Science.gov

Sample records for high-resolution cathodoluminescence spectroscopy

  1. High resolution cathodoluminescence spectroscopy of carbonate cementation in Khurmala Formation (Paleocene-L. Eocene) from Iraqi Kurdistan Region, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Omer, Muhamed F.; Omer, Dilshad; Zebari, Bahroz Gh.

    2014-12-01

    A combination of high resolution cathodoluminsecnce-spectroscopy (HRS-CL) with spatial electron microprobe analysis and optical microscopy is used to determine paragenesis and history of cementation in the limestones and dolostones of Khurmala Formation which is exposed in many parts of Northern Iraq. Khurmala Formation was subjected to different diagenetic processes such as micritization, compaction, dissolution, neomorphism, pyritization and cementation that occurred during marine to shallow burial stages and culminated during intermediate to deep burial later stages. Five dolomite textures are recognized and classified according to crystal size distribution and crystal-boundary shape. Dolomitization is closely associated with the development of secondary porosity that pre-and postdates dissolution and corrosion; meanwhile such porosity was not noticed in the associated limestones. Microprobe analysis revealed three types of cement, calcite, dolomite and ankerite which range in their luminescence from dull to bright. Cathodoluminescence study indicated four main texture generations. These are (1) unzoned microdolomite of planar and subhedral shape, with syntaxial rim cement of echinoderm that show dull to red luminescence, (2) equant calcite cements filling interparticle pores which shows dull luminescence and weak zonal growth, (3.1) homogenous intrinsic blue stoichiometric calcite with dull luminescence and without activators, (3.2) coarse blocky calcite cement with strong oscillatory zoning and bright orange luminescence which postdates other calcite cements, (4) ankerite cement with red to orange, non-luminescence growth zonation which is the last formed cement.

  2. High resolution hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi

    2005-02-01

    Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

  3. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  4. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  5. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  6. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  7. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  8. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  9. Investigation of zircon by CL (Cathodoluminescence) and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Didem Kılıç, Ayşe

    2016-10-01

    Puturge metamorphites consists of schist, gneisse, metagranite gneisse, amphibolite, kyanite quartzite and marble type rocks. Mineralogical studies, geochemical analysis (LA- ICPMS), Raman spectroscopy and cathodoluminescence (CL) imaging that it representing amphibolite facies and greenschiste facies. Zircon imaging called as a metamict from the cathodoluminescence images of zircon minerals. The partially radiated zircon particles is higher radiogenetic mineral ratio in comparison with other zircon particles. The ratio of the radiogenetic elements (U, Pb and Th) arises from chemical difference between the core and rims of zircons. The solubility of zircon effects environmental conditions such as high pH, Zr with hydroxyl ions. Especially alkaline fluids in environment can dissolve zircon. The results show that radiogenetic elements loss in zircons can be generated from metamict zircon through volume diffusion at low temperatures or by an external fluid (H2O). The loss of lead in zircon signifies that the fluids inserting the crystal lattice causes radiation damage processes.

  10. High-resolution flurescence spectroscopy in immunoanalysis

    SciTech Connect

    Grubor, Nenad M.

    2005-01-01

    The work presented in this dissertation combines highly sensitive and selective fluorescence line-narrowing spectroscopy (FLNS) detection with various modes of immunoanalytical techniques. It has been shown that FLNS is capable of directly probing molecules immunocomplexed with antibodies, eliminating analytical ambiguities that may arise from interferences that accompany traditional immunochemical techniques. Moreover, the utilization of highly cross-reactive antibodies for highly specific analyte determination has been demonstrated. Finally, they demonstrate the first example of the spectral resolution of diastereomeric analytes based on their interaction with a cross-reactive antibody.

  11. High resolution gamma spectroscopy well logging system

    SciTech Connect

    Giles, J.R.; Dooley, K.J.

    1997-05-01

    A Gamma Spectroscopy Logging System (GSLS) has been developed to study sub-surface radionuclide contamination. The absolute counting efficiencies of the GSLS detectors were determined using cylindrical reference sources. More complex borehole geometries were modeled using commercially available shielding software and correction factors were developed based on relative gamma-ray fluence rates. Examination of varying porosity and moisture content showed that as porosity increases, and as the formation saturation ratio decreases, relative gamma-ray fluence rates increase linearly for all energies. Correction factors for iron and water cylindrical shields were found to agree well with correction factors determined during previous studies allowing for the development of correction factors for type-304 stainless steel and low-carbon steel casings. Regression analyses of correction factor data produced equations for determining correction factors applicable to spectral gamma-ray well logs acquired under non-standard borehole conditions.

  12. Application of spectral phase shaping to high resolution CARS spectroscopy.

    PubMed

    Postma, S; van Rhijn, A C W; Korterik, J P; Gross, P; Herek, J L; Offerhaus, H L

    2008-05-26

    By spectral phase shaping of both the pump and probe pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy we demonstrate the extraction of the frequencies, bandwidths and relative cross sections of vibrational lines. We employ a tunable broadband Ti:Sapphire laser synchronized to a ps-Nd:YVO mode locked laser. A high resolution spectral phase shaper allows for spectroscopy with a precision better than 1 cm(-1) in the high frequency region around 3000 cm(-1). We also demonstrate how new spectral phase shaping strategies can amplify the resonant features of isolated vibrations to such an extent that spectroscopy and microscopy can be done at high resolution, on the integrated spectral response without the need for a spectrograph.

  13. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  14. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  15. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  16. High-resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Chutjian, A.

    1976-01-01

    A new technique for measuring high-resolution threshold photoelectron spectra of atoms, molecules, and radicals is described. It involves photoionization of a gaseous species, attachment of the threshold, or nearly zero electron to some trapping molecule (here SF6 or CFCl3), and mass detection of the attachment product (SF6/-/ or Cl/-/ respectively). This technique of threshold photoelectron spectroscopy by electron attachment was used to measure the spectra of argon and xenon at 11 meV (FWHM) resolution, and was also applied to CFCl3.

  17. Reconfigurable Pointing Control for High Resolution Space Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kia, Tooraj; Van Cleve, Jeffrey

    1997-01-01

    In this paper, a pointing control performance criteria is established to suppport high resolution space spectroscopy. Results indicate that these pointing control requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bankof detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra-Red Telescope Facility (SIRTF) pointing system, in support of the InfraRed Spectrograph (IRS) payload.

  18. Reconfigurable Pointing Control for High Resolution Space Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey

    1997-01-01

    In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.

  19. Quantum electrodynamics, high-resolution spectroscopy and fundamental constants

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; Ivanov, Vladimir G.

    2017-01-01

    Recent progress in high-resolution spectroscopy has delivered us a variety of accurate optical results, which can be used for the determination of the atomic fundamental constants and for constraining their possible time variation. We present a brief overview of the results discussing in particular, the determination of the Rydberg constant, the relative atomic weight of the electron and proton, their mass ratio and the fine structure constant. Many individual results on those constants are obtained with use of quantum electrodynamics, and we discuss which sectors of QED are involved. We derive constraints on a possible time variation of the fine structure constants and me/mp.

  20. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  1. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  2. Two simple image slicers for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tala, M.; Vanzi, L.; Avila, G.; Guirao, C.; Pecchioli, E.; Zapata, A.; Pieralli, F.

    2017-01-01

    We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.

  3. Two simple image slicers for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tala, M.; Vanzi, L.; Avila, G.; Guirao, C.; Pecchioli, E.; Zapata, A.; Pieralli, F.

    2017-04-01

    We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.

  4. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  5. Using High Resolution Force Spectroscopy to Study Haemocompatibility

    NASA Astrophysics Data System (ADS)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    A critical determinant of the biocompatibility of implanted blood-contacting devices is the initial noncovalent adsorption of blood plasma proteins onto the biomaterial surface. Using high resolution force spectroscopy, we have measured the intermolecular interaction forces between a probe tip covalently bound with human serum albumin (HSA), the most abundant blood plasma protein in the human body, and various chemically modified surfaces that either already are, or may potentially be, used as biomaterial surface coatings. Statistical analysis and theoretical modeling enable us to interpret our experimental results in terms of electrostatic interactions, hydrogen bonding, and steric forces. We have expanded our initial studies on surfaces of poly(ethylene oxide) to explore a variety of experimental conditions, and then utilized our results in identifying and studying various oligosaccharides, which we hope may be useful in the discovery of novel materials for future biomaterial applications.

  6. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  7. High-resolution two-field nuclear magnetic resonance spectroscopy.

    PubMed

    Cousin, Samuel F; Charlier, Cyril; Kadeřávek, Pavel; Marquardsen, Thorsten; Tyburn, Jean-Max; Bovier, Pierre-Alain; Ulzega, Simone; Speck, Thomas; Wilhelm, Dirk; Engelke, Frank; Maas, Werner; Sakellariou, Dimitrios; Bodenhausen, Geoffrey; Pelupessy, Philippe; Ferrage, Fabien

    2016-12-07

    Nuclear magnetic resonance (NMR) is a ubiquitous branch of spectroscopy that can explore matter at the scale of an atom. Significant improvements in sensitivity and resolution have been driven by a steady increase of static magnetic field strengths. However, some properties of nuclei may be more favourable at low magnetic fields. For example, transverse relaxation due to chemical shift anisotropy increases sharply at higher magnetic fields leading to line-broadening and inefficient coherence transfers. Here, we present a two-field NMR spectrometer that permits the application of rf-pulses and acquisition of NMR signals in two magnetic centres. Our prototype operates at 14.1 T and 0.33 T. The main features of this system are demonstrated by novel NMR experiments, in particular a proof-of-concept correlation between zero-quantum coherences at low magnetic field and single quantum coherences at high magnetic field, so that high resolution can be achieved in both dimensions, despite a ca. 10 ppm inhomogeneity of the low-field centre. Two-field NMR spectroscopy offers the possibility to circumvent the limits of high magnetic fields, while benefiting from their exceptional sensitivity and resolution. This approach opens new avenues for NMR above 1 GHz.

  8. High Resolution Rotational Spectroscopy of a Flexible Cyclic Ether

    NASA Astrophysics Data System (ADS)

    Gámez, F.; Martínez-Haya, B.; Blanco, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Crown ethers stand as one cornerstone molecular class inhost-guest Supramolecular Chemistry and constitute building blocks for a broad range of modern materials. We report here the first high resolution rotational study of a crown ether: 1,4,7,10,13-pentaoxacyclopentadecane (15-crown-5 ether,15c5). Molecular beam Fourier transform microwave spectroscopy has been employed. The liquid sample of 15c5 has been vaporized using heating methods. The considerable size of 15c5 and the broad range of conformations allowed by the flexibility of its backbone pose important challenges to spectroscopy approaches. In fact, the ab-initio computational study for isolated 15c5, yields at least six stable conformers with relative free energies within 2 kJ Mol-1 (167 Cm-1). Nevertheless, in this investigation it has been possible to identify and characterize in detail one stable rotamer of the 15c5 molecule and to challenge different quantum methods for the accurate description of this system. The results pave the ground for an extensive description of the conformational landscape of 15c5 and related cyclic ethers in the near term. J. L. Alonso, F. J. Lorenzo, J. C. López, A. Lesarri, S. Mata and H. Dreizler, Chem. Phys., 218, 267 (1997) S. Blanco, J.C López, J.L. Alonso, P. Ottaviani, W. Caminati, J. Chem. Phys. 119, 880 (2003) S.E. Hill, D. Feller, Int. J. Mass Spectrom. 201, 41 (2000)

  9. High resolution spectroscopy from ground and space: Introduction

    NASA Astrophysics Data System (ADS)

    Ward, William E.

    In contrast to the broad brush approach often used for the sounding of atmospheric constituents, high resolution spectroscopy is a refined, efficient and often elegant tool which uses small spectral regions to probe specific phenomena. Application areas range from wind and temperature measurements in terrestrial and planetary atmospheres, to magnetic field measurements on the sun. In most cases, subtle changes in line shape or line position are used with a priori information to generate the geophysical information of interest. Use of this technique for space applications started in the 1960's and was a natural extension of the spectroscopic heritage which was started by Fabry and Perot and Michelson over 100 year ago. This field has evolved over the past 50 years in response to refinements in detector technologies, manufacturing techniques and the development of active techniques using lasers. This session will trace the evolution of these techniques over the past half-century and showcase the state-of-the-art today. Within Canada, Gordon Shepherd has played a hand in many of the developments in this technique. This introduction will briefly summarize this field and provide a short historical sketch of Shepherd's contributions as a lead into his keynote review of this topic.

  10. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  11. High-Resolution Spectroscopy of the Lunar Sodium Exosphere

    NASA Technical Reports Server (NTRS)

    Mierkiewicz, E. J.; Oliversen, R. J.; Roesler, F. L.; Lupie, O. L.

    2014-01-01

    We have applied high-resolution Fabry-Perot spectroscopy to the study of the lunar sodium exosphere for the study of exospheric effective temperature and velocity variations. Observing from the National Solar Observatory McMath-Pierce Telescope, we used a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,000 to measure line widths and Doppler shifts of the sodium D2 (5889.95 Å) emission line. Our field of view was 360 km, and measurements were made in equatorial and polar regions from 500 km to 3500 km off the limb. Data were obtained from full moon to 3 days following full moon (waning phase) in March 2009. Measured Doppler line widths within 1100 km of the sunlit east and south lunar limbs for observations between 5 and 40 deg lunar phase imply effective temperatures ranging between 3260 +/- 190 and 1000 +/- 135 K. Preliminary line center analysis indicates velocity displacements between different locations off the lunar limb ranging between 100 and 600 m/s from the lunar rest velocity with a precision of +/-20 to +/-50 m/s depending on brightness. Based on the success of these exploratory observations, an extensive program has been initiated that is expected to constrain lunar atmospheric and surface-process modeling and help quantify source and escape mechanisms.

  12. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    SciTech Connect

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-06-15

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  13. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  14. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  15. Analysis of polarization by means of polarized cathodoluminescence spectroscopy in a TEM.

    PubMed

    Ohno, Yutaka; Takeda, Seiji

    2002-01-01

    We have developed a novel method to determine the polarization of light emitted from nanometre-ordered spaces in materials by means of polarized cathodoluminescence (CL) spectroscopy with an ellipsoidal mirror in a transmission electron microscope. We have shown that simulation of CL intensities in full consideration of the effect of reflection on an ellipsoidal mirror is necessary to determine the polarization.

  16. Direct frequency comb spectroscopy and high-resolution coherent control

    NASA Astrophysics Data System (ADS)

    Stowe, Matthew C.

    We present the first experiments demonstrating absolute frequency measurements of one- and two-photon transitions using direct frequency comb spectroscopy (DFCS). In particular we phase stabilized the inter-pulse period and optical phases of the pulses emitted from a mode-locked Ti:Sapphire laser, creating a broad-bandwidth optical frequency comb. By referencing the optical comb directly to the cesium microwave frequency standard, we were able to measure absolute transition frequencies over greater than a 50 nm bandwidth, utilizing the phase coherence between wavelengths spanning from 741 nm to 795 nm. As an initial demonstration of DFCS we studied transitions from the 5S to 5P, 5D, and 7S states in Rb. To reduce Doppler broadening the atoms were laser cooled in a magneto-optical trap. We present an overview of several systematic error sources that perturb the natural transition frequencies, magnitudes, and linewidths. These include radiation pressure from the probe beam, AC-Stark shifts, Zeeman shifts, power-broadening, and incoherent optical pumping. After careful study and suppression of these systematic error sources, we measured transition linewidths as narrow as 1.1 MHz FWHM and 10 kHz linecenter uncertainties. Our measurements of the 5S to 7S two-photon transition frequency demonstrated the ability to determine the comb mode order numbers when the initial transition frequency is not known to better than the comb mode frequency spacing. By modifying the spectral phase of the pulses we demonstrated high-resolution coherent control. Our first coherent control experiment utilized a grating based pulse stretcher/compressor to apply a large chirp to the pulses. We measured the two-photon transition rate as a function of linear frequency chirp. The results illustrate the differences between similar classic coherent experiments done with a single femtosecond pulse and ours conducted with multiple pulses. Furthermore, we show that it is possible to reduce the two

  17. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  18. Microcoil high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

    2006-07-12

    We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei.

  19. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  20. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  1. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  2. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  3. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  4. High-Resolution Absorption Spectroscopy of NO2

    DTIC Science & Technology

    1987-08-31

    identify by block number) FIELD GROUP SUB-GROUP Atmospheric propagation, Laser spectroscopy, Nitrogen dioxide , Spectroscopy 19. RACT (Continue on reverse if...pulsed dye laser having a 0.05-A"-bandwidth (FWHM). This represents an improvement of at least a factor of three over the resolution employed in...concise interpretation of the observed features has yet to be made. Actual state-to-state assignments in the visible and near UV have been possible only

  5. Understanding reconstructed Dante spectra using high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  6. High Resolution γ-Ray Spectroscopy: the First 85 Years

    PubMed Central

    Deslattes, Richard D.

    2000-01-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear γ rays from its 1914 beginning in Rutherford’s laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). My perspective is that of an instrumentalist hoping to convey a sense of our intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and inter-atomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting γ-ray wavelengths with optical wavelengths associated with the Rydberg constant that only recently has allowed γ-ray data to contribute to determination of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop. PMID:27551582

  7. High Resolution FIR and IR Spectroscopy of Methanol Isotopologues

    SciTech Connect

    Lees, R. M.; Xu, Li-Hong; Appadoo, D. R. T.; Billinghurst, B.

    2010-02-03

    New astronomical facilities such as HIFI on the Herschel Space Observatory, the SOFIA airborne IR telescope and the ALMA sub-mm telescope array will yield spectra from interstellar and protostellar sources with vastly increased sensitivity and frequency coverage. This creates the need for major enhancements to laboratory databases for the more prominent interstellar 'weed' species in order to model and account for their lines in observed spectra in the search for new and more exotic interstellar molecular 'flowers'. With its large-amplitude internal torsional motion, methanol has particularly rich spectra throughout the FIR and IR regions and, being very widely distributed throughout the galaxy, is perhaps the most notorious interstellar weed. Thus, we have recorded new spectra for a variety of methanol isotopic species on the high-resolution FTIR spectrometer on the CLS FIR beamline. The aim is to extend quantum number coverage of the data, improve our understanding of the energy level structure, and provide the astronomical community with better databases and models of the spectral patterns with greater predictive power for a range of astrophysical conditions.

  8. Understanding reconstructed Dante spectra using high resolution spectroscopy.

    PubMed

    May, M J; Weaver, J; Widmann, K; Kemp, G E; Thorn, D; Colvin, J D; Schneider, M B; Moore, A; Blue, B E

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  9. High resolution infrared spectroscopy of [1.1.1]propellane

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Robynne; Masiello, Tony; Jariyasopit, Narumol; Weber, Alfons; Nibler, Joseph W.; Maki, Arthur; Blake, Thomas A.; Hubler, Timothy

    2008-04-01

    The infrared spectrum of [1.1.1]propellane has been recorded at high resolution (0.002 cm -1) with individual rovibrational lines resolved for the first time. This initial report presents the ground state constants for this molecule determined from the analysis of five of the eight infrared-allowed fundamentals ν9(e'), ν10(e'), ν12(e'), ν14(a2″),ν15(a2″), as well as of several combination bands. In nearly all cases it was found that the upper states of the transitions exhibit some degree of perturbation but, by use of the combination difference method, the assigned frequencies provided over 4000 consistent ground state difference values. Analysis of these gave for the parameters of the ground state the following values, in cm -1: B0 = 0.28755833(14), DJ = 1.1313(5) × 10 -7, DJK = -1.2633(7) × 10 -7, HJ = 0.72(4) × 10 -13, HJK = -2.24(13) × 10 -13, and HKJ = 2.25(15) × 10 -13, where the numbers in parentheses indicate twice the uncertainties in the last quoted digit(s) of the parameters. Gaussian ab initio calculations, especially with the computed anharmonic corrections to some of the spectroscopic parameters, assisted in the assignments of the bands and also provided information on the electron distribution in the bridge-head carbon-carbon bond.

  10. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  11. Giant quiescent solar filament observed with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuckein, C.; Verma, M.; Denker, C.

    2016-05-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  12. High-resolution spectroscopy with a femtosecond laser frequency comb.

    PubMed

    Gerginov, V; Tanner, C E; Diddams, S A; Bartels, A; Hollberg, L

    2005-07-01

    The output of a mode-locked femtosecond laser is used for precision single-photon spectroscopy of 133Cs in an atomic beam. By changing the laser's repetition rate, the cesium D1 (6s 2S(1/2)-->6p 2P(1/2)) and D2 (6s 2S(1/2)-->6p 2P(3/2)) transitions are detected and the optical frequencies are measured with accuracy similar to that obtained with a cw laser. Control of the femtosecond laser repetition rate by use of the atomic fluorescence is also implemented, thus realizing a simple cesium optical clock.

  13. Molecular Chirality: Enantiomer Differentiation by High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hirota, Eizi

    2014-06-01

    I have demonstrated that triple resonance performed on a three-rotational-level system of a chiral molecule of C1 symmetry exhibits signals opposite in phase for different enantiomers, thereby making enantiomer differentiation possible by microwave spectroscopy This prediction was realized by Patterson et al. on 1,2-propanediol and 1,3-butanediol. We thus now add a powerful method: microwave spectroscopy to the study of chiral molecules, for which hitherto only the measurement of optical rotation has been employed. Although microwave spectroscopy is applied to molecules in the gaseous phase, it is unprecedentedly superior to the traditional method: polarimeter in resolution, accuracy, sensitivity, and so on, and I anticipate a new fascinating research area to be opened in the field of molecular chirality. More versatile and efficient systems should be invented and developed for microwave spectroscopy, in order to cope well with new applications expected for this method For C2 and Cn (n ≥ 3)chiral molecules, the three-rotational-level systems treated above for C1 molecules are no more available within one vibronic state. It should, however, be pointed out that, if we take into account an excited vibronic state in addition to the ground state, for example, we may encounter many three-level systems. Namely, either one rotational transition in the ground state is combined with two vibronic transitions, or such a rotational transition in an excited state may be connected through two vibronic transitions to a rotational level in the ground state manifold. The racemization obviously plays a crucial role in the study of molecular chirality. However, like many other terms employed in chemistry, this important process has been "defined" only in a vague way, in other words, it includes many kinds of processes, which are not well classified on a molecular basis. I shall mention an attempt to obviate these shortcomings in the definition of racemization and also to clarify the

  14. High-resolution waveguide THz spectroscopy of biological molecules.

    PubMed

    Laman, N; Harsha, S Sree; Grischkowsky, D; Melinger, Joseph S

    2008-02-01

    Low-frequency vibrational modes of biological molecules consist of intramolecular modes, which are dependent on the molecule as a whole, as well as intermolecular modes, which arise from hydrogen-bonding interactions and van der Waals forces. Vibrational modes thus contain important information about conformation dynamics of biological molecules, and can also be used for identification purposes. However, conventional Fourier transform infrared spectroscopy and terahertz time-domain spectroscopy (THz-TDS) often result in broad, overlapping features that are difficult to distinguish. The technique of waveguide THz-TDS has been recently developed, resulting in sharper features. For this technique, an ordered polycrystalline film of the molecule is formed on a metal sample plate. This plate is incorporated into a metal parallel-plate waveguide and probed via waveguide THz-TDS. The planar order of the film reduces the inhomogeneous broadening, and cooling of the samples to 77K reduces the homogenous broadening. This combination results in the line-narrowing of THz vibrational modes, in some cases to an unprecedented degree. Here, this technique has been demonstrated with seven small biological molecules, thymine, deoxycytidine, adenosine, D-glucose, tryptophan, glycine, and L-alanine. The successful demonstration of this technique shows the possibilities and promise for future studies of internal vibrational modes of large biological molecules.

  15. High resolution ion Doppler spectroscopy at Prairie View Rotamak

    SciTech Connect

    Houshmandyar, Saeid; Yang Xiaokang; Magee, Richard

    2012-10-15

    A fast ion Doppler spectroscopy (IDS) diagnostic system is installed on the Prairie View Rotamak to measure ion temperature and plasma flow. The diagnostic employs a single channel photomultiplier tube and a Jarrell-Ash 50 monochromator with a diffraction grating line density of 1180 lines/mm, which allows for first order spectra of 200-600 nm. The motorized gear of the monochromator allows spectral resolution of 0.01 nm. Equal IDS measurements are observed for various impurity emission lines of which carbon lines exhibit stronger intensities. Furthermore, the diagnostics is examined in an experiment where plasma experiences sudden disruption and quick recovery. In this case, the IDS measurements show {approx}130% increase in ion temperature. Flow measurements are shown to be consistent with plasma rotation.

  16. High resolution charge spectroscopy of heavy ions with FNTD technology

    NASA Astrophysics Data System (ADS)

    Bartz, J. A.; Kodaira, S.; Kurano, M.; Yasuda, N.; Akselrod, M. S.

    2014-09-01

    This paper is focused on the improvement of the heavy charge particle charge resolution of Fluorescent Nuclear Track Detector (FNTD) technology. Fluorescent intensity of individual heavy charge particle tracks is used to construct the spectrum. Sources of spectroscopic line broadening were investigated and several fluorescent intensity correction procedures were introduced to improve the charge resolution down to δZ = 0.25 c.u. and enable FNTD technology to distinguish between all projectile fragments of 290 MeV carbon ions. The benefits of using FNTD technology for fragmentation study include large dynamic range and wide angular acceptance. While we describe these developments in the context of fragmentation studies, the same techniques are readily extended to FNTD LET spectroscopy in general.

  17. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

    NASA Astrophysics Data System (ADS)

    Deckert-Gaudig, Tanja; Deckert, Volker

    2016-12-01

    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels.

  18. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin

    PubMed Central

    Deckert-Gaudig, Tanja; Deckert, Volker

    2016-01-01

    Fibril formation implies the conversion of a protein’s native secondary structure and is associated with several neurodegenerative diseases. A better understanding of fibrillation inhibition and fibril dissection requires nanoscale molecular characterization of amyloid structures involved. Tip-enhanced Raman scattering (TERS) has already been used to chemically analyze amyloid fibrils on a sub-protein unit basis. Here, TERS in combination with atomic force microscopy (AFM), and conventional Raman spectroscopy characterizes insulin assemblies generated during inhibition and dissection experiments in the presence of benzonitrile, dimethylsulfoxide, quercetin, and β-carotene. The AFM topography indicates formation of filamentous or bead-like insulin self-assemblies. Information on the secondary structure of bulk samples and of single aggregates is obtained from standard Raman and TERS measurements. In particular the high spatial resolution of TERS reveals the surface conformations associated with the specific agents. The insulin aggregates formed under different inhibition and dissection conditions can show a similar morphology but differ in their β-sheet structure content. This suggests different aggregation pathways where the prevention of the β-sheet stacking of the peptide chains plays a major role. The presented approach is not limited to amyloid-related reasearch but can be readily applied to systems requiring extremely surface-sensitive characterization without the need of labels. PMID:28008970

  19. High resolution FTIR spectroscopy of the ClO radical

    NASA Technical Reports Server (NTRS)

    Lang, Valerie; Sander, Stanley P.; Friedl, Randy

    1988-01-01

    The chlorine monoxide radical, ClO, plays a significant role in the catalytic destruction of ozone in the Earth's stratosphere. Because of its atmospheric importance, ClO has been the subject of numerous observational attempts. In order to deduce ClO concentrations from stratospheric infrared measurements, the infrared spectroscopy of ClO must be well characterized. Approximately 830 individual lines were measured form ClO imfrared spectra with the ClO concentration between 1 x 10 to the 13th power and 6 x 10 to the 13th power molecules per cu cu. The lines were then averaged and fit to a function of m (where m = O, -J or J+1 for the Q,P and R branches respectively) to obtain the band strength, S sub v and the first Herman-Wallis coefficient, alpha. The total S sub v for the two main isotopmers was 13.11 plus or minus 1 cm(-2) atm(-1) while alpha was 0.00412 plus or minus .00062.

  20. Dispersion of metal-insulator-metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy

    SciTech Connect

    Kuttge, Martin; Cai, Wei; Garcia de Abajo, F. Javier; Polman, Albert

    2009-07-15

    Cathodoluminescence imaging spectroscopy is used to excite and characterize the resonant modes of Fabry-Perot resonators for surface plasmon polaritons confined in a metal-insulator-metal (MIM) geometry. The smallest MIM plasmon wavelength derived from the observed mode pattern is found to be 160 nm in cavities with a 10 nm SiO{sub 2} layer for a free-space wavelength of 645 nm. The measured wavelength agrees well with values from analytical dispersion relation calculations. Calculations of the excitation probability show that the resonant excitation of MIM plasmons depends strongly on the electron energy due to phase retardation effects resulting from the finite electron velocity.

  1. Ultra high resolution molecular beam cars spectroscopy with application to planetary atmospheric molecules

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1982-01-01

    The measurement of high resolution pulsed and continuous wave (CW) coherent anti-Stokes Raman spectroscopy (CARS) measurements in pulsed and steady state supersonic expansions were demonstrated. Pulsed molecular beam sources were characterized, and saturation of a Raman transition and, for the first time, the Raman spectrum of a complex molecular cluster were observed. The observation of CW CARS spectra in a molecular expansion and the effects of transit time broadening is described. Supersonic expansion is established as a viable technique for high resolution Raman spectroscopy of cold molecules with resolutions of 100 MH2.

  2. High-Resolution Solid-State NMR Spectroscopy: Characterization of Polymorphism in Cimetidine, a Pharmaceutical Compound

    ERIC Educational Resources Information Center

    Pacilio, Julia E.; Tokarski, John T.; Quiñones, Rosalynn; Iuliucci, Robbie J.

    2014-01-01

    High-resolution solid-state NMR (SSNMR) spectroscopy has many advantages as a tool to characterize solid-phase material that finds applications in polymer chemistry, nanotechnology, materials science, biomolecular structure determination, and others, including the pharmaceutical industry. The technology associated with achieving high resolution…

  3. High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej

    2017-02-01

    In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.

  4. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  5. Experimental setup for high resolution x-ray spectroscopy of solids and liquid samples

    NASA Astrophysics Data System (ADS)

    Yin, Zhong; Rajković, Ivan; Raiser, Dirk; Scholz, Mirko; Techert, Simone

    2013-09-01

    Here we present a next-generation experimental setup for high-resolution X-ray spectroscopy of solid and liquid samples in the soft X-ray region to elucidate the complex molecular structures of (bio)chemical systems. The setup consists of a main target chamber, a target holder for either solid samples or a liquid jet delivery system, and a high-resolution soft X-ray grating spectrometer. This setup is in commissioning at PETRA III, presently one of the most brilliant storage ring based X-ray radiation sources in the world. The newly designed grazing incidence grating spectrometer is utilized for high-resolution measurement in the XUV range from 1 nm up to 6 nm.

  6. High-resolution inverse Raman and resonant-wave-mixing spectroscopy

    SciTech Connect

    Rahn, L.A.

    1993-12-01

    These research activities consist of high-resolution inverse Raman spectroscopy (IRS) and resonant wave-mixing spectroscopy to support the development of nonlinear-optical techniques for temperature and concentration measurements in combustion research. Objectives of this work include development of spectral models of important molecular species needed to perform coherent anti-Stokes Raman spectroscopy (CARS) measurements and the investigation of new nonlinear-optical processes as potential diagnostic techniques. Some of the techniques being investigated include frequency-degenerate and nearly frequency-degenerate resonant four-wave-mixing (DFWM and NDFWM), and resonant multi-wave mixing (RMWM).

  7. Cathodoluminescence microscopy and spectroscopy of micro- and nanodiamonds: an implication for laboratory astrophysics.

    PubMed

    Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Ott, Ulrich; Tsuchiyama, Akira; Kayama, Masahiro; Simonia, Irakli; Boudou, Jean-Paul

    2012-12-01

    Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature-dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.

  8. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall,G.E.; Sears, T.J.

    2009-04-03

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.

  9. High-resolution extreme-ultraviolet spectroscopy of potassium using anti-Stokes radiation

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1981-01-01

    The use of a new extreme-ultraviolet radiation source based on spontaneous anti-Stokes scattering for high-resolution absorption spectroscopy of transition originating from the 3p6 shell of potassium is reported. The region from 546.6 to 536.8 A is scanned at a resolution of about 1.2 Kayser. Within this region, four previously unreported lines are observed.

  10. Update of High Resolution (e,e'K^+) Hypernuclear Spectroscopy at Jefferson Lab's Hall A

    SciTech Connect

    Cusanno, F; Bydzovsky, P; Chang, C C; Cisbani, E; De Jager, C W; De Leo, R; Frullani, S; Garibaldi, F; Higinbotham, D W; Iodice, M; LeRose, J J; Markowitz, P; Marrone, S; Sotona, M; Urciuoli, G M

    2010-03-01

    Updated results of the experiment E94-107 hypernuclear spectroscopy in Hall A of the Thomas Jefferson National Accelerator Facility (Jefferson Lab), are presented. The experiment provides high resolution spectra of excitation energy for 12B_\\Lambda, 16N_\\Lambda, and 9Li_\\Lambda hypernuclei obtained by electroproduction of strangeness. A new theoretical calculation for 12B_\\Lambda, final results for 16N_\\Lambda, and discussion of the preliminary results of 9Li_\\Lambda are reported.

  11. High resolution optical spectroscopy of air-induced electrical instabilities in n-type polymer semiconductors.

    PubMed

    Di Pietro, Riccardo; Sirringhaus, Henning

    2012-07-03

    We use high-resolution charge-accumulation optical spectroscopy to measure charge accumulation in the channel of an n-type organic field-effect transistor. We monitor the degradation of device performance in air, correlate the onset voltage shift with the reduction of charge accumulated in the polymer semiconductor, and explain the results in view of the redox reaction between the polymer, water and oxygen in the accumulation layer.

  12. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall, G.E.

    2011-05-31

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  13. Gas-Phase Molecular Dynamics: High Resolution Spectroscopy and Collision Dynamics of Transient Species

    SciTech Connect

    Hall G. E.; Goncharov, V.

    2012-05-29

    This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.

  14. Elimination of the Vacuum Pump Requirement for High-Resolution Rotational Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Holt, Jennifer; Daly, Ryan W.; Neese, Christopher F.; De Lucia, Frank C.

    2015-06-01

    It has been observed that with the advances being driven by the wireless communications industry, the microwave components for submillimeter wave spectrometers and sensors will become almost "free". Moreover, these electronic components will require little power. However, neither of these attributes applies to the vacuum requirements for high-resolution rotational spectroscopy. We will report on the design, construction, and operation of a simple spectroscopic cell that overcomes these problems.

  15. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Heimann, P.A.; Mossessian, D.

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  16. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    NASA Astrophysics Data System (ADS)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  17. High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples

    NASA Astrophysics Data System (ADS)

    Yoda, Yoshitaka; Okada, Kyoko; Wang, Hongxin; Cramer, Stephen P.; Seto, Makoto

    2016-12-01

    A new high-resolution monochromator for 14.4-keV X-rays has been designed and developed for the Fe nuclear resonance vibrational spectroscopy of biological samples. In addition to high resolution, higher flux and stability are especially important for measuring biological samples, because of the very weak signals produced due to the low concentrations of Fe-57. A 24% increase in flux while maintaining a high resolution better than 0.9 meV is achieved in the calculation by adopting an asymmetric reflection of Ge, which is used as the first crystal of the three-bounce high-resolution monochromator. A 20% increase of the exit beam size is acceptable to our biological applications. The higher throughput of the new design has been experimentally verified. A fine rotation mechanics that combines a weak-link hinge with a piezoelectric actuator was used for controlling the photon energy of the monochromatic beam. The resulting stability is sufficient to preserve the intrinsic resolution.

  18. High-resolution heteronuclear multi-dimensional NMR spectroscopy in magnetic fields with unknown spatial variations.

    PubMed

    Zhang, Zhiyong; Huang, Yuqing; Smith, Pieter E S; Wang, Kaiyu; Cai, Shuhui; Chen, Zhong

    2014-05-01

    Heteronuclear NMR spectroscopy is an extremely powerful tool for determining the structures of organic molecules and is of particular significance in the structural analysis of proteins. In order to leverage the method's potential for structural investigations, obtaining high-resolution NMR spectra is essential and this is generally accomplished by using very homogeneous magnetic fields. However, there are several situations where magnetic field distortions and thus line broadening is unavoidable, for example, the samples under investigation may be inherently heterogeneous, and the magnet's homogeneity may be poor. This line broadening can hinder resonance assignment or even render it impossible. We put forth a new class of pulse sequences for obtaining high-resolution heteronuclear spectra in magnetic fields with unknown spatial variations based on distant dipolar field modulations. This strategy's capabilities are demonstrated with the acquisition of high-resolution 2D gHSQC and gHMBC spectra. These sequences' performances are evaluated on the basis of their sensitivities and acquisition efficiencies. Moreover, we show that by encoding and decoding NMR observables spatially, as is done in ultrafast NMR, an extra dimension containing J-coupling information can be obtained without increasing the time necessary to acquire a heteronuclear correlation spectrum. Since the new sequences relax magnetic field homogeneity constraints imposed upon high-resolution NMR, they may be applied in portable NMR sensors and studies of heterogeneous chemical and biological materials.

  19. Optical Properties of Wurtzite Semiconductors Studied Using Cathodoluminescence Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Juday, Reid

    The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on

  20. High resolution transmission spectroscopy as a diagnostic for Jovian exoplanet atmospheres: constraints from theoretical models

    SciTech Connect

    Kempton, Eliza M.-R.; Perna, Rosalba; Heng, Kevin

    2014-11-01

    We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with net blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption

  1. High Resolution Infrared Spectroscopy of Molecules of Terrestrial and Planetary Interest

    NASA Technical Reports Server (NTRS)

    Freedman, Richard S.

    2001-01-01

    In collaboration with the laboratory spectroscopy group of the Ames Atmospheric Physics Research Branch (SGP), high resolution infrared spectra of molecules that are of importance for the dynamics of the earth's and other planets' atmospheres were acquired using the SGP high resolution Fourier transform spectrometer and gas handling apparatus. That data, along with data acquired using similar instrumentation at the Kitt Peak National Observatory was analyzed to determine the spectral parameters for each of the rotationally resolved transitions for each molecule. Those parameters were incorporated into existing international databases (e.g. HITRANS and GEISA) so that field measurements could be converted into quantitative information regarding the physical and chemical structures of earth and planetary atmospheres.

  2. Performance of the AILES THz-Infrared beamline at SOLEIL for High resolution spectroscopy

    SciTech Connect

    Brubach, Jean-Blaise; Rouzieres, Mathieu; Roy, Pascale; Manceron, Laurent; Pirali, Olivier; Balcon, Didier; Tchana, Fridolin Kwabia; Boudon, Vincent; Tudorie, M.; Huet, Therese; Cuisset, Arnaud

    2010-02-03

    The new THz beamline (AILES) located at the third generation Synchrotron Radiation source SOLEIL is now operating for applications in a wide variety of research themes. In particular, this source with its adapted optics allows high resolution spectroscopic measurements of molecules in the entire infrared and THz range. This presentation focuses on the performances concerning flux, spectral range and stability for molecular spectroscopy. Thanks to these performances, the coupling of synchrotron radiation from a highly stable third generation source with high resolution FTIR spectrometer and with a long path cell (150 m or more) can be particularly advantageous. This fact is related to the optics of the beamline permitting the entire source to be used without aperture stop (entrance iris), even for measurements at highest-resolution of approx0.1 mueV (10{sup -3} cm{sup -1}).

  3. Fast acquisition of high-resolution 2D NMR spectroscopy in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Lin, Liangjie; Wei, Zhiliang; Zeng, Qing; Yang, Jian; Lin, Yanqin; Chen, Zhong

    2016-05-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical and biological analyses. In this study, we combine the J-coupling coherence transfer module with the echo-train acquisition technique for fast acquisition of high-resolution 2D NMR spectra in magnetic fields with unknown spatial variations. The proposed method shows satisfactory performance on a 5 mM ethyl 3-bromopropionate sample, under a 5-kHz (10 ppm at 11.7 T) B0 inhomogeneous field, as well as under varying degrees of pulse-flip-angle deviations. Moreover, a simulative ex situ NMR measurement is also conducted to show the effectiveness of the proposed pulse sequence.

  4. High resolution coherent three dimensional spectroscopy of NO{sub 2}

    SciTech Connect

    Wells, Thresa A.; Muthike, Angelar K.; Robinson, Jessica E.; Chen, Peter C.

    2015-06-07

    Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO{sub 2} spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.

  5. High-resolution pulsed-field ionization photoelectron spectroscopy using multi-bunch synchrotron radiation

    SciTech Connect

    Hsu, C.W.; Evans, M.; Ng, C.Y.; Heimann, P.

    1997-04-01

    BL9.0.2.2 is the newly constructed experimental End Station 2 at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source (ALS). It is dedicated to the high resolution photoionization study of molecules of interest to atmospheric and combustion chemistry. This End Station is equipped with a high resolution scanning monochromator, which has been demonstrated to have a world record resolution of E/{delta}E=70,000. Taking the advantage of the high resolution ALS light, the authors have improved the energy resolution in threshold photoelectron spectroscopy (TPES) to 0.8 meV. The TPES is a popular technique for photoionization experiments at all synchrotron radiation facilities due to its high energy resolution as compared to that of traditional photoelectron spectroscopy (PES). TPES achieves higher energy resolution by preferentially detecting near zero kinetic energy photoelectrons resulting from threshold photoionization. However, the spectra obtained from the TPES technique generally are complicated by the simultaneous detection of electrons with nonzero kinetic energy, which are not fully discriminated against. On the other hand, the spectra obtained from pulsed field ionization photoelectron spectroscopy (PFI-PES) are completely free of the contamination from kinetic electrons. The PFI-PE technique basically involves the detection of the photoelectrons from field ionization of the very high-n Rydberg states, a few cm{sup {minus}1} below the ionization energy (IE), by applying a delayed pulsed electric field. Within a delay of a few microseconds, all the prompt electrons formed from direct ionization will escape from the photoionization region and will not be collected. The authors have recently overcome problems with energy resolution of an electron time-of-flight technique, and incorporated the PFI-PE technique with multi-bunch VUV synchrotron radiation.

  6. High-resolution electron spectroscopy of different adsorption states of ethylene on Pd(1 1 1)

    NASA Astrophysics Data System (ADS)

    Sock, M.; Eichler, A.; Surnev, S.; Andersen, J. N.; Klötzer, B.; Hayek, K.; Ramsey, M. G.; Netzer, F. P.

    2003-11-01

    The adsorption of ethylene at 100 K on clean and oxygen precovered Pd(1 1 1) surfaces and the thermal evolution of the ethylene adsorbate layers have been investigated experimentally by high-resolution electron energy loss spectroscopy (HREELS), high-resolution X-ray photoelectron spectroscopy with synchrotron radiation, thermal desorption spectroscopy and theoretically by ab initio density functional theory (DFT) calculations. On the clean Pd(1 1 1) surface at 100 K ethylene is adsorbed in a di-σ bonding state, whereas on the oxygen precovered Pd(1 1 1)2 × 2-O surface the π-bonded configuration is more stable; this has been established both experimentally and theoretically. Upon adsorption at room temperature ethylidyne adspecies are formed on both surfaces, but neither di-σ nor π-bonded ethylene transform into ethylidyne on heating from low temperature up to 450 K. Complete molecular desorption of ethylene is observed in both cases, with no signs of dehydrogenation. The spectroscopic data recorded during the thermal evolution of the low temperature adsorbate phase have been analysed with the help of DFT and indicate that π-bonded ethylene adsorption states may become populated upon heating the low temperature adlayer to 350 K.

  7. High-Resolution Spectroscopy with the Chandra X-ray Observatory

    ScienceCinema

    Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States

    2016-07-12

    The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.

  8. Potential of Cathodoluminescence Microscopy and Spectroscopy for the Detection of Prokaryotic Cells on Minerals

    NASA Astrophysics Data System (ADS)

    Rommevaux-Jestin, Céline; Ménez, Bénédicte

    2010-11-01

    Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.

  9. Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali-Silica Reaction Potential.

    PubMed

    Kuchařová, Aneta; Götze, Jens; Šachlová, Šárka; Pertold, Zdeněk; Přikryl, Richard

    2016-02-01

    Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali-silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

  10. Potential of cathodoluminescence microscopy and spectroscopy for the detection of prokaryotic cells on minerals.

    PubMed

    Rommevaux-Jestin, Céline; Ménez, Bénédicte

    2010-11-01

    Detecting mineral-hosted ecosystems to assess the extent and functioning of the biosphere from the surface to deep Earth requires appropriate techniques that provide, beyond the morphological criteria, indubitable clues of the presence of prokaryotic cells. Here, we evaluate the capability of cathodoluminescence microscopy and spectroscopy, implemented on a scanning electron microscope, to identify prokaryotes on mineral surfaces. For this purpose, we used, as a first step, a simple model of either unstained or stained cultivable cells (Escherichia coli, Deinococcus radiodurans) deposited on minerals that are common in the oceanic crust (basaltic glass, amphibole, pyroxene, and magnetite). Our results demonstrate that the detection of cells is possible at the micrometric level on the investigated minerals through the intrinsic fluorescence of their constituting macromolecules (aromatic amino and nucleic acids, coenzymes). This allows us to distinguish biomorph inorganic phases from cells. This easily implemented technique permits an exploration of colonized rock samples. In addition, the range of spectrometric techniques available on a scanning electron microscope can provide additional information on the nature and chemistry of the associated mineral phases, which would lead to a simultaneous characterization of cells, their microhabitats, and a better understanding of their potential relationships.

  11. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NASA Astrophysics Data System (ADS)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-04-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly complementary, no attempt has ever been made to combine them, perhaps due to the different modeling approaches that are typically used in their interpretation. Here, we present the first combined analysis of previously published dayside spectra of the exoplanet HD 209458 b obtained at low resolution with HST/Wide Field Camera 3 (WFC3) and Spitzer/IRAC and at high resolution with VLT/CRIRES. By utilizing a novel retrieval algorithm capable of computing the joint probability distribution of low- and high-resolution spectra, we obtain tight constraints on the chemical composition of the planet’s atmosphere. In contrast to the WFC3 data, we do not confidently detect H2O at high spectral resolution. The retrieved water abundance from the combined analysis deviates by 1.9σ from the expectations for a solar-composition atmosphere in chemical equilibrium. Measured relative molecular abundances of CO and H2O strongly favor an oxygen-rich atmosphere (C/O < 1 at 3.5σ ) for the planet when compared to equilibrium calculations including O rainout. From the abundances of the seven molecular species included in this study we constrain the planet metallicity to 0.1–1.0× the stellar value (1σ). This study opens the way to coordinated exoplanet surveys between the flagship ground- and space-based facilities, which ultimately will be crucial for characterizing potentially habitable planets.

