantum wells using an implantation enhanced interdiffusion (IEI) technique. An investigation of the effect of fabrication parameters on the resulting nanostructures is carried out, and the characteristics of the fabricated structures are measured using room temperature and low temperature cathodoluminescence (CL). IEI using protons is reported for the first time in this work and is found to increase the diffusion length of Al in GaAs/AlGaAs single quantum wells. The enhanced diffusion lengths compare favorably to Ga^ {+} IEI studies and the enhanced interdiffusion mechanism is determined to be due to implantation generated point defects. The use of H^{+} IEI for laterally patterning 100-nm optical nanostructures is demonstrated and is found to be limited by the lateral straggle of the light ions during implantation. Optical quantum wires with widths down to 40 nm are fabricated using low energy Ga^{+ } and electron beam lithography generated metal masks on GaAs/AlGaAs quantum wells. Single nanostructures are measured with low temperature CL, and an increasing blue shift of wire emission with decreasing mask size is measured. The lateral extent of intermixing is found to be 30 nm, independent of Ga^{+} implantation energy. Based on a model of emission energy shift, a lateral quantization energy of ~3 meV for carriers is achieved in these structures. Optical nanostructures are also fabricated with direct write IEI using a Ga^{+ } focused ion beam (FIB) and are compared to the quantum wires. A larger effective lateral extent of intermixing of 200 nm is found with the FIB. IEI patterning of strained InGaAs/GaAs quantum wells is demonstrated and a model of the resulting lateral bandgap profile leads to a lateral defect diffusion length of ~1 mum. Strain enhanced lateral diffusion of defects during IEI cause this length to be substantially larger than that

  13. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  14. A high-resolution Fourier Transform Spectrometer for planetary spectroscopy

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Sinton, W. M.

    1973-01-01

    The employment of a high-resolution Fourier Transform Spectrometer (FTS) is described for planetary and other astronomical spectroscopy in conjunction with the 88-inch telescope at Mauna Kea Observatory. The FTS system is designed for a broad range of uses, including double-beam laboratory spectroscopy, infrared gas chromatography, and nuclear magnetic resonance spectroscopy. The data system is well-suited to astronomical applications because of its great speed in acquiring and transforming data, and because of the enormous storage capability of the magnetic tape unit supplied with the system. The basic instrument is outlined 2nd some of the initial results from the first attempted use on the Mauna Kea 88-inch telescope are reported.

  15. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  16. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  17. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  18. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  19. Quantum cascade laser linewidth investigations for high resolution photoacoustic spectroscopy.

    PubMed

    Germer, Markus; Wolff, Marcus

    2009-02-01

    High detection selectivity is extremely important for gas analyzers in order to correctly identify the measured compound. Therefore, laser-based systems require a high optical resolution, which primarily depends on the spectral linewidth of the radiation source. This study examines the effective linewidth (chirp) of a pulsed distributed feedback (DFB) quantum cascade laser (QCL) in a photoacoustic (PA) gas detection system. The influence of the QCL operating parameters pulse duration and pulse current as well as the impact of the modulation technique are investigated. Effective QCL linewidths for pulse gate modulation, pulse frequency modulation, and chopper modulation are compared. The investigations are performed by measuring the PA spectra of nitrogen monoxide absorption lines. The results prove the strong influence of pulse duration and pulse current. They also demonstrate that the modulation technique has a considerable influence and, consequently, affects the detection selectivity of the PA analyzer. The aim of this research is to determine optimum operational parameters for high resolution PA spectroscopy.

  20. High resolution spectroscopy of sulfur trioxide and carbon suboxide

    NASA Astrophysics Data System (ADS)

    Masiello, Tony

    High resolution spectroscopy was used to study the properties of two simple polyatomic molecules, sulfur trioxide, SO3, and carbon suboxide, C3O2. The fundamental modes and several hot bands of the 18O isotopic forms of SO3 (32S18O 3 and 34S18O3) have been investigated using both infrared spectroscopy and coherent anti-Stokes Raman scattering spectroscopy (CARS). The Raman-active symmetric stretching mode, nu 1, shows complex Q-branch patterns due to indirect Coriolis couplings, l-resonances, and Fermi resonances with infrared inaccessible nu2, nu4 combination/overtone levels. 18O isotopic substitution changes the character of these interactions in such a way that their effect on the nu1 CARS spectrum is unique among the different isotopomers studied. Accurate rovibrational constants are determined for all of the mixed states for the first time, leading to deperturbed values for the nu1 band origin of 1004.661(24) and 1004.693(23) for 34S18O 3 and 32S18O3 respectively. The strong Coriolis coupling is very noticeable in these species due to the close proximity of the nu2 and nu4 fundamental vibrations. The effect that this and other interaction terms have on the nu1 CARS spectrum of 34S18O3 is examined by selectively turning off the coupling between the hot bands. A global force field analysis was performed with the fundamental frequency values of all of the isotopomers studied that revealed a counterintuitive trend in the bond lengths between sulfur oxide species. In addition, band center frequencies for all the mixed 16O-18O isotopic species are computed. High-resolution CARS Spectroscopy was also used to study the nu 1 symmetric CO stretching mode of the quasi-linear molecule carbon suboxide, C3O2. Q-branches are seen that originate from the ground state and from thermally-populated levels of the unusually low frequency nu7 bending mode. The intensity variation of these on cooling to about 110 K in a jet expansion requires reversal of the order of assignment

  1. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  2. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  3. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  4. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    SciTech Connect

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-06-15

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  5. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  6. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  7. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  8. Johann Spectrometer for High Resolution X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Machek, Pavel; Welter, Edmund; Caliebe, Wolfgang; Brüggmann, Ulf; Dräger, Günter; Fröba, Michael

    2007-01-01

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 μm thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5×1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  9. High-resolution tunnelling spectroscopy of a graphene quartet.

    PubMed

    Song, Young Jae; Otte, Alexander F; Kuk, Young; Hu, Yike; Torrance, David B; First, Phillip N; de Heer, Walt A; Min, Hongki; Adam, Shaffique; Stiles, Mark D; MacDonald, Allan H; Stroscio, Joseph A

    2010-09-01

    Electrons in a single sheet of graphene behave quite differently from those in traditional two-dimensional electron systems. Like massless relativistic particles, they have linear dispersion and chiral eigenstates. Furthermore, two sets of electrons centred at different points in reciprocal space ('valleys') have this dispersion, giving rise to valley degeneracy. The symmetry between valleys, together with spin symmetry, leads to a fourfold quartet degeneracy of the Landau levels, observed as peaks in the density of states produced by an applied magnetic field. Recent electron transport measurements have observed the lifting of the fourfold degeneracy in very large applied magnetic fields, separating the quartet into integer and, more recently, fractional levels. The exact nature of the broken-symmetry states that form within the Landau levels and lift these degeneracies is unclear at present and is a topic of intense theoretical debate. Here we study the detailed features of the four quantum states that make up a degenerate graphene Landau level. We use high-resolution scanning tunnelling spectroscopy at temperatures as low as 10 mK in an applied magnetic field to study the top layer of multilayer epitaxial graphene. When the Fermi level lies inside the fourfold Landau manifold, significant electron correlation effects result in an enhanced valley splitting for even filling factors, and an enhanced electron spin splitting for odd filling factors. Most unexpectedly, we observe states with Landau level filling factors of 7/2, 9/2 and 11/2, suggestive of new many-body states in graphene.

  10. High-resolution optical spectroscopy of Plaskett's star

    NASA Astrophysics Data System (ADS)

    Linder, N.; Rauw, G.; Martins, F.; Sana, H.; De Becker, M.; Gosset, E.

    2008-10-01

    Context: Plaskett's star (HD 47 129) is a very massive O + O binary that belongs to the Mon OB2 association. Previous work suggests that this system displays the Struve-Sahade effect although the measurements of the secondary radial velocities are very difficult and give controversial results. Both components have powerful stellar winds that collide and produce a strong X-ray emission. Aims: Our aim is to study the physical parameters of this system in detail and to investigate the relation between its spectral properties and its evolutionary status. Methods: We present here analysis of an extensive set of high-resolution optical spectra of HD 47 129. We used a disentangling method to separate the individual spectra of each star. We derived a new orbital solution and discuss the spectral classification of both components. A Doppler tomography technique applied to the emission lines Hα and He II λ 4686 yields a Doppler map that illustrates the wind interactions in the system. Finally, an atmosphere code is used to determine the different chemical abundances of the system components and the wind parameters. Results: HD 47 129 appears to be an O8 III/I + O7.5 III binary system in a post RLOF evolutionary stage, where matter has been transferred from the primary to the secondary star. The He overabundance of the secondary supports this scenario. In addition, the N overabundance and C underabundance of the primary component confirm previous results based on X-ray spectroscopy and indicate that the primary is an evolved massive star. We also determined a new orbital solution, with MP sin^3i = 45.4 ± 2.4 M⊙ and MS sin^3i = 47.3 ± 0.3 M⊙. Furthermore, the secondary star has a high rotational velocity (v sin i ˜ 300 km s-1) that deforms its surface, leading to a non-uniform distribution in effective temperature. This could explain the variations in the equivalent widths of the secondary lines with phase. We suggest that the wind of the secondary star is confined

  11. High Resolution Spectroscopy of the Quantum Hall Liquid

    NASA Astrophysics Data System (ADS)

    Dial, Oliver

    2008-03-01

    We present precise and unprecedentedly high resolution spectra of the tunneling density of states (TDOS) of a cold two dimensional electron system (2DES) in GaAs over an energy range from 15 meV above to 15 meV below the Fermi surface. The results provide the first direct measurements of the width of the single-particle exchange gap and lifetimes in the quantum Hall system. At higher energies, we show the first observations of exchange-induced spin-splittings in fully filled or unfilled Landau levels not at the Fermi energy. The results demonstrate a counter-intuitive fact: the high energy spectrum reflects correlations that only appear at very low temperatures. For instance, upon raising the temperature from 100 mK (0.01 meV) to 1 K (0.1 meV) changes are seen in the spectrum at 10 meV away from the Fermi energy. Along with measurements of exchange splittings and lifetimes, we observe an unpredicted new structure appearing only at high magnetic fields and low temperatures that appears to be a long lived quasi-particle. The results are made possible by a novel technique, time domain capacitance spectroscopy. It allows us to measure the TDOS of a 2DES with resolution only limited by temperature, even at large tunneling energies. In TDCS, sharp voltage pulses disequilibrate a 2DES from a nearby metallic contact inducing a tunnel current perpendicular to the plane of the 2DES. We detect this current by monitoring the image charge of the tunneling electrons on a distant electrode. No ohmic contact to the 2DES is required. The technique works even when the 2DES is empty or has vanishing in-plane conductivity, as frequently occurs in the quantum Hall effect. Importantly, we can eliminate the effects of ohmic heating in the experiment by using short duty cycle pulses, with currents flowing only 0.01% of the time. The obtained spectra reveal the beautiful and difficult to reach structure present far from the Fermi surface in the quantum Hall system.

  12. High Resolution EUV & FUV Spectroscopy of DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.; Good, S. A.; Bannister, N. P.; Burleigh, M. R.; Holberg, J. B.; Bruhweiler, F. C.; Napiwotzki, R.; Cruddace, R. G.; Kowalski, M. P.

    We report on recent results from a high-resolution spectroscopic survey of hot DA white dwarfs, based on IUE, FUSE and HST observations. For the first time, we address the measurement of element abundances in a completely objective manner with a spectroscopic model fitting technique, which allows us to consider formally the limits that can be placed on abundances in stars where no heavy elements are detected. We also include our latest analysis of the high resolution EUV spectrum of G191-B2B recorded by J-PEX.

  13. High-Resolution Spectroscopy of Some Very Inactive Southern Stars

    NASA Astrophysics Data System (ADS)

    Villarreal, A.; King, J. R.; Soderblom, D. R.; Henry, T. J.

    2001-12-01

    We have obtained high-resolution echelle spectra of a few dozen solar-type stars that an earlier low resolution Ca II H & K survey suggested have modest evels of chromospheric activity. We present Hα -based chromospheric activity measures, binarity information, and Li abundances of the sample. As expected, our spectra: confirm the low levels of chromospheric activity; suggest that these objects are apparently single; indicate the stars have small projected rotational velocities; and yield low photospheric abundances of Li. This work was supported by NSF grant AST-0086576 to JRK.

  14. Measurement of stratospheric HBr using high resolution far infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Carlotti, M.; Ade, P. A. R.; Carli, B.; Ciarpallini, P.; Cortesi, U.; Griffin, M. J.; Lepri, G.; Mencaraglia, F.; Murray, A. G.; Nolt, I. G.; Park, J. H.; Radostitz, J. V.

    Far infrared spectral features of HBr have been observed in the stratospheric emission spectrum using a balloon borne high resolution Fourier transform spectrometer equipped with a high sensitivity detector specially designed for this purpose. The value of 1.6±0.6 parts per trillion in volume for the HBr mixing ratio has been retrieved, from the global-fit analysis of 121 spectra, in the 25-36.5 km altitude range. The result is briefly compared with models and previous assessments.

  15. High Resolution Spectroscopy and Imaging of Hot Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Cruddace, R. G.; Gursky, H.; Yentis, D. J.; Barbee, T. W., Jr.; Goldstein, W. H.; Kordas, J. F.; Fritz, G. G.; Barstow, M. A.; Bannister, N. P.; Lapington, J. S.

    2001-12-01

    Future X-ray and EUV missions should include high-resolution spectrometers, permitting use of the full range of spectroscopic diagnostics, in particular measurement of line profiles and Doppler shifts. We present a design for such an instrument (APEX), which would fly on a Small Explorer Satellite and which employs multilayer-coated ion-etched gratings in a normal-incidence configuration. We have already flown successfully a prototype spectrometer (J-PEX) on a NASA sounding rocket. The resulting EUV spectrum of the white dwarf G191-B2B will be presented.

  16. High-Resolution Molecular Spectroscopy in Tomsk: Establishment, Development, and Current Status

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Perevalov, V. I.; Ponomarev, Yu. N.; Sinitsa, L. N.; Cherepanov, V. N.

    2016-08-01

    The paper presents brief information about the establishment and development in Tomsk of high-resolution molecular spectroscopy - the field of science closely related to a study of the optical properties of the atmosphere. The methods and the current state of high-resolution laser spectroscopy and Fourier spectroscopy are described together with new results of mass measurements. The developed theoretical methods for a study of molecular spectra, including methods of their global analysis and information systems of spectral databases, are presented.

  17. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Coenen, Toon; Schoen, David T.; Brenny, Benjamin J. M.; Polman, Albert; Brongersma, Mark L.

    2016-05-01

    We systematically investigate the plasmonic "dolmen" geometry and its constituent elements using electron energy-loss spectroscopy and cathodoluminescence spectroscopy. In particular, we study the effects of the particle size and spacing on the resonant behavior and interparticle coupling. Because we apply both techniques on the same structures we can directly compare the results and investigate the radiative versus nonradiative character of the different modes. We find that the cathodoluminescence response is significantly lower than the electron energy-loss response for higher-energy modes because strong absorption reduces the scattering efficiency in this regime. Furthermore, we show that the overall resonant response roughly scales with size as expected for plasmonic structures but that the transverse resonant modes do become more dominant in larger structures due to a relative reduction in Ohmic dissipation. Using EELS and CL we can rigorously study coupling between the elements and show that the coupling diminishes for larger spacings.

  18. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  19. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  20. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  1. High Resolution X-ray Spectroscopy of SN 1006

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2005-06-01

    I discuss the high resolution XMM-Newton Reflection Grating Spectrometer (RGS) spectrum of SN 1006. SN 1006 is one of the best examples of a supernova remnant that is far out of ionization equilibrium. Moreover, optical, UV and X-ray data indicate that it is also out of temperature equilibrium. I discuss the X-ray evidence for this. In addition I discuss the lower resolution RGS spectrum of the eastern rim of SN 1006. Despite the lower resolution, the spectrum contains significant evidence for an asymmetric expansion velocity. Two likely solutions fit the O VII triplet. One with no significant thermal broadening and a shell velocity of ~ 6500 km s-1, and one with significant broadening and a shell velocity of 9500 km s -1. The first solution seems the most plausible, as it is consistent with radio expansion measurements, which suggests a decelerated shell.

  2. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  3. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  4. High-resolution near-infrared spectroscopy of water dimer

    NASA Technical Reports Server (NTRS)

    Huang, Z. S.; Miller, R. E.

    1989-01-01

    High-resolution near-infrared spectra are reported for all of the O-H stretch vibrational bands of the water dimer. The four O-H vibrations are characterized as essentially independent proton-donor or proton-acceptor motions. In addition to the rotational and vibrational information contained in these spectra, details are obtained concerning the internal tunneling dynamics in both the ground and excited vibrational states. These results show that, for tunneling motions which involve the interchange of the proton donor and acceptor molecules, the associated frequencies decrease substantially due to vibrational excitation. The predissociation lifetimes for the various states of the dimer are determined from linewidth measurements. These results clearly show that the predissociation dynamics is strongly dependent on the tunneling states, as well as the Ka quantum number, indicating that the internal tunneling dynamics plays an important role in determining the dissociation rate in this complex.

  5. MAGELLAN: High resolution spectroscopy at FUV and EUV wavelengths

    NASA Technical Reports Server (NTRS)

    Grewing, M.; Alighieri, S. D.; Burton, W.; Coleman, C. I.; Hoekstra, R.; Jamar, C.; Labeque, A.; Laurent, C.; Vidal-Madjar, A.; Rafanelli, P.

    1982-01-01

    The aim of ESA's MAGELLAN mission is to provide high resolution spectra of celestial sources down to sixteenth magnitude over the extreme ultraviolet wavelength range (between 50 and 140 nm). This range extends from studies of interstellar matter in the disc and halo of this and other galaxies, to stellar envelopes, hot and evolved stars, clusters, intergalactic matter, nuclei of galaxies, quasars, and, finally, planets and satellites. The instrument has a nonconventional optical design using only one reflecting surface; a high groove density concave grating collects the star light, diffracts it and focuses its spectrum into a bidimensional windowless detector operated in a photon counting mode. The slitless configuration provides the spectra of all the sources (point like and extended) in the field of view of the grating. This field of view is limited by a grid collimator to reduce the diffuse background, the stray light and the probability of overlapping spectra in crowded fields.

  6. High-Resolution Photoelectron Spectroscopy of 2-BUTYNE

    NASA Astrophysics Data System (ADS)

    Jacovella, Ugo; Gans, Berenger; Merkt, Frederic

    2013-06-01

    Using a coherent narrow-band vacuum-ultraviolet (VUV) laser source (bandwitdh of 0.008 cm^{-1}) coupled to a photoionization and pulse-field-ionization zero-kinetic-energy photoelectron (PFI-ZEKE) spectrometer, the threshold photoionization of polyatomic molecules can be studied at high resolution. We present a new measurement of the PFI-ZEKE photoelectron spectrum of the origin band of the X^+ ^2E_{2(d)} ← X ^1{A}_{1(s)} ionizing transition of 2-butyne at a resolution of 0.15 cm^{-1}. Despite this high resolution, the spectral congestion originating from the combined effects of the internal rotation, the spin-orbit coupling and the Jahn-Teller effect prevented the full resolution of the rotational structure of the photoelectron spectrum. Combined with the known structure of the X ^1A_{1(s)} ground state of 2-butyne, including the free internal rotation, the spectrum was used to derive information on the X^+ ^2E_{2(d)} ground state of the 2-butyne radical cation. The rotational branch structure of the spectrum points at a complex energy-level structure of the cation and at the importance of a shape resonance enhancing g photoelectron partial waves. U. Hollenstein, H. Palm, and F. Merkt, Rev. Sci. Instrum. 71, 4023 (2000). H. C. Longuet-Higgins Mol. Phys. 6, 445 (1963). J. T. Hougen J. Chem. Phys. 37, 1433 (1962). P. R. Bunker Mol. Phys. 8, 81 (1964). H. Xu, U. Jacovella, B. Ruscic, S. T. Pratt and R. R. Lucchese J. Chem. Phys. 136, 154303 (2012).

  7. Understanding reconstructed Dante spectra using high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  8. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  9. High Resolution Electron Spectroscopy with Time-of-Flight Spectrometers

    NASA Astrophysics Data System (ADS)

    Krässig, Bertold; Kanter, Elliot P.

    2015-05-01

    We have developed a parametrization based on ray-tracing calculations to convert electron time-of-flight (eTOF) to kinetic energy for the spectrometers of the LCLS-AMO end station at SLAC National Accelerator Laboratory. During the experiments the eTOF detector signals are recorded as digitized waveforms for every shot of the accelerator. With our parameterization we can analyze the waveforms on-line and convert detector hit times to kinetic energies. In this way we accumulate histograms with equally spaced bins in energy directly, rather than a posteriori converting an accumulated histogram of equally spaced flight times into a histogram of kinetic energies with unequal bin sizes. The parametrization is, of course, not a perfect replica of the ray tracing results, and the ray tracing is based on nominal dimensions, perfect alignment, detector response, and knowledge of time zero for the time-of-flight. In this presentation we will discuss causes, effects, and remedies for the observed deviations. We will present high-resolution results for the Ne KLL Auger spectrum that has been well studied and serves as a benchmark for our analysis algorithm. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division by the Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Contract No. DE-AC02-06CH11357.

  10. High Resolution γ-Ray Spectroscopy: the First 85 Years.

    PubMed

    Deslattes, R D

    2000-01-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear γ rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). My perspective is that of an instrumentalist hoping to convey a sense of our intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and inter-atomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting γ-ray wavelengths with optical wavelengths associated with the Rydberg constant that only recently has allowed γ-ray data to contribute to determination of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  11. Exploring conical intersections through high resolution photofragment translational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ashfold, Michael

    2007-03-01

    High resolution measurements of the kinetic energies of H atom fragments formed during UV photolysis of gas phase imidazole, [1,2] pyrrole, [3] phenol [4] and thiophenol molecules show that: (i) X-H (X = N, O, S) bond fission is an important non-radiative decay process from the ^1πσ* excited states in each of these molecules, and (ii) that the respective co-fragments (imidazolyl, pyrrolyl, phenoxyl and thiophenoxyl) are formed in very limited sub-sets of their available vibrational states. Identification of these product states yields uniquely detailed insights into the vibronic couplings involved in the photo-induced evolution from parent molecule to ultimate fragments. [1] M.N.R. Ashfold, B. Cronin, A.L. Devine, R.N. Dixon and M.G.D. Nix, Science (2006), 312, 1637. [2] A.L. Devine, B. Cronin, M.G.D. Nix and M.N.R. Ashfold, J. Chem. Phys. (in press). [3] B. Cronin, M.G.D. Nix, R.H. Qadiri and M.N.R. Ashfold, Phys. Chem. Chem. Phys. (2004), 6, 5031. [4] M.G.D. Nix, A.L. Devine, B. Cronin, R.N. Dixon and M.N.R. Ashfold, J. Chem. Phys. (2006), 125, 133318.

  12. High Resolution Laser Spectroscopy of SrOCH_3

    NASA Astrophysics Data System (ADS)

    Forthomme, D.; Linton, C.; Tokaryk, D. W.; Adam, A. G.; Granger, A. D.; Downie, L. E.; Hopkins, W. S.

    2011-06-01

    The tilde{A}2E-tilde{X}2A_1 transition of SrOCH_3 was first studied at high resolution by O'Brien et al.footnote{L. C. O'Brien, C. R. Brazier and P. F. Bernath, J. Mol. Spectrosc. 130 (1988) 33-45} using a Broida oven. However lines with typically J≤20 were not observed and congestion prevented them from resolving transitions from the Ω=1/2 component of the upper state. We have studied the tilde{B}2A_1-tilde{X}2A_1 and the tilde{A}2E-tilde{X}2A_1 transitions of SrOCH_3 in a laser ablation molecular jet source, where jet cooling and low Doppler widths greatly simplified the spectra. An optical-optical double resonance technique facilitated definite assignments in a number of the transitions observed. Our analysis of the tilde{A}2E-tilde{X}2A_1 transition was straightforward, but a perturbation was observed in the tilde{B}2A_1 K'=1 F_2 levels. A satisfactory fit was achieved for the tilde{B}2A_1-tilde{X}2A_1 transition when a separate B parameter was used to fit the perturbed levels.

  13. High resolution {gamma}-ray spectroscopy: The first 85 years

    SciTech Connect

    Deslattes, R.D.

    2000-02-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear {gamma} rays from its 1914 beginning in Rutherford's laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). The authors perspective is that of an instrumentalist hoping to convey a sense of intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and interatomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting {gamma}-ray wavelengths with optical wave-lengths associated with the Rydberg constant that only recently has allowed {gamma}-ray data to contribute to determine of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop.

  14. High resolution photoelectron spectroscopy of clusters of Group V elements

    SciTech Connect

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580{angstrom}) photoelectron spectra of As{sub 2}, As{sub 4}, and P{sub 4} were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the {sup 2}E and {sup 2}T{sub 2} states of P{sub 4}{sup +} and As{sub 4}{sup +}. As a result of the Jahn-Teller effect, the {sup 2}E state splits into two bands, and the {sup 2}T{sub 2} state splits into three bands, in combination with the spin-orbit effect. It was observed that the {nu}{sub 2} normal vibrational mode was involved in the vibronic interaction of the {sup 2}E state, while both the {nu}{sub 2} and {nu}{sub 3} modes were active in the {sup 2}T{sub 2} state. 26 refs., 5 figs., 3 tabs.

  15. High-Resolution EUV Spectroscopy of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  16. Applications of high-resolution solid-state NMR spectroscopy in food science.

    PubMed

    Bertocchi, Fabio; Paci, Maurizio

    2008-10-22

    The principal applications of high-resolution solid-state NMR spectroscopy, in the field of food science, are reviewed, after a short general introduction, mainly focusing on the potential of these investigations, which are, today, routine tools for resolving technological problems. Selected examples of the applications in the field of food science of high-resolution solid-state NMR spectroscopy both in (13)C and in (1)H NMR particularly illustrative of the results obtainable are reported in some detail.

  17. High Resolution Infrared Spectroscopy of [1.1.1] Propellane

    SciTech Connect

    Kirkpatrick, Robynne W.; Masiello, Tony; Jariyasopit, Narumol; Weber, Alfons; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Hubler, Timothy L.

    2008-01-08

    The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm-1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals v9(e'), v10(e'), v12(e'), v14(a2''), v15(a2''), as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state difference values. Analysis of these gave for the parameters of the ground state the following values, in cm-1: B0 = 0.28755833(14), DJ = 1.1313(5)x10-7, DJK = -1.2633(7)x10-7, HJ = 0.72(4)x10-13, HJK = -2.24(13)x10-13, and HKJ = 2.25(15)x10-13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.

  18. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  19. High Resolution Λ Hypernuclear Spectroscopy with Electron Beams

    NASA Astrophysics Data System (ADS)

    Gogami, T.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Baturin, P.; Badui, R.; Boeglin, W.; Bono, J.; Brash, E.; Carter, P.; Chen, C.; Chiba, A.; Christy, E.; Danagoulian, S.; De Leo, R.; Doi, D.; Elaasar, M.; Ent, R.; Fujii, Y.; Fujita, M.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Hashimoto, O.; Horn, T.; Hu, B.; Hungerford, Ed. V.; Jones, M.; Kanda, H.; Kaneta, M.; Kato, S.; Kawai, M.; Kawama, D.; Khanal, H.; Kohl, M.; Liyanage, A.; Luo, W.; Maeda, K.; Margaryan, A.; Markowitz, P.; Maruta, T.; Matsumura, A.; Maxwell, V.; Mkrtchyan, A.; Mkrtchyan, H.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman; Okayasu, Y.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Reinhold, J.; Rodriguez, V. M.; Samanta, C.; Sawatzky, B.; Seva, T.; Shichijo, A.; Tadevosyan, V.; Tang, L.; Taniya, N.; Tsukada, K.; Veilleux, M.; Vulcan, W.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Ya, L.; Ye, Z.; Yokota, K.; Yuan, L.; Zhamkochyan, S.; Zhu, L.

    JLab E05-115 which is an experiment for Λ hypernuclear spectroscopy with electron beams was carried out at Jefferson Lab (JLab) in 2009. In the experiment, Λ 7He, Λ 9Li, Λ 10Be, Λ 12B and Λ 52V were measured by new magnetic spectrometer systems (SPL+HES+HKS) which were necessary for spectroscopy with high energy resolution of sub-MeV (FWHM). This is the first attempt to measure a Λ hypernucleus with up to medium-heavy mass region by the (e,e' K + ) reaction, overcoming high rate and high multiplicity conditions due to electromagnetic background particles. An overview of the hypernuclear experiments at JLab Hall-C and preliminary binding energy spectrum of Λ 10Be are shown.

  20. High resolution photoionisation spectroscopy of vibrationally excited Ar · NO

    NASA Astrophysics Data System (ADS)

    Monti, O. L. A.; Cruse, H. A.; Softley, T. P.; Mackenzie, S. R.

    2001-01-01

    Mass-analysed threshold ionisation (MATI) spectra of the Ar · NO complex have been obtained for the first time. These spectra have been used to determine unambiguously the nature of three bands detected by resonance-enhanced multiphoton ionisation (REMPI) spectroscopy via the à state of Ar · NO. The features are shown to originate from vibrationally excited states of Ar · NO in its electronic ground state. The assignment is in agreement with recent theoretical calculations.

  1. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  2. Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the

  3. High-Resolution Waveguide THz Spectroscopy of Biological Molecules☆

    PubMed Central

    Laman, N.; Harsha, S. Sree; Grischkowsky, D.; Melinger, Joseph S.

    2008-01-01

    Abstract Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules. PMID:17933879

  4. High resolution hypernuclear spectroscopy at Jefferson Lab Hall A

    NASA Astrophysics Data System (ADS)

    Garibaldi, F.; Bydžovský, P.; Cisbani, E.; Cusanno, F.; De Leo, R.; Frullani, S.; Iodice, M.; LeRose, J. J.; Markowitz, P.; Millener, D. J.; Urciuoli, G. M.

    2013-09-01

    The characteristics of the Jefferson Lab electron beam, together with those of the experimental equipment, offer a unique opportunity to study hypernuclear spectroscopy via electromagnetic induced (e,e‧K+) reactions. Experiment 94-107 started a systematic study on 1p-shell targets, C12, Be9 and O16. For C12 for the first time measurable strength in the core-excited part of the spectrum between the ground state and the p state was shown in the BΛ12 spectrum. For O16 a high-quality NΛ16 spectrum was produced for the first time with sub-MeV energy resolution. A very precise Λ binding energy value for NΛ16, calibrated against the elementary (e,e‧K+) reaction on hydrogen, has also been obtained. Preliminary data on the LiΛ9 spectrum shows some disagreement in strength for the second and third doublet with respect to the theory.

  5. High resolution ion Doppler spectroscopy at Prairie View Rotamak

    SciTech Connect

    Houshmandyar, Saeid; Yang Xiaokang; Magee, Richard

    2012-10-15

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show {approx}130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  6. High resolution gamma-ray spectroscopy at GANIL

    SciTech Connect

    France, G. de

    2014-11-11

    Gamma-ray spectroscopy is intensively used at GANIL to measure low lying states in exotic nuclei on the neutron-rich as well as on the neutron-deficient side of the nuclear chart. On the neutron deficient border, gamma-rays have been observed for the first time in {sup 92}Pd. The level scheme which could be established points to the role of isoscalar pairing. On the neutron rich side, the lifetime of excited states in nuclei around {sup 68}Ni have been been measured using the plunger technique. This allows us to study the evolution of collectivity in a broad range of nuclei. In 2014 GANIL will host the AGATA array for a campaign of at least 2 years. This array is based on the gamma-ray tracking technique, which allows an impressive gain in resolving power.

  7. High resolution ion Doppler spectroscopy at Prairie View Rotamak.

    PubMed

    Houshmandyar, Saeid; Yang, Xiaokang; Magee, Richard

    2012-10-01

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show ~130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  8. High-resolution rotational spectroscopy of iminosilylene, HNSi

    NASA Astrophysics Data System (ADS)

    McCarthy, M. C.; Tamassia, F.; Thorwirth, S.

    2015-08-01

    By means of Fourier transform microwave spectroscopy of a supersonic beam, the fundamental rotational transition of isotopic and vibrationally excited iminosilylene, HNSi, has been detected. In addition to seven isotopic species, vibrational satellite transitions from more than 30 vibrationally excited states, including the three fundamental modes, have been detected. Those from ν2 are particularly intense, enabling detection of transitions from as high as (0,220,0) (i.e. ∼10,000 cm-1 above ground). At high spectral resolution, well-resolved nitrogen quadrupole structure has been observed in nearly every transition. Excitation of ν1 or ν3 changes eQq(N) little, but eQq(N) systematically decreases with increasing excitation of the ν2 bend, from a value of 0.376(5) MHz for (0,00,0) to -2.257(5) MHz for (0,200,0). With the large amount of new data in hand, it has also been possible to determine the leading vibration-rotation constants (αi and γi) for ν2 or ν3 to high precision, and derive a revised semi-empirical equilibrium structure for this fundamental triatomic molecule. Various electronic and molecular properties of iminosilylene have been calculated at the coupled cluster level of theory, and these generally agree well with experiment and previous calculations. An unsuccessful search for HSiN, a highly polar isomer calculated to lie nearly 3 eV above HNSi, is also reported.

  9. Ultra-high resolution spectroscopy of optical frequency combs

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Preußler, Stefan

    2016-03-01

    The precision, versatility and broad bandwidth of frequency combs are the basis of many different applications from the microwave via the millimeter and THz up to the optical range of the electromagnetic spectrum. Optical frequency combs can be used for the new definition of physical constants, for high-precision metrology and spectroscopy and for ultrahigh bitrate data communications, for instance. Besides the stability and the bandwidth, the most important parameters of a frequency comb are the free spectral range ,as well as the linewidth and amplitude of the single comb lines. A conventional grating based optical spectrometer can easily measure the bandwidth of the comb. However, it fails for the measurement of all other comb parameters, if the comb is generated by a mode-locked fiber laser for instance. Here we present a proof-of-concept setup for an optical spectrometer with a resolution in the kHz-range and first measurements of the free spectral range, linewidth and amplitude of a comb source. The spectrometer is based on the combination of optical heterodyning with the polarization pulling effect of stimulated Brillouin scattering. As we will discuss, the maximum possible resolution is only restricted by the linewidth and stability of the used reference laser. Thus due to the stability of our laser used as local oscillator, our setup has a maximum resolution of around 5 kHz or 40 attometer, corresponding to 11 orders of magnitude compared to the center frequency of the comb of around 190 THz.

  10. High resolution FTIR spectroscopy of the ClO radical

    NASA Technical Reports Server (NTRS)

    Lang, Valerie; Sander, Stanley P.; Friedl, Randy

    1988-01-01

    The chlorine monoxide radical, ClO, plays a significant role in the catalytic destruction of ozone in the Earth's stratosphere. Because of its atmospheric importance, ClO has been the subject of numerous observational attempts. In order to deduce ClO concentrations from stratospheric infrared measurements, the infrared spectroscopy of ClO must be well characterized. Approximately 830 individual lines were measured form ClO imfrared spectra with the ClO concentration between 1 x 10 to the 13th power and 6 x 10 to the 13th power molecules per cu cu. The lines were then averaged and fit to a function of m (where m = O, -J or J+1 for the Q,P and R branches respectively) to obtain the band strength, S sub v and the first Herman-Wallis coefficient, alpha. The total S sub v for the two main isotopmers was 13.11 plus or minus 1 cm(-2) atm(-1) while alpha was 0.00412 plus or minus .00062.

  11. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  12. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  13. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  14. High-resolution heteronuclear correlation spectroscopy based on spatial encoding and coherence transfer in inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Wang, Kaiyu; Zhang, Zhiyong; Chen, Hao; Cai, Shuhui; Chen, Zhong

    2015-11-01

    Two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy has been proven to be a powerful technique for chemical, biological, and medical studies. Heteronuclear single quantum correlation (HSQC) and heteronuclear multiple bond correlation (HMBC) are two frequently used 2D NMR methods. In combination with spatially encoded techniques, a heteronuclear 2D NMR spectrum can be acquired in several seconds and may be applied to monitoring chemical reactions. However, it is difficult to obtain high-resolution NMR spectra in inhomogeneous fields. Inspired by the idea of tracing the difference of precession frequencies between two different spins to yield high-resolution spectra, we propose a method with correlation acquisition option and J-resolved-like acquisition option to ultrafast obtain high-resolution HSQC/HMBC spectra and heteronuclear J-resolved-like spectra in inhomogeneous fields.

  15. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    PubMed

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  16. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  17. Cathodoluminescence microscopy and spectroscopy of micro- and nanodiamonds: an implication for laboratory astrophysics.

    PubMed

    Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Ott, Ulrich; Tsuchiyama, Akira; Kayama, Masahiro; Simonia, Irakli; Boudou, Jean-Paul

    2012-12-01

    Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature-dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.

  18. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  19. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    NASA Astrophysics Data System (ADS)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  20. Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    SciTech Connect

    Cusanno, F; Bydzovsky, P; Chang, C C; Cisbani, E; De Jager, C W; De Leo, R; Frullani, S; Garibaldi, F; Higinbotham, D W; Iodice, M; LeRose, J J; Markowitz, P; Marrone, S; Sotona, M; Urciuoli, G M

    2010-03-01

    Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\\Lambda, 16N_\\Lambda, and 9Li_\\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\\Lambda, final results for 16N_\\Lambda, and discussion of the preliminary results of 9Li_\\Lambda are reported.

  1. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  2. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  3. Fabry-Pérot-multichannel spectrometer tandem for ultra-high resolution Raman spectroscopy.

    PubMed

    Rozas, Guillermo; Jusserand, Bernard; Fainstein, Alejandro

    2014-01-01

    We present a novel ultra-high resolution Raman spectroscopy technique based in a Fabry-Pérot/triple spectrometer tandem with multichannel acquisition. We describe the system, detail the calibration process, and experimentally test the technique, showing that effective finesses in excess of 1000 are possible. The technique is specifically tailored for low intensity, complex and spectrally extended Raman spectra, providing shorter acquisition times with respect to similar tandem systems with monochannel detectors.

  4. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Heimann, P.A.; Mossessian, D.

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  5. HIGH RESOLUTION SPECTROSCOPY IN THE GAS PHASE: Even Large Molecules Have Well-Defined Shapes

    NASA Astrophysics Data System (ADS)

    Pratt, David W.

    1998-10-01

    A review of recent high-resolution microwave, infrared, and optical spectroscopy experiments demonstrates that remarkable progress has been made in the past 20 years in determining the equilibrium geometries of large polyatomic molecules and their clusters in the gas phase, and how these geometries change when the photon is absorbed. A special focus is on the dynamical information that can be obtained from such studies, particularly of electronically excited states.

  6. {HIGH Resolution Electronic Spectroscopy of 2,6-DIAMINOPYRIDINE in the Gas PHASE}

    NASA Astrophysics Data System (ADS)

    Clements, Casey L.; Fleisher, Adam J.; Young, Justin W.; Thomas, Jessica A.; Pratt, David W.

    2009-06-01

    Ab initio calculations suggest that 2,6-diaminopyridine (26DAP) has several interesting low-frequency vibrations arising from motion of its amino groups. For this reason, 26DAP has been studied in the gas phase using both low resolution and high resolution electronic spectroscopy techniques. Presented here are the results of this study, which provide information about the structural and dynamical properties of 26DAP in both the ground and excited electronic states. The results will be discussed. footnote

  7. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  8. Applications of High Resolution Mid-Infrared Spectroscopy for Atmospheric and Environmental Measurements

    NASA Astrophysics Data System (ADS)

    Roscioli, Joseph R.; McManus, J. Barry; Nelson, David; Zahniser, Mark; Herndon, Scott C.; Shorter, Joanne; Yacovitch, Tara I.; Jervis, Dylan; Dyroff, Christoph; Kolb, Charles E.

    2016-06-01

    For the past 20 years, high resolution infrared spectroscopy has served as a valuable tool to measure gas-phase concentrations of ambient gas samples. We review recent advances in atmospheric sampling using direct absorption high resolution mid-infrared spectroscopy from the perspective of light sources, detectors, and optical designs. Developments in diode, quantum cascade and interband cascade laser technology have led to thermoelectrically-cooled single-mode laser sources capable of operation between 800 wn and 3100 wn, with <10 MHz resolution and >10 mW power. Advances in detector and preamplifier technology have yielded thermoelectriocally-cooled sensors capable of room-temperature operation with extremely high detectivities. Finally, novel spectrometer optical designs have led to robust multipass absorption cells capable of >400 m effective pathlength in a compact package. In combination with accurate spectroscopic databases, these developments have afforded dramatic improvements in measurement sensitivity, accuracy, precision, and selectivity. We will present several examples of the applications of high resolution mid-IR spectrometers in real-world field measurements at sampling towers and aboard mobile platforms such as vehicles and airplanes.

  9. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  10. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  11. High Resolution Infrared Spectroscopy of Molecules of Terrestrial and Planetary Interest

    NASA Technical Reports Server (NTRS)

    Freedman, Richard S.

    2001-01-01

    In collaboration with the laboratory spectroscopy group of the Ames Atmospheric Physics Research Branch (SGP), high resolution infrared spectra of molecules that are of importance for the dynamics of the earth's and other planets' atmospheres were acquired using the SGP high resolution Fourier transform spectrometer and gas handling apparatus. That data, along with data acquired using similar instrumentation at the Kitt Peak National Observatory was analyzed to determine the spectral parameters for each of the rotationally resolved transitions for each molecule. Those parameters were incorporated into existing international databases (e.g. HITRANS and GEISA) so that field measurements could be converted into quantitative information regarding the physical and chemical structures of earth and planetary atmospheres.

  12. High resolution coherent three dimensional spectroscopy of NO{sub 2}

    SciTech Connect

    Wells, Thresa A.; Muthike, Angelar K.; Robinson, Jessica E.; Chen, Peter C.

    2015-06-07

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO{sub 2} spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.

  13. Synchrotron-Based High Resolution Spectroscopy of N-Bearing Pahs

    NASA Astrophysics Data System (ADS)

    Gruet, Sébastien; Pirali, Olivier; Goubet, Manuel; Brechignac, Philippe

    2014-06-01

    For thirty years, the Polycyclic Aromatic Hydrocarbons (PAHs) have been suspected to give rise to the numerous Unidentified Infrared Bands (UIBs) observed in most astrophysical objects. Pure carbon molecules as well as derivatives with nitrogen atom(s) incorporated into the carbon skeleton have been considered. These N-bearing molecules are interesting candidates for astronomical research since they possess a larger permanent dipole moment than purely carbon-based PAHs. Most of the data reported in the literature deal with rotationally unresolved data. During the last decade, high-resolution microwave spectroscopy initiated high resolution studies of this broad family of molecules. Recent advances in laboratory techniques permitted to provide interesting new results to rotationally resolve the IR/Far-IR vibrational bands of these relatively large C-bearing molecules, in particular, making use of synchrotron radiation as the IR continuum source of high resolution Fourier transform (FT) spectrometers. We will present an overview of the synchrotron-based high resolution FTIR spectroscopy of 5 aza-derivatives of naphthalene (isoquinoline, quinoline, quinoxaline, quinazoline, [1,5] naphthyridine) using a room temperature long path absorption cell at the French facility SOLEIL. In support to the rovibrational analysis of these FIR spectra, very accurate anharmonic DFT calculations were performed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013) M. Goubet, O. Pirali, J. Chem. Phys., 140, 044322 (2014).

  14. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  15. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2016-07-12

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  16. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy.