  12. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  13. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    SciTech Connect

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  14. Photodissociation of ozone at 276nm by photofragment imaging and high resolution photofragment translational spectroscopy

    SciTech Connect

    Blunt, D.A.; Suits, A.G.

    1996-11-01

    The photodissociation of ozone at 276 nm is investigated using both state resolved ion imaging and high-resolution photofragment translational spectroscopy. Ion images from both [3+1] and [2+1] resonance enhanced multiphoton ionization of the O({sup 1}D) photofragment are reported. All images show strong evidence of O({sup 1}D) orbital alignment. Photofragment translation spectroscopy time-of-flight spectra are reported for the O{sub 2} ({sup 1}{Delta}{sub g}) photofragment. Total kinetic energy release distributions determined form these spectra are generally consistent with those distributions determined from imaging data. Observed angular distributions are reported for both detection methods, pointing to some unresolved questions for ozone dissociation in this wavelength region.

  15. High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers

    SciTech Connect

    Wang, Yin; Wang, Wen; Wysocki, Gerard; Soskind, Michael G.

    2014-01-20

    In this Letter, we present a method of performing broadband mid-infrared spectroscopy with conventional, free-running, continuous wave Fabry-Perot quantum cascade lasers (FP-QCLs). The measurement method is based on multi-heterodyne down-conversion of optical signals. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the radio-frequency domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution (∼15 MHz) spectroscopy of molecular absorption are demonstrated and show great potential for development of high performance FP-laser-based spectrometers for chemical sensing.

  16. Automatic pole-zero/zero-pole digital compensator for high-resolution spectroscopy: Design and experiments

    SciTech Connect

    Geraci, A.; Pullia, A.; Ripamonti, G.

    1999-08-01

    In a high-resolution spectroscopy system the relatively long exponential decay due to the charge preamplifier is customarily canceled in an analogue fashion by means of a PZ (Pole-Zero) stage. The accurateness of such a compensation has a big impact on the energy resolution because it strongly affects the baseline-stability problems. The authors have automatically and on-line performed such a compensation in a digital way, while maintaining a spectroscopy performance and keeping at minimum both the ADC sampling frequency (thus power consumption) and its resolution (thus cost). This is done through an IIR filter, implemented within a FPGA by a DSP. The so-compensated waveform has, in excellent approximation, an all-pole shape. Starting from such a signal, the minimum-noise filters for energy and/or time measurements are then promptly synthesized and implemented for real time operation through the same DSP.

  17. High resolution Halpha spectroscopy and R-band photometry of Swift J1357.2-0933

    NASA Astrophysics Data System (ADS)

    Casares, Jorge; Torres, Manuel A. P.; Negueruela, Ignacio; Gonzalez-Fernandez, Carlos; Corral-Santana, Jesus M.; Zurita, Cristina; Llano, Sergio Rodriguez

    2011-03-01

    We report on high resolution Halpha spectroscopy and time-resolved photometry of the optical counterpart to the X-ray transient Swift J1357.2-0933 in outburst (Krimm et al. ATEL #3138). SPECTROSCOPY: Six 30-33 min spectra were obtained on the nights of 2011 Feb 25-27 using the IDS Spectrograph on the 2.5m Isaac Newton Telescope (INT) at the Observatorio del Roque de Los Muchachos. The observations were performed with the H1800V grating and a slit width 1.6 arcsec to yield a spectral coverage of 6270-7000 Angs with a 30 km/s FWHM spectral resolution at Halpha..

  18. High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy.

    PubMed

    Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K

    2008-03-27

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and Kbeta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  19. High-Resolution Structure of the Photosynthetic Mn4Ca Catalyst from X-ray Spectroscopy

    SciTech Connect

    Yachandra, Vittal; Yano, Junko; Kern, Jan; Pushkar, Yulia; Sauer, Kenneth; Glatzel, Pieter; Bergmann, Uwe; Messinger, Johannes; Zouni, Athina; Yachandra, Vittal K.

    2007-08-01

    The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, are described. Issues of X-ray damage especially at the metal sites in the Mn4Ca cluster are discussed. The structure of the Mn4Ca catalyst at high-resolution which has so far eluded attempts of determination by X-ray diffraction, EXAFS and other spectroscopic techniques has been addressed using polarized EXAFS techniques applied to oriented PS II membrane preparations and PS II single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and K? emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.

  20. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  1. High-Resolution Electron Energy-Loss Spectroscopy (HREELS) Using a Monochromated TEM/STEM

    NASA Technical Reports Server (NTRS)

    Sai, Z. R.; Bradley, J. P.; Erni, R.; Browning, N.

    2005-01-01

    A 200 keV FEI TF20 XT monochromated (scanning) transmission electron microscope funded by NASA's SRLIDAP program is undergoing installation at Lawrence Livermore National Laboratory. Instrument specifications in STEM mode are Cs =1.0 mm, Cc =1.2 mm, image resolution =0.18 nm, and in TEM mode Cs =1.3 mm, Cc =1.3 mm, information limit =0.14 nm. Key features of the instrument are a voltage-stabilized high tension (HT) supply, a monochromator, a high-resolution electron energy-loss spectrometer/energy filter, a high-resolution annular darkfield detector, and a solid-state x-ray energy-dispersive spectrometer. The high-tension tank contains additional sections for 60Hz and high frequency filtering, resulting in an operating voltage of 200 kV plus or minus 0.005V, a greater than 10-fold improvement over earlier systems. The monochromator is a single Wien filter design. The energy filter is a Gatan model 866 Tridiem-ERS high resolution GIF spec d for less than or equal to 0.15 eV energy resolution with 29 pA of current in a 2 nm diameter probe. 0.13 eV has already been achieved during early installation. The x-ray detector (EDAX/Genesis 4000) has a take-off angle of 20 degrees, an active area of 30 square millimeters, and a solid angle of 0.3 steradians. The higher solid angle is possible because the objective pole-piece allows the detector to be positioned as close as 9.47 mm from the specimen. The voltage-stabilized HT supply, monochromator and GIF enable high-resolution electron energy-loss spectroscopy (HREELS) with energy resolution comparable to synchrotron XANES, but with approximately 100X better spatial resolution. The region between 0 and 100 eV is called the low-loss or valence electron energy-loss spectroscopy (VEELS) region where features due to collective plasma oscillations and single electron transitions of valence electrons are observed. Most of the low-loss VEELS features we are detecting are being observed for the first time in IDPs. A major focus of

  2. Diamond-machined ZnSe immersion grating for NIR high-resolution spectroscopy

    SciTech Connect

    Ikeda, Y; Kobayashi, N; Kuzmenko, P J; Little, S L; Yasui, C; Kondo, S; Minami, A; Motohara, K

    2008-07-25

    ZnSe immersion gratings (n {approx} 2.45) provide the possibility of high-resolution spectroscopy for the near-infrared (NIR) region. Since ZnSe has a lower internal attenuation than other NIR materials, it is most suitable for immersion grating, particularly in short NIR region (0.8-1.4 {micro}m). We are developing an extremely high-resolution spectrograph with {lambda}/{Delta}{lambda} = 100,000, WINERED, customized for the short NIR region, using ZnSe (or ZnS) immersion grating. However, it had been very difficult to make fine grooves on ZnSe substrate with a small pitch of less than 50 {micro}m because ZnSe is a soft/brittle material. We have overcome this problem and successfully machined sharp grooves with fine pitch on ZnSe substrates by nano precision fly-cutting technique at LLNL. The optical testing of the sample grating with HeNe laser shows an excellent performance: the relative efficiency more than 87.4 % at 0.633 {micro}m for a classical grating configuration. The diffraction efficiency when used as an immersion grating is estimated to be more than 65 % at 1 {micro}m. Following this progress, we are about to start machining a grating on a large ZnSe prism with an entrance aperture of 23mm x 50mm and the blaze angle of 70{sup o}.

  3. High-resolution absorptive intermolecular multiple-quantum coherence NMR spectroscopy under inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Lin, Yanqin; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2012-01-01

    Intermolecular multiple-quantum coherence (iMQC) is capable of improving NMR spectral resolution using a 2D shearing manipulation method. A pulse sequence termed CT-iDH, which combines intermolecular double-quantum filter (iDQF) with a modified constant-time (CT) scheme, is designed to achieve fast acquisition of high-resolution intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) spectra without strong coupling artifacts. Furthermore, double-absorption lineshapes are first realized in 2D intermolecular multi-quantum coherences (iMQCs) spectra under inhomogeneous fields through a combination of iZQC and iDQC signals to double the resolution without loss of sensitivity. Theoretically the spectral linewidth can be further reduced by half compared to original iMQC high-resolution spectra. Several experiments were performed to test the feasibility of the new method and the improvements are evaluated quantitatively. The study suggests potential applications for in vivo spectroscopy.

  4. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE < 10 meV, Δθ ~ +/- 0.2 °) compatible with the SARPES measurement. By placing two VLEED spin detectors orthogonally we have realized the polarization measurement of all spin components (x, y and z) with the high resolution. Some examples of the three-dimensional spin observation will be presented. This work is supported by KAKENHI (23244066), Grant-in-Aid for Scientific Research (A) of Japan Society for the Promotion of Science.

  5. Fragmentation and conformation study of ephedrine by low- and high-resolution mass selective UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Braun, J. E.; Neusser, H. J.

    2004-10-01

    The neurotransmitter molecule, ephedrine, has been studied by mass-selective low- and high-resolution UV resonance enhanced two-photon ionization spectroscopy. Under all experimental conditions we observed an efficient fragmentation upon ionization. The detected vibronic peaks in the spectrum are classified according to the efficiency of the fragmentation, which leads to the conclusion that there exist three different species in the molecular beam: ephedrine-water cluster and two distinct conformers. The two-color two-photon ionization experiment with a decreased energy of the second photon leads to an upper limit of 8.3 eV for the ionization energy of ephedrine. The high-resolution (70 MHz) spectrum of the strongest vibronic peak in the spectrum measured at the fragment (m/z=58) mass channel displays a pronounced and rich rotational structure. Its analysis by the use of a specially designed computer-aided rotational fit process yields accurate rotational constants for the S0 and S1 states and the transition moment ratio, providing information on the respective conformational structure.

  6. High-resolution optical spectroscopy in a hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Perrella, C.; Light, P. S.; Stace, T. M.; Benabid, F.; Luiten, A. N.

    2012-01-01

    In this paper, we present detailed high-resolution spectroscopy of rubidium (Rb) vapor confined within a hollow-core photonic crystal fiber (HC-PCF). We find a very low level of additional frequency broadening associated with this confinement, with spectral features being only 1 MHz broader than the natural linewidth of the excited state. We show that this additional broadening is consistent solely with the atoms' transit across the fiber's optical mode. This low level of decoherence opens the door to a wide variety of applications including compact frequency standards and new types of quantum optical devices based on alkali-metal-loaded HC-PCFs. We highlight the low level of decoherence through observation of electromagnetically induced transparency in the confined vapor.

  7. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  8. Application of a continuously tunable, cw optical parametric oscillator for high-resolution spectroscopy.

    PubMed

    Gibson, G M; Dunn, M H; Padgett, M J

    1998-01-01

    We report the use of a smoothly tunable, single-frequency continuous-wave optical parametric oscillator (OPO) for high-resolution spectroscopy. The OPO is based on potassium titanyl phosphate and is resonant for both signal and idler fields, resulting in a device with a very low pump power threshold of 30 mW. The frequency-selective nature of the doubly resonant oscillator ensures that the signal and idler modes can be tuned across the entire phase-match bandwidth without the need for additional intracavity frequency-selective components. Smooth frequency tuning of the output of the OPO is obtained by tuning of the pump laser. To demonstrate the practicality of our OPO we recorded the absorption spectrum of cesium vapor in the 1-microm spectral region.

  9. Continuous-wave whispering-gallery optical parametric oscillator for high-resolution spectroscopy.

    PubMed

    Werner, Christoph S; Buse, Karsten; Breunig, Ingo

    2015-03-01

    We achieve a continuous operation of a whispering gallery optical parametric oscillator by stabilizing the resonator temperature T on the mK level and simultaneously locking the pump frequency to a cavity resonance using the Pound-Drever-Hall technique. The millimeter-sized device converts several mW of a pump wave at 1040 nm wavelength to signal and idler waves around 2000 nm wavelength with more than 50% efficiency. Over 1 h, power and frequency of the signal wave vary by <±1% and by <±25  MHz, respectively. The latter can be tuned over 480 MHz without a mode hop by changing T over 120 mK. In order to prove the suitability for high-resolution spectroscopy, we scan the signal frequency across the resonance of a Fabry-Perot interferometer resolving nicely its 10 MHz linewidth.

  10. Multiple Populations in M31 Globular Clusters: Clues from Infrared High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; APOGEE Team

    2017-01-01

    Abundance variations are a common feature of Milky Way globular clusters. The globular clusters in M31 are too distant for detailed abundance studies of their individual stars; however, cluster abundances can be determined through high resolution, integrated light (IL) spectroscopy. In this talk, I discuss how IL abundances can be interpreted in the context of multiple populations. In particular, I will present new infrared abudances of 25 M31 globular clusters, derived from IL spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These H band spectra allow determinations of C, N, and O from molecular features, and Fe, Na, Mg, Al, Si, Ca, Ti, and K from atomic features. The integrated abundance ratios are then investigated with cluster [Fe/H] and mass.

  11. A Study of the Conformational Isomerism of 1-Iodobutane by High Resolution Rotational Spectroscopy

    DOE PAGES

    Arsenault, Eric A.; Obenchain, Daniel A.; Blake, Thomas A.; ...

    2017-03-24

    The first microwave study of 1-iodobutane, performed by Steinmetz et al. in 1977, led to the determination of the B+C parameter for the anti-anti- and gauche-anti-conformers. Nearly 40 years later, in this paper this reinvestigation of 1-iodobutane, by high-resolution microwave spectroscopy, led to the determination of rotational constants, centrifugal distortion constants, nuclear quadrupole coupling constants (NQCCs), and nuclear-spin rotation constants belonging to both of the two previously mentioned conformers, in addition to the gauche-gauche-conformer, which was observed in this frequency regime for the first time. Finally, comparisons between the three conformers of 1-iodobutane and other iodo- and bromoalkanes are made,more » specifically through an analysis of the nuclear quadrupole coupling constants belonging to the iodine and bromine atoms in the respective chemical environments.« less

  12. High resolution spectroscopy of comet C/2002 C1 Ikeya-Zhang with SARG at TNG

    NASA Astrophysics Data System (ADS)

    Capria, M. T.; Cremonese, G.; Boattini, A.; de Sanctis, M. C.; D'Abramo, G.; Buzzoni, A.

    2002-11-01

    A program of high resolution spectroscopy of comets is being conducted at TNG in Canary Islands using the echelle spectrograph SARG. The aim of the program is to catalogue known and unknown emission lines, compare them with the lines already listed in existing catalogues and possibly identify unknown lines. In the visible range of the spectrum emission lines of daughter molecules and ions can be found, and many of them are still unidentified. The comet C/2002 C1 Ikeya-Zhang was observed with SARG during the night 19-20 of April and spectra with two different setups were taken. In the first case a narrow band filter was used to isolate the sodium emissions with a long slit and R = 43000. The data show very interesting cometary sodium emissions in the coma. The second setup used a short slit covering the spectral range of 4620-7920 Å with R = 57000.

  13. High-Resolution Spectroscopy and Optical Photometry of MWC 349A and MWC 349B

    NASA Astrophysics Data System (ADS)

    Manset, N.; Miroshnichenko, A. S.; Zharikov, S. V.; Kusakin, A. V.

    2017-02-01

    MWC 349A is a V ˜ 13 mag object with the B[e] phenomenon, a very strong optical emission-line spectrum, maser and laser line emission, and a radio-bright bipolar nebula, attenuated by ˜10 mag of interstellar extinction. MWC 349B is a visual companion of MWC 349A with no previously reported signs of emission. The physical connection of the pair has been the subject of debates toward revealing the evolutionary state of MWC 349A. Only low-resolution spectra reported for MWC 349B resulted in estimating its parameters with a large uncertainty. We report the results of high-resolution optical spectroscopy of both objects as well as their optical photometry.

  14. High-resolution vibrational and rotational spectroscopy of CD2H+ in a cryogenic ion trap

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Stoffels, Alexander; Thorwirth, Sven; Brünken, Sandra; Schlemmer, Stephan; Asvany, Oskar

    2017-02-01

    The low-lying rotational states (J = 0, … , 5) of CD2H+ have been probed by high-resolution ro-vibrational and pure rotational spectroscopy, applying several action spectroscopic methods in a cryogenic 22-pole ion trap. For this, the ν1 ro-vibrational band has been revisited, detecting 108 transitions, among which 36 are new. The use of a frequency comb system allowed us to measure the ro-vibrational transitions with high precision and accuracy, typically better than 1 MHz. The high precision has been confirmed by comparing equal combination differences in the ground and excited state. Moreover, precise predictions of pure rotational transitions were possible for the ground state. Twenty-five rotational transitions have been detected directly by a novel IR-mm-wave double resonance method, giving rise to highly accurate ground state spectroscopic parameters.

  15. High-resolution photoelectron spectroscopy analysis of sulfidation of brass at the rubber/brass interface

    NASA Astrophysics Data System (ADS)

    Ozawa, Kenichi; Kakubo, Takashi; Shimizu, Katsunori; Amino, Naoya; Mase, Kazuhiko; Komatsu, Takayuki

    2013-01-01

    High resolution photoelectron spectroscopy is utilized to investigate the chemical composition at the rubber/brass interface to elucidate the origin of strong adhesion as well as the degradation between rubber and brass. Special attention has been given to copper sulfides formed at the interface during the vulcanization reaction at 170 °C. At least five sulfur-containing species are identified in the adhesive interlayer including crystalline CuS and amorphous CuxS (x ≃ 2). These copper sulfide species are not uniformly distributed within the layer, but there exits the concentration gradation; the concentration of CuxS is high in the region on the rubber side and is diminished in the deeper region, while vice versa for that of CuS. Degradation of the interface adhesive strength by prolonged vulcanization arises from the decrease in the CuxS/CuS ratio accompanying desulfurization of the adhesive layer.

  16. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  17. High Resolution Spectroscopy of Naphthalene Calibrated by AN Optical Frequency Comb

    NASA Astrophysics Data System (ADS)

    Nishiyama, Akiko; Nakashima, Kazuki; Matsuba, Ayumi; Misono, Masatoshi

    2015-06-01

    In high-resolution molecular spectroscopy, the precise measure of the optical frequency is crucial to evaluate minute shifts and splittings of the energy levels. On the other hand, in such spectroscopy, thousands of spectral lines distributed over several wavenumbers have to be measured by a continuously scanning cw laser. Therefore, the continuously changing optical frequency of the scanning laser has to be determined with enough precision. To satisfy these contradictory requirements, we have been developed two types of high-resolution spectroscopic systems employing an optical frequency comb. One of the systems employs RF band-pass filters to generate equally spaced frequency markers for optical frequency calibration, and is appropriate for wide wavelength-range measurement with relatively high scanning rate.^a In the other system, the beat frequency between the optical frequency comb and the scanning laser is controlled by an acousto-optic frequency shifter. This system is suitable for more precise measurement, and enables detailed analyses of frequency characteristics of scanning laser.^b In the present study, we observe Doppler-free two-photon absorption spectra of A^1B1u (v_4 = 1) ← X^1A_g (v = 0) transition of naphthalene around 298 nm. The spectral lines are rotationally resolved and the resolution is about 100 kHz. For ^qQ transition, the rotational lines are assigned, and molecular constants in the excited state are determined. In addition, we analyze the origin of the measured linewidth and Coriolis interactions between energy levels. To determine molecular constants more precisely, we proceed to measure and analyze spectra of other transitions, such as ^sS transitions. ^a A. Nishiyama, D. Ishikawa, and M. Misono, J. Opt. Soc. Am. B 30, 2107 (2013). ^b A. Nishiyama, A. Matsuba, and M. Misono, Opt. Lett. 39, 4923 (2014).

  18. High-resolution laser spectroscopy of long-lived plutonium isotopes

    NASA Astrophysics Data System (ADS)

    Voss, A.; Sonnenschein, V.; Campbell, P.; Cheal, B.; Kron, T.; Moore, I. D.; Pohjalainen, I.; Raeder, S.; Trautmann, N.; Wendt, K.

    2017-03-01

    Long-lived isotopes of plutonium were studied using two complementary techniques, high-resolution resonance ionization spectroscopy (HR-RIS) and collinear laser spectroscopy (CLS). Isotope shifts have been measured on the 5 f67 s27F0→5 f56 d27 s (J =1 ) and 5 f67 s27F1→5 f67 s 7 p (J =2 ) atomic transitions using the HR-RIS method and the hyperfine factors have been extracted for the odd mass nuclei Pu,241239. CLS was performed on the 5 f67 s 8F1 /2→J =1 /2 (27 523.61 cm-1) ionic transition with the hyperfine A factors measured for 239Pu. Changes in mean-squared charge radii have been extracted and show a good agreement with previous nonoptical methods, with an uncertainty improvement by approximately one order of magnitude. Plutonium represents the heaviest element studied to date using collinear laser spectroscopy.

  19. High Resolution Rovibrational Spectroscopy of Large Molecules Using Infrared Frequency Combs and Buffer Gas Cooling

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Spaun, Ben; Patterson, David; Bjork, Bryce J.; Heckl, Oliver H.; Doyle, John M.; Ye, Jun

    2016-06-01

    We have recently demonstrated the integration of cavity-enhanced direct frequency comb spectroscopy with buffer gas cooling to acquire high resolution infrared spectra of translationally and rotationally cold (˜10 K) gas-phase molecules. Here, we extend this method to significantly larger systems, including naphthalene (C10H_8), a prototypical polyaromatic hydrocarbon, and adamantane (C10H_{16}), the fundamental building block of diamonoids. To the authors' knowledge, the latter molecule represents the largest system for which rotationally resolved spectra in the CH stretch region (3 μm) have been obtained. In addition to the measured spectra, we present several details of our experimental methods. These include introducing non-volatile species into the cold buffer gas cell and obtaining broadband spectra with single comb mode resolution. We also discuss recent modifications to the apparatus to improve its absorption sensitivity and time resolution, which facilitate the study of both larger molecular systems and cold chemical dynamics. B. Spaun, et al. Probing buffer-gas cooled molecules with direct frequency comb spectroscopy in the mid-infrared, WF02, 70th International Symposium on Molecular Spectroscopy, Champaign-Urbana, IL, 2015.

  20. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  1. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  2. What can we Expect of High-Resolution Spectroscopies on Carbohydrates?

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Ecija, Patricia; Uriarte, Iciar; Usabiaga, Imanol; Fernández, José A.; Basterretxea, Francisco J.; Lesarri, Alberto; Davis, Benjamin G.

    2015-06-01

    Carbohydrates are one of the most multifaceted building blocks, performing numerous roles in living organisms. We present several structural investigations on carbohydrates exploiting an experimental strategy which combines microwave (MW) and laser spectroscopies in high-resolution. Laser spectroscopy offers high sensitivity coupled to mass and conformer selectivity, making it ideal for polysaccharides studies. On the other hand, microwave spectroscopy provides much higher resolution and direct access to molecular structure of monosaccharides. This combined approach provides not only accurate chemical insight on conformation, structure and molecular properties, but also benchmarking standards guiding the development of theoretical calculations. In order to illustrate the possibilities of a combined MW-laser approach we present results on the conformational landscape and structural properties of several monosaccharides and oligosaccharides including microsolvation and molecular recognition processes of carbohydrates. E.J. Cocinero, A. Lesarri, P. écija, F.J. Basterretxea, J.-U. Grabow, J.A. Fernández and F. Casta {n}o Angew. Chem. Int. Ed. 51, 3119-3124, 2012. E.J. Cocinero, A. Lesarri, P. écija, Á. Cimas, B.G. Davis, F.J. Basterretxea, J.A. Fernández and F. Casta {n}o J. Am. Chem. Soc. 135, 2845-2852, 2013. E.J. Cocinero, P. Çarçabal, T.D. Vaden, J.P. Simons and B.G. Davis Nature 469, 76-80, 2011. C.S. Barry, E.J. Cocinero, P. Çarçabal, D.P. Gamblin, E.C. Stanca-Kaposta, S. M. Fernández-Alonso, S. Rudić, J.P. Simons and B.G. Davis J. Am. Chem. Soc. 135, 16895-16903, 2013.

  3. High-Resolution Spectroscopy of Mars: Recent Results and Implications for Atmospheric Evolution

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Owen, T. C.; Maillard, J. P.

    1999-01-01

    It is believed that Earth, Venus, and Mars were formed by the same rocky and icy planetesimals, which resembled meteorites and comets in their composition, respectively. These planets are thus expected to have initially had the same chemical and isotope composition. Scaling the mass of the terrestrial ocean by the planetary mass ratio, the expected initial H2O abundance on Mars is a layer of about 1 km thick. Scaling the abundance of CO2 on Venus, the expected initial CO2 abundance on Mars is 15 bars. Evidently, significant parts of the initial H2O and CO2 abundances have been lost. Intense meteorite impact erosion and hydrodynamic escape of hydrogen (which could drag to escape more heavy species) were dominant loss processes in the first 0.8 Byr. Later, atmospheric sputtering by O+ ions resulted in the dissociation of CO2 and massive losses of O, C, and H. Formation of carbonates also reduced CO2 to its present abundance which currently exists in the atmosphere, on the polar caps, and is absorbed by regolith. Water loss is currently due to thermal escape of H and nonthermal escape of O, both formed by photodissociation of H2O. All loss processes resulted in fractionation of the H, O, and C isotopes. Therefore, the current isotope ratios in H2O and CO2 are clues to the history of volatiles on Mars. There are three tools to study H2O and CO2 isotopes in the martian atmosphere: (i) mass spectrometry from landing probes, (ii) analyses of Mars' gases trapped in the SNC meteorites which were ejected from Mars, and (iii) high-resolution spectroscopy of the H2O andCO2 bands. Method (i) is the best but is the most expensive. Mass spectrometers to be used should be designed for high-precision isotope measurements. Method (ii) makes it possible to reach an uncertainty +/- 0.1%. However, the obtained results are affected by some uncontrolled interactions: isotope fractionations of (1) trapped gases and (2) those released in pyrolysis, (3) contribution of the impactor, isotope

  4. High Resolution Spectroscopy of 1,2-Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling

    DTIC Science & Technology

    1992-05-29

    Spectroscopy of 1,2- Difluoroethane in a Molecular Beam: A Case Study of Vibrational Mode-Coupling by Steven W. Mork, C. Cameron Miller, and Laura A...and sale; its distribution is unlimited. 92-14657 l9lll l l l , II a HIGH RESOLUTION SPECTROSCOPY OF 1,2- DIFLUOROETHANE IN A MOLECULAR BEAM: A CASE...14853-1301 Abstract The high resolution infrared spectrum of 1,2- difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1

  5. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  6. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  7. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    SciTech Connect

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; Watkins, S. P.

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar to other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.

  8. Hitomi X-ray Astronomy Satellite: Power of High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Odaka, Hirokazu; Aff001

    2017-01-01

    Hitomi (ASTRO-H) is an X-ray observatory developed by an international collaboration led by JAXA. An X-ray microcalorimeter onboard this satellite has opened a new window of high-resolution spectroscopy with an unprecedented energy resolution of 5 eV (FWHM) at 6 keV. The spacecraft was launched on February 17, 2016 from Tanegashima Island, Japan, and we completed initial operations including deployment of the hard X-ray imagers on the extensible optical bench. All scientific instruments had successfully worked until the sudden loss of the mission on March 26. We have obtained a spectrum showing fully resolved emission lines through the first-light observation of the Perseus Cluster. The line-of-sight velocity dispersion of 164 +/- 10 km s-1 reveals the quiescent environment of intracluster medium at the cluster core, implying that measured cluster mass requires little correction for the turbulent pressure. We also discuss observations to the Galactic Center which could be performed with Hitomi.

  9. Triplet states in isotopically mixed anthracene crystals: High resolution optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Port, H.; Rund, D.; Wolf, H. C.

    1981-08-01

    The triplet O,O transitions of guest and host in isotopically mixed anthracene crystals of various compositions (A- h10, 13C-monosubstituted A- h10, A- d1h9, A- d2hg in A- d10 and A- d10 in A- h10) have been investigated using high resolution laser excitation spectroscopy. The guest aggregate spectra have been studied in polarized light as a function of guest concentration up to 15%. The analyses allow us to identify the monomer, dimer and trimer lines. From the dimer splittings the dominant resonance pair interactions are dedu The comparison of different mixed crystal systems with guest levels below and above the host exciton band reveals that quasiresonance and superexchange corrections are of minor importance. The experimental resonance pair interactions are used to calculate the triplet exciton band structure of anthracen and the observed guest polarization behaviour is interpreted quantitatively by the Rashba effect. Finally, the lower Davydov component of the host is s and broadened with increasing guest concentration. The shift is discussed using a theoretical model of Lifshitz.

  10. HIGH-RESOLUTION SPECTROSCOPY OF [Ne II] EMISSION FROM AA Tau AND GM Aur

    SciTech Connect

    Najita, Joan R.; Doppmann, Greg W.; Bitner, Martin A.; Richter, Matthew J.; Lacy, John H.; Jaffe, Daniel T.; Carr, John S.; Meijerink, Rowin; Blake, Geoffrey A.; Herczeg, Gregory J.; Glassgold, Alfred E.

    2009-05-20

    We present high-resolution (R = 80,000) spectroscopy of [Ne II] emission from two young stars, GM Aur and AA Tau, which have moderate to high inclinations. The emission from both sources appears centered near the stellar velocity and is broader than the [Ne II] emission measured previously for the face-on disk system TW Hya. These properties are consistent with a disk origin for the [Ne II] emission we detect, with disk rotation (rather than photoevaporation or turbulence in a hot disk atmosphere) playing the dominant role in the origin of the line width. In the non-face-on systems, the [Ne II] emission is narrower than the CO fundamental emission from the same sources. If the widths of both diagnostics are dominated by Keplerian rotation, this suggests that the [Ne II] emission arises from larger disk radii on average than does the CO emission. The equivalent width of the [Ne II] emission we detect is less than that of the spectrally unresolved [Ne II] feature in the Spitzer spectra of the same sources. Variability in the [Ne II] emission or the mid-infrared continuum, a spatially extended [Ne II] component, or a very (spectrally) broad [Ne II] component might account for the difference in the equivalent widths.

  11. High-resolution photoluminescence spectroscopy of Sn-doped ZnO single crystals

    DOE PAGES

    Kumar, E. Senthil; Mohammadbeigi, F.; Boatner, Lynn A.; ...

    2016-01-01

    Here, Group IV donors in ZnO are poorly understood, despite evidence that they are effective n-dopants. We present high-resolution photoluminescence spectroscopy studies of unintentionally doped and Sn doped ZnO single crystals grown by the chemical vapor transport method. Doped samples showed greatly increased emission from the I10 bound exciton transition which was recently proven to be related to the incorporation of Sn impurities based on radio-isotope studies. PL linewidths are exceptionally sharp for these samples, enabling clear identification of several donor species. Temperature dependent PL measurements of the I10 line emission energy and intensity dependence reveal a behavior similar tomore » other shallow donors in ZnO. Ionized donor bound exciton and two electron satellite transitions of the I10 transition are unambiguously identified and yield a donor binding energy of 71 meV. In contrast to recent reports of Ge-related donors in ZnO, the spectroscopic binding energy for the Sn-related donor bound exciton follows a linear relationship with donor binding energy (Haynes rule), confirming the shallow nature of this defect center, which we attribute to a SnZn double donor compensated by an unknown single acceptor.« less

  12. Tracing Supernova Enrichment of the Nearest Young Star Forming Complex with High Resolution Stellar Spectroscopy

    NASA Astrophysics Data System (ADS)

    Bubar, Eric Joseph; Mamajek, Eric E.; Pecaut, Mark

    2010-02-01

    The chemical evolution of the galaxy can be examined on a small scale locally by searching for evidence of enrichment by core collapse (type II) supernova explosions among stars belonging to the same star- forming complex. We propose to obtain high resolution spectroscopy of a sample of slowly rotating members of nearby, young stellar groups associated with the nearest star-forming complex: Scorpius-Centaurus. These spectra will be used to perform a precise spectroscopic abundance analysis to test for enrichment of the ~5 Myr-old Upper Scorpius region and neighboring regions by supernova explosions in the neighboring ~ 15 Myr-old Upper Centaurus Lupus and Lower Centaurus Crux subgroups. Enrichment by core-collapse supernovae can be traced by enhancements in oxygen and other alpha- element abundances compared to Fe-peak elements. These abundances can also be used for constraining the chemical homogeneity of members of Upper-Sco. This study will allow us to explore the processes of Galactic chemical evolution and SN enrichment on a small scale (< 0.1 kpc, <10-20 SN) in a complex with a relatively well constrained star formation history and high mass stellar membership.

  13. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    PubMed

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  14. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  15. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    SciTech Connect

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J.

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  16. Surface structure of an ionic liquid with high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Ohno, A.; Suzuki, M.; Kimura, K.

    2009-02-01

    The surface of an ionic liquid, trimethylpropylammonium bis(trifluoromethanesulfonyl)imide ([TMPA] [TFSI]), is observed by high-resolution Rutherford backscattering spectroscopy (HRBS). The composition depth profiles are derived from the observed HRBS spectra through spectrum simulation. The observed composition is in good agreement with the stoichiometric composition at depths larger than ∼1 nm. The observed composition profiles, however, show pronounced structures at the surface. Fluorine profile has a sharp peak at ∼0.1 nm and a broad peak at ∼1.0 nm. The sulfur profile also has a peak at ∼0.35 nm. These results indicate that the molecules show preferred orientations at the surface. From the observed profiles, it was concluded that the C1 conformer of the [TFSI] anion is dominant over the C2 conformer at the surface in contrast to bulk, where the C2 conformer is known to be dominant. It was also found that C1 conformers are oriented with their CF3 groups pointing toward the vacuum in the outermost molecular layer.

  17. High resolution gamma-ray spectroscopy and the fascinating angular momentum realm of the atomic nucleus

    NASA Astrophysics Data System (ADS)

    Riley, M. A.; Simpson, J.; Paul, E. S.

    2016-12-01

    In 1974 Aage Bohr and Ben Mottelson predicted the different ‘phases’ that may be expected in deformed nuclei as a function of increasing angular momentum and excitation energy all the way up to the fission limit. While admitting their picture was highly conjectural they confidently stated ‘...with the ingenious experimental approaches that are being developed, we may look forward with excitement to the detailed spectroscopic studies that will illuminate the behaviour of the spinning quantised nucleus’. High resolution gamma-ray spectroscopy has indeed been a major tool in studying the structure of atomic nuclei and has witnessed numerous significant advances over the last four decades. This article will select highlights from investigations at the Niels Bohr Institute, Denmark, and Daresbury Laboratory, UK, in the late 1970s and early 1980s, some of which have continued at other national laboratories in Europe and the USA to the present day. These studies illustrate the remarkable diversity of phenomena and symmetries exhibited by nuclei in the angular momentum-excitation energy plane that continue to surprise and fascinate scientists.

  18. High-contrast imaging and high-resolution spectroscopy observation of exoplanets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Mawet, Dimitri; Hu, Renyu; Benneke, Björn

    2016-08-01

    Detection and characterization of exoplanets faces challenges of smaller angular separation and high contrast between exoplanets and their host stars. High contrast imaging (HCI) instruments equipped with coronagraphs are built to meet these challenges, providing a way of spatially suppressing and separating stellar flux from that of a planet. Another way of separating stellar flux can be achieved by high-resolution spectroscopy (HRS), exploiting the fact that spectral features are different between a star and a planet. Observing exoplanets with HCI+HRS will achieve a higher contrast than the spatial or the spectroscopic method alone, improving the sensitivity to planet detection and enabling the study of the physical and chemical processes. Here, we simulate the performance of a HCI+HRS instrument (i.e., the upgrade Keck NIRSPEC and the fiber injection unit) to study its potential in detecting and characterizing currently known directly imaged planets. The simulation considers the spectral information content of an exoplanet, telescope and instrument specifications and realistic noise sources. The result of the simulation helps to set system requirement and informs designs at system-level. We also perform a trade study for a HCI+HRS instrument for a space mission to study an Earth-like planet orbiting a Sun-like star at 10 pc.

  19. High resolution electron microscopy and spectroscopy of ferritin in thin window liquid cells

    NASA Astrophysics Data System (ADS)

    Wang, Canhui; Qiao, Qiao; Shokuhfar, Tolou; Klie, Robert

    2014-03-01

    In-situ transmission electron microscopy (TEM) has seen a dramatic increase in interest in recent years with the commercial development of liquid and gas stages. High-resolution TEM characterization of samples in a liquid environment remains limited by radiation damage and loss of resolution due to the thick window-layers required by the in-situ stages. We introduce thin-window static-liquid cells that enable sample imaging with atomic resolution and electron energy-loss (EEL) spectroscopy with 1.3 nm resolution. Using this approach, atomic and electronic structures of biological samples such as ferritin is studied via in-situ transmission electron microscopy experiments. Ferritin in solution is encapsulated using the static liquid cells with reduced window thickness. The integrity of the thin window liquid cell is maintained by controlling the electron dose rate. Radiation damage of samples, such as liquid water and protein, is quantitatively studied to allow precision control of radiation damage level within the liquid cells. Biochemical reactions, such as valence change of the iron in a functioning ferritin, is observed and will be quantified. Relevant biochemical activity: the release and uptake of Fe atoms through the channels of ferritin protein shell is also imaged at atomic resolution. This work is funded by Michigan Technological University. The UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Grant No. DMR-0959470).

  20. High-Resolution K-Band Spectroscopy of MWC 480 and V1331 Cyg

    NASA Astrophysics Data System (ADS)

    Najita, Joan R.; Doppmann, Greg W.; Carr, John S.; Graham, James R.; Eisner, J. A.

    2009-01-01

    We present high-resolution (R = 25,000-35,000) K-band spectroscopy of two young stars, MWC 480 and V1331 Cyg. Earlier spectrally dispersed (R = 230) interferometric observations of MWC 480 indicated the presence of an excess continuum emission interior to the dust sublimation radius, with a spectral shape that was interpreted as evidence for hot water emission from the inner disk of MWC 480. Our spectrum of V1331 Cyg reveals strong emission from CO and hot water vapor, likely arising in a circumstellar disk. In comparison, our spectrum of MWC 480 appears mostly featureless. We discuss possible ways in which strong water emission from MWC 480 might go undetected in our data. If strong water emission is in fact absent from the inner disk, as our data suggest, the continuum excess interior to the dust sublimation radius that is detected in the interferometric data must have another origin. We discuss possible physical origins for the continuum excess. The data presented herein were obtained at the W. M. Keck Observatory, in part from telescope time allocated to NASA through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. High-resolution Spectroscopy and Spectropolarimetry of Selected δ-Sct Pulsating Variables

    NASA Astrophysics Data System (ADS)

    Joshi, Santosh; Semenko, Eugene; Moiseeva, A.; Sharma, Kaushal; Joshi, Y. C.; Sachkov, M.; Singh, Harinder P.; Kumar, Yerra Bharat

    2017-01-01

    The combination of photometry, spectroscopy and spectropolarimetry of the chemically peculiar stars often aims to study the complex physical phenomena such as stellar pulsation, chemical inhomogeneity, magnetic field and their interplay with stellar atmosphere and circumstellar environment. The prime objective of the present study is to determine the atmospheric parameters of a set of Am stars to understand their evolutionary status. Atmospheric abundances and basic parameters are determined using full spectrum fitting technique by comparing the high-resolution spectra to the synthetic spectra. To know the evolutionary status we derive the effective temperature and luminosity from different methods and compare them with the literature. The location of these stars in the H-R diagram demonstrate that all the sample stars are evolved from the Zero-Age-Main-Sequence towards Terminal-Age-Main-Sequence and occupy the region of δ Sct instability strip. The abundance analysis shows that the light elements e.g. Ca and Sc are underabundant while iron peak elements such as Ba, Ce etc. are overabundant and these chemical properties are typical for Am stars. The results obtained from the spectropolarimetric analysis shows that the longitudinal magnetic fields in all the studied stars are negligible that gives further support their Am class of peculiarity.

  2. Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy.

    PubMed

    Verma, Sanjay Kumar; Nagashima, Kaz; Yaligar, Jadegoud; Michael, Navin; Lee, Swee Shean; Xianfeng, Tian; Gopalan, Venkatesh; Sadananthan, Suresh Anand; Anantharaj, Rengaraj; Velan, S Sendhil

    2017-01-01

    There are two types of fat tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which essentially perform opposite functions in whole body energy metabolism. There is a large interest in identifying novel biophysical properties of WAT and BAT by a quantitative and easy-to-run technique. In this work, we used high-resolution pulsed field gradient diffusion NMR spectroscopy to study the apparent diffusion coefficient (ADC) of fat molecules in rat BAT and WAT samples. The ADC of fat in BAT and WAT from rats fed with a chow diet was compared with that of rats fed with a high-fat diet to monitor how the diffusion properties change due to obesity-associated parameters such as lipid droplet size, fatty acid chain length, and saturation. Feeding a high-fat diet resulted in increased saturation, increased chain lengths, and reduced ADC of fat in WAT. The ADC of fat was lower in BAT relative to WAT in rats fed both chow and high-fat diets. Diffusion of fat was restricted in BAT due to the presence of small multilocular lipid droplets. Our findings indicate that in vivo diffusion might be a potential way for better delineation of BAT and WAT in both lean and obese states.

  3. Spectral characteristics of chlorites and Mg-serpentines using high- resolution reflectance spectroscopy

    USGS Publications Warehouse

    King, T.V.V.; Clark, R.N.

    1989-01-01

    The present laboratory study using high-resolution reflectance spectroscopy (0.25-2.7 ??m) focuses on two primary phyllosilicate groups, serpentines and chlorites. The results show that it is possible to spectrally distinguish between isochemical end-members of the Mg-rich serpentine group (chrysotile, antigorite, and lizardite) and to recognize spectral variations in chlorites as a function of Fe/Mg ratio (~8-38 wt% Fe). The position and relative strength of the 1.4-??m absorption feature in the trioctahedral chlorites appear to be correlated to the total iron content and/or the Mg/Si ratio and the loss on ignition values of the sample. Spectral differences in the 2.3-??m wavelength region can be attributed to differences in lattice environments and are characteristic for specific trioctahedral chlorites. The 1.4-??m feature in the isochemical Mg-rich serpentines (total iron content ~1.5-7.0 wt%) show marked spectral differences, apparently due to structural differences. -Authors

  4. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy

    PubMed Central

    Cheng, L. L.; Ma, M. J.; Becerra, L.; Ptak, T.; Tracey, I.; Lackner, A.; González, R. G.

    1997-01-01

    We describe a method that directly relates tissue neuropathological analysis to medical imaging. Presently, only indirect and often tenuous relationships are made between imaging (such as MRI or x-ray computed tomography) and neuropathology. We present a biochemistry-based, quantitative neuropathological method that can help to precisely quantify information provided by in vivo proton magnetic resonance spectroscopy (1HMRS), an emerging medical imaging technique. This method, high resolution magic angle spinning (HRMAS) 1HMRS, is rapid and requires only small amounts of unprocessed samples. Unlike chemical extraction or other forms of tissue processing, this method analyzes tissue directly, thus minimizing artifacts. We demonstrate the utility of this method by assessing neuronal damage using multiple tissue samples from differently affected brain regions in a case of Pick disease, a human neurodegenerative disorder. Among different regions, we found an excellent correlation between neuronal loss shown by traditional neurohistopathology and decrease of the neuronal marker N-acetylaspartate measured by HRMAS 1HMRS. This result demonstrates for the first time, to our knowledge, a direct, quantitative link between a decrease in N-acetylaspartate and neuronal loss in a human neurodegenerative disease. As a quantitative method, HRMAS 1HMRS has potential applications in experimental and clinical neuropathologic investigations. It should also provide a rational basis for the interpretation of in vivo 1HMRS studies of human neurological disorders. PMID:9177231

  5. High-efficiency blazed transmission gratings for high-resolution soft x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander R.; Schattenburg, Mark L.

    2015-09-01

    High-resolution spectroscopy of astrophysical sources is the key to gaining a quantitative understanding of the history, dynamics, and current conditions of the cosmos. A large-area (> 1,000 cm2), high resolving power (R = λ/Δλ> 3000) soft x-ray grating spectrometer (XGS) that covers the lines of C, N, O, Ne and Fe ions is the ideal tool to address a number of high-priority science questions from the 2010 Decadal Survey, such as the connection between super-massive black holes and large-scale structure via cosmic feedback, the evolution of large- scale structure, the behavior of matter at high densities, and the conditions close to black holes. While no grating missions or instruments are currently approved, an XGS aboard a potential future X-ray Surveyor could easily surpass the above performance metrics. To improve the chances for future soft x-ray grating spectroscopy missions or instruments, grating technology has to progress and advance to higher Technology Readiness Levels (TRLs). To that end we have developed Critical-Angle Transmission (CAT) gratings that combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, high transparency at higher energies). A CAT grating-based spectrometer can provide performance 1-2 orders of magnitude better than current grating instruments on Chandra and Newton-XMM with minimal resource requirements. At present we have fabricated large-area freestanding CAT gratings with narrow integrated support structures from silicon-on- insulator wafers using advanced lithography and a combination of deep reactive-ion and wet etching. Our latest x-ray test results show record high absolute diffraction efficiencies in blazed orders in excess of 30% with room for improvement.