    PubMed

    Bingham, Julia M; Anker, Jeffrey N; Kreno, Lauren E; Van Duyne, Richard P

    2010-12-15

    We report the first inert gas sensing and characterization studies based on high-resolution localized surface plasmon resonance (HR-LSPR) spectroscopy. HR-LSPR was used to detect the extremely small changes (<3 × 10(-4)) in bulk refractive index when the gas was switched between He(g) and Ar(g) or He(g) and N2(g). We also demonstrate submonolayer sensitivity to adsorbed water from exposure of the sensor to air (40% humidity) versus dry N2(g). These measurements significantly expand the applications space and characterization tools for plasmonic nanosensors.

  17. Potential of cathodoluminescence microscopy and spectroscopy for the detection of prokaryotic cells on minerals.

    PubMed

    Rommevaux-Jestin, Céline; Ménez, Bénédicte

    2010-11-01

    Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.

  18. Potential of cathodoluminescence microscopy and spectroscopy for the detection of prokaryotic cells on minerals.

    PubMed

    Rommevaux-Jestin, Céline; Ménez, Bénédicte

    2010-11-01

    Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships. PMID:21118024

  19. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

  20. Potential of Cathodoluminescence Microscopy and Spectroscopy for the Detection of Prokaryotic Cells on Minerals

    NASA Astrophysics Data System (ADS)

    Rommevaux-Jestin, Céline; Ménez, Bénédicte

    2010-11-01

    Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.

  1. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm). PMID:26790877

  2. The role of transition radiation in cathodoluminescence imaging and spectroscopy of thin-foils.

    PubMed

    Mendis, B G; Howkins, A; Stowe, D; Major, J D; Durose, K

    2016-08-01

    There is renewed interest in cathodoluminescence (CL) in the transmission electron microscope, since it can be combined with low energy loss spectroscopy measurements and can also be used to probe defects, such as grain boundaries and dislocations, at high spatial resolution. Transition radiation (TR), which is emitted when the incident electron crosses the vacuum-specimen interface, is however an important artefact that has received very little attention. The importance of TR is demonstrated on a wedge shaped CdTe specimen of varying thickness. For small specimen thicknesses (<250nm) grain boundaries are not visible in the panchromatic CL image. Grain boundary contrast is produced by electron-hole recombination within the foil, and a large fraction of that light is lost to multiple-beam interference, so that thicker specimens are required before the grain boundary signal is above the TR background. This is undesirable for high spatial resolution. Furthermore, the CL spectrum contains additional features due to TR which are not part of the 'bulk' specimen. Strategies to minimise the effects of TR are also discussed. PMID:27163963

  3. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  4. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  5. Photodissociation of ozone at 276nm by photofragment imaging and high resolution photofragment translational spectroscopy

    SciTech Connect

    Blunt, D.A.; Suits, A.G.

    1996-11-01

    The photodissociation of ozone at 276 nm is investigated using both state resolved ion imaging and high-resolution photofragment translational spectroscopy. Ion images from both [3+1] and [2+1] resonance enhanced multiphoton ionization of the O({sup 1}D) photofragment are reported. All images show strong evidence of O({sup 1}D) orbital alignment. Photofragment translation spectroscopy time-of-flight spectra are reported for the O{sub 2} ({sup 1}{Delta}{sub g}) photofragment. Total kinetic energy release distributions determined form these spectra are generally consistent with those distributions determined from imaging data. Observed angular distributions are reported for both detection methods, pointing to some unresolved questions for ozone dissociation in this wavelength region.

  6. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-20

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  7. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    PubMed

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation. PMID:26558760

  8. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  9. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  10. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  11. High-Resolution X-ray Spectroscopy of Colliding Wind Binaries

    NASA Astrophysics Data System (ADS)

    Henely, David B.

    2005-02-01

    Massive stars have powerful winds which have profound effects on their surroundings and the stars' own evolution. Most such stars reside in binaries, in which the two stars' winds collide highly supersonically. The winds are shock-heated and produce copious X-rays, the study of which can be used to address poorly understood aspects of massive star winds. In this thesis, high-resolution X-ray spectroscopy is used to study in detail the structure of wind-wind collisions. We develop a model for synthesizing X-ray emission line profiles from colliding wind binaries. We then present analyses of X-ray spectra of two colliding wind systems: gamma(2) Velorum and eta Carinae, part of which includes applying the line synthesis model to these systems. The application of the model to a third system (WR 140) is also discussed. In general, the high-resolution spectra reveal that the physics in these systems is more complicated than is usually assumed. Given this, we go on to discuss how the future development of this work can be used to further the study of the physics of massive star winds and strong collisionless shocks.

  12. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  13. Fragmentation and conformation study of ephedrine by low- and high-resolution mass selective UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Braun, J. E.; Neusser, H. J.

    2004-10-01

    The neurotransmitter molecule, ephedrine, has been studied by mass-selective low- and high-resolution UV resonance enhanced two-photon ionization spectroscopy. Under all experimental conditions we observed an efficient fragmentation upon ionization. The detected vibronic peaks in the spectrum are classified according to the efficiency of the fragmentation, which leads to the conclusion that there exist three different species in the molecular beam: ephedrine-water cluster and two distinct conformers. The two-color two-photon ionization experiment with a decreased energy of the second photon leads to an upper limit of 8.3 eV for the ionization energy of ephedrine. The high-resolution (70 MHz) spectrum of the strongest vibronic peak in the spectrum measured at the fragment (m/z=58) mass channel displays a pronounced and rich rotational structure. Its analysis by the use of a specially designed computer-aided rotational fit process yields accurate rotational constants for the S0 and S1 states and the transition moment ratio, providing information on the respective conformational structure.

  14. High-resolution X-ray spectroscopy of four active galaxies - Probing the intercloud medium

    NASA Astrophysics Data System (ADS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Markert, Thomas H.; Arnaud, Keith A.

    1990-07-01

    The focal plane crystal spectrometer (FPCS) on the Einstein Observatory has been used to perform a high-resolution spectroscopic search for oxygen X-ray line emission from four active galaxies: Fairall 9, Mrk 421, Mrk 501, and PKS 0548 - 322. Specifically, O VIII Ly-alpha and Ly-beta, whose unredshifted energies are 653 and 775 eV, respectively, were sought. No narrow-line emission was detected within the energy bands searched. Upper limits are calculated on the line flux from these sources of 30 eV equivalent width and use a photoionization model to place corresponding upper limits on the densities of diffuse gas surrounding the active nuclei. The upper limits on gas density range from about 0.02-50/cu cm and probe various radial distances from the central source. This is the first time high-resolution X-ray spectroscopy has been used to place constraints on the intercloud medium in active galaxies.

  15. High-Resolution and Low-Temperature Photoemission Spectroscopy at the Hisor Helical-Undulator Beamline

    NASA Astrophysics Data System (ADS)

    Arita, Masashi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki

    We report an experimental system dedicated for high-resolution and low-temperature photoemission spectroscopy installed on the helical-undulator beamline of a compact 700 MeV electron-storage ring (HiSOR) at Hiroshima University. A 3 m off-plane Eagle normal-incidence monochromator at the beamline covers the photon-energy range of hν = 4-40 eV. From the photoemission spectra near the Fermi edge of evaporated Au film, the total energy resolution was estimated to be 4.5 and 7.5 meV at hν = 7.1 and 22.6 eV, respectively. We have also performed photoemission measurements of Yb metal, which demonstrated highly bulk-sensitive spectra for the excitation by low energy photon. The high-resolution photoemission spectra of Y1 - xCaxTiO3 with x = 0.41 in the vicinity of the boundary between the metallic and insulating phases exhibited anomalous temperature dependence in comparison with those of normal metals.

  16. Recent results on high resolution hypernuclear spectroscopy by electroproduction at Jefferson Lab, Hall A

    SciTech Connect

    F. Garibaldi; H. Breuer; P. Brindza; P. Bydzovski; G. Chang; E. Cisbani; S. Colilli; F. Cusanno; R. De Leo; G. De Cataldo; K. De Jager; R. Feuerbach; E. Folts; R. Fratoni; S. Frullani; F. Giuliani; M. Gricia; D. Higinbotham; M. Iodice; B. Kross; L. Lagamba; J.J.Le Rose; M. Lucentini; P. Markowitz; S. Marrone; R. Michaels; E. Nappi; Y. Qiang; B. Reitz; F. Santavenere; J. Segal; M. Sotona; G.M.Urciuoli; P. Veneroni; B.Wojtsekhowski; C. Zorn

    2005-12-01

    The first ''systematic'' study of 1 p shell hypernuclei with electromagnetic probes has started in Hall A at Jefferson Lab [?]. The aim is to perform hypernuclear high resolution spectroscopy by the electroproduction of strangeness on four 1p-shell targets: 12C, 9Be, 16O, 7Li. The first part of the experiment on 12C and 9Be has been performed in 2004, the second part (16O and 7Li) is scheduled for June 2005. To overcome the major experimental difficulties, namely the low counting rate and the challenging Particle IDentification (PID), two septum magnets and a Ring Imaging CHerenkov (RICH) detector had to be added to the existing apparatus. After underlining the particular role the electroproduction reaction plays in hypernuclear physics we describe the challenging modifications of the Hall A apparatus. Preliminary results on 12C and 9Be are presented.

  17. High resolution electron energy loss spectroscopy: A new probe of subgap absorption in amorphous solids

    SciTech Connect

    Lopinski, G.P.; Lannin, J.S.

    1996-10-01

    The use of high resolution electron energy spectroscopy (HREELS) as a new method for studies of subgap absorption in thin films of amorphous semiconductors is demonstrated. For a-Si films, the {alpha}({omega}) values extracted from the measured loss spectra are in quantitative agreement with previous optical measurements. The method is also applied to both threefold and diamond-like amorphous carbon films, yielding {alpha}({omega}) down to considerably lower energies ({approximately}50 meV) than previously reported. The HREELS method is shown to be complementary to existing techniques in that it can access the regime of low energies and ultrathin films which is difficult to investigate with the conventional methods. {copyright} {ital 1996 American Institute of Physics.}

  18. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  19. Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Shpilman, Z.; Gouzman, I.; Grossman, E.; Akhvlediani, R.; Hoffman, A.

    2007-12-01

    Diamond surface oxidation by atomic oxygen, annealing up to ˜700°C, and in situ exposure to thermally activated hydrogen were studied by high resolution electron energy loss spectroscopy (HREELS). After atomic oxygen (AO) exposure, HREELS revealed peaks associated with CHx groups, carbonyl, ether, and peroxide-type species and strong quenching of the diamond optical phonon and its overtones. Upon annealing of the oxidized surfaces, the diamond optical phonon overtones at 300 and 450meV emerge and carbonyl and peroxide species gradually desorb. The diamond surface was not completely regenerated after annealing to ˜700°C and in situ exposure to thermally activated hydrogen, probably due to the irreversible deterioration of the surface by AO.

  20. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.

    PubMed

    Martin, Jérôme; Kociak, Mathieu; Mahfoud, Zackaria; Proust, Julien; Gérard, Davy; Plain, Jérôme

    2014-10-01

    We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics.

  1. High resolution absorption coefficients for Freon-12. [by using tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Bair, C. H.; Williams, B.; Harward, C.

    1979-01-01

    The ultra high resolution absorption coefficients of the Q-branch of Freon-12 obtained with tunable diode laser spectroscopy are presented. Continuous spectra are presented from 1155/cm to 1163/cm, and absolute wavelength calibration was obtained using SO2 spectra as a standard and a 5 cm Ge etalon for relative calibration between SO2 lines. The Freon-12 data obtained at a pressure of 0.05 torr showed a rich and highly structured spectra, but with the exception of three isolated features, collisional broadening reduces the spectra to a structureless continuum for nitrogen pressures greater than 20 torr. The spectra at 1161/cm continue to exhibit structure at atmospheric pressure.

  2. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    SciTech Connect

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  3. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    NASA Astrophysics Data System (ADS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Komatsu, Takayuki

    2013-01-01

    High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 °C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous CuxS (x ≃ 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of CuxS is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the CuxS/CuS ratio accompanying desulfurization of the adhesive layer.

  4. Superconducting Detector System for High-Resolution Energy-Dispersive Soft X-Ray Spectroscopy

    SciTech Connect

    Friedrich, S; Niedermayr, T; Drury, O; Funk, T; Frank, M; Labov, S E; Cramer, S

    2001-02-21

    Synchrotron-based soft x-ray spectroscopy is often limited by detector performance. Grating spectrometers have the resolution, but lack the efficiency for the analysis of dilute samples. Semiconducting Si(Li) or Ge detectors are efficient, but often lack the resolution to separate weak signals from strong nearby lines in multi-element samples. Superconducting tunnel junctions (STJs) operated at temperatures below 1 K can be used as high-resolution high-efficiency x-ray detectors. They combine high energy resolution around 10 eV FWHM with the broad band efficiency of energy-dispersive detectors. We have designed a two-stage adiabatic demagnetization refrigerator (ADR) to operate STJ detectors in x-ray fluorescence measurements at beam line 4 of the ALS. We demonstrate the capabilities of such a detector system for fluorescence analysis of dilute metal sites in proteins and inorganic model compounds.

  5. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  6. High-resolution imaging and spectroscopy of multipolar plasmonic resonances in aluminum nanoantennas.

    PubMed

    Martin, Jérôme; Kociak, Mathieu; Mahfoud, Zackaria; Proust, Julien; Gérard, Davy; Plain, Jérôme

    2014-10-01

    We report on the high resolution imaging of multipolar plasmonic resonances in aluminum nanoantennas using electron energy loss spectroscopy (EELS). Plasmonic resonances ranging from near-infrared to ultraviolet (UV) are measured. The spatial distributions of the multipolar resonant modes are mapped and their energy dispersion is retrieved. The losses in the aluminum antennas are studied through the full width at half-maximum of the resonances, unveiling the weight of both interband and radiative damping mechanisms of the different multipolar resonances. In the blue-UV spectral range, high order resonant modes present a quality factor up to 8, two times higher than low order resonant modes at the same energy. This study demonstrates that near-infrared to ultraviolet tunable multipolar plasmonic resonances in aluminum nanoantennas with relatively high quality factors can be engineered. Aluminum nanoantennas are thus an appealing alternative to gold or silver ones in the visible and can be efficiently used for UV plasmonics. PMID:25207386

  7. a Thz Photomixing Synthesizer Based on a Fiber Frequency Comb for High Resolution Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hindle, Francis; Mouret, Gael; Cuisset, Arnaud; Yang, Chun; Eliet, Sophie; Bocquet, Robin

    2010-06-01

    To date the principal application for photomixing sources has been for high resolution spectroscopy of gases due to the large tuning range and spectral purity. New Developments of the Opto-Electronic THz Spectrometer have been performed in order to obtain a powerful tool for High-Resolution Spectroscopy. The combination of two extended cavity laser diodes and fast charge carrier lifetime semiconductor materials has allowed a continuous-wave THz spectrometer to be constructed based on optical heterodyning. Unlike many THz sources, this instrument gives access to all frequencies in the range 0.3 to 3.5 THz with a resolution of 1 MHz. The main spectroscopic applications of this spectrometer were dedicated to line profile analysis of rotational transitions referenced in the spectroscopic databases. One limitation of the THz spectrometer was accuracy with which the generated frequency is known. Recently, this obstacle has been circled with the construction of a photomixing spectrometer where the two pump lasers are phase locked to two modes of a repetition rate stabilized frequency doubled fiber laser frequency comb. In order to achieve a tuning range in excess to 100 MHz a third cw laser was required in the new configuration of the THz spectrometer. To assess the performances of this instrument, the frequencies of the pure rotational transitions of OCS molecules have been measured between 0,8 to 1,2 THz. A rms inferior to 100 kHz, deduced from the frequencies measured, demonstrates that the THz photomixing synthesizer is now able to be competitive with microwave and submillimeter techniques. S. Matton, F. Rohart, R. Bocquet, D. Bigourd, A. Cuisset, F. Hindle, G. Mouret, J. Mol. Spectrosc., 2006, 239: 182. C. Yang, J. Buldyreva, I. E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, F. Hindle, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109: 2857. G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.

  8. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  9. The Volatile Chemistry Of Jupiter-family Comets Determined From High-resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Vervack, R.; Weaver, H.; Kobayashi, H.; Kawakita, H.; Biver, N.; Bockelée-Morvan, D.; Crovisier, J.

    2009-09-01

    The chemistry of Jupiter-family comets (JFCs) has been extensively studied at optical wavelengths using spectroscopic and photometric techniques. However, the coma species detected at optical wavelengths are daughter and granddaughter photodissociation products that are often not easily related to species present in the nucleus. Because JFCs are generally of moderate productivity, studies of their parent volatile chemistries have lagged owing to sensitivity issues. Recently, studies at radio and infrared wavelengths have revealed the parent volatile chemistry in a small group of JFCs. Here, we report and compare recent results on the chemistry of JFCs using high-resolution infrared spectroscopy. The main goals of this research are to: (1) chemically characterize JFCs using high-resolution infrared spectroscopy in order to build a taxonomy based on parent volatile composition, (2) determine if the parent volatile chemistry of JFCs is consistent with formation conditions or evolutionary processing history, and (3) compare abundances of daughter fragments (e.g., C2, CN, NH, NH2) and their suspected parents (e.g., C2H2, C2H6, HCN, NH3) in JFCs whose chemistries were measured at both infrared and optical wavelengths. Understanding the parent sources of daughter fragments in comets not only provides information on the common infrared/optical database but may also give clues to the parent volatile chemistry in the large number of comets observed only at optical wavelengths. Because JFCs are the most practical mission targets, chemical composition can be one discriminator in determining desirable future targets. Furthermore, determining the range of chemical diversity within the JFC population can help put results of previous missions (e.g. Deep Impact, Stardust) in better context. This work was supported by the NASA Planetary Astronomy and Planetary Atmospheres Programs.

  10. High Resolution Rovibrational Spectroscopy of Large Molecules Using Infrared Frequency Combs and Buffer Gas Cooling

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Spaun, Ben; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-06-01

    We have recently demonstrated the integration of cavity-enhanced direct frequency comb spectroscopy with buffer gas cooling to acquire high resolution infrared spectra of translationally and rotationally cold (˜10 K) gas-phase molecules. Here, we extend this method to significantly larger systems, including naphthalene (C10H_8), a prototypical polyaromatic hydrocarbon, and adamantane (C10H_{16}), the fundamental building block of diamonoids. To the authors' knowledge, the latter molecule represents the largest system for which rotationally resolved spectra in the CH stretch region (3 μm) have been obtained. In addition to the measured spectra, we present several details of our experimental methods. These include introducing non-volatile species into the cold buffer gas cell and obtaining broadband spectra with single comb mode resolution. We also discuss recent modifications to the apparatus to improve its absorption sensitivity and time resolution, which facilitate the study of both larger molecular systems and cold chemical dynamics. B. Spaun, et al. Probing buffer-gas cooled molecules with direct frequency comb spectroscopy in the mid-infrared, WF02, 70th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL, 2015.

  11. Partial-Homogeneity-Based Two-Dimensional High-Resolution Nuclear Magnetic Resonance Spectroscopy under Inhomogeneous Magnetic Fields.

    PubMed

    Qiu, Wenqi; Wei, Zhiliang; Ding, Nan; Yang, Yu; Ye, Qimiao; Lin, Yulan; Chen, Zhong

    2016-05-18

    High-resolution multidimensional nuclear magnetic resonance (NMR) spectroscopy serves as an irreplaceable and versatile tool in various chemical investigations. In this study, a method based on the concept of partial homogeneity is developed to offer two-dimensional (2D) high-resolution NMR spectra under inhomogeneous fields. Oscillating gradients are exerted to encode the high-resolution information, and a field-inhomogeneity correction algorithm based on pattern recognition is designed to recover high-resolution spectra. Under fields where inhomogeneity primarily distributes along a single orientation, the proposed method will improve performances of 2D NMR spectroscopy without increasing the experimental duration or significant loss in sensitivity, and thus may open important perspectives for studies of inhomogeneous chemical systems.

  12. Native point defect formation in flash sintered ZnO studied by depth-resolved cathodoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Gao, Hantian; Asel, Thaddeus J.; Cox, Jon W.; Zhang, Yuanyao; Luo, Jian; Brillson, L. J.

    2016-09-01

    Depth-resolved cathodoluminescence spectroscopy studies of flash sintered ZnO reveal that thermal runaway induces the formation of native point defects inside individual grains. Defects associated with oxygen vacancies (VO) form preferentially, contributing additional donors that increase conductivity within the grains of the polycrystalline material. Hyperspectral imaging of the granular cross sections shows filaments of increased VO following thermal runaway between the capacitor anode and cathode, supporting a heating mechanism localized on a granular scale. Within the grains, these defects form preferentially inside rather than at their boundaries, further localizing the dominant heating mechanism.

  13. Diagnostics of the accretion plasma in magnetic CVs from high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Burwitz, V.; Reinsch, K.; Haberl, F.; Gänsicke, B. T.; Predehl, P.

    2002-01-01

    High-resolution X-ray spectroscopy with the Chandra low energy transmission grating spectrometer (LETGS) provides an unprecedented diagnostic tool for the hot accretion plasma and the settling flow in the accretion column of magnetic cataclysmic variables (mCVs). We show first results from our analysis of spin-phase resolved X-ray spectroscopy of the two prototype magnetic CVs, AM Her and PQ Gem. The LETGS spectra cover the wavelength range 2--170Å with a spectral resolution λ/Δ λ = 200--3000. For the first time, absorption structures in the soft X-ray component of the heated white-dwarf atmosphere are revealed and individual emission lines of H- and He-like O and N ions including the density sensitive components of the He-like triplets are resolved in the hard X-ray component originating from the settling flow. In addition, phase dependent Doppler-shifts of the emission lines are detected providing detailed information on the geometry of the accretion funnel.

  14. High-resolution atomic force microscopy and spectroscopy of native membrane proteins

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Muller, Daniel J.

    2011-08-01

    Membranes confining cells and cellular compartments are essential for life. Membrane proteins are molecular machines that equip cell membranes with highly sophisticated functionality. Examples of such functions are signaling, ion pumping, energy conversion, molecular transport, specific ligand binding, cell adhesion and protein trafficking. However, it is not well understood how most membrane proteins work and how the living cell regulates their function. We review how atomic force microscopy (AFM) can be applied for structural and functional investigations of native membrane proteins. High-resolution time-lapse AFM imaging records membrane proteins at work, their oligomeric state and their dynamic assembly. The AFM stylus resembles a multifunctional toolbox that allows the measurement of several chemical and physical parameters at the nanoscale. In the single-molecule force spectroscopy (SMFS) mode, AFM quantifies and localizes interactions in membrane proteins that stabilize their folding and modulate their functional state. Dynamic SMFS discloses fascinating insights into the free energy landscape of membrane proteins. Single-cell force spectroscopy quantifies the interactions of live cells with their environment to single-receptor resolution. In the future, technological progress in AFM-based approaches will enable us to study the physical nature of biological interactions in more detail and decipher how cells control basic processes.

  15. Exploring the High-Resolution Spectroscopy of Molecules that can Affect the Quality of your Life

    NASA Astrophysics Data System (ADS)

    Miller, Terry A.

    2014-06-01

    Few things affect your quality of life more than the air you breathe and the temperature of your immediate environment. Since more than 80% of the energy used in the industrialized world today is still derived from fossil fuels, these two quantities are not unrelated. Most organic molecules injected into the troposphere are degraded via oxidative processes involving free radical intermediates, and many of these intermediates are the same as the ones involved in the combustion of fossil fuels. Key oxidizing intermediates are hydroxyl, OH (day), and nitrate, NO_3 (night), and early intermediates of oxidized organic compounds include the alkoxy (RO) and peroxy (RO_2) families of radicals. Recently we have explored the spectroscopy of RO, RO_2, and NO_3 radicals both for diagnostic purposes and to characterize their molecular properties and benchmark quantum chemistry calculations. We have utilized moderate resolution cavity ringdown spectroscopy (CRDS) to study ambient temperature radicals and high resolution CRDS and laser induced fluorescence (LIF) to study jet-cooled radicals. Peroxy radicals and NO_3 have weak tilde{A}-tilde{X} electronic transitions in the near infrared which we have studied with CRDS. Comparable LIF measurements have been made for the alkoxy species in the UV. Both vibrational and rotational resolution of the electronic spectra is observed. Data obtained from the spectral observations provide information about both the geometric and electronic structure of these radicals as well as their dynamics and also provide the capability for unambiguous diagnostics of their concentrations and reactions.

  16. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    SciTech Connect

    Colucci, Janet E.; McWilliam, Andrew; Cohen, Judith G. E-mail: sacamero@umich.ed E-mail: andy@ociw.ed

    2009-10-10

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R approx 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages >=10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the alpha-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [alpha/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  17. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  18. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  19. High-Resolution Two-Dimensional J-Resolved NMR Spectroscopy for Biological Systems

    PubMed Central

    Huang, Yuqing; Cai, Shuhui; Zhang, Zhiyong; Chen, Zhong

    2014-01-01

    NMR spectroscopy is a principal tool in metabolomic studies and can, in theory, yield atom-level information critical for understanding biological systems. Nevertheless, NMR investigations on biological tissues generally have to contend with field inhomogeneities originating from variations in macroscopic magnetic susceptibility; these field inhomogeneities broaden spectral lines and thereby obscure metabolite signals. The congestion in one-dimensional NMR spectra of biological tissues often leads to ambiguities in metabolite identification and quantification. We propose an NMR approach based on intermolecular double-quantum coherences to recover high-resolution two-dimensional (2D) J-resolved spectra from inhomogeneous magnetic fields, such as those created by susceptibility variations in intact biological tissues. The proposed method makes it possible to acquire high-resolution 2D J-resolved spectra on intact biological samples without recourse to time-consuming shimming procedures or the use of specialized hardware, such as magic-angle-spinning probes. Separation of chemical shifts and J couplings along two distinct dimensions is achieved, which reduces spectral crowding and increases metabolite specificity. Moreover, the apparent J coupling constants observed are magnified by a factor of 3, facilitating the accurate measurement of small J couplings, which is useful in metabolic analyses. Dramatically improved spectral resolution is demonstrated in our applications of the technique on pig brain tissues. The resulting spectra contain a wealth of chemical shift and J-coupling information that is invaluable for metabolite analyses. A spatially localized experiment applied on an intact fish (Crossocheilus siamensis) reveals the promise of the proposed method in in vivo metabolite studies. Moreover, the proposed method makes few demands on spectrometer hardware and therefore constitutes a convenient and effective manner for metabonomics study of biological systems

  20. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  1. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  2. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  3. High Resolution Electron Energy Loss Spectroscopy with Simultaneous Energy and Momentum Mapping

    NASA Astrophysics Data System (ADS)

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Kesmodel, Larry; Zhang, Jiandi; Plummer, Ward; Guo, Jiandong

    2015-03-01

    High resolution electron energy loss spectroscopy (HREELS) has been demonstrated as a powerful technique to probe vibrational and electronic surface excitations of solids. The dispersion relation of the surface excitations, i.e. energy as a function of momentum, can be obtained via the angle resolved measurements by rotating the sample or the analyzer in a conventional HREELS measurement. The sampling density in the momentum space and the detecting efficiency are restricted by the mechanical rotation. Here we introduce a new design of the HREELS system, by combining the traditional Ibach-type electron source with the mainstream hemispherical electron energy analyzer, which could simultaneously measure the energy and momentum of the scattered electrons without any mechanical rotation. The new system possesses higher efficiency and sampling density of momentum-resolved measurements by at least one order of magnitude than conventional spectrometers without deteriorating the resolution of energy and momentum. Using Bi2Sr2CaCu2O8+δ as an example, we show that an energy loss spectrum can be scanned throughout the first Brillouin zone and a momentum-dependent spectral intensity distribution could be obtained in one measurement.

  4. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    SciTech Connect

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar to other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.

  5. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGESBeta

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  6. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  7. High-resolution spectroscopy of X-rays emitted from electron bombarded surfaces

    NASA Astrophysics Data System (ADS)

    Jabłoński, Ł.; Banaś, D.; Jagodziński, P.; Kubala-Kukuś, A.; Sobota, D.; Pajek, M.

    2015-07-01

    The investigations of a compact 6-crystal Johann/Johansson diffraction X-ray spectrometer, covering a wide range (70 eV-15 keV) of photon energies, applied to observe the X-rays emitted from electron bombarded surfaces are discussed in terms of its focusing properties and achievable energy resolution. In the present study the X-ray spectra of Si-Kα1,2 and Al-Kα1,2 X-ray lines excited by 5 keV electron beam were measured using PET and TAP crystal, respectively, in the "out-of-focus" geometry which will be used to study the electron/ion surface interactions at the electron beam ion source (EBIS) facility. The measured X-ray spectra were interpreted in terms of the performed ray-tracing simulations which demonstrate the key features of the "out-of-focus" geometry. It was demonstrated that in this case the energy resolution in the range 1-3 eV for photon energy 1-2 keV can be achieved with an increased acceptance for the extension of X-ray source, of about 1 mm, which is important feature for practical applications. Additionally, a dependence of the X-ray intensity and energy resolution on slit opening was studied in details. The results are important for investigations of surfaces with electron and ion impact, in particular, for the future high-resolution X-ray spectroscopy experiments at the EBIS facility.

  8. High-resolution X-ray spectroscopy: the coming-of-age

    NASA Astrophysics Data System (ADS)

    Kaastra, J.

    2016-06-01

    Since the launch of Chandra and XMM-Newton, high-resolution X-ray spectra of cosmic sources of all kinds have become available. These spectra have resulted in major scientific breakthroughs. However, due to the techniques used, in general high-quality spectra can only be obtained for the brightest few sources of each class. Moreover, except for the most compact extended sources, like cool core clusters, grating spectra are limited to point sources. ASTRO-H makes another major step forward, in yielding for the first time high-quality spectra of extended sources, and improved spectral sensitivity in the Fe-K band. With the launch of Athena, X-ray spectroscopy will become mature. It allows us to extend the investigations from the few handful of brightest sources of each category to a large number of sources far away in space and time, or to get high time-resolution, high-spectral resolution spectra of bright time variable sources.

  9. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution. PMID:26329206

  10. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  11. Earle K. Plyler Prize Talk: Using High Resolution Electronic Spectroscopy to Probe Reactive Chemical Intermediates

    NASA Astrophysics Data System (ADS)

    Miller, Terry

    2009-03-01

    Gas phase chemical reactions, such as occur in atmospheric chemistry, combustion, plasma processing, etc. are of great importance to our economy and society. These reactions are typically very complex involving up to 1000's of elementary steps with a corresponding number of reactive chemical intermediates. Spectrospic diagnostics, based upon well analyzed and well understood spectra of the intermediates, are crucial for monitoring such reactions and unraveling their mechanisms. These spectral analyses often benefit from the guidance provided by quantum chemical calculations and conversely the molecular parameters, experimentally determined from the spectra, serve as ``gold standards'' for benchmarking such calculations. Such standards are especially valuable for reactive intermediates whose electronic or geometric structure is particularly complex because of electron-spin interactions, Jahn-Teller effects or other vibronic interactions, hindered internal motions, large molecular size and weight, etc. The organic alkoxy, RO., and peroxy, RO2., (R=alkyl group) free radicals are excellent examples of such species. The talk will focus on our recent characterization of these radicals via their ``high-resolution,'' mostly rotationally resolved, electronic spectra utilizing the techniques of laser induced fluorescence, stimulated emission pumping, and cavity ringdown spectroscopy. Selected spectra, their analysis, and the molecular information resulting therefrom will be discussed.

  12. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    NASA Astrophysics Data System (ADS)

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O8+δ. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  13. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  14. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  15. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy

    PubMed Central

    Cheng, L. L.; Ma, M. J.; Becerra, L.; Ptak, T.; Tracey, I.; Lackner, A.; González, R. G.

    1997-01-01

    We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (1HMRS), an emerging medical imaging technique. This method, high resolution magic angle spinning (HRMAS) 1HMRS, is rapid and requires only small amounts of unprocessed samples. Unlike chemical extraction or other forms of tissue processing, this method analyzes tissue directly, thus minimizing artifacts. We demonstrate the utility of this method by assessing neuronal damage using multiple tissue samples from differently affected brain regions in a case of Pick disease, a human neurodegenerative disorder. Among different regions, we found an excellent correlation between neuronal loss shown by traditional neurohistopathology and decrease of the neuronal marker N-acetylaspartate measured by HRMAS 1HMRS. This result demonstrates for the first time, to our knowledge, a direct, quantitative link between a decrease in N-acetylaspartate and neuronal loss in a human neurodegenerative disease. As a quantitative method, HRMAS 1HMRS has potential applications in experimental and clinical neuropathologic investigations. It should also provide a rational basis for the interpretation of in vivo 1HMRS studies of human neurological disorders. PMID:9177231

  16. High-Resolution Spectroscopy of Winds Associated with T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Iguchi, Naoto; Itoh, Yoichi

    2016-02-01

    We carried out optical high-resolution spectroscopy of T Tauri stars using the Subaru Telescope. Using archived data from the Keck Telescope and the Very Large Telescope, we detected forbidden lines of [S II] at 4069 Å, in addition to those of [O I] at 5577 Å and 6300 Å, for 13 T Tauri stars. We consider that low-velocity components of these forbidden lines emanate from the wind associated with T Tauri stars. Using two flux ratios of the three lines, we simultaneously determined the hydrogen density and temperature of the winds. The winds of T Tauri stars have a hydrogen density of 2.5 × 106 cm‑3 ‑ 2.5 × 109 cm‑3 and a temperature of 10800 –18 000 K. The mass loss rates by the wind are estimated to lie in the range from 2.0 × 10‑10 M⊙ yr‑1 to 1.4 × 10‑9 M⊙ yr‑1. The mass loss rates are found to increase with increasing mass accretion rates. The ratio of the mass loss rate to the mass accretion rate is 0.001–0.1 for classical T Tauri stars and 0.1–1 for transitional disk objects.

  17. High-resolution spectroscopy on the laser-cooling candidate La^{-}.

    PubMed

    Jordan, E; Cerchiari, G; Fritzsche, S; Kellerbauer, A

    2015-09-11

    The bound-bound transition from the 5d^{2}6s^{2} ^{3}F_{2}^{e} ground state to the 5d6s^{2}6p ^{3}D_{1}^{o} excited state in negative lanthanum has been proposed as a candidate for laser cooling, which has not yet been achieved for negative ions. Anion laser cooling holds the potential to allow the production of ultracold ensembles of any negatively charged species. We have studied the aforementioned transition in a beam of negative La ions by high-resolution laser spectroscopy. The center-of-gravity frequency was measured to be 96.592 80(10) THz. Seven of the nine expected hyperfine structure transitions were resolved. The observed peaks were unambiguously assigned to the predicted hyperfine transitions by a fit, confirmed by multiconfigurational self-consistent field calculations. From the determined hyperfine structure we conclude that La^{-} is a promising laser cooling candidate. Using this transition, only three laser beams would be required to repump all hyperfine levels of the ground state. PMID:26406825

  18. Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts

    PubMed Central

    Lutz, Norbert W.; Béraud, Evelyne; Cozzone, Patrick J.

    2014-01-01

    Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor

  19. High Resolution Imaging Spectroscopy for Characterizing Soil Properties over Large Areas

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Kumar, P.

    2014-12-01

    Quantitative mapping of high resolution surface soil texture (percentage sand, silt and clay), soil organic matter and chemical constituents are important for understanding infiltration, runoff and other surficial hydrologic processes at different scales. The Visible Near Infrared Analysis (VNIRA) method, which is a combination of imaging spectroscopy and laboratory chemical analysis with an underlying statistical model, has been established for the quantification of soil properties from imaging spectrometer data. In this study we characterize the feasibility of quantifying soil properties over large areas with the aim that these methods may be extended to space-borne sensors such as HyspIRI. Hyperspectral Infrared Imager (HyspIRI) is a space-borne NASA mission concept having 10nm contiguous bands in the VSWIR region (380nm to 2500nm) of the electromagnetic spectra. High resolution (7.6m) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected by NASA immediately after the massive 2011 Mississippi River floods at the Birds Point New Madrid (BPNM) floodway, coupled with in situ samples obtained at the time of the flight, is used to generate HyspIRI like data at 60m resolution. The VNIRA method is applied in a data-mining framework for quantification of the different soil textural properties and chemical constituents. The empirical models are further used for creating quantitative maps of the soil properties for the entire BPNM floodway. These maps are compared with the fine resolution AVIRIS maps of the same area for the different legacy landscape features and spatial correlations with the underlying topography immediately disturbed by the flooding event. The scales of variation in the soil constituents captured by the fine resolution data are also compared to the scales of variation captured by coarser resolution data. This study further explores the issues of applicability, challenges (such as the sensitivity of NDVI from mixed neighborhood pixels

  20. Imaging and high-resolution spectroscopy of the Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, Marco Antonio; Wendolyn Blanco Cárdenas, Mónica; Vázquez, Roberto; Zavala, Saúl A.; Guillén, Pedro F.; Ayala, Sandra A.

    2015-08-01

    We present a high-resolution imaging and high-dispersion spectroscopy study of the complex morphological and kinematical structure of the planetary nebula NGC 3242. We analyze narrowband Hα, [O III] and [N II] images, addressing important morphological features: in the [O III] image we found one knot oriented to PA=-4°, in the [N II] image, three knots oriented at PA1=155°, PA2=+157°, and PA3=-45.5°, and in the Hα image, two bubbles in the internal region, one of them oriented toward SE and the other toward NW. Additionally we used the unsharp-masking technique and found faint structures in the halo that have not been studied before. These structures are presented in two pairs of arcs, one pair oriented toward PA=-35° and the other toward PA=140°. NGC 3242 is a morphologically rich PN with bubbles, asymmetrical outflows, and some knots in a double-shell nebular structure. Ground-based long-slit echelle spectra were obtained crossing NGC 3242 at twelve different positions to precisely determine kinematical features in the structure of the nebula. We obtain a systemic velocity of VLSR=-6.6 km/s. We have used the software SHAPE (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to reconstruct a 3D model of NGC 3242 which fits all our observational data. Preliminary results (deprojected velocities and kinematical ages) of all these structures will be presented.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  1. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  2. IGRINS Near-IR High-resolution Spectroscopy of Multiple Jets around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H2 emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position-velocity diagrams of the H2 1-0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H2 emission at the systemic velocity (VLSR = -10.2 km s-1) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at VLSR = -100--130 km s-1. We infer that the H2 emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H2 lines imply that the gas is thermalized at a temperature of 2500-3000 K and the emission results from shock excitation. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  3. Probing Chemical Dynamics with High Resolution Spectroscopy: Chirped-Pulse Fourier-Transform Microwave Spectroscopy Coupled with a Hyperthermal Source

    NASA Astrophysics Data System (ADS)

    Kidwell, Nathanael M.; Vara, Vanesa Vaquero; Mehta-Hurt, Deepali N.; Korn, Joseph A.; Dian, Brian C.; Zwier, Timothy S.

    2013-06-01

    Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy has proven to be a well-suited technique for the rapid study and spectral identification of molecular species due to its ultra-broadband capability and excellent specificity to molecular structure from high-resolution rotational transitions. This talk will describe initial results from combining CP-FTMW detection with a hyperthermal nozzle source. This source has the advantage of producing traditionally high thermal product densities in a pulsed supersonic expansion with a short contact time compared to conventional pyrolysis. Used in tandem, CP-FTMW spectroscopy and the hyperthermal nozzle in a supersonic expansion is a powerful method that can produce and detect changes in conformation and isomer populations, and characterize important intermediates on the reaction surface of a precursor. In particular, we show its utility to provide insight into the unimolecular decomposition pathways of model lignin compounds and alternative biofuels. Preliminary results will be discussed including spectroscopic evidence for formation of cyclopentadienone in the pyrolysis of a lignin derivative guaiacol (o-methoxyphenol).

  4. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  5. Using cathodoluminescence spectroscopy of cretaceous calcareous microfossils to distinguish biogenic from early-diagenetic calcite.

    PubMed

    Wendler, Jens E; Wendler, Ines; Rose, Timothy; Huber, Brian T

    2012-12-01

    A comparative cathodoluminescence (CL) spectroscopic study of extraordinarily well-preserved versus diagenetically altered Turonian (∼92 Ma before present) calcitic and aragonitic microfossils was performed to document the cathodoluminescence characteristics of two common Cretaceous carbonate producers, foraminifera and calcareous dinoflagellates. Unaltered specimens reveal a conspicuous peak in the blue CL band at ≈ 400 nm that has rarely been previously reported for biogenic carbonates. We interpret this luminescence as an indicative feature of the primary bio-mineralized shells of calcareous dinoflagellates and foraminifera. Orange luminescence as the second important CL emission band (≈ 620 nm) in calcite generally increases with diagenetic cement overgrowth and recrystallization but can also be present in unaltered material. Thus, orange CL of biogenic calcite is not an unequivocal diagenetic indicator. Accordingly, spectroscopic investigation of both the ≈ 400 and ≈ 620 nm peaks represents a more objective criterion to evaluate the degree of diagenetic alteration. The ratio of relative intensities of the blue CL versus orange CL can provide a semiquantitative measure with relative intensity ratios blue:orange >2 occurring in the least diagenetically altered microfossils. Comparison of unaltered specimens of separate species reveals elemental differences that potentially indicate species-specific biomineralization or habitats.

  6. Emerging Trends on the Volatile Chemistry in Comets as Measured with High-Resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J., Jr.; Weaver, Harold A.

    2016-10-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, and C2H2 may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Optical and infrared comparisons indicate that mixing ratios of daughter species and potential parents from cometary ices are sometimes but not always consistent with one another. This suggests that in many comets there are significant sources of C2 and/or CN from grains, and that the importance of these

  7. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.

  8. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  9. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-01

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  10. Development of AN External Cavity Quantum Cascade Laser Spectrometer for High-Resolution Spectroscopy of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; Gibson, Bradley M.; McCall, Benjamin J.

    2013-06-01

    Quantum cascade lasers (QCLs) have proven to be valuable tools for performing high-resolution infrared spectroscopy because of their high output powers and availability throughout the mid-infrared region of the electromagnetic spectrum. Despite their usefulness, typical QCLs can only be frequency tuned within a narrow window, requiring a specific laser to be used for measuring a specific molecular target. Recent advances in QCL technology have improved the tuning range of QCLs by creating lasers with broader gain profiles which can be used in an external cavity setup to produce widely-tunable, single-mode infrared radiation. In collaboration with the Wysocki research group at Princeton, we are developing a high-resolution infrared spectrometer based on an external cavity QCL (EC-QCL) system, which will allow us to perform spectroscopy from ˜1120 - 1250 cm^{-1}. We will present details of the development of the instrument, as well as preliminary spectroscopic results using the EC-QCL system. We will also outline future work we plan to perform with this spectrometer, particularly high-resolution spectroscopy of molecular ions.

  11. Chemical speciation of chlorine in atmospheric aerosol samples by high-resolution proton induced X-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kertész, Zsófia; Furu, Enikő; Kavčič, Matjaž

    2013-01-01

    Chlorine is a main elemental component of atmospheric particulate matter (APM). The knowledge of the chemical form of chlorine is of primary importance for source apportionment and for estimation of health effects of APM. In this work the applicability of high-resolution wavelength dispersive proton induced X-ray emission (PIXE) spectroscopy for chemical speciation of chlorine in fine fraction atmospheric aerosols is studied. A Johansson-type crystal spectrometer with energy resolution below the natural linewidth of Cl K lines was used to record the high-resolution Kα and Kβ proton induced spectra of several reference Cl compounds and two atmospheric aerosol samples, which were collected for conventional PIXE analysis. The Kα spectra which refers to the oxidation state, showed very minor differences due to the high electronegativity of Cl. However, the Kβ spectra exhibited pronounced chemical effects which were significant enough to perform chemical speciation. The major chlorine component in two fine fraction aerosol samples collected during a 2010 winter campaign in Budapest was clearly identified as NaCl by comparing the high-resolution Cl Kβ spectra from the aerosol samples with the corresponding reference spectra. This work demonstrates the feasibility of high-resolution PIXE method for chemical speciation of Cl in aerosols.