  6. High-resolution electron microscopy and electron energy-loss spectroscopy of giant palladium clusters

    NASA Astrophysics Data System (ADS)

    Oleshko, V.; Volkov, V.; Gijbels, R.; Jacob, W.; Vargaftik, M.; Moiseev, I.; van Tendeloo, G.

    1995-12-01

    Combined structural and chemical characterization of cationic polynuclear palladium coordination compounds Pd561L60(OAc)180, where L=1,10-phenantroline or 2,2'-bipyridine has been carried out by high-resolution electron microscopy (HREM) and analytical electron microscopy methods including electron energy-loss spectroscopy (EELS), zero-loss electron spectroscopic imaging, and energy-dispersive X-ray spectroscopy (EDX). The cell structure of the cluster matter with almost completely uniform metal core size distributions centered around 2.3 ±0.5 nm was observed. Zero-loss energy filtering allowed to improve the image contrast and resolution. HREM images showed that most of the palladium clusters had a cubo-octahedral shape. Some of them had a distorted icosahedron structure exhibiting multiple twinning. The selected-area electron diffraction patterns confirmed the face centered cubic structure with lattice parameter close to that of metallic palladium. The energy-loss spectra of the populations of clusters contained several bands, which could be assigned to the delayed Pd M4, 5-edge at 362 eV, the Pd M3-edge at 533 eV and the Pd M2-edge at 561 eV, the NK-edge at about 400 eV, the O K-edge at 532 eV overlapping with the Pd M3-edge and the carbon C K-edge at 284 eV. Background subtraction was applied to reveal the exact positions and fine structure of low intensity elemental peaks. EELS evaluations have been confirmed by EDX. The recorded series of the Pd M-edges and the N K-edge in the spectra of the giant palladium clusters obviously were related to Pd-Pd- and Pd-ligand bonding.

  7. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.

    PubMed

    Alexander, Jessica A; Scheltens, Frank J; Drummy, Lawrence F; Durstock, Michael F; Hage, Fredrik S; Ramasse, Quentin M; McComb, David W

    2017-03-02

    Advances in electron monochromator technology are providing opportunities for high energy resolution (10 - 200meV) electron energy-loss spectroscopy (EELS) to be performed in the scanning transmission electron microscope (STEM). The energy-loss near-edge structure in core-loss spectroscopy is often limited by core-hole lifetimes rather than the energy spread of the incident illumination. However, in the valence-loss region, the reduced width of the zero loss peak makes it possible to resolve clearly and unambiguously spectral features at very low energy-losses (<3eV). In this contribution, high-resolution EELS was used to investigate four materials commonly used in organic photovoltaics (OPVs): poly(3-hexlythiophene) (P3HT), [6,6] phenyl-C61 butyric acid methyl ester (PCBM), copper phthalocyanine (CuPc), and fullerene (C60). Data was collected on two different monochromated instruments - a Nion UltraSTEM 100 MC 'HERMES' and a FEI Titan(3) 60-300 Image-Corrected S/TEM - using energy resolutions (as defined by the zero loss peak full-width at half-maximum) of 35meV and 175meV, respectively. The data was acquired to allow deconvolution of plural scattering, and Kramers-Kronig analysis was utilized to extract the complex dielectric functions. The real and imaginary parts of the complex dielectric functions obtained from the two instruments were compared to evaluate if the enhanced resolution in the Nion provides new opto-electronic information for these organic materials. The differences between the spectra are discussed, and the implications for STEM-EELS studies of advanced materials are considered.

  8. Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts

    PubMed Central

    Lutz, Norbert W.; Béraud, Evelyne; Cozzone, Patrick J.

    2014-01-01

    Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor

  9. IGRINS Near-IR High-resolution Spectroscopy of Multiple Jets around LkHα 234

    NASA Astrophysics Data System (ADS)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Sok Oh, Jae; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Nguyen Le, Huynh Anh; Lee, Sungho; Jaffe, Daniel T.

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H2 emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position-velocity diagrams of the H2 1-0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H2 emission at the systemic velocity (VLSR = -10.2 km s-1) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at VLSR = -100--130 km s-1. We infer that the H2 emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H2 lines imply that the gas is thermalized at a temperature of 2500-3000 K and the emission results from shock excitation. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.

  10. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    SciTech Connect

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Sungho; Pyo, Tae-Soo; Pak, Soojong; Lee, Hye-In; Le, Huynh Anh Nguyen; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; and others

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.

  11. Imaging and high-resolution spectroscopy of the Planetary Nebula NGC 3242

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, Marco Antonio; Wendolyn Blanco Cárdenas, Mónica; Vázquez, Roberto; Zavala, Saúl A.; Guillén, Pedro F.; Ayala, Sandra A.

    2015-08-01

    We present a high-resolution imaging and high-dispersion spectroscopy study of the complex morphological and kinematical structure of the planetary nebula NGC 3242. We analyze narrowband Hα, [O III] and [N II] images, addressing important morphological features: in the [O III] image we found one knot oriented to PA=-4°, in the [N II] image, three knots oriented at PA1=155°, PA2=+157°, and PA3=-45.5°, and in the Hα image, two bubbles in the internal region, one of them oriented toward SE and the other toward NW. Additionally we used the unsharp-masking technique and found faint structures in the halo that have not been studied before. These structures are presented in two pairs of arcs, one pair oriented toward PA=-35° and the other toward PA=140°. NGC 3242 is a morphologically rich PN with bubbles, asymmetrical outflows, and some knots in a double-shell nebular structure. Ground-based long-slit echelle spectra were obtained crossing NGC 3242 at twelve different positions to precisely determine kinematical features in the structure of the nebula. We obtain a systemic velocity of VLSR=-6.6 km/s. We have used the software SHAPE (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to reconstruct a 3D model of NGC 3242 which fits all our observational data. Preliminary results (deprojected velocities and kinematical ages) of all these structures will be presented.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  12. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  13. Cathodoluminescence spectroscopy of plasmonic patch antennas: towards lower order and higher energies

    NASA Astrophysics Data System (ADS)

    Jeannin, Mathieu; Rochat, Névine; Kheng, Kuntheak; Nogues, Gilles

    2017-03-01

    We report on the cathodoluminescence characterization of Au, Al and a Au/Al bimetal circular plasmonic patch antennas, with disk diameter ranging from 150 to 900 nm. It allows us access to monomode operation of the antennas down to the fundamental dipolar mode, in contrast to previous studies on similar systems. Moreover we show that we can can shift the operation range of the antennas towards the blue spectral range by using Al. Our experimental results are compared to a semi-analytical model that provides qualitative insight on the mode structure sustained by the antennas.

  14. Cathodoluminescence spectroscopy of plasmonic patch antennas: towards lower order and higher energies.

    PubMed

    Jeannin, Mathieu; Rochat, Névine; Kheng, Kuntheak; Nogues, Gilles

    2017-03-06

    We report on the cathodoluminescence characterization of Au, Al and a Au/Al bimetal circular plasmonic patch antennas, with disk diameter ranging from 150 to 900 nm. It allows us access to monomode operation of the antennas down to the fundamental dipolar mode, in contrast to previous studies on similar systems. Moreover we show that we can shift the operation range of the antennas towards the blue spectral range by using Al. Our experimental results are compared to a semi-analytical model that provides qualitative insight on the mode structure sustained by the antennas.

  15. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  16. Probing Chemical Dynamics with High Resolution Spectroscopy: Chirped-Pulse Fourier-Transform Microwave Spectroscopy Coupled with a Hyperthermal Source

    NASA Astrophysics Data System (ADS)

    Kidwell, Nathanael M.; Vara, Vanesa Vaquero; Mehta-Hurt, Deepali N.; Korn, Joseph A.; Dian, Brian C.; Zwier, Timothy S.

    2013-06-01

    Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy has proven to be a well-suited technique for the rapid study and spectral identification of molecular species due to its ultra-broadband capability and excellent specificity to molecular structure from high-resolution rotational transitions. This talk will describe initial results from combining CP-FTMW detection with a hyperthermal nozzle source. This source has the advantage of producing traditionally high thermal product densities in a pulsed supersonic expansion with a short contact time compared to conventional pyrolysis. Used in tandem, CP-FTMW spectroscopy and the hyperthermal nozzle in a supersonic expansion is a powerful method that can produce and detect changes in conformation and isomer populations, and characterize important intermediates on the reaction surface of a precursor. In particular, we show its utility to provide insight into the unimolecular decomposition pathways of model lignin compounds and alternative biofuels. Preliminary results will be discussed including spectroscopic evidence for formation of cyclopentadienone in the pyrolysis of a lignin derivative guaiacol (o-methoxyphenol).

  17. Exploiting high resolution Fourier transform spectroscopy to inform the development of a quantum cascade laser based explosives detection systems

    NASA Astrophysics Data System (ADS)

    Carlysle, Felicity; Nic Daeid, Niamh; Normand, Erwan; McCulloch, Michael

    2012-10-01

    Fourier Transform infrared spectroscopy (FTIR) is regularly used in forensic analysis, however the application of high resolution Fourier Transform infrared spectroscopy for the detection of explosive materials and explosive precursors has not been fully explored. This project aimed to develop systematically a protocol for the analysis of explosives and precursors using Fourier Transform infrared spectroscopy and basic data analysis to enable the further development of a quantum cascade laser (QCL) based airport detection system. This paper details the development of the protocol and results of the initial analysis of compounds of interest.

  18. Emerging Trends on the Volatile Chemistry in Comets as Measured with High-Resolution Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J., Jr.; Weaver, Harold A.

    2016-10-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, and C2H2 may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Optical and infrared comparisons indicate that mixing ratios of daughter species and potential parents from cometary ices are sometimes but not always consistent with one another. This suggests that in many comets there are significant sources of C2 and/or CN from grains, and that the importance of these

  19. A search for inversion layers in hot Jupiters with high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hood, Callie; Birkby, Jayne; Lopez-Morales, Mercedes

    2017-01-01

    At present, the existence of thermal inversion layers in hot Jupiter atmospheres is uncertain due to conflicting results on their detection. However, understanding the thermal structure of exoplanet atmospheres is crucial to measuring their chemical compositions because the two quantities are highly interdependent. Here, we present high-resolution infrared spectroscopy of a hot Jupiter taken at 3.5 μm with CRIRES (R~100,000) on the Very Large Telescope. We directly detect the spectrum of the planet by tracing the radial-velocity shift of water features in its atmosphere during approximately one tenth of its orbit. We removed telluric contamination effects and the lines of the host star from our observed combined light spectra using singular value decomposition, then cross-correlated these processed spectra with a grid of high spectral resolution molecular templates containing features from water, methane, and carbon dioxide. The templates included atmospheric profiles with and without thermal inversion i.e. emission and absorption lines, respectively. We find evidence of water emission features in the planet’s dayside spectrum at a signal-to-noise of 4.7, indicative of a thermal inversion in the planet's atmosphere within the pressures ranges probed by our observations. The direct detection of emission lines at high spectral resolution in the planet spectrum make it one of the most unambiguous detections of a thermal inversion layer in an exoplanet atmosphere to date. However, we are carrying out further data analysis to ensure the robustness of the signal. Future observations of other molecules that could cause inversion layers, e.g. titanium oxide, would provide strong additional evidence of the inversion and help further our understanding of the behavior of highly irradiated giant planet atmospheres.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the

  20. High Resolution Photoelectron Spectroscopy of Au_2^- and Au_4^- by Photoelectron Imaging

    NASA Astrophysics Data System (ADS)

    Leon, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-06-01

    We report high resolution photoelectron spectra of Au_2^- and Au_4^- obtained with a newly-built photoelectron imaging apparatus. Gold anions are produced by laser vaporization and the desired specie is mass selected and focused into the collinear velocity-map imaging (VMI) lens assembly. The design of the imaging lens has allowed us to obtain less than 0.9% energy resolution for high kinetic energy electrons ( > 1eV) while maintaining wavenumber resolution for low kinetic energy electrons. Although gold dimer and tetramer have been studied in the past, we present spectroscopic results under high resolution. For Au_2^-, we report high resolution spectra with an accurate determination of the electron affinity together with a complete vibrational assignment, for both the anion and neutral ground states, while for Au_4^-, we are able to resolve a low frequency mode and obtain accurately the adiabatic detachment energy.

  1. High-Resolution Vibration-Rotation Spectroscopy of CO[subscript 2]: Understanding the Boltzmann Distribution

    ERIC Educational Resources Information Center

    Castle, Karen J.

    2007-01-01

    In this undergraduate physical chemistry laboratory experiment, students acquire a high-resolution infrared absorption spectrum of carbon dioxide and use their data to show that the rotational-vibrational state populations follow a Boltzmann distribution. Data are acquired with a mid-infrared laser source and infrared detector. Appropriate…

  2. Tunneling and tunneling switching dynamics in phenol and its isotopomers from high-resolution FTIR spectroscopy with synchrotron radiation.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Prentner, Robert; Quack, Martin

    2013-01-02

    Tunneling and chemical reactions by tunneling switching are reported for phenol and ortho-deuterophenol on the basis of high-resolution FTIR spectroscopy. Tunneling splittings are measured for the torsional motion in the ground and several vibrationally excited states of phenol. Tunneling times range from 10 ns to 1 ps, depending on excitation. For more-highly excited torsional levels in ortho-deuterophenol, delocalization and chemical reaction by tunneling switching is found.

  3. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  4. Synchrotron-based rotationally resolved high-resolution FTIR spectroscopy of azulene and the unidentified infrared bands of astronomy.

    PubMed

    Albert, Sieghard; Lerch, Philippe; Quack, Martin

    2013-10-07

    Chasing the unidentified IR bands: The first rotationally resolved high-resolution infrared spectrum of azulene is reported using synchrotron Fourier transform infrared spectroscopy including a rovibrational analysis of the out-of-plane fundamental ν44. Comparison of azulene, naphthalene, indole, and biphenyl infrared bands leads to coincidences with UIR bands at 12.8 μm with naphthalene and at 13.55 and 14.6 μm with biphenyl bands, but excluding azulene as a strong absorber.

  5. High-resolution optical spectroscopy of RS Ophiuchi during 2008-2009

    NASA Astrophysics Data System (ADS)

    Somero, A.; Hakala, P.; Wynn, G. A.

    2017-01-01

    RS Ophiuchi (RS Oph) is a symbiotic variable and a recurrent nova (RN). We have monitored it with the Nordic Optical Telescope and obtained 30 high-resolution (R = 46 000) optical spectra over one orbital cycle during quiescence. To our knowledge, this is the best-sampled high-resolution spectroscopic data set of RS Oph over one orbital period. We do not detect any direct signatures of an accretion disc such as double peaked emission lines, but many line profiles are complex consisting of superimposed emission and absorption components. We measure the spin of the red giant and conclude that it is tidally locked to the binary orbit. We observe Na I absorption features, probably arising from the circumbinary medium, that has been shaped by previous RN outbursts. We do not detect any intrinsic polarization in the optical wavelengths.

  6. Detector arrays for high resolution spectroscopy from 5-28 microns (Contributed)

    NASA Astrophysics Data System (ADS)

    Wiedemann, G.; Jennings, D. E.; Moseley, S. H.; Lamb, G.

    A linear Si:As BIB detector array (Rockwell International) is being implemented in a postdispersion detection system for ground based Fourier transform spectrometers. The array version can be used as a multichannel narrow band filter for extended spectral coverage or for imaging with a narrow bandpass. A Si:As solid state photomultiplier array (Rockwell) is evaluated for use in high resolution infrared spectrometers. Test results and applications are discussed.

  7. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy.

    PubMed

    de Groote, R P; Budinčević, I; Billowes, J; Bissell, M L; Cocolios, T E; Farooq-Smith, G J; Fedosseev, V N; Flanagan, K T; Franchoo, S; Garcia Ruiz, R F; Heylen, H; Li, R; Lynch, K M; Marsh, B A; Neyens, G; Rossel, R E; Rothe, S; Stroke, H H; Wendt, K D A; Wilkins, S G; Yang, X

    2015-09-25

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  8. Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Budinčević, I.; Billowes, J.; Bissell, M. L.; Cocolios, T. E.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Heylen, H.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2015-09-01

    New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1 /2=22.0 (5 ) ms ] 219Fr Qs=-1.21 (2 ) eb , which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

  9. Coherent Vibrational Dynamics and High-Resolution Nonlinear Spectroscopy: A Comparison with the Air/DMSO Liquid Interface

    SciTech Connect

    Velarde Ruiz Esparza, Luis A.; Lu, Zhou; Wang, Hongfei

    2013-12-27

    In this report we present a comparative study on the C-H stretching vibrations at air/DMSO (dimethyl sulfoxide) interface with both the free-induction decay (FID) coherent vibrational dynamics and sub-wavenumber high resolution sum-frequency generation vibrational spectroscopy measurements. In principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system. However, when the molecular systems are with several coupled or overlapping vibrational modes, to obtain detailed spectroscopic and coherent dynamics information is not as straightforward and rather difficult from either the time-domain or the frequency domain measurements. For the case of air/DMSO interface that is with moderately complex vibrational spectra, we show that the frequency-domain measurement with sub-wavenumber high-resolution SFGVS is probably more advantageous than the time-domain measurement in obtaining quantitative understanding of the structure and coherent dynamics of the molecular interface.

  10. High Resolution Infrared Spectroscopy of Slit-Jet Cooled Radicals and Ions

    NASA Astrophysics Data System (ADS)

    Roberts, Melanie A.

    This thesis presents high-resolution spectra of supersonically-cooled organic radicals in the mid-infrared, the details and design of the instruments necessary to obtain the spectra, and the theory to understand the spectra and the larger context of the results. Specifically, four organic radicals are studied: singly-deuterated methyl radical (CH2D), phenyl radical (C6H5), hydroxymethyl radical (CH2OH), and ethynyl radical (C2H). All of the spectroscopic studies presented use an existing mid-infrared high-resolution spectrometer with a frequency precision of better than 10 MHz. The radicals are generated using a discharge to dissociate a neutral precursor and form the radicals. The discharge is localized at the orifice of a slit supersonic expansion, which cools the radicals to around 20 K and allows for sub-Doppler spectral resolution. In addition to the description of the existing spectrometer, the design, construction, and successful testing of a new, automated mid-infrared spectrometer is presented. The new spectrometer is based upon difference frequency generation of a scanning Ti:Sapphire laser and a single-frequency Nd:YAG laser to create high-resolution mid-infrared radiation. The new system speeds up data-taking by fully automating the scanning process. The four radicals studied in this thesis are all intermediates in combustion processes of hydrocarbon fuels. First, the out-of-phase symmetric stretch of phenyl radical is presented. As the first high-resolution infrared study of phenyl, it paves the way for future studies of this and other aromatic radicals. Second, the two fundamental CH stretches in CH2D are studied with full rotational resolution. The narrow linewidth of the transitions reveals resolved fine structure and partially resolved hyperfine structure. This resolution yields additional information regarding the distribution of electrons in the radical. With this study of CH2D, a nearly complete set of vibrational frequencies is present in the

  11. Signatures of Fano interferences in the electron energy loss spectroscopy and cathodoluminescence of symmetry-broken nanorod dimers.

    PubMed

    Bigelow, Nicholas W; Vaschillo, Alex; Camden, Jon P; Masiello, David J

    2013-05-28

    Through numerical simulation, we predict the existence of the Fano interference effect in the electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) of symmetry-broken nanorod dimers that are heterogeneous in material composition and asymmetric in length. The differing selection rules of the electron probe in comparison to the photon of a plane wave allow for the simultaneous excitation of both optically bright and dark plasmons of each monomer unit, suggesting that Fano resonances will not arise in EELS and CL. Yet, interferences are manifested in the dimer's scattered near- and far-fields and are evident in EELS and CL due to the rapid π-phase offset in the polarizations between super-radiant and subradiant hybridized plasmon modes of the dimer as a function of the energy loss suffered by the impinging electron. Depending upon the location of the electron beam, we demonstrate the conditions under which Fano interferences will be present in both optical and electron spectroscopies (EELS and CL) as well as a new class of Fano interferences that are uniquely electron-driven and are absent in the optical response. Among other things, the knowledge gained from this work bears impact upon the design of some of the world's most sensitive sensors, which are currently based upon Fano resonances.

  12. HIGH-RESOLUTION XMM-NEWTON SPECTROSCOPY OF THE COOLING FLOW CLUSTER A3112

    SciTech Connect

    Bulbul, G. Esra; Smith, Randall K.; Foster, Adam; Cottam, Jean; Loewenstein, Michael; Mushotzky, Richard; Shafer, Richard

    2012-03-01

    We examine high signal-to-noise XMM-Newton European Photon Imaging Camera (EPIC) and Reflection Grating Spectrometer (RGS) observations to determine the physical characteristics of the gas in the cool core and outskirts of the nearby rich cluster A3112. The XMM-Newton Extended Source Analysis Software data reduction and background modeling methods were used to analyze the XMM-Newton EPIC data. From the EPIC data, we find that the iron and silicon abundance gradients show significant increase toward the center of the cluster while the oxygen abundance profile is centrally peaked but has a shallower distribution than that of iron. The X-ray mass modeling is based on the temperature and deprojected density distributions of the intracluster medium determined from EPIC observations. The total mass of A3112 obeys the M-T scaling relations found using XMM-Newton and Chandra observations of massive clusters at r{sub 500}. The gas mass fraction f{sub gas} = 0.149{sup +0.036}{sub -0.032} at r{sub 500} is consistent with the seven-year Wilkinson Microwave Anisotropy Probe results. The comparisons of line fluxes and flux limits on the Fe XVII and Fe XVIII lines obtained from high-resolution RGS spectra indicate that there is no spectral evidence for cooler gas associated with the cluster with temperature below 1.0 keV in the central <38'' ({approx}52 kpc) region of A3112. High-resolution RGS spectra also yield an upper limit to the turbulent motions in the compact core of A3112 (206 km s{sup -1}). We find that the contribution of turbulence to total energy is less than 6%. This upper limit is consistent with the energy contribution measured in recent high-resolution simulations of relaxed galaxy clusters.

  13. High-resolution FTIR spectroscopy of the ν3 band of methyl acetylene-d

    NASA Astrophysics Data System (ADS)

    Pal, Ayan Kumar; Kshirsagar, R. J.

    2014-04-01

    The high-resolution Fourier transform spectrum of methyl acetylene-d1 (CH3CCD) at room temperature has been recorded in the region of the ν3 band (1980-2035 cm-1) at an apodized resolution of 0.004 cm-1. About 600 vibration-rotation transitions have been assigned, with J upto 36 and K upto 6. The spectrum shows the presence of several perturbations. The observed minus calculated deviation of the fit for K = 4 subband is much more than the expected, shows the presence of Fermi resonance with the nearby vibrational state.

  14. From BASIS to MIRACLES: Benchmarking and perspectives for high-resolution neutron spectroscopy at the ESS

    NASA Astrophysics Data System (ADS)

    Tsapatsaris, Nikolaos; Willendrup, Peter K.; Lechner, Ruep E.; Bordallo, Heloisa N.

    2015-01-01

    Results based on virtual instrument models for the first high-flux, high-resolution, spallation based, backscattering spectrometer, BASIS are presented in this paper. These were verified using the Monte Carlo instrument simulation packages McStas and VITESS. Excellent agreement of the neutron count rate at the sample position between the virtual instrument simulation and experiments was found, in both time and energy distributions. This achievement was only possible after a new component for a bent single crystal analyser in McStas, using a Gaussian approximation, was developed. These findings are pivotal to the conceptual design of the next generation backscattering spectrometer, MIRACLES at the European Spallation Source.

  15. High Resolution UV Emission Spectroscopy of Molecules Excited by Electron Impact

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Beegle, L.; Ciocca, M.; Dziczek, D.; Kanik, I.; Noren, C.; Jonin, C.; Hansen, D.

    1999-01-01

    Photodissociation via discrete line absorption into predissociating Rydberg and valence states is the dominant destruction mechanism of CO and other molecules in the interstellar medium and molecular clouds. Accurate values for the rovibronic oscillator strengths of these transitions and predissociation yields of the excited states are required for input into the photochemical models that attempt to reproduce observed abundances. We report here on our latest experimental results of the electron collisional properties of CO and N2 obtained using the 3-meter high resolution single-scattering spectroscopic facility at JPL.

  16. Holmium iron borate: high-resolution spectroscopy and crystal-field parameters

    NASA Astrophysics Data System (ADS)

    Erofeev, D. A.; Chukalina, E. P.; Popova, M. N.; Malkin, B. Z.; Bezmaternykh, L. N.; Gudim, I. A.

    2016-12-01

    High-resolution transmission spectra of HoFe3(BO3)4 single crystals were measured in broad spectral (5000-23000 cm-1) and temperature (1.7-300 K) ranges. Crystal-field energies of the Ho3+ ions were determined for a paramagnetic and easy-axis antiferromagnetic phases of the compound. On the basis of these data and of preliminary crystal-field calculations in the frame of the exchange-charge model, crystal-field parameters were found. A parameter of the isotropic Ho-Fe exchange interaction was estimated.

  17. High Resolution Spectroscopy of C_2 and CN in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    McCall, Benjamin J.; Oka, Takeshi

    2000-08-01

    The unexpected detection of a large column density of hhh along the lines of sight to Cygnus OB2 #12 and Cygnus OB2 #5 cannot be explained by the standard models of diffuse cloud chemistry, which imply unreasonably long absorption path lengths (hundreds of parsecs). In order to gather more information about the physical condition of the diffuse gas in these lines of sight, we propose to obtain high resolution (R 120 000) visible spectra of several stars in the Cygnus OB2 association, including #12 and #5. The observed rotational distribution of the diatomics çand CN will enable us to estimate the kinetic temperature and number density of the molecular gas. In addition, the high resolution of the HRS at HET will allow us to study the velocity distribution of both the atomic (K I) and molecular (çand CN) gas along these lines of sight. Together with our previous observations of hhh, the temperatures, number densities, and velocity distributions from the proposed observations will seriously constrain theoretical models of these sightlines, such as that recently proposed by Cecchi-Pestellini and Dalgarno.

  18. Sample-Induced RF Perturbations in High-Field, High-Resolution NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crozier, Stuart; Brereton, Ian M.; Zelaya, Fernando O.; Roffmann, Wolfgang U.; Doddrell, David M.

    1997-05-01

    Conducting dielectric samples are often used in high-resolution experiments at high field. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred. Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect.

  19. Synthesis, High-Resolution Infrared Spectroscopy, and Vibrational Structure of Cubane, C8H8.

    PubMed

    Boudon, V; Lamy, M; Dugue-Boyé, F; Pirali, O; Gruet, S; D'Accolti, L; Fusco, C; Annese, C; Alikhani, M E

    2016-06-30

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical points of view. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family ( Pirali , O. ; et al. J. Chem. Phys. 2012 , 136 , 024310 ). There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C8H8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp(3) hybridized form of carbon. This generates a considerable strain in the molecule. We report a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature. Several spectra have been recorded at the AILES beamline of the SOLEIL synchrotron facility. They cover the 600-3200 cm(-1) region. Besides the three infrared-active fundamentals (ν10, ν11, and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensorial formalism developed in the Dijon group. A comparison with ab initio calculations, allowing to identify some combination bands, is also presented.

  20. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy.

    PubMed

    Johler, Sophia; Stephan, Roger; Althaus, Denise; Ehling-Schulz, Monika; Grunert, Tom

    2016-05-01

    Staphylococcus aureus causes a variety of serious illnesses in humans and animals. Subtyping of S. aureus isolates plays a crucial role in epidemiological investigations. Metabolic fingerprinting by Fourier-transform infrared (FTIR) spectroscopy is commonly used to identify microbes at species as well as subspecies level. In this study, we aimed to assess the suitability of FTIR spectroscopy as a tool for S. aureus subtyping. To this end, we compared the subtyping performance of FTIR spectroscopy to other subtyping methods such as pulsed field gel electrophoresis (PFGE) and spa typing in a blinded experimental setup and investigated the ability of FTIR spectroscopy for identifying S. aureus clonal complexes (CC). A total of 70 S. aureus strains from human, animal, and food sources were selected, for which clonal complexes and a unique virulence and resistance gene pattern had been determined by DNA microarray analysis. FTIR spectral analysis resulted in high discriminatory power similar as obtained by spa typing and PFGE. High directional concordance was found between FTIR spectroscopy based subtypes and capsular polysaccharide expression detected by FTIR spectroscopy and the cap specific locus, reflecting strain specific expression of capsular polysaccharides and/or other surface glycopolymers, such as wall teichoic acid, peptidoglycane, and lipoteichoic acid. Supervised chemometrics showed only limited possibilities for differentiation of S. aureus CC by FTIR spectroscopy with the exception of CC45 and CC705. In conclusion, FTIR spectroscopy represents a valuable tool for S. aureus subtyping, which complements current molecular and proteomic strain typing.

  1. High resolution infrared spectroscopy: Some new approaches and applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1978-01-01

    The principles of spectral line formation and of techniques for retrieval of atmospheric temperature and constituent profiles are discussed. Applications to the atmospheres of Earth, Mars, Venus, and Jupiter are illustrated by results obtained with Fourier transform and infrared heterodyne spectrometers at resolving powers (lambda/delta hyperon lambda of approximately 10,000 and approximately 10 to the seventh power), respectively, showing the high complementarity of spectroscopy at these two widely different resolving powers. The principles of heterodyne spectroscopy are presented and its applications to atmospheric probing and to laboratory spectroscopy are discussed. Direct absorption spectroscopy with tuneable semiconductor lasers is discussed in terms of precision frequency-and line strength-measurements, showing substantial advances in laboratory infrared spectroscopy.

  2. High-Resolution Infrared Spectroscopy of Cubane, C_8H_8

    NASA Astrophysics Data System (ADS)

    Boudon, Vincent; Pirali, Olivier; Gruet, Sébastien; D'accolti, Lucia; Fusco, Caterina; Annese, Cosimo

    2014-06-01

    Carbon-cage molecules have generated a considerable interest from both experimental and theoretical point of views. We recently performed a high-resolution study of adamantane (C10H16), the smallest hydrocarbon cage belonging to the diamandoid family. There exist another family of hydrocarbon cages with additional interesting chemical properties: the so-called Platonic hydrocarbons that comprise dodecahedrane (C20H20) and cubane (C_8H_8). Both possess C-C bond angles that deviate from the tetrahedral angle (109.8°) of the sp^3 hybridized form of carbon. This generates a considerable strain in the molecule. Cubane itself has the highest density of all hydrocarbons (1.29 g/cm^3). This makes it able to store larges amounts of energy, although the molecule is fully stable. Up to now, only one high-resolution study of cubane has been performed on a few bands [2]. We report here a new wide-range high-resolution study of the infrared spectrum of cubane. The sample was synthesized in Bari upon decarboxylation of 1,4-cubanedicarboxylic acid thanks to the improved synthesis of literature [3]; its {}1H and 13C NMR, FTIR, and mass spectrometry agreed with reported data [4]. Several spectra have been recorded at the AILES beamline of the SOLEIL French synchrotron facility. They cover the 800 to 3100 cm-1 region. Besides the three infrared-active fundamentals (ν10, ν11 and ν12), we could record many combination bands, all of them displaying a well-resolved octahedral rotational structure. We present here a preliminary analysis of some of the recorded bands, performed thanks the SPVIEW and XTDS software, based on the tensrorial formalism developed in the Dijon group [5]. [1] O. Pirali, V. Boudon, J. Oomens, M. Vervloet, J. Chem. Phys., 136, 024310 (2012). [2] A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, Th. Urbanek, J. Am. Chem. Soc., 106, 891-897 (1984). [3] P. E. Eaton, N. Nordari, J. Tsanaktsidis, P. S. Upadhyaya, Synthesis, 1, 501, (1995). [4] E

  3. High resolution far-infrared Fourier transform spectroscopy of radicals at the AILES beamline of SOLEIL synchrotron facility.

    PubMed

    Martin-Drumel, M A; Pirali, O; Balcon, D; Bréchignac, Ph; Roy, P; Vervloet, M

    2011-11-01

    Experimental far-infrared (FIR) spectroscopy of transient species (unstable molecules, free radicals, and ions) has been limited so far in both emission and absorption (mainly by the low probability of spontaneous emission in that spectral range and the low brightness of continuum sources used for absorption measurements, respectively). Nevertheless, the FIR spectral range recently became of high astrophysical relevance thanks to several new observational platforms (HERSCHEL, ALMA...) dedicated to the study of this region suitable for the detection of the emission from cold objects of the interstellar medium. In order to complete the experimental dataset concerning transient species, three discharge experiments dedicated to the recording of high resolution FIR spectra of radicals have been developed at the Advanced Infrared Line Exploited for Spectroscopy (AILES) which extracts the bright FIR synchrotron continuum of the synchrotron facility SOLEIL. These experiments make use of a high resolution (R = 0.001 cm(-1)) Bruker IFS125 Fourier transform (FT) spectrometer. An emission setup (allowing to record spectra of radicals excited at high rotational and vibrational temperatures) and two absorption setups (exploiting the bright synchrotron source at the highest resolution available on the FT) are alternatively connected to the FT. The advantages and limitations of these techniques are discussed on the basis of the recent results obtained on OH and CH radicals. These results constitute the first FIR spectra of radicals using synchrotron radiation, and the first FIR spectrum of a C-bearing radical using FT-spectroscopy.

  4. Observation of molecular ordering at the surface of trimethylpropylammonium bis(trifluoromethanesulfonyl)imide using high-resolution rutherford backscattering spectroscopy.

    PubMed

    Nakajima, Kaoru; Ohno, Atsushi; Suzuki, Motofumi; Kimura, Kenji

    2008-05-06

    The surface structure of trimethylpropylammonium bis(trifluoromethanesulfonyl)imide ([TMPA] [TFSI]) is studied by high-resolution Rutherford backscattering spectroscopy at room temperature. The results provide direct evidence of the molecular ordering at the surface. The C1 conformer of the [TFSI] anion is dominant among two stable conformers, and the anions are oriented with their CF3 groups pointing toward the vacuum in the outermost molecular layer. The anions in the second molecular layer also show preferred orientation although it is rather weak.

  5. High Resolution Far Infrared Spectroscopy of HFC-134a at Cold Temperatures

    NASA Astrophysics Data System (ADS)

    Wong, Andy; Medcraft, Chris; Thompson, Christopher; Robertson, Evan Gary; Appadoo, Dominique; McNaughton, Don

    2016-06-01

    Since the signing of the Montreal protocol, long-lived chlorofluorocarbons have been banned due to their high ozone depleting potential. In order to minimise the effect of such molecules, hydrofluorocarbons (HFCs) were synthesized as replacement molecules to be used as refrigerants and foam blowing agents. HFC-134a, or 1,1,1,2-tetrafluoroethane, is one of these molecules. Although HFCs do not cause ozone depletion, they are typically strong absorbers within the 10 micron atmospheric window, which lead to high global warming potentials. A high resolution FT-IR analysis of the νb{8} band (near 665 wn) of HFC-134a has been performed to help understand the intermode coupling between the νb{8} vibrational state and unobserved dark states.

  6. CARMENES at PPVI. High-Resolution Spectroscopy of M Dwarfs with FEROS, CAFE and HRS

    NASA Astrophysics Data System (ADS)

    Alonso-Floriano, F. J.; Montes, D.; Jeffers, S.; Caballero, J. A.; Zechmeister, M.; Mundt, R.; Reiners, A.; Amado, P. J.; Casal, E.; Cortés-Contreras, M.; Modroño, Z.; Ribas, I.; Rodríguez-López, C.; Quirrenbach, A.

    2013-07-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing ~500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsini with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2m La Silla , CAFE at 2.2m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  7. High resolution spectroscopy and spectral simulation of C2 using degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Lloyd, G. M.; Ewart, P.

    1999-01-01

    Degenerate four-wave mixing in the sub-Doppler phase conjugate geometry was used to record high resolution spectra of the d 3Πg-a3Πu (0-0) Swan band of C2 produced in an oxy-acetylene flame. The line positions of isolated transitions were measured to an accuracy of ˜3×10-3 cm-1 and calibrated using a Fizeau interferometer system. The data obtained from these spectra was used to calculate rotational constants and lambda doubling parameters for the 3Π states from which the line positions for the whole band were calculated. Noticeable improvements between experimental and calculated line positions are seen when compared to previously published values. The effect of inaccuracies in line positions on the simulation of degenerate four-wave mixing spectra is discussed and some examples of the improvement in simulation using the newly calculated line positions are presented.

  8. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  9. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    SciTech Connect

    Savage, C.; Dong, F.; Nesbitt, D. J.

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  10. High Resolution Near-IR Spectroscopy of Protostars With Large Telescopes

    NASA Technical Reports Server (NTRS)

    Greene, Tom; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    It is now possible to measure absorption spectra of Class I protostars using D greater than or = 8m telescopes equipped with sensitive cryogenic IR spectrographs. Our latest high-resolution (R approx. 20,000) Keck data reveal that Class I protostars are indeed low-mass stars with dwarf-like features. However, they differ from T Tauri stars in that Class I protostars have much higher IR veilings (tau(sub k) greater than or = 1 - 3+) and they are rotating quickly, v sin i greater than 20 km/s. Interestingly, the vast majority of protostellar absorption spectra show stellar - not disk - absorption features. A preliminary H-R diagram suggests that protostellar photospheres may have different physical structures than T Tauri stars, perhaps due to their higher accretion rates.

  11. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)

    SciTech Connect

    Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.

    2012-10-15

    The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.

  12. Tissue differentiation by means of high resolution optical emission spectroscopy during electrosurgical intervention

    NASA Astrophysics Data System (ADS)

    Bürger, Ines; Scharpf, Marcus; Hennenlotter, Jörg; Nüßle, Daniela; Spether, Dominik; Neugebauer, Alexander; Bibinov, Nikita; Stenzl, Arnulf; Fend, Falko; Enderle, Markus; Awakowicz, Peter

    2017-01-01

    Electrosurgery is the use of radio-frequency electric current for the cutting of biological tissue e.g. for resection of tumour tissue. In this work, the optical emission of plasma being generated during the electrosurgical procedure is investigated with a high resolution echelle spectrometer to find differences between tumour tissue and normal renal tissue in a pre-clinical ex vivo study. Trace elements like zinc, iron, copper and cadmium are present in the tissue spectra as well as the electrolytes magnesium, calcium, sodium and potassium and some diatomic molecules such as hydroxyl radical, cyano radical, dicarbon, nitrogen monohydride and molecular nitrogen which are mainly dissociated from polyatomic molecules. With the atomic emission line of cadmium at 228.8 nm the treated tissue can be differentiated in tumorous and healthy tissue with correct assignment of 95% for tumour tissue and 92% for normal renal tissue.

  13. High resolution diode laser spectroscopy of H2O spectra broadened by nitrogen and noble gases

    NASA Astrophysics Data System (ADS)

    Kapitanov, Venedikt A.; Osipov, Konstantin Yu.; Protasevich, Alexander E.; Ponurovskiy, Yakov Ya.

    2014-11-01

    The absorption spectra of pure H2O with mixtures of broadening gases N2, Ar, Xe, He, Ar and air have been measured in 1.39 mμ spectral region by high resolution spectrometer based on diode laser (DFB NEL, Japan). For the processing of pure water spectra and it's mixtures with a different broadening gases in a wide pressure range we used a multispectrum fitting procedure developed at IAO. The program is based on a relatively simple Rautian-Sobel'man line profile and linear pressure dependence of the line profile parameters. H2O measured spectra bulk processing results in the retrieving of such line parameters: zero-pressure line center positions, intensities, self-broadening and self-shift coefficients of pure water, broadening and shift coefficients for other gases which are describes the experiment with the minimum residuals in a wide pressure range.

  14. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  15. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: prototype design and performance

    NASA Astrophysics Data System (ADS)

    Gibson, Steve; Barnes, Stuart I.; Hearnshaw, John; Nield, Kathryn; Cochrane, Dave; Grobler, Deon

    2012-09-01

    A new advanced high resolution spectrograph has been developed by Kiwistar Optics of Industrial Research Ltd., New Zealand. The instrument, KiwiSpec R4-100, is bench-mounted, bre-fed, compact (0.75m by 1.5m footprint), and is well-suited for small to medium-sized telescopes. The instrument makes use of several advanced concepts in high resolution spectrograph design. The basic design follows the classical white pupil concept in an asymmetric implementation and employs an R4 echelle grating illuminated by a 100mm diameter collimated beam for primary dispersion. A volume phase holographic grating (VPH) based grism is used for cross-dispersion. The design also allows for up to four camera and detector channels to allow for extended wavelength coverage at high eciency. A single channel prototype of the instrument has been built and successfully tested with a 1m telescope. Targets included various spectrophotometric standard stars and several radial velocity standard stars to measure the instrument's light throughput and radial velocity capabilities. The prototype uses a 725 lines/mm VPH grism, an off-the-shelf camera objective, and a 2k×2k CCD. As such, it covers the wavelength range from 420nm to 660nm and has a resolving power of R ≍ 40,000. Spectrophotometric and precision radial velocity results from the on-sky testing period will be reported, as well as results of laboratory-based measurements. The optical design of KiwiSpec, and the various multi-channel design options, will be presented elsewhere in these proceedings.

  16. KiwiSpec - an advanced spectrograph for high resolution spectroscopy: optical design and variations

    NASA Astrophysics Data System (ADS)

    Barnes, Stuart I.; Gibson, Steve; Nield, Kathryn; Cochrane, Dave

    2012-09-01

    The KiwiSpec R4-100 is an advanced high resolution spectrograph developed by KiwiStar Optics, Industrial Research Ltd, New Zealand. The instrument is based around an R4 echelle grating and a 100mm collimated beam diameter. The optical design employs a highly asymmetric white pupil design, whereby the transfer collimator has a focal length only 1/3 that of the primary collimator. This allows the cross-dispersers (VPH gratings) and camera optics to be small and low cost while also ensuring a very compact instrument. The KiwiSpec instrument will be bre-fed and is designed to be contained in both thermal and/or vacuum enclosures. The instrument concept is highly exible in order to ensure that the same basic design can be used for a wide variety of science cases. Options include the possibility of splitting the wavelength coverage into 2 to 4 separate channels allowing each channel to be highly optimized for maximum eciency. CCDs ranging from smaller than 2K2K to larger than 4K4K can be accommodated. This allows good (3-4 pixel) sampling of resolving powers ranging from below 50,000 to greater than 100,000. Among the specic design options presented here will be a two-channel concept optimized for precision radial velocities, and a four-channel concept developed for the Gemini High- Resolution Optical Spectrograph (GHOST). The design and performance of a single-channel prototype will be presented elsewhere in these proceedings.

  17. High resolution Raman spectroscopy of complexes and clusters in molecular beams. Performance report

    SciTech Connect

    Felker, P.M.

    1991-12-31

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  18. High resolution Raman spectroscopy of complexes and clusters in molecular beams

    SciTech Connect

    Felker, P.M.

    1991-01-01

    The DOE-sponsored project in this laboratory has two facets. The first is the development of methods of nonlinear Raman spectroscopy for application in studies of sparse samples. The second is the application of such methods to structural and dynamical studies of species in supersonic molecular beams. The progress we have made in both of these areas is described in this paper. The report is divided into five remaining sections. The first pertains to theoretical and experimental developments in Fourier transform stimulated emission spectroscopy and Fourier transform hole-burning spectroscopy. The second deals with progress in the development of ionization-detected stimulated Raman spectroscopies (IDSRS). The third describes results from the application of IDSRS methods to studies of jet-cooled benzene clusters. The fourth describes IDSRS results from studies of hydrogen-bonded complexes containing phenols. The fifth relates to studies of carbazole-(Ar){sub n} clusters.

  19. A compact, high resolution Michelson interferometer for atmospheric spectroscopy in the near ultraviolet

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Cageao, Richard P.; Friedl, Randall R.

    1993-01-01

    A new, compact Fourier Transform Michelson interferometer (FTUV) with an apodized resolving power greater than 300,000 at 300 nm, high throughput and wide spectral coverage has been developed. The objectives include atmospheric spectroscopy (direct solar absorption and solar scattering) and laboratory spectroscopy of transient species. In this paper, we will briefly describe the prototype FTUV instrument and the results of preliminary laboratory investigations of OH and ClO spectra in emission and absorption.

  20. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    PubMed

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  1. On-chip near-infrared spectroscopy of CO2 using high resolution plasmonic filter array

    NASA Astrophysics Data System (ADS)

    Chong, Xinyuan; Li, Erwen; Squire, Kenneth; Wang, Alan X.

    2016-05-01

    We report an ultra-compact, cost-effective on-chip near-infrared spectroscopy system for CO2 sensing using narrow-band optical filter array based on plasmonic gratings with a waveguide layer. By varying the periodicity of the gratings, the transmission spectra of the filters can be continuously tuned to cover the 2.0 μm sensing window with high spectral resolution around 10 nm. Our experimental results show that the on-chip spectroscopy system can resolve the two symmetric vibrational bands of CO2 at 2.0 μm wavelength, which proves its potential to replace the expensive commercial IR spectroscopy system for on-site gas sensing.

  2. High-resolution spectroscopy of the zero-phonon line of the deep donor EL2 in GaAs

    SciTech Connect

    Hecht, C.; Kummer, R.; Thoms, M.; Winnacker, A.