  12. Differential high-resolution stimulated CW Raman spectroscopy of hydrogen in a hollow-core fiber.

    PubMed

    Westergaard, Philip G; Lassen, Mikael; Petersen, Jan C

    2015-06-15

    We demonstrate sensitive high-resolution stimulated Raman measurements of hydrogen using a hollow-core photonic crystal fiber (HC-PCF). The Raman transition is pumped by a narrow linewidth (< 50 kHz) 1064 nm continuous-wave (CW) fiber laser. The probe light is produced by a homebuilt CW optical parametric oscillator (OPO), tunable from around 800 nm to 1300 nm (linewidth ∼ 5 MHz). These narrow linewidth lasers allow for an excellent spectral resolution of approximately 10(-4) cm(-1). The setup employs a differential measurement technique for noise rejection in the probe beam, which also eliminates background signals from the fiber. With the high sensitivity obtained, Raman signals were observed with only a few mW of optical power in both the pump and probe beams. This demonstration allows for high resolution Raman identification of molecules and quantification of Raman signal strengths. PMID:26193604

  13. High-resolution optical spectroscopy of RS Ophiuchi during 2008 - 2009

    NASA Astrophysics Data System (ADS)

    Somero, A.; Hakala, P.; Wynn, G. A.

    2016-10-01

    RS Ophiuchi is a symbiotic variable and a recurrent nova. We have monitored it with the Nordic Optical Telescope and obtained 30 high resolution (R=46 000) optical spectra over one orbital cycle during quiescence. To our knowledge this is the best-sampled high resolution spectroscopic dataset of RS Oph over one orbital period. We do not detect any direct signatures of an accretion disc such as double peaked emission lines, but many line profiles are complex consisting of superimposed emission and absorption components. We measure the spin of the red giant and conclude that it is tidally locked to the binary orbit. We observe Na I absorption features, probably arising from the circumbinary medium, that has been shaped by previous recurrent nova outbursts. We do not detect any intrinsic polarisation in the optical wavelengths.

  14. High-resolution multiple quantum MAS NMR spectroscopy of half-integer quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Wu, Gang; Rovnyank, David; Sun, Boqin; Griffin, Robert G.

    1996-02-01

    We demonstrate the utility of a two-pulse sequence in obtaining high-resolution solid state NMR spectra of half-integer quadrupolar nuclei with magic-angle-spinning (MAS). The experiment, which utilizes multiple/single-quantum correlation, was first described in a different form by Frydman and Harwood [J. Am. Chem. Soc. 117 (1995) 5367] and yields high-resolution isotropic NMR spectra where shifts are determined by the sum of resonance offset (chemical shift) and second-order quadrupolar effects. The two-pulse sequence described here is shown to provide a higher and more uniform excitation of multiple-quantum coherence than the three-pulse sequence used previously.

  15. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    SciTech Connect

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.; Maryland Univ., College Park, MD . Dept. of Chemistry and Biochemistry; Lawrence Berkeley Lab., CA )

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeI{alpha} (584{angstrom}) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As{sub 2}, As{sub 4}, and ZnCl{sub 2} are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab.

  16. SOLARNET: a UV, FUV, EUV, XUV high resolution imaging, spectro-imaging and spectroscopy mission.

    NASA Astrophysics Data System (ADS)

    Damé, L.

    SOLARNET is a high resolution mission which encompass extremely high resolution in the UV and FUV to access process scales of magnetic reconnection dissipation emerging flux onset of Flares and CME s origin of solar wind The chromosphere to the low corona with emphasis on the transition zone where the magnetic confinement is expected to be maximum are at the heart of this mission which will open a whole new chapter of the physics of solar magnetic field structuring evolution and mapping from the photosphere to the heliosphere SOLARNET is an inexpensive and compact medium size high resolution solar physics mission that will bring together most of the best of SOHO and TRACE It is proposed to CNES and ESA for a new start in 2006 and a possible launch in 2011-2012 to fill the gap before the first results of the Solar Orbiter or Probe results in the late 2018 at best Partnerships with India and China are under discussion and several European contributions are considered SOLARNET instrumentation consists in a multiple instrument payload to achieve both the necessary global view of extended events and the detailed high resolution understanding of them The major instrument is a 3-telescope interferometer of 1 meter baseline capable to provide 50 times the best ever spatial resolution achieved in Space with previous current or even planned solar missions 20 mas -- 20 km on the Sun in the FUV The interferometer is associated to an on-axis Subtractive Double Monochromator coupled to an Imaging Fourier Transform Spectrometer itself capable of very high spectral

  17. New High Resolution Spectroscopy Studies of Methyl Nitrite CH_3ONO

    NASA Astrophysics Data System (ADS)

    Sironneau, V.; Chelin, P.; Tchana, F. Kwabia; Kleiner, I.; Orphal, J.; Pirali, O.; Guillemin, J.-C.; Margules, L.; Motiyenko, R.; Cooke, S.; Youngblood, W. J.; Agnew, A.; Dewberry, C. T.

    2010-06-01

    Methyl nitrite CH3ONO is an important species in atmospheric chemistry involved in photochemical oxidation of volatile organic compounds. The cis conformer (more stable by about 298 cm-1) has a high internal rotation potential barrier for the methyl group (731 cm-1) whereas for the trans conformer the barrier to internal rotation is extremely low (10 cm-1), leading to large internal rotation splittings. Only one high resolution infrared study was performed prior to this study. For the first time, high-resolution spectrum of CH3ONO was recorded in the far infrared region (30-500 cm-1) using the synchrotron SOLEIL far-infrared beamline (AILES) and a Fourier transform (FT) spectrometer. Some 987 lines were assigned for the cis isomer up to J=65 and combined with 66 previously recorded microwave lines. In addition, high-resolution spectrum of the ν9 band of the cis isomer around 627.9 cm-1 was also recorded using the FT spectrometer at LISA. New microwave data is currently recorded to improve the knowledge of both the cis and trans ground state parameters. P. N. Gosh, A. Bauder and Hs. H. Gunthard, Chem. Phys. 53, 39-60 (1980) P. H. Turner, M. J. Corkill, and A. P. Cox, J. Chem. Phys. 83, 1473-1482 1979) L. M. Goss, C. D. Mortensen and T. A. Blake, J. Mol. Spectrosc., 225, 182-188 (2004)

  18. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Budinčević, I.; Billowes, J.; Bissell, M. L.; Cocolios, T. E.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2015-09-01

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1 /2=22.0 (5 ) ms ] 219Fr Qs=-1.21 (2 ) eb , which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  19. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy.

    PubMed

    de Groote, R P; Budinčević, I; Billowes, J; Bissell, M L; Cocolios, T E; Farooq-Smith, G J; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Li, R; Lynch, K M; Marsh, B A; Neyens, G; Rossel, R E; Rothe, S; Stroke, H H; Wendt, K D A; Wilkins, S G; Yang, X

    2015-09-25

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories. PMID:26451548

  20. High-resolution infrared spectroscopy of HCN-Agn (n = 1-4) complexes solvated in superfluid helium droplets.

    PubMed

    Stiles, Paul L; Miller, Roger E

    2007-08-01

    High-resolution infrared spectroscopy has been used to determine the structures, C-H stretching frequencies, and dipole moments of the HCN-Agn (n = 1-3) complexes formed in superfluid helium droplets. The HCN-Ag4 cluster was tentatively assigned based upon pick-up cell pressure dependencies and harmonic vibrational shift calculations. Ab initio and density functional theory calculations were used in conjunction with the high-resolution spectra to analyze the bonding nature of each cluster. All monoligated species reported here are bound through the nitrogen end of the HCN molecule. The HCN-Agn complexes are structurally similar to the previously reported HCN-Cun clusters, with the exception of the HCN-Ag binary complex. Although the interaction between the HCN and the Agn clusters follows the same trends as the HCN-Cun clusters, the more diffuse nature of the electrons surrounding the silver atoms results in a much weaker interaction.

  1. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    SciTech Connect

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam; Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  2. High-resolution spectroscopy with the multi-anode microchannel array detector systems

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Joseph, C. L.; Wolf, S. C.

    1982-01-01

    The results of a series of high-resolution spectroscopic observations undertaken with a linear (1 x 1024)-pixel visible-light Multi-Anode Microchannel Array (MAMA) detector on the Coudespectrograph of the 2.2-meter telescope at the Mauna Kea Observatory and on the vacuum spectrograph of the McMath Solar telescope at the Kitt Peak National Observatory are described. In addition, the two-dimensional MAMA detector systems with (16 x 1024)-pixel, (24 x 1024)-pixel, and (256 x 1024)-pixel formats which are now being readied for use in a series of ground-based, balloon, and sounding-rocket observing programs are briefly described.

  3. High resolution spectroscopy of the new FU Orionis object BBW 76

    NASA Astrophysics Data System (ADS)

    Eisloeffel, J.; Hessman, F. V.; Mundt, R.

    1990-06-01

    High-resolution spectra of the new FU Orionis object BBW 76 are presented. Although the photometric outburst of this FU Orionis object could not be observed, its spectral characteristics clearly identify it as belonging to this class. BBW 76 shows Balmer line profiles typical for FU Orionis stars. Its absorption line spectrum and, in particular, the line widths are strikingly similar to that of FU Ori. Other similarities to FU Ori are the presence of an arclike nebula, and the FIR luminosities and color temperatures.

  4. From BASIS to MIRACLES: Benchmarking and perspectives for high-resolution neutron spectroscopy at the ESS

    NASA Astrophysics Data System (ADS)

    Tsapatsaris, Nikolaos; Willendrup, Peter K.; Lechner, Ruep E.; Bordallo, Heloisa N.

    2015-01-01

    Results based on virtual instrument models for the first high-flux, high-resolution, spallation based, backscattering spectrometer, BASIS are presented in this paper. These were verified using the Monte Carlo instrument simulation packages McStas and VITESS. Excellent agreement of the neutron count rate at the sample position between the virtual instrument simulation and experiments was found, in both time and energy distributions. This achievement was only possible after a new component for a bent single crystal analyser in McStas, using a Gaussian approximation, was developed. These findings are pivotal to the conceptual design of the next generation backscattering spectrometer, MIRACLES at the European Spallation Source.

  5. Detection and Identification of Bioanalytes with High Resolution LSPR Spectroscopy and MALDI Mass Spectrometry

    PubMed Central

    Anker, Jeffrey N.; Hall, W. Paige; Lambert, Mary P.; Velasco, Pauline T.; Mrksich, Milan; Klein, William L.

    2009-01-01

    High resolution localized surface plasmon resonance (HR-LSPR) sensors were combined with matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) for the first time. LSPR sensors provide real-time label-free detection of molecular adsorption. Subsequent MALDI-MS analysis enables identification of the adsorbed molecules. This synergistic LSPR-MS approach was applied to the detection and identification of amyloid beta oligomers which play an important role in the molecular pathogenesis of Alzheimer’s Disease. PMID:20161175

  6. High resolution heteronuclear correlation NMR spectroscopy between quadrupolar nuclei and protons in the solid state

    NASA Astrophysics Data System (ADS)

    Goldbourt, A.; Vinogradov, E.; Goobes, G.; Vega, S.

    2004-08-01

    A high resolution two-dimensional solid state NMR experiment is presented that correlates half-integer quadrupolar spins with protons. In this experiment the quadrupolar nuclei evolve during t1 under a split-t1, FAM-enhanced MQMAS pulse scheme. After each t1 period ending at the MQMAS echo position, single quantum magnetization is transferred, via a cross polarization process in the mixing time, from the quadrupolar nuclei to the protons. High-resolution proton signals are then detected in the t2 time domain during wPMLG5* homonuclear decoupling. The experiment has been demonstrated on a powder sample of sodium citrate and 23Na- 1H 2D correlation spectra have been obtained. From the HETCOR spectra and the regular MQMAS spectrum, the three crystallographically inequivalent Na + sites in the asymmetric unit were assigned. This MQMAS- wPMLG HETCOR pulse sequence can be used for spectral editing of half-integer quadrupolar nuclei coupled to protons.

  7. High resolution triple resonance micro magic angle spinning NMR spectroscopy of nanoliter sample volumes.

    PubMed

    Brauckmann, J Ole; Janssen, J W G Hans; Kentgens, Arno P M

    2016-02-14

    To be able to study mass-limited samples and small single crystals, a triple resonance micro-magic angle spinning (μMAS) probehead for the application of high-resolution solid-state NMR of nanoliter samples was developed. Due to its excellent rf performance this allows us to explore the limits of proton NMR resolution in strongly coupled solids. Using homonuclear decoupling we obtain unprecedented (1)H linewidths for a single crystal of glycine (Δν(CH2) = 0.14 ppm) at high field (20 T) in a directly detected spectrum. The triple channel design allowed the recording of high-resolution μMAS (13)C-(15)N correlations of [U-(13)C-(15)N] arginine HCl and shows that the superior (1)H resolution opens the way for high-sensitivity inverse detection of heteronuclei even at moderate spinning speeds and rf-fields. Efficient decoupling leads to long coherence times which can be exploited in many correlation experiments.

  8. High Resolution Spectroscopy of C_2 and CN in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    McCall, Benjamin J.; Oka, Takeshi

    2000-08-01

    The unexpected detection of a large column density of hhh along the lines of sight to Cygnus OB2 #12 and Cygnus OB2 #5 cannot be explained by the standard models of diffuse cloud chemistry, which imply unreasonably long absorption path lengths (hundreds of parsecs). In order to gather more information about the physical condition of the diffuse gas in these lines of sight, we propose to obtain high resolution (R 120 000) visible spectra of several stars in the Cygnus OB2 association, including #12 and #5. The observed rotational distribution of the diatomics çand CN will enable us to estimate the kinetic temperature and number density of the molecular gas. In addition, the high resolution of the HRS at HET will allow us to study the velocity distribution of both the atomic (K I) and molecular (çand CN) gas along these lines of sight. Together with our previous observations of hhh, the temperatures, number densities, and velocity distributions from the proposed observations will seriously constrain theoretical models of these sightlines, such as that recently proposed by Cecchi-Pestellini and Dalgarno.

  9. Abundances of Local Group Globular Clusters Using High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; McWilliam, A.; Venn, K.; Shetrone, M. D.; Dotter, A. L.; Mackey, D.

    2014-01-01

    Abundances and kinematics of extragalactic globular clusters provide valuable clues about galaxy and globular cluster formation in a wide variety of environments. In order to obtain such information about distant, unresolved systems, specific observational techniques are required. An Integrated Light Spectrum (ILS) provides a single spectrum from an entire stellar population, and can therefore be used to determine integrated cluster abundances. This dissertation investigates the accuracy of high resolution ILS analysis methods, using ILS (taken with the Hobby-Eberly Telescope) of globular clusters associated with the Milky Way (47 Tuc, M3, M13, NGC 7006, and M15) and then applies the method to globular clusters in the outer halo of M31 (from the Pan-Andromeda Archaeological Survey, or PAndAS). Results show that: a) as expected, the high resolution method reproduces individual stellar abundances for elements that do not vary within a cluster; b) the presence of multiple populations does affect the abundances of elements that vary within the cluster; c) certain abundance ratios are very sensitive to systematic effects, while others are not; and d) certain abundance ratios (e.g. [Ca/Fe]) can be accurately obtained from unresolved systems. Applications of ILABUNDS to the PAndAS clusters reveal that accretion may have played an important role in the formation of M31's outer halo.

  10. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing. PMID:27021524

  11. Generation of Tunable Coherent Radiation Below 1000 Angstroms Applied to High-Resolution Spectroscopy of Xenon.

    NASA Astrophysics Data System (ADS)

    Bonin, Keith Donald

    This thesis involves the study of the problem of generating broadly tunable, narrowband, coherent extreme ultraviolet (XUV) radiation and using it to perform high -resolution spectroscopic studies of xenon. The coherent XUV radiation was efficiently generated by two-photon resonant four-wave mixing in krypton. The input laser beams to the nonlinear generation process were produced using a Nd:YAG driver laser at 1.064 (mu)m. This was doubled to 5320 (ANGSTROM) in order to pump a pulsed fluorescein dye laser at 5440 (ANGSTROM). The 5440 (ANGSTROM) radiation was doubled to 2720 (ANGSTROM) and this radiation was summed with the original 1.064 (mu)m beam to yield light at 2166.6 (ANGSTROM) (the 4p('6 1)S(,0) (--->) 5p 5/2 (,2) two-photon resonance in krypton). A second tunable dye laser produced laser pulses with wavelengths between 6100 (ANGSTROM) - 7250 (ANGSTROM). This laser system enabled us to produce XUV radiation at various regions between 921 (ANGSTROM) and 943 (ANGSTROM). Power efficiencies as high as 10(' -5) were achieved and the linewidth of the coherent XUV was (TURN)0.3 cm('-1). Since a two-photon resonance was used to enhance the XUV output efficiency, electric-dipole two-photon selection rules were derived for the most general case of two input photons with unequal frequencies. In order to perform high-resolution spectroscopic studies with this system, we utilized a Fizeau interferometer based wavemeter to measure the input wavelengths to the four-wave mixing process to an accuracy of 2 parts in 10('6). The Fizeau wavemeter and the coherent XUV radiation system enabled us to study the autoionization region of xenon between its two ionization limits at 1022.1 (ANGSTROM) and 922.76 (ANGSTROM) with extremely high resolution. Altogether a total of 12 autoionizing resonances were scanned in frequency. The results include a combination of photoabsorption and ionization measurements. The agreement between the coherent XUV results and the best available

  12. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    NASA Astrophysics Data System (ADS)

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics.

  13. High resolution spectroscopy of SrOD radical by supersonic expansion

    SciTech Connect

    Zhao, Chunfeng; Hajigeorgiou, P.; Hepburn, J.W.; Bernath, P.F.

    1995-12-31

    The high resolution spectrum of gas phase SrOD has been recorded in a supersonic beam spectrometer. The B{sup 2}{Sigma}{sup +}-X{sup 2}{Sigma}{sup +} (000)-(000) and (100)-(000) bands have been rotationally analyzed. The accuracy of the rotational line positions was about 0.003 cm{sup -1}. The measured line positions together with the microwave data for the ground state have been fitted to give molecular constants for both electronic states. The Q branch of the (000)-(000) band was resolved for the first time and the ratio between the perpendicular and parallel transition dipole moments was estimated to be about 0.2.

  14. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids.

    PubMed

    Nucci, Nathaniel V; Valentine, Kathleen G; Wand, A Joshua

    2014-04-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (<25kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the 'slow tumbling problem' can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  15. High Resolution Far Infrared Spectroscopy of HFC-134a at Cold Temperatures

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Medcraft, Chris; Thompson, Christopher; Robertson, Evan Gary; Appadoo, Dominique; McNaughton, Don

    2016-06-01

    Since the signing of the Montreal protocol, long-lived chlorofluorocarbons have been banned due to their high ozone depleting potential. In order to minimise the effect of such molecules, hydrofluorocarbons (HFCs) were synthesized as replacement molecules to be used as refrigerants and foam blowing agents. HFC-134a, or 1,1,1,2-tetrafluoroethane, is one of these molecules. Although HFCs do not cause ozone depletion, they are typically strong absorbers within the 10 micron atmospheric window, which lead to high global warming potentials. A high resolution FT-IR analysis of the νb{8} band (near 665 wn) of HFC-134a has been performed to help understand the intermode coupling between the νb{8} vibrational state and unobserved dark states.

  16. High-Resolution Spectroscopy of the Metal-Poor Star HD 187216

    NASA Astrophysics Data System (ADS)

    Barzdis, A.; Začs, L.; Galazutdinov, G.

    Abundance analysis of the metal-poor, carbon-rich giant HD 187216 using high-resolution (R ≈ 45 000) spectrum was performed. An LTE abundance analysis was done for carefully selected clean atomic lines, using the Uppsala atmospheric model with Teff = 4000 K, log g = 0.75, ξt = 2.8 km s-1 and [Z] = --2.0. The mean metallicity [Fe/H] = --1.7 derived by using singly ionized iron lines is much higher than previously believed. It seems likely that Fe I lines, like many other neutral atomic lines, suffer from non-LTE effects that are significant at low metallicity and gravity. The abundances of the neutron capture elements are found to be enhanced by about 1.3 dex relative to the iron group elements. Possible causes of chemical peculiarities of HD 187216 are discussed.

  17. High-resolution NMR spectroscopy of encapsulated proteins dissolved in low-viscosity fluids

    PubMed Central

    Nucci, Nathaniel V.; Valentine, Kathleen G.; Wand, A. Joshua

    2014-01-01

    High-resolution multi-dimensional solution NMR is unique as a biophysical and biochemical tool in its ability to examine both the structure and dynamics of macromolecules at atomic resolution. Conventional solution NMR approaches, however, are largely limited to examinations of relatively small (< 25 kDa) molecules, mostly due to the spectroscopic consequences of slow rotational diffusion. Encapsulation of macromolecules within the protective nanoscale aqueous interior of reverse micelles dissolved in low viscosity fluids has been developed as a means through which the ‘slow tumbling problem’ can be overcome. This approach has been successfully applied to diverse proteins and nucleic acids ranging up to 100 kDa, considerably widening the range of biological macromolecules to which conventional solution NMR methodologies may be applied. Recent advances in methodology have significantly broadened the utility of this approach in structural biology and molecular biophysics. PMID:24656086

  18. High-resolution NMR spectroscopy of biological tissues usingprojected Magic Angle Spinning

    SciTech Connect

    Martin, Rachel W.; Jachmann, Rebecca C.; Sakellariou, Dimitris; Nielsen, Ulla Gro; Pines, Alexander

    2005-01-27

    High-resolution NMR spectra of materials subject toanisotropic broadening are usually obtained by rotating the sample aboutthe magic angle, which is 54.7 degrees to the static magnetic field. Inprojected Magic Angle Spinning (p-MAS), the sample is spun about twoangles, neither of which is the magic angle. This provides a method ofobtaining isotropic spectra while spinning at shallow angles. The p-MASexperiment may be used in situations where spinning the sample at themagic angle is not possible due to geometric or other constraints,allowing the choice of spinning angle to be determined by factors such asthe shape of the sample, rather than by the spin physics. The applicationof this technique to bovine tissue samples is demonstrated as a proof ofprinciple for future biological or medical applications.

  19. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    SciTech Connect

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  20. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  1. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  2. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    SciTech Connect

    Kosanke, K.L.; Koch, C.D.; Wilson, R.D.

    1980-01-01

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date.

  3. The study of oxygen molecules on Pt (111) surface with high resolution x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Yong Su; Bostwick, Aaron; Rotenberg, Eli; Ross, Philip N.; Hong, Soon Cheol; Mun, Bongjin Simon

    2010-07-01

    By using high resolution x-ray photoelectron spectroscopy, we show that inelastic scattering of photoelectron at low temperature (30-50 K) generates two kinds of oxygen species on Pt (111) surface. Intense synchrotron radiation source dissociates oxygen molecules into chemisorbed atomic oxygen and induces the formation of PtO on the surface. Estimated coverage of dissociated atomic oxygen is 0.5 ML, suggesting possible formation of p(2×1) surface structure, while PtO coverage shows saturation coverage of 0.5 ML. Molecular oxygen dosed at 30 K undergoes thermally activated transition from physisorbed to chemisorbed state at around 40 K.

  4. The study of oxygen molecules on Pt (111) surface with high resolution x-ray photoemission spectroscopy.

    PubMed

    Kim, Yong Su; Bostwick, Aaron; Rotenberg, Eli; Ross, Philip N; Hong, Soon Cheol; Mun, Bongjin Simon

    2010-07-21

    By using high resolution x-ray photoelectron spectroscopy, we show that inelastic scattering of photoelectron at low temperature (30-50 K) generates two kinds of oxygen species on Pt (111) surface. Intense synchrotron radiation source dissociates oxygen molecules into chemisorbed atomic oxygen and induces the formation of PtO on the surface. Estimated coverage of dissociated atomic oxygen is 0.5 ML, suggesting possible formation of p(2 x 1) surface structure, while PtO coverage shows saturation coverage of 0.5 ML. Molecular oxygen dosed at 30 K undergoes thermally activated transition from physisorbed to chemisorbed state at around 40 K. PMID:20649331

  5. An atomic beam of 6Li — 7Li for high resolution spectroscopy from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Silva, B. A.; Uhlmann, F. O.; Wolff, W.; Cesar, C. L.

    2016-07-01

    We propose the Matrix Isolation Sublimation (MlSu) technique for generating cold lithium atoms for the measurement of the 6Li - 7Li isotope shift in D1 and D2 transitions. The technique is capable of generating cold 6Li and 7Li beams at 4 K with forward velocity of 125 m/s. Using this beam we offer a distinguished source of lithium atoms for transitions measurements, adding a new possibility to make high resolution spectroscopy towards improving the experimental checks of the theory.

  6. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave

    2012-09-01

    The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.

  7. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    NASA Astrophysics Data System (ADS)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  8. High resolution Raman spectroscopy of complexes and clusters in molecular beams. Performance report

    SciTech Connect

    Felker, P.M.

    1991-12-31

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  9. High resolution Raman spectroscopy of complexes and clusters in molecular beams

    SciTech Connect

    Felker, P.M.

    1991-01-01

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  10. Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring

    NASA Astrophysics Data System (ADS)

    Maiwald, Michael; Fischer, Holger H.; Kim, Young-Kyu; Albert, Klaus; Hasse, Hans

    2004-02-01

    On-line nuclear magnetic resonance spectroscopy (on-line NMR) is a powerful technique for reaction and process monitoring. Different set-ups for direct coupling of reaction and separation equipment with on-line NMR spectroscopy are described. NMR spectroscopy can be used to obtain both qualitative and quantitative information from complex reacting multicomponent mixtures for equilibrium or reaction kinetic studies. Commercial NMR probes can be used at pressures up to 35 MPa and temperatures up to 400 K. Applications are presented for studies of equilibria and kinetics of complex formaldehyde-containing mixtures as well as homogeneously and heterogeneously catalyzed esterification kinetics. Direct coupling of a thin-film evaporator is described as an example for the benefits of on-line NMR spectroscopy in process monitoring.

  11. Cassini UVIS Solar Zenith Angle Studies of Titan Dayglow Based on N2 High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph; West, Robert; Holsclaw, Greg; Royer, Emilie; Heays, Alan; Bradley, Todd; Stevens, Michael

    2014-11-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan’s day and night limb-airglow on multiple occasions, including during an eclipse observation. On one occasion the UVIS made a Solar Zenith Angle (SZA) study of the Titan limb dayglow (2011 DOY 171) from about 70 to 95 degrees SZA. The UV intensity variation observations of the N2 photoelectron excited spectral features from the EUV (563-118.2 nm) and FUV (111.5-191.2nm) sub-systems followed a Chapman function. For other observations at night on the limb, the emission features are much weaker in intensity. Beyond 120 deg SZA, when the upper atmosphere of Titan below 1200 km is in total XUV darkness, there is an indication of weak and sporadic night side UV airglow emission excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range. We have analyzed the UVIS airglow spectra with models based on high resolution laboratory electron impact induced fluorescence spectra. We have measured high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by electron impact at 20 and 100 eV. Molecular emission was observed to vibrationally-excited ground state levels as high as v''=17, from the a 1Πg , b 1Πu, and b‧ 1Σu+ excited valence states and the Rydberg series c‧n+1 1Σu+, cn 1Πu and o 1Πu for n between 3 and 9. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets. Their emission cross sections were measured.The blended molecular emission bands were disentangled with the aid of a model which solves the coupled-Schroedinger equation

  12. Measuring stellar magnetic fields from high resolution spectroscopy of near-infrared lines

    NASA Astrophysics Data System (ADS)

    Leone, F.; Vacca, W. D.; Stift, M. J.

    2003-10-01

    Zeeman splitting of otherwise degenerate levels provides a straight-forward method of measuring stellar magnetic fields. In the optical, the relative displacements of the Zeeman components are quite small compared to the rotational line broadening, and therefore observations of Zeeman splitting are usually possible only for rather strong magnetic fields in very slowly rotating stars. However, the magnitude of the Zeeman splitting is proportional to the square of the wavelength, whereas rotational line broadening mechanisms are linear in wavelength; therefore, there is a clear advantage in using near-infrared spectral lines to measure surface stellar magnetic fields. We have obtained high resolution (R >= 25 000) spectra in the 15 625-15 665 Å region for two magnetic chemically peculiar stars, viz. HD 176232 and HD 201601, and for the suspected magnetic chemically peculiar star HD 180583, as part of a pilot study aimed at determining the accuracy with which we can measure stellar magnetic fields using the Zeeman splitting of near-infrared lines. We confirm that in principle the magnetic field strength can be estimated from the magnetic intensification of spectral lines, i.e. the increase in equivalent width of a line over the zero-field value. However, due to line blending as well as the dependence of this intensification on abundance and field geometry, accurate estimates of the magnetic field strengths can be obtained only by modelling the line profiles by means of spectral synthesis techniques. Using this approach, we find a 1.4 kG magnetic field modulus in HD 176132 and an upper limit of 0.2 kG in HD 180583. The very weak infrared lines in the spectrum of HD 201601 are consistent with a 3.9 kG field modulus estimated from the splitting of the Fe II 6149.258 Å line seen in an optical spectrum. Finally, we would like to draw attention to the fact that there are no sufficiently detailed and reliable atomic line lists available for the near-infrared region that

  13. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  14. High-resolution FTIR spectroscopy of chlorodifluoromethane: ν2 and ν7

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher D.; Robertson, Evan G.; McNaughton, Don

    2002-06-01

    High-resolution FTIR spectra of chlorodifluoromethane (R22) were measured both at room temperature and cooled to approximately -100 °C in a collisional cooling cell. A rovibrational analysis was performed for ν2, the a/c-hybrid band at 1313 cm-1 and ν7, the b-type band at 1351 cm-1. 7400 and 1700 lines were assigned to CH 35ClF 2 and CH 37ClF 2, respectively, with quantum numbers up to J=98 and Ka=46. Effective constants to the sextic level have been fitted using Watson's A-reduction Hamiltonian. More accurate spectroscopic constants were obtained by fitting the two states simultaneously, taking into account both first- and second-order c-axis Coriolis interactions between the two bands. The ν2 band is predominantly a-type, but weaker c-type transitions assigned for CH 35ClF 2 enable the a/c-hybrid character ( μa2/ μc2) to be determined as 5.76.

  15. High-resolution electron momentum spectroscopy of valence satellites of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Huang, Chengwu; Shan, Xu; Zhang, Zhe; Wang, Enliang; Li, Zhongjun; Chen, XiangJun

    2010-09-01

    The binding energy spectrum of carbon disulphide (CS2) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from Π2u, Σg+2 states to satellite 2 and Σg+2, Π2g states to satellite 3. Besides, relatively low pole strength for X Π2g state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.

  16. High-resolution X-ray spectroscopy of late-type stars with CHANDRA

    NASA Astrophysics Data System (ADS)

    Mewe, R.; Raassen, A. J. J.; Kaastra, J. S.; van der Meer, R. L. J.; Brinkman, A. C.

    We have analyzed high-resolution (Δλ ≅ 0.06 Å) X-ray spectra in the region 6-180 Å of the coronae of the cool stars Capella, Procyon, and α Centauri. These stars were observed with the the CHANDRA Low Energy Transmission Grating Spectrometer (LETGS) between Sep. and Dec. 1999. Temperatures are derived from line ratios of helium-like lines and long-wavelength iron lines. Electron densities are obtained for the relatively cooler (few MK) and more tenuous (⪅ 10 11 cm -3) plasma components from the forbidden to intercombination line ratios in the helium-like triplets of O, N, and C and for the hotter (⪆ 5 MK) and denser (⪆ 10 12 cm -3) components (such as occur in Capella) from the helium-like triplets of Mg and Si and the ratios of Fe XIX-Fe XXII 2ℓ-2ℓ' lines above 90 Å. The implications of these results for the coronal structure are discussed.

  17. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  18. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2015-11-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  19. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Chen, H; Emig, J; Hell, N; Bitter, M; Hill, K W; Allan, P; Brown, C R D; Hill, M P; Hoarty, D J; Hobbs, L M R; James, S F

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom. PMID:27370448

  20. Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbe, Nicole; Wagner, Rebekah J.

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  1. Kaon Tagging at 0° Scattering Angle for High-Resolution Decay-Pion Spectroscopy

    NASA Astrophysics Data System (ADS)

    Esser, Anselm; Achenbach, Patrick; Arai, Naoki; Ayerbe Gayoso, Carlos; Böhm, Ralph; Borodina, Olga; Bosnar, Damir; Bozkurt, Vakkas; Debenjak, Luka; Distler, Michael O.; Friščić, Ivica; Fujii, Yuu; Gogami, Toshiyuki; Gómez Rodríguez, Mar; Hashimoto, Osamu; Hirose, Satoshi; Kanda, Hiroki; Kaneta, Masashi; Kim, Eunhee; Kusaka, Junichiro; Maeda, Kazushige; Margaryan, Amur; Merkel, Harald; Müller, Ulrich; Nagao, Sho; Nakamura, Satoshi N.; Pochodzalla, Josef; Rappold, Christophe; Reinhold, Joerg; Saito, Takehiko R.; Sanchez Lorente, Alicia; Sánchez Majos, Salvador; Sören Schlimme, Björn; Schoth, Matthias; Schulz, Florian; Sfienti, Concettina; Širca, Simon; Tang, Liguang; Thiel, Michaela; Tsukada, Kyo

    2014-03-01

    At the Mainz Microtron hypernuclei can be studied by (e,e'K) reactions. By detecting the kaon which is emitted in forward direction, with the KAOS spectrometer placed at 0° scattering angle, reactions involving open strangeness production are tagged. High-resolution magnetic spectrometers are then used to coincidentally detect the monoenergetic decay-pions from mesonic two-body weak decays of light hypernuclei at rest. As a pioneering experiment has confirmed, the KAOS spectrometer is exposed to a large flux of background particles, mostly positrons from bremsstrahlung pair production. In order to increase the effciency of kaon identification the KAOS spectrometer was modified to suppress background particles at the cost of a high momentum resolution, which is less important for this experiment. This was achieved by placing up to 14 cm of lead absorbers in front of the detectors, in which positrons are blocked by forming electromagnetic showers while the effect on kaons is limited. An additional time-of-flight wall and a new threshold Čerenkov detector help to increase the detection effciency of kaons.

  2. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer.

    PubMed

    Beiersdorfer, P; Magee, E W; Brown, G V; Chen, H; Emig, J; Hell, N; Bitter, M; Hill, K W; Allan, P; Brown, C R D; Hill, M P; Hoarty, D J; Hobbs, L M R; James, S F

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  3. HIGH-RESOLUTION FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF METHYL- AND DIMETHYLNAPTHALENES

    SciTech Connect

    Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang

    2015-06-01

    High-resolution pure rotational spectra of four alkylnaphthalenes were measured in the range of 6–15 GHz using a molecular-beam Fourier-transform microwave spectrometer. Both a- and b-type transitions were observed for 1-methylnaphthalene (1-MN), 1,2-dimethylnaphthalene (1,2-DMN), and 1,3-dimethylnaphthalene (1,3-DMN); only a-type transitions were observed for 2-methylnaphthalene (2-MN). Geometry optimization and vibrational analysis calculations at the B3LYP/6-311++G(d,p) level of theory aided in the assignments of the spectra and the characterization of the structures. Differences between the experimental and predicted rotational constants are small, and they can be attributed in part to low-lying out-of-plane vibrations, which distort the alkylnaphthalenes out of their equilibrium geometries. Splittings of rotational lines due to methyl internal rotation were observed in the spectra of 2-MN, 1,2-DMN, and 1,3-DMN, and allowed for the determination of the barriers to methyl internal rotation, which are compared to values from density functional theory calculations. All four species are moderately polar, so they are candidate species for detection by radio astronomy, by targeting the transition frequencies reported here.

  4. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    SciTech Connect

    Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M.; Huang, Xinchuan; Lee, Timothy J.; Oomens, Jos E-mail: petrignani@strw.leidenuniv.nl

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  5. Lineshape spectroscopy with a very high resolution, very high signal-to-noise crystal spectrometer

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Chen, H.; Emig, J.; Hell, N.; Bitter, M.; Hill, K. W.; Allan, P.; Brown, C. R. D.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-06-01

    We have developed a high-resolution x-ray spectrometer for measuring the shapes of spectral lines produced from laser-irradiated targets on the Orion laser facility. The instrument utilizes a spherically bent crystal geometry to spatially focus and spectrally analyze photons from foil or microdot targets. The high photon collection efficiency resulting from its imaging properties allows the instrument to be mounted outside the Orion chamber, where it is far less sensitive to particles, hard x-rays, or electromagnetic pulses than instruments housed close to the target chamber center in ten-inch manipulators. Moreover, Bragg angles above 50° are possible, which provide greatly improved spectral resolution compared to radially viewing, near grazing-incidence crystal spectrometers. These properties make the new instrument an ideal lineshape diagnostic for determining plasma temperature and density. We describe its calibration on the Livermore electron beam ion trap facility and present spectral data of the K-shell emission from highly charged sulfur produced by long-pulse as well as short-pulse beams on the Orion laser in the United Kingdom.

  6. High-Resolution Near-Infrared Spectroscopy of CH2+ and Its Deuterated Isotopologues

    NASA Astrophysics Data System (ADS)

    Wang, Haiming; Neese, Christopher F.; Morong, Christopher P.; Kleshcheva, Maria; Oka, Takeshi

    2013-10-01

    Aiming to provide approximate rotational constants for millimeter wave spectroscopists to identify the corresponding species in space, we have recorded the near-infrared spectra of the methylene cation CH2+ and its deuterated isotopologues, CD2+ and CHD+, using a high resolution and high sensitivity spectrometer. Detection of CH2+ in space will shed light on interstellar chemistry as it is the intermediate between the abundant CH+ and yet to be observed CH3+, which is important in the formation of larger organic molecules. CH2+ and its deuterated isotopologues are also of special interest for theoretical studies because of their unique intramolecular dynamics, i.e., the Renner-Teller interaction and quasi-linearity. This paper will discuss several new bands of CH2+, the -(0,5[11],0)0 - X-(0,0[0],0)1 and -(0,4[11],0)2 - X-(0,0[0],0)1 bands of CD2+, which have been identified and analyzed, and the candidate lines for the -(0,4[10],0)1 - X-(0,0[1],0)0 band of CHD+, in comparison with the theoretical predictions by Bunker and colleagues.

  7. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  8. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O(-) and Fe5O(.).

    PubMed

    Weichman, Marissa L; DeVine, Jessalyn A; Neumark, Daniel M

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O(-) and Fe5O(-) obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the (15)A2←(16)B2 photodetachment transition of Fe4O(-) and the (17)A'←(18)A″ photodetachment transition of Fe5O(-). We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the (15)A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O(0/-) and a distorted trigonal-bipyramidal arrangement in Fe5O(0/-). For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O(0/-) exhibits a μ3 face-bound structure. PMID:27497556

  9. High-resolution spectroscopy of southern and equatorial Be stars: flux excess at λ4471 A.

    NASA Astrophysics Data System (ADS)

    Ballereau, D.; Chauville, J.; Zorec, J.

    1995-06-01

    We present a catalogue of high-resolution He I 4471, Mg II 4481 and Hγ line profiles observed simultaneously for 37 southern and equatorial Be stars. In this paper we focus on the He I 4471 line, which is studied using non-LTE model line profiles. A systematic difference is found between the observed and the theoretical He I 4471 line equivalent widths. This difference strongly correlates with the Hγ emission and we interpret it as being due mainly to the veiling effect produced by the continuum emission excess originating in the circumstellar envelope. To determine the continuum flux excess we use two methods. One method enables us to obtain simultaneously the V sin i parameter. The flux excess we determined is overestimated by about 9% on average, because in the line profile analysis we neglected the gravity darkening effect due to stellar rotation. We find that 14 program stars present two possible solutions for V sin i. The second solution is, on average, 14% smaller and produces a small residual or emission-like difference between the observed He I 4471 line profile and the model profile.

  10. Slit-Jet Discharge Studies of Polyacetylenic Molecules: Synthesis and High Resolution Infrared Spectroscopy of Diacetylene

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Roberts, Melanie A.; Nesbitt, David J.

    2013-06-01

    Polyacetylenic molecules play an important role in both combustion chemistry as well as chemistry of the interstellar medium. This talk presents first high resolution infrared spectroscopic efforts on the simplest jet-cooled polyacetylene, namely diacetylene (C_4H_2). Specifically, the fundamental anti-symmetric C-H stretching mode (near 3333 cm^{-1}) and several hot combination bands of diacetylene have been investigated under sub-Doppler, jet cooled conditions in a pulsed supersonic slit discharge. Local Coriolis perturbations in the fundamental anti-symmetric C-H stretch manifold are observed and analyzed. Six hot bands are observed, including the H-C-C bending mode (v_8) not observed in previous room temperature studies. The observation of these hot bands under rotationally jet cooled conditions (T_{rot}=15.7(4) K) indicate the presence of highly non-equilibrium relaxation processes between vibration and rotation. G. Guelachvili, A. M. Craig, and D. A. Ramsay, J. Mol. Spectrosc. 105, 156 (1984)

  11. High resolution 13C-detected solid-state NMR spectroscopy of a deuterated protein

    PubMed Central

    Tang, Ming; Comellas, Gemma; Mueller, Leonard J.

    2011-01-01

    High resolution 13C-detected solid-state NMR spectra of the deuterated beta-1 immunoglobulin binding domain of the protein G (GB1) have been collected to show that all 15N, 13C′, 13Cα and 13Cβ sites are resolved in 13C–13C and 15N–13C spectra, with significant improvement in T2 relaxation times and resolution at high magnetic field (750 MHz). The comparison of echo T2 values between deuterated and protonated GB1 at various spinning rates and under different decoupling schemes indicates that 13Cα T2′ times increase by almost a factor of two upon deuteration at all spinning rates and under moderate decoupling strength, and thus the deuteration enables application of scalar-based correlation experiments that are challenging from the standpoint of transverse relaxation, with moderate proton decoupling. Additionally, deuteration in large proteins is a useful strategy to selectively detect polar residues that are often important for protein function and protein–protein interactions. PMID:20803233

  12. Fully automated high-resolution spectroscopy at Swiss 1.2 m La Silla telescope

    NASA Astrophysics Data System (ADS)

    Weber, Luc; Blecha, Andre; Davignon, Geert; Maire, Charles; Queloz, Didier; Russiniello, Giovanni B.; Simond, Gilles

    2000-06-01

    A Ritchey-Chretien 1.2 m telescope (EULER) and the High- Resolution echelle Spectrograph (CORALIE), a new Swiss observing facility at ESO La Silla Observatory, are operational and since Summer 1998. The Observatory operation is fully automated and supports the unattended, attended and interactive mode of operation under local or remote control. The control hardware is based on Local Control Units (LCU) built from PC/RedHat Linux computers and a Unix Computing Server. The Operational Software is built around INTER, a command language interpreter featuring communication control, data access, image processing functions and easy access to external resources. The general SW architecture is a non-hierarchical tree of pairs made of hardware- independent interpreters running on the Observing Server and hardware dependent servers running on the LCU's. The Operational Software includes the full access (Creation/Modification/Retrieval) to the input/output databases, telescope, instrument and auxiliary set-up and control files as well as a full data-reduction pipeline. We describe briefly the system architecture, summarize the performances and the experience gained over 18 months of operation and we discuss some critical issues: use of standard components, parallel operation, real-time requirements, system upgrade and maintenance.

  13. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  14. High-resolution near-infrared spectroscopy of CH2(+) and its deuterated isotopologues.