    1997-05-01

    We investigated the zero-phonon line (ZPL) of the deep donor EL2 in GaAs by means of high-resolution absorption spectroscopy with a narrow-band laser. Frequency-selective bleaching ({open_quotes}spectral-hole burning{close_quotes}) experiments and the measurement of the temperature broadening of the ZPL prove an essentially homogeneous broadening of the transition. The observed asymmetry of the line shape is interpreted to be caused by a Fano resonance of the {sup 1}T{sub 2} excited state with the conduction band. A splitting of the {sup 1}T{sub 2} state as the reason for the asymmetry seems unrealistic. The homogeneous broadening of the ZPL prevents the use of spectral-hole burning spectroscopy to study the effect of external perturbations on the ZPL of the EL2. {copyright} {ital 1997} {ital The American Physical Society}

  3. HIGH-RESOLUTION INFRARED IMAGING AND SPECTROSCOPY OF THE Z CANIS MAJORIS SYSTEM DURING QUIESCENCE AND OUTBURST

    SciTech Connect

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.; Oppenheimer, Ben R.; Zimmerman, Neil; Brenner, Douglas; Rice, Emily L.; Pueyo, Laurent; Vasisht, Gautam; Roberts, Jennifer E.; Roberts, Lewis C. Jr.; Burruss, Rick; Wallace, J. Kent; Cady, Eric; Zhai, Chengxing; Kraus, Adam L.; Ireland, Michael J.; Beichman, Charles; Dekany, Richard; Parry, Ian R.; and others

    2013-01-20

    We present adaptive optics photometry and spectra in the JHKL bands along with high spectral resolution K-band spectroscopy for each component of the Z Canis Majoris system. Our high angular resolution photometry of this very young ({approx}<1 Myr) binary, comprised of an FU Ori object and a Herbig Ae/Be star, was gathered shortly after the 2008 outburst while our high-resolution spectroscopy was gathered during a quiescent phase. Our photometry conclusively determines that the outburst was due solely to the embedded Herbig Ae/Be member, supporting results from earlier works, and that the optically visible FU Ori component decreased slightly ({approx}30%) in luminosity during the same period, consistent with previous works on the variability of FU Ori type systems. Further, our high-resolution K-band spectra definitively demonstrate that the 2.294 {mu}m CO absorption feature seen in composite spectra of the system is due solely to the FU Ori component, while a prominent CO emission feature at the same wavelength, long suspected to be associated with the innermost regions of a circumstellar accretion disk, can be assigned to the Herbig Ae/Be member. These findings clarify previous analyses of the origin of the CO emission in this complex system.

  4. High-resolution X-ray spectroscopy of late-type stars with CHANDRA

    NASA Astrophysics Data System (ADS)

    Mewe, R.; Raassen, A. J. J.; Kaastra, J. S.; van der Meer, R. L. J.; Brinkman, A. C.

    We have analyzed high-resolution (Δλ ≅ 0.06 Å) X-ray spectra in the region 6-180 Å of the coronae of the cool stars Capella, Procyon, and α Centauri. These stars were observed with the the CHANDRA Low Energy Transmission Grating Spectrometer (LETGS) between Sep. and Dec. 1999. Temperatures are derived from line ratios of helium-like lines and long-wavelength iron lines. Electron densities are obtained for the relatively cooler (few MK) and more tenuous (⪅ 10 11 cm -3) plasma components from the forbidden to intercombination line ratios in the helium-like triplets of O, N, and C and for the hotter (⪆ 5 MK) and denser (⪆ 10 12 cm -3) components (such as occur in Capella) from the helium-like triplets of Mg and Si and the ratios of Fe XIX-Fe XXII 2ℓ-2ℓ' lines above 90 Å. The implications of these results for the coronal structure are discussed.

  5. High-resolution electron momentum spectroscopy of valence satellites of carbon disulfide

    NASA Astrophysics Data System (ADS)

    Huang, Chengwu; Shan, Xu; Zhang, Zhe; Wang, Enliang; Li, Zhongjun; Chen, XiangJun

    2010-09-01

    The binding energy spectrum of carbon disulphide (CS2) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from Π2u, Σg+2 states to satellite 2 and Σg+2, Π2g states to satellite 3. Besides, relatively low pole strength for X Π2g state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.

  6. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O- and Fe5O-

    NASA Astrophysics Data System (ADS)

    Weichman, Marissa L.; DeVine, Jessalyn A.; Neumark, Daniel M.

    2016-08-01

    We report high-resolution photodetachment spectra of the cryogenically cooled iron monoxide clusters Fe4O- and Fe5O- obtained with slow photoelectron velocity-map imaging (cryo-SEVI). Well-resolved vibrational progressions are observed in both sets of spectra, and transitions to low-lying excited states of both species are seen. In order to identify the structural isomers, electronic states, and vibrational modes that contribute to the cryo-SEVI spectra of these clusters, experimental results are compared with density functional theory calculations and Franck-Condon simulations. The main bands observed in the SEVI spectra are assigned to the 15A2←16B2 photodetachment transition of Fe4O- and the 17A'←18A″ photodetachment transition of Fe5O-. We report electron affinities of 1.6980(3) eV for Fe4O and 1.8616(3) eV for Fe5O, although there is some uncertainty as to whether the 15A2 state is the true ground state of Fe4O. The iron atoms have a distorted tetrahedral geometry in Fe4O0/- and a distorted trigonal-bipyramidal arrangement in Fe5O0/-. For both neutral and anionic species, the oxygen atom preferably binds in a μ2-oxo configuration along the cluster edge. This finding is in contrast to prior predictions that Fe5O0/- exhibits a μ3 face-bound structure.

  7. Slit-Jet Discharge Studies of Polyacetylenic Molecules: Synthesis and High Resolution Infrared Spectroscopy of Diacetylene

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Roberts, Melanie A.; Nesbitt, David J.

    2013-06-01

    Polyacetylenic molecules play an important role in both combustion chemistry as well as chemistry of the interstellar medium. This talk presents first high resolution infrared spectroscopic efforts on the simplest jet-cooled polyacetylene, namely diacetylene (C_4H_2). Specifically, the fundamental anti-symmetric C-H stretching mode (near 3333 cm^{-1}) and several hot combination bands of diacetylene have been investigated under sub-Doppler, jet cooled conditions in a pulsed supersonic slit discharge. Local Coriolis perturbations in the fundamental anti-symmetric C-H stretch manifold are observed and analyzed. Six hot bands are observed, including the H-C-C bending mode (v_8) not observed in previous room temperature studies. The observation of these hot bands under rotationally jet cooled conditions (T_{rot}=15.7(4) K) indicate the presence of highly non-equilibrium relaxation processes between vibration and rotation. G. Guelachvili, A. M. Craig, and D. A. Ramsay, J. Mol. Spectrosc. 105, 156 (1984)

  8. HIGH-RESOLUTION FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF METHYL- AND DIMETHYLNAPTHALENES

    SciTech Connect

    Schnitzler, Elijah G.; Zenchyzen, Brandi L. M.; Jäger, Wolfgang

    2015-06-01

    High-resolution pure rotational spectra of four alkylnaphthalenes were measured in the range of 6–15 GHz using a molecular-beam Fourier-transform microwave spectrometer. Both a- and b-type transitions were observed for 1-methylnaphthalene (1-MN), 1,2-dimethylnaphthalene (1,2-DMN), and 1,3-dimethylnaphthalene (1,3-DMN); only a-type transitions were observed for 2-methylnaphthalene (2-MN). Geometry optimization and vibrational analysis calculations at the B3LYP/6-311++G(d,p) level of theory aided in the assignments of the spectra and the characterization of the structures. Differences between the experimental and predicted rotational constants are small, and they can be attributed in part to low-lying out-of-plane vibrations, which distort the alkylnaphthalenes out of their equilibrium geometries. Splittings of rotational lines due to methyl internal rotation were observed in the spectra of 2-MN, 1,2-DMN, and 1,3-DMN, and allowed for the determination of the barriers to methyl internal rotation, which are compared to values from density functional theory calculations. All four species are moderately polar, so they are candidate species for detection by radio astronomy, by targeting the transition frequencies reported here.

  9. ISIS: An Interactive Spectral Interpretation System for High Resolution X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Houck, J. C.; Denicola, L. A.

    The Interactive Spectral Interpretation System (ISIS) is designed to facilitate the interpretation and analysis of high resolution X-ray spectra like those obtained using the grating spectrographs on Chandra and XMM and the microcalorimeter on Astro-E. It is being developed as an interactive tool for studying the physics of X-ray spectrum formation, supporting measurement and identification of spectral features, and interaction with a database of atomic structure parameters and plasma emission models. The current version uses the atomic data and collisional ionization equilibrium models in the Astrophysical Plasma Emission Database (APED) of Brickhouse et.al., and also provides access to earlier plasma emission models including Raymond-Smith and MEKAL. Although the current version focuses on collisional ionization equilibrium plasmas, the system is designed to allow use of other databases to provide better support for studies of non-equilibrium and photoionized plasmas. To maximize portability between Unix operating systems, ISIS is being written entirely in ANSI C using free-software components (CFITSIO, PGPLOT and S-Lang).

  10. High-resolution UV-visible spectroscopy of lunar red spots

    NASA Technical Reports Server (NTRS)

    Bruno, B. C.; Lucey, P. G.; Hawke, B. R.

    1991-01-01

    A spectral reflectance study of selected lunar 'red spots', highland areas characterized by an absorption in the ultraviolet relative to the visible was conducted. Some red spots were suggested to be the sites of ancient highland volcanism. High-resolution spectral data of eight red spots on the western portion of the moon over the wavelength region 0.39-0.82 micron were obtained. Much spectral variation among these red spots in the magnitude as well as the wavelength position of the ultraviolet absorption were found. Spectral structure at visible and near-infrared wavelength were also identified. These spectral differences indicate that red spots do not have a single mineralogical composition, which in turn suggests that red spots may have multiple origins. Additional imaging spectroscopic observations were taken of the Herigonius red spot, a morphologically complex region northeast of Mare Humorum. These data reveal significant spectral differences among the various morphological units within the Herigonius red spot. Although some of these are likely due to the effects of the maturation process, others appear to reflect differences in mineral abundances and composition.

  11. Applications of High Resolution Laser: Induced Breakdown Spectroscopy for Environmental and Biological Samples

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbe, Nicole; Wagner, Rebekah J.

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  12. HIGH-RESOLUTION IR ABSORPTION SPECTROSCOPY OF POLYCYCLIC AROMATIC HYDROCARBONS: THE REALM OF ANHARMONICITY

    SciTech Connect

    Maltseva, Elena; Buma, Wybren Jan; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Tielens, Alexander G. G. M.; Huang, Xinchuan; Lee, Timothy J.; Oomens, Jos E-mail: petrignani@strw.leidenuniv.nl

    2015-11-20

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4 K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main bands that fall within 0.5% of the experimental frequencies. The implications for the aromatic infrared bands, specifically the 3-μm band, are discussed.

  13. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  14. Applications of High Resolution Laser Induced Breakdown Spectroscopy for Environmental and Biological Samples

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Wagner, Rebekah J.

    2013-01-01

    This chapter details the application of LIBS in a number of environmental areas of research such as carbon sequestration and climate change. LIBS has also been shown to be useful in other high resolution environmental applications for example, elemental mapping and detection of metals in plant materials. LIBS has also been used in phytoremediation applications. Other biological research involves a detailed understanding of wood chemistry response to precipitation variations and also to forest fires. A cross-section of Mountain pine (pinceae Pinus pungen Lamb.) was scanned using a translational stage to determine the differences in the chemical features both before and after a fire event. Consequently, by monitoring the elemental composition pattern of a tree and by looking for abrupt changes, one can reconstruct the disturbance history of a tree and a forest. Lastly we have shown that multivariate analysis of the LIBS data is necessary to standardize the analysis and correlate to other standard laboratory techniques. LIBS along with multivariate statistical analysis makes it a very powerful technology that can be transferred from laboratory to field applications with ease.

  15. High-resolution VUV spectroscopy: New results from the Advanced Light Source

    SciTech Connect

    Schlachter, F.; Bozek, J.

    1996-06-01

    Third-generation synchrotron light sources are providing photon beams of unprecedented brightness for researchers in atomic and molecular physics. Beamline 9.0.1, an undulator beamline at the Advanced Light Source (ALS), produces a beam in the vacuum-ultraviolet (VUV) region of the spectrum with exceptional flux and spectral resolution. Exciting new results from experiments in atomic and molecular VUV spectroscopy of doubly excited autoionizing states of helium, hollow lithium, and photoelectron spectroscopy of small molecules using Beamline 9.0.1 at the ALS are reported.

  16. USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY TO INVESTIGATE PMDI REACTIONS WITH WOOD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solution-state NMR spectroscopy provides a powerful tool for understanding the formation of chemical bonds between wood components and adhesives. Finely ground cell wall (CW) material fully dissolves in a solvent system containing dimethylsulfoxide (DMSO-d6) and N-methyl¬imidazole (NMI-d6), keeping ...

  17. A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy

    SciTech Connect

    Bergmann, Uwe; Cramer, Stephen P.

    2001-08-02

    A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arranged in a way that energy scans can be performed by moving the whole instrument, rather than scanning each crystal by itself. At angles close to back scattering the energy resolution is between 0.3 and 1 eV depending on the beam dimensions at the sample. The instrument is mainly designed for X-ray absorption and fluorescence spectroscopy of transition metals in dilute systems such as metalloproteins. First results of the Mn K{beta} (3p -> 1s) emission in photosystem II are shown. An independent application of the instrument is the technique of X-ray Raman spectroscopy which can address problems similar to those in traditional soft X-ray absorption spectroscopies, and initial results are presented.

  18. Diagnosing the Stagnation Conditions of MagLIF Implosions Using High-Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harding, Eric

    2016-10-01

    An inertial fusion concept known as Magnetized Liner Inertial Fusion (MagLIF) is currently being pursued on the Z-machine at Sandia National Laboratory. Electrical current from the Z-machine is directly coupled onto the outside surface of a beryllium tube known as a ``liner'' causing it to implode. The liner contains gaseous deuterium (D2) fuel, which is pre-magnetized, pre-heated, and then compressed by the imploding walls of the liner. Target implosions of this type have produced thermonuclear plasmas that generated 2e12 DD neutrons [M.R. Gomez et al., PRL 113, 155003 (2014)]. For the first time we have accurately measured the space-dependent, fuel conditions at the time of stagnation. In addition, the state of the compressed Be liner was determined. This was accomplished by the simultaneous use of high-resolution, x-ray spectroscopic and imaging diagnostics. These new measurements relied on the observation of K-shell spectra emitted by microscopic iron and nickel impurities that naturally occur in the Be. The measurements currently indicate that the non-uniformity of the x-ray emission from the fuel is due to variations in the fuel conditions. Ultimately, the data provides critical insight into the performance of the MagLIF target and will further enable us to enhance the target design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract No. DE-AC04-94AL85000.

  19. Detection and characterization of Io's atmosphere from high-resolution 4-μm spectroscopy

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Ali-Dib, M.; Jessup, K.-L.; Smette, A.; Käufl, H.-U.; Marchis, F.

    2015-06-01

    We report on high-resolution and spatially-resolved spectra of Io in the 4.0 μm region, recorded with the VLT/CRIRES instrument in 2008 and 2010, which provide the first detection of the ν1 + ν3 band of SO2 in Io's atmosphere. Data are analyzed to constrain the latitudinal, longitudinal, and diurnal distribution of Io's SO2 atmosphere as well as its characteristic temperature. Equatorial SO2 column densities clearly show longitudinal asymmetry, but with a maximum of ∼1.5 × 1017 cm-2 at central meridian longitude L = 200-220 and a minimum of ∼3 × 1016 cm-2 at L = 285-300, the longitudinal pattern somewhat differs from earlier inferences from Ly α and thermal IR measurements. Within the accuracy of the measurements, no evolution of the atmospheric density from mid-2008 to mid-2010 can be distinguished. The decrease of the SO2 column density towards high latitudes is apparent, and the typical latitudinal extent of the atmosphere found to be ±40° at half-maximum. The data show moderate diurnal variations of the equatorial atmosphere, which is evidence for a partially sublimation-supported atmospheric component. Compared to local noon, factor of 2 lower densities are observed ∼40° before and ∼80° after noon. Best-fit gas temperatures range from 150 to 220 K, with a weighted mean value of 170 ± 20 K, which should represent the column-weighted mean kinetic temperature of Io's atmosphere. Finally, although the data include clear thermal emission due to Pillan (in outburst in July 2008) and Loki, no detectable enhancements in the SO2 atmosphere above these volcanic regions are found, with an upper limit of 4 × 1016 cm-2 at Pillan and 1 × 1017 cm-2 at Loki.

  20. High Resolution Spectroscopy and Global Analysis of the Tetradecad Region of Methane 12CH_4

    NASA Astrophysics Data System (ADS)

    Nikitin, A.; Boudon, V.; Wenger, C.; Brown, L. R.; Bauerecker, S.; Albert, S.; Quack, M.

    2011-06-01

    We present the first detailed analysis of the Tetradecad region of methane 12CH_4 from 2.1 to 1.6 μm (4800 to 6250 Cm-1). New high resolution FTIR spectra measured in a collisional cooling cell at 80 K and at room temperature have allowed us to perform many new assignments. All assigned lines of 12CH_4 in the 0-6200 Cm-1 region have been included in a global fit, extending our previous analysis covering all levels up to and including the Octad (i.e. up to 4800 Cm-1 In the end, 3012 line positions and 1387 intensities of 45 individual subbands were modeled up to J = 14. The root mean square deviations were 0.023 Cm-1 for line positions and 13.86 % for line intensities in the Tetradecad region itself. Although this study is still preliminary, it is already sufficient to characterize the stronger bands throughout the whole of the Tetradecad polyad. The analysis and present success substantially improves our understanding of the methane spectra needed to interpret planetary atmospheres. This work is part of the ANR contract ``CH_4@Titan'' (ref: BLAN08-2_321467). Part of the research described here was also carried out at the Jet Propulsion Laboratory, under a contract with the National Aeronautics and Space Administration. Our work is also supported by the Swiss National Science Foundation. S. Albert, S. Bauerecker, V. Boudon, L. R. Brown, J.-P. Champion, M. Loëte, A. Nikitin, M. Quack, Chem. Phys., 356, 131--146 (2009).

  1. CALCIUM AND LIGHT-ELEMENTS ABUNDANCE VARIATIONS FROM HIGH-RESOLUTION SPECTROSCOPY IN GLOBULAR CLUSTERS

    SciTech Connect

    Carretta, Eugenio; Bragaglia, Angela; Bellazzini, Michele; Gratton, Raffaele; Lucatello, Sara; D'Orazi, Valentina E-mail: angela.bragaglia@oabo.inaf.it E-mail: raffaele.gratton@oapd.inaf.it E-mail: valentina.dorazi@oapd.inaf.it

    2010-03-20

    We use abundances of Ca, O, Na, and Al from high-resolution UVES spectra of 200 red giants in 17 globular clusters (GCs) to investigate the correlation found by Lee et al. between chemical enrichment from SN II and star-to-star variations in light elements in GC stars. We find that (1) the [Ca/H] variations between first and second generation stars are tiny in most GCs ({approx}0.02-0.03 dex, comparable with typical observational errors). In addition, (2) using a large sample of red giants in M 4 with abundances from UVES spectra from Marino et al., we find that Ca and Fe abundances in the two populations of Na-poor and Na-rich stars are identical. These facts suggest that the separation seen in color-magnitude diagrams using the U band or hk index (as observed in NGC 1851 by Han et al.) are not due to Ca variations. Small differences in [Ca/H] as associated with hk variations might be due to a small systematic effect in abundance analysis, because most O-poor/Na-rich (He-rich) stars have slightly larger [Fe/H] (by 0.027 dex on average, due to decreased H in the ratio) than first generation stars and are then located at redder positions in the V, hk plane. While a few GCs (M 54, {omega} Cen, M 22, maybe even NGC 1851) do actually show various degree of metallicity spread, our findings eliminate the need of a close link between the enrichment by core-collapse supernovae with the mechanism responsible for the Na-O anticorrelation.

  2. HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b

    SciTech Connect

    Crossfield, I. J. M.; Hansen, Brad M. S.; Barman, Travis

    2011-08-01

    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations {approx}> 5 x 10{sup -4} over the wavelength range 2.1-2.4 {mu}m. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with other observational constraints, our results support a model in which the atmosphere of GJ 1214b contains significant H and He, but where CH{sub 4} is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.

  3. SUBARU HIGH-RESOLUTION SPECTROSCOPY OF STAR G IN THE TYCHO SUPERNOVA REMNANT

    SciTech Connect

    Kerzendorf, Wolfgang E.; Schmidt, Brian P.; Yong, David; Asplund, M.; Nomoto, Ken'ichi; Podsiadlowski, Ph.; Frebel, Anna; Fesen, Robert A. E-mail: brian@mso.anu.edu.au E-mail: nomoto@astron.s.u-tokyo.ac.jp E-mail: anna@astro.as.utexas.edu

    2009-08-20

    It is widely believed that Type Ia supernovae (SNe Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova (SNe) explosion, providing an opportunity to understand the progenitors of SNe Ia. In this paper, we argue that rotation is a generic signature expected of most nongiant donor stars that is easily measurable. Ruiz-Lapuente et al. examined stars in the center of the remnant of SN 1572 (Tycho SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's center was the system's donor star. We present high-resolution (R {approx_equal} 40, 000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as 79 {+-} 2 km s{sup -1} with respect to the local standard of rest and put an upper limit on the star's rotation of 7.5 km s{sup -1}. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be {mu} {sub l} = -1.6 {+-} 2.1 mas yr{sup -1} and {mu} {sub b} = -2.7 {+-} 1.6 mas yr{sup -1}. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho SN that is not associated with the SN event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.

  4. Calcium and Light-elements Abundance Variations from High-resolution Spectroscopy in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Bragaglia, Angela; Gratton, Raffaele; Lucatello, Sara; Bellazzini, Michele; D'Orazi, Valentina

    2010-03-01

    We use abundances of Ca, O, Na, and Al from high-resolution UVES spectra of 200 red giants in 17 globular clusters (GCs) to investigate the correlation found by Lee et al. between chemical enrichment from SN II and star-to-star variations in light elements in GC stars. We find that (1) the [Ca/H] variations between first and second generation stars are tiny in most GCs (~0.02-0.03 dex, comparable with typical observational errors). In addition, (2) using a large sample of red giants in M 4 with abundances from UVES spectra from Marino et al., we find that Ca and Fe abundances in the two populations of Na-poor and Na-rich stars are identical. These facts suggest that the separation seen in color-magnitude diagrams using the U band or hk index (as observed in NGC 1851 by Han et al.) are not due to Ca variations. Small differences in [Ca/H] as associated with hk variations might be due to a small systematic effect in abundance analysis, because most O-poor/Na-rich (He-rich) stars have slightly larger [Fe/H] (by 0.027 dex on average, due to decreased H in the ratio) than first generation stars and are then located at redder positions in the V, hk plane. While a few GCs (M 54, ω Cen, M 22, maybe even NGC 1851) do actually show various degree of metallicity spread, our findings eliminate the need of a close link between the enrichment by core-collapse supernovae with the mechanism responsible for the Na-O anticorrelation. Based on data collected at the European Southern Observatory, Chile, programmes 072.D-507, 073.D-0211, 072.D-0742, and 077.D-0182.

  5. Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Uttenthaler, S.; Blommaert, J. A. D. L.; Wood, P. R.; Lebzelter, T.; Aringer, B.; Schultheis, M.; Ryde, N.

    2015-08-01

    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12C/13C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff ≈ 3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly subsolar mean metallicity and only few stars with supersolar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O < 1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.

  6. High-Resolution Near-Infrared Spectroscopy of Fuors and Fuor-Like Stars

    NASA Astrophysics Data System (ADS)

    Greene, Thomas P.; Aspin, Colin; Reipurth, Bo

    2008-04-01

    We present new high-resolution (R sime 18, 000) near-infrared spectroscopic observations of a sample of classical FU Orionis stars (FUors) and other young stars with FUor characteristics that are sources of Herbig-Haro (HH) flows. Spectra are presented for the region λ = 2.203-2.236 μm which is rich in absorption lines sensitive to both effective temperatures and surface gravities of stars. Both FUors and FUor-like stars show numerous broad and weak-unidentified spectral features in this region. Spectra of the 2.280-2.300 μm region are also presented, with the 2.2935 μm v = 2-0 CO absorption bandhead being clearly the strongest feature seen in the spectra of all FUors and FUor-like stars. A cross-correlation analysis shows that FUor and FUor-like spectra in the 2.203-2.236 μm region are not consistent with late-type dwarfs, giants, nor embedded protostars. The cross-correlations also show that the observed FUor-like HH energy sources have spectra that are substantively similar to those of FUors. Both object groups also have similar near-infrared colors. The large line widths and double-peaked nature of the spectra of the FUor-like stars are consistent with the established accretion disk model for FUors, also consistent with their near-infrared colors. It appears that young stars with FUor-like characteristics may be more common than projected from the relatively few known classical FUors. Much of the data presented herein were obtained at the W.M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  7. High-resolution ultraviolet spectroscopy of gas in galaxy halos and large-scale structures

    NASA Astrophysics Data System (ADS)

    Song, Limin

    This dissertation presents spectroscopic studies of gas in galaxy halos and large-scale structures through high-resolution quasar absorption lines. The broad goal of this effort is to learn how galaxies acquire their gas and how they return it to the intergalactic medium, or more generally, how galaxies interact with their environment. The study of the absorption lines due to the extraplanar 21cm "Outer Arm" (OA) of the Milky Way toward two quasars, H1821+643 and HS0624+6907, provides valuable insight into the gas accretion processes. It yields the following results. (1) The OA is a multiphase cloud and high ions show small but significant offsets in velocity and are unlikely to be cospatial with the low ions. (2) The overall metallicity of the OA is Z=0.3-0.5 Z⊙, but nitrogen is underabundant. (3) The abundance of N, O, and S derived are roughly consistent with outer-galaxy emission-line abundances and the metallicity gradient derived from H II regions. The similarity of the OA kinematics to several nearby high velocity clouds (HVCs, e.g. Complexes C, G, and H) suggests that these clouds could be detritus from a merging satellite galaxy. To test this hypothesis, we build up a simple model including tidal tripping, ram-pressure stripping, and dynamical friction to consider whether the OA could be debris affiliated with the Monoceros Ring. Our model can roughly reproduce the spatial and velocity characteristics of the OA. Moreover, the metallicity of the OA is similar to the higher metallicities measured in the younger stellar components of the Monoceros Ring and the progenitor candidate, the CMa overdensity. However, both our model and the Galactic warp scenario can not explain other HVCs that are likely to be related to the OA. Instead of acquiring gas, some galaxies have their gas removed through various physical processes. Ram-pressure stripping and tidal interaction are important mechanisms for galaxies to loose their gas. The high-resolution spectrum of Mrk

  8. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

    PubMed Central

    Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2017-01-01

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987

  9. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre.

    PubMed

    Wan, Noel H; Meng, Fan; Schröder, Tim; Shiue, Ren-Jye; Chen, Edward H; Englund, Dirk

    2015-07-23

    Optical spectroscopy is a fundamental tool in numerous areas of science and technology. Much effort has focused on miniaturizing spectrometers, but thus far at the cost of spectral resolution and broad operating range. Here we describe a compact spectrometer that achieves both high spectral resolution and broad bandwidth. The device relies on imaging multimode interference from leaky modes along a multimode tapered optical fibre, resulting in spectrally distinguishable spatial patterns over a wide range of wavelengths from 500 to 1,600 nm. This tapered fibre multimode interference spectrometer achieves a spectral resolution down to 40 pm in the visible spectrum and 10 pm in the near-infrared spectrum (corresponding to resolving powers of 10(4)-10(5)). Multimode interference spectroscopy is suitable in a variety of device geometries, including planar waveguides in a broad range of transparent materials.

  10. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

    NASA Astrophysics Data System (ADS)

    Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J.-C.; Traykov, E.; van Beveren, C.; van den Bergh, P.; van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2017-02-01

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency.

  11. High-resolution proton nuclear magnetic resonance spectroscopy of ovarian cyst fluid.

    PubMed

    Boss, E A; Moolenaar, S H; Massuger, L F; Boonstra, H; Engelke, U F; de Jong, J G; Wevers, R A

    2000-08-01

    Most ovarian tumors are cystic structures containing variable amounts of fluid. Several studies of ovarian cyst fluid focus on one specific metabolite using conventional assay systems. We examined the potential of (1)H-nuclear magnetic resonance spectroscopy in evaluation of the overall metabolic composition of cyst fluid from different ovarian tumors. Ovarian cyst fluid samples obtained from 40 patients with a primary ovarian tumor (12 malignant and 28 benign) were examined. After deproteinization and pD standardization, we performed (1)H-NMR spectroscopy on a 600 MHz instrument. With (1)H-NMR spectroscopy we found detectable concentrations of 36 metabolites with high intersample variation. A number of unassigned resonances as well as unexpected metabolites were found. We introduce an overall inventory of the low-molecular-weight metabolites in ovarian cyst fluid with corresponding resonances. Significant differences in concentration (p < 0.01) were found for several metabolites (including an unknown metabolite) between malignant and benign ovarian cysts. Furthermore, higher concentrations in malignant- and lower in benign fluids were found compared to normal serum values, indicating local cyst wall metabolic processes in case of malignant transformation. We conclude that (1)H-nuclear magnetic resonance spectroscopy can give an overview of low-molecular-weight proton-containing metabolities present in ovarian cyst fluid samples. The metabolic composition of cyst fluid differs significantly between benign and malignant ovarian tumors. Furthermore, differences between benign subgroups possibly related to histopathological behaviour can be detected. The presence of N-acetyl aspartic acid and 5-oxoproline exclusively in serous cystadenoma samples is remarkable. Future studies will concentrate on these findings and explore the possibilities of extrapolating information from the in vitro studies to in vivo practice, in which metabolic differences between malignant and

  12. Triple Fabry-Pérot Imaging Interferometer for High Resolution Solar Spectroscopy using the ATST

    NASA Astrophysics Data System (ADS)

    Robinson, B. M.; Gary, G. A.; Balasubramaniam, K. S.

    2005-05-01

    We present a telecenrically mounted triple Fabry-Pérot imaging interferometer for the NSOs Advanced Technology Solar Telescope (ATST). It consists of three Fabry-Pérot etalons and the feed and imaging optics. This system provides high throughput, flexibility and breadth of operation when compared to other spectroscopic imaging systems. It can operate in four distinct modes: as a spectro-polarimeter, a filter-vector magnetograph, an intermediate-band imager, and broadband high-resolution imager. In the proposed telecentric mount configuration, the transmittance of the etalon system is not a function of position in the field, so that instantaneous spectroscopic measurements can be performed across the entire field of view; however, the transmission peak of the interferometer is broadened. Mitigation of this broadening requires a low F# image at the etalons. Together with the requirement that the field of view be large enough to observe large-scale processes in the solar atmosphere, this limitation dictates that the diameter of the etalons have a large aperture. Specifically, for a spectrographic passband full-width at half-maximum (FWHM) of around 2 pm, and entrance pupil diameter of 4 m, and a field of view of 35", the required etalon diameter is around 200 mm. This is beyond the size of current Fabry-Pérot etalons and near the current projected limit of manufacturability. The development of this instrument will bring these large etalons to realization and take Fabry-Pérot imaging interferometry to the next level of operational capability within telescopes of large aperture. This instrument will provide spectral, spatial, and temporal resolution which is not currently available to large aperture solar astronomy, but which is necessary, in conjunction with the new class telescopes, to the continuing discovery of laws that govern the dynamics of the sun and the earth-sun connection. The resolution afforded by higher aperture telescopes and instrumentation will

  13. Estimating photosynthesis with high resolution field spectroscopy in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Perez-Priego, O.; Guan, J.; Fava, F.; Rossini, M.; Wutzler, T.; Moreno, G.; Carrara, A.; Kolle, O.; Schrumpf, M.; Reichstein, M.; Migliavacca, M.

    2014-12-01

    Recent studies have shown how human induced N:P imbalances are affecting essential processes (e.g. photosynthesis, plant growth rate) that lead to important changes in ecosystem structure and function. In this regard, the accuracy of the approaches based on remotely-sensed data for monitoring and modeling gross primary production (GPP) relies on the ability of vegetation indices (VIs) to track the dynamics of vegetation physiological and biophysical properties/variables. Promising results have been recently obtained when Chlorophyll-sensitive VIs and Chlorophyll fluorescence are combined with structural indices in the framework of the Monteith's light use efficiency (LUE) model. However, further ground-based experiments are required to validate LUE model performances, and their capability to be generalized under different nutrient availability conditions. In this study, the overall objective was to investigate the sensitivity of VIs to track short- and long-term GPP variations in a Mediterranean grassland under different N and P fertilization treatments. Spectral VIs were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs examined included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar-induced chlorophyll fluorescence calculated at the oxygen absorption band O2-A (F760) using spectral fitting methods was also used. Simultaneously, measurements of GPP and environmental variables were conducted using a transient-state canopy chamber. Overall, GPP, F760 and VIs showed a clear seasonal time-trend in all treatments, which was driven by the phenological development of the grassland. Results showed significant differences (p<0.05) in midday GPP values between N and without N addition plots, in particular at the peak of the growing season during the flowering stage and at the end of the season during senescence. While

  14. High Resolution Microwave Spectroscopy of CH as a Search for Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Truppe, S.; Hendricks, R. J.; Tokunaga, S. K.; Hinds, E. A.; Tarbutt, M. R.

    2013-06-01

    The Standard Model of particle physics assumes that fundamental, dimensionless constants like the fine-structure constant, α, or the ratio of the proton to electron mass, μ, remain constant through time and space. Laboratory experiments have set tight bounds on variations of such constants on a short time scale. Astronomical observations, however, provide vital information about possible changes on long time scales. Recent measurements using quasar absorption spectra provide some evidence for a space-time variation of the fine-structure constant α. It is thus important to verify this discovery by using an entirely different method. Recently the prospect of using rotational microwave spectra of molecules as a probe of fundamental constants variation has attracted much attention. Generally these spectra depend on μ, but if fine and hyperfine structure is involved they also become sensitive to variations of α and the nuclear g-factor. Recent calculations show that the Λ-doublet and rotational spectra of CH are particularly sensitive to possible variations of μ and α. We present recent laboratory based high-resolution spectra of the Λ-doublet transition frequencies of the {F}_2, J=1/2 and {F}_1, J=3/2 states of CH, X^{2}{Π} (v=0) at 3.3GHz and 0.7GHz respectively, with {F} labelling the different spin-orbit manifolds of CH. We also present a measurement of the transition frequency between the two spin-orbit manifolds {F}_2, J=1/2 and {F}_1, J=3/2 at 530GHz. By using a molecular beam of CH in combination with a laser-microwave double-resonance technique and Ramsey's method of separated oscillatory fields, we have measured these transition frequencies to unprecedented accuracy. Hence CH can now be used as a sensitive probe to detect changes in fundamental constants by comparing lab based frequencies to radio-astronomical observations from distant gas clouds. T. Rosenband et al., Science {319}(5871), 1808, 2008 J. K. Webb et al., Physical Review Letters {107

  15. High Resolution Spectroscopy Using a Tunable Thz Synthesizer Based on Photomixing

    NASA Astrophysics Data System (ADS)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Eliet, Sophie; Guinet, Mickael; Bocquet, Robin

    2011-06-01

    Optical heterodyning, also know as photomixing is an attractive solution as a single device able to cover the entire frequency range from 300 GHz to 3 THz. As the THz frequency is extracted from the difference frequency of two lasers, the accuracy with which the generated frequency is known is directly determined by the frequency accuracy of the lasers. In order to fully characterize the spectral fingerprint of a given molecule an accuracy approximately one order of magnitude finer than the Doppler linewidth is required, around 100 kHz for smaller polar compounds. To generate accurate cw-THz the frequency spacing of the modes of a Frequency Comb (FC) has been employed to constrain the emission frequency of a photomixing source.footnote{G. Mouret, F. Hindle, A. Cuisset, C. Yang, R. Bocquet, M. Lours, D. Rovera, Opt. Express, 2009, 17: 22031.} Two phase locked loops are implemented coherently locking the two cw-lasers (CW1 and CW2) to different modes of the FC. Although this solution allows accurate generation of narrowband THz the continuous tuning of the frequency presents some obstacles. To overcome these difficulties a system architecture with a third cw-laser (CW3) phase locked to CW2 has been implemented. The beatnote between CW2 and CW3 is free from the FC modes therefore the PLL frequency can be freely scanned over its entire operating range, in our case around 200 MHz. The most of polar compounds may be studied at high resolution in the THz domain with this synthesizer. Three different examples of THz analysis with atmospherical and astrophysical interests will be presented: The ground and vibrationnally excited states of H_2CO revisited in the 0.5-2 THz frequency region The rotational dependences of the broadening coefficients of CH_3Cl studied at high J and K values The molecular discrimination of a complex mixture containing methanol and ethanol. F. Hindle, A. Cuisset, G. Mouret, R. Bocquet Comptes Rendus Physique, 2008, 9: 262-275.

  16. Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy

    USGS Publications Warehouse

    Pedone, V.A.; Cercone, K.R.; Burruss, R.C.

    1990-01-01

    Laser-excited luminescence spectroscopy of a red-algal, biogenic calcite and a synthetic Mn-calcite can make the distinction between organic and trace-element activators of photoluminescence. Organic-activated photoluminescence in biogenic calcite is characterized by significant peak shifts and increasing intensity with shorter-wavelength excitation and by significant decreases in intensity after heating to ??? 400??C. In contrast, Mn-activated photoluminescence shows no peak shift, greatest intensity under green excitation and limited changes after heating. Examination of samples with a high-sensitivity spectrometer using several wavelengths of exciting light is necessary for identification of photoluminescence activators. ?? 1990.

  17. Recent Developments of an Opto-Electronic THz Spectrometer for High-Resolution Spectroscopy

    PubMed Central

    Hindle, Francis; Yang, Chun; Mouret, Gael; Cuisset, Arnaud; Bocquet, Robin; Lampin, Jean-François; Blary, Karine; Peytavit, Emilien; Akalin, Tahsin; Ducournau, Guillaume

    2009-01-01

    A review is provided of sources and detectors that can be employed in the THz range before the description of an opto-electronic source of monochromatic THz radiation. The realized spectrometer has been applied to gas phase spectroscopy. Air-broadening coefficients of HCN are determined and the insensitivity of this technique to aerosols is demonstrated by the analysis of cigarette smoke. A multiple pass sample cell has been used to obtain a sensitivity improvement allowing transitions of the volatile organic compounds to be observed. A solution to the frequency metrology is presented and promises to yield accurate molecular line center measurements. PMID:22291552

  18. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the TEM

    PubMed Central

    Tanase, Mihaela; Winterstein, Jonathan; Sharma, Renu; Aksyuk, Vladimir; Holland, Glenn; Liddle, J. Alexander

    2016-01-01

    We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning-transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200 μm × 200 μm. PMID:26650072

  19. An ultrastable Michelson interferometer for high-resolution spectroscopy in the XUV.

    PubMed

    Corsi, C; Liontos, I; Cavalieri, S; Bellini, M; Venturi, G; Eramo, R

    2015-02-23

    We developed an ultra-stable and accurately-controllable Michelson interferometer to be used in a deeply unbalanced arm configuration for split-pulse XUV Ramsey-type spectroscopy with high-order laser harmonics. The implemented active and passive stabilization systems allow one to reach instabilities in the nanometer range over meters of relative optical path differences. Producing precisely delayed pairs of pump pulses will generate XUV harmonic pulses that may significantly improve the achievable spectral resolution and the precision of absolute frequency measurements in the XUV.

  20. High-resolution photodetachment spectroscopy from the lowest threshold of O{sup -}

    SciTech Connect

    Joiner, Anne; Mohr, Robert H.; Yukich, J. N.

    2011-03-15

    We conducted photodetachment spectroscopy near the lowest detachment threshold from O{sup -} in a 1-T field with sufficient resolution to observe a magnetic field structure similar to that observed in experiments conducted at the threshold of the electron affinity. These observations included not only cyclotron structure but also, to a smaller degree, individual Zeeman thresholds. The experiment was conducted in a Penning ion trap and with a single-mode, tunable, amplified diode laser. Finally, analysis of our results yielded a measurement of the lowest threshold energy.

  1. Development of micro-optics for high-resolution IL spectroscopy with a proton microbeam probe

    NASA Astrophysics Data System (ADS)

    Kada, Wataru; Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro

    2014-01-01

    Confocal optics for ion luminescence (IL) was developed for the precise analysis of the chemical composition of microscopic targets with an external proton microbeam probe. Anti-reflection-coated confocal micro-lens optics with an effective focus area of approximately 800 × 800 μm was installed on the microbeam line of a single-ended accelerator. Chromatic aberrations of the confocal optics were examined at wavelengths of 300-900 nm. An electrically-cooled back-thinned charge coupled device spectrometer with a wavelength resolution of 0.5 nm was used for the microscopic spectroscopy and IL imaging of microscopic mineral targets. Simultaneous microscopic IL and micro-PIXE analysis were performed using an external 3 MeV H+ microbeam with a current of less than 100 pA. A spectral resolution of 3 nm was achieved for a single IL peak which corresponded to Cr3+ impurities in a single-crystal of aluminum oxide. The use of IL spectroscopy and imaging for aerosol targets revealed microscopic distributions of the chemical and elemental composition in the atmosphere.

  2. Titan's 3-micron spectral region from ISO high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena; Negrão, Alberto; Salama, Alberto; Schulz, Bernhard; Lellouch, Emmanuel; Rannou, Pascal; Drossart, Pierre; Encrenaz, Thérèse; Schmitt, Bernard; Boudon, Vincent; Nikitin, Andrei

    2006-01-01

    The near-infrared spectrum of Titan, Saturn's largest moon and one of the Cassini/Huygens' space mission primary targets, covers the 0.8 to 5 micron region in which it shows several weak CH 4 absorption regions, and in particular one centered near 2.75 micron. Due to the interference of telluric absorption, only part of this window region (2.9-3.1 μm) has previously been observed from the ground [Noll, K.S., Geballe, T.R., Knacke, R., Pendleton, F., Yvonne, J., 1996. Icarus 124, 625-631; Griffith, C.A., Owen, T., Miller, G.A., Geballe, T., 1998. Nature 395, 575-578; Griffith, C.A., Owen, T., Geballe, T.R., Rayner, J., Rannou, P., 2003. Science 300, 628-630; Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42]. We report here on the first spectroscopic observations of Titan covering the whole 2.4-4.9 μm region by two instruments on board the Infrared Space Observatory (ISO) in 1997. These observations show the 2.75-μm window in its complete extent for the first time. In this study we have also used a high-resolution Titan spectrum in the 2.9-3.6 μm region taken with the Keck [Geballe, T.R., Kim, S.J., Noll, K.S., Griffith, C.A., 2003. Astrophys. J. 583, L39-L42; Kim, S.J., Geballe, T.R., Noll, K.S., Courtin, R., 2005. Icarus 173, 522-532] to infer information on the atmospheric parameters (haze extinction, single scattering albedo, methane abundance, etc.) by fitting the methane bands with a detailed microphysical model of Titan's atmosphere (updated from Rannou, P., McKay, C.P., Lorenz, R.D., 2003. Planet. Space Sci. 51, 963-976). We have included in this study an updated version of a database for the CH 4 absorption coefficients [STDS, Wenger, Ch., Champion, J.-P., 1998. J. Quant. Spectrosc. Radiat. Transfer 59, 471-480. See also http://www.u-bourgogne.fr/LPUB/TSM/sTDS.html for latest updates; Boudon, V., Champion, J.-P., Gabard, T., Loëte, M., Michelot, F., Pierre, G., Rotger, M., Wenger, Ch., Rey, M., 2004. J. Mol

  3. Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices.

    PubMed

    Ryan, Herbert; Smith, Alison; Utz, Marcel

    2014-05-21

    High-resolution proton NMR spectroscopy is well-established as a tool for metabolomic analysis of biological fluids at the macro scale. Its full potential has, however, not been realised yet in the context of microfluidic devices. While microfabricated NMR detectors offer substantial gains in sensitivity, limited spectral resolution resulting from mismatches in the magnetic susceptibility of the sample fluid and the chip material remains a major hurdle. In this contribution, we show that susceptibility broadening can be avoided even in the presence of substantial mismatch by including suitably shaped compensation structures into the chip design. An efficient algorithm for the calculation of field maps from arbitrary chip layouts based on Gaussian quadrature is used to optimise the shape of the compensation structure to ensure a flat field distribution inside the sample area. Previously, the complexity of microfluidic NMR systems has been restricted to simple capillaries to avoid susceptibility broadening. The structural shimming approach introduced here can be adapted to virtually any shape of sample chamber and surrounding fluidic network, thereby greatly expanding the design space and enabling true lab-on-a-chip systems suitable for high-resolution NMR detection.

  4. Structural analysis of IPC zeolites and related materials using positron annihilation spectroscopy and high-resolution argon adsorption.

    PubMed

    Jagiello, J; Sterling, M; Eliášová, P; Opanasenko, M; Zukal, A; Morris, R E; Navaro, M; Mayoral, A; Crivelli, P; Warringham, R; Mitchell, S; Pérez-Ramírez, J; Čejka, J

    2016-06-01

    The advanced investigation of pore networks in isoreticular zeolites and mesoporous materials related to the IPC family was performed using high-resolution argon adsorption experiments coupled with the development of a state-of-the-art non-local density functional theory approach. The optimization of a kernel for model sorption isotherms for materials possessing the same layer structure, differing only in the interlayer connectivity (e.g. oxygen bridges, single- or double-four-ring building units, mesoscale pillars etc.) revealed remarkable differences in their porous systems. Using high-resolution adsorption data, the bimodal pore size distribution consistent with crystallographic data for IPC-6, IPC-7 and UTL samples is shown for the first time. A dynamic assessment by positron annihilation lifetime spectroscopy (PALS) provided complementary insights, simply distinguishing the enhanced accessibility of the pore network in samples incorporating mesoscale pillars and revealing the presence of a certain fraction of micropores undetected by gas sorption. Nonetheless, subtle differences in the pore size could not be discriminated based on the widely-applied Tao-Eldrup model. The combination of both methods can be useful for the advanced characterization of microporous, mesoporous and hierarchical materials.