    PubMed

    Wang, Haiming; Neese, Christopher F; Morong, Christopher P; Kleshcheva, Maria; Oka, Takeshi

    2013-10-01

    Aiming to provide approximate rotational constants for millimeter wave spectroscopists to identify the corresponding species in space, we have recorded the near-infrared spectra of the methylene cation CH2(+) and its deuterated isotopologues, CD2(+) and CHD+, using a high resolution and high sensitivity spectrometer. Detection of CH2(+) in space will shed light on interstellar chemistry as it is the intermediate between the abundant CH+ and yet to be observed CH3(+), which is important in the formation of larger organic molecules. CH2(+) and its deuterated isotopologues are also of special interest for theoretical studies because of their unique intramolecular dynamics, i.e., the Renner–Teller interaction and quasi-linearity. This paper will discuss several new bands of CH2(+), the Ã(0,5[11],0)0 ← X̃(0,0[0],0)1 and Ã(0,4[11],0)2 ← X̃(0,0[0],0)1 bands of CD2(+), which have been identified and analyzed, and the candidate lines for the Ã(0,4[10],0)1 ← X̃(0,0[1],0)0 band of CHD+, in comparison with the theoretical predictions by Bunker and colleagues.

  15. High-resolution spectrometer using combined dispersive and interferometric wavelength separation for raman and laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Riebe, Daniel; Beitz, Toralf; Dosche, Carsten; Löhmannsröben, Hans-Gerd; Raab, Volker; Raab, Corinna; Unverzagt, Matthias

    2014-01-01

    In this paper the concept of a compact high-resolution spectrometer based on the combination of dispersive and interferometric elements is presented. Dispersive elements are used to spectrally resolve the light in one direction with coarse resolution (Δλ < 0.5 nm), while perpendicular to that direction an etalon provides high spectral resolution (Δλ < 50 pm). This concept for two-dimensional spectroscopy has been implemented for the wavelength range λ = 350-650 nm. Appropriate algorithms for reconstructing spectra from the two-dimensional raw data and for wavelength calibration were established in an analysis software. Potential applications for this new spectrometer are Raman and laser-induced breakdown spectroscopy (LIBS). Resolutions down to 28 pm (routinely 54 pm) could be realized for these applications.

  16. High-resolution VUV spectroscopy: New results from the Advanced Light Source

    SciTech Connect

    Schlachter, F.; Bozek, J.

    1996-06-01

    Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

  17. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas; Rice, Emily L.; Pueyo, Laurent; Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Kraus, Adam L.; Ireland, Michael J.; Beichman, Charles; Dekany, Richard; Parry, Ian R.; and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  18. High-resolution spectroscopy using an acousto-optic tunable filter and a fiber-optic Fabry-Perot interferometer

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; DSilva, A.P.

    1996-04-01

    A compact, solid-state, high-resolution spectrometer consisting of an acousto-optic tunable filter (AOTF) and a fiber-optic Fabry{endash}Perot (FFP) interferometer has been developed. The system has been designed for high-resolution inductively coupled plasma atomic emission spectroscopy (ICP-AES) applications. A description of the AOTF-FFP and its performance is presented. The resolution of the AOTF-FFP was determined by measuring the physical widths of ICP emission lines using a 1.5-m-focal-length grating spectrometer and deconvoluting the physical line shapes from the acquired AOTF-FFP spectra. Over the optimum range of the FFP mirror coatings, the resolution is sufficient for the determination of isotopic and hyperfine emission features in ICP-AES experiments, and approaches that of the 1.5-m spectrometer. The application of the AOTF-FFP to the determination of uranium isotopes (U-235 and U-238) introduced into the ICP is presented. {copyright} {ital 1996 Society for Applied Spectroscopy.}

  19. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  20. High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, M. A.; Roucou, A.; Brown, G. G.; Thorwirth, S.; Pirali, O.; Mouret, G.; Hindle, F.; McCarthy, M. C.; Cuisset, A.

    2016-02-01

    Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (reSE) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

  1. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  2. HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b

    SciTech Connect

    Crossfield, I. J. M.; Hansen, Brad M. S.; Barman, Travis

    2011-08-01

    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations {approx}> 5 x 10{sup -4} over the wavelength range 2.1-2.4 {mu}m. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with other observational constraints, our results support a model in which the atmosphere of GJ 1214b contains significant H and He, but where CH{sub 4} is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.

  3. High-Resolution Spectroscopy of Long-Range Molecular States of 85Rb_2

    NASA Astrophysics Data System (ADS)

    Carollo, Ryan; Eyler, Edward E.; Bruneau, Yoann; Gould, Phillip; Stwalley, W. C.

    2015-06-01

    We present analysis of low-n long-range molecular Rydberg states in 85Rb_2, based on high-resolution spectra. The weakly bound states are accessed by bound-bound transitions from high-v levels of the a ^3 σ _u^+ state, which are prepared by photoassociation of laser-cooled atoms. Single-photon transitions to target states near the 5s + 7p asymptote are excited by a frequency-doubled pulse-amplified CW laser with a narrow linewidth, under 200 MHz. The long-range portion of the bonding potential is dominated by the elastic scattering interaction of the Rydberg electron of a perturbed 7p atom and a nearby ground-state atom, in much the same manner as trilobite states. We use time of flight to selectively measure molecular ions, which are formed via autoionization. This technique gives a two orders-of-magnitude improvement in linewidth over our previous work, reported in Ref. [1]. We also present calculations of a proposed scheme for STIRAP transfer from the current v''=35 level of the a ^3 σ _u^+ state to the v''=39 level. The long-range states accessible to us are defined in large part by the Franck-Condon factors, which are dominated by the outer lobe of the wavefunction. Thus, choosing a v'' sets R, and determines the Franck-Condon window. The proposed v'' = 39 level has a classical outer turning point at ˜ 72 a_0, and will provide access to higher-n states with longer-range wells. This work is supported by the NSF and AFOSR. [1] M. A. Bellos et al., Phys. Rev. Lett. 111, 053001 (2013)

  4. High-resolution solid-state 2H NMR spectroscopy of polymorphs of glycine.

    PubMed

    Aliev, Abil E; Mann, Sam E; Rahman, Aisha S; McMillan, Paul F; Corà, Furio; Iuga, Dinu; Hughes, Colan E; Harris, Kenneth D M

    2011-11-10

    High-resolution solid-state (2)H MAS NMR studies of the α and γ polymorphs of fully deuterated glycine (glycine-d(5)) are reported. Analysis of spinning sideband patterns is used to determine the (2)H quadrupole interaction parameters, and is shown to yield good agreement with the corresponding parameters determined from single-crystal (2)H NMR measurements (the maximum deviation in quadrupole coupling constants determined from these two approaches is only 1%). From analysis of simulated (2)H MAS NMR sideband patterns as a function of reorientational jump frequency (κ) for the -N(+)D(3) group in glycine-d(5), the experimentally observed differences in the (2)H MAS NMR spectrum for the -N(+)D(3) deutrons in the α and γ polymorphs is attributed to differences in the rate of reorientation of the -N(+)D(3) group. These simulations show severe broadening of the (2)H MAS NMR signal in the intermediate motion regime, suggesting that deuterons undergoing reorientational motions at rates in the range κ ≈ 10(4)-10(6) s(-1) are likely to be undetectable in (2)H MAS NMR measurements for materials with natural isotopic abundances. The (1)H NMR chemical shifts for the α and γ polymorphs of glycine have been determined from the (2)H MAS NMR results, taking into account the known second-order shift. Further quantum mechanical calculations of (2)H quadrupole interaction parameters and (1)H chemical shifts reveal the structural dependence of these parameters in the two polymorphs and suggest that the existence of two short intermolecular C-H···O contacts for one of the H atoms of the >CH(2) group in the α polymorph have a significant influence on the (2)H quadrupole coupling and (1)H chemical shift for this site. PMID:21939265

  5. SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT

    SciTech Connect

    Kerzendorf, Wolfgang E.; Schmidt, Brian P.; Yong, David; Asplund, M.; Nomoto, Ken'ichi; Podsiadlowski, Ph.; Frebel, Anna; Fesen, Robert A. E-mail: brian@mso.anu.edu.au E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: anna@astro.as.utexas.edu

    2009-08-20

    It is widely believed that Type Ia supernovae (SNe Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova (SNe) explosion, providing an opportunity to understand the progenitors of SNe Ia. In this paper, we argue that rotation is a generic signature expected of most nongiant donor stars that is easily measurable. Ruiz-Lapuente et al. examined stars in the center of the remnant of SN 1572 (Tycho SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's center was the system's donor star. We present high-resolution (R {approx_equal} 40, 000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79 {+-} 2 km s{sup -1} with respect to the local standard of rest and put an upper limit on the star's rotation of 7.5 km s{sup -1}. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be {mu} {sub l} = -1.6 {+-} 2.1 mas yr{sup -1} and {mu} {sub b} = -2.7 {+-} 1.6 mas yr{sup -1}. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho SN that is not associated with the SN event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.

  6. A new method for correcting fibre barycentre displacements in high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Murray, G. J.; Allington-Smith, J. R.; Lemke, U.

    2012-09-01

    Unpredictable displacements in the photocentre of an optical feed at the entrance slit of a spectrograph produce corresponding barycentre offsets that impose limits to very high resolution schemes. These limitations not only apply to direct light from a science object, but also light relayed via an optical fibre or image slicer. Several mitigation strategies are in development or are currently in use, however these all have potentially restrictive idiosyncrasies. An alternative approach is proposed to remove displacement effects from the spectra by nulling barycentre offsets. Correction is achieved by time-integrating at the detector a sequence of multiple normal and 180-degree inverted images of the input aperture, thus eliminating optical asymmetries about the axis of inversion, which is aligned orthogonal to the spectral direction. The flip is generated with a path-length compensated, non-dispersive `reversion prism', driven on a high precision translation stage. The prism is periodically chopped in and out of the beam, and the resulting time-averaged image thus has an imposed central axis regardless of barycentre shifts. The method works regardless of the specifics of the spectrograph feed (fibre, multiple fibres, slit, slicer etc.) With a relatively simple and inexpensive scheme it should be possible to stabilise an image to better than one part in 104 potentially permitting detection down to cms-1 regimes. The concept is currently at a very early stage of development, so this paper outlines the basic principles and details a practical reversion component that is currently under development at Durham CfAI. There then follows a description of how the component will be implemented in a laboratory prototype scheme. The paper concludes with a proposed test plan and suggests the focus for future work.

  7. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF LANTHANUM IN Ar DISCHARGE IN THE NEAR-INFRARED

    SciTech Connect

    Güzelçimen, F.; Başar, Gö.; Tamanis, M.; Kruzins, A.; Ferber, R.; Windholz, L.; Kröger, S. E-mail: sophie.kroeger@htw-berlin.de

    2013-10-01

    A high-resolution spectrum of lanthanum has been recorded by a Fourier Transform spectrometer in the wavelength range from 833 nm to 1666 nm (6000 cm{sup –1} to 12,000 cm{sup –1}) using as light source a hollow cathode lamp operated with argon as the discharge carrier gas. In total, 2386 spectral lines were detected in this region, of which 555 lines could be classified as La I transitions and 10 lines as La II transitions. All La II transitions and 534 of these La I transitions were classified for the first time, and 6 of the La II transitions and 433 of the classified La I transitions appear to be new lines, which could not be found in the literature. The corresponding energy level data of classified lines are given. Additionally, 430 lines are assigned as Ar I lines and 394 as Ar II lines, of which 179 and 77, respectively, were classified for the first time. All 77 classified Ar II transitions as well as 159 of the classified Ar I transitions are new lines. Furthermore, the wavenumbers of 997 unclassified spectral lines were determined, 235 of which could be assigned as La lines, because of their hyperfine pattern. The remaining 762 lines may be either unclassified Ar lines or unresolved and unclassified La lines with only one symmetrical peak with an FWHM in the same order of magnitude as the Ar lines. The accuracy of the wavenumber for the classified lines with signal-to-noise-ratio higher than four is better than 0.006 cm{sup –1} which corresponds to an accuracy of 0.0004 nm at 830 nm and 0.0017 nm at 1660 nm, respectively.

  8. PREFACE: Pierre Jacquinot—pioneer in high-resolution spectroscopy and science statesman

    NASA Astrophysics Data System (ADS)

    de Heer, F. J.; Linnartz, H.; Stroke, H. H.

    2007-10-01

    On several occasions this journal has documented the lives and contributions of prominent physicists who have made seminal contributions to atomic, molecular and optical physics. The occasion of the symposium `De l'atome au nano-objet' held in his honour provided an opportunity to gather personal recollections of Pierre Jacquinot and to present scientific papers in atomic and molecular physics, of which a selection is included here. The bibliography shows that Jacquinot's contributions were largely in atomic spectroscopy, experimental and theoretical, accompanied throughout his career by important developments in optical instrumentation designed for the improvement of resolution and sensitivity. Fourier spectroscopy was thus developed at the Laboratoire Aimé Cotton. Pierre Jacquinot's impact was certainly multiplied by the many-facetted avenues of modern atomic physics explored under his direction. He, and his successors, made the Laboratoire Aimé Cotton one of the world's great atomic physics centres. As will be apparent from several of the papers in this issue, Jacquinot has left his mark not only in the purely scientific arena, but also on the structure of the French scientific organization. While previously laboratories tended to obey some form of exclusion principle, Jacquinot was instrumental in initiating fruitful interactions between them, and, on a larger scale, between the university laboratories and the national research centres. One of us (HHS) had the privilege of having known Pierre Jacquinot since his visit to our MIT Spectroscopy Laboratory some fifty years ago. A subsequent sabbatical at the Laboratoire Aimé Cotton led to a collaboration over a period of many years in laser spectroscopy, starting with Jean-Louis Picqué, and work with radioactive beams at CERN, primarily with H T Duong and Jacques Pinard—an activity which continues to this day. HHS expresses here his personal homage to Pierre Jacquinot and his memory. We are grateful to Pierre

  9. Estimating photosynthesis with high resolution field spectroscopy in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Fava, F.; Rossini, M.; Wutzler, T.; Moreno, G.; Carrara, A.; Kolle, O.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2014-12-01

    Recent studies have shown how human induced N:P imbalances are affecting essential processes (e.g. photosynthesis, plant growth rate) that lead to important changes in ecosystem structure and function. In this regard, the accuracy of the approaches based on remotely-sensed data for monitoring and modeling gross primary production (GPP) relies on the ability of vegetation indices (VIs) to track the dynamics of vegetation physiological and biophysical properties/variables. Promising results have been recently obtained when Chlorophyll-sensitive VIs and Chlorophyll fluorescence are combined with structural indices in the framework of the Monteith's light use efficiency (LUE) model. However, further ground-based experiments are required to validate LUE model performances, and their capability to be generalized under different nutrient availability conditions. In this study, the overall objective was to investigate the sensitivity of VIs to track short- and long-term GPP variations in a Mediterranean grassland under different N and P fertilization treatments. Spectral VIs were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs examined included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. Simultaneously, measurements of GPP and environmental variables were conducted using a transient-state canopy chamber. Overall, GPP, F760 and VIs showed a clear seasonal time-trend in all treatments, which was driven by the phenological development of the grassland. Results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots, in particular at the peak of the growing season during the flowering stage and at the end of the season during senescence. While

  10. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  11. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy.

    PubMed

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS (1)H NMR spectroscopy. HR-MAS (1)H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS (1)H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  12. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    PubMed Central

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  13. Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy

    USGS Publications Warehouse

    Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

    1990-01-01

    Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

  14. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the TEM

    PubMed Central

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, J. Alexander

    2016-01-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning-transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200 μm × 200 μm. PMID:26650072

  15. High-resolution photodetachment spectroscopy from the lowest threshold of O{sup -}

    SciTech Connect

    Joiner, Anne; Mohr, Robert H.; Yukich, J. N.

    2011-03-15

    We conducted photodetachment spectroscopy near the lowest detachment threshold from O{sup -} in a 1-T field with sufficient resolution to observe a magnetic field structure similar to that observed in experiments conducted at the threshold of the electron affinity. These observations included not only cyclotron structure but also, to a smaller degree, individual Zeeman thresholds. The experiment was conducted in a Penning ion trap and with a single-mode, tunable, amplified diode laser. Finally, analysis of our results yielded a measurement of the lowest threshold energy.

  16. Quantifying many-body effects by high-resolution Fourier transform scanning tunneling spectroscopy

    NASA Astrophysics Data System (ADS)

    Grothe, Stephanie; Johnston, Steve; Chi, Shun; Dosanjh, Pinder; Burke, Sarah A.; Pennec, Yan

    2014-03-01

    The properties of solids are influenced by many-body effects that arise from the interactions of the electrons with each other and with the multitude of collective lattice, spin or charge excitations. We apply the technique of Fourier transform scanning tunneling spectroscopy (FT-STS) to probe the many-body effects of the Ag(111) surface state. A renormalization of the otherwise parabolic dispersion induced by electron-phonon interactions is revealed that has not previously been resolved by any technique, allowing us to extract the real part of the self-energy. Furthermore, we show how variations in the intensity of the FT-STS signal are related to the imaginary part of the self-energy. We accurately modeled the experimental data with the T-matrix formalism for scattering from a single impurity, assuming that the surface electrons are dressed by electron-electron and electron-phonon interactions. A Debye energy of ℏΩD = 14 +/- 1 meV and an electron-phonon coupling strength of λ = 0 . 13 +/- 0 . 02 was extracted. Our results advance FT-STS as a tool to simultaneously extract real and imaginary parts of the self-energy for both occupied and unoccupied states with a momentum and energy resolution competitive with angle-resolved photoemission spectroscopy.

  17. High Resolution NMR Spectroscopy of Nanocrystalline Proteins at Ultra-High Magnetic Field

    PubMed Central

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly-13C,15N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla (1H frequencies of 500, 750, and 900 MHz). For two protein systems—GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein—line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies. PMID:19953303

  18. High-Resolution Hypernuclear Spectroscopy Electron Scattering at Jlab, Hall A

    SciTech Connect

    Franco Garibaldi

    2010-12-01

    Hypernuclear spectroscopy via electromagnetic induced reactions is a valuable and powerful way to study hypernuclei, hadronic systems with non-zero strangeness content, providing an alternative to the hadron induced reactions mainly studied so far. Electron-induced hypernuclear spectroscopy has been studied in Hall A at Jefferson Lab on three nuclei, 12C, 16O, and 9Be with unprecedented resolution and with an improved particle identification system, using a RICH detector, in order to unambiguously identify kaons, thus allowing the measurement of high-quality, almost background-free, hypernuclear spectra. Two superconducting septum magnets were added to the existing apparatus in order to permit particle detection at very forward angle providing a reasonable counting rate. These studies have provided the first quantitative information on, for instance, core-excited states in hypernuclei. In the case of oxygen, a waterfall target has been employed allowing for the simultaneous measurement of hypernuclear production on oxygen and of elementary kaon-Lambda electro-production on protons: a crucial measurement to disentangle the contribution of the elementary reaction from the measured hypernuclear production cross section, yielding direct access to the nucleus-hypernucleus transition structure. Final results for 12C and 16O as well as preliminary results on 9Be will be presented.

  19. High Resolution Spectroscopy of Post-AGB Stars: AGB Nucleosynthesis and Dredge-up

    NASA Astrophysics Data System (ADS)

    Reyniers, Maarten

    2002-12-01

    The final evolutionary stage of a low mass stellar object is a complex phase which is still poorly understood. In this thesis we contribute to a better understanding of the nucleosynthesis and dredge-up phenomena that occur in such objects during their ascent on the AGB by means of a detailed study of high-resolution optical spectra of post-AGB objects. In the first four chapters we mainly focus on the photospheric abundances of eight carbon and s-process enriched post-AGB objects. The carbon enrichment clearly proves that products of the helium burning shell were brought to the surface in the so-called third dredge-up. Moreover, also products of the (slow) neutron nucleosynthesis (the s-process) are brought to the surface, which allows us to characterize this nucleosynthesis. A detailed study of the chemical pattern displayed by these elements, including a comparison with up-to-date nucleosynthetic AGB stellar models, reveals that the expected anti-correlation between metallicity and neutron nucleosynthesis efficiency is hardly seen (if at all). The anti-correlation is expected since in a lower metallicity object, more neutrons are available per iron seed and hence heavier nucleons can be built up, assuming a similar primary production rate of the neutrons. Instead, a large spread in efficiency is seen. On the other hand, a clear correlation was found between the total enrichment and the nucleosynthesis efficiency, indicating that the dredge-up efficiency is strongly linked to the neutron production. Furthermore, detailed abundances of elements beyond the Ba-peak (Gd, Yb, Lu and possibly W) were obtained for the first time in intrinsically enriched objects for three stars of the sample, a result which was possible due to the combination of the high quality VLT+UVES spectra and newly released atomic data in both VALD and DREAM (Database on Rare Earths At Mons University). Finally, a new identification was found for the line at 670.8 nm in the spectra of the

  20. High Resolution Infrared Spectroscopy of Propargyl Alcohol-Water Complex Embedded in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Mani, Devendra; Pal, Nitish; Kaufmann, Matin; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Propargyl alcohol (hereafter abbreviated as PA) is a molecule of astrophysical interest and has been probed extensively using microwave spectroscopy.1,2 It is a multifunctional molecule and offers multiple sites for hydrogen bonding interactions. Therefore, it has also attracted the attention of groups interested in weak intermolecular interactions. Recently, the Ar…PA complex3 and PA-dimer4 have been studied using microwave spectroscopy. More recently, there have been matrix-isolation infrared spectroscopic studies on PA-water5 and PA-acetylene6 complexes. In the present work, clusters of PA and water were formed in the helium nanodroplets and probed using a combination of infrared spectroscopy and mass spectrometry. Using ab-initio quantum mechanical calculations, PA-water clusters were optimised and five minimum structures were found on the potential energy hypersurface, which were used as a guidance to the experiments. We used D2O for the experiments since our laser sources at Bochum do not cover the IR spectral region of H2O. IR spectra of PA-D2O complex were recorded in the region of symmetric and antisymmetric stretches of the bound D2O. Multiple signals were found in these regions which were dependent on the concentration of PA as well as D2O. Using pickup curves most of these signals could be assigned to 1:1 PA:D2O clusters. The ab-initio calculations helped in a definitive assignment of the spectra to the different conformers of PA-D2O complex. The details will be presented in the talk. References: 1. E. Hirota, J. Mol. Spec. 26, 335 (1968). 2. J.C. Pearson and B.J. Drouin, J. Mol. Spectrosc. 234, 149 (2005). 3. D. Mani and E. Arunan, ChemPhysChem 14, 754 (2013). 4. D. Mani and E. Arunan, J. Chem. Phys. 141, 164311 (2014). 5. J. Saini, K.S. Vishwanathan, J. Mol. Struct. 1118, 147 (2016). 6. K. Sundararajan et al., J. Mol. Struct. 1121, 26 (2016).

  1. High-precision three-dimensional field mapping of a high resolution magnetic spectrometer for hypernuclear spectroscopy at JLab

    SciTech Connect

    Fujii, Yuu; Hashimoto, Osamu; Miyoshi, Toshinobu; Nakamura, Satoshi N.; Ohtani, Atsushi; Okayasu, Yuichi; Oyamada, Masamichi; Yamamoto, Yosuke; Kato, Seigo; Matsui, Jumei; Sako, Katsuhisa; Brindza, Paul

    2015-09-01

    The High Resolution Kaon Spectrometer (HKS), which consists of two quadrupole magnets and one dipole magnet, was designed and constructed for high-resolution spectroscopy of hypernuclei using the (e,e'K+) reaction in Hall C, Jefferson Lab (JLab). It was used to analyze momenta of around 1.2 GeV/c K^+ s with a resolution of 2 ×10^-4 (FWHM). To achieve the target resolution, a full three-dimensional magnetic field measurement of each magnet was successfully performed, and a full three-dimensional magnetic field map of the HKS magnets was reconstructed. Using the measured field map, the initial reconstruction function was generated. The target resolution would be achieved via careful tuning of the reconstruction function of HKS with the p(e,e'K+)Lambda,Sigma^0 and C-12 (e,e'K+)12_Lambda B_g.s. reactions. After tuning of the initial reconstruction function generated from the measured map, the estimated HKS momentum resolution was 2.2×10^-4 (FWHM).

  2. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials. PMID:27210107

  3. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials.

  4. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    SciTech Connect

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  5. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  6. High-resolution (13)C nuclear magnetic resonance spectroscopy pattern recognition of fish oil capsules.

    PubMed

    Aursand, Marit; Standal, Inger B; Axelson, David E

    2007-01-10

    13C NMR (nuclear magnetic resonance) spectroscopy, in conjunction with multivariate analysis of commercial fish oil-related health food products, have been used to provide discrimination concerning the nature, composition, refinement, and/or adulteration or authentication of the products. Supervised (probabilistic neural networks, PNN) and unsupervised (principal component analysis, PCA; Kohonen neural networks; generative topographic mapping, GTM) pattern recognition techniques were used to visualize and classify samples. Simple PCA score plots demonstrated excellent, but not totally unambiguous, class distinctions, whereas Kohonen and GTM visualization provided better results. Quantitative class predictions with accuracies >95% were achieved with PNN analysis. Trout, salmon, and cod oils were completely and correctly classified. Samples reported to be salmon oils and cod liver oils did not cluster with true salmon and cod liver oil samples, indicating mislabeling or adulteration.

  7. High resolution core level spectroscopy of hydrogen-terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Schenk, A. K.; Rietwyk, K. J.; Tadich, A.; Stacey, A.; Ley, L.; Pakes, C. I.

    2016-08-01

    Synchrotron-based photoelectron spectroscopy experiments are presented that address a long standing inconsistency in the treatment of the C1s core level of hydrogen terminated (1 0 0) diamond. Through a comparison of surface and bulk sensitive measurements we show that there is a surface related core level component to lower binding energy of the bulk diamond component; this component has a chemical shift of -0.16+/- 0.05 eV which has been attributed to carbon atoms which are part of the hydrogen termination. Additionally, our results indicate that the asymmetry of the hydrogen terminated (1 0 0) diamond C1s core level is an intrinsic aspect of the bulk diamond peak which we have attributed to sub-surface carbon layers.

  8. High resolution spectroscopy of B12L hypernuclei by the (e,e'K+) reaction

    NASA Astrophysics Data System (ADS)

    Sarsour, Murad G.

    Jefferson Laboratory experiment E89-009 used the reaction (e,e 'K+) to produce B12L hypernuclei from a carbon target. The scattered electrons were tagged at 0° to take advantage of the increased virtual photon flux at forward angles, and the electroproduced kaons were also detected at small angles, ˜3°, to minimize the momentum transfer. To do this, a splitter magnet was used to bend the scattered electrons into an Enge split-pole spectrometer and the kaons into a short orbit spectrometer. In addition to increasing the production rate, tagging the scattered electrons at 0° minimizes the optical aberrations on the focal plane of the Enge split-pole spectrometer. In this experiment, the spectroscopy of the B12L hypernuclei was studied and excellent energy resolution was achieved, ˜918 keV. The differential cross section of the ground state doublet was also calculated.

  9. High Resolution Spectroscopy of 12B Hypernuclei by the (e,e'K) Reaction

    SciTech Connect

    M. Sarsour

    2002-05-01

    Jefferson Laboratory experiment E89-009 used the reaction (e,e' K+ ) to produce 12/{Lambda}B hypernuclei from a carbon target. The scattered electrons were tagged at 0 degrees to take advantage of the increased virtual photon flux at forward angles, and the electroproduced kaons were also detected at small angles, {approx}3 degrees, to minimize the momentum transfer. To do this, a splitter magnet was used to bend the scattered electrons into an Enge split-pole spectrometer and the kaons into a short orbit spectrometer. In addition to increasing the production rate, tagging the scattered electrons at 0 degrees minimizes the optical aberrations on the focal plane of the Enge split-pole spectrometer. In this experiment, the spectroscopy of the 12/{Lambda}B hypernuclei was studied and excellent energy resolution was achieved, {approx} 918 keV. The differential cross section of the ground state doublet was also calculated.

  10. High resolution kinetic energy by long time-delayed core-sampling photofragment translational spectroscopy

    SciTech Connect

    Li Guosheng; Hwang, Hyun Jin; Jung, Hyun Chai

    2005-02-01

    A pulsed core-sampling photofragment translational spectroscopy (PTS) method with a long time-delay, which allows an extremely high kinetic energy resolution, is presented in this article. More commonly applying a short time delay between laser and pulsed acceleration electric field leads to a low kinetic energy resolution for the pulsed core-sampling method. This low kinetic energy resolution problem was overcome by applying a longer time delay. An absolute recoil velocity resolution of {delta}v=8 m/s and a relative kinetic energy resolution of {delta}E/E=3.6% were obtained in this experiment, by applying a time-delay of 8 {mu}s between the laser and the acceleration electric field. The vibrational distributions of the CH{sub 3} radical for the I* and I channel of CH{sub 3}I photodissociation at 266 nm were directly resolved for first time to presented an improvement of the kinetic energy resolution.

  11. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Schiavo, C.; Menichetti, L.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.

    2016-08-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  12. High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer.

    PubMed

    Zinn, Sabrina; Medcraft, Chris; Betz, Thomas; Schnell, Melanie

    2016-05-10

    Molecular recognition of carbohydrates plays an important role in nature. The aggregation of the smallest sugar, glycolaldehyde, was studied in a conformer-selective manner using high-resolution rotational spectroscopy. Two different dimer structures were observed. The most stable conformer reveals C2 -symmetry by forming two intermolecular hydrogen bonds, giving up the strong intramolecular hydrogen bonds of the monomers and thus showing high hydrogen bond selectivity. By analyzing the spectra of the (13) C and (18) O isotopologues of the dimer in natural abundance, we could precisely determine the heavy backbone structure of the dimer. Comparison to the monomer structure and the complex with water provides insight into intermolecular interactions. Despite hydrogen bonding being the dominant interaction, precise predictions from quantum-chemical calculations highly rely on the consideration of dispersion.

  13. High-resolution synchrotron far infrared spectroscopy of thionyl chloride: Analysis of the ν3 and ν6 fundamental bands

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; Mouret, Gaël; Pirali, Olivier; Cuisset, Arnaud

    2015-09-01

    Thionyl chloride (SOCl2) is a volatile inorganic compounds used extensively in industry. Its monitoring in gas phase is critical both for environmental and defense concerns. Previous high-resolution gas phase spectroscopic studies were focused on the microwave region (below 40 GHz) and no rotationally-resolved study of the IR spectrum has been reported to date. We present in this article a rovibrational analysis of the two lowest frequency infrared active bending modes ν3 and ν6 of SOCl2. By means of synchrotron based Fourier-Transform far-infrared spectroscopy on the AILES beamline of the SOLEIL facility, the spectra of the symmetric ν3 (346 cm-1) and asymmetric ν6 (283 cm-1) fundamental bands have been rotationally resolved and analyzed.

  14. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    PubMed

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  15. High-resolution photoelectron spectroscopy study of degradation of rubber-to-brass adhesion by thermal aging

    NASA Astrophysics Data System (ADS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Izumi, Yudai; Muro, Takayuki; Komatsu, Takayuki

    2013-03-01

    High resolution photoelectron spectroscopy is utilized to investigate degradation of rubber-to-brass adhesion by thermal aging. Special attention is given to the role of water in the environment surrounding brass-embedded rubber so that three aging processes are employed; hydrothermal aging, moist-heat aging and dry-heat aging. All aging processes lead to the decrease in the amount of S at the rubber/brass interface. This desulfurization accompanies the decrease in the ratio of CuxS (x ≃ 2) to CuS, i.e., CuxS/CuS, and the increase in the amount of ZnO, Zn(OH)2 and ZnS, all of which are key factors for degradation of adhesion. The changes in the chemical composition are enhanced by water in the surrounding environment during the aging treatments, indicating that the water molecules accelerate degradation of rubber-to-brass adhesion.

  16. Quantitative determination of fatty acid chain composition in pork meat products by high resolution 1H NMR spectroscopy.

    PubMed

    Siciliano, Carlo; Belsito, Emilia; De Marco, Rosaria; Di Gioia, Maria Luisa; Leggio, Antonella; Liguori, Angelo

    2013-01-15

    High resolution (1)H NMR spectroscopy was proposed for the determination of the fatty acid chain profile of lipids in pork meat products during ripening. Two typical Mediterranean PDO salami produced in Calabria, a region in the Southern Italy, were chosen as a case of study. Quantitative NMR analysis provided the fatty acid chain profiles of total lipid extracts. The transesterification of total lipid extracts furnished FAME mixtures that enabled quantitation of fatty acid acyl chains in the acylglycerol and FFA portions. In all cases, oleyl chains were predominant, and high amounts of polyunsaturated fatty acid chains were observed. The proposed spectroscopic method allowed also the estimation of the most important nutritional parameters of dry fermented meat products.

  17. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    PubMed

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  18. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  19. High-resolution emission spectroscopy of random lasing in GaN films pumped by UV-pulsed laser

    NASA Astrophysics Data System (ADS)

    Cachoncinlle, C.; Millon, E.; Petit, A.

    2016-06-01

    We report on room temperature photoluminescence on GaN films grown by metal organic chemical vapor deposition (MOCVD). A NdYAG pulsed-laser at 266 nm illuminates the films. Two components, at 363 nm and 370 nm, are identified in the near band edge structure on the spectra. A laser threshold of 700±150 kW cm-2 is evidenced and corresponds to random lasing in the GaN film. A drastic narrowing of the spectral bandwidth from 5.2 to 1.8 nm is observed at 370 nm. High-resolution spectroscopy measurements show laser mode widths thinner than 50 pm leading to a high quality factor Q=7750. Low-resolution measurements show redshift from 370.0 to 373.1 nm for one component and from 363.1 nm to 363.9 nm for the other. Interpretation of this redshift is discussed.

  20. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  1. THE APPLICATION OF HIGH RESOLUTION ELECTRON ENERGY LOSS SPECTROSCOPY TO THE CHARACTERIZATION OF ADSORBED MOLECULES ON RHODIUM SINGLE CRYSTAL SURFACES

    SciTech Connect

    Dubois, L.H.; Somorjai, G.A.

    1980-01-01

    The scattering of low energy electrons by metal surfaces has been studied for many years now. The electron's ease of generation and detection and high surface sensitivity (low penetration depth) make it an ideal probe for surface scientists. The impinging electron can interact with the surface in basically two ways: it can either elastically reflect (or diffract) from the surface without losing energy or lose a portion of it's incident energy and inelastically scatter. In this paper we will be concerned with only one of many possible inelastic scattering processes: the loss of the electron's energy to the vibrational modes of atoms and molecules chemisorbed on the surface. This technique is known as high resolution electron energy loss spectroscopy (or ELS, EELS, HRELS, HREELS, etc.).

  2. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  3. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    PubMed Central

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  4. High-Resolution Rotational Spectroscopy Study of the Smallest Sugar Dimer: Interplay of Hydrogen Bonds in the Glycolaldehyde Dimer.

    PubMed

    Zinn, Sabrina; Medcraft, Chris; Betz, Thomas; Schnell, Melanie

    2016-05-10

    Molecular recognition of carbohydrates plays an important role in nature. The aggregation of the smallest sugar, glycolaldehyde, was studied in a conformer-selective manner using high-resolution rotational spectroscopy. Two different dimer structures were observed. The most stable conformer reveals C2 -symmetry by forming two intermolecular hydrogen bonds, giving up the strong intramolecular hydrogen bonds of the monomers and thus showing high hydrogen bond selectivity. By analyzing the spectra of the (13) C and (18) O isotopologues of the dimer in natural abundance, we could precisely determine the heavy backbone structure of the dimer. Comparison to the monomer structure and the complex with water provides insight into intermolecular interactions. Despite hydrogen bonding being the dominant interaction, precise predictions from quantum-chemical calculations highly rely on the consideration of dispersion. PMID:27060475

  5. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic

  6. High-Resolution Near-Infrared Spectroscopy of Deuterated CH_2^+

    NASA Astrophysics Data System (ADS)

    Wang, Haiming; Kleshcheva, Maria; Morong, Christopher P.; Oka, Takeshi

    2009-06-01

    Laboratory spectroscopy of deuterated molecular ions is essential in understanding deuterium ion chemistry-a significant area in astrochemistry since the discovery of many extraordinarily abundant deuterated species in prestellar cores and protostars in recent years. Aiming at providing approximate rotational constants for millimeter wave spectroscopists to identify the corresponding species in space, we are measuring the near-infrared spectrum of deuterated CH_2^+. CH_2^+ is the intermediate between the abundant CH^+ and yet to be observed but very important CH_3^+ in interstellar chemistry. Its abundance is expected in diffuse clouds although our search for interstellar CH_2^+ based on our infrared and near-infrared laboratory spectra has not been successful yet. CH_2^+ and its deuterated species are also of special interest for theoretical studies because of their unique intramolecular dynamics, i.e., the Renner-Teller interaction and quasi-linearity. Using He-dominated liquid-N_2 cooled plasmas (˜10 Torr) containing a small amount (˜0.1 Torr) of CD_4, we have measured the spectra of CD_2^+ in the near-infrared from 11,000 cm^{-1} to 12,500 cm^{-1} with our Ti:sapphire laser spectrometer that combines velocity modulation and phase modulation with heterodyne detection for near shot-noise-limited sensitivity. The tilde{A}(0,5,0)^1 ← tilde{X}(0,0,0)^0, tilde{A}(0,5,0)^0 ← tilde{X}(0,0,0)^1 and tilde{A}(0,4,0)^2 ← tilde{X}(0,0,0)^1 bands of CD_2^+ have been identified and analyzed so far Currently a scan for CHD^+ using CH_2D_2 gas is underway. The spectrum will be discussed in comparison with the theoretical predictions by Bunker and colleagues. M. Rösslein, C. M. Gabrys, M.-F. Jagod, and T. Oka, J. Mol. Spectrosc. 153, 738 (1992). J. L. Gottfried and T. Oka, J. Chem. Phys. 121, 11527 (2004). H.-M. Wang, C. P. Morong, and T. Oka, 62nd, 63rd OSU International Symposium on Molecular Spectroscopy, MJ02 (2007) and WG04 (2008). P. R. Bunker, private

  7. The high-resolution microchannel plate detector for FUV spectroscopy in the BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Ezawa, Fukuhiro; Yoshioka, Kazuo; Yoshikawa, Ichiro; Chassefiere, Eric; Maria, Jean-Luc

    Mariner-10 UV measurements and telescopic spectroscopy from the Earth identified six elements (Ca, Na, K, H, He, and O) in the Mercury's exosphere. Other species are expected, e.g. H2 , OH, and some noble gasses (Ar, Ne, and Xe). All species representative of the surface composition, directly produced by impact vaporization driven by micrometeoroids, physical sputtering, photo-stimulated desorption, and thermal desorption from the regolith, should also be present. To determine the composition of the Mercury's exosphere, the PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) instrument on Mercury Planetary Orbiter (MPO) will measure the emission lines of the exosphere. PHEBUS is a dual FUV-EUV spectrometer working in the wavelength range from 55 to 315 nm. We are now developing the compact detector system sensitive to FUV airglow emissions of the Mercury. The FUV detector is required to have high spatial resolution (80 µm) so that the wavelength resolution of the PHEBUS instrument should be 2 nm at the FUV range. The FUV detector consists of a Cs2 Te photocathode, microchannel plates (MCPs), and a resistive anode encoder (RAE). In a position-sensitive system with an RAE, the spatial resolution is determined by the signal-to-noise ratios at the anode terminals. Therefore, a high and stable electron gain of MCPs allows the position determination of each photoelectron event with high spatial resolution. We studied a method for achieving a high and stable electron gain. We fabricated a test model of the FUV detector incorporating a clamped pair of MCPs (V-stack) followed by a gap and a clamped triplet of MCPs (Z-stack) in cascade. We have investigated the effect of the negative potential applied across the inter-stack (V-Z) gap on the PHD and the spatial resolution by means of calculation and experiments. The calculation with a simple ballistic model showed that the negative inter-stack potential reduced the size of the electron cloud by 70%. The result

  8. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  9. Raman Under Nitrogen. The High-Resolution Raman Spectroscopy of Crystalline Uranocene, Thorocene, and Ferrocene

    SciTech Connect

    Hager, J S.; Zahardis, James; Pagni, Richard M.; Compton, Robert N.; Li, Jun

    2004-02-08

    The utility of recording Raman spectroscopy under liquid nitrogen, a technique we call Raman Under Nitrogen (RUN), is demonstrated for ferrocene, uranocene and thorocene. Using RUN, low temperature (liquid nitrogen cooled) Raman spectra for these compounds exhibit higher resolution than previous studies and new vibrational features are reported. The first Raman spectra of crystalline uranocene at 77 K are reported using excitation from argon (5145 ) and krypton (6764 ) ion lasers. The spectra obtained showed bands corresponding to vibrational transitions at 212, 236, 259, 379, 753, 897, 1500, and 3042 cm-1 , assigned to ring-metal-ring stretching, ring-metal tilting, out-of-plane CCC bending, in-plane CCC bending, ring-breathing, C-H bending, CC stretching and CH stretching, respectively. The assigned vibrational bands are compared to those of uranocene in THF and thorocene. All vibrational frequencies of the ligands, except the 259 cm-1 out-of-plane CCC bending mode, were found to increase upon coordination. A broad polarizable band centered about {approx}460 cm-1 was also observed. The 460 cm-1 band is greatly enhanced relative to the vibrational Raman transitions with excitation from the krypton ion laser, which is indicative of an electronic resonance Raman process as has been shown previously. The electronic resonance Raman band is observed to split into three distinct bands at 450, 461 and 474 cm-1 with 6764 excitation. Relativistic density functional theory (DFT) is used to provide theoretical interpretations of the measured spectra.

  10. Toroid cavity detectors for high-resolution NMR spectroscopy and rotating frame imaging: capabilities and limitations.

    PubMed

    Momot, K I; Binesh, N; Kohlmann, O; Johnson, C S

    2000-02-01

    The capabilities of toroid cavity detectors for simultaneous rotating frame imaging and NMR spectroscopy have been investigated by means of experiments and computer simulations. The following problems are described: (a) magnetic field inhomogeneity and subsequent loss of chemical shift resolution resulting from bulk magnetic susceptibility effects, (b) image distortions resulting from off-resonance excitation and saturation effects, and (c) distortion of lineshapes and images resulting from radiation damping. Also, special features of signal analysis including truncation effects and the propagation of noise are discussed. B(0) inhomogeneity resulting from susceptibility mismatch is a serious problem for applications requiring high spectral resolution. Image distortions resulting from off-resonance excitation are not serious within the rather narrow spectral range permitted by the RF pulse lengths required to read out the image. Incomplete relaxation effects are easily recognized and can be avoided. Also, radiation damping produces unexpectedly small effects because of self-cancellation of magnetization and short free induction decay times. The results are encouraging, but with present designs only modest spectral resolution can be achieved. PMID:10648153

  11. High-resolution imaging and spectroscopy of interfacial water at single bond limit

    NASA Astrophysics Data System (ADS)

    Jiang, Ying

    Hydrogen bond is one of the most important weak interactions in nature and plays an essential role in a broad spectrum of physics, chemistry, biology, energy and material sciences. The conventional methods for studying hydrogen-bonding interaction are all based on spectroscopic or diffraction techniques. However, those techniques have poor spatial resolution and only measure the average properties of many hydrogen bonds, which are susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. The spatial variation and inter-bond coupling of the hydrogen bonds leads to significant spectral broadening, which prohibits the accurate understanding of the experimental data. In this talk, I will present our recent progress on the development of new-generation scanning probe microscopy/spectroscopy (SPM/S) with unprecedentedly high sensitivity and resolution, for addressing weak inter- and intra-molecular interactions, such as hydrogen bonds and van der Waals force. Based on a qPlus sensor, we have succeeded to push the real-space study of a prototypical hydrogen-bonded system, i.e. water, down to single bond limit. Combined with state-of-the-arts quantum simulations, we have discovered exotic nuclear quantum effects (NQEs) in interfacial water and revealed the quantum nature of the hydrogen bond from a completely new perspective

  12. Synchrotron Based High Resolution Far-Ir Spectroscopy of 1,1-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Elmuti, Lena F.; Peebles, Sean A.; Obenchain, Daniel A.

    2013-06-01

    Six vibrational bands of the ^{35}Cl_2C=CH_2 isotopologue of 1,1-dichloroethylene have been recorded in the 350 - 1150 cm^{-1} range using the 0.00096 cm^{-1} resolution far-infrared beamline of the Canadian Light Source synchrotron facility. Results from the analysis of one a-type (ν_9 = 796.01904(8) cm^{-1}, CCl asymmetric stretch) and one c-type (ν_{11} = 868.488626(26) cm^{-1}, CH_2 flap) band will be presented. Over 6000 transitions have now been fitted for these two bands, with ground state rotational and centrifugal distortion constants fixed to values determined by rotational spectroscopy, while the upper state constants have been varied. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level were instrumental in assigning the dense spectra. Assignment of additional bands around 603 cm^{-1} (b-type, CCl symmetric stretch, ν_4) and 456 cm^{-1} (c-type, CCl_2 flap, ν_{12}), as well as attempts at assigning the mixed ^{35}Cl^{37}Cl isotopologue spectra for ν_9 and ν_{11}, are in progress. Z. Kisiel, L. Pszczółkowski, Z. Naturforsch, {{50a}, (1995), 347-351.

  13. High Resolution Optical Spectroscopy of Rosetta Target 67P/Churyumov-Gerasimenko Using Keck HIRES

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita L.; Bodewits, Dennis; A'Hearn, Michael F.; Altwegg, Kathrin; Gulkis, Samuel; Snodgrass, Colin; de Val-Borro, Miguel; Kelley, Michael S.; Feaga, Lori M.; Wooden, Diane H.; Bauer, James M.; Kramer, Emily A.

    2016-10-01

    We present high spectral resolution optical spectroscopy of Rosetta target 67P/Churyumov-Gerasimenko obtained on UT Dec 26 and 27, 2015 using the HIRES instrument on Keck I when the comet was at a heliocentric distance of approximately 2 AU post-perihelion. The spectra cover a spectral range of 3500-10000 Angstroms at a spectral resolution of 67,000. These observations aim to provide high spectral resolution, large projected field of view context for the high spatial resolution and small projected field of view observations obtained from the Rosetta instrument suite. We report detections of CN, NH2, and [OI] emission. From the [OI]6300 emission we derive a water production rate of approximately 2 x 1027 mol/s. Production rates (or upper limits) for other species will be presented and placed in context with recent results from Rosetta. We will also present results pertaining to the [OI]5577 line, which combined with the [OI]6300 emission can be used as a proxy for CO2. We will compare our results to observations obtained by Rosetta as well as NEOWISE and Spitzer.

  14. Next generation techniques in the high resolution spectroscopy of biologically relevant molecules.

    PubMed

    Neill, Justin L; Douglass, Kevin O; Pate, Brooks H; Pratt, David W

    2011-04-28

    Recent advances in the technology of test and measurement equipment driven by the computer and telecommunications industries have made possible the development of a new broadband, Fourier-transform microwave spectrometer that operates on principles similar to FTNMR. This technique uses a high sample-rate arbitrary waveform generator to construct a phase-locked chirped microwave pulse that gives a linear frequency sweep over a wide frequency range in 1 μs. The chirped pulse efficiently polarizes the molecular sample at all frequencies lying within this band. The subsequent free induction decay of this polarization is measured with a high-speed digitizer and then fast Fourier-transformed to yield a broadband, frequency-resolved rotational spectrum, spanning up to 11.5 GHz and containing lines that are as narrow as 100 kHz. This new technique is called chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy. The technique offers the potential to determine the structural and dynamical properties of very large molecules solely from fully resolved pure rotational spectra. FTMW double resonance techniques employing a low-resolution UV laser facilitate an easy assignment of overlapping spectra produced by different conformers in the sample. Of particular interest are the energy landscapes of conformationally flexible molecules of biological importance, including studies of their interaction with solvent and/or other weakly bound molecules. An example is provided from the authors' work on p-methoxyphenethylamine, a neurotransmitter, and its complexes with water. PMID:21394332

  15. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  16. High Resolution Stark Spectroscopy of Model Donor-Acceptor Aminobenzonitriles in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Clements, Casey L.; Bird, Ryan G.; Pratt, David W.; Alvarez-Valtierra, Leonardo

    2011-06-01

    Electronic communication between donor-acceptor systems is prevalent in many chemical processes. Unfortunately, an accurate description of the changes in molecular geometry responsible for intramolecular charge transfer (ICT) is difficult to ascertain. Reported here are the S0, LA, and LB electronic state structures and dipole moments of two model ICT systems, 4-(1H-pyrrol-l-yl)benzonitrile (PBN) and 4-(1-pyrrolidinyl)benzonitrile (PDBN), as measured by rotationally resolved electronic spectroscopy. As was observed for phenylpyrrole, the unsaturted rings of PBN become collectively more planar following excitation with UV light, in support of the planar ICT model. However, in PDBN the twist/inversion angle between rings is nearly zero in both the ground and excited electronic states. The unperturbed dipole moments measured here, taken in conjunction with available solvatochromism data, provide an estimate for the polarization, dispersion, and charge transfer contributions to solvent-mediated excited state stabilization. J.A. Thomas, J.W. Young, A.J. Fleisher, L. Álvarez-Valtierra, and D.W. Pratt, J. Phys. Chem. Lett. 1, 2017 (2010).

  17. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  18. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  19. High Resolution Photoacoustic Spectroscopy of the Oxygen A-Band to Support the OCO Missions

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; Lunny, E. M.; Bui, T. Q.; Drouin, B. J.; Okumura, M.; Stroscio, G. D.

    2015-12-01

    NASA's Orbiting Carbon Observatory missions require spectroscopic parameterization of the Oxygen A-Band absorption (757-775 nm) with unprecedented detail to meet the objective of delivering space-based column CO2 measurements with an accuracy of better than 1 ppm. This requires spectroscopic parameters with accuracies at the 0.1% level. To achieve this it is necessary for line shape models to include deviations from the Voigt line shape, including the collisional effects of Dicke narrowing, speed-dependence, line mixing (LM), and collision-induced absorption (CIA). To measure these effects to high accuracy, new innovative lab measurements are required. LM and CIA in particular are difficult to measure using standard spectroscopic techniques because, while present at atmospheric temperatures, these effects are difficult to quantify. At pressures of several atmospheres these effects contribute several percent to the A-Band absorption. While the O2 A-band is too weak for direct absorption measurements via a diode laser, a very sensitive photoacoustic spectroscopy technique is being used to study the pressure- dependence of the spectral line shape up to pressures of 5 atm. This spectrometer has a high S/N of about 10,000 and an advantageous zero baseline. In addition, temperature effects on the line shape are studied using a newly developed temperature control scheme. The latest results are reported.

  20. High-resolution mass-selective UV spectroscopy of pseudoephedrine: evidence for conformer-specific fragmentation.

    PubMed

    Karaminkov, R; Chervenkov, S; Delchev, V; Neusser, H J

    2011-09-01

    Using resonance-enhanced two-photon ionization spectroscopy with mass resolution of jet-cooled molecules, a low-resolution S(1) ← S(0) vibronic spectrum of pseudoephedrine was recorded at the mass channels of three distinct fragments with m/z = 58, 71, and 85. Two of the fragments, with m/z = 71 and 85, are observed for the first time for this molecule. The vibronic spectra recorded at different mass channels feature different patterns, implying that they originate from different conformers in the cold molecular beam, following conformer-specific fragmentation pathways. Highly resolved spectra of all prominent vibronic features were measured, and from their analysis based on genetic algorithms, the molecular parameters of the conformers giving rise to the respective bands have been determined. Comparing the experimental results with those obtained from high-level ab initio quantum chemistry calculations, the observed prominent vibronic bands have been assigned to originate from four distinct conformers. The conformers are separated into two groups that have different fragmentation pathways determined by the different intramolecular interactions.

  1. MULTI-EPOCH OBSERVATIONS OF HD 69830: HIGH-RESOLUTION SPECTROSCOPY AND LIMITS TO VARIABILITY

    SciTech Connect

    Beichman, C. A.; Tanner, A. M.; Bryden, G.; Akeson, R. L.; Ciardi, D. R.; Lisse, C. M.; Boden, A. F.; Dodson-Robinson, S. E.; Salyk, C.; Wyatt, M. C.

    2011-12-10

    The main-sequence solar-type star HD 69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5%-7% (1{sigma} per spectral element) on the variability of the dust spectrum over 1 year, 3.3% (1{sigma}) on the broadband disk emission over 4 years, and 33% (1{sigma}) on the broadband disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher signal-to-noise spectra do not confirm our previously claimed detection of H{sub 2}O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD 69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a {approx}1 AU location for the emitting material.

  2. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  3. High-resolution electronic spectroscopy of the doorway states to intramolecular charge transfer.

    PubMed

    Fleisher, Adam J; Bird, Ryan G; Zaleski, Daniel P; Pate, Brooks H; Pratt, David W

    2013-04-25

    Reported here are several of the ground, first, and second excited state structures and dipole moments of three benchmark intramolecular charge transfer (ICT) systems; 4-(1H-pyrrol-1-yl)benzonitrile (PBN), 4,4'-dimethylaminobenzonitrile (DMABN), and 4-(1-pyrrolidinyl)benzonitrile (PYRBN), isolated in the gas phase and probed by rotationally resolved spectroscopy in a molecular beam. The related molecules 1-phenylpyrrole (PP) and 4-aminobenzonitrile (ABN) also are discussed. We find that the S1 electronic state is of B symmetry in all five molecules. In PBN, a second excited state (S2) of A symmetry is found only ~400 cm(-1) above the presumed origin of the S1 state. The change in dipole moment upon excitation to the A state is measured to be Δμ ≈ 3.0 D, significantly smaller than the value predicted by theory and also smaller than that observed for the "anomalous" ICT band of PBN in solution. The B state dipole moments of DMABN and PYRBN are large, ~10.6 D, slightly larger than those attributed to "normal" LE fluorescence in solution. In addition, we find the unsaturated donor molecules (PP, PBN) to be twisted in their ground states and to become more planar upon excitation, even in the A state, whereas the saturated donor molecules (ABN, DMABN, PYRBN), initially planar, either remain planar or become more twisted in their excited states. It thus appears that the model that is appropriate for describing ICT in these systems depends on the geometry of the ground state.

  4. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  5. High-resolution infrared spectroscopy of atomic bromine in solid parahydrogen and orthodeuterium

    NASA Astrophysics Data System (ADS)

    Raston, Paul L.; Kettwich, Sharon C.; Anderson, David T.

    2013-10-01

    This work extends our earlier investigation of the near-infrared absorption spectroscopy of atomic bromine (Br) trapped in solid parahydrogen (pH2) and orthodeuterium (oD2) [S. C. Kettwich, L. O. Paulson, P. L. Raston, and D. T. Anderson, J. Phys. Chem. A 112, 11153 (2008)]. We report new spectroscopic observations on a series of double transitions involving excitation of the weak Br-atom spin-orbit (SO) transition (2P1/2 ← 2P3/2) in concert with phonon, rotational, vibrational, and rovibrational excitation of the solid molecular hydrogen host. Further, we utilize the rapid vapor deposition technique to produce pH2 crystals with a non-equilibrium mixture of face centered cubic (fcc) and hexagonal closed packed (hcp) crystal domains in the freshly deposited solid. Gentle annealing (T = 4.3 K) of the pH2 sample irreversibly converts the higher energy fcc crystal domains to the slightly more stable hcp structure. We follow the extent of this conversion process using the intensity of the U1(0) transition of solid pH2 and correlate crystal structure changes with changes in the integrated intensity of Br-atom absorption features. Annealing the pH2 solid causes the integrated intensity of the zero-phonon Br SO transition to increase approximately 45% to a value that is 8 times larger than the gas phase value. We show that the magnitude of the increase is strongly correlated to the fraction of hcp crystal domains within the solid. Theoretical calculations presented in Paper II show that these intensity differences are caused by the different symmetries of single substitution sites for these two crystal structures. For fully annealed Br-atom doped pH2 solids, where the crystal structure is nearly pure hcp, the Br-atom SO transition sharpens considerably and shows evidence for resolved hyperfine structure.

  6. Investigations on the low voltage cathodoluminescence stability and surface chemical behaviour using Auger and X-ray photoelectron spectroscopy on LiSrBO{sub 3}:Sm{sup 3+} phosphor

    SciTech Connect

    Pitale, Shreyas S.; Nagpure, I.M.; Kumar, Vinay; Ntwaeaborwa, O.M.; Terblans, J.J.; Swart, H.C.

    2011-07-15

    Highlights: {yields} Stable orange-red cathodoluminescence observed from LiSrBO{sub 3}:Sm{sup 3+} phosphor. {yields} In situ Auger electron spectroscopy, while monitoring the CL output reduction, reveals surface concentration modification of Li, Sr, B and O atoms. {yields} X-ray photoelectron spectroscopy confirms the formation of SrO{sub 2} layer due to the electron stimulated surface chemical reactions (ESSCRs). This layer is possibly contributing to the surface chemical stability and prevents further degradation. -- Abstract: Orange-red emissive LiSrBO{sub 3}:Sm{sup 3+} phosphors were synthesized through the solid-state reaction method. Under UV radiation (221 nm) and low-voltage electron beam (2 keV, 12 mA/cm{sup 2}) excitation, the Sm{sup 3+} doped LiSrBO{sub 3} phosphor shows emission corresponding to the characteristic {sup 4}G{sub 5/2}-{sup 6}H{sub 7/2} transitions of Sm{sup 3+} with the strongest emission at 601 nm. A high stability of cathodoluminescence (CL) emission during prolong electron bombardment with low-energy electrons was observed. Surface sensitive diagnostic tools such as Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to study the surface chemistry. AES results revealed modifications in the surface concentrations of Li, Sr, B, O and C on the surface of the LiSrBO{sub 3}:Sm{sup 3+} phosphor as indicated by the changes in their Auger peak to peak heights (APPH) as a function of electron dose. Observed changes in the high resolution XPS spectra of the LiSrBO{sub 3}:Sm{sup 3+} surface irradiated with the low energy electron beam provide evidence of compositional and structural changes as a result of the electron beam stimulated surface chemical reactions (ESSCRs). Additional SrO{sub 2} was identified by XPS on the phosphor surface after it received an electron dose of 300 C/cm{sup 2} together with the increase in the concentrations of chemical species containing the B-C-O bonding. The new surface chemical

  7. High-Resolution Infrared Imaging and Spectroscopy of the Pistol Nebula: Evidence for Ejection

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; Morris, Mark; Geballe, T. R.; Rich, R. Michael; Serabyn, Eugene; McLean, Ian S.; Puetter, R. C.; Yahil, Amos

    1999-11-01

    We present new infrared images, obtained with the Hubble Space Telescope (HST) Near-Infrared Camera and Multiobject Spectrometer (NICMOS), and Brα (4.05 μm) spectroscopy, obtained using CGS4 on UKIRT, of the Pistol Star and its associated nebula. We find strong evidence to support the hypothesis that the Pistol Nebula was ejected from the Pistol Star. The Paα (1.87 μm) NICMOS image shows that the nebula completely surrounds the Pistol Star, although the line intensity is much stronger on its northern and western edges. The Brα CGS4 spectra show the classical ringlike signature of quasi-spherical expansion. The blueshifted emission (Vmax~-60 km s-1) is much weaker than the redshifted emission (Vmax~+10 km s-1), where the velocities are with respect to the velocity of the Pistol Star; further, the redshifted emission spans a very narrow range of velocities, i.e., it appears ``flattened'' in the position-velocity diagram. These data suggest that the nebula was ejected from the star several thousand years ago, with a velocity between the current terminal velocity of the stellar wind (95 km s-1) and the present expansion velocity of gas in the outer shell of the nebula (60 km s-1). The Paα image reveals several emission-line stars in the region, including two newly identified emission-line stars north of the Pistol Star, both of which are likely to be the hottest known stars in the Galactic center with spectral types earlier than WC8 and Teff>50,000 K). The presence of these stars, the morphology of the Paα emission, and the velocity field in the gas suggest that the side of the nebula farthest from us is approaching, and being ionized by, the hot stars of the Quintuplet and that the highest velocity redshifted gas has been decelerated by winds from the Quintuplet stars. We also discuss the possibility that the nebular gas might be magnetically confined by the ambient magnetic field delineated by the nearby nonthermal filaments. Based on observations with the

  8. Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    1997-09-01

    Advanced laser stabilization techniques now enable one to lock laser frequencies onto line centers of natural atomic/molecular resonances with unprecedented precision and accuracy. In this dissertation we discuss our effort in utilizing these techniques to establish visible optical frequency standards. By summarizing our earlier results on frequency measurements of the 87Rb D2 line at 780 nm 127I2 hyperfine transitions at 532 nm, we show the advantage of using a higher quality reference line, usually characterized by its narrower linewidth, higher attainable signal-to-noise ratio and lower sensitivity toward external perturbations. We then present a novel approach of cavity-enhanced frequency modulation spectroscopy for ultra-sensitive detections. The powerful utility of this new technique in the field of frequency standards is demonstrated by probing saturated molecular overtone transitions in the visible and near infrared. Weakly-absorbing gases such as C2H2 and C2HD are placed inside an external high-finesse resonator to enhance their detection sensitivities. A frequency modulation technique is employed to achieve a shot noise limited signal-to- noise ratio. The rf modulation frequency is chosen to match the cavity's free spectral range in order to avoid the cavity-induced conversion of laser frequency noise into amplitude noise. The molecular saturated dispersion signal is directly recovered after demodulation of the cavity transmitted light. A record high integrated absorption sensitivity of 5× 10-13/ (1× 10-14/cm) (at 1 second averaging time) has been obtained. Systematic studies on this new technique are presented on topics of detection sensitivity, signal line shape, signal size and slope, and pressure dependent linewidth broadening and linecenter shift. A Nd:YAG laser is stabilized on the P(5) transition in the (ν2+3/ ν3) overtone band of C2HD at 1.064 μm. Its absolute frequency is established. The excellent signal- to-noise ratio produces a frequency

  9. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  10. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  11. Experiments with the High Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy of Λ12B hypernuclei

    NASA Astrophysics Data System (ADS)

    Tang, L.; Chen, C.; Gogami, T.; Kawama, D.; Han, Y.; Yuan, L.; Matsumura, A.; Okayasu, Y.; Seva, T.; Rodriguez, V. M.; Baturin, P.; Acha, A.; Achenbach, P.; Ahmidouch, A.; Albayrak, I.; Androic, D.; Asaturyan, A.; Asaturyan, R.; Ates, O.; Badui, R.; Baker, O. K.; Benmokhtar, F.; Boeglin, W.; Bono, J.; Bosted, P.; Brash, E.; Carter, P.; Carlini, R.; Chiba, A.; Christy, M. E.; Cole, L.; Dalton, M. M.; Danagoulian, S.; Daniel, A.; De Leo, R.; Dharmawardane, V.; Doi, D.; Egiyan, K.; Elaasar, M.; Ent, R.; Fenker, H.; Fujii, Y.; Furic, M.; Gabrielyan, M.; Gan, L.; Garibaldi, F.; Gaskell, D.; Gasparian, A.; Gibson, E. F.; Gueye, P.; Hashimoto, O.; Honda, D.; Horn, T.; Hu, B.; Hungerford, Ed V.; Jayalath, C.; Jones, M.; Johnston, K.; Kalantarians, N.; Kanda, H.; Kaneta, M.; Kato, F.; Kato, S.; Kawai, M.; Keppel, C.; Khanal, H.; Kohl, M.; Kramer, L.; Lan, K. J.; Li, Y.; Liyanage, A.; Luo, W.; Mack, D.; Maeda, K.; Malace, S.; Margaryan, A.; Marikyan, G.; Markowitz, P.; Maruta, T.; Maruyama, N.; Maxwell, V.; Millener, D. J.; Miyoshi, T.; Mkrtchyan, A.; Mkrtchyan, H.; Motoba, T.; Nagao, S.; Nakamura, S. N.; Narayan, A.; Neville, C.; Niculescu, G.; Niculescu, M. I.; Nunez, A.; Nuruzzaman, Nomura, H.; Nonaka, K.; Ohtani, A.; Oyamada, M.; Perez, N.; Petkovic, T.; Pochodzalla, J.; Qiu, X.; Randeniya, S.; Raue, B.; Reinhold, J.; Rivera, R.; Roche, J.; Samanta, C.; Sato, Y.; Sawatzky, B.; Segbefia, E. K.; Schott, D.; Shichijo, A.; Simicevic, N.; Smith, G.; Song, Y.; Sumihama, M.; Tadevosyan, V.; Takahashi, T.; Taniya, N.; Tsukada, K.; Tvaskis, V.; Veilleux, M.; Vulcan, W.; Wells, S.; Wesselmann, F. R.; Wood, S. A.; Yamamoto, T.; Yan, C.; Ye, Z.; Yokota, K.; Zhamkochyan, S.; Zhu, L.; HKS JLab E05-115; E01-011 Collaborations

    2014-09-01

    Since the pioneering experiment E89-009 studying hypernuclear spectroscopy using the (e,e'K+) reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method," to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet (E05-115) were added to produce new data sets of precision, high-resolution hypernuclear spectroscopy. All three experiments obtained a spectrum for Λ12B, which is the most characteristic p-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the (e,e'K+) reaction. This paper presents details of these experiments, and the extraction and analysis of the observed Λ12B spectrum.

  12. The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    SciTech Connect

    Allende Prieto, C.; Sivarani, T.; Beers, T.C.; Lee, Y.S.; Koesterke, L.; Shetrone, M.; Sneden, C.; Lambert, D.L.; Wilhelm, R.; Rockosi, C.M.; Lai, D.

    2007-10-01

    The authors report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which they compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R {approx} 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), they empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s{sup -1}, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. They estimate random errors for lower S/N spectra based on numerical simulations.

  13. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    SciTech Connect

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  14. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  15. Characterization of carbonaceous meteoritic fragments found in Antarctica by high-resolution Raman spectroscopy and SEM/EDS

    NASA Astrophysics Data System (ADS)

    Dall Asen, Analia; Baer, Brandon; Mittelstaedt, Jake; Gerton, Jordan; Bromley, Benjamin; Kenyon, Scott

    2016-03-01

    Carbonaceous chondritic meteorites are composed mainly of chondrules (micro/millimeter-sized inclusions) surrounding by a matrix of microparticles, and are considered the most primitive surviving materials from the early Solar System. Understanding their properties and history may provide clues to the formation of planets from micron-size dust grains in the Solar nebula. Our approach is to study the structure and composition of carbonaceous chondrites with high-resolution micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These techniques enable us to capture details on a wide range of spatial scales, from micrometers to millimeters. Here we provide the first analysis of a set of meteorite fragments from Antarctica (MIL 07002 and ALH 84028), mapping elemental and molecular abundances, as well as large-scale morphological features. We present characterizations of individual chondrules and the surrounding matrix, and we consider on how our findings reflect physical processes believed to be operating during the early stages of planet formation.

  16. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  17. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.

    2015-10-01

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  18. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  19. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range. PMID:26472380

  20. New frontiers of high-resolution spectroscopy: Probing the atmospheres of brown dwarfs and reflected light from exoplanets

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne; Alonso, Roi; Brogi, Matteo; Charbonneau, David; Fortney, Jonathan; Hoyer, Sergio; Johnson, John Asher; de Kok, Remco; Lopez-Morales, Mercedes; Montet, Ben; Snellen, Ignas

    2015-12-01

    High-resolution spectroscopy (R>25,000) is a robust and powerful tool in the near-infrared characterization of exoplanet atmospheres. It has unambiguously revealed the presence of carbon monoxide and water in several hot Jupiters, measured the rotation rate of beta Pic b, and suggested the presence of fast day-to-night winds in one atmosphere. The method is applicable to transiting, non-transiting, and directly-imaged planets. It works by resolving broad molecular bands in the planetary spectrum into a dense, unique forest of individual lines and tracing them directly by their Doppler shift, while the star and tellurics remain essentially stationary. I will focus on two ongoing efforts to expand this technique. First, I will present new results on 51 Peg b revealing its infrared atmospheric compositional properties, then I will discuss an ongoing optical HARPS-N/TNG campaign (due mid October 2015) to obtain a detailed albedo spectrum of 51 Peg b at 387-691 nm in bins of 50nm. This spectrum would provide strong constraints on the previously claimed high albedo and potentially cloudy nature of this planet. Second, I will discuss preliminary results from Keck/NIRSPAO observations (due late September 2015) of LHS 6343 C, a 1000 K transiting brown dwarf with an M-dwarf host star. The high-resolution method converts this system into an eclipsing, double-lined spectroscopic binary, thus allowing dynamical mass and radius estimates of the components, free from astrophysical assumptions. Alongside probing the atmospheric composition of the brown dwarf, these data would provide the first model-independent study of the bulk properties of an old brown dwarf, with masses accurate to <5%, placing a crucial constraint on brown dwarf evolution models.

  1. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES

    SciTech Connect

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew E-mail: rab@ucolick.org E-mail: andy@ociw.edu

    2011-07-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a {approx}5 Gyr range, the ages of {approx}2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a {approx}200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of {approx}20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.

  2. High-Resolution Spectroscopy of Metal-rich Giants in ω Centauri: First Indication of Type Ia Supernova Enrichment

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Pasquini, L.; Hill, V.; Ferraro, F. R.; Bellazzini, M.

    2002-04-01

    We have obtained high-resolution, high signal-to-noise ratio spectra for six red giants in ω Centauri: three belong to the recently discovered metal-rich red giant branch (RGB-a as defined by Pancino et al.) and three to the metal-intermediate population (RGB-MInt). Accurate iron, copper, and α-element (Ca and Si) abundances have been derived and discussed. In particular, we have obtained the first direct abundance determination based on high-resolution spectroscopy for the RGB-a population, <[Fe/H]>=-0.60+/-0.15. Although this value is lower than previous estimates based on calcium triplet measurements, we confirm that this population is the most metal-rich in ω Cen. In addition, we have found a significant difference in the α-element enhancement of the two populations. The three RGB-MInt stars have the expected overabundance, typical of halo and globular cluster stars: <[α/Fe]>=0.29+/-0.01. The three RGB-a stars show, instead, a significantly lower α-enhancement: <[α/Fe]>=0.10+/-0.04. We have also detected an increasing trend of [Cu/Fe] with metallicity, similar to the one observed for field stars by Sneden et al. The observational facts presented in this Letter, if confirmed by larger samples of giants, are the first indication that supernovae Type Ia ejecta have contaminated the medium from which the metal-rich RGB-a stars have formed. The implications for current scenarios on the formation and evolution of ω Cen are briefly discussed. Based on Ultraviolet-Visual Echelle Spectrograph observations collected at the European Southern Observatory, Paranal, Chile, within the observing program 165.L-0263. Also based on Wide-Field Imager observations collected at La Silla, Chile, within the observing programs 62.L-0354 and 64.L-0439.

  3. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS

    SciTech Connect

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.; Lee, Young Sun; Honda, Satoshi; Ito, Hiroko; Takada-Hidai, Masahide; Frebel, Anna; Fujimoto, Masayuki Y.; Carollo, Daniela; Sivarani, Thirupathi E-mail: takuma.suda@nao.ac.jp E-mail: lee@pa.msu.edu E-mail: hidai@apus.rh.u-tokai.ac.jp E-mail: fujimoto@astro1.sci.hokudai.ac.jp E-mail: sivarani@iiap.res.in

    2013-01-01

    Chemical compositions are determined based on high-resolution spectroscopy for 137 candidate extremely metal-poor (EMP) stars selected from the Sloan Digital Sky Survey (SDSS) and its first stellar extension, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). High-resolution spectra with moderate signal-to-noise (S/N) ratios were obtained with the High Dispersion Spectrograph of the Subaru Telescope. Most of the sample (approximately 80%) are main-sequence turnoff stars, including dwarfs and subgiants. Four cool main-sequence stars, the most metal-deficient such stars known, are included in the remaining sample. Good agreement is found between effective temperatures estimated by the SEGUE stellar parameter pipeline, based on the SDSS/SEGUE medium-resolution spectra, and those estimated from the broadband (V - K){sub 0} and (g - r){sub 0} colors. Our abundance measurements reveal that 70 stars in our sample have [Fe/H] < -3, adding a significant number of EMP stars to the currently known sample. Our analyses determine the abundances of eight elements (C, Na, Mg, Ca, Ti, Cr, Sr, and Ba) in addition to Fe. The fraction of carbon-enhanced metal-poor stars ([C/Fe] > +0.7) among the 25 giants in our sample is as high as 36%, while only a lower limit on the fraction (9%) is estimated for turnoff stars. This paper is the first of a series of papers based on these observational results. The following papers in this series will discuss the higher-resolution and higher-S/N observations of a subset of this sample, the metallicity distribution function, binarity, and correlations between the chemical composition and kinematics of extremely metal-poor stars.

  4. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. III. The Large Magellanic Cloud: Fe and Ages

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2011-07-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a ~5 Gyr range, the ages of ~2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a ~200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex) the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of ~20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  5. High-resolution X-ray spectroscopy of T Tauri stars in the Taurus-Auriga complex

    NASA Astrophysics Data System (ADS)

    Telleschi, A.; Güdel, M.; Briggs, K. R.; Audard, M.; Scelsi, L.

    2007-06-01

    Context: Differences have been reported between the X-ray emission of accreting and non-accreting stars. Some observations have suggested that accretion shocks could be responsible for part of the X-ray emission in classical T Tauri stars (CTTS). Aims: We present high-resolution X-ray spectroscopy for nine pre-main sequence stars in order to test the proposed spectroscopic differences between accreting and non-accreting pre-main sequence stars. Methods: We used X-ray spectroscopy from the XMM-Newton Reflection Grating Spectrometers and the EPIC instruments. We interpret the spectra using optically thin thermal models with variable abundances, together with an absorption column density. For BP Tau and AB Aur we derive electron densities from the O vii triplets. Results: Using the O vii/O viii count ratios as a diagnostic for cool plasma, we find that CTTS display a soft excess (with equivalent electron temperatures of ≈2.5{-}3 MK) when compared with WTTS or zero-age main-sequence stars. Although the O vii triplet in BP Tau is consistent with a high electron density (3.4 × 1011 cm-3), we find low density for the accreting Herbig star AB Aur (ne < 1010 cm-3). The element abundances of accreting and non-accreting stars are similar. The Ne abundance is found to be high (4-6 times the Fe abundance) in all K and M-type stars. In contrast, for the three G-type stars (SU Aur, HD 283572, and HP Tau/G2), we find an enhanced Fe abundance (0.4-0.8 times solar photospheric values) compared to later-type stars. Conclusions: Adding the results from our sample to former high-resolution studies of T Tauri stars, we find a soft excess in all accreting stars, but in none of the non-accretors. On the other hand, high electron density and high Ne/Fe abundance ratios do not seem to be present in all accreting pre-main sequence stars.

  6. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster’s properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster’s reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = ‑0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region

  7. Cathodoluminescence Microscopy and Spectroscopy of Planar Deformation Features of Shocked Zircon from the Vredefort Impact Structure, South Africa

    SciTech Connect

    Gucsik, A.

    2009-08-17

    Thorough understanding of the shock metamorphic signatures of zircon will provide a basis for the application of this mineral as a powerful tool for the study of terrestrial impact structures and formations. This paper of the cathodoluminescence (CL) spectroscopic signatures of naturally shocked zircon crystals from the Vredefort Dome, South Africa contributes to the understanding of the formation of microdeformation in zircon under very high pressures. All investigated shocked samples shows an inverse relationship between the brightness of the backscattered electron (BSE) signal and the corresponding cathodoluminescence intensity of the zonation patterns. The CL spectra of samples are characterised by narrow emission lines and broad bands in the region of visible light and in the near-ultraviolet range. The emission lines result from rare earth element activators and the broad bands are associated with lattice defects. The results show a clear relationship between the CL properties of zircon and shock pressure, which confirm the possible use of these methods as shock indicators.

  8. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  9. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  10. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGESBeta

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  11. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward H.; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.; Ishikawa, Yuzo; McDonald, Eliza A.; Shourt, William V.; Vanderburg, Andrew M.

    2016-04-01

    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the "TEDI" interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels-EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2.

  12. Triosmium clusters on a support: determination of structure by X-ray absorption spectroscopy and high-resolution microscopy.

    PubMed

    Mehraeen, Shareghe; Kulkarni, Apoorva; Chi, Miaofang; Reed, Bryan W; Okamoto, Norihiko L; Browning, Nigel D; Gates, Bruce C

    2011-01-17

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os(3) (CO)(12) ] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03±0.06 Å. The EXAFS OsOs coordination number of 2.1±0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02±0.04 Å. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80±0.14 Å, matching the EXAFS value of 2.89±0.06 Å. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters. PMID:21226118

  13. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    SciTech Connect

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number of 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.

  14. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  15. Baseline restoration and pile-up correction based on bipolar cusp-like shaping for high-resolution radiation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kafaee, Mahdi; Moussavi-Zarandi, Ali

    2016-04-01

    The baseline may shift in many radiation measurement systems. The shift is time variant and depends on the events. Also, with high count rates, pulses may overlap in random time intervals. These phenomena can affect the peak values of the pulses. Piled-up events are traditionally rejected, but this reduces the detection efficiency considerably. In other approaches, the corrupted events are reconstructed, and information about the single pulses is extracted. The peaks carry much of the basic information, so many shaping methods have been proposed so far. For pile-up mitigation, a narrow unipolar shaping is enough, but a baseline shift is eliminated by using bipolar shaping. However, the latter decreases the signal-to-noise ratio (SNR), which is critical for high-resolution spectroscopy. In this paper, we propose bipolar cusp-like shaping as a tradeoff between mitigating the baseline shift and pulse pile-up. A novel recursive algorithm, implementable on digital pulse processors (DPPs), is introduced and is then evaluated. Finally, the superior noise-reduction capability is studied by using Monte Carlo simulations, a real piled-up pulse stream shaped by using the algorithm, and the results show its advantages.

  16. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  17. Biochemical correlates of thiazolidinedione-induced adipocyte differentiation by high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Chen, Jin-Hong; Enloe, Brian M; Weybright, Patrick; Campbell, Natalee; Dorfman, David; Fletcher, Christopher D; Cory, D G; Singer, Samuel

    2002-10-01

    Thiazolidinediones, a class of synthetic ligands to the peroxisome proliferator-activated receptor-gamma, induce terminal adipocyte differentiation of 3T3 F442A cells, and have already been used as alternative therapeutic agents for the treatment of liposarcoma in clinical trials. The biochemical changes occurring in the 3T3 F442A cell line and well-differentiated liposarcoma following induction of adipocyte differentiation with the thiazolidinedione troglitazone were measured using high-resolution magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. 3T3 F442A cell differentiation was characterized by a large accumulation of intracellular triglyceride and withdrawal from the cell cycle. Phosphatidylcholine (PTC), phosphocholine (PC), myo-inositol, and glycerol were found to be possible biochemical markers for adipocyte differentiation induced by thiazolidenediones. The molar ratio of PTC to PC increased fourfold in differentiated 3T3 F442A cells compared to undifferentiated cells, suggesting a substantial increase in CTP:phosphocholine cytidylyltransferase activity with differentiation. A 2.8-fold increase in the PTC:PC ratio was observed in the lipoma-like well-differentiated liposarcoma of three patients who were treated with troglitazone when compared to liposarcoma from patients not treated with this drug. Thus, this ratio may be an NMR-detectable marker of troglitazone efficacy and response to differentiation therapy for liposarcoma.

  18. High Resolution and Low-Temperature Photoelectron Spectroscopy of an Oxygen-Linked Fullerene Dimer Dianion: C120O2-

    SciTech Connect

    Wang, Xue B.; Matheis, Katerina; Ioffe, Ilya N.; Goryunkov, Alexey A.; Yang, Jie; Kappes, Manfred M.; Wang, Lai S.

    2008-03-21

    C120O comprises two C60 cages linked by a furan ring and is formed by reactions of C60O and C60. We have produced doubly-charged anions of this fullerene dimer (C120O2–) and studied its electronic structure and stability using photoelectron spectroscopy and theoretical calculations. High resolution and vibrationally resolved photoelectron spectra were obtained at 70 K and at several photon energies. The second electron affinity of C120O was measured to be 1.02 ± 0.03 eV and the intramolecular Coulomb repulsion was estimated to be about 0.8 eV in C120O2– on the basis of the observed repulsive Coulomb barrier. A low-lying excited state (2B1) was also observed for C120O– at 0.09 eV above the ground state (2A1). The C120O2– dianion can be viewed as a single electron on each C60 ball very weakly coupled. Theoretical calculations showed that the singlet and triplet states of C120O2– are nearly degenerate and can both be present in the experiment. The computed electron binding energies and excitation energies, as well as Franck-Condon factors, are used to help interpret the photoelectron spectra. A C-C bond-cleaved isomer, C60-O-C602–, was also observed with a higher electron binding energy of 1.54 eV.

  19. Ground-state binding energy of H4Λ from high-resolution decay-pion spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulz, F.; Achenbach, P.; Aulenbacher, S.; Beričič, J.; Bleser, S.; Böhm, R.; Bosnar, D.; Correa, L.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Fujii, Y.; Fujita, M.; Gogami, T.; Kanda, H.; Kaneta, M.; Kegel, S.; Kohl, Y.; Kusaka, W.; Margaryan, A.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nagao, S.; Nakamura, S. N.; Pochodzalla, J.; Sanchez Lorente, A.; Schlimme, B. S.; Schoth, M.; Sfienti, C.; Širca, S.; Steinen, M.; Takahashi, Y.; Tang, L.; Thiel, M.; Tsukada, K.; Tyukin, A.; Weber, A.

    2016-10-01

    A systematic study on the Λ ground state binding energy of hyperhydrogen H4Λ measured at the Mainz Microtron MAMI is presented. The energy was deduced from the spectroscopy of mono-energetic pions from the two-body decays of hyperfragments, which were produced and stopped in a 9Be target. First data, taken in the year 2012 with a high resolution magnetic spectrometer, demonstrated an almost one order of magnitude higher precision than emulsion data, while being limited by systematic uncertainties. In 2014 an extended measurement campaign was performed with improved control over systematic effects, increasing the yield of hypernuclei and confirming the observation with two independent spectrometers and two targets of different thicknesses. The analysis of these data is in agreement with the previously published value for the H4Λ binding energy as well as with a consistent re-analysis of the 2012 data. When compared to the He4Λ binding energy from emulsion data, a large charge symmetry breaking effect in the A = 4 hypernuclear system is confirmed.

  20. High resolution spectroscopy of the Cs2 D 1Sigma u + -X 1Sigma g + transition and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tooru; Usui, Takashi; Kumauchi, Takahiro; Baba, Masaaki; Ishikawa, Kiyoshi; Katô, Hajime

    1993-02-01

    The Doppler-free high resolution laser spectroscopy of Cs2 D 1Σu+-X 1Σg+ transition is extended up to v'=65. By comparing the spectral linewidth and the time-resolved fluorescence intensity, the line broadening observed for transitions to the D 1Σu+(v'=63,J'≤70) levels is identified as the lifetime broadening originating from the predissociation. Line splittings are observed for the D 1Σu+(v'=46,J'≥95)-X 1Σg+(v`= 1,J`) transitions and are identified as the hyperfine splitting due to a magnetic dipole interaction between nuclear spin and electron. The hyperfine splitting is attributed to mixing of the (2) 3Πu state, whose wave function changes from Hund's case (a) to case (b) at large J. The dependence of the electric dipole transition moment on the internuclear distance for the D 1Σu+-X 1Σg+ transition is determined by comparing the observed and calculated line intensities of the dispersed fluorescence.

  1. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Fuss, Taylor L; Cheng, Leo L

    2016-03-22

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  2. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  3. High resolution spectroscopy and the first global analysis of the Tetradecad region of methane 12CH4.

    PubMed

    Nikitin, A V; Boudon, V; Wenger, Ch; Albert, S; Brown, L R; Bauerecker, S; Quack, M

    2013-07-01

    We present the first detailed analysis of the infrared spectrum of methane (12)CH4 in the so-called Tetradecad region from 2.1 to 1.6 μm (4760-6250 cm(-1)). New experimental high resolution FTIR spectra at 78 K and at room temperature combined with improved theoretical modeling have allowed quantum assignments to be greatly extended in this region. A global fit of all assigned lines of (12)CH4 in the 0-6200 cm(-1) region has been performed. In the end, 3012 line positions and 1387 intensities of 45 individual subbands of the Tetradecad were modeled up to J = 14. The root mean square deviations were 0.023 cm(-1) for line positions and 13.86% for line intensities in the Tetradecad region itself. Although this analysis is still preliminary, it is already sufficient to characterize the stronger bands throughout the whole of the Tetradecad. The calculated integrated intensity of the polyad is 1.399 × 10(-19) cm(-1)/(molecule cm(-2)) at 296 K. A "definitive" theoretical modeling of this spectral region of methane requires further work, but the present success substantially improves our understanding of methane spectroscopy as needed to interpret planetary atmospheres. Lines pertaining to three-fourths of the 60 sub-vibrational bands in this polyad have been assigned. PMID:23714852

  4. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: LEO IV

    SciTech Connect

    Simon, Joshua D.; McWilliam, Andrew; Thompson, Ian B.; Frebel, Anna; Kirby, Evan N. E-mail: andy@ociw.ed E-mail: afrebel@cfa.harvard.ed

    2010-06-10

    We present high-resolution Magellan/MIKE spectroscopy of the brightest star in the ultra-faint dwarf galaxy Leo IV. We measure an iron abundance of [Fe/H] = -3.2, adding to the rapidly growing sample of extremely metal-poor (EMP) stars being identified in Milky Way satellite galaxies. The star is enhanced in the {alpha} elements Mg, Ca, and Ti by {approx}0.3 dex, very similar to the typical Milky Way halo abundance pattern. All of the light and iron-peak elements follow the trends established by EMP halo stars, but the neutron-capture elements Ba and Sr are significantly underabundant. These results are quite similar to those found for stars in the ultra-faint dwarfs Ursa Major II, Coma Berenices, Booetes I, and Hercules, suggesting that the chemical evolution of the lowest-luminosity galaxies may be universal. The abundance pattern we observe is consistent with predictions for nucleosynthesis from a Population III supernova explosion. The extremely low metallicity of this star also supports the idea that a significant fraction ({approx}>10%) of the stars in the faintest dwarfs have metallicities below [Fe/H] = -3.0.

  5. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI

  6. Probing the excited state properties of the highly phosphorescent Pt(dpyb)Cl compound by high-resolution optical spectroscopy.

    PubMed

    Rausch, Andreas F; Murphy, Lisa; Williams, J A Gareth; Yersin, Hartmut

    2009-12-01

    Detailed photophysical studies of the emitting triplet state of the highly phosphorescent compound Pt(dpyb)Cl based on high-resolution optical spectroscopy at cryogenic temperatures are presented {dpyb = N--C(2)--N-coordinated 1,3-di(pyridylbenzene)}. The results reveal a total zero-field splitting of the emitting triplet state T(1) of 10 cm(-1) and relatively short individual decay times for the two higher lying T(1) substates II and III, while the decay time of the lowest substate I is distinctly longer. Further evidence for the assignment of the T(1) substates is gained by emission measurements under high magnetic fields. Distinct differences are observed in the vibrational satellite structures of the emissions from the substates I and II, which are dominated by Herzberg-Teller and Franck-Condon activity, respectively. At T = 1.2 K, the individual spectra of these two substates can be separated by time-resolved spectroscopy. For the most prominent Franck-Condon active modes, Huang-Rhys parameters of S approximately 0.1 can be determined, which are characteristic of very small geometry rearrangements between the singlet ground state and the triplet state T(1). The similar geometries are ascribed to the high rigidity of the Pt(N--C--N) system which, unlike complexes incorporating bidentate phenylpyridine-type ligands and exhibiting similar metal-to-ligand charge transfer admixtures, cannot readily distort from planarity. The results provide new insight into strategies for optimizing the performance of platinum-based emitters for applications such as organic light-emitting diode (OLED) technology and imaging.