  5. High Resolution Infrared Spectroscopy of Propargyl Alcohol-Water Complex Embedded in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Mani, Devendra; Pal, Nitish; Kaufmann, Matin; Schwaab, Gerhard; Havenith, Martina

    2016-06-01

    Propargyl alcohol (hereafter abbreviated as PA) is a molecule of astrophysical interest and has been probed extensively using microwave spectroscopy.1,2 It is a multifunctional molecule and offers multiple sites for hydrogen bonding interactions. Therefore, it has also attracted the attention of groups interested in weak intermolecular interactions. Recently, the Ar…PA complex3 and PA-dimer4 have been studied using microwave spectroscopy. More recently, there have been matrix-isolation infrared spectroscopic studies on PA-water5 and PA-acetylene6 complexes. In the present work, clusters of PA and water were formed in the helium nanodroplets and probed using a combination of infrared spectroscopy and mass spectrometry. Using ab-initio quantum mechanical calculations, PA-water clusters were optimised and five minimum structures were found on the potential energy hypersurface, which were used as a guidance to the experiments. We used D2O for the experiments since our laser sources at Bochum do not cover the IR spectral region of H2O. IR spectra of PA-D2O complex were recorded in the region of symmetric and antisymmetric stretches of the bound D2O. Multiple signals were found in these regions which were dependent on the concentration of PA as well as D2O. Using pickup curves most of these signals could be assigned to 1:1 PA:D2O clusters. The ab-initio calculations helped in a definitive assignment of the spectra to the different conformers of PA-D2O complex. The details will be presented in the talk. References: 1. E. Hirota, J. Mol. Spec. 26, 335 (1968). 2. J.C. Pearson and B.J. Drouin, J. Mol. Spectrosc. 234, 149 (2005). 3. D. Mani and E. Arunan, ChemPhysChem 14, 754 (2013). 4. D. Mani and E. Arunan, J. Chem. Phys. 141, 164311 (2014). 5. J. Saini, K.S. Vishwanathan, J. Mol. Struct. 1118, 147 (2016). 6. K. Sundararajan et al., J. Mol. Struct. 1121, 26 (2016).

  6. Application of the low-finesse γ -ray frequency comb for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Shakhmuratov, R. N.; Vagizov, F. G.; Scully, Marlan O.; Kocharovskaya, Olga

    2016-10-01

    High-finesse frequency combs (HFC) with large ratio of the frequency spacing to the width of the spectral components have demonstrated remarkable results in many applications such as precision spectroscopy and metrology. We found that low-finesse frequency combs having very small ratio of the frequency spacing to the width of the spectral components are more sensitive to the exact resonance with absorber than HFC. Our method is based on time domain measurements reviling oscillations of the radiation intensity after passing through an optically thick absorber. Fourier analysis of the oscillations allows to reconstruct the spectral content of the comb. If the central component of the incident comb is in exact resonance with the single line absorber, the contribution of the first sideband frequency to oscillations is exactly zero. We demonstrated this technique with γ -photon absorption by Mössbauer nuclei providing the spectral resolution beyond the natural broadening.

  7. Method And Apparatus For High Resolution Ex-Situ Nmr Spectroscopy

    DOEpatents

    Pines, Alexander; Meriles, Carlos A.; Heise, Henrike; Sakellariou, Dimitrios; Moule, Adam

    2004-01-06

    A method and apparatus for ex-situ nuclear magnetic resonance spectroscopy for use on samples outside the physical limits of the magnets in inhomogeneous static and radio-frequency fields. Chemical shift spectra can be resolved with the method using sequences of correlated, composite z-rotation pulses in the presence of spatially matched static and radio frequency field gradients producing nutation echoes. The amplitude of the echoes is modulated by the chemical shift interaction and an inhomogeneity free FID may be recovered by stroboscopically sampling the maxima of the echoes. In an alternative embodiment, full-passage adiabatic pulses are consecutively applied. One embodiment of the apparatus generates a static magnetic field that has a variable saddle point.

  8. Multiresonant Spectroscopy and the High-Resolution Threshold Photoionization of Combustion Free Radicals

    SciTech Connect

    Edward R. Grant

    2005-09-07

    This report describes the results of a program of research on the thermochemistry, spectroscopy and intramolecular relaxation dynamics of the combustion intermediate, HCO. We prepare this radical from acetaldehyde as a photo-precursor in a differentially pumped laser-ionization source quadrupole mass spectrometer. Using a multiresonant spectroscopic technique established in our laboratory, we select individual rotational states and overcome Franck-Condon barriers associated with neutral-to-cation geometry changes to promote transitions to individual autoionizing series and state-resolved ionization thresholds. Systematic analysis of rotational structure and associated lineshapes provide experimental insight on autoionization dynamics as input for theoretical modeling. Extrapolation of series, combined with direct threshold-photoelectron detection, yield precise ionization potentials that constitute an important contribution to the thermochemical base of information on HCO.

  9. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  10. High-resolution synchrotron far infrared spectroscopy of thionyl chloride: Analysis of the ν3 and ν6 fundamental bands

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; Mouret, Gaël; Pirali, Olivier; Cuisset, Arnaud

    2015-09-01

    Thionyl chloride (SOCl2) is a volatile inorganic compounds used extensively in industry. Its monitoring in gas phase is critical both for environmental and defense concerns. Previous high-resolution gas phase spectroscopic studies were focused on the microwave region (below 40 GHz) and no rotationally-resolved study of the IR spectrum has been reported to date. We present in this article a rovibrational analysis of the two lowest frequency infrared active bending modes ν3 and ν6 of SOCl2. By means of synchrotron based Fourier-Transform far-infrared spectroscopy on the AILES beamline of the SOLEIL facility, the spectra of the symmetric ν3 (346 cm-1) and asymmetric ν6 (283 cm-1) fundamental bands have been rotationally resolved and analyzed.

  11. Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

    SciTech Connect

    Cooke, Stephen, A

    2013-02-03

    We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.

  12. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Schiavo, C.; Menichetti, L.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Poggialini, F.; Pagnotta, S.; Palleschi, V.

    2016-08-01

    In this paper we present a new instrument specifically realized for high-resolution three-dimensional compositional analysis and mapping of materials. The instrument is based on the coupling of a Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) instrument with an optical microscope. The compositional mapping of the samples is obtained by scanning the laser beam across the surface of the sample, while the in depth analysis is performed by sending multiple laser pulses on the same point. Depths of analysis of several tens of microns can be obtained. The instrument presented has definite advantages with respect to Laser Ablation-ICP Mass Spectrometry in many applications related to material analysis, biomedicine and environmental diagnostics. An application to the diagnostics of industrial ceramics is presented, demonstrating the feasibility of Double-Pulse LIBS Imaging and its advantages with respect to conventional single-pulse LIBS imaging.

  13. Analysis of the phase diagram and microstructural transitions in phospholipid microemulsion systems using high-resolution ultrasonic spectroscopy.

    PubMed

    Hickey, Sinead; Lawrence, M Jayne; Hagan, Sue A; Buckin, Vitaly

    2006-06-20

    In the present work, high-resolution ultrasonic spectroscopy was applied to analyze a pseudoternary phase diagram for mixtures consisting of water/isopropyl myristate/Epikuron 200 and a cosurfactant (n-propanol). Changes in the ultrasonic velocity and attenuation in the megahertz frequency range were measured in the course of titration of the oil/surfactant/cosurfactant mixture with water at 25 degrees C. The ultrasonic titration profiles showed several phase transitions in the samples, which allowed the construction of an "ultrasonic" phase diagram. Quantitative analysis of the ultrasonic parameters enabled the characterization of various phases (swollen micelles, microemulsion, coarse emulsion, and pseudo-bicontinuous) as well as the evaluation of the state of the water and the particle size. The particle size obtained for the microemulsion region ranged from 5 to 14 nm over the measured concentrations of water/isopropyl myristate/Epikuron 200 and n-propanol, which agreed well with the previous literature data.

  14. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    PubMed Central

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-01-01

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line. PMID:26901199

  15. High-resolution infrared spectroscopy of HCN-Znn (n = 1-4) clusters: structure determination and comparisons with theory.

    PubMed

    Stiles, Paul L; Miller, Roger E

    2006-05-04

    High-resolution infrared laser spectroscopy has been used to obtain rotationally resolved spectra of HCN-Zn(n) (n = 1-4) complexes formed in helium nanodroplets. In the present study the droplets passed through a metal oven, where the zinc vapor pressure was adjusted until one or more atoms were captured by the droplets. A second pickup cell was then used to dope the droplets with a single HCN molecule. Rotationally resolved infrared spectra are obtained for all of these complexes, providing valuable information concerning their structures. Stark spectra are reported and used to determine the corresponding permanent electric dipole moments. Ab initio calculations are also reported for these complexes for comparison with the experimental results.

  16. Design and performance of a soft-x-ray interferometer for ultra-high-resolution fourier transform spectroscopy

    SciTech Connect

    Moler, E.J.; Hussain, Z.; Duarte, R.M.; Howells, M.R.

    1997-04-01

    A Fourier Transform Soft X-ray spectrometer (FT-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory as a branch of beamline 9.3.2. The spectrometer is a novel soft x-ray interferometer designed for ultra-high resolution (theoretical resolving power E/{delta}E{approximately}10{sup 6}) spectroscopy in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  17. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    SciTech Connect

    Noroozian, Omid; Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N.; Kang, Zhao

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  18. Beyond the Born-Oppenheimer approximation: High-resolution overtone spectroscopy of H2D+ and D2H+

    NASA Astrophysics Data System (ADS)

    Fárník, Michal; Davis, Scott; Kostin, Maxim A.; Polyansky, Oleg L.; Tennyson, Jonathan; Nesbitt, David J.

    2002-04-01

    Transitions to overtone 2ν2 and 2ν3, and combination ν2+ν3 vibrations in jet-cooled H2D+ and D2H+ molecular ions have been measured for the first time by high-resolution IR spectroscopy. The source of these ions is a pulsed slit jet supersonic discharge, which allows for efficient generation, rotational cooling, and high frequency (100 KHz) concentration modulation for detection via sensitive lock-in detection methods. Isotopic substitution and high-resolution overtone spectroscopy in this fundamental molecular ion permit a systematic, first principles investigation of Born-Oppenheimer "breakdown" effects due to large amplitude vibrational motion as well as provide rigorous tests of approximate theoretical methods beyond the Born-Oppenheimer level. The observed overtone transitions are in remarkably good agreement (<0.1 cm-1) with non-Born-Oppenheimer ab initio theoretical predictions, with small but systematic deviations for 2ν2, ν2+ν3, and 2ν3 excited states indicating directions for further improvement in such treatments. Spectroscopic assignment and analysis of the isotopomeric transitions reveals strong Coriolis mixing between near resonant 2ν3 and ν2+ν3 vibrations in D2H+. Population-independent line intensity ratios for transitions from common lower states indicate excellent overall agreement with theoretical predictions for D2H+, but with statistically significant discrepancies noted for H2D+. Finally, H2D+ versus D2H+ isotopomer populations are analyzed as a function of D2/H2 mixing ratio and can be well described by steady state kinetics in the slit discharge expansion.

  19. Determination of divertor stray light in high-resolution main chamber H α spectroscopy in JET-ILW

    NASA Astrophysics Data System (ADS)

    Neverov, V. S.; Kukushkin, A. B.; Stamp, M. F.; Alekseev, A. G.; Brezinsek, S.; von Hellermann, M.; Contributors, JET

    2017-01-01

    The theoretical model suggested for ITER main chamber H α spectroscopy is applied to the high-resolution spectroscopy (HRS) data of recent JET ITER-like wall (ILW) experiments. The model is aimed at reconstructing the neutral hydrogen isotope density in the SOL, as well as the isotope ratio, by solving a multi-parametric inverse problem with allowance for (i) the strong divertor stray light (DSL) on the main-chamber lines of sight (LoS), (ii) substantial deviation of the neutral atom velocity distribution function (VDF) from a Maxwellian in the SOL, and (iii) data for the direct observation of the divertor. The JET-ILW HRS data on resolving the power at the deuterium and hydrogen spectral lines of the Balmer-alpha series is analysed, with direct observation of the divertor from the top and with observation of the inner wall along the tangential and radial LoS from the equatorial ports. This data allows the spectrum of the DSL and the signal-to-background ratio for the Balmer-alpha light emitted from the far SOL and divertor in the JET-ILW to be evaluated. The results support the expectation of the strong impact of the DSL upon the ITER main chamber H α (and visible light) spectroscopy diagnostics.

  20. High-resolution X-ray emission spectroscopy with transition-edge sensors: present performance and future potential.

    PubMed

    Uhlig, J; Doriese, W B; Fowler, J W; Swetz, D S; Jaye, C; Fischer, D A; Reintsema, C D; Bennett, D A; Vale, L R; Mandal, U; O'Neil, G C; Miaja-Avila, L; Joe, Y I; El Nahhas, A; Fullagar, W; Gustafsson, F Parnefjord; Sundström, V; Kurunthu, D; Hilton, G C; Schmidt, D R; Ullom, J N

    2015-05-01

    X-ray emission spectroscopy (XES) is a powerful element-selective tool to analyze the oxidation states of atoms in complex compounds, determine their electronic configuration, and identify unknown compounds in challenging environments. Until now the low efficiency of wavelength-dispersive X-ray spectrometer technology has limited the use of XES, especially in combination with weaker laboratory X-ray sources. More efficient energy-dispersive detectors have either insufficient energy resolution because of the statistical limits described by Fano or too low counting rates to be of practical use. This paper updates an approach to high-resolution X-ray emission spectroscopy that uses a microcalorimeter detector array of superconducting transition-edge sensors (TESs). TES arrays are discussed and compared with conventional methods, and shown under which circumstances they are superior. It is also shown that a TES array can be integrated into a table-top time-resolved X-ray source and a soft X-ray synchrotron beamline to perform emission spectroscopy with good chemical sensitivity over a very wide range of energies.

  1. High Resolution Optical Spectroscopy of Rosetta Target 67P/Churyumov-Gerasimenko Using Keck HIRES

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita L.; Bodewits, Dennis; A'Hearn, Michael F.; Altwegg, Kathrin; Gulkis, Samuel; Snodgrass, Colin; de Val-Borro, Miguel; Kelley, Michael S.; Feaga, Lori M.; Wooden, Diane H.; Bauer, James M.; Kramer, Emily A.

    2016-10-01

    We present high spectral resolution optical spectroscopy of Rosetta target 67P/Churyumov-Gerasimenko obtained on UT Dec 26 and 27, 2015 using the HIRES instrument on Keck I when the comet was at a heliocentric distance of approximately 2 AU post-perihelion. The spectra cover a spectral range of 3500-10000 Angstroms at a spectral resolution of 67,000. These observations aim to provide high spectral resolution, large projected field of view context for the high spatial resolution and small projected field of view observations obtained from the Rosetta instrument suite. We report detections of CN, NH2, and [OI] emission. From the [OI]6300 emission we derive a water production rate of approximately 2 x 1027 mol/s. Production rates (or upper limits) for other species will be presented and placed in context with recent results from Rosetta. We will also present results pertaining to the [OI]5577 line, which combined with the [OI]6300 emission can be used as a proxy for CO2. We will compare our results to observations obtained by Rosetta as well as NEOWISE and Spitzer.

  2. High Resolution Photoacoustic Spectroscopy of the Oxygen A-Band to Support the OCO Missions

    NASA Astrophysics Data System (ADS)

    Cich, M. J.; Lunny, E. M.; Bui, T. Q.; Drouin, B. J.; Okumura, M.; Stroscio, G. D.

    2015-12-01

    NASA's Orbiting Carbon Observatory missions require spectroscopic parameterization of the Oxygen A-Band absorption (757-775 nm) with unprecedented detail to meet the objective of delivering space-based column CO2 measurements with an accuracy of better than 1 ppm. This requires spectroscopic parameters with accuracies at the 0.1% level. To achieve this it is necessary for line shape models to include deviations from the Voigt line shape, including the collisional effects of Dicke narrowing, speed-dependence, line mixing (LM), and collision-induced absorption (CIA). To measure these effects to high accuracy, new innovative lab measurements are required. LM and CIA in particular are difficult to measure using standard spectroscopic techniques because, while present at atmospheric temperatures, these effects are difficult to quantify. At pressures of several atmospheres these effects contribute several percent to the A-Band absorption. While the O2 A-band is too weak for direct absorption measurements via a diode laser, a very sensitive photoacoustic spectroscopy technique is being used to study the pressure- dependence of the spectral line shape up to pressures of 5 atm. This spectrometer has a high S/N of about 10,000 and an advantageous zero baseline. In addition, temperature effects on the line shape are studied using a newly developed temperature control scheme. The latest results are reported.

  3. High Resolution Applications of Laser-Induced Breakdown Spectroscopy for Environmental and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Labbe, Nicole; Andre, Nicolas O; Harris, Ronny D; Ebinger, Michael H; Wullschleger, Stan D; Vass, Arpad Alexander

    2007-01-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  4. High resolution applications of laser-induced breakdown spectroscopy for environmental and forensic applications

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Labbé, Nicole; André, Nicolas; Harris, Ronny; Ebinger, Michael; Wullschleger, Stan D.; Vass, Arpad A.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been used in the elemental analysis for a variety of environmental samples and as a proof of concept for a host of forensic applications. In the first application, LIBS was used for the rapid detection of carbon from a number of different soil types. In this application, a major breakthrough was achieved by using a multivariate analytical approach that has brought us closer towards a "universal calibration curve". In a second application, it has been demonstrated that LIBS in combination with multivariate analysis can be employed to analyze the chemical composition of annual tree growth rings and correlate them to external parameters such as changes in climate, forest fires, and disturbances involving human activity. The objectives of using this technology in fire scar determinations are: 1) To determine the characteristic spectra of wood exposed to forest fires and 2) To examine the viability of this technique for detecting fire occurrences in stems that did not develop fire scars. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications. LIBS was also applied to a variety of proof of concept forensic applications such as the analysis of cremains (human cremation remains) and elemental composition analysis of prosthetic implants.

  5. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  6. High-Resolution Laser-Induced Breakdown Spectroscopy used in Homeland Security and Forensic Applications

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Vass, Arpad Alexander; Martin, Rodger Carl; Grissino-Mayer, Henri

    2006-01-01

    The technique of laser-induced breakdown spectroscopy (LIBS) to detect elements for a variety of homeland security applications such as nuclear materials identification and inventory,and forensic applications has been demonstrated. For nuclear materials applications, we detected and profiled metals in coatings that were used to encapsulate nuclear fuel. Multivariate analysis has been successfully employed in the quantification of elements present in treated wood and engineered wood composites. These examples demonstrate that LIBS-based techniques are inherently well suited for diverse environmental applications related to homeland security. Three key advantages are evident: (1) small samples (mg) are sufficient; (2) samples can be analyzed by LIBS very rapidly, and (3) biological materials such as human and animal bones and wood can be analyzed with minimal sample preparation. For forensic applications they have used LIBS to determine differences in animal and human bones. They have also applied this technique in the determination of counterfeit and non-counterfeit currency. They recently applied LIBS in helping to solve a murder case.

  7. Synchrotron Based High Resolution Far-Ir Spectroscopy of 1,1-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Elmuti, Lena F.; Peebles, Sean A.; Obenchain, Daniel A.

    2013-06-01

    Six vibrational bands of the ^{35}Cl_2C=CH_2 isotopologue of 1,1-dichloroethylene have been recorded in the 350 - 1150 cm^{-1} range using the 0.00096 cm^{-1} resolution far-infrared beamline of the Canadian Light Source synchrotron facility. Results from the analysis of one a-type (ν_9 = 796.01904(8) cm^{-1}, CCl asymmetric stretch) and one c-type (ν_{11} = 868.488626(26) cm^{-1}, CH_2 flap) band will be presented. Over 6000 transitions have now been fitted for these two bands, with ground state rotational and centrifugal distortion constants fixed to values determined by rotational spectroscopy, while the upper state constants have been varied. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level were instrumental in assigning the dense spectra. Assignment of additional bands around 603 cm^{-1} (b-type, CCl symmetric stretch, ν_4) and 456 cm^{-1} (c-type, CCl_2 flap, ν_{12}), as well as attempts at assigning the mixed ^{35}Cl^{37}Cl isotopologue spectra for ν_9 and ν_{11}, are in progress. Z. Kisiel, L. Pszczółkowski, Z. Naturforsch, {{50a}, (1995), 347-351.

  8. Light transmission spectroscopy in real time: a high-resolution nanoparticle analysis instrument.

    PubMed

    Tanner, Carol E; Sun, Nan; Deatsch, Alison; Li, Frank; Ruggiero, Steven T

    2017-03-01

    This paper describes light transmission spectroscopy (LTS), a technique for eliminating spectral noise and systematic effects in real-time spectroscopic measurements. In our work, we combine LTS with spectral inversion for the purpose of nanoparticle analysis. This work employs a wideband multi-wavelength light source and grating spectrometers coupled to CCD detectors. The light source ranges from 210 to 2000 nm, the wavelength-dependent light detection system ranges from 200 to 1100 nm with ≤1  nm resolution, and the nanoparticle diameters range from 1 to 3000 nm. The nanoparticles are suspended in pure water or water-based buffer solutions. For testing and calibration purposes, results are presented for nanoparticles composed of polystyrene and gold. Mie theory is used to model the total extinction cross section, and spectral inversion is employed to obtain quantitative particle size distributions, from which information on the size, shape, and number of nanoparticles can be derived. Discussed are the precision, accuracy, resolution, and sensitivity of our results. The LTS technique is quite versatile and can be applied to spectroscopic investigations where wideband, accurate, low-noise, real-time spectra are desired.

  9. High Resolution Stark Spectroscopy of Model Donor-Acceptor Aminobenzonitriles in the Gas Phase.

    NASA Astrophysics Data System (ADS)

    Fleisher, Adam J.; Clements, Casey L.; Bird, Ryan G.; Pratt, David W.; Alvarez-Valtierra, Leonardo

    2011-06-01

    Electronic communication between donor-acceptor systems is prevalent in many chemical processes. Unfortunately, an accurate description of the changes in molecular geometry responsible for intramolecular charge transfer (ICT) is difficult to ascertain. Reported here are the S0, LA, and LB electronic state structures and dipole moments of two model ICT systems, 4-(1H-pyrrol-l-yl)benzonitrile (PBN) and 4-(1-pyrrolidinyl)benzonitrile (PDBN), as measured by rotationally resolved electronic spectroscopy. As was observed for phenylpyrrole, the unsaturted rings of PBN become collectively more planar following excitation with UV light, in support of the planar ICT model. However, in PDBN the twist/inversion angle between rings is nearly zero in both the ground and excited electronic states. The unperturbed dipole moments measured here, taken in conjunction with available solvatochromism data, provide an estimate for the polarization, dispersion, and charge transfer contributions to solvent-mediated excited state stabilization. J.A. Thomas, J.W. Young, A.J. Fleisher, L. Álvarez-Valtierra, and D.W. Pratt, J. Phys. Chem. Lett. 1, 2017 (2010).

  10. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    PubMed

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.

  11. High-resolution imaging and spectroscopy of interfacial water at single bond limit

    NASA Astrophysics Data System (ADS)

    Jiang, Ying

    Hydrogen bond is one of the most important weak interactions in nature and plays an essential role in a broad spectrum of physics, chemistry, biology, energy and material sciences. The conventional methods for studying hydrogen-bonding interaction are all based on spectroscopic or diffraction techniques. However, those techniques have poor spatial resolution and only measure the average properties of many hydrogen bonds, which are susceptible to the structural inhomogeneity and local environments, especially when interfacial systems are concerned. The spatial variation and inter-bond coupling of the hydrogen bonds leads to significant spectral broadening, which prohibits the accurate understanding of the experimental data. In this talk, I will present our recent progress on the development of new-generation scanning probe microscopy/spectroscopy (SPM/S) with unprecedentedly high sensitivity and resolution, for addressing weak inter- and intra-molecular interactions, such as hydrogen bonds and van der Waals force. Based on a qPlus sensor, we have succeeded to push the real-space study of a prototypical hydrogen-bonded system, i.e. water, down to single bond limit. Combined with state-of-the-arts quantum simulations, we have discovered exotic nuclear quantum effects (NQEs) in interfacial water and revealed the quantum nature of the hydrogen bond from a completely new perspective

  12. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  13. Helium temperature measurements in a hot filament magnetic mirror plasma using high resolution Doppler spectroscopy

    NASA Astrophysics Data System (ADS)

    Knott, S.; McCarthy, P. J.; Ruth, A. A.

    2016-09-01

    Langmuir probe and spectroscopic diagnostics are used to routinely measure electron temperature and density over a wide operating range in a reconfigured Double Plasma device at University College Cork, Ireland. The helium plasma, generated through thermionic emission from a negatively biased tungsten filament, is confined by an axisymmetric magnetic mirror configuration using two stacks of NdFeB permanent magnets, each of length 20 cm and diameter 3 cm placed just outside the 15 mm water cooling jacket enclosing a cylindrical vacuum vessel of internal diameter 25 cm. Plasma light is analysed using a Fourier Transform-type Bruker spectrometer with a highest achievable resolution of 0.08 cm-1 . In the present work, the conventional assumption of room temperature ions in the analysis of Langmuir probe data from low temperature plasmas is examined critically using Doppler spectroscopy of the 468.6 nm He II line. Results for ion temperatures obtained from spectroscopic data for a variety of engineering parameters (discharge voltage, gas pressure and plasma current) will be presented.

  14. Excited electronic states of thiophene: high resolution photoabsorption Fourier transform spectroscopy and ab initio calculations.

    PubMed

    Holland, D M P; Trofimov, A B; Seddon, E A; Gromov, E V; Korona, T; de Oliveira, N; Archer, L E; Joyeux, D; Nahon, L

    2014-10-21

    The recently introduced synchrotron radiation-based Fourier transform spectroscopy has been employed to study the excited electronic states of thiophene. A highly resolved photoabsorption spectrum has been measured between ∼5 and 12.5 eV, providing a wealth of new data. High-level ab initio computations have been performed using the second-order algebraic-diagrammatic construction (ADC(2)) polarization propagator approach, and the equation-of-motion coupled-cluster (EOM-CC) method at the CCSD and CC3 levels, to guide the assignment of the spectrum. The adiabatic energy corrections have been evaluated, thereby extending the theoretical study beyond the vertical excitation picture and leading to a significantly improved understanding of the spectrum. The low-lying π→π* and π→σ* transitions result in prominent broad absorption bands. Two strong Rydberg series converging onto the X(~)(2)A2 state limit have been assigned to the 1a2→npb1(1)B2 and the 1a2→nda2(1)A1 transitions. A second, and much weaker, d-type series has been assigned to the 1a2→ndb1(1)B2 transitions. Excitation into some of the Rydberg states belonging to the two strong series gives rise to vibrational structure, most of which has been interpreted in terms of excitations of the totally symmetric ν4 and ν8 modes. One Rydberg series, assigned to the 3b1→nsa1(1)B1 transitions, has been identified converging onto the Ã(2)B1 state limit, and at higher energies Rydberg states converging onto the B(~)(2)A1 state limit could be identified. The present spectra reveal highly irregular vibrational structure in certain low energy absorption bands, and thus provide a new source of information for the rapidly developing studies of excited state non-adiabatic dynamics and photochemistry.

  15. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  16. Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carvalho, Sabrina; Macel, Mirka; Schlerf, Martin; Moghaddam, Fatemeh Eghbali; Mulder, Patrick P. J.; Skidmore, Andrew K.; van der Putten, Wim H.

    2013-06-01

    Plant toxic biochemicals play an important role in defense against natural enemies and often are toxic to humans and livestock. Hyperspectral reflectance is an established method for primary chemical detection and could be further used to determine plant toxicity in the field. In order to make a first step for pyrrolizidine alkaloids detection (toxic defense compound against mammals and many insects) we studied how such spectral data can estimate plant defense chemistry under controlled conditions. In a greenhouse, we grew three related plant species that defend against generalist herbivores through pyrrolizidine alkaloids: Jacobaea vulgaris, Jacobaea erucifolia and Senecio inaequidens, and analyzed the relation between spectral measurements and chemical concentrations using multivariate statistics. Nutrient addition enhanced tertiary-amine pyrrolizidine alkaloids contents of J. vulgaris and J. erucifolia and decreased N-oxide contents in S. inaequidens and J. vulgaris. Pyrrolizidine alkaloids could be predicted with a moderate accuracy. Pyrrolizidine alkaloid forms tertiary-amines and epoxides were predicted with 63% and 56% of the variation explained, respectively. The most relevant spectral regions selected for prediction were associated with electron transitions and Csbnd H, Osbnd H, and Nsbnd H bonds in the 1530 and 2100 nm regions. Given the relatively low concentration in pyrrolizidine alkaloids concentration (in the order of mg g-1) and resultant predictions, it is promising that pyrrolizidine alkaloids interact with incident light. Further studies should be considered to determine if such a non-destructive method may predict changes in PA concentration in relation to plant natural enemies. Spectroscopy may be used to study plant defenses in intact plant tissues, and may provide managers of toxic plants, food industry and multitrophic-interaction researchers with faster and larger monitoring possibilities.

  17. Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    1997-09-01

    Advanced laser stabilization techniques now enable one to lock laser frequencies onto line centers of natural atomic/molecular resonances with unprecedented precision and accuracy. In this dissertation we discuss our effort in utilizing these techniques to establish visible optical frequency standards. By summarizing our earlier results on frequency measurements of the 87Rb D2 line at 780 nm 127I2 hyperfine transitions at 532 nm, we show the advantage of using a higher quality reference line, usually characterized by its narrower linewidth, higher attainable signal-to-noise ratio and lower sensitivity toward external perturbations. We then present a novel approach of cavity-enhanced frequency modulation spectroscopy for ultra-sensitive detections. The powerful utility of this new technique in the field of frequency standards is demonstrated by probing saturated molecular overtone transitions in the visible and near infrared. Weakly-absorbing gases such as C2H2 and C2HD are placed inside an external high-finesse resonator to enhance their detection sensitivities. A frequency modulation technique is employed to achieve a shot noise limited signal-to- noise ratio. The rf modulation frequency is chosen to match the cavity's free spectral range in order to avoid the cavity-induced conversion of laser frequency noise into amplitude noise. The molecular saturated dispersion signal is directly recovered after demodulation of the cavity transmitted light. A record high integrated absorption sensitivity of 5× 10-13/ (1× 10-14/cm) (at 1 second averaging time) has been obtained. Systematic studies on this new technique are presented on topics of detection sensitivity, signal line shape, signal size and slope, and pressure dependent linewidth broadening and linecenter shift. A Nd:YAG laser is stabilized on the P(5) transition in the (ν2+3/ ν3) overtone band of C2HD at 1.064 μm. Its absolute frequency is established. The excellent signal- to-noise ratio produces a frequency

  18. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  19. In vivo high-resolution localized 1H MR spectroscopy in the awake rat brain at 7 Tesla

    PubMed Central

    Xu, Su; Ji, Yadong; Chen, Xi; Yang, Yihong; Gullapalli, Rao; Masri, Radi

    2012-01-01

    In vivo localized high-resolution 1H MR spectroscopy was performed in multiple brain regions without the use of anesthetic or paralytic agents in awake head-restrained rats that were previously trained in a simulated MRI environment using a 7 Tesla MR system. Spectra were obtained using a short echo time single-voxel point-resolved spectroscopy technique with voxel size ranging from 27–32.4 mm3 in the regions of anterior cingulate cortex, somatosensory cortex, hippocampus, and thalamus. Quantifiable spectra, without the need for any additional post-processing to correct for possible motion were reliably detected including the metabolites of interest such as γ-aminobutyric acid, glutamine, glutamate, myo-inositol, N-acetylaspartate, taurine, glycerophosphorylcholine/phosphorylcholine, creatine/phosphocreatine, and N-acetylaspartate/N-acetylaspartylglutamate. The spectral quality was comparable to spectra from anesthetized animals with sufficient spectral dispersion to separate metabolites such as glutamine and glutamate. Results from this study suggest that reliable information on major metabolites can be obtained without the confounding effects of anesthesia or paralytic agents in rodents. PMID:22570299

  20. Characterization of carbonaceous meteoritic fragments found in Antarctica by high-resolution Raman spectroscopy and SEM/EDS

    NASA Astrophysics Data System (ADS)

    Dall Asen, Analia; Baer, Brandon; Mittelstaedt, Jake; Gerton, Jordan; Bromley, Benjamin; Kenyon, Scott

    2016-03-01

    Carbonaceous chondritic meteorites are composed mainly of chondrules (micro/millimeter-sized inclusions) surrounding by a matrix of microparticles, and are considered the most primitive surviving materials from the early Solar System. Understanding their properties and history may provide clues to the formation of planets from micron-size dust grains in the Solar nebula. Our approach is to study the structure and composition of carbonaceous chondrites with high-resolution micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. These techniques enable us to capture details on a wide range of spatial scales, from micrometers to millimeters. Here we provide the first analysis of a set of meteorite fragments from Antarctica (MIL 07002 and ALH 84028), mapping elemental and molecular abundances, as well as large-scale morphological features. We present characterizations of individual chondrules and the surrounding matrix, and we consider on how our findings reflect physical processes believed to be operating during the early stages of planet formation.

  1. The SEGUE Stellar Parameter Pipeline. III. Comparison with High-Resolution Spectroscopy of SDSS/SEGUE Field Stars

    SciTech Connect

    Allende Prieto, C.; Sivarani, T.; Beers, T.C.; Lee, Y.S.; Koesterke, L.; Shetrone, M.; Sneden, C.; Lambert, D.L.; Wilhelm, R.; Rockosi, C.M.; Lai, D.

    2007-10-01

    The authors report high-resolution spectroscopy of 125 field stars previously observed as part of the Sloan Digital Sky Survey and its program for Galactic studies, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). These spectra are used to measure radial velocities and to derive atmospheric parameters, which they compare with those reported by the SEGUE Stellar Parameter Pipeline (SSPP). The SSPP obtains estimates of these quantities based on SDSS ugriz photometry and low-resolution (R {approx} 2000) spectroscopy. For F- and G-type stars observed with high signal-to-noise ratios (S/N), they empirically determine the typical random uncertainties in the radial velocities, effective temperatures, surface gravities, and metallicities delivered by the SSPP to be 2.4 km s{sup -1}, 130 K (2.2%), 0.21 dex, and 0.11 dex, respectively, with systematic uncertainties of a similar magnitude in the effective temperatures and metallicities. They estimate random errors for lower S/N spectra based on numerical simulations.

  2. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  3. Experiments with the High Resolution Kaon Spectrometer at Jlab Hall C and the New Spectroscopy of ^12_Lambda B Hypernuclei

    SciTech Connect

    Tang, Liguang; Chen, Chunhua; Gogami, Toshiyuki; Kawama, Daisuke; Han, Yuncheng; Yuan, Lulin; Matsumura, Akihiko; Okayasu, Yuichi; Seva, Tomislav; Rodriguez, Victor; Baturin, Pavlo; Acha Quimper, Armando; Achenbach, Carsten; Ahmidouch, Abdellah; Albayrak, Ibrahim; Androic, Darko; Asaturyan, Arshak; Asaturyan, Razmik; Ates, Ozgur; Badui, Rafael; Baker, Oliver; Benmokhtar, Fatiha; Boeglin, Werner; Bono, Jason; Bosted, Peter; Brash, Edward; Carter, Philip; Carlini, Roger; Chiba, Atsushi; Christy, Michael; Cole, Leon; Dalton, Mark; Danagoulian, Samuel; Daniel, Aji; De Leo, Raffaele; Dharmawardane, Kahanawita; Doi, Daisuke; Egiyan, Kim; Elaasar, Mostafa; Ent, Rolf; Fenker, Howard; Fujii, Yu; Furic, Miroslav; Gabrielyan, Marianna; Gan, Liping; Garibaldi, Franco; Gaskell, David; Gasparian, Ashot; Gibson, Edward; Gueye, Paul; Hashimoto, Osamu; Honda, D; Horn, Tanja; Hu, Bitao; Hungerford, Ed; Jayalath, Chandana; Jones, Mark; Johnston, Kathleen; Kalantarians, Narbe; Kanda, Hiroki; Kaneta, M; Kato, F; Kato, Seigo; Kawai, Masaharu; Keppel, Cynthia; Khanal, Hari; Kohl, M; Kramer, Laird; Lan, Kejian; Li, Ya; Habarakada Liyanage, Anusha; Luo, Wei; Mack, David; Maeda, Kazushige; Malace, Simona; Margaryan, Amur; Marikyan, Gagik; Markowitz, Pete; Maruta, Tomofumi; Maruyama, Nayuta; Maxwell, Victor; Millener, David; Miyoshi, Toshinobu; Mkrtchyan, Arthur; Mkrtchyan, Hamlet; Motoba, Toshio; Nagao, Sho; Nakamura, Satoshi; Narayan, Amrendra; Neville, Casey; Niculescu, Gabriel; Niculescu, Maria; Nunez, Angel; Nuruzzaman, nfn; Nomura, Hiroshi; Nonaka, Kenichi; Ohtani, Atsushi; Oyamada, Masamichi; Perez, Naipy; Petkovic, Tomislav; Pochodzalla, J; Qiu, Xiyu; Randeniya, Kapugodage; Raue, Brian; Reinhold, Joerg; Rivera, R; Roche, Julie; Samanta, Chhanda; Sato, Yoshinori; Sawatzky, Bradley; Segbefia, Edwin; Schott, Diane; Shichijo, Ayako; Simicevic, Neven; Smith, Gregory; Song, Yushou; Sumihama, Mizuki; Tadevosyan, Vardan; Takahashi, Toshiyuki; Taniya, Naotaka; Tsukada, Kyo; Tvaskis, Vladas; Veilleux, Micah; Vulcan, William; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yamamoto, Taku; Yan, Chen; Ye, Z; Yokota, Kosuke; Zhamkochyan, Simon; Zhu, Lingyan

    2014-09-01

    Since the pioneering experiment, E89-009 studying hypernuclear spectroscopy using the $(e,e^{\\prime}K^+)$ reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "Tilt Method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet were added to produce precision, high-resolution hypernuclear spectroscopy. These two experiments, E01-011 and E05-115, resulted in two new data sets, producing sub-MeV energy resolution in the spectra of ${}^{7}_{\\Lambda}\\text{He}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{28}_{\\Lambda} \\text{Al}$ and ${}^{7}_{\\Lambda}\\text{He}$, ${}^{10}_{\\Lambda}\\text{Be}$, ${}^{12}_{\\Lambda}\\text{B}$ and ${}^{52}_{\\Lambda}\\text{V}$. All three experiments obtained a ${}^{12}_{\\Lambda}\\text{B}$, spectrum, which is the most characteristic $p$-shell hypernucleus and is commonly used for calibration. Independent analyses of these different experiments demonstrate excellent consistency and provide the clearest level structure to date of this hypernucleus as produced by the $(e,e^{\\prime}K^+)$ reaction. This paper presents details of these experiments, and the extraction and analysis of the observed ${}^{12}_{\\Lambda}\\text{B}$ spectrum.

  4. Structural model of homogeneous As–S glasses derived from Raman spectroscopy and high-resolution XPS

    SciTech Connect

    Golovchak, R.; Shpotyuk, O.; Mccloy, J. S.; Riley, B. J.; Windisch, C. F.; Sundaram, S. K.; Kovalskiy, A.; Jain, H.

    2010-11-28

    The structure of homogeneous bulk As x S100- x (25 ≤ x ≤ 42) glasses, prepared by the conventional rocking–melting–quenching method, was investigated using high-resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It is shown that the main building blocks of their glass networks are regular AsS3/2 pyramids and sulfur chains. In the S-rich domain, the existence of quasi-tetrahedral (QT) S = As(S1/2)3 units is deduced from XPS data, but with a concentration not exceeding ~3–5% of total atomic sites. Therefore, QT units do not appear as primary building blocks of the glass backbone in these materials, and an optimally-constrained network may not be an appropriate description for glasses when x < 40. Finally, it is shown that, in contrast to Se-based glasses, the ‘chain-crossing’ model is only partially applicable to sulfide glasses.

  5. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations

    SciTech Connect

    Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P. E-mail: michael.brunger@flinders.edu.au; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J. E-mail: michael.brunger@flinders.edu.au; and others

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5–10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  6. Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations.

    PubMed

    Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B

    2015-10-14

    The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.

  7. 15N/14N Ratio Determination in the ISM with Herschel with High Resolution Spectroscopy of Nitrogen Radicals

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Bailleux, S.; Wlodarczak, G.; Pirali, O.; Martin-Drumel, M.-A.; Roy, P.; Roueff, E.; Gerin, M.

    2011-06-01

    The very high resolution of the HIFI instrument (134 kHz-1MHz) on board of Herschel needs very accurate laboratory measurements to detect unambiguously the signature of stable and unstable molecular species. Concerning the pure rotation spectra of new species, and particularly of open shell molecules, the first prediction could be far away and up to few hundred MHz. The 15N/14N ratio is not well measured in the ISM. However, the 15N/14N in the isotopomers is a potential tracer of the formation processes and the possible link with cometary molecules. Recent measurements include the detection of 15NH_2D N15NH+ and 15NH_3. The NH and NH_2 species are the simplest nitrogen radicals and are intermediate products in the NH_3 synthesis. They have been easily detected by Herschel and it therefore is interesting to now search for 15NH and 15NH_2. No spectrocopic data have been reported for these two radicals up to now. We present here the studies with high resolution spectroscopy in the THz range. The high sensitivity and the wide range of Synchrotron (0.6-6 THz) was essential to improve the prediction of the spectra of these two species in order to measure them in Lille (0.6-1 THz) with both a higher accuracy and resolution. The combined studies now give the most accurate predictions. ISM searches on these radicals are in progress in the HERSCHEL spectra. This work is supported by the Programme National de Physico-Chimie du Milieu Interstellaire (PCMI-CNRS) M. Gerin, N. Marcellino, N. Biver, et al., Astron. & Astrophys. 498 (2009) 9. L. Bizzochi, P. Caselli, and L. Dore, Astron. & Astrophys. 510 (2010) L5. D. C. Lis, A. Wooten, M. Gerin and E. Roueff, Astrophys. J. 710 (2010) L49.

  8. New frontiers of high-resolution spectroscopy: Probing the atmospheres of brown dwarfs and reflected light from exoplanets

    NASA Astrophysics Data System (ADS)

    Birkby, Jayne; Alonso, Roi; Brogi, Matteo; Charbonneau, David; Fortney, Jonathan; Hoyer, Sergio; Johnson, John Asher; de Kok, Remco; Lopez-Morales, Mercedes; Montet, Ben; Snellen, Ignas

    2015-12-01

    High-resolution spectroscopy (R>25,000) is a robust and powerful tool in the near-infrared characterization of exoplanet atmospheres. It has unambiguously revealed the presence of carbon monoxide and water in several hot Jupiters, measured the rotation rate of beta Pic b, and suggested the presence of fast day-to-night winds in one atmosphere. The method is applicable to transiting, non-transiting, and directly-imaged planets. It works by resolving broad molecular bands in the planetary spectrum into a dense, unique forest of individual lines and tracing them directly by their Doppler shift, while the star and tellurics remain essentially stationary. I will focus on two ongoing efforts to expand this technique. First, I will present new results on 51 Peg b revealing its infrared atmospheric compositional properties, then I will discuss an ongoing optical HARPS-N/TNG campaign (due mid October 2015) to obtain a detailed albedo spectrum of 51 Peg b at 387-691 nm in bins of 50nm. This spectrum would provide strong constraints on the previously claimed high albedo and potentially cloudy nature of this planet. Second, I will discuss preliminary results from Keck/NIRSPAO observations (due late September 2015) of LHS 6343 C, a 1000 K transiting brown dwarf with an M-dwarf host star. The high-resolution method converts this system into an eclipsing, double-lined spectroscopic binary, thus allowing dynamical mass and radius estimates of the components, free from astrophysical assumptions. Alongside probing the atmospheric composition of the brown dwarf, these data would provide the first model-independent study of the bulk properties of an old brown dwarf, with masses accurate to <5%, placing a crucial constraint on brown dwarf evolution models.

  9. Properties of the Open Cluster Tombaugh 1 from High-resolution Spectroscopy and uvbyCaHβ Photometry

    NASA Astrophysics Data System (ADS)

    Sales Silva, João V.; Carraro, Giovanni; Anthony-Twarog, Barbara J.; Moni Bidin, Christian; Costa, Edgardo; Twarog, Bruce A.

    2016-01-01

    Open clusters can be the key to deepening our knowledge on various issues involving the structure and evolution of the Galactic disk and details of stellar evolution because a cluster’s properties are applicable to all its members. However, the number of open clusters with detailed analysis from high-resolution spectroscopy or precision photometry imposes severe limitations on studies of these objects. To expand the number of open clusters with well-defined chemical abundances and fundamental parameters, we investigate the poorly studied, anticenter open cluster Tombaugh 1. Using precision uvbyCaHβ photometry and high-resolution spectroscopy, we derive the cluster’s reddening, obtain photometric metallicity estimates, and, for the first time, present a detailed abundance analysis of 10 potential cluster stars (nine clump stars and one Cepheid). Using the radial position from the cluster center and multiple color indices, we have isolated a sample of unevolved, probable single-star members of Tombaugh 1. From 51 stars, the cluster reddening is found to be E(b-y) = 0.221 ± 0.006 or E(B-V) = 0.303 ± 0.008, where the errors refer to the internal standard errors of the mean. The weighted photometric metallicity from m1 and hk is [Fe/H] = -0.10 ± 0.02, while a match to the Victoria-Regina Strömgren isochrones leads to an age of 0.95 ± 0.10 Gyr and an apparent modulus of (m-M) = 13.10 ± 0.10. Radial velocities identify six giants as probable cluster members, and the elemental abundances of Fe, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Y, Ba, Ce, and Nd have been derived for both the cluster and the field stars. Tombaugh 1 appears to be a typical inner thin disk, intermediate-age open cluster of slightly subsolar metallicity, located just beyond the solar circle, with solar elemental abundance ratios except for the heavy s-process elements, which are a factor of two above solar. Its metallicity is consistent with a steep metallicity gradient in the galactocentric region

  10. Cathodoluminescence Microscopy and Spectroscopy of Planar Deformation Features of Shocked Zircon from the Vredefort Impact Structure, South Africa

    SciTech Connect

    Gucsik, A.

    2009-08-17

    Thorough understanding of the shock metamorphic signatures of zircon will provide a basis for the application of this mineral as a powerful tool for the study of terrestrial impact structures and formations. This paper of the cathodoluminescence (CL) spectroscopic signatures of naturally shocked zircon crystals from the Vredefort Dome, South Africa contributes to the understanding of the formation of microdeformation in zircon under very high pressures. All investigated shocked samples shows an inverse relationship between the brightness of the backscattered electron (BSE) signal and the corresponding cathodoluminescence intensity of the zonation patterns. The CL spectra of samples are characterised by narrow emission lines and broad bands in the region of visible light and in the near-ultraviolet range. The emission lines result from rare earth element activators and the broad bands are associated with lattice defects. The results show a clear relationship between the CL properties of zircon and shock pressure, which confirm the possible use of these methods as shock indicators.