  7. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  8. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.; Macphee, Cait E.; Bajaj, Vikram S.; McMahon, Michael T.; Dobson, Christopher M.; Griffin, Robert G.

    2004-01-01

    Amyloid fibrils are self-assembled filamentous structures associated with protein deposition conditions including Alzheimer's disease and the transmissible spongiform encephalopathies. Despite the immense medical importance of amyloid fibrils, no atomic-resolution structures are available for these materials, because the intact fibrils are insoluble and do not form diffraction-quality 3D crystals. Here we report the high-resolution structure of a peptide fragment of the amyloidogenic protein transthyretin, TTR(105-115), in its fibrillar form, determined by magic angle spinning NMR spectroscopy. The structure resolves not only the backbone fold but also the precise conformation of the side chains. Nearly complete 13C and 15N resonance assignments for TTR(105-115) formed the basis for the extraction of a set of distance and dihedral angle restraints. A total of 76 self-consistent experimental measurements, including 41 restraints on 19 backbone dihedral angles and 35 13C-15N distances between 3 and 6 Å were obtained from 2D and 3D NMR spectra recorded on three fibril samples uniformly 13C, 15N-labeled in consecutive stretches of four amino acids and used to calculate an ensemble of peptide structures. Our results indicate that TTR(105-115) adopts an extended -strand conformation in the amyloid fibrils such that both the main- and side-chain torsion angles are close to their optimal values. Moreover, the structure of this peptide in the fibrillar form has a degree of long-range order that is generally associated only with crystalline materials. These findings provide an explanation of the unusual stability and characteristic properties of this form of polypeptide assembly.

  9. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  10. Application of High-Resolution Magic-Angle Spinning NMR Spectroscopy to Define the Cell Uptake of MRI Contrast Agents

    NASA Astrophysics Data System (ADS)

    Calabi, Luisella; Alfieri, Goffredo; Biondi, Luca; De Miranda, Mario; Paleari, Lino; Ghelli, Stefano

    2002-06-01

    A new method, based on proton high-resolution magic-angle spinning ( 1H HR-MAS) NMR spectroscopy, has been employed to study the cell uptake of magnetic resonance imaging contrast agents (MRI-CAs). The method was tested on human red blood cells (HRBC) and white blood cells (HWBC) by using three gadolinium complexes, widely used in diagnostics, Gd-BOPTA, Gd-DTPA, and Gd-DOTA, and the analogous complexes obtained by replacing Gd(III) with Dy(III), Nd(III), and Tb(III) (i.e., complexes isostructural to the ones of gadolinium but acting as shift agents). The method is based on the evaluation of the magnetic effects, line broadening, or induced lanthanide shift (LIS) caused by these complexes on NMR signals of intra- and extracellular water. Since magnetic effects are directly linked to permeability, this method is direct. In all the tests, these magnetic effects were detected for the extracellular water signal only, providing a direct proof that these complexes are not able to cross the cell membrane. Line broadening effects (i.e., the use of gadolinium complexes) only allow qualitative evaluations. On the contrary, LIS effects can be measured with high precision and they can be related to the concentration of the paramagnetic species in the cellular compartments. This is possible because the HR-MAS technique provides the complete elimination of bulk magnetic susceptibility (BMS) shift and the differentiation of extra- and intracellular water signals. Thus with this method, the rapid quantification of the MRI-CA amount inside and outside the cells is actually feasible.

  11. High Resolution Laboratory Spectroscopy in Support of Herschel and SOFIA: From Small Molecular Ions to PAHs and Fullerenes

    NASA Astrophysics Data System (ADS)

    McCall, Benjamin

    The spectral lines of molecules serve as essential tools for astronomers, allowing them to probe the physical and chemical conditions of diverse environments, ranging from the diffuse interstellar medium to quiescent molecular clouds to star- and planet-forming regions to nebulae and circumstellar shells. This use of molecules as astronomical probes is only possible because of decades of work by laboratory spectroscopists, who have measured the frequencies of molecular spectral lines and determined the energy levels from which they originate. Ground-based astronomical spectroscopy has been mostly limited to frequencies below ~1 THz or above ~60 THz (below ~5 1/4m) due to the opacity of Earth s atmosphere, but new NASA missions (Herschel and SOFIA) are enabling high resolution spectroscopy in the no-man s land between 1-60 THz. However, comparatively little laboratory spectroscopy has been performed in this region, jeopardizing the scientific return from these missions. There is therefore a critical need to measure THz/far-IR spectral line frequencies of astrophysically important molecules. Two particularly important classes of such molecules are molecular ions and large neutral molecules. The objective of this particular proposal is to perform spectroscopy of astrophysically important molecular cations and large molecules with unprecedented precision and accuracy, to determine their transition frequencies in the THz/far-IR region. The rationale for the proposed research is that it will enable the study of these species with Herschel and SOFIA, thereby improving our understanding of interstellar clouds, star- forming regions, and other astronomical environments. The specific objectives of the proposed research is to measure high-precision infrared spectra of astrophysically important molecular cations, and determine their THz/far-IR frequencies to support Herschel and SOFIA. Using our newly discovered technique NICE-OHVMS (noise-immune cavity-enhanced optical

  12. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root.

  13. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-01

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root. PMID:25652946

  14. The subgiant branch of ω Centauri seen through high-resolution spectroscopy. I. The first stellar generation in ω Cen?

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Mucciarelli, A.; Sbordone, L.; Bellazzini, M.; Pasquini, L.; Monaco, L.; Ferraro, F. R.

    2011-03-01

    We analysed high-resolution UVES spectra of six stars belonging to the subgiant branch of ω Centauri, and derived abundance ratios of 19 chemical elements (namely Al, Ba, C, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, N, Na, Ni, Sc, Si, Sr, Ti, and Y). A comparison with previous abundance determinations for red giants provided remarkable agreement and allowed us to identify the sub-populations to which our targets belong. We found that three targets belong to a low-metallicity population at [Fe/H] ≃ -2.0 dex, [α/Fe] ≃ +0.4 dex and [s/Fe] ≃ 0 dex. Stars with similar characteristics were found in small amounts by past surveys of red giants. We discuss the possibility that they belong to a separate sub-population that we name VMP (very metal-poor, at most 5% of the total cluster population), which - in the self-enrichment hypothesis - is the best-candidate first stellar generation in ω Cen. Two of the remaining targets belong to the dominant metal-poor population (MP) at [Fe/H] ≃ -1.7 dex, and the last one to the metal-intermediate (MInt) one at [Fe/H] ≃ -1.2 dex. The existence of the newly defined VMP population could help to understand some puzzling results based on low-resolution spectroscopy for age differences determinations, because the metallicity resolution of these studies was probably not enough to detect the VMP population. The VMP could also correspond to some of the additional substructures of the subgiant-branch region found in the latest HST photometry. After trying to correlate chemical abundances with substructures in the subgiant branch of ω Cen, we found that the age difference between the VMP and MP populations should be small (0 ± 2 Gyr), while the difference between the MP and MInt populations could be slightly larger (2 ± 2 Gyr). Based on data collected at the ESO VLT in Chile, with UVES and FLAMES under programs 68.D-0332(A) and 079.D-0021. Also based on literature data from the ESO WFI, under programs 62.L-0354 and 63.L-0439, and on data

  15. Very High Resolution Ultraviolet Spectroscopy of a Chemically Peculiar Star: Results of the chi LUPI Pathfinder Project

    NASA Astrophysics Data System (ADS)

    Leckrone, David S.; Proffitt, Charles R.; Wahlgren, Glenn M.; Johansson, Sveneric G.; Brage, Tomas

    1999-03-01

    We summarize here the results of a major eight-year investigation of the extraordinarily detailed UV spectrum of the sharp-lined, nonmagnetic, main-sequence, chemically peculiar star chi Lupi (B9.5p HgMn + A2 Vm). The UV observations are composed of 345 Å of the spectrum acquired with the Goddard High Resolution Spectrograph (GHRS) on board the Hubble Space Telescope at an average resolution of 0.023 Å. The complete set of echelle spectrograms is presented as an atlas in a companion paper. These data were supplemented by optical-wavelength spectra obtained at the Anglo-Australian Telescope. Quantitatively accurate analysis and theoretical interpretation of these data required major improvements in the accuracy and completeness of available atomic data-wavelengths, transition probabilities, hyperfine structure, and isotope shifts-for the lowest ionization states of many elements. A large, international group of theoretical and experimental atomic physicists has collaborated in this investigation, and their results are summarized or referenced in this paper. In turn, the GHRS observations of chi Lupi have become a useful source of data for atomic spectroscopy, displaying many transitions that are difficult to observe in a laboratory setting. Measured abundances or upper limits are presented for 72 ions of 51 chemical elements, spanning the periodic table. We have confirmed and refined previously identified isotopic abundance anomalies in mercury and platinum and have discovered similar isotopic anomalies in thallium and, tentatively, in lead. Large discrepancies among the LTE abundances derived, using a chemically homogeneous model atmosphere, from two or three ionization states of the same element are found to be common. In some cases these are due to departures from LTE in the ionization equilibria, but the largest such discrepancies probably result from chemical stratification within the photosphere. We find qualitative trends in the abundances of the elements

  16. Some results from the exploration of the solar atmosphere with high-resolution x-ray-EUV spectroscopy at the Naval Research Laboratory.

    PubMed

    Doschek, G A

    2015-11-01

    The Naval Research Laboratory has been one of the world leaders in high-resolution UV-x-ray solar spectroscopy. Much has been learned about the morphology and physical conditions in the atmosphere from spectroscopic instrumentation flown on orbiting spacecraft. In this short summary I discuss the solar atmosphere and our current knowledge of it, and show some of the results obtained by spectroscopic investigations at the Naval Research Laboratory. PMID:26560622

  17. Coronal Evolution of the Sun in Time: High-Resolution X-Ray Spectroscopy of Solar Analogs with Different Ages

    NASA Astrophysics Data System (ADS)

    Telleschi, Alessandra; Güdel, Manuel; Briggs, Kevin; Audard, Marc; Ness, Jan-Uwe; Skinner, Stephen L.

    2005-03-01

    We investigate the long-term evolution of X-ray coronae of solar analogs based on high-resolution X-ray spectroscopy and photometry with XMM-Newton. Six nearby main-sequence G stars with ages between ~0.1 and ~1.6 Gyr and rotation periods between ~1 and 12.4 days have been observed. We use the X-ray spectra to derive coronal element abundances of C, N, O, Ne, Mg, Si, S, and Fe and the coronal emission measure distribution (EMD). We find that the abundances change from an inverse first ionization potential (FIP) distribution in stars with ages around 0.1 Gyr to a solar-type FIP distribution in stars at ages of 0.3 Gyr and beyond. This transformation is coincident with a steep decline of nonthermal radio emission. The results are in qualitative agreement with a simple model in which the stream of electrons in magnetic fields suppresses diffusion of low-FIP ions from the chromosphere into the corona. The coronal emission measure distributions show shapes characterized by power laws on each side of the EMD peak. The latter shifts from temperatures of about 10 MK in the most rapidly rotating, young stars to temperatures around 4 MK in the oldest target considered here. The power-law index on the cooler side of the EMD exceeds expected slopes for static loops, with typical values being 1.5-3. We interpret this slope with a model in which the coronal emission is due to a superposition of stochastically occurring flares, with an occurrence rate that is distributed in radiated energy E as a power law, dN/dE~E-α, as previously found for solar and stellar flares. We obtain the relevant power-law index α from the slope of the high-temperature tail of the EMD. Our EMDs indicate α~2.2-2.8, in excellent agreement with values previously derived from light curves of magnetically active stars. Modulation with timescales reminiscent of flares is found in the light curves of all our targets. Several strong flares are also observed. We use our α-values to simulate light curves and

  18. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae.

    PubMed

    Tahtah, Yousof; Kongstad, Kenneth T; Wubshet, Sileshi G; Nyberg, Nils T; Jønsson, Louise H; Jäger, Anna K; Qinglei, Sun; Staerk, Dan

    2015-08-21

    In this work, development of a new microplate-based high-resolution profiling assay using recombinant human aldose reductase is presented. Used together with high-resolution radical scavenging and high-resolution α-glucosidase assays, it provided the first report of a triple aldose reductase/α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main radical scavengers were ganhuangemin, viscidulin III, baicalin, oroxylin A 7-O-glucuronide, wogonoside, baicalein, wogonin, and skullcapflavone II.

  19. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3 μm Region: Role of Periphery

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-11-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950–3150 cm‑1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.

  20. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  1. High-resolution CO-laser sideband spectrometer for molecular-beam optothermal spectroscopy in the 5-6.6 μm wavelength region

    NASA Astrophysics Data System (ADS)

    Merker, U.; Engels, P.; Madeja, F.; Havenith, M.; Urban, W.

    1999-04-01

    We have set up a new CO-laser sideband spectrometer for high-resolution molecular-beam optothermal spectroscopy in the mid infrared. By mixing CO-laser lines with tunable microwave radiation, a spectral coverage of about 50% is achieved. Using a microwave resonator, a typical output power of 3 mW is realized in the region of 5-6.6 μm (1500-2000 cm-1). The resolution in our molecular-beam apparatus with optothermal detection is 2.8 MHz (full width at half maximum). The new setup allowed the observation of the first high-resolution rotationally resolved spectrum of formic acid dimer (HCOOH)2.

  2. High resolution spectroscopy of Red Giant Branch stars and the chemical evolution of the Fornax dwarf spheroidal galaxy

    NASA Astrophysics Data System (ADS)

    Lemasle, B.; de Boer, T. J. L.; Hill, V.; Tolstoy, E.; Irwin, M. J.; Jablonka, P.; Venn, K.; Battaglia, G.; Starkenburg, E.; Shetrone, M.; Letarte, B.; Francois, P.; Helmi, A.; Primas, F.; Kaufer, A.; Szeifert, T.

    2014-12-01

    From VLT-FLAMES high-resolution spectra, we determine the abundances of several α, iron-peak and neutron-capture elements in 47 Red Giant Branch stars in the Fornax dwarf spheroidal galaxy. We confirm that SNe Ia started to contribute to the chemical enrichment of Fornax at [Fe/H] between --2.0 and --1.8 dex. Combining these abundances with accurate age estimates, we date the onset of SNe Ia to ≈ 12--10 Gyrs ago. Our results are compatible with an initial mass function that lacks the most massive stars and with a star formation going on throughout the whole history of Fornax.

  3. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 700 and 820 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2015-09-01

    The weak combination bands ν12 + ν18 and ν17 + ν18 of trans-acrolein in the 700-760 cm-1 region are observed at high resolution (<0.001 cm-1) using spectra obtained at the Canadian Light Source synchrotron radiation facility. A detailed rotational analysis of the 121181 and 171181 upper states is made which includes the nearby perturbing states 185, 132181, and 131183. Taking the results of this 5-state fit, together with earlier results on lower lying vibrations, we now have experimental characterization for all 15 excited vibrational states of acrolein lying below 820 cm-1.

  4. High-resolution FTIR spectroscopy of the ν8 and Coriolis perturbation allowed ν12 bands of ketenimine.

    PubMed

    Bane, Michael K; Thompson, Christopher D; Robertson, Evan G; Appadoo, Dominique R T; McNaughton, Don

    2011-04-21

    High resolution FTIR spectra have been recorded in the region 250-770 cm(-1) using synchrotron radiation and over 2000 transitions to the ν(8) and ν(12) states of the short lived species ketenimine have been assigned. Ground state combination differences combined with published microwave transitions were used to refine the constants for the ground vibrational state. Rotational and centrifugal distortion parameters for the v(8) = 1 and v(12) = 1 levels were determined by co-fitting transitions, and treating a strong a-axis Coriolis interaction. Selection rules for the observed ν(12) transitions indicate that they arise solely from "perturbation allowed" intensity resulting from this Coriolis interaction.

  5. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    SciTech Connect

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-10-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called {open_quotes}hollow atoms{close_quotes} must be taken into account for adequate description of plasma radiation.

  6. High-Resolution Laser Spectroscopy of the S1 ← S0 Transition of Cl-NAPHTHALENES

    NASA Astrophysics Data System (ADS)

    Kasahara, Shunji; Yamamoto, Ryo

    2015-06-01

    High-resolution fluorescence excitation spectra of the S1 ← S0 electronic transition have been observed for 1-Cl naphthalene (1-ClN) and 2-Cl naphthalene (2-ClN). Sub-Doppler excitation spectra were measured by crossing a single-mode UV laser beam perpendicular to a collimated molecular beam. The absolute wavenumber was calibrated with accuracy 0.0002 cm-1 by measurement of the Doppler-free saturation spectrum of iodine molecule and fringe pattern of the stabilized etalon. For 2-ClN, the rotationally resolved high-resolution spectra were obtained for the 0^0_0 and 0^0_0+1042 cm-1 bands, and these molecular constants were determined in high accuracy. The obtained molecular constants of the 0^0_0 band are good agreement with the ones reported by Plusquellic et. al. For the 0^0_0+1042 cm-1 band, the local energy shifts were found. On the other hand, for 1-ClN, the rotational lines were not fully resolved because the fluorescence lifetime is shorter than the one of 2-ClN. Then we determined the molecular constants of 1-ClN from the comparison the observed spectrum with calculated one. D. F. Plusquellic, S. R. Davis, and F. Jahanmir, J. Chem. Phys., 115, 225 (2001).

  7. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    SciTech Connect

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.; Huenemoerder, D. P.; Ignace, R.; Pollock, A. M. T.

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  8. High-resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with XMM-Newton/RGS

    NASA Astrophysics Data System (ADS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-09-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer on board the XMM-Newton satellite. A number of emission lines including Kα triplets of He-like N, O, and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  9. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  10. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing

    NASA Astrophysics Data System (ADS)

    Wysocki, G.; Lewicki, R.; Curl, R. F.; Tittel, F. K.; Diehl, L.; Capasso, F.; Troccoli, M.; Hofler, G.; Bour, D.; Corzine, S.; Maulini, R.; Giovannini, M.; Faist, J.

    2008-09-01

    Recent progress in the development of room temperature, continuous wave, widely tunable, mode-hop-free mid-infrared external cavity quantum cascade laser (EC-QCL) spectroscopic sources is reported. A single mode tuning range of 155 cm-1 (˜ 8% of the center wavelength) with a maximum power of 11.1 mW and 182 cm-1 (˜ 15% of the center wavelength) with a maximum power of 50 mW was obtained for 5.3 and 8.4 μm EC-QCLs respectively. This technology is particularly suitable for high resolution spectroscopic applications, multi species trace-gas detection and spectroscopic measurements of broadband absorbers. Several examples of spectroscopic measurements performed using EC-QCL based spectrometers are demonstrated.

  11. High-Resolution Infrared Spectroscopy of Carbon-Sulfur Chains: II. C_5S and SC_5S

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Salomon, Thomas; Dudek, John B.

    2016-06-01

    Unbiased high-resolution infrared survey scans of the ablation products from carbon-sulfur targets in the 2100 to 2150 cm-1 regime reveal two bands previously not observed in the gas phase. On the basis of comparison against laboratory matrix-isolation work and new high-level quantum-chemical calculations these bands are attributed to the linear C_5S and SC_5S clusters. While polar C_5S was studied earlier using Fourier-transform microwave techniques, the present work marks the first gas-phase spectroscopic detection of SC_5S. H. Wang, J. Szczepanski, P. Brucat, and M. Vala 2005, Int. J. Quant. Chem. 102, 795 Y. Kasai, K. Obi, Y. Ohshima, Y. Hirahara, Y. Endo, K. Kawaguchi, and A. Murakami 1993, ApJ 410, L45 V. D. Gordon, M. C. McCarthy, A. J. Apponi, and P. Thaddeus 2001, ApJS 134, 311

  12. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    PubMed

    Patterson, C H

    2012-09-01

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  13. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry.

    PubMed

    Wang, Shaopeng; Forzani, Erica S; Tao, Nongjian

    2007-06-15

    High-resolution differential surface plasmon resonance (SPR) with anodic stripping voltammetry (ASV) capability has been demonstrated for detecting heavy metal ions in water. Metal ions are electroplated onto the gold SPR sensing surface and are quantitatively detected by stripping voltammetry. Both the SPR angular shift and electrochemical current signal are recorded to identify the type and amount of the metal ions in water. The performance of the combined approach is further enhanced by a differential detection approach. The gold sensor surface is divided into a reference and a sensing area, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. Our system demonstrated quantitative detection of copper, lead, and mercury ions in water from part-per-million to sub-part-per-billion levels with good linearity.

  14. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes

    PubMed Central

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-01-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948

  15. High-resolution Fourier-transform infrared spectroscopy of the Coriolis coupled ground state and ν7 mode of ketenimine.

    PubMed

    Bane, Michael K; Robertson, Evan G; Thompson, Christopher D; Medcraft, Chris; Appadoo, Dominique R T; McNaughton, Don

    2011-06-21

    High resolution FTIR spectra of the short lived species ketenimine have been recorded in the regions 390-1300 cm(-1) and 20-110 cm(-1) using synchrotron radiation. Two thousand six hundred sixty transitions of the ν(7) band centered at 693 cm(-1) and 126 far-IR rotational transitions have been assigned. Rotational and centrifugal distortion parameters for the ν(7) mode were determined and local Fermi and b-axis Coriolis interactions with 2ν(12) are treated. A further refinement of the ground state, ν(12) and ν(8) parameters was also achieved, including the treatment of previously unrecognized ac-axis and ab-axis second order perturbations to the ground state.

  16. Three Years of Automated High-Resolution Spectroscopy at Swiss La Silla 1.2 m Telescope

    NASA Astrophysics Data System (ADS)

    Blecha, A.; Udry, S.; Weber, L.

    We report the 3 years experiences of Swiss Facility operation at La Silla Observatory. A brief overview of EULER - the Swiss Ritchey-Chretien 120 cm telescope and of CORALIE - the fibre-coupled, high-resolution echelle spectrograph is given. We describe the design and the concept of the control system which mostly links together commercial hardware elements, free public software (Linux and GNU) and some key components built and fully controlled by Geneva Observatory. We focus on key elements, and we analyze various aspects of operation such as the efficiency, real-time requirements, calibration and maintenance and specific constraints of the astronomical Observatory. We discuss the critical aspects of the automation of the operation, the conditions and the parameters which determine the degree of automation that can be achieved at the cost-effective level and we outline some possible improvement and future plans. We present the summary of scientific activity together with some scientific highlights.

  17. Three years of automated high-resolution spectroscopy at the Swiss La Silla 1.2m telescope

    NASA Astrophysics Data System (ADS)

    Blecha, A.; Weber, L.; Queloz, D.; Mayor, M.; Udry, S.

    2001-12-01

    We report 3 years of experiences with Swiss Facility operation at La Silla observatory. A brief overview of EULER -- the Swiss Ritchey-Chretien 120 cm telescope and of CORALIE -- the fibre-coupled, high-resolution Echelle spectrograph is given. We describe the design and the concept of the control system which mostly links together commercial hardware elements, free public software (Linux and GNU) and some key components built and fully controlled by Geneva Observatory. We focus on key elements, and we analyze various aspects of operation such as the efficiency, real-time requirements, calibration and maintenance and specific constraints of the astronomical observatory. We discuss the critical aspects of the automation of the operation, the conditions and the parameters which determine the degree of automation that can be achieved at the cost-effective level and we outline some possible improvement and future plans. We present the summary of scientific activity together with some scientific highlights.

  18. The combination of laser micro-boring and high resolution α-spectroscopy for the analysis of α-emitting isotopes in irradiated high-temperature-reactor fuel

    NASA Astrophysics Data System (ADS)

    Helmbold, M.; Allelein, H. J.; Koch, H. R.

    1980-02-01

    A new method for the determination of α-emitting isotopes in irradiated high-temperature-reactor fuel has been developed. By use of a laser micro-boring system it is possible to prepare extremely thin α-spectroscopy samples out of any part of the fuel with a spatial resolution of about 10 μm. The measurement of the samples with a silicon barrier detector yields α-spectra of high resolution, allowing the determination of the content of most of the heavy metal isotopes. The method can be extended to the analysis of any kind of nuclear fuel.

  19. Experimental study of the (4)0- short-range electronic state of the 85Rb133Cs molecule by high resolution photoassociation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, Yanting; Yuan, Jinpeng; Ji, Zhonghua; Li, Chuanliang; Li, Zhonghao; Xiao, Liantuan; Jia, Suotang

    2016-11-01

    We present the formation of ultracold 85Rb133Cs molecules in the (4)0- short-range electronic state and the measurement of the permanent electric dipole moment by high resolution photoassociation spectroscopy. With the rotationally resolved photoassociation spectra via resonance-enhanced two-photon ionization, spectral data have been extended to more vibrational levels compared to previous observations. Precise electric dipole moments are obtained by using the DC Stark effect of the photoassociation spectrum. These studies containing previously unobserved electronic states are important to understand the molecular structure and discover transition pathways for transferring ultracold atoms to deeply bound rovibrational levels of the electronic ground state.

  20. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    SciTech Connect

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-15

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm{sup −1} (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ∼0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  1. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters.

    PubMed

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-01

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm(-1) (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ~0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented. PMID:25173245

  2. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    NASA Astrophysics Data System (ADS)

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-01

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm-1 (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ˜0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  3. A 23.75-GHz frequency comb with two low-finesse filtering cavities in series for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Lei, Hou; Hai-Nian, Han; Wei, Wang; Long, Zhang; Li-Hui, Pang; De-Hua, Li; Zhi-Yi, Wei

    2015-02-01

    A laser frequency comb with several tens GHz level is demonstrated, based on a Yb-doped femtosecond fiber laser and two low-finesse Fabry-Pérot cavities (FPCs) in series. The original 250-MHz mode-line-spacing of the source comb is filtered to 4.75 GHz and 23.75 GHz, respectively. According to the multi-beam interferences theory of FPC, the side-mode suppression rate of FPC schemes is in good agreement with our own theoretical results from 27 dB of a single FPC to 43 dB of paired FPCs. To maintain long-term stable operation and determine the absolute frequency mode number in the 23.75-GHz comb, the Pound-Drever-Hall (PDH) locking technology is utilized. Such stable tens GHz frequency combs have important applications in calibrating astronomical spectrographs with high resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant Nos. 11078022 and 61378040).

  4. Calorimetric Low Temperature Detectors for High Resolution X-ray Spectroscopy on Stored Highly Stripped Heavy Ions

    SciTech Connect

    Bleile, A.; Egelhof, P.; Kluge, H.J.; Liebisch, U.; McCammon, D.; Meier, H.J.; Sebastian, O.; Stahle, C.K.; Stoehlker, T.; Weber, M.

    2000-12-31

    The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of QED in very strong Coulomb fields, not accessible otherwise, and has also the potential to deduce nuclear charge radii. A brief overview on the present status of such experiments, performed at the storage ring ESR at GSI Darmstadt, is given. For the investigation of the Lyman-{alpha} transitions in Au{sup 78+} or U{sup 91+} ions with improved accuracy, a high-resolution calorimetric low-temperature detector for hard x-rays (E {le} 100 keV) has been recently developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed {sup 3}He/{sup 4}He dilution refrigerator which fits to the geometry of the ESR target. The detector performance presently achieved is already close to fulfilling the demands of the Lamb shift experiment. For a prototype detector an energy resolution of {Delta}E{sub FWHM} = 75 eV is obtained for 60-keV x-rays.

  5. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2014-03-01

    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  6. An Elliptical Crystal Spectrometer Suitable for EXAFS Studies of Laser Compressed Materials and for High Resolution X-Ray Spectroscopy.

    PubMed

    Ridgeley, A; Goodman, D; Hall, T A

    1995-01-01

    Using an x-ray spectrometer with an elliptically curved crystal it is possible to study absorption spectra from a target placed at one focus of the ellipse using a backlighting source placed at the other focus. This principle has been used to develop a spectrometer for EXAFS studies of laser compressed materials. The backlighting source is placed at one focus of the ellipse and the laser compressed EXAFS sample at the other. Using this technique a small area of the EXAFS target can be probed, thereby minimizing any spatial variations in the compressed plasma due to nonuniformities in the laser beams. Also, the dispersive nature of the crystal ensures that it acts as a bandpass filter, so that the EXAFS sample is not probed by other x-ray wavelengths which may cause unwanted heating. Another advantage is that compressed and uncompressed EXAFS spectra can be compared on a single shot. The optical properties of the spectrometer are discussed analytically and using a computer ray-tracing program. The development and alignment of the elliptical spectrometer are discussed, and its performance using both x-ray film and a CCD detector is evaluated. The use of the elliptical spectrometer as a high-resolution x-ray instrument is presented. PMID:21307480

  7. High-Resolution Laser Spectroscopy of S1-S0 Transition of Naphthalene: Measurement of Vibrationally Excited States

    NASA Astrophysics Data System (ADS)

    Nakano, Takumi; Yamamoto, Ryo; Kasahara, Shunji

    2015-06-01

    Naphthalene is one of the simple polycyclic aromatic molecule, and it is interesting that the excited state dynamics take place. To understand the excited state dynamics, rotationally resolved fluorescence excitation spectra of several vibronic bands were measured. In this work, we have measured high-resolution fluorescence excitation spectra across a single mode laser and molecular beam at light angle. Vibronic bands, which lies 2866 cm -1 and 3068 cm -1 above the 0-0 band (000 + 2866 cm-1 band and 000 + 3068 cm-1 band), were measured. Absolute wavenumber was calibrated with accuracy 0.0002 cm-1 by the measurement of Doppler-free absorption spectrum of I2 molecule and transmitting light intensity of the stabilized etalon. Rotational lines of the 000 + 2866 cm-1 band were almost resolved. A part of the rotational lines were assigned, and several energy shifts were found. On the other hand, rotational lines were not completely resolved for the 000 + 3068 cm-1 band. K. Yoshida, Y. Semba, S. Kasahara, T. Yamanaka, and M. Baba, J. Chem. Phys. 130, 19304 (2009) H. Kato, M. Baba, and S. Kasahara, Bull. Chem. Soc. Jpn. 80, 456 (2007)

  8. The XMM-Newton View of Stellar Coronae: High-Resolution X-Ray Spectroscopy of Capella

    NASA Technical Reports Server (NTRS)

    Audard, M.; Behar, E.; Guedel, M.; Raassen, A. J. J.; Porquet, D.; Mewe, R.; Foley, C. A.; Bromage, G. E.

    2000-01-01

    We present the high-resolution RGS spectrum of the bright stellar binary Capella observed by the XMM-Newton satellite. A multi-thermal approach has been applied to fit the data and derive elemental abundances. The differential emission measure distribution is reconstructed using a Chebychev polynomial fit. The DEM shape is found to display a sharp peak around 7 MK, consistent with previous EUVE and ASCA results. A small but significant amount of emission measure is required around 1.8 MK in order to explain the O VII He-like triplet and the C VI Ly(alpha) line. Using the sensitivity to temperature of dielectronic recombination lines from O VI around 22 A, we confirm that the cool plasma temperature needs to be higher than 1.2 MK. In the approximation of a cool plasma described by one temperature, we used line ratios from the forbidden, intercombination, and resonance lines of the O VII triplet and derived an average density for the cool coronal plasma at the low density limit. A tentative study of line ratios from the M XI triplet gives an average temperature close to the sharp peak in emission measure and an average density of the order of 10(exp 12)cu cm, three orders of magnitude higher than for O VII. Implications for the coronal physics of Capella are discussed. We complement this paper with a discussion of the importance of the atomic code uncertainties on the spectral fitting procedure.

  9. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    PubMed

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  10. IR Band profiling of dichlorodifluoromethane in the greenhouse window: high-resolution FTIR spectroscopy of ν2 and ν8.

    PubMed

    Evans, Corey J; Sinik, Atilla; Medcraft, Chris; McNaughton, Don; Appadoo, Dominique; Robertson, Evan G

    2014-04-01

    The IR spectrum of dichlorodifluoromethane (i.e., R12 or Freon-12) is central to its role as a major greenhouse contributor. In this study, high-resolution (0.000 96 cm(-1)) Fourier transform infrared spectra have been measured for R12 samples either cooled to around 150 K or at ambient temperature using facilities on the infrared beamline of the Australian Synchrotron. Over 14,000 lines of C(35)Cl2F2 and C(35)Cl(37)ClF2 were assigned to the b-type ν2 band centered around 668 cm(-1). For the c-type ν8 band at 1161 cm(-1), over 10,000 lines were assigned to the two isotopologues. Rovibrational fits resulted in upper state constants for all these band systems. Localized avoided crossings in the ν8 system of C(35)Cl2F2, resulting from both a direct b-axis Coriolis interaction with ν3 + ν4 + ν7 and an indirect interaction with ν3 + ν4 + ν9, were treated. An improved set of ground state constants for C(35)Cl(37)ClF2 was obtained by a combined fit of IR ground state combination differences and previously published millimeter wave lines. Together these new sets of constants allow for accurate prediction of these bands and direct comparison with satellite data to enable accurate quantification. PMID:24611450

  11. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  12. An attempt to study LiH and Li{sub 2} molecules by high resolution pulsed laser spectroscopy

    SciTech Connect

    Bouloufa, Nadia; Cabaret, Louis; Cacciani, Patrice; Camus, Pierre; Pitcheev, Boris; Vetter, Raymond

    1998-12-16

    As we start a program to study alkali hydrides and dimers, we have developed a two-step photoionisation experiment on Li{sub 2} molecules based on the use of an atomic beam and two pulsed dye lasers. The first resonant step which excites the A {sup 1}{sigma}{sub u}{sup +}-X {sup 1}{sigma}{sub g}{sup +}Li{sub 2} dimer systems is a home-made cw-seeded DCM dye laser with a laser linewidth of 55 MHz (FWHM) and near the Fourier transform limit. The second step is a larger width fixed frequency UV laser which allows the photoionisation of the selectively excited molecules. The three {sup 6}Li{sub 2}, {sup 6}Li {sup 7}Li and {sup 7}Li{sub 2} spectra are recorded simultaneously by the use of a doubly-accelerating time-of-flight ion analyser. Comparison between recorded and calculated absorption spectra using Dunham parameters found in the literature is satisfactory. To develop similar pulsed high-resolution investigations in LiH, we have characterized our molecular beam by using the laser induced fluorescence (LIF) technique with a cw blue dye laser. Two Franck-Condon LiH Doppler-free resonances have been observed.

  13. HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF DY Cen: DIFFUSE INTERSTELLAR BANDS IN A PROTO-FULLERENE CIRCUMSTELLAR ENVIRONMENT?

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, David L. E-mail: nkrao@iiap.res.in

    2012-11-01

    We search high-resolution and high-quality VLT/UVES optical spectra of the hot R Coronae Borealis star DY Cen for electronic transitions of the C{sub 60} molecule and diffuse interstellar bands (DIBs). We report the non-detection of the strongest C{sub 60} electronic transitions (e.g., those at {approx}3760, 3980, and 4024 A). The absence of C{sub 60} absorption bands may support recent laboratory results, which show that the {approx}7.0, 8.5, 17.4, and 18.8 {mu}m emission features seen in DY Cen-and other similar objects with polycyclic-aromatic-hydrocarbon-like dominated IR spectra-are attributable to proto-fullerenes or fullerene precursors rather than to C{sub 60}. DIBs toward DY Cen are normal for its reddening; the only exception is the DIB at 6284 A (possibly also the 7223 A DIB) which is found to be unusually strong. We also report the detection of a new broad (FWHM {approx} 2 A) and unidentified feature centered at {approx}4000 A. We suggest that this new band may be related to the circumstellar proto-fullerenes seen at infrared wavelengths.

  14. Using wide-field quantitative diffuse reflectance spectroscopy in combination with high-resolution imaging for margin assessment

    NASA Astrophysics Data System (ADS)

    Kennedy, Stephanie; Mueller, Jenna; Bydlon, Torre; Brown, J. Quincy; Ramanujam, Nimmi

    2011-03-01

    Due to the large number of women diagnosed with breast cancer and the lack of intra-operative tools, breast cancer margin assessment presents a significant unmet clinical need. Diffuse reflectance spectral imaging provides a method for quantitatively interrogating margins of lumpectomy specimens. We have previously found that [β- carotene]/μs' is a diagnostically important parameter but both parameters, [β-carotene] and μs', were derived from a low resolution parameter map and are subject to the tissue type and heterogeneity present in the breast. In this study, we used diffuse reflectance measurements from individual sites co-registered with high resolution microendoscopy (HRME) images to determine if the combined performance of these technologies could improve margin assessment. By comparing the optical parameters of [β-carotene] and μs' to the quantitative HRME image endpoints of feature size, feature density and normalized fluorescence, we determined that adding HRME to spectral imaging can improve the specificity of our diffuse reflectance spectral imaging system.

  15. HIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF NGC 7538 IRS 1: PROBING CHEMISTRY IN A MASSIVE YOUNG STELLAR OBJECT

    SciTech Connect

    Knez, Claudia; Lacy, John H.; Evans, Neal J.; Van Dishoeck, Ewine F.; Richter, Matthew J.

    2009-05-01

    We present high-resolution (R = 75,000-100,000) mid-infrared spectra of the high-mass embedded young star IRS 1 in the NGC 7538 star-forming region. Absorption lines from many rotational states of C{sub 2}H{sub 2}, {sup 13}C{sup 12}CH{sub 2}, CH{sub 3}, CH{sub 4}, NH{sub 3}, HCN, HNCO, and CS are seen. The gas temperature, column density, covering factor, line width, and Doppler shift for each molecule are derived. All molecules were fit with two velocity components between -54 and -63 km s{sup -1}. We find high column densities ({approx}10{sup 16} cm{sup -2}) for all the observed molecules compared to values previously reported and present new results for CH{sub 3} and HNCO. Several physical and chemical models are considered. The favored model involves a nearly edge-on disk around a massive star. Radiation from dust in the inner disk passes through the disk atmosphere, where large molecular column densities can produce the observed absorption line spectrum.

  16. Precision Spectroscopy in Cold Molecules: the First Rotational Intervals of He_2^+ by High-Resolution Spectroscopy and Rydberg-Series Extrapolation

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Scheidegger, Simon; Merkt, Frederic

    2015-06-01

    Having only three electrons, He_2^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculation of rovibrational energies in He_2^+ do not include relativistic or QED corrections but claim an accuracy of about 120 MHz The available experimental data on He_2^+, though accurate to 300 MHz, are not precise enough to rigorously test these calculations or reveal the magnitude of the relativistic and QED corrections. We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He_2^+ ion. To this end we have produced samples of helium molecules in the a ^3σ_u^+ state in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser systems is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2^+ with unprecedented accuracy, to determine the size of the relativistic and QED corrections by comparison with the results of Ref.~a and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa~et al. W.-C. Tung, M. Pavanello, L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M. Motsch, P. Jansen, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 89, 043420 (2014). C. Focsa, P. F. Bernath, and R. Colin, J. Mol. Spectrosc. 191, 209 (1998).

  17. High resolution, low h{nu} photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters

    SciTech Connect

    Suga, S.; Sekiyama, A.; Funabashi, G.; Yamaguchi, J.; Kimura, M.; Tsujibayashi, M.; Uyama, T.; Sugiyama, H.; Tomida, Y.; Kuwahara, G.; Kitayama, S.; Fukushima, K.; Kimura, K.; Yokoi, T.; Murakami, K.; Fujiwara, H.; Saitoh, Y.; Plucinski, L.; Schneider, C. M.

    2010-10-15

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF{sub 2}, and LiF), which can supply three strong lines near the photon energy of hnyu h{nu}=8.4, 10.0, and 11.6 eV, with the h{nu} resolution of better than 600 {mu}eV for photoelectron spectroscopy. Its performance is demonstrated on some materials by means of both angle-integrated and angle-resolved measurements.

  18. High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism.

    PubMed

    Lack, Stéphane; Dulong, Virginie; Picton, Luc; Le Cerf, Didier; Condamine, Eric

    2007-05-21

    An NMR spectroscopy study ((31)P, (1)H, (13)C) of the postulated crosslinking mechanism of sodium trimetaphosphate (STMP) on polysaccharides is reported using methyl alpha-D-glucopyranoside as a model. In a first step, reaction of STMP with Glc-OMe gives grafted sodium tripolyphosphate (STPP(g)). On the one hand, STTP(g) can react with a second alcohol functionality to give a crosslinked monophosphate. On the other hand, a monophosphate (grafted phosphate) could be obtained by alkaline degradation of STPP(g). NMR spectroscopy allows to detect the various species formed and to obtain the crosslinking density of STMP-polysaccharides hydrogels. PMID:17303095

  19. High-resolution optical spectroscopy of the yellow hypergiant V1302 Aql (=IRC+10420) in 2001-2014

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Chentsov, E. L.; Miroshnichenko, A. S.; Panchuk, V. E.; Yushkin, M. V.

    2016-07-01

    We present the results of a study of spectral features and the velocity field in the atmosphere and circumstellar envelope of the yellow hypergiant V1302 Aql, the optical counterpart of the IR source IRC+10420, based on high-resolution optical spectroscopic observations in 2001-2014. We measured heliocentric radial velocities of the following types of lines: forbidden and permitted pure emission, absorption and emission components of lines of ions, pure absorption (e.g. He I, Si II) and interstellar components of the Na I D lines, K I and diffuse interstellar bands (DIBs). Pure absorption and forbidden and permitted pure emission, which have heliocentric radial velocities Vr = 63.7 ± 0.3, 65.2 ± 0.3 and 62.0 ± 0.4 km s-1, respectively, are slightly redshifted relative to the systemic radial velocity (Vsys ˜ 60 km s-1). The positions of the absorption components of the lines with inverse P Cyg profiles are redshifted by ˜20 km s-1, suggesting that clumps falling on to the star have been stable over all observing dates. The average heliocentric radial velocity of the DIBs is Vr(DIB) = 4.6 ± 0.2 km s-1. A Hα line profile with the red peak slightly stronger than the blue one was observed only once, on 2007 November 24. Comparison of pure absorption lines observed in 2001-2014 with those in earlier data does not show noticeable variations. The kinematic picture in the atmosphere was stable for observations during 2001-2014. Our results as a whole let us conclude that the hypergiant has reached a phase of slowing down (or termination) of effective temperature growth and is currently located near the high-temperature boundary of the Yellow Void in the Hertszprung-Russell diagram.

  20. High Resolution Fabry-Perot Spectroscopy Of Comet Fragments 73P/ Schwassmann-Wachmann 3-B,C

    NASA Astrophysics Data System (ADS)

    Oliversen, Ronald J.; Mierkiewicz, E. J.; Morgenthaler, J. P.; Harris, W. M.; Kokorowski, M.; Kidder, A.; Schnackenberg, T.; Carpena Nunez, J.; Hall, T.; Haffner, L.

    2006-09-01

    In May 2006, comet 73P/Schwassmann-Wachmann 3 (SW3) made a spectacular close approach to the Earth. During its 1995 apparition, the comet fragmented into several pieces. One of the brighter components, SW3-B, fragmented into dozens of pieces during the 2006 apparition while another bright fragment, SW3-C did not. Understanding the difference between these two fragments will contribute significantly to our understanding of cometary interiors. We performed observations of SW3-B and SW3-C from Kitt Peak using the Fabry-Perot spectrometers at the McMath-Pierce (MMP) telescope from April 29 - May 10 and at the Wisconsin Hydrogen Alpha Mapper (WHαM) from May 1 - 6, 2006. This period is significant due to its proximity to perigee, overlap with complementary observations, and coincidence with the onset and decline-phase of a major outburst/fragmentation event from SW3-B. The MMP and WHAM Fabry-Perot spectrometers made high resolution measurements of [O I] and NH2 emissions near 6300 Å at δV = 5 km/s and 12 km/s with 4.5 arcmin and 1 degree fields of view, respectively. Many of the spectra separate the cometary and terrestrial [O I] lines and allow determination of water production rates. We report the preliminary analysis of these data, including discussion of the radial distribution of emissions, a comparison activity levels between the two fragments, and a comparison with complementary production rate measurements made over the same period. In addition, following the SW3-B May 9 outburst, H20+ measurements near 6200 Å were made to map the acceleration of water ions near the head and down the tail.