  11. High resolution infrared spectroscopy from space: A preliminary report on the results of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment on Spacelab 3

    NASA Technical Reports Server (NTRS)

    Farmer, Crofton B.; Raper, Odell F.

    1987-01-01

    The ATMOS (Atmospheric Trace Molecule Spectroscopy) experiment has the broad purpose of investigating the physical structure, chemistry, and dynamics of the upper atmosphere through the study of the distributions of the neutral minor and trace constituents and their seasonal and long-term variations. The technique used is high-resolution infrared absorption spectroscopy using the Sun as the radiation source, observing the changes in the transmission of the atmosphere as the line-of-sight from the Sun to the spacecraft penetrates the atmosphere close to the Earth's limb at sunrise and sunset. During these periods, interferograms are generated at the rate of one each second which yield, when transformed, high resolution spectra covering the 2.2 to 16 micron region of the infrared. Twenty such occultations were recorded during the Spacelab 3 flight, which have produced concentration profiles for a large number of minor and trace upper atmospheric species in both the Northern and Southern Hemispheres. Several of these species have not previously been observed in spectroscopic data. The data reduction and analysis procedures used following the flight are discussed; a number of examples of the spectra obtained are shown, and a bar graph of the species detected thus far in the analysis is given which shows the altitude ranges for which concentration profiles were retrieved.

  12. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas

    SciTech Connect

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M; Beiersdorfer, P; Purvis, M A

    2008-05-21

    A large radius, R = 44.3 m, High Resolution Grating Spectrometer (HRGS) with 2400 line/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 {angstrom} wavelength range. The instrument can be run with a 10-20 {micro}m wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 {angstrom}, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (FWHM), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  13. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    DOE PAGES

    Zhang, Libing; Lu, Zhou; Velarde, Luis; ...

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signaturesmore » in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.« less

  14. Evaluating Human Breast Ductal Carcinomas with High-Resolution Magic-Angle Spinning Proton Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Leo Ling; Chang, I.-Wen; Smith, Barbara L.; Gonzalez, R. Gilberto

    1998-11-01

    We report the results of a study of human breast ductal carcinomas, conducted by using high resolution magic angle spinning proton magnetic resonance spectroscopy (HRMAS 1HMRS). This recently developed spectroscopic technique can measure tissue metabolism from intact pathological specimens and identify tissue biochemical changes, which closely correspond to tumorin vivostate. This procedure objectively indicates diagnostic parameters, independent of the skill and experience of the investigator, and has the potential to reduce the sampling errors inherently associated with procedures of conventional histopathology. In this study, we measured 19 cases of female ductal carcinomas. Our results demonstrate that: (1) highly resolved spectra of intact specimens of human breast ductal carcinomas can be obtained; (2) carcinoma-free tissues and carcinomas are distinguishable by alterations in the intensities and the spin-spin relaxation time T2 of cellular metabolites; and (3) tumor metabolic markers, such as phosphocholine, lactate, and lipids, may correlate with the histopathological grade determined from evaluation of the adjacent specimen. Our results suggest that biochemical markers thus measured may function as a valuable adjunct to histopathology to improve the accuracy of and reduce the time frame required for the diagnosis of human breast cancer.

  15. Vibrational Spectral Signatures of Crystalline Cellulose Using High Resolution Broadband Sum Frequency Generation Vibrational Spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde Ruiz Esparza, Luis A.; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Art J.; Wang, Hongfei; Yang, Bin

    2015-03-03

    Here we reported the first sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) study on both the C-H and O-H region spectra of crystalline cellulose. HR-BB-SFG-VS has about 10 times better resolution than the conventional scanning SFG-VS and is known to be able to measure the intrinsic spectral lineshape and to resolve much more spectral details. With HR-BB-SFG-VS, we found that in cellulose from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the OH regions were unique for different allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C-H regions varied in all samples examined. Even though the origin of the different behaviors of the crystalline cellulose in the O-H and C-H vibrational frequency regions is yet to be correlated to the structure of cellulose, these results provided new spectroscopic methods and opportunities to classify and understand the basic crystalline structure, as well as variations, in polymorphism of the crystalline cellulose structure.

  16. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS)

    PubMed Central

    Fuss, Taylor L.; Cheng, Leo L.

    2016-01-01

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205

  17. High-Resolution Spectroscopy with a Free-Electron Laser: Vibrational Lifetimes of Hydrogen-related Defects in Silicon

    NASA Astrophysics Data System (ADS)

    Luepke, Gunter

    2009-03-01

    Gunter Luepke, Department of Applied Science, The College of William and Mary, Williamsburg, VA 23187 Vibrational lifetimes of hydrogen- and deuterium-related bending and stretching modes in crystalline silicon are measured by high-resolution infrared absorption spectroscopy and pump-probe transient bleaching technique using the Jefferson Lab. Free-Electron Laser. We find that the vibrational lifetimes of the bending modes follow a universal frequency-gap law, i.e., the decay time increases exponentially with increasing decay order, with values ranging from 1 ps for a one-phonon process to 265 ps for a four-phonon process. The temperature dependence of the lifetime shows that the bending mode decays by lowest-order multi-phonon process. In contrast, the lifetimes of the stretching modes are found to be extremely dependent on the defect structure, ranging from 2 to 295 ps. Against conventional wisdom, we find that lifetimes of Si-D stretch modes typically are longer than for the corresponding Si-H modes. Our results provide new insights into vibrational decay and the giant isotope effect of hydrogen in semiconductor systems. The potential implications of the results on the physics of electronic device degradation are discussed.

  18. Evaluation of Cancer Metabolomics Using ex vivo High Resolution Magic Angle Spinning (HRMAS) Magnetic Resonance Spectroscopy (MRS).

    PubMed

    Fuss, Taylor L; Cheng, Leo L

    2016-03-22

    According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics.

  19. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    SciTech Connect

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward H.; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.; Ishikawa, Yuzo; McDonald, Eliza A.; Shourt, William V.; Vanderburg, Andrew M.

    2016-05-27

    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. Lastly, a section on theoretical photon limited sensitivity is in a companion paper, part 2.

  20. Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Ohno, Atsushi; Hashimoto, Hiroki; Suzuki, Motofumi; Kimura, Kenji

    2010-07-01

    The surface structures of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([CnMIM][TFSI], n=2,4,6) are studied by high-resolution Rutherford backscattering spectroscopy. The average composition of the surface molecular layer is very close to the stoichiometric composition, showing that neither ion is enriched in the surface layer. A detailed analysis indicates that both cations and anions have preferential molecular orientations at the surface. The alkyl chains of the [CnMIM] cations protrude to the vacuum and the CF3 groups of the [TFSI] anions are also pointing toward the vacuum. While the orientation of the [TFSI] anion becomes weaker with increasing alkyl-chain length, the protrusion of the alkyl chain occurs irrespective of the chain length. It was also found that the N(SO2)2 moiety is located nearly at the same depth as the imidazolium ring, suggesting that one of oxygen atoms in [TFSI] is bonded to the hydrogen of the C2 carbon atom of the imidazolium ring.

  1. Surface structures of equimolar mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Oshima, Shinichi; Suzuki, Motofumi; Kimura, Kenji

    2012-11-01

    Surface structures of equimolar mixtures of imidazolium-based ionic liquids (ILs) having a common cation (1-butyl-3-methylimidazolium ([C4MIM]) or 1-hexyl-3-methylimidazolium ([C6MIM])) and different anions (bis(trifluoromethanesulfonyl)imide ([TFSI]), hexafluorophosphate ([PF6]) or chlorine) are studied using high-resolution Rutherford backscattering spectroscopy (HRBS). Both cations and anions have the same preferential orientations at the surface as in the pure ILs. In the mixture, the larger anion is located shallower than the smaller anion. The [TFSI] anion is slightly enriched at the surface relative to [PF6] with coverage of ~ 60% for the equimolar mixtures of [C4(6)MIM] [TFSI] and [C4(6)MIM] [PF6]. No surface segregation is observed for [C6MIM] [TFSI]0.5[Cl]0.5 and [C6MIM] [PF6]0.5[Cl]0.5. These results are different from the recent TOF-SIMS measurement where very strong surface segregation of [TFSI] was concluded for the mixture of [C4MIM] [TFSI] and [C4MIM] [PF6].

  2. Observation of surface structure of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide using high-resolution Rutherford backscattering spectroscopy.

    PubMed

    Nakajima, Kaoru; Ohno, Atsushi; Hashimoto, Hiroki; Suzuki, Motofumi; Kimura, Kenji

    2010-07-28

    The surface structures of 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(n)MIM][TFSI], n=2,4,6) are studied by high-resolution Rutherford backscattering spectroscopy. The average composition of the surface molecular layer is very close to the stoichiometric composition, showing that neither ion is enriched in the surface layer. A detailed analysis indicates that both cations and anions have preferential molecular orientations at the surface. The alkyl chains of the [C(n)MIM] cations protrude to the vacuum and the CF(3) groups of the [TFSI] anions are also pointing toward the vacuum. While the orientation of the [TFSI] anion becomes weaker with increasing alkyl-chain length, the protrusion of the alkyl chain occurs irrespective of the chain length. It was also found that the N(SO(2))(2) moiety is located nearly at the same depth as the imidazolium ring, suggesting that one of oxygen atoms in [TFSI] is bonded to the hydrogen of the C(2) carbon atom of the imidazolium ring.

  3. High resolution soft x-ray spectroscopy of low Z K-shell emission from laser-produced plasmas.

    PubMed

    Dunn, J; Magee, E W; Shepherd, R; Chen, H; Hansen, S B; Moon, S J; Brown, G V; Gu, M-F; Beiersdorfer, P; Purvis, M A

    2008-10-01

    A large radius, R=44.3 m, high resolution grating spectrometer (HRGS) with 2400 lines/mm variable line spacing has been designed for laser-produced plasma experiments conducted at the Lawrence Livermore National Laboratory Jupiter Laser Facility. The instrument has been run with a low-noise, charge-coupled device detector to record high signal-to-noise spectra in the 10-50 A wavelength range. The instrument can be run with a 10-20 microm wide slit to achieve the best spectral resolving power, approaching 1000 and similar to crystal spectrometers at 12-20 A, or in slitless operation with a small symmetrical emission source. We describe preliminary spectra emitted from various H-like and He-like low Z ion plasmas heated by 100-500 ps (full width at half maximum), 527 nm wavelength laser pulses. This instrument can be developed as a useful spectroscopy platform relevant to laboratory-based astrophysics as well as high energy density plasma studies.

  4. Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS)

    SciTech Connect

    Zhang, Libing; Lu, Zhou; Velarde, Luis; Fu, Li; Pu, Yunqiao; Ding, Shi-You; Ragauskas, Arthur; Wang, Hong-Fei; Yang, Bin

    2015-03-03

    Both the C–H and O–H region spectra of crystalline cellulose were studied using the sub-wavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) for the first time. The resolution of HR-BB-SFG-VS is about 10-times better than conventional scanning SFG-VS and has the capability of measuring the intrinsic spectral lineshape and revealing many more spectral details. With HR-BB-SFG-VS, we found that in cellulose samples from different sources, including Avicel and cellulose crystals isolated from algae Valonia (Iα) and tunicates (Iβ), the spectral signatures in the O–H region were unique for the two allomorphs, i.e. Iα and Iβ, while the spectral signatures in the C–H regions varied in all samples examined. Even though the origin of the different spectral signatures of the crystalline cellulose in the O–H and C–H vibrational frequency regions are yet to be correlated to the structure of cellulose, these results lead to new spectroscopic methods and opportunities to classify and to understand the basic crystalline structures, as well as variations in polymorphism of the crystalline cellulose.

  5. High-resolution line-shape spectroscopy during a laser pulse based on Dual-Broad-Band-CARS interferometry

    SciTech Connect

    Vereschagin, Konstantin A; Vereschagin, Alexey K; Smirnov, Valery V; Stelmakh, O M; Fabelinskii, V I; Clauss, W; Klimenko, D N; Oschwald, M E-mail: Al_Vereshchagin@mail.r E-mail: stelmakh@kapella.gpi.r

    2006-07-31

    A high-resolution spectroscopic method is developed for recording Raman spectra of molecular transitions in transient objects during a laser pulse with a resolution of {approx}0.1 cm{sup -1}. The method is based on CARS spectroscopy using a Fabry-Perot interferometer for spectral analysis of the CARS signal and detecting a circular interferometric pattern on a two-dimensional multichannel photodetector. It is shown that the use of the Dual-Broad-Band-CARS configuration to obtain the CARS process provides the efficient averaging of the spectral-amplitude noise of the CARS signal generated by a laser pulse and, in combination with the angular integration of the two-dimensional interference pattern, considerably improves the quality of interferograms. The method was tested upon diagnostics of the transient oxygen-hydrogen flame where information on the shapes of spectral lines of the Q-branch of hydrogen molecules required for measuring temperature was simultaneously obtained and used. (special issue devoted to the 90th anniversary of a.m. prokhorov)

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.

    2015-12-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.

  7. Cathodoluminescence spectroscopy studies of aluminum gallium nitride and silicon device structures as a function of irradiation and processing

    NASA Astrophysics Data System (ADS)

    White, Brad Derek

    Electronic device performance is critically dependent on the presence of deep-level and shallow states in the electronic band gap. A uniform or localized distribution of defects throughout a device structure can adversely affect doping and carrier transport, and result in changes to device saturation current, threshold voltage, ohmic contact resistivity, and Schottky barrier properties, including leakage currents. Process-induced atomic intermixing effects at heterostructure interfaces can cause decreases in sheet density and mobility of channel layers. For the presence of all such effects, the spatial variation across a given wafer can result in significant variation in device performance depending on spatial position. Spatially-resolved cathodoluminescence spectroscopy (CLS) has been used to identify the presence of radiative point and extended defects in the semiconductor band gap produced by irradiation and processing conditions for Si and GaN-based devices. Changes in deep level emission in Al-SiO2-Si capacitor structures revealed a gradient in relative defect concentrations across the SiO2 film after x-ray irradiation, indicating interface-specific defect creation. CLS measurements also revealed changes in the near-band edge signatures of AlGaN-GaN high-electron mobility transistor (HEMT) structures subjected to 1.8 MeV proton irradiation. These changes were indicative of alloying of AlGaN and GaN at the charge confinement interface and relaxation of piezoelectric strain in the AlGaN film. Alloying was investigated with secondary-ion mass spectrometry, which confirmed a broadened interface after a high fluence of proton irradiation. Both mechanisms contributed to the measured degradation in HEMT channel transport properties. Ni-GaN Schottky barrier height decreases and ideality factor increases were observed at lower fluences than the degradation in HEMT channel figures. Additionally, 1.0 MeV protons resulted in ˜1.5 times higher damage than 1.8 MeV protons

  8. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    DOE PAGES

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward H.; ...

    2016-05-27

    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced bymore » the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. Lastly, a section on theoretical photon limited sensitivity is in a companion paper, part 2.« less

  9. High Resolution Infrared Spectroscopy of CH_3F-({ortho}-H_2){n} Cluster in Solid {para}-H_2

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroyuki; Mizoguchi, Asao; Kanamori, Hideto

    2015-06-01

    The absorption spectrum of the ν3 (C-F stretching) mode of CH_3F in solid {para}-H_2 by FTIR showed a series of equal interval peaks. Their interpretation was that the {}-th peak of this series was due to CH_3F-({ortho}-H_2){n} clusters which were formed CH_3F and {n}'s {ortho}-H_2 in first nearest neighbor sites of the {para}-H_2 crystal with {hcp} structure. In order to understand this system in more detail, we have studied these peaks, especially {n} = 0 - 3 corresponding to 1037 - 1041 wn, by using high-resolution and high-sensitive infrared quantum cascade (QC) laser spectroscopy. Before now, we found many peaks around each {n}-th peak of the cluster, which we didn't know their origins. We observed photochromic phenomenon of these peaks by taking an advantage of the high brightness of the laser. In this study, we focus on satellite series consisting of six peaks which locate at the lower energy side of each main peak. All the peaks showed a common red shouldered line profile, which corresponds to partly resolved transitions of {ortho}- and {para}- CH_3F. The spectral pattern and time behavior of the peaks may suggest that these satellite series originate from a family of CH_3F clusters involving {ortho}-H_2 in second nearest neighbor sites. A model function assuming this idea is used to resolve the observed spectrum into each Lorentzian component, and then some common features of the satellite peaks are extracted and the physical meanings of them will be discussed. K. Yoshioka and D. T. Anderson, J. Chem. Phys. 119 (2003) 4731-4742 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, J. Chem. Phys. 135 (2011) 124511 A. R. W. McKellar, A. Mizoguchi, and H. Kanamori, Phys. Chem. Chem. Phys. 13 (2011) 11587-11589.

  10. High Resolution Echelle Spectroscopy of Low Redshift Intervening O VI Absorbers with the Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Tripp, T. M.; Bowen, D. V.; Jenkins, E. B.; Savage, B. D.

    1999-12-01

    We present high resolution FUV echelle spectroscopy of several low z intervening O VI absorbers (z < 0.3) in the spectra of H1821+643 and PG0953+415. The data were obtained with the Space Telescope Imaging Spectrograph at a resolution of 45,000 (7 km/s FWHM). We also present selected new measurements of galaxy redshifts in the 10' field centered on H1821+643. The observations provide several clues about the nature of these absorbers: (1) In the case of the strong O VI system at z = 0.2250 in the spectrum of H1821+643, we detect multicomponent Si II and Si III absorption as well as O VI and several Lyman series lines of H I. Multiple components are evident in the O VI profiles, but the components have different velocities than the Si III and Si II lines. Furthermore, the Si II and Si III lines are quite narrow, and the O VI lines are broader and spread over a larger velocity range. This evidence strongly indicates that this is a multiphase absorber. (2) We also detect `high velocity' O VI in the z = 0.2250 system. High velocity H I is also seen in the Lyα profile, but substantially offset in velocity from the O VI. This high velocity O VI may be analogous to the highly ionized high velocity clouds seen near the Milky Way. (3) We also present systems at other redshifts including very weak O VI absorption lines accompanied by weak and narrow H I absorption. (4) In all cases, several galaxies are close to the sight lines at the redshift of the O VI systems. We examine whether the O VI absorption can be attributed to the ISM of a single galaxy or the intragroup medium.

  11. High Resolution X-Ray Spectroscopy of the Local Hot Gas along the 3C 273 Sightline

    NASA Astrophysics Data System (ADS)

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-01

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ~100-150 km s-1, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 106 K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered "Fermi bubbles." We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the "Fermi bubbles." Our data imply a shock-expansion velocity of 200-300 km s-1. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  12. HIGH RESOLUTION X-RAY SPECTROSCOPY OF THE LOCAL HOT GAS ALONG THE 3C 273 SIGHTLINE

    SciTech Connect

    Fang, Taotao; Jiang, Xiaochuan

    2014-04-20

    X-ray observations of highly ionized metal absorption lines at z = 0 provide critical information on the hot gas distribution in and around the Milky Way. We present a study of more than 10 yr of Chandra and XMM-Newton observations of 3C 273, one of the brightest extragalactic X-ray sources. Compared with previous works, we obtain much tighter constraints on the physical properties of the X-ray absorber. We also find a large, non-thermal velocity at ∼100-150 km s{sup –1}, the main reason for the higher line equivalent width when compared with other sightlines. Using joint analysis with X-ray emission and ultraviolet observations, we derive a size of 5-15 kpc and a temperature of (1.5-1.8) × 10{sup 6} K for the X-ray absorber. The 3C 273 sightline passes through a number of Galactic structures, including radio loops I and IV, the North Polar Spur, and the neighborhood of the newly discovered ''Fermi bubbles''. We argue that the X-ray absorber is unlikely to be associated with the nearby radio loops I and IV; however, the non-thermal velocity can be naturally explained as the result of the expansion of the ''Fermi bubbles''. Our data imply a shock-expansion velocity of 200-300 km s{sup –1}. Our study indicates a likely complex environment for the production of the Galactic X-ray absorbers along different sightlines, and highlights the significance of probing galactic feedback with high resolution X-ray spectroscopy.

  13. High resolution electron energy loss spectroscopy of manganese oxides: Application to Mn{sub 3}O{sub 4} nanoparticles

    SciTech Connect

    Laffont, L.; Gibot, P.

    2010-11-15

    Manganese oxides particularly Mn{sub 3}O{sub 4} Hausmannite are currently used in many industrial applications such as catalysis, magnetism, electrochemistry or air contamination. The downsizing of the particle size of such material permits an improvement of its intrinsic properties and a consequent increase in its performances compared to a classical micron-sized material. Here, we report a novel synthesis of hydrophilic nano-sized Mn{sub 3}O{sub 4}, a bivalent oxide, for which a precise characterization is necessary and for which the determination of the valency proves to be essential. X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and particularly High Resolution Electron Energy Loss Spectroscopy (HREELS) allow us to perform these measurements on the nanometer scale. Well crystallized 10-20 nm sized Mn{sub 3}O{sub 4} particles with sphere-shaped morphology were thus successfully synthesized. Meticulous EELS investigations allowed the determination of a Mn{sup 3+}/Mn{sup 2+} ratio of 1.5, i.e. slightly lower than the theoretical value of 2 for the bulk Hausmannite manganese oxide. This result emphasizes the presence of vacancies on the tetrahedral sites in the structure of the as-synthesized nanomaterial. - Research Highlights: {yields}Mn{sub 3}O{sub 4} bulk and nano were studied by XRD, TEM and EELS. {yields}XRD and TEM determine the degree of crystallinity and the narrow grain size. {yields}HREELS gave access to the Mn{sup 3+}/Mn{sup 2+} ratio. {yields}Mn{sub 3}O{sub 4} nano have vacancies on the tetrahedral sites.

  14. Development of spatially resolved high resolution x-ray spectroscopy for fusion and light-source research

    NASA Astrophysics Data System (ADS)

    Lu, J.; Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Efthimion, P.; Beiersdorfer, P.; Chen, H.; Widmann, K.; Sanchez del Rio, M.

    2014-09-01

    One dimensional spatially resolved high resolution x-ray spectroscopy with spherically bent crystals and 2D pixelated detectors is an established technique on magnetic confinement fusion (MCF) experiments world wide for Doppler measurements of spatial profiles of plasma ion temperature and flow velocity. This technique is being further developed for diagnosis of High Energy Density Physics (HEDP) plasmas at laser-plasma facilities and synchrotron/x-ray free electron laser (XFEL) facilities. Useful spatial resolution (micron scale) of such small-scale plasma sources requires magnification, because of the finite pixel size of x-ray CCD detectors (13.5 μm). A von-Hamos like spectrometer using spherical crystals is capable of magnification, as well as uniform sagittal focusing across the full x-ray spectrum, and is being tested in laboratory experiments using a tungsten-target microfocus (5-10 μm) x-ray tube and 13-μm pixel x-ray CCD. A spatial resolution better than 10 μm has been demonstrated. Good spectral resolution is indicated by small differences (0.02 - 0.1 eV) of measured line widths with best available published natural line widths. Progress and status of HEDP measurements and the physics basis for these diagnostics are presented. A new type of x-ray crystal spectrometer with a convex spherically bent crystal is also reported. The status of testing of a 2D imaging microscope using matched pairs of spherical crystals with x rays will also be presented. The use of computational x-ray optics codes in development of these instrumental concepts is addressed.

  15. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    PubMed

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  16. Investigations into the Structure and Dynamics of Chalcogenide Glasses using High-Resolution Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaseman, Derrick Charles

    Chalcogenide glasses constitute an important class of materials that are sulfides, selenides or tellurides of group IV and/or V elements, namely Ge, As, P and Si with minor concentrations of other elements such as Ga, Sb, In. Because of their infrared transparency that can be tuned by changing chemistry and can be actively altered by exposure to band gap irradiation, chalcogenide glasses find use in passive and active optical devices for applications in the areas of photonics, remote sensing and memory technology. Therefore, it is important to establish predictive models of structure-property relationships for these materials for optimization of their physical properties for various applications. Structural elucidation of chalcogenide glasses is experimentally challenging and in order to make predictive structural models, structural units at both short and intermediate -range length scales must be identified and quantified. Nuclear Magnetic Resonance (NMR) spectroscopy is an element-specific structural probe that is uniquely suited for this task, but resolution and sensitivity issues have severely limited the applications of such techniques in the past. The recent development of multi-dimensional solid-state NMR techniques, such as Phase Adjusted Spinning Sidebands (PASS) and Magic Angle Turning (MAT) can potentially alleviate such issues. In this study novel two-dimensional, high-resolution 77Se and 125Te MATPASS NMR spectroscopic techniques are utilized to elucidate quantitatively the compositional evolution of the short- and intermediate- range atomic structure in three binary chalcogenide glass-forming systems, namely: GexSe100-x, AsxSe100-x , and AsxTe100-x. The spectroscopic results provide unambiguous site speciation and quantification for short- and intermediate-range structural motifs present in these glasses. In turn, for all systems, robust structural models and the corresponding structure-property relationships are successfully established as a function

  17. Combined use of high-resolution α-glucosidase inhibition profiling and high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for investigation of antidiabetic principles in crude plant extracts.

    PubMed

    Kongstad, Kenneth T; Özdemir, Ceylan; Barzak, Asmah; Wubshet, Sileshi G; Staerk, Dan

    2015-03-04

    Type 2 diabetes is a metabolic disorder affecting millions of people worldwide, and new drug leads or functional foods containing selective α-glucosidase inhibitors are needed. Crude extract of 24 plants were assessed for α-glucosidase inhibitory activity. Methanol extracts of Cinnamomum zeylanicum bark, Rheum rhabarbarum peel, and Rheum palmatum root and ethyl acetate extracts of C. zeylanicum bark, Allium ascalonicum peel, and R. palmatum root showed IC50 values below 20 μg/mL. Subsequently, high-resolution α-glucosidase profiling was used in combination with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of metabolites responsible for the α-glucosidase inhibitory activity. Quercetin (1) and its dimer (2), trimer (3), and tetramer (4) were identified as main α-glucosidase inhibitors in A. ascalonicum peel, whereas (E)-piceatannol 3'-O-β-D-glucopyranoside (5), (E)-rhapontigenin 3'-O-β-D-glucopyranoside (6), (E)-piceatannol (8), and emodin (12) were identified as main α-glucosidase inhibitors in R. palmatum root.

  18. High-resolution infrared spectroscopy: Jet-cooled halogenated methyl radicals and reactive scattering dynamics in an atom + polyatom system

    NASA Astrophysics Data System (ADS)

    Whitney, Erin Sue

    This thesis describes a series of projects whose common theme comprises the structure and internal energy distribution of gas-phase radicals. In the first two projects, shot noise-limited direct absorption spectroscopy is combined with long path-length slit supersonic discharges to obtain first high-resolution infrared spectra for jet-cooled CH2F and CH2Cl in the symmetric and antisymmetric CH2 stretching modes. Drawing motivation from the question of the equilibrium structures of halogen-substituted methyl radicals, spectral assignment yields refined lower and upper state rotational constants, as well as fine-structure parameters from least-square fits to the sub-Doppler lineshapes for individual transitions. High-level CCSD(T) calculations extrapolated to the complete basis set (CBS) limit confirm the existence of a non-planar (theta=29°) CH2F equilibrium structure with a 132 cm-1 barrier to planarity and a vibrational bend frequency of 276 cm-1. Similar calculations for CH 2Cl predict a slightly nonplanar equilibrium structure (theta=11°) with a vibrationally adiabatic one-dimensional treatment of the bend coordinate yielding a fundamental anharmonic frequency (393 cm-1). Both sets of calculations are in excellent agreement with previous studies. More interesting, however, are the unexpected intensity ratios of the symmetric vs. antisymmetric bands for CH2F and the absence of an antisymmetric band for CH2Cl. While a simple bond-dipole picture predicts a ratio of 1:3 for the symmetric vs. antisymmetric intensities, the experimentally observed value for CH2F is ˜2:1. This ratio is confirmed by DFT [B3LYP/aug-cc-pVTZ] calculations in a novel albeit indirect probe of the effective non-planarity for CH2F. For CH2Cl, similar DFT calculations predict a 30-fold decrease between the intensity of the symmetric and antisymmetric CH2 stretches, leading to the postulation of a nearly perfect cancellation of antisymmetric stretch intensity transition moment with

  19. Cathodoluminescence mapping and spectroscopy of Te-doped InGaSb grown by the vertical Bridgman method under an alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Díaz-Guerra, C.; Mitric, A.; Piqueras, J.; Duffar, T.

    2009-04-01

    Cathodoluminescence (CL) in the scanning electron microscope and wavelength dispersive X-ray microanalysis (WDX) have been used to assess the homogeneity of a whole Te-doped In xGa 1- xSb ingot grown by the vertical Bridgman method under an alternating magnetic field. In particular, WDX has been used to determine the chemical composition of the ingot along the growth axis and several radial directions, while CL has been used to investigate the effective incorporation of In into the alloy, the nature and distribution of extended defects influencing the luminescence of the material and the shape evolution of the growth interfaces along the growth axis. CL spectroscopy reveals that doping with Te influences the band gap energy of this ternary compound through the Moss-Burstein effect.

  20. In-situ analysis of optoelectronic properties of twin boundaries in AlGaAs by polarized cathodoluminescence spectroscopy in a TEM.

    PubMed

    Ohno, Yutaka

    2010-08-01

    Optoelectronic properties of nanoscale twin boundaries (TBs) in indirect-gap AlGaAs layers were studied by polarized cathodoluminescence spectroscopy in a transmission electron microscope. TBs arranged orderly in a short range, i.e. four or more parallel TBs arranged at regular intervals of nanometre length, emitted an intense monochromatic light polarized parallel to the boundaries. The intensity and the photon energy of the light were examined at different temperatures with different electron fluxes, and the origin of the light was discussed based on a twinning superlattice model. According to the study, it was suggested that the photon energy is tunable by controlling the intervals of TBs, without changing the crystal structure and the composition.

  1. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 2, photon noise theory

    SciTech Connect

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (~1×) EDI has ~1.4× smaller noise than conventional, and at >10× boost, EDI has ~1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. As a result, for three (or four) steps, we calculate a multiplicative

  2. The subgiant branch of ω Centauri seen through high-resolution spectroscopy. I. The first stellar generation in ω Cen?

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Mucciarelli, A.; Sbordone, L.; Bellazzini, M.; Pasquini, L.; Monaco, L.; Ferraro, F. R.

    2011-03-01

    We analysed high-resolution UVES spectra of six stars belonging to the subgiant branch of ω Centauri, and derived abundance ratios of 19 chemical elements (namely Al, Ba, C, Ca, Co, Cr, Cu, Fe, La, Mg, Mn, N, Na, Ni, Sc, Si, Sr, Ti, and Y). A comparison with previous abundance determinations for red giants provided remarkable agreement and allowed us to identify the sub-populations to which our targets belong. We found that three targets belong to a low-metallicity population at [Fe/H] ≃ -2.0 dex, [α/Fe] ≃ +0.4 dex and [s/Fe] ≃ 0 dex. Stars with similar characteristics were found in small amounts by past surveys of red giants. We discuss the possibility that they belong to a separate sub-population that we name VMP (very metal-poor, at most 5% of the total cluster population), which - in the self-enrichment hypothesis - is the best-candidate first stellar generation in ω Cen. Two of the remaining targets belong to the dominant metal-poor population (MP) at [Fe/H] ≃ -1.7 dex, and the last one to the metal-intermediate (MInt) one at [Fe/H] ≃ -1.2 dex. The existence of the newly defined VMP population could help to understand some puzzling results based on low-resolution spectroscopy for age differences determinations, because the metallicity resolution of these studies was probably not enough to detect the VMP population. The VMP could also correspond to some of the additional substructures of the subgiant-branch region found in the latest HST photometry. After trying to correlate chemical abundances with substructures in the subgiant branch of ω Cen, we found that the age difference between the VMP and MP populations should be small (0 ± 2 Gyr), while the difference between the MP and MInt populations could be slightly larger (2 ± 2 Gyr). Based on data collected at the ESO VLT in Chile, with UVES and FLAMES under programs 68.D-0332(A) and 079.D-0021. Also based on literature data from the ESO WFI, under programs 62.L-0354 and 63.L-0439, and on data

  3. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: part 2, photon noise theory

    NASA Astrophysics Data System (ADS)

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; Sirk, Martin; Muirhead, Philip S.; Muterspaugh, Matthew W.; Lloyd, James P.

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (˜1×) EDI has ˜1.4× smaller noise than conventional, and at >10× boost, EDI has ˜1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multiplicative bandwidth

  4. High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 2, photon noise theory

    DOE PAGES

    Erskine, David J.; Edelstein, Jerry; Wishnow, Edward; ...

    2016-10-01

    High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoreticalmore » photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (~1×) EDI has ~1.4× smaller noise than conventional, and at >10× boost, EDI has ~1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. As a result, for three (or four) steps, we calculate a

  5. Multi-epoch high-resolution spectroscopy of SN 2011fe. Linking the progenitor to its environment

    NASA Astrophysics Data System (ADS)

    Patat, F.; Cordiner, M. A.; Cox, N. L. J.; Anderson, R. I.; Harutyunyan, A.; Kotak, R.; Palaversa, L.; Stanishev, V.; Tomasella, L.; Benetti, S.; Goobar, A.; Pastorello, A.; Sollerman, J.

    2013-01-01

    Aims: The nearby Type Ia supernova (SN) 2011fe has provided an unprecedented opportunity for deriving some of the properties of its progenitor. This work provides additional and independent information on the circumstellar environment in which the explosion took place. Methods: We obtained high-resolution spectroscopy of SN 2011fe for 12 epochs, from 8 to 86 days after the estimated date of explosion, testing in particular the time evolution of Ca II and Na I. Results: Three main absorption systems are identified from Ca II and Na I, one associated to the Milky Way, one probably arising within a high-velocity cloud, and one most likely associated to the halo of M101. The total (Galactic and host galaxy) reddening, deduced from the integrated equivalent widths (EW) of the Na i lines, is EB - V ≲ 0.05 mag. The host galaxy absorption is dominated by a component detected at the same velocity measured from the 21-cm H i line at the projected SN position (~180 km s-1). During the ~3 months covered by our observations its EW peak-to-peak variation is 15.6 ± 6.5 mÅ. This small and marginally significant change is shown to be compatible with the geometric effects produced by the rapid SN photosphere expansion coupled to the patchy fractal structure of the interstellar medium (ISM). The observed behavior is fully consistent with ISM properties similar to those derived for our own Galaxy, with evidences for structures on scales ≲ 100 AU. Conclusions: SN 2011fe appears to be surrounded by a "clean" environment. The lack of blueshifted, time-variable absorption features is fully consistent with the progenitor being a binary system with a main-sequence, or even another degenerate star. Based on observations collected at the Mercator telescope, Telescopio Nazionale Galileo, Nordic Optical Telescope at Roque de los Muchachos, La Palma (Spain), and at the 1.82 m Copernico telescope on Mt. Ekar (Asiago, Italy).

  6. Very-high-resolution tandem Fabry-Perot etalon cylindrical beam volume hologram spectrometer for diffuse source spectroscopy.

    PubMed

    Badieirostami, Majid; Momtahan, Omid; Hsieh, Chaoray; Adibi, Ali; Brady, David J

    2008-01-01

    We demonstrate a compact and slitless spectrometer with high resolution formed by cascading a Fabry-Perot etalon (FPE) and a cylindrical beam volume hologram (CBVH). The most significant advantage of this combined spectrometer is that we can independently encode spectral information of a diffuse beam in a 2D plane. Also, we show that in this slitless configuration we can simultaneously benefit from the advantages of both elements: the high resolution of the FPE and the large spectral range of the CBVH. Here, we report on the experimental demonstration of a spectrometer with better than 0.2 nm resolution.

  7. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    PubMed

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  8. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Hippler, Michael; Mohr, Christian; Keen, Katherine A.; McNaghten, Edward D.

    2010-07-01

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f =1.35 kHz and Q ≈10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as α ≈4.4×10-9 cm-1 s1/2 (1 s integration time) and 2.6×10-11 cm-1 s1/2 W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  9. Surface structures of binary mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy and time of flight secondary ion mass spectroscopy.

    PubMed

    Nakajima, Kaoru; Miyashita, Motoki; Suzuki, Motofumi; Kimura, Kenji

    2013-12-14

    Surface structures of binary mixtures of imidazolium-based ionic liquids having a common anion (bis(trifluoromethanesulfonyl)imide ([TFSI]), namely [C2MIM]1-x[C10MIM]x[TFSI] (x = 0.5 and 0.1), are studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and time of flight secondary ion mass spectroscopy (TOF-SIMS). Although both measurements show surface segregation of [C10MIM] the degrees of the segregation are different. The surface fraction xsurf of [C10MIM] is estimated to be 0.6 ± 0.05 and 0.18 ± 0.02 by HRBS for x = 0.5 and 0.1, respectively. On the other hand, TOF-SIMS indicates much stronger surface segregation, namely xsurf = 0.83 ± 0.03 and 0.42 ± 0.04 for x = 0.5 and 0.1, respectively. The observed discrepancy can be attributed to the difference in the probing depth between HRBS and TOF-SIMS. The observed surface segregation can be roughly explained in terms of surface tension.

  10. Surface structures of binary mixtures of imidazolium-based ionic liquids using high-resolution Rutherford backscattering spectroscopy and time of flight secondary ion mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Miyashita, Motoki; Suzuki, Motofumi; Kimura, Kenji

    2013-12-01

    Surface structures of binary mixtures of imidazolium-based ionic liquids having a common anion (bis(trifluoromethanesulfonyl)imide ([TFSI]), namely [C2MIM]1-x[C10MIM]x[TFSI] (x = 0.5 and 0.1), are studied using high-resolution Rutherford backscattering spectroscopy (HRBS) and time of flight secondary ion mass spectroscopy (TOF-SIMS). Although both measurements show surface segregation of [C10MIM] the degrees of the segregation are different. The surface fraction xsurf of [C10MIM] is estimated to be 0.6 ± 0.05 and 0.18 ± 0.02 by HRBS for x = 0.5 and 0.1, respectively. On the other hand, TOF-SIMS indicates much stronger surface segregation, namely xsurf = 0.83 ± 0.03 and 0.42 ± 0.04 for x = 0.5 and 0.1, respectively. The observed discrepancy can be attributed to the difference in the probing depth between HRBS and TOF-SIMS. The observed surface segregation can be roughly explained in terms of surface tension.

  11. CHARACTERIZATION OF NON-DERIVATIZED PLANT CELL WALLS USING HIGH-RESOLUTION SOLUTION-STATE NMR SPECTROSCOPY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A recently described plant cell wall dissolution system has been logically modified to utilize perdeuterated solvents to allow direct in-nmr-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent ...

  12. The use of high resolution electron-energy-loss spectroscopy for refining the infrared optical constants of GaS, GaSe, and InSe

    NASA Astrophysics Data System (ADS)

    Yu, Li-Ming; Thiry, P. A.; Degiovanni, A.; Conard, Th.; Leclerc, G.; Caudano, R.; Lambin, Ph.; Debever, J.-M.

    1994-06-01

    Cleaved surfaces of III-VI lamellar semiconducting compounds GaS, GaSe, and InSe have been studied by high resolution electron-energy-loss spectroscopy (HREELS). The infrared optical constants of the materials were retrieved by using the dielectric theory taking account of the resonance frequencies published from infrared reflectivity (IRS) data. The limitations of the HREELS and IRS measurements in the case of these materials are discussed in detail. However, it is shown that, by combining the informations from both spectroscopies, it is possible to refine some of the oscillator strengths of these materials.

  13. Triple aldose reductase/α-glucosidase/radical scavenging high-resolution profiling combined with high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy for identification of antidiabetic constituents in crude extract of Radix Scutellariae.

    PubMed

    Tahtah, Yousof; Kongstad, Kenneth T; Wubshet, Sileshi G; Nyberg, Nils T; Jønsson, Louise H; Jäger, Anna K; Qinglei, Sun; Staerk, Dan

    2015-08-21

    In this work, development of a new microplate-based high-resolution profiling assay using recombinant human aldose reductase is presented. Used together with high-resolution radical scavenging and high-resolution α-glucosidase assays, it provided the first report of a triple aldose reductase/α-glucosidase/radical scavenging high-resolution inhibition profile - allowing proof of concept with Radix Scutellariae crude extract as a polypharmacological herbal drug. The triple bioactivity high-resolution profiles were used to pinpoint bioactive compounds, and subsequent structure elucidation was performed with hyphenated high-performance liquid chromatography-high-resolution mass spectrometry-solid-phase extraction-nuclear magnetic resonance spectroscopy. The only α-glucosidase inhibitor was baicalein, whereas main aldose reductase inhibitors in the crude extract were baicalein and skullcapflavone II, and main radical scavengers were ganhuangemin, viscidulin III, baicalin, oroxylin A 7-O-glucuronide, wogonoside, baicalein, wogonin, and skullcapflavone II.

  14. High-resolution terahertz spectroscopy with a noise radiation source based on high-T c superconductors

    NASA Astrophysics Data System (ADS)

    Sobakinskaya, E.; Vaks, V. L.; Kinev, N.; Ji, M.; Li, M. Y.; Wang, H. B.; Koshelets, V. P.

    2017-01-01

    Stochastic fields can play a ‘constructive’ role in their interaction with quantum systems. In this paper, we demonstrate that the phase-diffusion field (PDF) in the terahertz range (THz) induces macroscopic polarization in molecular gas. We explain the observed effect using a simple model in which the PDF is treated as a series of ultrashort pulses of a regular signal, resulting in transient absorption in molecular gas. The experimental investigation of this effect is carried out using ammonia, and the PDF is generated by an oscillator based on stacks of Bi2Sr2CaCu2O8 intrinsic Josephson junctions. These radiation sources do not require a phase-lock loop system to provide high resolution, which simplifies the spectrometer considerably. The PDF radiation sources open up new horizons for the development of compact high-resolution THz spectrometers and applications thereof.

  15. Probing the complex environments of GRB host galaxies and intervening systems: high resolution spectroscopy of GRB050922C

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Vergani, S.; Fiore, F.; D'Elia, V.; Krongold, Y.; Nicastro, F.; Stella, L.

    2009-05-01

    We use high resolution spectroscopic observations of the afterglow of GRB050922C, in order to investigate the environment of gamma ray bursts (GRBs) and the interstellar matter of their host galaxies. We found that, as for most high resolution spectra of GRBs, the spectrum of the afterglow of GRB050922C is complex. The detection of lines of neutral elements like MgI and the detection of fine-structure levels of the ions FeII, SiII and CII allows us to separate components in the GRB ISM along the line of sight. GRB afterglow spectra can be used to disentangle the contribution of the different parts of the GRB host galaxy and to study their properties.

  16. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  17. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3 μm Region: Role of Periphery

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-11-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.

  18. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  19. Crystal structure of silica-ZSM-12 by the combined use of high-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction

    SciTech Connect

    Fyfe, C.A.; Kokotailo, G.T. ); Gies, H.; Marler, B. ); Cox, D.E. )

    1990-05-03

    The crystal structure of the synthetic zeolite silica-ZSM-12, 56 SiO{sub 2}, has been solved by the combined use of high-resolution solid-state MAS NMR spectroscopy and high-resolution synchrotron X-ray powder diffraction ZSM-12 crystallizes in the monoclinic space group C2/c with a{sub 0} = 24.863 {angstrom}, b{sub 0} = 5.012 {angstrom}, c{sub 0} = 24.328 {angstrom}, and {beta} = 107.7{degree}. The zeolite host structure is built from corner-linked SiO{sub 4} tetrahedra to give a three-dimensional 4-connected net. The pores of the structure are one-dimensional channels that do not intersect, with 12-membered ring pore openings of approximately 5.6 {times} 7.7 {angstrom}. The structure of ZSM-12 is frequently twinned with (100) as the twin plane, which indicates a new zeolite structure type.

  20. Defects in a mixed-habit Yakutian diamond: Studies by optical and cathodoluminescence microscopy, infrared absorption, Raman scattering and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lang, A. R.; Bulanova, G. P.; Fisher, D.; Furkert, S.; Sarua, A.

    2007-12-01

    Widespread occurrences in the crystallisation history of natural diamonds are epochs of mixed-habit growth in which normal {1 1 1}-faceted growth is accompanied by non-faceted growth on curved surfaces of mean orientation ˜{1 0 0}, termed 'cuboid'. This paper analyses mixed-habit-related phenomena in a near-central, (1 1 0)-polished slice of an octahedron from the Mir pipe, previously studied principally by SIMS probes analysing N impurity content and C and N isotope composition. In the present work, newly studied features include dislocation content, fine structure in cathodoluminescence (CL) patterns, refined IR absorption data, Raman and photoluminescence (PL) microspectroscopy and microscopy of internal non-diamond bodies. Topographic imaging and spectroscopic techniques traced the specimen's morphological evolution from a cubo-octahedral core containing complex relative development of {1 1 1} and cuboid sectors, both populated by graphite crystallites, diameters up to ˜5 μm, lying on all diamond host {1 1 1}. Coherently overgrowing the core was a zone of widely but smoothly varying relative development of {1 1 1} and cuboid sectors, both on birefringence evidence dislocation-free, emitting strongly from cuboid sectors the PL spectra associated with Ni-N-vacancy complexes. An enclosing octahedral shell of solely {1 1 1} lamellae terminated mixed-habit growth. High-resolution FTIR absorption measurements of I( B'), the integrated absorption due to {1 0 0}-platelet defects, showed from its absence or weakness that total or substantial platelet degradation had taken place in the mixed-habit zones, indicating that these had undergone conditions close to the diamond-graphite phase boundary in their history.

  1. High-resolution synchrotron infrared spectroscopy of acrolein: The vibrational levels between 700 and 820 cm-1

    NASA Astrophysics Data System (ADS)

    McKellar, A. R. W.; Billinghurst, B. E.

    2015-09-01

    The weak combination bands ν12 + ν18 and ν17 + ν18 of trans-acrolein in the 700-760 cm-1 region are observed at high resolution (<0.001 cm-1) using spectra obtained at the Canadian Light Source synchrotron radiation facility. A detailed rotational analysis of the 121181 and 171181 upper states is made which includes the nearby perturbing states 185, 132181, and 131183. Taking the results of this 5-state fit, together with earlier results on lower lying vibrations, we now have experimental characterization for all 15 excited vibrational states of acrolein lying below 820 cm-1.