  1. Cherry tomatoes metabolic profile determined by ¹H-High Resolution-NMR spectroscopy as influenced by growing season.

    PubMed

    Masetti, Olimpia; Ciampa, Alessandra; Nisini, Luigi; Valentini, Massimiliano; Sequi, Paolo; Dell'Abate, Maria Teresa

    2014-11-01

    The content of the most valuable metabolites present in the lipophilic fraction of Protected Geographical Indication cherry tomatoes produced in Pachino (Italy) was observed for 2 cultivated varieties, i.e. cv. Naomi and cv. Shiren, over a period of 3 years in order to observe variations due to relevant climatic parameters, e.g. solar radiation and average temperature, characterising different seasons. (1)H-NMR spectroscopy was applied and spectral data were processed by means of Principal Component Analysis (PCA). We found that the metabolic profile was different for the two considered cultivated varieties and they were differently affected by climatic conditions. Major metabolites influenced by cropping period were α-tocopherol and the unsaturated lipid fraction in Naomi cherry tomatoes, and chlorophylls and phospholipids in Shiren variety, respectively. These results furnished useful information on seasonal dynamics of such important nutritional metabolites contained in tomatoes, confirming also NMR spectroscopy as powerful tool to define a complete metabolic profiling. PMID:24874378

  2. "Pulse pair technique in high resolution NMR" a reprint of the historical 1971 lecture notes on two-dimensional spectroscopy.

    PubMed

    Jeener, Jean; Alewaeters, Gerrit

    2016-05-01

    The review articles published in "Progress in NMR Spectroscopy" are usually invited treatments of topics of current interest, but occasionally the Editorial Board may take an initiative to publish important historical material that is not widely available. The present article represents just such a case. Jean Jeener gave a lecture in 1971 at a summer school in Basko Polje, in what was then called Yugoslavia. As is now widely known, Jean Jeener laid down the foundations in that lecture of two - and higher - dimensional NMR spectroscopy by proposing the homonuclear COSY experiment. Jeener realized that the new proposal would open the door towards protein NMR and molecular structure determinations, but he felt that useful versions of such experiments could not be achieved with the NMR, computer and electronics technology available at that time, so that copies of the lecture notes were circulated (the Basko Polje lecture notes by J. Jeener and G. Alewaeters), but no formal publication followed. Fortunately, Ernst, Freeman, Griffin, and many others were more far-sighted and optimistic. An early useful extension was Ernst's proposal to replace the original projection/reconstruction technique of MRI by the widely adopted Fourier transform method inspired by the Basko Polje lecture. Later, the pulse method spread over many fields of spectroscopy as soon as the required technology became available. Jean Jeener, Emeritus professor, Université Libre de Bruxelles. Geoffrey Bodenhausen, Ecole Normale Supérieure, Paris.

  3. High-resolution spectroscopy using synchrotron radiation for surface structure determination and the study of correlated electron systems

    SciTech Connect

    Moler, E.J. Jr.

    1996-05-01

    The surface structure of three molecular adsorbate systems on transition metal surfaces, ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees} CO adsorbed on Cu(111), and c(2x2) N2/Ni(100), have been determined using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS). The adsorption site and bond lengths are reported for the adsorbate-metal bond and the first two substrate layers. The ARPEFS diffraction pattern of the shake-up peak for c(2x2) N2/Ni(100) is also discussed. A unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level satellites is presented. We show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. Specifically, we present data for the C 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), N is from c(2x2) N2/Ni(100), and Ni 3p from clean nickel(111). The satellite peaks in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature. A Fourier Transform Soft X-ray spectrometer (FF-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The spectrometer is designed for ultra-high resolution theoretical resolving power E/{Delta}E{approx}-10{sup 6} in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  4. High-cadence and High-resolution Hα Imaging Spectroscopy of a Circular Flare's Remote Ribbon with IBIS

    NASA Astrophysics Data System (ADS)

    Deng, Na; Tritschler, Alexandra; Jing, Ju; Chen, Xin; Liu, Chang; Reardon, Kevin; Denker, Carsten; Xu, Yan; Wang, Haimin

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel-1 image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define "core" and "halo" structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (~30 s) and cooling (~14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s-1) between discrete

  5. High-cadence and high-resolution Hα imaging spectroscopy of a circular flare's remote ribbon with IBIS

    SciTech Connect

    Deng, Na; Jing, Ju; Chen, Xin; Liu, Chang; Xu, Yan; Wang, Haimin; Tritschler, Alexandra; Reardon, Kevin; Denker, Carsten

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel{sup –1} image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define 'core' and 'halo' structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (∼30 s) and cooling (∼14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s{sup –1

  6. Characterization of REE-Bearing Minerals and Synthetic Materials Using High Resolution Ultraviolet to Near-Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Livo, K. E.; Giles, S. A.; Lowers, H. A.; Swayze, G. A.; Taylor, C. D.; Verplanck, P. L.; Emsbo, P.; Koenig, A.; Mccafferty, A. E.

    2014-12-01

    Diagnostic crystal field 4fn-4fn transition features in the ultraviolet (UV) to near-infrared (NIR) region of the electromagnetic spectrum have been observed in many common rare earth element (REE)-bearing minerals. The partial filling of the 4f electron shell combined with a shielding effect caused by the fully filled 5s25p6-electron shells, which weaken any effects from external magnetic or electric fields on the electrons, makes rare earth ions unique. The narrow absorption features occur as a result of parity forbidden transitions and crystal field splitting of the trivalent REEs, and since they are well shielded, only subtle wavelengths shifts are seen in their spectral features. Synthetic single REE phosphates, carbonates, oxides, hydroxides and glasses have been measured in the lab to help identify absorption band positions that are characteristic of each REE as they occur in different minerals. Because spectral resolution is critical to identifying shifts in the absorption band positions, these materials have been measured on several different high resolution spectrometers. Using a combination of Ocean Optics USB 2000+ UV-VIS, USB2000+ VIS-NIR and ASD FS 4 spectrometers we have characterized REE-bearing materials from 0.2 to 2.5 microns with a spectral resolution of ~2 nm between 0.2 and 1.0 microns and 11 to 12 nm between 1.0 and 2.5 microns. Results to date suggest that wavelength shifts and variations in the degree of crystal field splitting allow spectral differentiation between REE-bearing minerals. To support these results, a comprehensive suite of marine phosphates, paleo-beach placers, IOCG deposits, alkaline to peralkaline igneous complexes, pegmatites associated with alkaline magmas and carbonatite intrusives, have been measured and included in our database. Core, rock chips, billets, sediment samples and grab samples were manually scanned to identify the most intense or spectrally different REE features. While REE-bearing minerals have been

  7. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  8. Identification of unknown microcontaminants in Dutch river water by liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    van Leerdam, J A; Vervoort, J; Stroomberg, G; de Voogt, P

    2014-11-01

    In the past decade during automated surface water monitoring in the river Meuse at border station Eijsden in The Netherlands, a set of unknown compounds were repeatedly detected by online liquid chromatography-diode-array detection in a relatively high signal intensity. Because of the unknown nature of the compounds, the consequently unknown fate of this mixture in water treatment processes, the location being close to the water inlet of a drinking water supply company and their possible adverse public health effects, it was deemed necessary to elucidate the identity of the compounds. No data are available for the occurrence of these unknowns at downstream locations. After concentration and fractionation of a sample by preparative Liquid Chromatography, identification experiments were performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HR-MS) combined with High Resolution Nuclear Magnetic Resonance Spectroscopy (HR-NMR). Accurate mass determination of the unknown parent compound and its fragments obtained in MS/MS provided relevant information on the elemental composition of the unknown compounds. With the use of NMR techniques and the information about the elemental composition, the identity of the compounds in the different sample fractions was determined. Beside some regularly detected compounds in surface water, like caffeine and bisphenol-S, five dihydroxydiphenylmethane isomers were identified. The major unknown compound was identified as 4,4'-dihydroxy-3,5,3',5'-tetra(hydroxymethyl)diphenylmethane. This compound was confirmed by analysis of the pure reference compound. This is one of the first studies that employs the combination of high resolution MS with NMR for identification of truly unknown compounds in surface waters at the μg/L level. Five of the seven identified compounds are unexpected and not contained in the CAS database, while they can be presumed to be products generated during the production of resins. PMID:25296128

  9. Identification of unknown microcontaminants in Dutch river water by liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    van Leerdam, J A; Vervoort, J; Stroomberg, G; de Voogt, P

    2014-11-01

    In the past decade during automated surface water monitoring in the river Meuse at border station Eijsden in The Netherlands, a set of unknown compounds were repeatedly detected by online liquid chromatography-diode-array detection in a relatively high signal intensity. Because of the unknown nature of the compounds, the consequently unknown fate of this mixture in water treatment processes, the location being close to the water inlet of a drinking water supply company and their possible adverse public health effects, it was deemed necessary to elucidate the identity of the compounds. No data are available for the occurrence of these unknowns at downstream locations. After concentration and fractionation of a sample by preparative Liquid Chromatography, identification experiments were performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HR-MS) combined with High Resolution Nuclear Magnetic Resonance Spectroscopy (HR-NMR). Accurate mass determination of the unknown parent compound and its fragments obtained in MS/MS provided relevant information on the elemental composition of the unknown compounds. With the use of NMR techniques and the information about the elemental composition, the identity of the compounds in the different sample fractions was determined. Beside some regularly detected compounds in surface water, like caffeine and bisphenol-S, five dihydroxydiphenylmethane isomers were identified. The major unknown compound was identified as 4,4'-dihydroxy-3,5,3',5'-tetra(hydroxymethyl)diphenylmethane. This compound was confirmed by analysis of the pure reference compound. This is one of the first studies that employs the combination of high resolution MS with NMR for identification of truly unknown compounds in surface waters at the μg/L level. Five of the seven identified compounds are unexpected and not contained in the CAS database, while they can be presumed to be products generated during the production of resins.

  10. Site-directed mutagenesis and high-resolution NMR spectroscopy of the active site of porphobilinogen deaminase

    SciTech Connect

    Scott, A.I.; Roessner, C.A.; Stolowich, N.J.; Karuso, P.; Williams, H.J.; Grant, S.K.; Gonzalez, M.D.; Hoshino, T. )

    1988-10-18

    The active site of porphobilinogen (PBG){sup 1} deaminase from Escherichia coli has been found to contain an unusual dipyrromethane derived from four molecules of 5-aminolevulinic acid (ALA) covalently linked to Cys-242, one of the two cysteine residues conserved in E. coli and human deaminase. By use of a hemA{sup {minus}} strain of E. coli the enzyme was enriched from (5-{sup 13}C)ALA and examined by {sup 1}H-detected multiple quantum coherence spectroscopy, which revealed all of the salient features of a dipyrromethane composed of two PBG units linked heat to tail and terminating in a CH{sub 2}-S bond to a cysteine residue. Site-specific mutagenesis of Cys-99 and Cys-242, respectively, has shown that substitution of Ser for Cys-99 does not affect the enzymatic activity, whereas substitution of Ser for Cys-242 removes essentially all of the catalytic activity as measured by the conversion of the substrate PBG to uro'gen I. The NMR spectrum of the covalent complex of deaminase with the suicide inhibitor 2-bromo-(2,11-{sup 13}C{sub 2})PBG reveals that the aminomethyl terminus of the inhibitor reacts with the enzyme's cofactor at the {alpha}-free pyrrole. NMR spectroscopy of the ES{sub 2} complex confirmed a PBG-derived head-to-tail dipyrromethane attached to the {alpha}-free pyrrole position of the enzyme. A mechanistic rationale for deaminase is presented.

  11. A Combined Synchrotron-Based High Resolution FTIR and Diode Laser Jet Infrared Spectroscopy Study of the Chiral Molecule CDBrClF

    NASA Astrophysics Data System (ADS)

    Albert, S.; Albert, K. Keppler; Quack, M.; Lerch, Ph.; Boudon, V.

    2013-06-01

    The experimental detection of molecular parity violation Δ_{PV}E is of great interest because of its importance in the understanding of fundamental aspects of molecular dynamics and symmetries. One possible method for this is measuring rovibrational or rotational frequency shifts in the infrared or microwave spectra of enantiomers. For that reason we have measured and analysed the rotationally resolved infrared spectrum of CDBrClF as a prototype spectrum for a chiral molecule using three different techniques. The spectrum has been recorded at room temperature with the Zurich Bruker IFS spectrometer ZP 2001 and with the Bruker interferometer 2009 connected to the Swiss synchrotron using a resolution of 0.0007 cm^{-1}. In addition, the IR spectrum of CDBrClF has been measured at low temperature with our diode laser jet setup in the ν_5 region. The spectra of the two major isotopomers CD^{81}Br^{35}ClF and CD^{79}Br^{35}ClF have been analysed within the ν_5 (CCl-stretch), ν_4 (CF-stretch) and ν_3 (CDF-bend) regions. A detailed rovibrational analysis of these bands is presented. The role for possible experiments in the experimental detection of molecular parity violation shall be discussed. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 659-722, M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741, A. Bakasov, T.K. Ha, and M. Quack, J. Chem. Phys. 1998, 109, 7263, R. Berger and M. Quack, J. Chem. Phys, 2000, 112, 3148. M. Quack and J. Stohner, Phys. Rev. Lett. 2000, 84, 3807, M. Quack and J. Stohner. J. Chem. Phys., 2003, 119, 11228. S. Albert, K. Keppler Albert and M. Quack, High Resolution Fourier Transform Infrared Spectroscopy in Handbook of High Resolution Spectroscopy, Vol. 2 (Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 965-1019, S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281. S. Albert

  12. Raman spectroscopy and cathodoluminescence characteristics of order-disorder Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} ceramics

    SciTech Connect

    Kang, Shin Hyuk; Kim, Deug J. Lee, Chang Joo; Pezzotti, G.

    2008-11-03

    The order-disorder transition in Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} (BZT) was characterized by using Raman spectroscopy, transmission electron microscopy (TEM), and cathodoluminescence (CL) microscopy. The 1:2 ordered structure of pure BZT ceramics was replaced by a 1:1 ordered structure at 1650 deg. C and the 1:1 ordered structure of BZT sintered at 1650 deg. C exhibited a 1:2 ordered structure when it was reannealed at 1500 deg. C for 12 h. The A{sub 1g} lines in the Raman spectrum of the sintered and reannealed samples were shifted to lower and higher wavenumbers, respectively. From the CL analysis, the 1:1 ordered BZT exhibited mainly three emission bands at around 533.2 (2.32 eV), 599.1 (2.07 eV), and 682.1 nm (1.81 eV), whereas the 1:2 ordered BZT exhibited mainly five bands at 346.4 (3.58 eV), 427.5 (2.90 eV), 520.9 (2.38 eV), 593.0 (2.09 eV), and 678.9 nm (1.82 eV). The strongest band originating from 2.32 to 2.38 eV was broadened, and the band center shifted towards a higher and lower wavelength in the 1:1 and 1:2 ordered BZT, respectively. Additional bands at around 346 and 427 nm in the grain interior of the annealed sample were strongly related to the 1:2 ordering of BZT.

  13. High-resolution FUSE and HST ultraviolet spectroscopy of the white dwarf central star of Sh 2-216

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Ziegler, M.; Werner, K.; Kruk, J. W.; Oliveira, C. M.; Vande Putte, D.; Mignani, R. P.; Kerber, F.

    2007-07-01

    Context: We perform a comprehensive spectral analysis of LS V +46° 21 in order to compare its photospheric properties to theoretical predictions from stellar evolution theory as well as from diffusion calculations. Aims: LS V +46° 21 is the DAO-type central star of the planetary nebula Sh 2-216. High-resolution, high-S/N ultraviolet observations obtained with FUSE and STIS aboard the HST as well as the optical spectrum have been analyzed in order to determine the photospheric parameters and the spectroscopic distance. Methods: We performed a detailed spectral analysis of the ultraviolet and optical spectrum by means of state-of-the-art NLTE model-atmosphere techniques. Results: From the N IV - N V, O IV - O VI, Si IV - Si V, and Fe V - Fe VII ionization equilibria, we determined an effective temperature of (95± 2) kK with high precision. The surface gravity is log g = 6.9± 0.2. An unexplained discrepancy appears between the spectroscopic distance d = 224+46-58 pc and the parallax distance d = 129+6-5 pc of LS V +46° 21. For the first time, we have identified Mg IV and Ar VI absorption lines in the spectrum of a hydrogen-rich central star and determined the Mg and Ar abundances as well as the individual abundances of iron-group elements (Cr, Mn, Fe, Co, and Ni). With the realistic treatment of metal opacities up to the iron group in the model-atmosphere calculations, the so-called Balmer-line problem (found in models that neglect metal-line blanketing) vanishes. Conclusions: Spectral analysis by means of NLTE model atmospheres has presently arrived at a high level of sophistication, which is now hampered largely by the lack of reliable atomic data and accurate line-broadening tables. Strong efforts should be made to improve upon this situation. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract

  14. The X-Ray Spectrum of a Planetary Nebula at High Resolution: Chandra Gratings Spectroscopy of BD +30°3639

    NASA Astrophysics Data System (ADS)

    Yu, Young Sam; Nordon, Raanan; Kastner, Joel H.; Houck, John; Behar, Ehud; Soker, Noam

    2009-01-01

    We present the results of the first X-ray gratings spectroscopy observations of a planetary nebula (PN)—the X-ray-bright, young BD +30°3639. We observed BD +30°3639 for a total of ~300 ks with the Chandra X-ray Observatory's Low Energy Transmission Gratings in combination with its Advanced CCD Imaging Spectrometer (LETG/ACIS-S). The LETG/ACIS-S spectrum of BD +30°3639 is dominated by H-like resonance lines of O VIII and C VI and the He-like triplet line complexes of Ne IX and O VII. Other H-like resonance lines, such as N VII, and lines of highly-ionized Fe are weak or absent. Continuum emission is evident over the range 6-18 Å. Spectral modeling indicates the presence of a range of plasma temperatures from Tx ~ 1.7 × 106 K to 2.9 × 106 K and an intervening absorbing column NH ~ 2.4 × 1021 cm-2. The same modeling conclusively demonstrates that C and Ne are highly enhanced, with abundance ratios of C/O ~ 15-45 and Ne/O ~ 3.3-5.0 (90% confidence ranges, relative to the solar ratios), while N and Fe are depleted, with abundances N/O ~ 0.0-1.0 and Fe/O ~ 0.1-0.4, respectively. The intrinsic luminosity of the X-ray source determined from the modeling and the measured flux (FX = 4.1 × 10-13 ergs cm-2 s-1) is LX ~ 8.6 × 1032 erg s-1 (assuming D = 1.2 kpc). These gratings spectroscopy results are generally consistent with earlier results obtained from X-ray CCD imaging spectroscopy of BD +30°3639, but are far more precise. Hence, the Chandra/LETG-S results for BD +30°3639 place severe new constraints on models of PN wind-wind interactions in which X-ray emitting gas within PNs is generated via shocks and the plasma temperature is moderated by effects such as heat conduction or rapid evolution of the fast wind. The tight constraints placed on the (nonsolar) abundances directly implicate the present-day central star—hence, ultimately, the intershell region of the progenitor asymptotic giant branch star—as the origin of the shocked plasma now emitting in X-rays.

  15. Irradiation effects in 6H-SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xiaofei; Zhou, Wei; Feng, Qijie; Zheng, Jian; Liu, Xiankun; Tang, Bin; Li, Jiangbo; Xue, Jianming; Peng, Shuming

    2016-09-01

    Irradiation effects of neutron and 3 MeV C+, Si+ in 6H-SiC were investigated by Raman spectroscopy and high-resolution XRD. The total disorder values of neutron irradiated SiC agree well with that of samples irradiated by ions at the same doses respectively. On the other hand, high-resolution XRD results shows that the lattice strain rate caused by neutron irradiation is 6.8%/dpa, while it is only 2.6%/dpa and 4.2%/dpa for Si+ and C+ irradiations respectively. Our results illustrate that the total disorder in neutron irradiated SiC can be accurately simulated by MeV Si+ or C+ irradiations at the same dose, but for the lattice strain and strain-related properties like surface hardness, the depth profile of irradiation damages induced by energetic ions must be considered. This research will contribute to a better understanding of the difference in irradiation effects between neutron and heavy ions.

  16. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer.

    PubMed

    Gotlieb, K; Hussain, Z; Bostwick, A; Lanzara, A; Jozwiak, C

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E(F) spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements. PMID:24089838

  17. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  18. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer.

    PubMed

    Gotlieb, K; Hussain, Z; Bostwick, A; Lanzara, A; Jozwiak, C

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E(F) spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  19. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    SciTech Connect

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Jozwiak, C.; Lanzara, A.

    2013-09-15

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E{sub F} spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  20. Internal structure of InP/ZnS nanocrystals unraveled by high-resolution soft X-ray photoelectron spectroscopy.

    PubMed

    Huang, Kai; Demadrille, Renaud; Silly, Mathieu G; Sirotti, Fausto; Reiss, Peter; Renault, Olivier

    2010-08-24

    High-energy resolution photoelectron spectroscopy (DeltaE < 200 meV) is used to investigate the internal structure of semiconductor quantum dots containing low Z-contrast elements. In InP/ZnS core/shell nanocrystals synthesized using a single-step procedure (core and shell precursors added at the same time), a homogeneously alloyed InPZnS core structure is evidenced by quantitative analysis of their In3d(5/2) spectra recorded at variable excitation energy. When using a two-step method (core InP nanocrystal synthesis followed by subsequent ZnS shell growth), XPS analysis reveals a graded core/shell interface. We demonstrate the existence of In-S and S(x)-In-P(1-x) bonding states in both types of InP/ZnS nanocrystals, which allows a refined view on the underlying reaction mechanisms. PMID:20666468

  1. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  2. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  3. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  4. High resolution solid-state 29Si NMR spectroscopy of silicone gels used to fill breast prostheses.

    PubMed

    Dorne, L; Alikacem, N; Guidoin, R; Auger, M

    1995-10-01

    We have used 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy to study the chemical structure of the silicone gels in virgin and explanted breast prostheses. Despite evidences of alteration in the morphological appearance of the silicone gel inside the breast prosthesis, our results do not reveal changes in the chemical nature and structure of the silicone gels after implantation. In addition to the main 29Si resonance peak at -22.26 ppm that corresponds to the resonance frequency of the D repeat unit of the polysiloxane chains, the high sensitivity of our NMR technique allows the detection of very low concentrations of silicone compounds. Within our experimental detection limit of 0.2%, no signal between -90 ppm and -150 ppm are observed. This indicates that no silica products are present inside the gel of the prostheses. Furthermore, our 29Si NMR spectra indicate differences in the chemical compositions of the silicone gels from different manufacturers.

  5. High-resolution spectroscopy and analysis of the ν1/ν3 stretching dyad of osmium tetroxide

    NASA Astrophysics Data System (ADS)

    Louviot, M.; Boudon, V.; Manceron, L.; Roy, P.; Balcon, D.

    2012-01-01

    OsO4 is a heavy tetrahedral molecule that may constitute a benchmark for quantum chemistry calculations. Its favorable spin statistics (due to the zero nuclear spin of oxygen atoms) is such that only A1 and A2 rovibrational levels are allowed, leading to a dense, but quite easily resolved spectrum. Most lines are single ones, instead of complex line clusters as in the case of other heavy spherical-tops like SF6, for instance. It is thus possible to fully assign and fit the spectrum and to obtain precise experimental effective molecular parameters. The strong ν3 stretching fundamental has been studied a long time ago as an isolated band [McDowell RS, Radziemski LJ, Flicker H, Galbraith HW, Kennedy RC, Nereson NG, et al. Journal of Chemical Physics 1978;88:1513-21; Bobin B, Valentin A, Henry L. Journal of Molecular Spectroscopy 1987;122:229-41]. We reinvestigate here this region and perform new assignments and effective Hamiltonian parameter fits for the four main isotopologues (192OsO4, 190OsO4, 189OsO4, 188OsO4), by considering the ν1/ν3 stretching dyad. A new experimental spectrum has been recorded at room temperature, thanks to a Bruker IFS 125 HR interferometer and using a natural abundance OsO4 sample. Assignments and analyses were performed thanks to the SPVIEW and XTDS softwares, respectively [Wenger Ch, Boudon V, Rotger M, Sanzharov M, Champion J-P. Journal of Molecular Spectroscopy 2008;251:102-13]. We provide precise effective Hamiltonian parameters, including band centers and Coriolis interaction parameters. We discuss isotopic shifts and estimate the band centers for the three minor isotopologues (187OsO4, 186OsO4, 184OsO4). The Q branches of the first two of them are clearly identified in the experimental spectrum.

  6. High-Resolution Spectroscopy of the νb{16} Band of 1,3,5-TRIOXANE

    NASA Astrophysics Data System (ADS)

    Gibson, Bradley M.; Koeppen, Nicole; McCall, Benjamin J.

    2014-06-01

    1,3,5-trioxane, often used as a solid fuel or source of formaldehyde, is a symmetric top of the C3v group. Although the microwave and low-resolution vibrational spectra have been studied extensively, only the νb{17} band near 1072 wn has been observed with rotational resolution. Here, we will present our studies of trioxane vapor from 1140-1220 wn, covering the νb{16} band at a resolution of approximately 30 MHz. Solid trioxane was heated, and the resulting vapor was entrained in a continuous supersonic expansion of argon. Continuous-wave cavity ringdown spectroscopy was then performed using a frequency-stabilized external cavity quantum cascade laser (EC-QCL) as the light source. In addition to providing new ro-vibrational transition frequencies of trioxane, the present work serves to validate our newly-developed EC-QCL spectrometer and will be used to evaluate the cooling performance of the sheath-flow supercritical fluid expansion source currently under development. Oka, T., Tsuchiya, K., Iwata, S., and Morino, Y. Microwave Spectrum of s-Trioxane. Bull. Chem. Soc. Jpn. 37 (1964), 4-7. Stair, A.T. Jr. and Nielsen, J. Rud. Vibrational Spectra of sym-Trioxane. J. Chem. Phys. 27 (1957), 402-407. Henninot, J-F., Bolvin, H., Demaison, J., and Lemoine, B. The Infrared Spectrum of Trioxane in a Supersonic Slit Jet. J. Mol. Spect. 152 (1992), 62-68. Gibson, B.M., Stewart, J.T., and McCall, B.J., contribution TJ14, presented at the 68th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 2013.

  7. A method of interpreting the Balmer-alpha high-resolution spectroscopy for tokamak edge plasmas with account of divertor stray light

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.; Kukushkin, A. B.; Alekseev, A. G.

    2016-01-01

    A method is suggested for interpreting the data from the Balmer-alpha high- resolution spectroscopy diagnostics of the edge plasma in the tokamak main chamber, which additionally uses the data from direct observation of the divertor. Such an extension of the diagnostics is motivated by the fact that in a tokamak-reactor with the metal first wall, like ITER tokamak, a significant role of the divertor stray light (DSL), which is emitted by the plasma in the divertor in the same spectral line and reflected from the first wall of the vacuum chamber to a spectrometer in the main chamber, is expected. The results of the first applications of the developed model to interpret the data from the JET-ILW tokamak experiments, which simulate the conditions of occurrence of the DSL in ITER, are discussed.

  8. C-12/C-13 and O-16/O-18 ratios in the atmosphere of Venus from high-resolution 10-micron spectroscopy

    SciTech Connect

    Bezard, B.; Marten, A.; Baluteau, J.P.; Coron, N.

    1987-12-01

    High-resolution observations of the thermal emission spectrum of Venus have been recorded in the 10.5-micron region, and these have led to the detection of several lines from the nu(3) - nu(1) bands of C-13O2 and C-12O-16O-18, as well as from the weak nu(3)+nu(2) - nu(1)+nu(2) band of C-12O2. The results obtained characterize the cloud top levels of Venus' atmosphere, at about 66 km; the derived ratios should be able to represent global values on Venus. These determinations are in agreement with in situ Pioneer Venus and Venera atmospheric composition measurements. It is demonstrated that important isotopic ratios are obtainable with ground-based spectroscopy. 26 references.

  9. Oxidized crystalline (3 × 1)-O surface phases of InAs and InSb studied by high-resolution photoelectron spectroscopy

    SciTech Connect

    Tuominen, M. E-mail: pekka.laukkanen@utu.fi; Lång, J.; Dahl, J.; Yasir, M.; Mäkelä, J.; Punkkinen, M. P. J.; Laukkanen, P. E-mail: pekka.laukkanen@utu.fi; Kokko, K.; Kuzmin, M.; Osiecki, J. R.; Schulte, K.

    2015-01-05

    The pre-oxidized crystalline (3×1)-O structure of InAs(100) has been recently found to significantly improve insulator/InAs junctions for devices, but the atomic structure and formation of this useful oxide layer are not well understood. We report high-resolution photoelectron spectroscopy analysis of (3×1)-O on InAs(100) and InSb(100). The findings reveal that the atomic structure of (3×1)-O consists of In atoms with unexpected negative (between −0.64 and −0.47 eV) and only moderate positive (In{sub 2}O type) core-level shifts; highly oxidized group-V sites; and four different oxygen sites. These fingerprint shifts are compared to those of previously studied oxides of III-V to elucidate oxidation processes.

  10. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  11. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    SciTech Connect

    Zhang, C.; Golberg, D. E-mail: golberg.dmitri@nims.go.jp; Xu, Z. E-mail: golberg.dmitri@nims.go.jp; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  12. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  13. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  14. High-resolution rovibrational spectroscopy of jet-cooled phenyl radical: the ν19 out-of-phase symmetric CH stretch.

    PubMed

    Buckingham, Grant T; Chang, Chih-Hsuan; Nesbitt, David J

    2013-10-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b2 out-of-phase C-H symmetric stretch vibration (ν19) unambiguously confirmed by ≤6 MHz (0.0002 cm(-1)) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 2003, 590, L61-64]. Least squares analysis of over 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision excited-state rotational constants and a vibrational band origin (ν0 = 3071.8915(4) cm(-1)) consistent with a surprisingly small red-shift (0.9 cm(-1)) with respect to Ar matrix isolation studies of Ellison and co-workers [J. Am. Chem. Soc. 2001, 123, 1977]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and (2)A1 rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C2v distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N - 6 = 27), phenyl radical exhibits a remarkably clean jet cooled high-resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or nonlocal perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high-resolution infrared spectroscopy in other aromatic hydrocarbon radical systems.

  15. High Resolution Rovibrational Spectroscopy of Jet-Cooled Phenyl Radical: the ν_{19} Out-Of Symmetric C-H Stretch

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant T.; Chang, Chih-Hsuan; Nesbitt, David J.

    2013-06-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b_{2} out-of-phase C-H symmetric stretch vibration (ν_{19}) unambiguously confirmed by ≤ 6 MHz (0.0002 cm^{-1}) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 590, L61-64 (2003)]. Least squares analysis of > 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision exited-state rotational constants and a vibrational band origin (ν_{0} = 3071.8915(4) cm^{-1}) consistent with a surprisingly small red-shift (0.9 cm^{-1}) with respect to Ar matrix isolation studies of Ellison and coworkers [J. Am. Chem. Soc. 123, 1977 (2001)]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and ^{2}A_{1} rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C_{2v} distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N-6 = 27), phenyl radical exhibits a remarkably clean jet cooled high resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or non-local perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high resolution infrared spectroscopy in other cyclic aromatic hydrocarbon radical systems.

  16. High-Resolution Rovibrational Spectroscopy of Jet-Cooled Phenyl Radical: The ν19 Out-of-Phase Symmetric CH Stretch

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant T.; Chang, Chih-Hsuan; Nesbitt, David J.

    2013-10-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b2 out-of-phase C-H symmetric stretch vibration (-19) unambiguously confirmed by ≤6 MHz (0.0002 cm-1) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 2003, 590, L61-64]. Least squares analysis of over 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision excited-state rotational constants and a vibrational band origin (-0 = 3071.8915(4) cm-1) consistent with a surprisingly small red-shift (0.9 cm-1) with respect to Ar matrix isolation studies of Ellison and co-workers [J. Am. Chem. Soc. 2001, 123, 1977]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and 2A1 rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C2v distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N - 6 = 27), phenyl radical exhibits a remarkably clean jet cooled high-resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or nonlocal perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high-resolution infrared spectroscopy in other aromatic hydrocarbon radical systems.

  17. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  18. Characterization of Deoxynivalenol-Glutathione Conjugates Using Nuclear Magnetic Resonance Spectroscopy and Liquid Chromatography-High-Resolution Mass Spectrometry.

    PubMed

    Stanic, Ana; Uhlig, Silvio; Sandvik, Morten; Rise, Frode; Wilkins, Alistair L; Miles, Christopher O

    2016-09-14

    Glutathione (GSH) conjugates of the mycotoxin 4-deoxynivalenol (DON), 1, have been detected in plants by LC-MS, but their identities were not confirmed due to a lack of standards. We have synthesized DON-GSH conjugates in alkaline solution. The major products 2 and 5 were isolated and their structures determined by mass spectrometry and NMR spectroscopy as GSH adducts at C-13 and C-10 (via epoxide and Michael addition, respectively) of 1. Other Michael addition products were also tentatively identified by LC-MS. Concentrations of 2 and 5 were determined by quantitative NMR and are suitable for use as quantitative standards for LC-MS studies of plant and animal metabolism of 1. LC-MS showed that in the presence of human glutathione S-transferases of the alpha and mu classes, the reaction of DON and GSH proceeded with a half-life of 17 h, identical with the rate of the uncatalyzed reaction rate, indicating an absence of catalysis.

  19. High-resolution spectroscopy of HoFe3(BO3)4 crystal: a study of phase transitions

    NASA Astrophysics Data System (ADS)

    Erofeev, D. A.; Chukalina, E. P.; Bezmaternykh, L. N.; Gudim, I. A.; Popova, M. N.

    2016-04-01

    The transmission spectra of HoFe3(BO3) multiferroic single crystals are studied by optical Fourier-transform spectroscopy at temperatures of 1.7-423 K in polarized light in the spectral range 500-10 000 cm-1 with a resolution up to 0.1 cm-1. A new first-order structural phase transition close to the second-order transition is recorded at T c = 360 K by the appearance of a new phonon mode at 976 cm-1. The reasons for considerable differences in T c for different samples of holmium ferroborate are discussed. By temperature variations in the spectra of the f-f transitions in the Ho3+ ion, we studied two magnetic phase transitions, namely, magnetic ordering into an easy-plane structure as a second-order phase transition at T N = 39 K and spin reorientation from the ab plane to the c axis as a first-order phase transition at T SR = 4.7 ± 0.2 K. It is shown that erbium impurity in a concentration of 1 at % decreases the spin-reorientation transition temperature to T SR = 4.0 K.

  20. High-Resolution (1)H NMR Spectroscopy Discriminates Amniotic Fluid of Fetuses with Congenital Diaphragmatic Hernia from Healthy Controls.

    PubMed

    Croitor-Sava, Anca; Beck, Veronika; Sandaite, Inga; Van Huffel, Sabine; Dresselaers, Tom; Claus, Filip; Himmelreich, Uwe; Deprest, Jan

    2015-11-01

    Lung hypoplasia in congenital diaphragmatic hernia (CDH) is a life-threatening birth defect. Severe cases can be offered tracheal occlusion to boost prenatal lung development, although defining those to benefit remains challenging. Metabonomics of (1)H NMR spectra collected from amniotic fluid (AF) can identify general changes in diseased versus healthy fetuses. AF embodies lung secretions and hence might contain pulmonary next to general markers of disease in CDH fetuses. AF from 81 healthy and 22 CDH fetuses was collected. NMR spectroscopy was performed at 400 MHz to compare AF from fetuses with CDH against controls. Several advanced feature extraction methods based on statistical tests that explore spectral variability, similarity, and dissimilarity were applied and compared. This resulted in the identification of 30 spectral regions, which accounted for 80% variability between CDH and controls. Combination with automated classification discriminates AF from CDH versus healthy fetuses with up to 92% accuracy. Within the identified spectral regions, isoleucine, leucine, valine, pyruvate, GABA, glutamate, glutamine, citrate, creatine, creatinine, taurine, and glucose were the most concentrated metabolites. As the metabolite pattern of AF changes with fetal development, we have excluded metabolites with a high age-related variability and repeated the analysis with 12 spectral regions, which has resulted in similar classification accuracy. From this analysis, it was possible to distinguish between AF from CDH fetuses versus healthy controls independent of gestational age. PMID:26348471

  1. High resolution Bragg edge transmission spectroscopy at pulsed neutron sources: Proof of principle experiments with a neutron counting MCP detector

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; McPhate, J. B.; Kockelmann, W.; Vallerga, J. V.; Siegmund, O. H. W.; Feller, W. B.

    2011-05-01

    The high spatial and temporal resolution of a neutron counting detector using microchannel plates (MCPs) combined with Medipix2/Timepix readout can substantially improve the spatial resolution of neutron transmission spectroscopy, as shown in our proof-of-principle experiments. Provided that the neutron fluence and data acquisition time are sufficient, transmission spectra can be acquired in each 55×55 μm2 pixel of the detector, allowing high spatial resolution mapping of Bragg edge positions. Our first experiment demonstrates that energy resolution as high as ΔE/E<1% or ΔE<4 mÅ can be achieved. Variation of the residual strain in a well-characterized VAMAS round robin shrink-fitted Al ring-and-plug sample was measured with ˜200 microstrain resolution through an accurate mapping of the first (1 1 1) Bragg edge. The measured stress profile agrees well with the expected values for that particular sample. More developments on the detector processing electronics are required in order to reduce the data acquisition times by enabling simultaneous measurements of spectra in a wide energy range covering multiple Bragg edges.

  2. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: The role of 4f electrons

    SciTech Connect

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Yang Dongsheng; Liu Yang

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Moller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  3. Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range.

    PubMed

    Yoshida, Hiroyuki

    2013-10-01

    An inverse photoemission spectroscopy (IPES) apparatus using a Czerny-Turner grating spectrometer is demonstrated. Previous IPES instruments based on grating spectrometers used a concave grating and operated in the vacuum ultraviolet range. The reflectance of such gratings is lower than 20% and the aberration cannot be finely corrected leading to an energy resolution of up to 0.1 eV. In the present study, employing the low energy IPES regime [H. Yoshida, Chem. Phys. Lett. 539-540, 180 (2012)], incident electrons with a kinetic energy below 5 eV are used, while photon emission in the range of between 250 and 370 nm is analyzed with a 10-cm Czerny-Turner grating spectrometer. The signal intensity is at least 30 times higher than the previous apparatus. The resolution of photon detection is set at 0.07 eV though the ultimate resolution is one order of magnitude higher. The experiment is performed both by sweeping the electron energy (isochromat mode) and by simultaneously analyzing the photon of whole wavelength range (tunable photon energy mode).

  4. Low-energy inverse photoemission spectroscopy using a high-resolution grating spectrometer in the near ultraviolet range

    SciTech Connect

    Yoshida, Hiroyuki

    2013-10-15

    An inverse photoemission spectroscopy (IPES) apparatus using a Czerny-Turner grating spectrometer is demonstrated. Previous IPES instruments based on grating spectrometers used a concave grating and operated in the vacuum ultraviolet range. The reflectance of such gratings is lower than 20% and the aberration cannot be finely corrected leading to an energy resolution of up to 0.1 eV. In the present study, employing the low energy IPES regime [H. Yoshida, Chem. Phys. Lett. 539–540, 180 (2012)], incident electrons with a kinetic energy below 5 eV are used, while photon emission in the range of between 250 and 370 nm is analyzed with a 10-cm Czerny-Turner grating spectrometer. The signal intensity is at least 30 times higher than the previous apparatus. The resolution of photon detection is set at 0.07 eV though the ultimate resolution is one order of magnitude higher. The experiment is performed both by sweeping the electron energy (isochromat mode) and by simultaneously analyzing the photon of whole wavelength range (tunable photon energy mode)

  5. Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (Daucus carota L.): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Iliopoulou, Ioanna; Thaeron, Delphine; Baker, Ashley; Jones, Anita; Robertson, Neil

    2015-08-12

    The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions.

  6. Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (Daucus carota L.): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Iliopoulou, Ioanna; Thaeron, Delphine; Baker, Ashley; Jones, Anita; Robertson, Neil

    2015-08-12

    The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions. PMID:26160425

  7. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes.

    PubMed

    Chang, Chih-Hsuan; Nesbitt, David J

    2016-07-28

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm(-1) and 3062.264 80(7) cm(-1), respectively, which both agree within 5 cm(-1) with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm(-1) blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm(-1)) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions. PMID:27475358

  8. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  9. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    SciTech Connect

    Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette; Assfalg, Michael

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

  10. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy.

    PubMed

    Armendariz, Veronica; Parsons, Jason G; Lopez, Martha L; Peralta-Videa, Jose R; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L

    2009-03-11

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  11. The extraction of gold nanoparticles from oat and wheat biomasses using sodium citrate and cetyltrimethylammonium bromide, studied by x-ray absorption spectroscopy, high-resolution transmission electron microscopy, and UV-visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Armendariz, Veronica; Parsons, Jason G.; Lopez, Martha L.; Peralta-Videa, Jose R.; Jose-Yacaman, Miguel; Gardea-Torresdey, Jorge L.

    2009-03-01

    Gold (Au) nanoparticles can be produced through the interaction of Au(III) ions with oat and wheat biomasses. This paper describes a procedure to recover gold nanoparticles from oat and wheat biomasses using cetyltrimethylammonium bromide or sodium citrate. Extracts were analyzed using UV-visible spectroscopy, high-resolution transmission electron microscopy (HRTEM), and x-ray absorption spectroscopy. The HRTEM data demonstrated that smaller nanoparticles are extracted first, followed by larger nanoparticles. In the fourth extraction, coating of chelating agents is visible on the extracted nanoparticles.

  12. Cathodoluminescence Spectrum Imaging Software

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  13. High Resolution Jet Cooled Cavity Ringdown Spectroscopy of the tilde{A} State 31_0 Band of the NO_3 Radical

    NASA Astrophysics Data System (ADS)

    Codd, Terrance J.; Roudjane, Mourad; Miller, Terry A.