  2. High-resolution FTIR spectroscopy of the ν8 and Coriolis perturbation allowed ν12 bands of ketenimine.

    PubMed

    Bane, Michael K; Thompson, Christopher D; Robertson, Evan G; Appadoo, Dominique R T; McNaughton, Don

    2011-04-21

    High resolution FTIR spectra have been recorded in the region 250-770 cm(-1) using synchrotron radiation and over 2000 transitions to the ν(8) and ν(12) states of the short lived species ketenimine have been assigned. Ground state combination differences combined with published microwave transitions were used to refine the constants for the ground vibrational state. Rotational and centrifugal distortion parameters for the v(8) = 1 and v(12) = 1 levels were determined by co-fitting transitions, and treating a strong a-axis Coriolis interaction. Selection rules for the observed ν(12) transitions indicate that they arise solely from "perturbation allowed" intensity resulting from this Coriolis interaction.

  3. Probing the complex environments of GRB host galaxies and intervening systems: high resolution spectroscopy of GRB050922C

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Ward, P. A.; Fiore, F.; Vergani, S. D.; D'Elia, V.; Krongold, Y.; Nicastro, F.; Meurs, E. J. A.; Chincarini, G.; Covino, S.; Della Valle, M.; Fugazza, D.; Norci, L.; Sbordone, L.; Stella, L.; Tagliaferri, G.; Burrows, D. N.; Gehrels, N.; Goldoni, P.; Malesani, D.; Mirabel, I. F.; Pellizza, L. J.; Perna, R.

    2008-12-01

    Aims: The aim of this paper is to investigate the environment of gamma ray bursts (GRBs) and the interstellar matter of their host galaxies. Methods: To this purpose we use high resolution spectroscopic observations of the afterglow of GRB050922C, obtained with UVES/VLT ~ 3.5 h after the GRB event. Results: We found that, as for most high resolution spectra of GRBs, the spectrum of the afterglow of GRB050922C is complex. At least seven components contribute to the main absorption system at z=2.1992. The detection of lines of neutral elements like MgI and the detection of fine-structure levels of the ions FeII, SiII and CII allows us to separate components in the GRB ISM along the line of sight. Moreover, in addition to the main system, we analyzed the five intervening systems between z = 2.077 and z = 1.5664 identified along the GRB line of sight. Conclusions: GRB afterglow spectra are very complex, but full of information. This can be used to disentangle the contribution of the different parts of the GRB host galaxy and to study their properties. Our metallicity estimates agree with the scenario of GRBs exploding in low metallicity galaxies Based on observations collected at the European Southern Observatory (ESO) with the VLT/Kueyen telescope, Paranal, Chile, in the framework of program 075.A-0603.

  4. High-resolution X-Ray Spectroscopy Reveals the Special Nature of Wolf-Rayet Star Winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Gayley, K. G.; Hamann, W.-R.; Huenemoerder, D. P.; Ignace, R.; Pollock, A. M. T.

    2012-03-01

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at ≈6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  5. High-Resolution Laser Spectroscopy of the S1 ← S0 Transition of Cl-NAPHTHALENES

    NASA Astrophysics Data System (ADS)

    Kasahara, Shunji; Yamamoto, Ryo

    2015-06-01

    High-resolution fluorescence excitation spectra of the S1 ← S0 electronic transition have been observed for 1-Cl naphthalene (1-ClN) and 2-Cl naphthalene (2-ClN). Sub-Doppler excitation spectra were measured by crossing a single-mode UV laser beam perpendicular to a collimated molecular beam. The absolute wavenumber was calibrated with accuracy 0.0002 cm-1 by measurement of the Doppler-free saturation spectrum of iodine molecule and fringe pattern of the stabilized etalon. For 2-ClN, the rotationally resolved high-resolution spectra were obtained for the 0^0_0 and 0^0_0+1042 cm-1 bands, and these molecular constants were determined in high accuracy. The obtained molecular constants of the 0^0_0 band are good agreement with the ones reported by Plusquellic et. al. For the 0^0_0+1042 cm-1 band, the local energy shifts were found. On the other hand, for 1-ClN, the rotational lines were not fully resolved because the fluorescence lifetime is shorter than the one of 2-ClN. Then we determined the molecular constants of 1-ClN from the comparison the observed spectrum with calculated one. D. F. Plusquellic, S. R. Davis, and F. Jahanmir, J. Chem. Phys., 115, 225 (2001).

  6. Characterization of GaN-based metal-semiconductor field-effect transistors by comparing electroluminescence, photoionization, and cathodoluminescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Armani, N.; Grillo, V.; Salviati, G.; Manfredi, M.; Pavesi, M.; Chini, A.; Meneghesso, G.; Zanoni, E.

    2002-09-01

    We report on a methodological comparison between photocurrent (PC), electroluminescence (EL), and cathodoluminescence (CL) investigations on GaN metal-semiconductor field-effect transistors. The purpose of this work is to show the effectiveness and the complementarity of these experimental techniques and to investigate the presence and nature of electron traps which limit the performances of the devices. PC measurements reveal four distinct energy levels, located at 1.75, 2.32, 2.67, and 3.15 eV, responsible for current collapse. The 1.75 eV level has also been observed in low temperature EL curves. The 2.32 and 2.67 eV levels, on the basis of the comparison with CL and EL results, can be correlated with the so-called "yellow band," located at 2.2 eV. The origin of 1.75 and 3.15 eV levels is at present unknown, however a nonradiative nature has been attributed to the 3.15 eV level, due to the absence of this signature in both CL and EL spectra. The luminescence measurements also reveal the presence of the donor-acceptor pair emission at 3.27 eV and the near-band-edge transition at 3.45 eV. EL measurements show a series of emission peaks in the energy range between 1 and 1.4 eV, while the CL spectra reveal a broadband at 2.8 eV, which arises mainly from the semi-insulating layer. This result has been obtained by increasing the energy of the CL electron beam, allowing us to investigate both the conduction channel and the layers underneath it.

  7. High Resolution UV Spectroscopy of H2 and N2 Applied to Observations of the Planets by Spacecraft

    NASA Technical Reports Server (NTRS)

    Ajello, J.; Shemansky, D.; Kanik, I.; James, G.; Liu, X.; Ahmed, S.; Ciocca, M.

    1996-01-01

    The next generation of high resolution UV imaging spacecraft are being prepared for studying the airglow and aurora of the Earth, the other terrestrial planets and the Jovian planets. To keep pace with these technological improvements we have developed a laboratory program to provide electron impact collision cross sections of the major molecular planetary gases (H2, N2, CO2, O2, and CO). Spectra under optically thin conditions have been measured with a high resolution (lambda/delta(lambda) = 50000) UV spectrometer in tandem with electron impact collision chamber. High resolution spectra of the Lyman and Wemer band systems of H2 have been obtained and modeled. Synthetic spectral intensities based on the J-dependent transition probabilities that include ro-vibronic perturbations are in very good agreement with experimental intensities. The kinetic energy distribution of H(2p,3p) atoms resulting from electron impact dissociation of H2 has been measured. The distribution is based on the first measurement of the H Lyman-alpha (H L(alpha)) and H Lyman-beta (H L(beta)) emission line Doppler profiles. Electron impact dissociation of H2 is believed to be one of the major mechanisms leading to the observed wide profile of H L-alpha from Jupiter aurora by the Hubble Space Telescope (HST). Analysis of the deconvolved line profile of H L-alpha reveals the existence of a narrow line peak (40 mA FWHM) and a broad pedestal base (240 mA FWHM). The band strengths of the electron excited N2 (C(sup 3) Pi(sub(upsilon) - B(sup 3)Pi(sub g)) second positive system have been measured in the middle ultraviolet. We report a quantitative measurement of the predissociation fraction 0.15 +/- 01(sup .045, sub .01) at 300 K in the N2 c'(sub )4 (1)sigma(sup +, sub g) - x(1)sigma(sup +, sub g)(00) band, with an experimental determination of rotational line strengths to be used to understand N2 EUV emission from Titan, Triton and the Earth.

  8. Communication: Structural locking mediated by a water wire: A high-resolution rotational spectroscopy study on hydrated forms of a chiral biphenyl derivative

    NASA Astrophysics Data System (ADS)

    Domingos, Sérgio R.; Pérez, Cristóbal; Schnell, Melanie

    2016-10-01

    We report the observation of structural changes in an axially chiral molecule, biphenyl-2-carboxaldehyde, due to aggregation with water. Using high-resolution broadband rotational spectroscopy we find that two water molecules link opposite sides of the molecule, resembling a water wire. We show that this effect can be explained by a cooperative rearrangement of both molecule and a water dimer. Hydrogen bonding interactions are shown to change the original structure upon aggregation of water. This phenomenon is insightful on the role of microsolvation in assisting structural morphing of stereo-selective chiral molecular systems.

  9. Analysis of phase diagram and microstructural transitions in an ethyl oleate/water/Tween 80/Span 20 microemulsion system using high-resolution ultrasonic spectroscopy.

    PubMed

    Hickey, Sinead; Hagan, Sue A; Kudryashov, Evgeny; Buckin, Vitaly

    2010-03-30

    High-resolution ultrasonic spectroscopy was applied to analyse a pseudo-ternary phase diagram for a mixture consisting of water/ethyl oleate/Tween 80 and Span 20 at 25 degrees C. The measured changes in the ultrasonic velocity and attenuation with concentration of water in oil/surfactants mixtures showed several, well defined stages and transitions between them, which allowed construction of an 'ultrasonic' phase diagram. Quantitative analysis of the ultrasonic parameters enabled characterisation of various phases (microemulsion, liquid crystals and pseudo-bicontinuous) as well as evaluation of the state of the water and particle size in microemulsion phase.

  10. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    SciTech Connect

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-15

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm{sup −1} (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ∼0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  11. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  12. Extracting the redox orbitals in Li battery materials with high-resolution x-ray compton scattering spectroscopy.

    PubMed

    Suzuki, K; Barbiellini, B; Orikasa, Y; Go, N; Sakurai, H; Kaprzyk, S; Itou, M; Yamamoto, K; Uchimoto, Y; Wang, Yung Jui; Hafiz, H; Bansil, A; Sakurai, Y

    2015-02-27

    We present an incisive spectroscopic technique for directly probing redox orbitals based on bulk electron momentum density measurements via high-resolution x-ray Compton scattering. Application of our method to spinel Li_{x}Mn_{2}O_{4}, a lithium ion battery cathode material, is discussed. The orbital involved in the lithium insertion and extraction process is shown to mainly be the oxygen 2p orbital. Moreover, the manganese 3d states are shown to experience spatial delocalization involving 0.16±0.05 electrons per Mn site during the battery operation. Our analysis provides a clear understanding of the fundamental redox process involved in the working of a lithium ion battery.

  13. High-Resolution Infrared Spectroscopy of Carbon-Sulfur Chains: II. C_5S and SC_5S

    NASA Astrophysics Data System (ADS)

    Thorwirth, Sven; Salomon, Thomas; Dudek, John B.

    2016-06-01

    Unbiased high-resolution infrared survey scans of the ablation products from carbon-sulfur targets in the 2100 to 2150 cm-1 regime reveal two bands previously not observed in the gas phase. On the basis of comparison against laboratory matrix-isolation work and new high-level quantum-chemical calculations these bands are attributed to the linear C_5S and SC_5S clusters. While polar C_5S was studied earlier using Fourier-transform microwave techniques, the present work marks the first gas-phase spectroscopic detection of SC_5S. H. Wang, J. Szczepanski, P. Brucat, and M. Vala 2005, Int. J. Quant. Chem. 102, 795 Y. Kasai, K. Obi, Y. Ohshima, Y. Hirahara, Y. Endo, K. Kawaguchi, and A. Murakami 1993, ApJ 410, L45 V. D. Gordon, M. C. McCarthy, A. J. Apponi, and P. Thaddeus 2001, ApJS 134, 311

  14. High-Resolution Infrared Spectroscopy of Carbon-Sulfur Chains: I. C_3S and SC_7S

    NASA Astrophysics Data System (ADS)

    Dudek, John B.; Salomon, Thomas; Thorwirth, Sven

    2016-06-01

    In the course of a recent 5 μm high-resolution infrared study of laser ablation products from carbon-sulfur targets, we have reinvestigated the ν_1 vibrational mode of the linear C_3S molecule complementing significantly the pioneering data originally reported by Takano and coworkers. In addition, located within the R-branch of the C_3S vibrational mode, a weak new band is observed which exhibits very tight line spacing. On the basis of high-level quantum-chemical calculations, this feature is attributed to the linear SC_7S species, which stands for the first gas-phase spectroscopic detection of this heavy carbon-sulfur chain. S. Takano, J. Tang, and S. Saito 1996, J. Mol. Spectrosc. 178, 194

  15. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry.

    PubMed

    Wang, Shaopeng; Forzani, Erica S; Tao, Nongjian

    2007-06-15

    High-resolution differential surface plasmon resonance (SPR) with anodic stripping voltammetry (ASV) capability has been demonstrated for detecting heavy metal ions in water. Metal ions are electroplated onto the gold SPR sensing surface and are quantitatively detected by stripping voltammetry. Both the SPR angular shift and electrochemical current signal are recorded to identify the type and amount of the metal ions in water. The performance of the combined approach is further enhanced by a differential detection approach. The gold sensor surface is divided into a reference and a sensing area, and the difference in the SPR angles from the two areas is detected with a quadrant cell photodetector as a differential signal. Our system demonstrated quantitative detection of copper, lead, and mercury ions in water from part-per-million to sub-part-per-billion levels with good linearity.

  16. High resolution spectroscopy over lambda lambda 8500-8750 Å for GAIA. IV. Extending the cool MK stars sample

    NASA Astrophysics Data System (ADS)

    Marrese, P. M.; Boschi, F.; Munari, U.

    2003-08-01

    A library of high resolution spectra of MK standard and reference stars, observed in support to the GAIA mission, is presented. The aim of this paper is to integrate the MK mapping of Paper I of this series as well as to consider stars over a wider range of metallicities. Radial velocities are measured for all the target stars. The spectra are available in electronic form (ASCII format) at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/995 and from the web page http://ulisse.pd.astro.it/MoreMK/, where further bibliographical information for the target stars is given.

  17. High-resolution Fourier transform infrared synchrotron spectroscopy of the NO2 in-plane rock band of nitromethane

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Twagirayezu, Sylvestre; Perry, David S.; Billinghurst, Brant E.

    2015-09-01

    The high-resolution rotationally resolved Fourier-transform infrared spectrum of the NO2 in-plane rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. About 1773 transitions reaching the upper state levels m‧ = 0; Ka‧ ⩽ 7;J‧ ⩽ 50 have been assigned using an automated ground-state combination difference program together with the traditional Loomis-Wood approach. These data from the lowest torsional state, m‧ = 0, were fit using the six-fold torsion-rotation program developed by Ilyushin et al. (2010). The analysis reveals that the rotational energy level structure in the upper vibrational state is similar to that of the ground vibrational state, but the sign and magnitude of high-order constants are significantly changed suggesting the presence of multiple perturbations.

  18. High resolution spectroscopy of 102Ru(d, p) 103Ru and 104Ru(p, d) 103Ru reactions

    NASA Astrophysics Data System (ADS)

    Berg, G. P. A.; Demarteau, M.; Hardt, A.; Hürlimann, W.; Martin, S. A.; Meissburger, J.; Oelert, W.; Seyfarth, H.; Styczen, B.; Köhler, M.; Oelrich, I.; Scheerer, J.

    1982-04-01

    The high resolution magnetic spectrometer BIG KARL was used to investigate the low-lying states of 103Ru by 102Ru(d, p) and 104Ru(p,d) reactions at Ed = 45 MeV andEp = 29 MeV. The resolution of {ΔE}/{E} = (1.7-2.5) × 10 -4 was sufficient to separate most of the known states up to Ex = 1 MeV excitation energy. For these levels differential cross sections have been measured in the range of θ lab = 4°-43°. A DWBA analysis has been employed in order to determine orbital angular momenta and obtain spectroscopic factors. These were used to make a number of tentative spin and parity assignments. In addition several weakly excited states in 103Ru could be identified and excitation energies have been determined to about ±2 keV.

  19. High-resolution Fourier-transform infrared spectroscopy of the Coriolis coupled ground state and ν7 mode of ketenimine.

    PubMed

    Bane, Michael K; Robertson, Evan G; Thompson, Christopher D; Medcraft, Chris; Appadoo, Dominique R T; McNaughton, Don

    2011-06-21

    High resolution FTIR spectra of the short lived species ketenimine have been recorded in the regions 390-1300 cm(-1) and 20-110 cm(-1) using synchrotron radiation. Two thousand six hundred sixty transitions of the ν(7) band centered at 693 cm(-1) and 126 far-IR rotational transitions have been assigned. Rotational and centrifugal distortion parameters for the ν(7) mode were determined and local Fermi and b-axis Coriolis interactions with 2ν(12) are treated. A further refinement of the ground state, ν(12) and ν(8) parameters was also achieved, including the treatment of previously unrecognized ac-axis and ab-axis second order perturbations to the ground state.

  20. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    PubMed

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  1. Interface properties of Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure by cathodoluminescence spectroscopy

    SciTech Connect

    Baraban, A. P.; Dmitriev, V. A.; Drozd, V. E.; Prokofiev, V. A.; Filatova, E. O.; Samarin, S. N.

    2016-02-07

    We studied formation of the SiO{sub 2}-T{sub 2}O{sub 5} interface in the Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure using Cathodoluminescence Spectroscopy (CLS). Analyzing the evolution of CLS spectrum of the Si-SiO{sub 2} structure while depositing the Ta{sub 2}O{sub 5} layer allowed to estimate an optical transmittance of the Ta{sub 2}O{sub 5} layer and its band gap. Spectral features related to the formation of the SiO{sub 2}-Ta{sub 2}O{sub 5} interface were identified by comparison of the experimental CL spectrum of the Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure and its simulated counterpart. This formation involves a decomposition of silanol groups at the outer surface of the SO{sub 2} layer and creation of the Si{sub x}Ta{sub y}O-type layer containing luminescence centers with the emission band centered at 3 eV photon energy.

  2. High resolution, low h{nu} photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters

    SciTech Connect

    Suga, S.; Sekiyama, A.; Funabashi, G.; Yamaguchi, J.; Kimura, M.; Tsujibayashi, M.; Uyama, T.; Sugiyama, H.; Tomida, Y.; Kuwahara, G.; Kitayama, S.; Fukushima, K.; Kimura, K.; Yokoi, T.; Murakami, K.; Fujiwara, H.; Saitoh, Y.; Plucinski, L.; Schneider, C. M.

    2010-10-15

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF{sub 2}, and LiF), which can supply three strong lines near the photon energy of hnyu h{nu}=8.4, 10.0, and 11.6 eV, with the h{nu} resolution of better than 600 {mu}eV for photoelectron spectroscopy. Its performance is demonstrated on some materials by means of both angle-integrated and angle-resolved measurements.

  3. High Resolution Near-Infrared Spectroscopy of Comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Ogawa, Sayuri; Kobayashi, Hitomi; Kondo, Sohei; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Hamano, Satoshi; Yasui, Chikako; Mito, Hiroyuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2014-11-01

    High resolution near-infrared spectroscopic observations of comet C/2013 R1 (Lovejoy) using the WINERED ( 3x10^4) spectrometer on the 1.3-m Araki telescope at Koyama Astronomical Observatory were carried out on UT 2013 November 30. The comet was at 0.91 AU from the Sun and 0.49 AU from the Earth at the observations. This comet was considered to originate in the Oort cloud and became bright in visible from October to December 2013. The newly developed instrument, WINERED, was a cross-dispersed Echelle spectrometer that can cover the wavelength range from 0.9 to 1.3 microns simultaneously. Many emission lines were recorded in the high signal-to-noise ratio spectra of comet Lovejoy. We report the line assignment of the detected emission lines and present our preliminary analysis for CN Red-band system.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018.

  4. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    NASA Astrophysics Data System (ADS)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  5. High Resolution X-Ray Spectroscopy of zeta Puppis with the XMM-Newton Reflection Grating Spectrometer

    NASA Technical Reports Server (NTRS)

    Kahn, S. M.; Leutenegger, M. A.; Cottam, J.; Rauw, G.; Vreux, J.-M.; denBoggende, A. J. F.; Mewe, R.; Guedel, M.

    2000-01-01

    We present the first high resolution X-ray spectrum of the bright O4Ief supergiant star Puppis, obtained with the Reflection Grating Spectrometer on- board XMM-Newton. The spectrum exhibits bright emission lines of hydrogen-like and helium-like ions of nitrogen, oxygen, neon, magnesium, and silicon, as well as neon-like ions of iron. The lines are all significantly resolved, with characteristic velocity widths of order 1000 - 1500 km/ s. The nitrogen lines are especially strong, and indicate that the shocked gas in the wind is mixed with CNO-burned material, as has been previously inferred for the atmosphere of this star from ultraviolet spectra. We find that the forbidden to intercombination line ratios within the helium-like triplets are anomalously low for N VI, O VII, and Ne IX. While this is sometimes indicative of high electron density, we show that in this case, it is instead caused by the intense ultraviolet radiation field of the star. We use this interpretation to derive constraints on the location of the X-ray emitting shocks within the wind that agree remarkably well with current theoretical models for this system.

  6. HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS IN THE LEAST EVOLVED GALAXIES: BOÖTES II

    SciTech Connect

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Geha, Marla

    2016-01-20

    We present high-resolution Magellan/MIKE spectra of the four brightest confirmed red giant stars in the ultra-faint dwarf galaxy Boötes II (Boo II). These stars all inhabit the metal-poor tail of the Boo II metallicity distribution function. The chemical abundance pattern of all detectable elements in these stars is consistent with that of the Galactic halo. However, all four stars have undetectable amounts of neutron-capture elements Sr and Ba, with upper limits comparable to the lowest ever detected in the halo or in other dwarf galaxies. One star exhibits significant radial velocity variations over time, suggesting it to be in a binary system. Its variable velocity has likely increased past determinations of the Boo II velocity dispersion. Our four stars span a limited metallicity range, but their enhanced α-abundances and low neutron-capture abundances are consistent with the interpretation that Boo II has been enriched by very few generations of stars. The chemical abundance pattern in Boo II confirms the emerging trend that the faintest dwarf galaxies have neutron-capture abundances distinct from the halo, suggesting the dominant source of neutron-capture elements in halo stars may be different than in ultra-faint dwarfs.

  7. Combination of high-resolution magic angle spinning proton magnetic resonance spectroscopy and microscale genomics to type brain tumor biopsies.

    PubMed

    Tzika, A Aria; Astrakas, Loukas; Cao, Haihui; Mintzopoulos, Dionyssios; Andronesi, Ovidiu C; Mindrinos, Michael; Zhang, Jiangwen; Rahme, Laurence G; Blekas, Konstantinos D; Likas, Aristidis C; Galatsanos, Nikolas P; Carroll, Rona S; Black, Peter M

    2007-08-01

    Advancements in the diagnosis and prognosis of brain tumor patients, and thus in their survival and quality of life, can be achieved using biomarkers that facilitate improved tumor typing. We introduce and implement a combinatorial metabolic and molecular approach that applies state-of-the-art, high-resolution magic angle spinning (HRMAS) proton (1H) MRS and gene transcriptome profiling to intact brain tumor biopsies, to identify unique biomarker profiles of brain tumors. Our results show that samples as small as 2 mg can be successfully processed, the HRMAS 1H MRS procedure does not result in mRNA degradation, and minute mRNA amounts yield high-quality genomic data. The MRS and genomic analyses demonstrate that CNS tumors have altered levels of specific 1H MRS metabolites that directly correspond to altered expression of Kennedy pathway genes; and exhibit rapid phospholipid turnover, which coincides with upregulation of cell proliferation genes. The data also suggest Sonic Hedgehog pathway (SHH) dysregulation may play a role in anaplastic ganglioglioma pathogenesis. That a strong correlation is seen between the HRMAS 1H MRS and genomic data cross-validates and further demonstrates the biological relevance of the MRS results. Our combined metabolic/molecular MRS/genomic approach provides insights into the biology of anaplastic ganglioglioma and a new potential tumor typing methodology that could aid neurologists and neurosurgeons to improve the diagnosis, treatment, and ongoing evaluation of brain tumor patients.

  8. IR Band profiling of dichlorodifluoromethane in the greenhouse window: high-resolution FTIR spectroscopy of ν2 and ν8.

    PubMed

    Evans, Corey J; Sinik, Atilla; Medcraft, Chris; McNaughton, Don; Appadoo, Dominique; Robertson, Evan G

    2014-04-03

    The IR spectrum of dichlorodifluoromethane (i.e., R12 or Freon-12) is central to its role as a major greenhouse contributor. In this study, high-resolution (0.000 96 cm(-1)) Fourier transform infrared spectra have been measured for R12 samples either cooled to around 150 K or at ambient temperature using facilities on the infrared beamline of the Australian Synchrotron. Over 14,000 lines of C(35)Cl2F2 and C(35)Cl(37)ClF2 were assigned to the b-type ν2 band centered around 668 cm(-1). For the c-type ν8 band at 1161 cm(-1), over 10,000 lines were assigned to the two isotopologues. Rovibrational fits resulted in upper state constants for all these band systems. Localized avoided crossings in the ν8 system of C(35)Cl2F2, resulting from both a direct b-axis Coriolis interaction with ν3 + ν4 + ν7 and an indirect interaction with ν3 + ν4 + ν9, were treated. An improved set of ground state constants for C(35)Cl(37)ClF2 was obtained by a combined fit of IR ground state combination differences and previously published millimeter wave lines. Together these new sets of constants allow for accurate prediction of these bands and direct comparison with satellite data to enable accurate quantification.

  9. HIGH-RESOLUTION MID-INFRARED SPECTROSCOPY OF NGC 7538 IRS 1: PROBING CHEMISTRY IN A MASSIVE YOUNG STELLAR OBJECT

    SciTech Connect

    Knez, Claudia; Lacy, John H.; Evans, Neal J.; Van Dishoeck, Ewine F.; Richter, Matthew J.

    2009-05-01

    We present high-resolution (R = 75,000-100,000) mid-infrared spectra of the high-mass embedded young star IRS 1 in the NGC 7538 star-forming region. Absorption lines from many rotational states of C{sub 2}H{sub 2}, {sup 13}C{sup 12}CH{sub 2}, CH{sub 3}, CH{sub 4}, NH{sub 3}, HCN, HNCO, and CS are seen. The gas temperature, column density, covering factor, line width, and Doppler shift for each molecule are derived. All molecules were fit with two velocity components between -54 and -63 km s{sup -1}. We find high column densities ({approx}10{sup 16} cm{sup -2}) for all the observed molecules compared to values previously reported and present new results for CH{sub 3} and HNCO. Several physical and chemical models are considered. The favored model involves a nearly edge-on disk around a massive star. Radiation from dust in the inner disk passes through the disk atmosphere, where large molecular column densities can produce the observed absorption line spectrum.

  10. Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi.

    PubMed

    Arndt, Birgit; Studt, Lena; Wiemann, Philipp; Osmanov, Helena; Kleigrewe, Karin; Köhler, Jens; Krug, Isabel; Tudzynski, Bettina; Humpf, Hans-Ulrich

    2015-11-01

    Secondary metabolites of filamentous fungi can be highly bioactive, ranging from antibiotic to cancerogenic properties. In this study we were able to identify a new, yet unknown metabolite produced by Fusarium fujikuroi, an ascomycetous rice pathogen. With the help of genomic engineering and high-performance liquid chromatography (HPLC) coupled to high resolution mass spectrometry (HRMS) followed by isolation and detailed structure elucidation, the new substance could be designated as an unknown bikaverin precursor, missing two methyl- and one hydroxy group, hence named oxo-pre-bikaverin. Though the bikaverin gene cluster has been extensively studied in the past, elucidation of the biosynthetic pathway remained elusive due to a negative feedback loop that regulates the genes within the cluster. To decipher the bikaverin biosynthetic pathway and to overcome these negative regulation circuits, the structural cluster genes BIK2 and BIK3 were overexpressed independently in the ΔΔBIK2/BIK3+OE::BIK1 mutant background by using strong constitutive promoters. Using the software tool MZmine 2, the metabolite profile of the generated mutants obtained by HPLC-HRMS was compared, revealing further intermediates.

  11. Simultaneous intensive photometry and high resolution spectroscopy of δ Scuti stars. II. X Caeli: a star with unusual spectral features.

    NASA Astrophysics Data System (ADS)

    Mantegazza, L.; Poretti, E.

    1996-08-01

    Simultaneous photometric B, V (14 consecutive nights; 100 hours of observations) and high resolution spectroscopic observations (4 consecutive nights; 27 hours) were performed on the δ Scuti star X Caeli at La Silla Observatory in 1992. The photometric data allow the detection of 14 pulsation terms, some of which coincide in frequency with the second harmonics or the non-linear coupling terms of the lower frequency components. Possible excitation by resonance is suggested. The comparison with our previous observations of 1989 shows that while the amplitude of the strongest term (ν=7.39c/d) is very stable, a few other terms have changed their amplitudes. From the study of line profiles and their variations we derive vsin i=70km/s, 65deg<=i<=90deg, and that the dominant photometric term is a prograde mode with m=-1 and l=1 or 2. The other terms are probably non radial p modes with l=2+/-1. There is no evidence of the presence of high-degree sectorial modes with l=|m|. The stellar spectral lines have a narrow absorption core which could be due to the presence of a circumstellar shell.

  12. The XMM-Newton View of Stellar Coronae: High-Resolution X-Ray Spectroscopy of Capella

    NASA Technical Reports Server (NTRS)

    Audard, M.; Behar, E.; Guedel, M.; Raassen, A. J. J.; Porquet, D.; Mewe, R.; Foley, C. A.; Bromage, G. E.

    2000-01-01

    We present the high-resolution RGS spectrum of the bright stellar binary Capella observed by the XMM-Newton satellite. A multi-thermal approach has been applied to fit the data and derive elemental abundances. The differential emission measure distribution is reconstructed using a Chebychev polynomial fit. The DEM shape is found to display a sharp peak around 7 MK, consistent with previous EUVE and ASCA results. A small but significant amount of emission measure is required around 1.8 MK in order to explain the O VII He-like triplet and the C VI Ly(alpha) line. Using the sensitivity to temperature of dielectronic recombination lines from O VI around 22 A, we confirm that the cool plasma temperature needs to be higher than 1.2 MK. In the approximation of a cool plasma described by one temperature, we used line ratios from the forbidden, intercombination, and resonance lines of the O VII triplet and derived an average density for the cool coronal plasma at the low density limit. A tentative study of line ratios from the M XI triplet gives an average temperature close to the sharp peak in emission measure and an average density of the order of 10(exp 12)cu cm, three orders of magnitude higher than for O VII. Implications for the coronal physics of Capella are discussed. We complement this paper with a discussion of the importance of the atomic code uncertainties on the spectral fitting procedure.

  13. HIGH-RESOLUTION OPTICAL SPECTROSCOPY OF DY Cen: DIFFUSE INTERSTELLAR BANDS IN A PROTO-FULLERENE CIRCUMSTELLAR ENVIRONMENT?

    SciTech Connect

    Garcia-Hernandez, D. A.; Lambert, David L. E-mail: nkrao@iiap.res.in

    2012-11-01

    We search high-resolution and high-quality VLT/UVES optical spectra of the hot R Coronae Borealis star DY Cen for electronic transitions of the C{sub 60} molecule and diffuse interstellar bands (DIBs). We report the non-detection of the strongest C{sub 60} electronic transitions (e.g., those at {approx}3760, 3980, and 4024 A). The absence of C{sub 60} absorption bands may support recent laboratory results, which show that the {approx}7.0, 8.5, 17.4, and 18.8 {mu}m emission features seen in DY Cen-and other similar objects with polycyclic-aromatic-hydrocarbon-like dominated IR spectra-are attributable to proto-fullerenes or fullerene precursors rather than to C{sub 60}. DIBs toward DY Cen are normal for its reddening; the only exception is the DIB at 6284 A (possibly also the 7223 A DIB) which is found to be unusually strong. We also report the detection of a new broad (FWHM {approx} 2 A) and unidentified feature centered at {approx}4000 A. We suggest that this new band may be related to the circumstellar proto-fullerenes seen at infrared wavelengths.

  14. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2014-03-01

    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  15. High Resolution Fabry-Perot Spectroscopy Of Comet Fragments 73P/ Schwassmann-Wachmann 3-B,C

    NASA Astrophysics Data System (ADS)

    Oliversen, Ronald J.; Mierkiewicz, E. J.; Morgenthaler, J. P.; Harris, W. M.; Kokorowski, M.; Kidder, A.; Schnackenberg, T.; Carpena Nunez, J.; Hall, T.; Haffner, L.

    2006-09-01

    In May 2006, comet 73P/Schwassmann-Wachmann 3 (SW3) made a spectacular close approach to the Earth. During its 1995 apparition, the comet fragmented into several pieces. One of the brighter components, SW3-B, fragmented into dozens of pieces during the 2006 apparition while another bright fragment, SW3-C did not. Understanding the difference between these two fragments will contribute significantly to our understanding of cometary interiors. We performed observations of SW3-B and SW3-C from Kitt Peak using the Fabry-Perot spectrometers at the McMath-Pierce (MMP) telescope from April 29 - May 10 and at the Wisconsin Hydrogen Alpha Mapper (WHαM) from May 1 - 6, 2006. This period is significant due to its proximity to perigee, overlap with complementary observations, and coincidence with the onset and decline-phase of a major outburst/fragmentation event from SW3-B. The MMP and WHAM Fabry-Perot spectrometers made high resolution measurements of [O I] and NH2 emissions near 6300 Å at δV = 5 km/s and 12 km/s with 4.5 arcmin and 1 degree fields of view, respectively. Many of the spectra separate the cometary and terrestrial [O I] lines and allow determination of water production rates. We report the preliminary analysis of these data, including discussion of the radial distribution of emissions, a comparison activity levels between the two fragments, and a comparison with complementary production rate measurements made over the same period. In addition, following the SW3-B May 9 outburst, H20+ measurements near 6200 Å were made to map the acceleration of water ions near the head and down the tail.

  16. Kinematic Masses of Super-Star Clusters in M82 from High-Resolution Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Gilbert, Andrea M.; Graham, James R.

    2003-10-01

    Using high-resolution (R~22,000) near-infrared (1.51-1.75 μm) spectra from Keck Observatory, we measure the kinematic masses of two super-star clusters in M82. Cross-correlation of the spectra with template spectra of cool evolved stars gives stellar velocity dispersions of σr=15.9+/-0.8 km s-1 for J0955505+694045 (MGG-9) and σr=11.4+/-0.8 km s-1 for J0955502+694045 (MGG-11). The cluster spectra are dominated by the light of red supergiants and correlate most closely with template supergiants of spectral types M0 and M4.5. King model fits to the observed profiles of the clusters in archival Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectometer images give half-light radii of rhp=2.6+/-0.4 pc for MGG-9 and rhp=1.2+/-0.17 pc for MGG-11. Applying the virial theorem, we determine masses of 1.5+/-0.3×106 Msolar for MGG-9 and 3.5+/-0.7×105 Msolar for MGG-11 (where the quoted errors include σr, rhp, and the distance). Population synthesis modeling suggests that MGG-9 is consistent with a standard initial mass function (IMF), whereas MGG-11 appears to be deficient in low-mass stars relative to a standard IMF. There is, however, evidence of mass segregation in the clusters, in which case the virial mass estimates would represent lower limits. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry

    PubMed Central

    Glatzel, Pieter; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Cinco, Roehl; Visser, Henk; McFarlane, Karen; Bellacchio, Emanuele; Pizarro, Shelly; Sauer, Kenneth; Yachandra, Vittal K.; Klein, Melvin P.; Cox, Billie L.; Nealson, Kenneth H.; Cramer, Stephen P.

    2014-01-01

    The combination of large-acceptance high-resolution X-ray optics with bright synchrotron sources permits quantitative analysis of rare events such as X-ray fluorescence from very dilute systems, weak fluorescence transitions or X-ray Raman scattering. Transition-metal Kβ fluorescence contains information about spin and oxidation state; examples of the characterization of the Mn oxidation states in the oxygen-evolving complex of photosystem II and Mn-consuming spores from the marine bacillus SG-1 are presented. Weaker features of the Kβ spectrum resulting from valence-level and ‘interatomic’ ligand to metal transitions contain detailed information on the ligand-atom type, distance and orientation. Applications of this spectral region to characterize the local structure of model compounds are presented. X-ray Raman scattering (XRS) is an extremely rare event, but also represents a unique technique to obtain bulk-sensitive low-energy (<600 eV) X-ray absorption fine structure (XAFS) spectra using hard (~10 keV) X-rays. A photon is inelastically scattered, losing part of its energy to promote an electron into an unoccupied level. In many cases, the cross section is proportional to that of the corresponding absorption process yielding the same X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) features. XRS finds application for systems that defy XAFS analysis at low energies, e.g. liquids or highly concentrated complex systems, reactive compounds and samples under extreme conditions (pressure, temperature). Recent results are discussed. PMID:11512725

  18. High-resolution optical spectroscopy of the yellow hypergiant V1302 Aql (=IRC+10420) in 2001-2014

    NASA Astrophysics Data System (ADS)

    Klochkova, V. G.; Chentsov, E. L.; Miroshnichenko, A. S.; Panchuk, V. E.; Yushkin, M. V.

    2016-07-01

    We present the results of a study of spectral features and the velocity field in the atmosphere and circumstellar envelope of the yellow hypergiant V1302 Aql, the optical counterpart of the IR source IRC+10420, based on high-resolution optical spectroscopic observations in 2001-2014. We measured heliocentric radial velocities of the following types of lines: forbidden and permitted pure emission, absorption and emission components of lines of ions, pure absorption (e.g. He I, Si II) and interstellar components of the Na I D lines, K I and diffuse interstellar bands (DIBs). Pure absorption and forbidden and permitted pure emission, which have heliocentric radial velocities Vr = 63.7 ± 0.3, 65.2 ± 0.3 and 62.0 ± 0.4 km s-1, respectively, are slightly redshifted relative to the systemic radial velocity (Vsys ˜ 60 km s-1). The positions of the absorption components of the lines with inverse P Cyg profiles are redshifted by ˜20 km s-1, suggesting that clumps falling on to the star have been stable over all observing dates. The average heliocentric radial velocity of the DIBs is Vr(DIB) = 4.6 ± 0.2 km s-1. A Hα line profile with the red peak slightly stronger than the blue one was observed only once, on 2007 November 24. Comparison of pure absorption lines observed in 2001-2014 with those in earlier data does not show noticeable variations. The kinematic picture in the atmosphere was stable for observations during 2001-2014. Our results as a whole let us conclude that the hypergiant has reached a phase of slowing down (or termination) of effective temperature growth and is currently located near the high-temperature boundary of the Yellow Void in the Hertszprung-Russell diagram.

  19. K-shell excitation of the water, ammonia, and methane molecules using high-resolution photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Schirmer, J.; Trofimov, A. B.; Randall, K. J.; Feldhaus, J.; Bradshaw, A. M.; Ma, Y.; Chen, C. T.; Sette, F.

    1993-02-01

    The K-shell excitation spectra of the hydrides water, ammonia, and methane have been measured in photoabsorption experiments using synchrotron radiation in combination with a high-resolution monochromator. For the case of methane, in particular, a wealth of spectral detail is observed which was not accessible in previous studies. The measured excitation energies and relative intensities compare well with values calculated using a complete second-order approximation for the polarization propagator. In order to determine the extent of admixing of valence excitations (i.e., transitions into virtual σ* orbitals) to the Rydberg manifolds, the X-H bond lengths have been varied in the calculations. In the case of H2O, the two lowest-energy bands are due to the O 1s-4a1/3s and O 1s-2b2/3p transitions and have strong valence character; their width indicates that both excitations are dissociative. The NH3 and ND3 spectra are also broad which is not only due to possible dissociation but also to unresolved vibrational fine structure (ν2 mode) and a Jahn-Teller instability. Valence character is concentrated in the lowest excited state in the Rydberg ns manifold, but is distributed more uniformly over the np(e) manifold. The weak dipole-forbidden C 1s-3s(a1) transition in CH4 and CD4 is accompanied by vibrational structure due to the ν4 mode, indicating that it derives its intensity from vibronic coupling with the C 1s-3p(t2) transition. The structure on the latter band is extremely complicated due to Jahn-Teller coupling and cannot be assigned at present, as is the case for the Rydberg transitions at higher energies. The higher np Rydberg excitations contain considerable valence character.

  20. High-resolution spectroscopy using synchrotron radiation for surface structure determination and the study of correlated electron systems

    SciTech Connect

    Moler, Jr., Edward John

    1996-05-01

    The surface structure of three molecular adsorbate systems on transition metal surfaces, (√3 x √3)R30° and (1.5 x 1.5)R18° CO adsorbed on Cu(111), and c(2x2) N2/Ni(100), have been determined using Angle-Resolved Photoemission Extended Fine Structure (ARPEFS). The adsorption site and bond lengths are reported for the adsorbate-metal bond and the first two substrate layers. The ARPEFS diffraction pattern of the shake-up peak for c(2x2) N2/Ni(100) is also discussed. A unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level satellites is presented. We show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. Specifically, we present data for the C 1s from (√3x√3)R30 CO/Cu(111) and p2mg(2x1)CO/Ni(110), N is from c(2x2) N2/Ni(100), and Ni 3p from clean nickel(111). The satellite peaks in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature. A Fourier Transform Soft X-ray spectrometer (FF-SX) has been designed and is under construction for the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The spectrometer is designed for ultra-high resolution theoretical resolving power E/ΔE≈-106 in the photon energy region of 60-120 eV. This instrument is expected to provide experimental results which sensitively test models of correlated electron processes in atomic and molecular physics. The design criteria and consequent technical challenges posed by the short wavelengths of x-rays and desired resolving power are discussed. The fundamental and practical aspects of soft x-ray interferometry are also explored.

  1. High-resolution spectroscopy of RGB stars in the Sagittarius streams. I. Radial velocities and chemical abundances

    NASA Astrophysics Data System (ADS)

    Monaco, L.; Bellazzini, M.; Bonifacio, P.; Buzzoni, A.; Ferraro, F. R.; Marconi, G.; Sbordone, L.; Zaggia, S.

    2007-03-01

    Context: The Sagittarius (Sgr) dwarf spheroidal galaxy is currently being disrupted under the strain of the Milky Way. A reliable reconstruction of Sgr star formation history can only be obtained by combining core and stream information. Aims: We present radial velocities for 67 stars belonging to the Sgr Stream. For 12 stars in the sample we also present iron (Fe) and α-element (Mg, Ca) abundances. Methods: Spectra were secured using different high resolution facilities: UVES@VLT, HARPS@3.6 m, and SARG@TNG. Radial velocities are obtained through cross correlation with a template spectra. Concerning chemical analysis, for the various elements, selected line equivalent widths were measured and abundances computed using the WIDTH code and ATLAS model atmospheres. Results: The velocity dispersion of the trailing tail is found to be σ = 8.3 ± 0.9 km s-1, i.e., significantly lower than in the core of the Sgr galaxy and marginally lower than previous estimates in the same portion of the stream. Stream stars follow the same trend as Sgr main body stars in the [ α/Fe] vs. [Fe/H] plane. However, stars are, on average, more metal poor in the stream than in the main body. This effect is slightly stronger in stars belonging to more ancient wraps of the stream, according to currently accepted models of Sgr disruption. Based on observations taken at ESO VLT Kueyen telescope (Cerro Paranal, Chile, program: 075.B-0127(A)) and 3.6 m telescope (La Silla, Chile). Also based on spectroscopic observations taken at the Telescopio Nazionale Galileo, operated by the Fundación G. Galilei of INAF at the Spanish Observatorio del Roque de los Muchachos of the IAC (La Palma, Spain). Appendix A and Table [see full text] are only available in electronic form at http://www.aanda.org

  2. High Resolution SOFIA/EXES Spectroscopy of CH4 and SO2 toward Massive Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Boogert, Abraham C. A.; Richter, Matt; DeWitt, Curtis; Indriolo, Nick; Neufeld, David A.; Karska, Agata; Bergin, Edwin A.; Smith, Rachel L.; Montiel, Edward

    2017-01-01

    The ro-vibrational transitions of molecules in the near to mid-infrared are excellent tracers of the composition, dynamics, and excitation of the inner regions of Young Stellar Objects (YSOs). They sample a wide range of excitations in a short wavelength range, they can be seen in absorption against strong hot dust continuum sources, and they trace molecules without permanent dipole moment not observable at radio wavelengths. In particular, at high infrared spectral resolution, spatial scales smaller than those imaged by millimeter wave interferometers can be studied dynamically.We present high resolution (R=λ/Δλ˜50,000-100,000 6-12 km/s) infrared (7-8 μm) spectra of massive YSOs observed with the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observatory For Infrared Astronomy (SOFIA). Absorption lines of gas phase methane (CH4) are detected in our Cycle 2 observations. CH4 is thought to be a starting point of the formation of carbon chain molecules. Abundances are derived in the different dynamical regions along the sight-line towards the central star by comparing the line profiles to those of CO and other species observed at ground based facilities such as EXES' sister instrument TEXES at IRTF and Gemini. A search is also conducted for sulfur-dioxide, using data from our ongoing Cycle 4 program. SO2 was previously detected towards these massive YSOs with the space-based ISO/SWS instrument (Keane et al. 2001, A&A 376, L5) at much lower spectral resolution (R˜2,000). At high spectral resolution we should be able to pin-point the dynamical location of this SO2 gas. Up to 98% of the sulfur in dense clouds and protostellar envelopes is presently missing, and we are searching for that with the EXES/SOFIA observations.

  3. Rotational Dependence of Intramolecular Dynamics in Acetylene at Low Vibrational Excitation as Deduced from High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Perry, David S.; Miller, Anthony; Amyay, B.; Fayt, A.; Herman, M.