    2012-06-01

    The 2E''tilde{A} state of NO_3 is doubly degenerate and is therefore subject to Jahn-Teller (JT) distortion. In the tilde{A} state there are two JT active modes, ν_3 and ν_4 (e' stretch and in plane bend respectively). Theoretical work has predicted that the JT effect in the tilde{A} state should be quite strong and approach the static case (D≥1) where the molecule is permanently distorted to a lower symmetry geometry. A moderate resolution spectrum of the tilde{A} state showed a feature that we tentatively assigned as the 31_0 band based on position and band contour. Using high resolution cavity ringdown spectroscopy we have now obtained a rotationally resolved spectrum of this band. The analysis of this band has been commenced using an oblate symmetric top Hamiltonian with spin-rotation terms. This analysis supports the assignment of this band to the a_1'' vibronic component of the 31_0 band. So far, the spectrum shows no evidence of a large geometric distortion of the molecule. Some lines appear to be split, as was previously observed in the 41_0 and 42_0 bands, and the possible sources of this splitting are being investigated. J.F. Stanton, 66th OSU International Symposium on Molecular Spectroscopy, The Ohio State University, Columbus Ohio, 2011, TJ-03 W. Eisfeld, K. Morokuma, J. Chem. Phys. 114, 9430 (2001) S. Faraji, H. Köppel, W. Eisfeld, S. Mahapatra, J. Chem. Phys. 347, 110 (2008) T.J. Codd, M.W. Chen, T.A. Miller, 66th OSU International Symposium on Molecular Spectroscopy, The Ohio State University, Columbus Ohio, 2011, TD-06 M.W. Chen, T.J. Codd, G. Just, T.A. Miller, OSU International Symposium on Molecular Spectroscopy, The Ohio State University, Columbus Ohio, 2011, TD-07

  14. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K

    NASA Astrophysics Data System (ADS)

    Vestin, Fredrik; Nilsson, Kristin; Bengtsson, Per-Erik

    2008-04-01

    Experiments were performed in the temperature range of 294-1143 K in pure CO2 using high-resolution rotational coherent anti-Stokes Raman spectroscopy (CARS), in the dual-broadband approach. Experimental single-shot spectra were recorded with high spectral resolution using a single-mode Nd:YAG laser and a relay imaging lens system on the exit of a 1 m spectrometer. A theoretical rotational CARS model for CO2 was developed for evaluation of the experimental spectra. The evaluated mean temperatures of the recorded single-shot dual-broadband rotational coherent anti-Stokes Raman spectroscopy (DB-RCARS) spectra using this model showed good agreement with thermocouple temperatures, and the relative standard deviation of evaluated single-shot temperatures was generally 2-3%. Simultaneous thermometry and relative CO2/N2-concentration measurements were demonstrated in the product gas of premixed laminar CO/air flames at atmospheric pressure. Although the model proved to be accurate for thermometry up to 1143 K, limitations were observed at flame temperatures where temperatures were overestimated and relative CO2/N2 concentrations were underestimated. Potential sources for these discrepancies are discussed.

  15. High-resolution x-ray spectroscopy to probe quantum dynamics in collisions of Ar17+,18+ ions with atoms and solids, towards clusters

    NASA Astrophysics Data System (ADS)

    Lamour, E.; Prigent, C.; Ramillon, J.-M.; Rozet, J.-P.; Steydli, S.; Trassinelli, M.; Vernhet, D.

    2015-07-01

    We report on studies of projectile excited states produced by electron capture in both low and high velocity regimes, and when highly charged ions (HCIs) collide either with dilute or dense matter. Quantum effects in the interaction dynamics are probed via high-resolution x-ray spectroscopy for Ar17+ at 7 keV u-1 and for Ar18+ at 13.6 MeV u-1 on Ar, N2 or CH4 gas targets and on carbon solid foils. Relevant comparison between those two collision velocity regimes, and between gaseous and solid targets reveal specific features. In particular, the effect of multiple capture process occurring within a single-collision with gaseous target can be compared with the consequence of multistep collisions arising at surfaces and in solid-bulk at low velocity. At high velocity, beside evidence for collective response of the target electrons due to the wake field induced by HCI passing through the solid-bulk, we demonstrate that excitation and ionization collision processes damp the populations of projectile excited states for long ion transit times. The evolution of the np population as a function of n in solid is at variance from the 1/n3 law found in gas, and the disagreement increases with solid target thickness. We have also tackled studies of HCIs in collision with clusters showing that x-ray spectroscopy provides a powerful tool to sign the presence of clusters in a supersonic gas jet.

  16. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    SciTech Connect

    Foehlisch, A.; Nilsson, A.; Martensson, N.

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  17. Two Decades of Advances in High-Resolution Spectroscopy of Large-Amplitude Motions in N-Fold Potential Wells, as Illustrated by Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong

    2016-06-01

    Methanol is a simple and intensively studied organic molecule possessing one large-amplitude torsional motion. It has, for nearly a century, been a favorite of researchers in many fields, e.g., instrument builders, for whom methanol is often the first molecule chosen for testing an improved or a newly built instrument (including HIFI, the Heterodyne Instrument for the Far Infrared on board the Herschel space mission); theorists and/or dynamicists studying the challenging effects of a large-amplitude motion coupling with small-amplitude motions to enhance intramolecular vibrational energy redistribution; astronomers who have elevated methanol to their #1 interstellar weed because of its rich and omnipresent spectrum in the interstellar garden, where it serves as a unique probe for diagnosing conditions in star-forming regions; astrochemists studying isotopic ratios as clues to the chemical evolution of the universe; and fundamentalists seeking possible time variation of the proton/electron mass ratio in the standard model; just to name a few. From high-resolution to high-precision spectroscopy, the large-amplitude internal rotation of the methyl top against its OH framework in methanol has never failed to produce new surprises in spectral regions from the microwave all the way to the near IR. The very recent observation of completely unexpected large methanol hyperfine splittings is a vivid testimonial that the large-amplitude torsional motion can still lead us to unexplored landscapes. This talk will focus on the complicated vibration-torsion-rotation energy networks and interactions deduced from high resolution spectra; our efforts to understand some of them using ab-initio-assisted approaches and the modeling of torsion-rotation and torsionally mediated spin-rotation hyperfine splittings in methanol. These topics represent one part of the much larger fascinating world inhabited by methanolics.

  18. High-resolution soft X-ray beamline ADRESS at the Swiss Light Source for resonant inelastic X-ray scattering and angle-resolved photoelectron spectroscopies

    PubMed Central

    Strocov, V. N.; Schmitt, T.; Flechsig, U.; Schmidt, T.; Imhof, A.; Chen, Q.; Raabe, J.; Betemps, R.; Zimoch, D.; Krempasky, J.; Wang, X.; Grioni, M.; Piazzalunga, A.; Patthey, L.

    2010-01-01

    The concepts and technical realisation of the high-resolution soft X-ray beamline ADRESS operating in the energy range from 300 to 1600 eV and intended for resonant inelastic X-ray scattering (RIXS) and angle-resolved photoelectron spectroscopy (ARPES) are described. The photon source is an undulator of novel fixed-gap design where longitudinal movement of permanent magnetic arrays controls not only the light polarization (including circular and 0–180° rotatable linear polarizations) but also the energy without changing the gap. The beamline optics is based on the well established scheme of plane-grating monochromator operating in collimated light. The ultimate resolving power E/ΔE is above 33000 at 1 keV photon energy. The choice of blazed versus lamellar gratings and optimization of their profile parameters is described. Owing to glancing angles on the mirrors as well as optimized groove densities and profiles of the gratings, the beamline is capable of delivering high photon flux up to 1 × 1013 photons s−1 (0.01% BW)−1 at 1 keV. Ellipsoidal refocusing optics used for the RIXS endstation demagnifies the vertical spot size down to 4 µm, which allows slitless operation and thus maximal transmission of the high-resolution RIXS spectrometer delivering E/ΔE > 11000 at 1 keV photon energy. Apart from the beamline optics, an overview of the control system is given, the diagnostics and software tools are described, and strategies used for the optical alignment are discussed. An introduction to the concepts and instrumental realisation of the ARPES and RIXS endstations is given. PMID:20724785

  19. High Resolution Spectroscopy at the 2.7-m H J Smith and 9.2-m Hobby-Eberly Telescopes, 1969-2000

    NASA Astrophysics Data System (ADS)

    Tull, R. G.

    2000-05-01

    The twentieth century has seen the greatest advances in science and technology in the history of the world. These advances spawned a golden age in astronomy and in the astronomical instrumentation that fueled it. This paper will summarize 31 years of development of high-resolution spectroscopic instrumentation at McDonald Observatory, from the construction of the 2.7-m Harlan J. Smith Telescope and its coudé spectrograph through the completion of the 9.2-m Hobby-Eberly Telescope with its high-resolution fiber-fed spectrograph. We begin with photographic spectroscopy and advance through rapid-scanning photon counting spectrometry under computer control, addition of echelle gratings, Reticon and self-scanned Digicon solid-state imaging detectors, and innovative cross-dispersed echelle spectrometers with large-format CCDs. Funding for all these projects by the National Science Foundation and the National Aeronautics and Space Administration is gratefully acknowledged, as are additional support from University of Texas matching grants and from the Texas state legislature. Thanks also to the many colleagues who have shared this adventure with me: Ed Nather, who taught me computer interfacing techniques; Johnnie Floyd, Don Wells, Steve Vogt, Phil Kelton, Richard Stover, Brenda Young, Phillip MacQueen, David Doss, John Good, Harland Epps, and Mark Cornell, who were involved in various phases of instrument development; and Hans Dekker, who shared ideas developed at ESO. The users developed the observing and data reduction techniques; among these are David Lambert, Chris Sneden, Ed Barker, Larry Trafton, Joc Tomkin, and many others. Tom Barnes and Frank Bash provided moral and logistical support, and Joyce Sampson spent many hours in fund-raising efforts. Finally, I wish to dedicate this work to the memory of Harlan J. Smith who gave unswerving encouragement and support over a period of many years.

  20. Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate

    NASA Astrophysics Data System (ADS)

    Śmialek, Malgorzata A.; Łabuda, Marta; Guthmuller, Julien; Hubin-Franskin, Marie-Jeanne; Delwiche, Jacques; Hoffmann, Søren Vrønning; Jones, Nykola C.; Mason, Nigel J.; Limão-Vieira, Paulo

    2016-06-01

    The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate, C4H8O2, is presented over the energy range 4.5-10.7 eV (275.5-116.0 nm). Valence and Rydberg transitions and their associated vibronic series observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Also, the photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the upper stratosphere (20-50 km). Calculations have also been carried out to determine the ionisation energies and fine structure of the lowest ionic state of ethyl acetate and are compared with a newly recorded photoelectron spectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the first photoelectron band of this molecule for the first time.

  1. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL.

    PubMed

    Nahon, Laurent; de Oliveira, Nelson; Garcia, Gustavo A; Gil, Jean-François; Pilette, Bertrand; Marcouillé, Olivier; Lagarde, Bruno; Polack, François

    2012-07-01

    DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1

  2. Three steps to the CIELO: VO and high-resolution spectroscopy chase the origin of soft X-rays in obscured AGN

    NASA Astrophysics Data System (ADS)

    Guainazzi, M.; Bianchi, S.

    The origin of the soft X-ray emission in obscured Active Galactic Nuclei AGN is still largely unknown despite important progress made possible by recent measurements with Chandra and XMM-Newton Our understanding of the evolution of accretion onto supermassive black holes and of its interaction with gas and stars in the dense nuclear environment would receive a dramatic burst by the solution of this mystery In this paper we will a show why high-resolution X-ray spectroscopy is crucial to the solution of this issue b present CIELO the first catalogue of soft X-ray emission lines in obscured AGN 80 sources built from observations of the Reflection Grating Spectrometer RGS on-board XMM-Newton c discuss the implementation of the IVOA Line Data Model in VO tools such as the SED builder VOSpec and its application to CIELO The combination of the unprecedented RGS sensitivity in the soft X-ray regime and of the VO protocols power leads us to be closer than ever to unveiling the nature of soft X-ray emission in obscured AGN

  3. Valence band study of Sm0.1Ca0.9 - xSrxMnO3 using high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dalai, Manas Kumar; Sekhar, Biju Raja; Biswas, Deepnarayan; Thakur, Sangeeta; Maiti, Kalobaran; Chiang, Tai-Chang; Martin, Christine

    2014-03-01

    We have studied the valence band electronic structure of Sm0.1Ca0.9- xSrxMnO3 (x = 0, 0.1, 0.3 and 0.6) at various temperatures using high resolution photoemission spectroscopy (HRPES). The data were taken using a Scienta R4000 energy analyser and the resolution was set at 5 meV. The doping dependent studies of Sm0.1Ca0.9-x SrxMnO3 at 50 K, 100 K and 295 K are quite interesting. The density of eg states near the Fermi level decreases with Sr substitution at the Ca site at 50 K. Also the similar trend has been observed at 100 K. At 295 K the changes in the eg states is quite different than the earlier temperatures where the intensity remains the same for x = 0, 0.1 and 0.3 and then decreases for x = 0.6. These changes in the density of states near the Fermi level will be explained by taking into account the structural, electrical and magnetic properties associated with this system. Permanent affiliation of Manas Kumar Dalai ; CSIR-National Physical Laboratory, New Delhi-110012, India. MKD acknowledges the Indo-US Science and Technology Forum (IUSSTF) for the fellowship.

  4. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells. PMID:26247715

  5. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation.

  6. Analysis of adhesive binding forces between laminin-1 and C2C12 muscle cell membranes measured via high resolution force spectroscopy

    NASA Astrophysics Data System (ADS)

    Gluck, George; Gilbert, Richard; Ortiz, Christine

    2002-03-01

    Laminins are a family of glycoproteins that regulate cell differentiation, shape, and motility through interactions with various cell surface receptors. Here, we have directly measured the biomolecular adhesive binding forces between a cantilever / probe tip that was covalently attached with laminin-1 and membrane receptors on C2C12 muscle cells using the technique of high-resolution force spectroscopy (HRFS). On retraction of the probe tip away from the membrane surface, discrete, long-range adhesive unbinding events were always observed. Statistical analysis of the data revealed an initial broad distribution of heterogeneous unbinding events (occurring at separation distances, D=0-2µm from the point of maximum compression) of magnitude 92.23±37.87pN followed by a narrow distribution of homogeneous unbinding events (occurring at D > 2µm) of magnitude 38.16±9.10pN, which is suggestive of an individual biomolecular adhesive interaction. On-going studies include loading rate dependence and effect of dystroglycan mutation.

  7. Characterization of metabolic profile of intact non-tumor and tumor breast cells by high-resolution magic angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Maria, Roberta M; Altei, Wanessa F; Andricopulo, Adriano D; Becceneri, Amanda B; Cominetti, Márcia R; Venâncio, Tiago; Colnago, Luiz A

    2015-11-01

    (1)H high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR) spectroscopy was used to analyze the metabolic profile of an intact non-tumor breast cell line (MCF-10A) and intact breast tumor cell lines (MCF-7 and MDA-MB-231). In the spectra of MCF-10A cells, six metabolites were assigned, with glucose and ethanol in higher concentrations. Fifteen metabolites were assigned in MCF-7 and MDA-MB-231 (1)H HR-MAS NMR spectra. They did not show glucose and ethanol, and the major component in both tumor cells was phosphocholine (higher in MDA-MB-231 than in MCF-7), which can be considered as a tumor biomarker of breast cancer malignant transformation. These tumor cells also show acetone signal that was higher in MDA-MB-231 cells than in MCF-7 cells. The high acetone level may be an indication of high demand for energy in MDA-MB-231 to maintain cell proliferation. The higher acetone and phosphocholine levels in MDA-MB-231 cells indicate the higher malignance of the cell line. Therefore, HR-MAS is a rapid reproducible method to study the metabolic profile of intact breast cells, with minimal sample preparation and contamination, which are critical in the analyses of slow-growth cells.

  8. Characterization of carbon films on the Japanese smoked roof tile'Ibushi-Kawara' by high-resolution soft X-ray spectroscopy

    SciTech Connect

    Muramatsu, Yasuji; Motoyama, Muneyuki; Denlinger, Jonathan D.; Gullikson, Eric M.; Perera, Rupert C.C.

    2003-06-12

    Carbon films on the Japanese smoked roof tile ''Ibushi-Kawara'' were characterized by high-resolution soft X-ray spectroscopy using synchrotron radiation. By comparing the soft X-ray emission and absorption spectra of Kawara with the reference carbon compounds, it was determined that the carbon films on Kawara consist of mostly carbon-black-like sp2 carbon atoms and that the surface also contains polyethylene-like sp3 carbon atoms. The take-off/incident-angle dependence on the X-ray emission/absorption spectra of Kawara shows that the carbon-black-like sp2 carbon atoms partially form a layer structure oriented parallel to the basal clay plane, and that the degree of orientation of the carbon films is estimated to be 50 percent that of highly oriented pyrolytic graphite (HOPG). The microstructure of the carbon films on Kawara is one in which half of the carbon-blacklike sp2 carbon atoms form layer-structured clusters parallel to the basal clayplane and the rest of the carbon atoms form random-structured clusters which rigidly connect the layer-structured clusters.

  9. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation. PMID:25615406

  10. High Resolution Spectroscopy of H212C16O in the 1.9 to 2.56 um Spectral Range

    SciTech Connect

    Flaud, J-M; Lafferty, Walter J.; Sams, Robert L.; Sharpe, Steven W.

    2006-06-20

    Infrared spectra of H2CO covering the 1.9 ? 2.5 ?m spectral domain have been recorded at very high resolution (0.005 cm-1) using Fourier transform spectroscopy. A thorough analysis of this spectral region has led to the observation and analysis of the v1+v6, v2+v4+v6, 2v3+ v6, v3+v5, v1+v2, v2+v5, 2v2+ v6 and 3v2 bands. The line frequencies were calculated using effective (empirical) Hamiltonian models which account for the main Coriolis and vibrational interactions. Using an interactive scheme it was then possible to least-squares fit the observed energy levels to within a few thousandths of a wavenumber. The Obs. ? Calc. differences do not match the spectral precision ({approx}0.0008 cm-1), but given the congestion in the spectrum resulting from the density of the vibrational states as well as the large centrifugal distortion and Coriolis and anharmonic coupling effects, we believe that a reasonable agreement was obtained.

  11. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  12. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    SciTech Connect

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-05-29

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di{sub 64}An{sub 36}), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high-resolution {sup 27}Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di{sub 64}An{sub 36} glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the {sup 27}Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  13. High resolution UV resonance enhanced two-photon ionization spectroscopy with mass selection of biologically relevant molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Karaminkov, R.; Chakraborty, T.; Braun, Juergen E.; Neusser, Hans J.

    2005-04-01

    The high resolution Doppler-free resonance-enhanced two-photon ionization (R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular species is a powerful experimental method providing comprehensive information on both isolated molecules and molecular clusters. We have demonstrated for the first time that this technique can be applied to large molecules and provides detailed information on their conformational structure. It allows rotationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the S1<--S0 electronic transition of the studied molecular systems to be measured. A specially designed computer-assisted fitting routine based on genetic algorithms is used to determine their rotational constants in the ground and excited electronic states, respectively, and the transition moment ratio. To interpret the experimental information and to discriminate and unambiguously assign the observed approach to the study of the neurotransmitter molecule, ephedrine. The results elucidate the role of the intramolecular hydrogen bonds stabilizing the respective conformations and affecting their intrinsic properties.

  14. Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    SciTech Connect

    Gilbert, A; Graham, J

    2007-06-05

    We present high-resolution (R {approx} 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10{sup 5}-10{sup 7} M{sub {circle_dot}} for a Kroupa IMF) and their spectra are characterized by broad, extended Brackett {gamma} emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Br {gamma} lines of most ELCs have supersonic widths (60-110 km s{sup -1} FWHM) and non-Gaussian wings whose velocities exceed the clusters escape velocities. This high-velocity unbound gas is flowing out in winds that are powered by the clusters massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.

  15. Proline Adsorption on TiO2(1 1 0) Single Crystal Surface: A Study by High Resolution Photoelectron Spectroscopy

    SciTech Connect

    Fleming,G.; Adib, K.; Rodriguez, J.; Barteau, M.; Idriss, H.

    2007-01-01

    The surface chemistry and binding of dl-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO2(1 1 0) single crystal surfaces. TiO2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that dl-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO2 surface. On TiO2(1 1 0) surfaces reduced by Ar+ sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  16. Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy.

    PubMed Central

    Cheng, L. L.; Anthony, D. C.; Comite, A. R.; Black, P. M.; Tzika, A. A.; Gonzalez, R. G.

    2000-01-01

    Microheterogeneity is a routinely observed neuropathologic characteristic in brain tumor pathology. Although microheterogeneity is readily documented by routine histologic techniques, these techniques only measure tumor status at the time of biopsy or surgery and do not indicate likely tumor progression. A biochemical screening technique calibrated against pathologic standards would greatly assist in predicting tumor progression from its biological activity. Here we demonstrate for the first time that proton magnetic resonance spectroscopy (1H MRS) with high-resolution magic-angle spinning (HRMAS), a technique introduced in 1997, can preserve tissue histopathologic features while producing well-resolved spectra of cellular metabolites in the identical intact tissue specimens. Observed biochemical alterations and tumor histopathologic characteristics can thus be correlated for the same surgical specimen, obviating the problems caused by tumor microheterogeneity. We analyzed multiple specimens of a single human glioblastoma multiforme surgically removed from a 44-year-old patient. Each specimen was first measured with HRMAS 1H MRS to determine tumor metabolites, then evaluated by quantitative histopathology. The concentrations of lactate and mobile lipids measured with HRMAS linearly reflected the percentage of tumor necrosis. Moreover, metabolic ratios of phosphorylcholine to choline correlated linearly with the percentage of the highly cellular malignant glioma. The quantification of tumor metabolic changes with HRMAS 1H MRS, in conjunction with subsequent histopathology of the same tumor specimen, has the potential to further our knowledge of the biochemistry of tumor heterogeneity during development, and thus ultimately to improve our accuracy in diagnosing, characterizing, and evaluating tumor progression. PMID:11303625

  17. Coupling parameters of many-body interactions for the Al(100) surface state: A high-resolution angle-resolved photoemission spectroscopy study

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Shimada, K.; Hayashi, H.; Iwasawa, H.; Aiura, Y.; Namatame, H.; Taniguchi, M.

    2011-10-01

    We examined the dimensionless coupling parameters of many-body interactions for a free-electron-like surface-derived state in Al(100) by means of high-resolution angle-resolved photoemission spectroscopy. A kink structure was found to exist in the energy-band dispersion near the Fermi level (EF), which was attributed to the electron-phonon interaction. At 50 K, the coupling parameters of the electron-phonon and electron-electron interactions were estimated as λep=0.67±0.05 and λee˜0.003, respectively, indicating that the effective mass enhancement was mainly derived from the electron-phonon interaction. The temperature dependence of the kink structure, as measured by λep(T), was consistent with a theoretical calculation based on the Eliashberg function. A quasiparticle peak with a width of 15-20 meV was found near EF, which was explained well by the simulated spectral function incorporating the self-energy evaluated in this study. We found that the electrons at the surface were strongly scattered by the defects at the surface and that the linewidth was significantly broadened (Γ0=0.238±0.006 eV).

  18. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  19. Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals

    SciTech Connect

    Brenny, B. J. M.; Coenen, T.; Polman, A.

    2014-06-28

    We present a method to separate coherent and incoherent contributions to cathodoluminescence from bulk materials by using angle-resolved cathodoluminescence spectroscopy. Using 5 and 30 keV electrons, we measure the cathodoluminescence spectra for Si, GaAs, Al, Ag, Au, and Cu and determine the angular emission distributions for Al, GaAs, and Si. Aluminium shows a clear dipolar radiation profile due to coherent transition radiation, while GaAs shows incoherent luminescence characterized by a Lambertian angular distribution. Silicon shows both transition radiation and incoherent radiation. From the angular data, we determine the ratio between the two processes and decompose their spectra. This method provides a powerful way to separate different radiative cathodoluminescence processes, which is useful for material characterization and in studies of electron- and light-matter interaction in metals and semiconductors.

  20. High resolution magnetic spectrometer SHARAQ in RIBF

    SciTech Connect

    Shimoura, S.

    2007-05-22

    For a new spectroscopy of nuclei using intense RI beams at RIBF, we started the SHARAQ project where a high-resolution SHARAQ spectrometer is being constructed together with a high-resolution secondary beam line. Physics motivation and the specification of the spectrometer are presented.

  1. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  2. Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Xie, Yong; Jie, Wan-Qi; Wang, Tao; Wiedenmann, Michael; Neuschl, Benjamin; Madel, Manfred; Wang, Ya-Bin; Feneberg, Martin; Thonke, Klaus

    2012-07-01

    Low density ZnO nanorods are grown by modified chemical vapor deposition on silicon substrates using gold as a catalyst. We use high resolution photoluminescence spectroscopy to gain the optical properties of these nanorods in large scale. The as-grown samples show sharp near-band-gap luminescence with a full width at half maximum of bound exciton peaks at about 300 μeV, and the ratio of ultraviolet/yellow luminescence larger than 100. Highly spatial and spectral resolved scanning electron microscope-cathodoluminescence is performed to excite the ZnO nanorods in single rods or different positions of single rods with the vapour-solid growth mechanism. The bottom of the nanorod has a 3.31-eV luminescence, which indicates that basal plane stacking faults are related to the defects that are created at the first stage of growth due to the misfit between ZnO and Si.

  3. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue.

    PubMed

    Delgado-Goñi, Teresa; Campo, Sonia; Martín-Sitjar, Juana; Cabañas, Miquel E; San Segundo, Blanca; Arús, Carles

    2013-08-01

    In most plants, sucrose is the primary product of photosynthesis, the transport form of assimilated carbon, and also one of the main factors determining sweetness in fresh fruits. Traditional methods for sugar quantification (mainly sucrose, glucose and fructose) require obtaining crude plant extracts, which sometimes involve substantial sample manipulation, making the process time-consuming and increasing the risk of sample degradation. Here, we describe and validate a fast method to determine sugar content in intact plant tissue by using high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). The HR-MAS NMR method was used for quantifying sucrose, glucose and fructose in mesocarp tissues from melon fruits (Cucumis melo var. reticulatus and Cucumis melo var. cantalupensis). The resulting sugar content varied among individual melons, ranging from 1.4 to 7.3 g of sucrose, 0.4-2.5 g of glucose; and 0.73-2.83 g of fructose (values per 100 g fw). These values were in agreement with those described in the literature for melon fruit tissue, and no significant differences were found when comparing them with those obtained using the traditional, enzymatic procedure, on melon tissue extracts. The HR-MAS NMR method offers a fast (usually <30 min) and sensitive method for sugar quantification in intact plant tissues, it requires a small amount of tissue (typically 50 mg fw) and avoids the interferences and risks associated with obtaining plant extracts. Furthermore, this method might also allow the quantification of additional metabolites detectable in the plant tissue NMR spectrum.

  4. High-resolution laser spectroscopy of the X1Sigma + and (1)3Sigma + states of 23Na85Rb molecule

    NASA Astrophysics Data System (ADS)

    Kasahara, Shunji; Ebi, Tsuyoshi; Tanimura, Mari; Ikoma, Heiji; Matsubara, Kensuke; Baba, Masaaki; Katô, Hajime

    1996-07-01

    High-resolution spectra of the B1Π→X1Σ+ transition of 23Na85Rb molecule are measured by the technique of the Doppler-free optical-optical double resonance polarization spectroscopy (OODRPS). The molecular constants of the X1Σ+(v″=5-30) levels are determined, and the potential energy curve is constructed up to v″=30 by the RKR method. The time-resolved fluorescence intensity following the excitation to the B1Π(v'=5,J'= around 20) level is measured, and the lifetime of the B1Π(v'=5) level in collisionless limit is determined to be 17.8 ns. The absolute value of the electric dipole moment of the B1Π-X1Σ+ transition is determined to be 7.0 D in the region of 3.73 Å

  5. Time-series high-resolution spectroscopy and photometry of ɛ Aurigae from 2006-2013: Another brick in the wall

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Weber, M.; Granzer, T.; Schanne, L.; Bartus, J.; Ilyin, I.

    2014-11-01

    We present continuous and time-resolved R = 55 000 optical échelle spectroscopy of ɛ Aurigae from 2006-2013. Data were taken with the STELLA Echelle Spectrograph of the robotic STELLA facility at the Observatorio del Teide in Tenerife. Contemporaneous photometry with the Automatic Photoelectric Telescopes at Fairborn Observatory in Arizona is presented for the years 1996-2013. Spectroscopic observations started three years prior to the photometric eclipse and are still ongoing. A total of 474 high-resolution échelle spectra are analyzed and made available in this paper. We identify 368 absorption lines of which 161 lines show the characteristic sharp disk lines during eclipse. Another 207 spectral lines appeared nearly unaffected by the eclipse. From spectrum synthesis, we obtained the supergiant atmospheric parameters T_eff = 7395±70 K, log g≈ 1, and [Fe/H] = +0.02±0.2 with ξ_t = 9 km s-1 , ζ_RT = 13 km s-1 , and v sin i = 28±3 km s-1 . The residual average line broadening expressed in km s-1 varies with a period of 62.6±0.7 d, in particular at egress and after the eclipse. Two-dimensional line-profile periodograms show several periods, the strongest with ≈110 d evident in optically thin lines as well as in the Balmer lines. Center-of-intensity weighted radial velocities of individual spectral lines also show the 110-d period but, again, additional shorter and longer periods are evident and are different in the Balmer lines. The two main spectroscopic Hα periods, ≈ 116 d from the line core and ≈ 150 d from the center-of-intensity radial velocities, appear at 102 d and 139 d in the photometry. The Hβ and Johnson VI photometry on the other hand shows two well-defined and phase-coherent periods of 77 d and 132 d. We conclude that Hα is contaminated by changes in the circumstellar environment while the Hβ and VI photometry stems predominantly from the non radial pulsations of the F0 supergiant. We isolate the disk-rotation profile from 61

  6. Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J.; Weaver, Harold A.

    2016-11-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy in thirty comets between 1997 and 2013 is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Most of these correlations appear to be independent of dynamical class with a few possible exceptions. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, C2H2, NH2, and CN may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Although there is remarkable compositional diversity resulting in a unique chemical fingerprint for each comet, a hierarchical tree cluster analysis is

  7. Resolving the structure of ligands bound to the surface of superparamagnetic iron oxide nanoparticles by high-resolution magic-angle spinning NMR spectroscopy.

    PubMed

    Polito, Laura; Colombo, Miriam; Monti, Diego; Melato, Sergio; Caneva, Enrico; Prosperi, Davide

    2008-09-24

    A major challenge in magnetic nanoparticle synthesis and (bio)functionalization concerns the precise characterization of the nanoparticle surface ligands. We report the first analytical NMR investigation of organic ligands stably anchored on the surface of superparamagnetic nanoparticles (MNPs) through the development of a new experimental application of high-resolution magic-angle spinning (HRMAS). The conceptual advance here is that the HRMAS technique, already being used for MAS NMR analysis of gels and semisolid matrixes, enables the fine-structure-resolved characterization of even complex organic molecules bound to paramagnetic nanocrystals, such as nanosized iron oxides, by strongly decreasing the effects of paramagnetic disturbances. This method led to detail-rich, well-resolved (1)H NMR spectra, often with highly structured first-order couplings, essential in the interpretation of the data. This HRMAS application was first evaluated and optimized using simple ligands widely used as surfactants in MNP synthesis and conjugation. Next, the methodology was assessed through the structure determination of complex molecular architectures, such as those involved in MNP3 and MNP4. The comparison with conventional probes evidences that HRMAS makes it possible to work with considerably higher concentrations, thus avoiding the loss of structural information. Consistent 2D homonuclear (1)H- (1)H and (1)H- (13)C heteronuclear single-quantum coherence correlation spectra were also obtained, providing reliable elements on proton signal assignments and carbon characterization and opening the way to (13)C NMR determination. Notably, combining the experimental evidence from HRMAS (1)H NMR and diffusion-ordered spectroscopy performed on the hybrid nanoparticle dispersion confirmed that the ligands were tightly bound to the particle surface when they were dispersed in a ligand-free solvent, while they rapidly exchanged when an excess of free ligand was present in solution. In

  8. Dynamic High-Resolution H-1 and P-31 NMR Spectroscopy and H-1 T-2 Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning

    SciTech Connect

    Bertram, Hanne Christine; Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Andersen, Henrik J.

    2004-05-05

    Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning 1H and 31P NMR spectroscopy together with measurement of the transverse relaxation time, T2, of the muscle water. The 1H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the 31P NMR spectra using the chemical shifts of the C-6 line of histidine in the 1H spectra and the chemical shifts of inorganic phosphate in the 31P spectra confirmed the different muscle glycogen status in the tissues. High-resolution 1H spectra obtained from the PASS technique revealed the presence of a new resonance line at 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T2 relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by

  9. High-Resolution Spectroscopy of He{_2}^+ Using Rydberg-Series Extrapolation and Zeeman-Decelerated Supersonic Beams of Metastable He_2

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Merkt, Frederic

    2016-06-01

    Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M

  10. High Resolution Infrared Spectra of Plasma Jet-Cooled - and Triacetylene in the C-H Stretch Region by CW Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Guss, J.; Walsh, A.; Doney, K.; Linnartz, H.

    2013-06-01

    Polyacetylenes form an important series of unsaturated hydrocarbons that are of astrophysical interest. Small polyacetylenes have been detected from infrared observations in dense atmosphere of Titan and in a protoplanetary nebula CRL 618. We present here high-resolution mid-infrared spectra of diacetylene (HC_{4}H) and triacetylene (HC_{6}H) that are recorded in a supersonically expanded pulsed planar plasma using an ultra-sensitive detection technique. This method uses an all fiber-laser-based optical parametric oscillator (OPO), in combination with continuous wave cavity ring-down spectroscopy (cw-CRDS) as a direct absorption detection tool. A hardware-based multi-trigger concept is developed to apply cw-CRDS to pulsed plasmas. Vibrationally hot but rotationally cold HC_{4}H and HC_{6}H are produced by discharging a C_{2}H_{2}/He/Ar gas mixture which is supersonically expanded into a vacuum chamber through a slit discharge nozzle. Experimental spectra are recorded at a resolution of ˜100 MHz in the 3305-3340 cm^{-1} region, which is characteristic of the C-H stretch vibrations of HC_{4}H and HC_{6}H. Jet-cooling in our experiment reduces the rotational temperature of both HC_{4}H and HC_{6}H to <20 K. In total, ˜2000 lines are measured. More than fourteen (vibrationally hot) bands for HC_{4}H and four bands for HC_{6}H are assigned based on Loomis-Wood diagrams, and nearly half of these bands are analyzed for the first time. For both molecules improved and new molecular constants of a series of vibrational levels are presented. The accurate molecular data reported here, particularly those for low-lying (bending) vibrational levels may be used to interpret the ro-vibrational transitions in the FIR and submillimeter/THz region. D. Zhao, J. Guss, A. Walsh, H. Linnartz Chem. Phys. Lett., {dx.doi.org/10.1016/j.cplett.2013.02.025}, in press, 2013.

  11. Cathodoluminescence Imaging Using Nanodiamond Color Centers

    NASA Astrophysics Data System (ADS)

    Glenn, David; Zhang, Huiliang; Kasthuri, Narayanan; Trifonov, Alexei; Schalek, Richard; Lichtman, Jeff; Walsworth, Ronald

    2011-05-01

    We demonstrate a nanoscale imaging technique based on cathodoluminescence (CL) emitted by color centers in nanodiamonds (NDs) under excitation by an electron beam in a scanning electron microscope (SEM). We have identified several classes of color centers that are spectrally distinct at room temperature and can be obtained with high reliability in NDs with diameters on the order of 50 nm or smaller. Compared to standard CL markers, ND color centers are bright and highly stable under SEM excitation. In conjunction with appropriate functionalization of the ND surfaces, ND-CL will provide nanoscale information about molecular function to augment the structural information obtained with standard SEM techniques. We discuss an exciting application of this approach to neuroscience, specifically in the generation of high-resolution maps of the connections between neurons (``Connectomics'').

  12. High-resolution Spectroscopy of a Young, Low-metallicity Optically Thin L = 0.02L* Star-forming Galaxy at z = 3.12

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; De Barros, S.; Cupani, G.; Karman, W.; Gronke, M.; Balestra, I.; Coe, D.; Mignoli, M.; Brusa, M.; Calura, F.; Caminha, G.-B.; Caputi, K.; Castellano, M.; Christensen, L.; Comastri, A.; Cristiani, S.; Dijkstra, M.; Fontana, A.; Giallongo, E.; Giavalisco, M.; Gilli, R.; Grazian, A.; Grillo, C.; Koekemoer, A.; Meneghetti, M.; Nonino, M.; Pentericci, L.; Rosati, P.; Schaerer, D.; Verhamme, A.; Vignali, C.; Zamorani, G.

    2016-04-01

    We present VLT/X-Shooter and MUSE spectroscopy of a faint F814W = 28.60 ± 0.33 ({M}{UV}=-17.0), low-mass (≲{10}7{M}⊙ ), and compact (R eff = 62 pc) freshly star-forming galaxy at z = 3.1169 magnified (16×) by the Hubble Frontier Fields galaxy cluster Abell S1063. Gravitational lensing allows for a significant jump toward low-luminosity regimes, in moderately high-resolution spectroscopy (R=λ /dλ ˜ 3000{--}7400). We measured C iv λ 1548,1550, He ii λ 1640, O iii]λ 1661,1666, C iii]λ λ 1907,1909, Hβ, [O iii]λ λ 4959,5007 emission lines with {FWHM}≲ 50 km s-1 and (de-lensed) fluxes spanning the interval 1.0× {10}-19{--}2× {10}-18 erg s-1 cm-2 at signal-to-noise ratio (S/N) = 4-30. The double-peaked Lyα emission with {{Δ }}v({red}-{blue})=280(±7) km s-1 and de-lensed fluxes {2.4}({blue)}| {8.5}({red)}× {10}-18 erg s-1 cm-2 (S/N = {38}({blue)}| {110}({red)}) indicate a low column density of neutral hydrogen gas consistent with a highly ionized interstellar medium as also inferred from the large [O iii]λ 5007/ [O ii]λ 3727 \\gt \\quad 10 ratio. We detect C iv λ 1548,1550 resonant doublet in emission, each component with {FWHM}≲ 45 km s-1 and redshifted by +51(±10) km s-1 relative to the systemic redshift. We interpret this as nebular emission tracing an expanding optically thin interstellar medium. Both C iv λ 1548,1550 and He ii λ 1640 suggest the presence of hot and massive stars (with a possible faint active galactic nucleus). The ultraviolet slope is remarkably blue, β =-2.95+/- 0.20 ({F}λ ={λ }β ), consistent with a dust-free and young ≲20 Myr galaxy. Line ratios suggest an oxygen abundance 12 + log(O/H)\\quad \\lt \\quad 7.8. We are witnessing an early episode of star formation in which a relatively low N H i and negligible dust attenuation might favor a leakage of ionizing radiation. This galaxy currently represents a unique low-luminosity reference object for future studies of the reionization epoch with the James Webb Space

  13. High-resolution Spectroscopy of a Young, Low-metallicity Optically Thin L = 0.02L* Star-forming Galaxy at z = 3.12

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; De Barros, S.; Cupani, G.; Karman, W.; Gronke, M.; Balestra, I.; Coe, D.; Mignoli, M.; Brusa, M.; Calura, F.; Caminha, G.-B.; Caputi, K.; Castellano, M.; Christensen, L.; Comastri, A.; Cristiani, S.; Dijkstra, M.; Fontana, A.; Giallongo, E.; Giavalisco, M.; Gilli, R.; Grazian, A.; Grillo, C.; Koekemoer, A.; Meneghetti, M.; Nonino, M.; Pentericci, L.; Rosati, P.; Schaerer, D.; Verhamme, A.; Vignali, C.; Zamorani, G.

    2016-04-01

    We present VLT/X-Shooter and MUSE spectroscopy of a faint F814W = 28.60 ± 0.33 ({M}{UV}=-17.0), low-mass (≲{10}7{M}ȯ ), and compact (R eff = 62 pc) freshly star-forming galaxy at z = 3.1169 magnified (16×) by the Hubble Frontier Fields galaxy cluster Abell S1063. Gravitational lensing allows for a significant jump toward low-luminosity regimes, in moderately high-resolution spectroscopy (R=λ /dλ ˜ 3000{--}7400). We measured C iv λ 1548,1550, He ii λ 1640, O iii]λ 1661,1666, C iii]λ λ 1907,1909, Hβ, [O iii]λ λ 4959,5007 emission lines with {FWHM}≲ 50 km s‑1 and (de-lensed) fluxes spanning the interval 1.0× {10}-19{--}2× {10}-18 erg s‑1 cm‑2 at signal-to-noise ratio (S/N) = 4–30. The double-peaked Lyα emission with {{Δ }}v({red}-{blue})=280(±7) km s‑1 and de-lensed fluxes {2.4}({blue)}| {8.5}({red)}× {10}-18 erg s‑1 cm‑2 (S/N = {38}({blue)}| {110}({red)}) indicate a low column density of neutral hydrogen gas consistent with a highly ionized interstellar medium as also inferred from the large [O iii]λ 5007/ [O ii]λ 3727 \\gt \\quad 10 ratio. We detect C iv λ 1548,1550 resonant doublet in emission, each component with {FWHM}≲ 45 km s‑1 and redshifted by +51(±10) km s‑1 relative to the systemic redshift. We interpret this as nebular emission tracing an expanding optically thin interstellar medium. Both C iv λ 1548,1550 and He ii λ 1640 suggest the presence of hot and massive stars (with a possible faint active galactic nucleus). The ultraviolet slope is remarkably blue, β =-2.95+/- 0.20 ({F}λ ={λ }β ), consistent with a dust-free and young ≲20 Myr galaxy. Line ratios suggest an oxygen abundance 12 + log(O/H)\\quad \\lt \\quad 7.8. We are witnessing an early episode of star formation in which a relatively low N H i and negligible dust attenuation might favor a leakage of ionizing radiation. This galaxy currently represents a unique low-luminosity reference object for future studies of the reionization epoch with the

  14. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  15. IRAS high resolution studies and modeling of closely interacting galaxies. Galaxy collisions: Infrared observations and analysis of numerical models. UV spectroscopy of massive young stellar populations in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.

    1993-01-01

    The Final Technical Report covering the period from 15 Aug. 1989 to 14 Aug. 1991 is presented. Areas of research included Infrared Astronomy Satellite (IRAS) high resolution studies and modeling of closely interacting galaxies; galaxy collisions: infrared observations and analysis of numerical models; and UV spectroscopy of massive young stellar populations in interacting galaxies. Both observational studies and theoretical modelling of interacting galaxies are covered. As a consequence the report is divided into two parts, one on each aspect of the overall project.

  16. Detection of a large sample of γ Doradus stars from Kepler space photometry and high-resolution ground-based spectroscopy

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Aerts, C.; Yakushechkin, A.; Debosscher, J.; Degroote, P.; Bloemen, S.; Pápics, P. I.; de Vries, B. L.; Lombaert, R.; Hrudkova, M.; Frémat, Y.; Raskin, G.; Van Winckel, H.

    2013-08-01

    Context. The launches of the MOST, CoRoT, and Kepler missions opened up a new era in asteroseismology, the study of stellar interiors via interpretation of pulsation patterns observed at the surfaces of large groups of stars. These space missions deliver a huge amount of high-quality photometric data suitable to study numerous pulsating stars. Aims: Our ultimate goal is a detection and analysis of an extended sample of γ Dor-type pulsating stars with the aim to search for observational evidence of non-uniform period spacings and rotational splittings of gravity modes in main-sequence stars typically twice as massive as the Sun. This kind of diagnostic can be used to deduce the internal rotation law and to estimate the amount of rotational mixing in the near core regions. Methods: We applied an automated supervised photometric classification method to select a sample of 69 Gamma Doradus (γ Dor) candidate stars. We used an advanced method to extract the Kepler light curves from the pixel data information using custom masks. For 36 of the stars, we obtained high-resolution spectroscopy with the HERMES spectrograph installed at the Mercator telescope. The spectroscopic data are analysed to determine the fundamental parameters like Teff, log g, vsini, and [M/H]. Results: We find that all stars for which spectroscopic estimates of Teff and log g are available fall into the region of the HR diagram, where the γ Dor and δ Sct instability strips overlap. The stars cluster in a 700 K window in effective temperature; log g measurements suggest luminosity class IV-V, i.e. sub-giant or main-sequence stars. From the Kepler photometry, we identify 45 γ Dor-type pulsators, 14 γ Dor/δ Sct hybrids, and 10 stars, which are classified as "possibly γ Dor/δ Sct hybrid pulsators". We find a clear correlation between the spectroscopically derived vsini and the frequencies of independent pulsation modes. Conclusions: We have shown that our photometric classification based on the

  17. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  18. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  19. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  20. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.