    2010-06-01

    The link between energy-resolved spectra and time-resolved dynamics is explored quantitatively for acetylene (12C2H2), X1Σg+ with up to 8,600 wn of vibrational energy. This comparison is based on the extensive knowledge of the vibration-rotation energy levels and on the model Hamiltonian used to fit them to high precision. Simulated intensity borrowing features in high resolution absorption spectra and predicted survival probabilities for intramolecular vibrational redistribution (IVR) are first investigated for the ν4+ν5 and ν3 bright states, for J = 2, 30 and 100. The dependence of the results on the rotational quantum number and on the choice of vibrational bright state reflects the interplay of three kinds of off-diagonal resonances: anharmonic, rotational l-type, and Coriolis. The dynamical quantities used to characterize the calculated time-dependent dynamics are the dilution factor φd, the IVR lifetime τIVR, and the recurrence time τrec. For the two bright states ν3+2ν4 and 7ν4, the collisionless dynamics for thermally averaged rotational distributions at T = 27, 270 and 500 K were calculated from the available spectroscopic data. For the 7ν4 bright state, an apparent irreversible decay of is found. In all cases, the model Hamiltonian allows a detailed calculation of the energy flow among all of the coupled zeroth-order vibration-rotation states. B. Amyay, S. Robert, M. Herman, A. Fayt, B. Raghavendra, A. Moudens, J. Thiévin, B. Rowe, and R. Georges, J. Chem. Phys., 131, 114301 (2009).

  4. Resonant photoelectron spectroscopy of Au{sub 2}{sup −} via a Feshbach state using high-resolution photoelectron imaging

    SciTech Connect

    León, Iker; Yang, Zheng; Wang, Lai-Sheng

    2013-11-21

    Photodetachment cross sections are measured across the detachment threshold of Au{sub 2}{sup −} between 1.90 and 2.02 eV using a tunable laser. In addition to obtaining a more accurate electron affinity for Au{sub 2} (1.9393 ± 0.0003 eV), we observe eight resonances above the detachment threshold, corresponding to excitations from the vibrational levels of the Au{sub 2}{sup −} ground state (X {sup 2}Σ{sub u}{sup +}) to those of a metastable excited state of Au{sub 2}{sup −} (or Feshbach resonances) at an excitation energy of 1.9717 ± 0.0003 eV and a vibrational frequency of 129.1 ± 1.5 cm{sup −1}. High-resolution photoelectron spectra of Au{sub 2}{sup −} are obtained using photoelectron imaging to follow the autodetachment processes by tuning the detachment laser to all the eight Feshbach resonances. We observe significant non-Franck-Condon behaviors in the resonant photoelectron spectra due to autodetachment from a given vibrational level of the Feshbach state to selective vibrational levels of the neutral final state. Using the spectroscopic data for the ground states of Au{sub 2}{sup −} (X {sup 2}Σ{sub u}{sup +}) and Au{sub 2} (X {sup 1}Σ{sub g}{sup +}), we estimate an equilibrium bond distance of 2.53 ± 0.02 Å for the Feshbach state of Au{sub 2}{sup −} by simulating the Franck-Condon factors for the resonant excitation and autodetachment processes.

  5. High-resolution Crystal Spectroscopy of Charge-Exchange Produced K-shell X-ray Emission Lines

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Bitter, M.; Olson, R.; Marion, M.

    2005-05-01

    Charge-exchange spectral models needed to describe and predict the X-ray emission of cometary and planetary atmospheres interacting with solar wind heavy ions are under development and require laboratory data for guidance. The relative intensity of the four K-shell emission lines in heliumlike ions is particularly uncertain, as the individual lines have not yet been fully resolved in charge-exchange-produced spectra. Using a high-resolution crystal spectrometer, we have measured the charge exchange induced K-shell X-ray emission from Ar16+ following the interaction of Ar17+ ions with fast, 40 keV/amu deuterium atoms. The measurement was performed on the National Spherical Torus Experiment (NSTX). The Ar17+ ions were constituents of the plasma, while deuterium was injected via a 80 keV neutral beam. During the brief, 20 ms neutral beam injection emission from electron-impact collisions ceases, and X-ray line emission is solely due to charge exchange. The measurement fully resolves the resonance, intercombination, and forbidden lines. We have constructed a complete radiative cascade model of Ar16+ that includes electron capture into levels as high as n=29 and all E1, M1, E2, and M2 radiative transitions. We find excellent agreement between the model and the NSTX crystyal spectrum. We will present these findings as well as our predictions of the emission in other spectral bands from the optical and extreme ultraviolet to the soft X-ray region. This work was performed under the auspices of the U.S. DOE by UC-LLNL under contract W-7405-Eng-48, by UMR under contract DE-FG02-84ER53175, and by PPPL under contract DE-AC02-76CHO3073.

  6. Seventh Colloquium on High Resolution Molecular Spectroscopy 14 to 18 September 1981 (Septieme Colloque sur la Spectroscopie Moleculaire a Haute Resolution 14 a 18 Septembre 1981).

    DTIC Science & Technology

    1981-01-01

    K61n, D-5000 K61n 41 In our attempt to observe the high resolution infra- red spectra of the astrophysically interesting cyanopolyyne molecules, we...cyclobutylsilane could exist in two possible con- formations with the silylgroup in either the axial or equatorial position with respect to the puckered

  7. High-cadence and high-resolution Hα imaging spectroscopy of a circular flare's remote ribbon with IBIS

    SciTech Connect

    Deng, Na; Jing, Ju; Chen, Xin; Liu, Chang; Xu, Yan; Wang, Haimin; Tritschler, Alexandra; Reardon, Kevin; Denker, Carsten

    2013-06-01

    We present an unprecedented high-resolution Hα imaging spectroscopic observation of a C4.1 flare taken with the Interferometric Bidimensional Spectrometer (IBIS) in conjunction with the adaptive optics system at the 76 cm Dunn Solar Telescope on 2011 October 22 in the active region NOAA 11324. Such a two-dimensional spectroscopic observation covering the entire evolution of a flare ribbon with high spatial (0.''1 pixel{sup –1} image scale), cadence (4.8 s), and spectral (0.1 Å step size) resolution is rarely reported. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Such a circular-ribbon flare with a remote brightening is predicted in three-dimensional fan-spine reconnection but so far has been rarely studied. During the flare impulsive phase, we define 'core' and 'halo' structures in the observed ribbon based on IBIS narrowband images in the Hα line wing and line center. Examining the Hα emission spectra averaged in the flare core and halo areas, we find that only those from the flare cores show typical nonthermal electron beam heating characteristics that have been revealed by previous theoretical simulations and observations of flaring Hα line profiles. These characteristics include broad and centrally reversed emission spectra, excess emission in the red wing with regard to the blue wing (i.e., red asymmetry), and redshifted bisectors of the emission spectra. We also observe rather quick timescales for the heating (∼30 s) and cooling (∼14-33 s) in the flare core locations. Therefore, we suggest that the flare cores revealed by IBIS track the sites of electron beam precipitation with exceptional spatial and temporal resolution. The flare cores show two-stage motion (a parallel motion along the ribbon followed by an expansion motion perpendicular to the ribbon) during the two impulsive phases of the flare. Some cores jump quickly (30 km s{sup –1

  8. Characterization of REE-Bearing Minerals and Synthetic Materials Using High Resolution Ultraviolet to Near-Infrared Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoefen, T. M.; Livo, K. E.; Giles, S. A.; Lowers, H. A.; Swayze, G. A.; Taylor, C. D.; Verplanck, P. L.; Emsbo, P.; Koenig, A.; Mccafferty, A. E.

    2014-12-01

    Diagnostic crystal field 4fn-4fn transition features in the ultraviolet (UV) to near-infrared (NIR) region of the electromagnetic spectrum have been observed in many common rare earth element (REE)-bearing minerals. The partial filling of the 4f electron shell combined with a shielding effect caused by the fully filled 5s25p6-electron shells, which weaken any effects from external magnetic or electric fields on the electrons, makes rare earth ions unique. The narrow absorption features occur as a result of parity forbidden transitions and crystal field splitting of the trivalent REEs, and since they are well shielded, only subtle wavelengths shifts are seen in their spectral features. Synthetic single REE phosphates, carbonates, oxides, hydroxides and glasses have been measured in the lab to help identify absorption band positions that are characteristic of each REE as they occur in different minerals. Because spectral resolution is critical to identifying shifts in the absorption band positions, these materials have been measured on several different high resolution spectrometers. Using a combination of Ocean Optics USB 2000+ UV-VIS, USB2000+ VIS-NIR and ASD FS 4 spectrometers we have characterized REE-bearing materials from 0.2 to 2.5 microns with a spectral resolution of ~2 nm between 0.2 and 1.0 microns and 11 to 12 nm between 1.0 and 2.5 microns. Results to date suggest that wavelength shifts and variations in the degree of crystal field splitting allow spectral differentiation between REE-bearing minerals. To support these results, a comprehensive suite of marine phosphates, paleo-beach placers, IOCG deposits, alkaline to peralkaline igneous complexes, pegmatites associated with alkaline magmas and carbonatite intrusives, have been measured and included in our database. Core, rock chips, billets, sediment samples and grab samples were manually scanned to identify the most intense or spectrally different REE features. While REE-bearing minerals have been

  9. Quantum state resolved inelastic and reactive scattering dynamics in molecular systems via high resolution IR laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Chapman, William Brewster

    This thesis describes a series of experiments undertaken to investigate inelastic and reactive molecular collision dynamics at the quantum-state resolved level of detail. First, time- and frequency-resolved infrared laser absorption is used to probe state-resolved collisional energy transfer in scattering of fast C1(2P3/2) radicals with room temperature HCl molecules. Final state distributions of HCl are monitored via transient infrared laser absorption yielding absolute integral collisional cross sections for energy transfer into final rotational states. Analysis of translational distributions inferred from high-resolution infrared Dopplerimetry leads to state-resolved differential scattering cross sections, which exhibit forward scattering into all observed levels. Results are compared with quasiclassical trajectory calculations on a recently proposed potential surface. Second, absolute state-to-state cross sections are reported for rotationally inelastic scattering of HF, CH4, and H2O with rare gases in crossed supersonic jets. Column-integrated densities of HF, CH4, and H2O in initial and final scattering states are probed in the jet intersection region via direct infrared laser absorption. Total inelastic cross sections for loss out of rotational ground states and excitation into higher states are determined in absolute units from the dependence of infrared absorption signals on collider gas concentration. Comparison is made with close coupling calculations performed on best available potential energy surfaces for each of the scattering systems. Finally, fluorine radicals from a pulsed discharge source are crossed with supersonically cooled hydrogen molecules to study the F + H2 /to HF(v,J) + H reaction under single collision conditions. HF(v,J) product states are probed with complete rovibrational state resolution via direct infrared laser absorption. The nascent HF(v,J) state distribution is measured for all populated vibrational manifolds at a collision

  10. High resolution spectroscopy of the high latitude rapidly evolving post-AGB star SAO 85766 (= IRAS 18062+2410)

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; García-Lario, P.; Sivarani, T.; Manchado, A.; Sanz Fernández de Córdoba, L.

    2000-05-01

    SAO 85766 (b = +20o) is an IRAS source with far-infrared colours similar to planetary nebulae. According to the HDE catalogue, its spectrum in 1940 was that of an A5 star. The UV fluxes and colours derived from data obtained by the TD1 satellite in 1972 also indicate that SAO 85766 was an A-type supergiant at that epoch. However, high resolution spectra of SAO 85766 obtained in 1993 in the wavelength interval 4350Ä to 8820Ä shows that now it is similar to that of an early B type post-AGB supergiant. In addition to the absorptions lines typical of a B1I type star, the spectrum of SAO 85766 is found to show numerous permitted and forbidden emission lines of several elements, typically observed in the spectra of young high density low excitation planetary nebulae. From an analysis of the absorption lines we have estimated Teff=22000+/-500 K, log g=3.0+/-0.5, xi t=15+/-2km s-1 and [M/H]=-0.6. Carbon is found to be strongly underabundant ([C/Fe] = -1.0), similarly to what has been observed in other high galactic latitude hot post-AGB stars. The underabundance of carbon and metals, high galactic latitude, high radial velocity (46 km s-1), the presence of planetary nebula type detached cold circumstellar dust shell and also the presence of low excitation nebular emission lines in the spectrum indicate that SAO 85766 is a low mass star in the post-AGB stage of evolution. The above mentioned characteristics and the variations observed in the spectrum of SAO 85766 suggest that it has rapidly evolved during the past 50 years and it is now in the early stages of the planetary nebula phase. The central star may just have become hot enough to photoionize the circumstellar envelope ejected during the previous AGB phase. >From an analysis of the nebular emission lines we find Te=10000+/- 500K and Ne=2.5 104 cm-3. The nebula also shows an abundance pattern similar to that of the central star. The rapid post-AGB evolution of SAO 85766 appears to be similar to that observed in the

  11. High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla

    PubMed Central

    Rao, Madhwesha; Stewart, Neil J.; Norquay, Graham; Griffiths, Paul D.

    2016-01-01

    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in‐house and 129Xe gas was polarized using spin‐exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two‐dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo. Magn Reson Med 75:2227–2234, 2016. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:27080441

  12. Identification of unknown microcontaminants in Dutch river water by liquid chromatography-high resolution mass spectrometry and nuclear magnetic resonance spectroscopy.

    PubMed

    van Leerdam, J A; Vervoort, J; Stroomberg, G; de Voogt, P

    2014-11-04

    In the past decade during automated surface water monitoring in the river Meuse at border station Eijsden in The Netherlands, a set of unknown compounds were repeatedly detected by online liquid chromatography-diode-array detection in a relatively high signal intensity. Because of the unknown nature of the compounds, the consequently unknown fate of this mixture in water treatment processes, the location being close to the water inlet of a drinking water supply company and their possible adverse public health effects, it was deemed necessary to elucidate the identity of the compounds. No data are available for the occurrence of these unknowns at downstream locations. After concentration and fractionation of a sample by preparative Liquid Chromatography, identification experiments were performed using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HR-MS) combined with High Resolution Nuclear Magnetic Resonance Spectroscopy (HR-NMR). Accurate mass determination of the unknown parent compound and its fragments obtained in MS/MS provided relevant information on the elemental composition of the unknown compounds. With the use of NMR techniques and the information about the elemental composition, the identity of the compounds in the different sample fractions was determined. Beside some regularly detected compounds in surface water, like caffeine and bisphenol-S, five dihydroxydiphenylmethane isomers were identified. The major unknown compound was identified as 4,4'-dihydroxy-3,5,3',5'-tetra(hydroxymethyl)diphenylmethane. This compound was confirmed by analysis of the pure reference compound. This is one of the first studies that employs the combination of high resolution MS with NMR for identification of truly unknown compounds in surface waters at the μg/L level. Five of the seven identified compounds are unexpected and not contained in the CAS database, while they can be presumed to be products generated during the production of resins.

  13. A New Catalog of Homogenized Absorption Line Indices for Milky Way Globular Clusters from High-resolution Integrated Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Sub; Cho, Jaeil; Sharples, Ray M.; Vazdekis, Alexandre; Beasley, Michael A.; Yoon, Suk-Jin

    2016-12-01

    We perform integrated spectroscopy of 24 Galactic globular clusters (GGCs). Spectra are observed from one core radius for each cluster with a high wavelength resolution of ˜2.0 Å FWHM. In combination with two existing data sets from Puzia et al. and Schiavon et al., we construct a large database of Lick spectral indices for a total of 53 GGCs with a wide range of metallicities, -2.4 ≲ [Fe/H] ≲ 0.1, and various horizontal-branch morphologies. The empirical index-to-metallicity conversion relationships are provided for the 20 Lick indices for the use of deriving metallicities for remote, unresolved stellar systems.

  14. A Combined Synchrotron-Based High Resolution FTIR and Diode Laser Jet Infrared Spectroscopy Study of the Chiral Molecule CDBrClF

    NASA Astrophysics Data System (ADS)

    Albert, S.; Albert, K. Keppler; Quack, M.; Lerch, Ph.; Boudon, V.

    2013-06-01

    The experimental detection of molecular parity violation Δ_{PV}E is of great interest because of its importance in the understanding of fundamental aspects of molecular dynamics and symmetries. One possible method for this is measuring rovibrational or rotational frequency shifts in the infrared or microwave spectra of enantiomers. For that reason we have measured and analysed the rotationally resolved infrared spectrum of CDBrClF as a prototype spectrum for a chiral molecule using three different techniques. The spectrum has been recorded at room temperature with the Zurich Bruker IFS spectrometer ZP 2001 and with the Bruker interferometer 2009 connected to the Swiss synchrotron using a resolution of 0.0007 cm^{-1}. In addition, the IR spectrum of CDBrClF has been measured at low temperature with our diode laser jet setup in the ν_5 region. The spectra of the two major isotopomers CD^{81}Br^{35}ClF and CD^{79}Br^{35}ClF have been analysed within the ν_5 (CCl-stretch), ν_4 (CF-stretch) and ν_3 (CDF-bend) regions. A detailed rovibrational analysis of these bands is presented. The role for possible experiments in the experimental detection of molecular parity violation shall be discussed. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 659-722, M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741, A. Bakasov, T.K. Ha, and M. Quack, J. Chem. Phys. 1998, 109, 7263, R. Berger and M. Quack, J. Chem. Phys, 2000, 112, 3148. M. Quack and J. Stohner, Phys. Rev. Lett. 2000, 84, 3807, M. Quack and J. Stohner. J. Chem. Phys., 2003, 119, 11228. S. Albert, K. Keppler Albert and M. Quack, High Resolution Fourier Transform Infrared Spectroscopy in Handbook of High Resolution Spectroscopy, Vol. 2 (Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 965-1019, S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281. S. Albert

  15. Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

    NASA Astrophysics Data System (ADS)

    de Groote, R. P.; Verlinde, M.; Sonnenschein, V.; Flanagan, K. T.; Moore, I.; Neyens, G.

    2017-03-01

    Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nuclear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1%-10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spectroscopy line shapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitation laser pulse is crucial: the use of a delayed ionization step permits the best resolving powers and line shapes. A high efficiency is maintained if the intermediate level has a lifetime that is at least of the order of the excitation laser pulse width. A model that describes this process reproduces well the observed features and will help to optimize the conditions for future experiments. The simulation code is available upon request to the authors.

  16. High-resolution absorption spectroscopy of photoionized silicon plasma, a step toward measuring the efficiency of Resonant Auger Destruction

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, James; Hansen, Stephanie; Nagayama, Taisuke; Rochau, Gregory; Liedhal, Duane; Mancini, Roberto

    2013-10-01

    A remarkable opportunity to observe matter in a regime where the effects of General Relativity are significant has arisen through measurements of strongly red-shifted iron x-ray lines emitted from black hole accretion disks. A major uncertainty in the spectral formation models is the efficiency of Resonant Auger Destruction (RAD), in which fluorescent K α photons are resonantly absorbed by neighbor ions. The absorbing ion preferentially decays by Auger ionization, thus reducing the emerging K α intensity. If K α lines from L-shell ions are not observed in iron spectral emission, why are such lines observed from silicon plasma surrounding other accretion powered objects? To help answer this question, we are investigating photoionized silicon plasmas produced using intense x-rays from the Z facility. The incident spectral irradiance is determined with time-resolved absolute power measurements, multiple monochromatic gated images, and a 3-D view factor model. The charge state distribution, electron temperature, and electron density are determined using space-resolved backlit absorption spectroscopy. The measurements constrain photoionized plasma models and set the stage for future emission spectroscopy directly investigating the RAD process. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  17. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    SciTech Connect

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Jozwiak, C.; Lanzara, A.

    2013-09-15

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E{sub F} spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  18. Raman spectroscopy and cathodoluminescence characteristics of order-disorder Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} ceramics

    SciTech Connect

    Kang, Shin Hyuk; Kim, Deug J. Lee, Chang Joo; Pezzotti, G.

    2008-11-03

    The order-disorder transition in Ba(Zn{sub 1/3}Ta{sub 2/3})O{sub 3} (BZT) was characterized by using Raman spectroscopy, transmission electron microscopy (TEM), and cathodoluminescence (CL) microscopy. The 1:2 ordered structure of pure BZT ceramics was replaced by a 1:1 ordered structure at 1650 deg. C and the 1:1 ordered structure of BZT sintered at 1650 deg. C exhibited a 1:2 ordered structure when it was reannealed at 1500 deg. C for 12 h. The A{sub 1g} lines in the Raman spectrum of the sintered and reannealed samples were shifted to lower and higher wavenumbers, respectively. From the CL analysis, the 1:1 ordered BZT exhibited mainly three emission bands at around 533.2 (2.32 eV), 599.1 (2.07 eV), and 682.1 nm (1.81 eV), whereas the 1:2 ordered BZT exhibited mainly five bands at 346.4 (3.58 eV), 427.5 (2.90 eV), 520.9 (2.38 eV), 593.0 (2.09 eV), and 678.9 nm (1.82 eV). The strongest band originating from 2.32 to 2.38 eV was broadened, and the band center shifted towards a higher and lower wavelength in the 1:1 and 1:2 ordered BZT, respectively. Additional bands at around 346 and 427 nm in the grain interior of the annealed sample were strongly related to the 1:2 ordering of BZT.

  19. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    SciTech Connect

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  20. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N2, H2, CO2, O2, and CH4. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  1. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    NASA Astrophysics Data System (ADS)

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Haskey, S. R.; Kaplan, D. H.

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  2. High Resolution H-1 NMR Spectroscopy in a Live Mouse subjected to 1.5 Hz Magic Angle Spinning

    SciTech Connect

    Wind, Robert A.; Hu, Jian Zhi; Rommereim, Donald N.

    2003-12-03

    It is demonstrated that the resolution of the 1H NMR metabolite spectrum in a live mouse can be significantly enhanced by an ultra-slow magic angle spinning of the animal combined with a modified phase-corrected magic angle turning (PHORMAT) pulse sequence. Proton NMR spectra were measured of the torso and the top part of the belly of a female BALBc mouse in about one hour in a 2T field, while spinning the animal at a speed of 1.5 Hz. It was found that even in this relatively low field with PHORMAT an isotropic spectrum is obtained with line widths that are a factor 4.6 smaller than those obtained in a stationary mouse. It is concluded that in vivo PHORMAT has the potential to significantly increase the utility of 1H NMR spectroscopy for biochemical and biomedical animal research.

  3. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  4. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  5. High-Resolution Spectroscopy of the νb{16} Band of 1,3,5-TRIOXANE

    NASA Astrophysics Data System (ADS)

    Gibson, Bradley M.; Koeppen, Nicole; McCall, Benjamin J.

    2014-06-01

    1,3,5-trioxane, often used as a solid fuel or source of formaldehyde, is a symmetric top of the C3v group. Although the microwave and low-resolution vibrational spectra have been studied extensively, only the νb{17} band near 1072 wn has been observed with rotational resolution. Here, we will present our studies of trioxane vapor from 1140-1220 wn, covering the νb{16} band at a resolution of approximately 30 MHz. Solid trioxane was heated, and the resulting vapor was entrained in a continuous supersonic expansion of argon. Continuous-wave cavity ringdown spectroscopy was then performed using a frequency-stabilized external cavity quantum cascade laser (EC-QCL) as the light source. In addition to providing new ro-vibrational transition frequencies of trioxane, the present work serves to validate our newly-developed EC-QCL spectrometer and will be used to evaluate the cooling performance of the sheath-flow supercritical fluid expansion source currently under development. Oka, T., Tsuchiya, K., Iwata, S., and Morino, Y. Microwave Spectrum of s-Trioxane. Bull. Chem. Soc. Jpn. 37 (1964), 4-7. Stair, A.T. Jr. and Nielsen, J. Rud. Vibrational Spectra of sym-Trioxane. J. Chem. Phys. 27 (1957), 402-407. Henninot, J-F., Bolvin, H., Demaison, J., and Lemoine, B. The Infrared Spectrum of Trioxane in a Supersonic Slit Jet. J. Mol. Spect. 152 (1992), 62-68. Gibson, B.M., Stewart, J.T., and McCall, B.J., contribution TJ14, presented at the 68th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 2013.

  6. High-resolution spectroscopy and analysis of the ν1/ν3 stretching dyad of osmium tetroxide

    NASA Astrophysics Data System (ADS)

    Louviot, M.; Boudon, V.; Manceron, L.; Roy, P.; Balcon, D.

    2012-01-01

    OsO4 is a heavy tetrahedral molecule that may constitute a benchmark for quantum chemistry calculations. Its favorable spin statistics (due to the zero nuclear spin of oxygen atoms) is such that only A1 and A2 rovibrational levels are allowed, leading to a dense, but quite easily resolved spectrum. Most lines are single ones, instead of complex line clusters as in the case of other heavy spherical-tops like SF6, for instance. It is thus possible to fully assign and fit the spectrum and to obtain precise experimental effective molecular parameters. The strong ν3 stretching fundamental has been studied a long time ago as an isolated band [McDowell RS, Radziemski LJ, Flicker H, Galbraith HW, Kennedy RC, Nereson NG, et al. Journal of Chemical Physics 1978;88:1513-21; Bobin B, Valentin A, Henry L. Journal of Molecular Spectroscopy 1987;122:229-41]. We reinvestigate here this region and perform new assignments and effective Hamiltonian parameter fits for the four main isotopologues (192OsO4, 190OsO4, 189OsO4, 188OsO4), by considering the ν1/ν3 stretching dyad. A new experimental spectrum has been recorded at room temperature, thanks to a Bruker IFS 125 HR interferometer and using a natural abundance OsO4 sample. Assignments and analyses were performed thanks to the SPVIEW and XTDS softwares, respectively [Wenger Ch, Boudon V, Rotger M, Sanzharov M, Champion J-P. Journal of Molecular Spectroscopy 2008;251:102-13]. We provide precise effective Hamiltonian parameters, including band centers and Coriolis interaction parameters. We discuss isotopic shifts and estimate the band centers for the three minor isotopologues (187OsO4, 186OsO4, 184OsO4). The Q branches of the first two of them are clearly identified in the experimental spectrum.

  7. High-Resolution Infrared Spectroscopy Slit-Jet Cooled Hydroxymethyl Radical (CH_2OH): CH Symmetric Stretching Mode

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David

    2014-06-01

    Hydroxymethyl radical (CH_2OH) plays an important role in combustion and environmental chemistry as a reactive intermediate. Reisler's group published the first rotationally resolved spectroscopy of CH_2OH with determined band origins for fundamental CH symmetric stretch state, CH asymmetric stretch state and OH stretch state, respectively. Here CH_2OH was first studied via sub-Doppler infrared spectroscopy in a slit-jet supersonic discharge expansion source. Rotationally resolved direct absorption spectra in the CH symmetric stretching mode were recorded. As a result of the low rotational temperature and sub-Doppler linewidths, the tunneling splittings due to the large amplitude of COH torsion slightly complicate the spectra. Each of the ground vibration state and the CH symmetric stretch state includes two levels. One level, with a 3:1 nuclear spin statistic ratio for Ka=0+/Ka=1+, is labeled as ``+". The other tunneling level, labeled as ``-", has Ka=0-/Ka=1- states with 1:3 nuclear spin statistics. Except for the Ka=0+ ← 0+ band published before, more bands (Ka=1+ ← 1+, Ka=0- ← 0- and Ka=1- ← 1-) were identified. The assigned transitions were fit to a Watson A-reduced symmetric top Hamiltonian to improve the accuracy of the band origin of CH symmetric state. The rotational parameters for both ground and CH symmetric stretch state were well determined. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, Vol. 108. M. A. Roberts, E. N. Sharp-Williams and D. J. Nesbitt, J. Phys. Chem. A 2013, 117, 7042-7049

  8. High-resolution electron-energy-loss spectroscopy and photoelectron-diffraction studies of the geometric structure of adsorbates on single-crystal metal surfaces

    SciTech Connect

    Rosenblatt, D.H.

    1982-11-01

    Two techniques which have made important contributions to the understanding of surface phenomena are high resolution electron energy loss spectroscopy (EELS) and photoelectron diffraction (PD). EELS is capable of directly measuring the vibrational modes of clean and adsorbate covered metal surfaces. In this work, the design, construction, and performance of a new EELS spectrometer are described. These results are discussed in terms of possible structures of the O-Cu(001) system. Recommendations for improvements in this EELS spectrometer and guidelines for future spectrometers are given. PD experiments provide accurate quantitative information about the geometry of atoms and molecules adsorbed on metal surfaces. The technique has advantages when used to study disordered overlayers, molecular overlayers, multiple site systems, and adsorbates which are weak electron scatterers. Four experiments were carried out which exploit these advantages.

  9. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  10. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    SciTech Connect

    Zhang, C.; Golberg, D. E-mail: golberg.dmitri@nims.go.jp; Xu, Z. E-mail: golberg.dmitri@nims.go.jp; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  11. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xu, Z.; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.; Golberg, D.

    2015-08-01

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  12. C-12/C-13 and O-16/O-18 ratios in the atmosphere of Venus from high-resolution 10-micron spectroscopy

    SciTech Connect

    Bezard, B.; Marten, A.; Baluteau, J.P.; Coron, N.

    1987-12-01

    High-resolution observations of the thermal emission spectrum of Venus have been recorded in the 10.5-micron region, and these have led to the detection of several lines from the nu(3) - nu(1) bands of C-13O2 and C-12O-16O-18, as well as from the weak nu(3)+nu(2) - nu(1)+nu(2) band of C-12O2. The results obtained characterize the cloud top levels of Venus' atmosphere, at about 66 km; the derived ratios should be able to represent global values on Venus. These determinations are in agreement with in situ Pioneer Venus and Venera atmospheric composition measurements. It is demonstrated that important isotopic ratios are obtainable with ground-based spectroscopy. 26 references.

  13. Oxidized crystalline (3 × 1)-O surface phases of InAs and InSb studied by high-resolution photoelectron spectroscopy

    SciTech Connect

    Tuominen, M. E-mail: pekka.laukkanen@utu.fi; Lång, J.; Dahl, J.; Yasir, M.; Mäkelä, J.; Punkkinen, M. P. J.; Laukkanen, P. E-mail: pekka.laukkanen@utu.fi; Kokko, K.; Kuzmin, M.; Osiecki, J. R.; Schulte, K.

    2015-01-05

    The pre-oxidized crystalline (3×1)-O structure of InAs(100) has been recently found to significantly improve insulator/InAs junctions for devices, but the atomic structure and formation of this useful oxide layer are not well understood. We report high-resolution photoelectron spectroscopy analysis of (3×1)-O on InAs(100) and InSb(100). The findings reveal that the atomic structure of (3×1)-O consists of In atoms with unexpected negative (between −0.64 and −0.47 eV) and only moderate positive (In{sub 2}O type) core-level shifts; highly oxidized group-V sites; and four different oxygen sites. These fingerprint shifts are compared to those of previously studied oxides of III-V to elucidate oxidation processes.

  14. High-resolution continuous-flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2015-07-01

    Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The

  15. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the

  16. High-resolution rovibrational spectroscopy of jet-cooled phenyl radical: the ν19 out-of-phase symmetric CH stretch.

    PubMed

    Buckingham, Grant T; Chang, Chih-Hsuan; Nesbitt, David J

    2013-10-03

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b2 out-of-phase C-H symmetric stretch vibration (ν19) unambiguously confirmed by ≤6 MHz (0.0002 cm(-1)) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 2003, 590, L61-64]. Least squares analysis of over 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision excited-state rotational constants and a vibrational band origin (ν0 = 3071.8915(4) cm(-1)) consistent with a surprisingly small red-shift (0.9 cm(-1)) with respect to Ar matrix isolation studies of Ellison and co-workers [J. Am. Chem. Soc. 2001, 123, 1977]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and (2)A1 rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C2v distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N - 6 = 27), phenyl radical exhibits a remarkably clean jet cooled high-resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or nonlocal perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high-resolution infrared spectroscopy in other aromatic hydrocarbon radical systems.

  17. High Resolution Rovibrational Spectroscopy of Jet-Cooled Phenyl Radical: the ν_{19} Out-Of Symmetric C-H Stretch

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant T.; Chang, Chih-Hsuan; Nesbitt, David J.

    2013-06-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b_{2} out-of-phase C-H symmetric stretch vibration (ν_{19}) unambiguously confirmed by ≤ 6 MHz (0.0002 cm^{-1}) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 590, L61-64 (2003)]. Least squares analysis of > 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision exited-state rotational constants and a vibrational band origin (ν_{0} = 3071.8915(4) cm^{-1}) consistent with a surprisingly small red-shift (0.9 cm^{-1}) with respect to Ar matrix isolation studies of Ellison and coworkers [J. Am. Chem. Soc. 123, 1977 (2001)]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and ^{2}A_{1} rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C_{2v} distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N-6 = 27), phenyl radical exhibits a remarkably clean jet cooled high resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or non-local perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high resolution infrared spectroscopy in other cyclic aromatic hydrocarbon radical systems.

  18. High-Resolution Rovibrational Spectroscopy of Jet-Cooled Phenyl Radical: The ν19 Out-of-Phase Symmetric CH Stretch

    NASA Astrophysics Data System (ADS)

    Buckingham, Grant T.; Chang, Chih-Hsuan; Nesbitt, David J.

    2013-10-01

    Phenyl radical has been studied via sub-Doppler infrared spectroscopy in a slit supersonic discharge expansion source, with assignments for the highest frequency b2 out-of-phase C-H symmetric stretch vibration (-19) unambiguously confirmed by ≤6 MHz (0.0002 cm-1) agreement with microwave ground state combination differences of McMahon et al. [Astrophys. J. 2003, 590, L61-64]. Least squares analysis of over 100 resolved rovibrational peaks in the sub-Doppler spectrum to a Watson Hamiltonian yields precision excited-state rotational constants and a vibrational band origin (-0 = 3071.8915(4) cm-1) consistent with a surprisingly small red-shift (0.9 cm-1) with respect to Ar matrix isolation studies of Ellison and co-workers [J. Am. Chem. Soc. 2001, 123, 1977]. Nuclear spin weights and inertial defects confirm the vibrationally averaged planarity and 2A1 rovibronic symmetry of phenyl radical, with analysis of the rotational constants consistent with a modest C2v distortion of the carbon backbone frame due to partial sp rehybridization of the σ C radical-center. Most importantly, despite the number of atoms (N = 11) and vibrational modes (3N - 6 = 27), phenyl radical exhibits a remarkably clean jet cooled high-resolution IR spectrum that shows no evidence of intramolecular vibrational relaxation (IVR) phenomena such as local or nonlocal perturbations due to strongly coupled nearby dark states. This provides strong support for the feasibility of high-resolution infrared spectroscopy in other aromatic hydrocarbon radical systems.

  19. Analysis of the Thermal Degradation of the Individual Anthocyanin Compounds of Black Carrot (Daucus carota L.): A New Approach Using High-Resolution Proton Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Iliopoulou, Ioanna; Thaeron, Delphine; Baker, Ashley; Jones, Anita; Robertson, Neil

    2015-08-12

    The black carrot dye is a mixture of cyanidin molecules, the nuclear magnetic resonance (NMR) spectrum of which shows a highly overlapped aromatic region. In this study, the (1)H NMR (800 MHz) aromatic chemical shifts of the mixture were fully assigned by overlaying them with the characterized (1)H NMR chemical shifts of the separated compounds. The latter were isolated using reverse-phase high-performance liquid chromatography (RP-HPLC), and their chemical shifts were identified using (1)H and two-dimensional (2D) correlation spectroscopy (COSY) NMR spectroscopy. The stability of the black carrot mixture to heat exposure was investigated at pH 3.6, 6.8, and 8.0 by heat-treating aqueous solutions at 100 °C and the powdered material at 180 °C. From integration of high-resolution (1)H NMR spectra, it was possible to follow the relative degradation of each compound, offering advantages over the commonly used ultraviolet/visible (UV/vis) and HPLC approaches. UV/vis spectroscopy and CIE color measurements were used to determine thermally induced color changes, under normal cooking conditions.

  20. Identification of local phase of nanoscale BaTiO₃ powders by high-resolution electron energy loss spectroscopy.

    PubMed

    Moon, Sun-Min; Wang, Xiaohui; Cho, Nam-Hee

    2013-08-01

    The electron energy loss spectroscopy (EELS) technique was applied to investigate the local variation in the phase of barium titanate (BaTiO₃) ceramics. It was found that the fine structure of the titanium L₂,₃ edge and their satellite peaks were sensitively varied with the tetragonal-cubic phase transition. The peak splitting of Ti-L₃ edge of tetragonal-phased BaTiO₃ ceramics was widened because of the increased crystal field effect compared with that of cubic-phased BaTiO₃. In case of nanoscale BaTiO₃ powders, the L₃ edge splitting of the core region was found to be smaller than that of the shell region. The energy gap between peaks t₂g and eg varied from 2.36 to 1.94 eV with changing the probe position from 1 to 20 nm from the surface. These results suggest that the EELS technique can be used to identify the local phase of sintered BaTiO₃ ceramics.

  1. Spectroscopy by Integration of Frequency and Time Domain Information (SIFT) for Fast Acquisition of High Resolution Dark Spectra

    PubMed Central

    Matsuki, Yoh; Eddy, Matthew T.; Herzfeld, Judith

    2009-01-01

    A simple and effective method, SIFT (Spectroscopy by Integrating Frequency and Time domain information) is introduced for processing non-uniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at non-uniform points in the time domain with the information carried by known “dark” points (i.e. empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudo-noise characteristic of the Fourier transforms of non-uniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments and the former can be used to take advantage of the ability of non-uniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D datasets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data. PMID:19284727

  2. Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra.

    PubMed

    Matsuki, Yoh; Eddy, Matthew T; Herzfeld, Judith

    2009-04-08

    A simple and effective method, SIFT (spectroscopy by integration of frequency and time domain information), is introduced for processing nonuniformly sampled multidimensional NMR data. Applying the computationally efficient Gerchberg-Papoulis (G-P) algorithm, used previously in picture processing and medical imaging, SIFT supplements data at nonuniform points in the time domain with the information carried by known "dark" points (i.e., empty regions) in the frequency domain. We demonstrate that this rapid integration not only removes the severe pseudonoise characteristic of the Fourier transforms of nonuniformly sampled data, but also provides a robust procedure for using frequency information to replace time measurements. The latter can be used to avoid unnecessary sampling in sampling-limited experiments, and the former can be used to take advantage of the ability of nonuniformly sampled data to minimize trade-offs between the signal-to-noise ratio and the resolution in sensitivity-limited experiments. Processing 2D and 3D data sets takes about 0.1 and 2 min, respectively, on a personal computer. With these several attractive features, SIFT offers a novel, model-independent, flexible, and user-friendly tool for efficient and accurate processing of multidimensional NMR data.

  3. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: The role of 4f electrons

    SciTech Connect

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Yang Dongsheng; Liu Yang

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Moller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  4. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  5. The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations.

    PubMed

    Pirali, O; Goubet, M; Huet, T R; Georges, R; Soulard, P; Asselin, P; Courbe, J; Roy, P; Vervloet, M

    2013-07-07

    Using synchrotron radiation, we performed the rotationally resolved Fourier transform infrared absorption spectroscopy of three bands of naphthalene C10H8, namely ν(46)-0 (centered at 782 cm(-1), 12.7 μm), ν(47)-0 (centered at 474 cm(-1), 21 μm), and ν(48)-0 (centered at 167 cm(-1), 60 μm). The intense CH bending out of plane ν(46)-0 band was recorded under supersonic jet-cooled conditions using a molecular beam (the Jet-AILES apparatus) and the low frequency ν(47)-0 and ν(48)-0 bands were measured at room temperature in a long absorption path cell. The simultaneous rotational analysis of these bands permitted us to refine the ground state (GS) and ν(46) rotational spectroscopic constants and to provide the first sets of constants for the ν(47) and ν(48) modes. The experimental rotational constants were then used as reference data to calibrate theoretical models in order to provide new insights into the accuracy of anharmonic calculations. The B97-1 functional associated with the cc-pVTZ and ANO-RCC basis sets gave a consistent set of results, for rotational constants and fundamental frequencies. The data presented here pave the way for the search of naphthalene through its far-infrared spectrum in different objects of the interstellar medium.

  6. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  7. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes.

    PubMed

    Chang, Chih-Hsuan; Nesbitt, David J

    2016-07-28

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm(-1) and 3062.264 80(7) cm(-1), respectively, which both agree within 5 cm(-1) with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm(-1) blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm(-1)) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  8. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  9. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    SciTech Connect

    Zanzoni, Serena; D'Onofrio, Mariapina; Molinari, Henriette; Assfalg, Michael

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

  10. Intraligand Charge Transfer in Pt(qol)(2). Characterization of Electronic States by High-Resolution Shpol'skii Spectroscopy.

    PubMed

    Donges, Dirk; Nagle, Jeffrey K.; Yersin, Hartmut

    1997-07-02

    Pt(qol)(2) (qol(-) = 8-quinolinolato-O,N) is investigated in the Shpol'skii matrices n-heptane, n-octane-h(18), n-octane-d(18), n-nonane, and n-decane, respectively. For the first time, highly resolved triplet phosphorescence as well as triplet and singlet excitation spectra are obtained at T = 1.2 K by site-selective spectroscopy. This permits the detailed characterization of the low-lying singlet and triplet states which are assigned to result mainly from intraligand charge transfer (ILCT) transitions. The electronic origin corresponding to the (3)ILCT lies at 15 426 cm(-)(1) (FWHM approximately 3 cm(-)(1)) exhibiting a zero-field splitting smaller than 1 cm(-)(1), which shows that the metal d-orbital contribution to the (3)ILCT is small. At T = 1.2 K, the three triplet sublevels emit independently due to slow spin-lattice relaxation (slr) processes. Therefore, the phosphorescence decays triexponentially with components of 4.5, 13, and 60 &mgr;s. Interestingly, two of the sublevels can be excited selectively, which leads to a distinct spin polarization manifested by a biexponential decay. At T = 20 K, the decay becomes monoexponential with tau = 10 &mgr;s due to a fast slr between the triplet sublevels. From the Zeeman splitting of the (3)ILCT the g-factor is determined to be 2.0 as expected for a relatively pure spin triplet. The (1)ILCT has its electronic origin at 18 767 cm(-)(1) and exhibits a homogeneous line width of about 12 cm(-)(1). This feature allows us to estimate a singlet-triplet intersystem crossing rate of about 2 x 10(12) s(-)(1). This relatively large rate compared to values found for closed shell metal M(qol)(n)() compounds displays the importance of spin-orbit coupling induced by the heavy metal ion. Moreover, this small admixture leads to the relatively short emission decay times. All spectra show highly resolved vibrational satellite structures. These patterns provide information about vibrational energies (which are in good accordance with

  11. Fine-tuned characterization at the solid/solution interface of organotin compounds grafted onto cross-linked polystyrene by using high-resolution MAS NMR spectroscopy.

    PubMed

    Martins, José C; Mercier, Frédéric A G; Vandervelden, Alexander; Biesemans, Monique; Wieruszeski, Jean-Michel; Humpfer, Eberhard; Willem, Rudolph; Lippens, Guy

    2002-08-02

    The structural characterization of organotin compounds that are grafted onto insoluble cross-linked polymers has necessarily been limited to elemental analysis, infrared spectroscopy, and in a few instances, solid-state NMR spectroscopy. This important bottleneck in the development of such grafted systems has been addressed by using high-resolution magic angle spinning (hr-MAS) NMR spectroscopy. The great potential of this technique is demonstrated through the structural characterization of diphenylbutyl-(3,4) and dichlorobutylstannanes (5,6), grafted onto divinylbenzene cross-linked polystyrene by means of a suitable linker (1, 2). First, conditions suitable for the application of hr-MAS NMR spectroscopy were identified by characterizing the (1)H resonance line widths of the grafted organotin moiety following swelling of the functionalized beads in eight representative solvents. The presence of clearly identifiable tin coupling patterns in both the 1D (13)C and 2D (1)H-(13)C HSQC spectra, and the incorporation of (119)Sn chemical shift and connectivity information from hr-MAS 1D (119)Sn and 2D (1)H-(119)Sn HMQC spectra, provide an unprecedented level of characterization of grafted organotins directly at the solid/liquid interface. In addition, the use of hr-MAS (119)Sn NMR for reaction monitoring, impurity detection, and quantification and assessment of the extent of coordination reveals its promise as a novel tool for the investigation of polymer-grafted organotin compounds. The approach described here should be sufficiently general for extension to a variety of other nuclei of interest in polymer-supported organometallic chemistry.

  12. Solid-state NMR adiabatic TOBSY sequences provide enhanced sensitivity for multidimensional high-resolution magic-angle-spinning 1H MR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronesi, Ovidiu C.; Mintzopoulos, Dionyssios; Struppe, Jochem; Black, Peter M.; Tzika, A. Aria

    2008-08-01

    We propose a solid-state NMR method that maximizes the advantages of high-resolution magic-angle-spinning (HRMAS) applied to intact biopsies when compared to more conventional liquid-state NMR approaches. Theoretical treatment, numerical simulations and experimental results on intact human brain biopsies are presented. Experimentally, it is proven that an optimized adiabatic TOBSY (TOtal through Bond correlation SpectroscopY) solid-state NMR pulse sequence for two-dimensional 1H- 1H homonuclear scalar-coupling longitudinal isotropic mixing provides a 20%-50% improvement in signal-to-noise ratio relative to its liquid-state analogue TOCSY (TOtal Correlation SpectroscopY). For this purpose we have refined the C9151 symmetry-based 13C TOBSY pulse sequence for 1H MRS use and compared it to MLEV-16 TOCSY sequence. Both sequences were rotor-synchronized and implemented using WURST-8 adiabatic inversion pulses. As discussed theoretically and shown in simulations, the improved magnetization-transfer comes from actively removing residual dipolar couplings from the average Hamiltonian. Importantly, the solid-state NMR techniques are tailored to perform measurements at low temperatures where sample degradation is reduced. This is the first demonstration of such a concept for HRMAS metabolic profiling of disease processes, including cancer, from biopsies requiring reduced sample degradation for further genomic analysis.

  13. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    SciTech Connect

    Foehlisch, A.; Nilsson, A.; Martensson, N.

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  14. High Resolution Spectroscopy at the 2.7-m H J Smith and 9.2-m Hobby-Eberly Telescopes, 1969-2000

    NASA Astrophysics Data System (ADS)

    Tull, R. G.

    2000-05-01

    The twentieth century has seen the greatest advances in science and technology in the history of the world. These advances spawned a golden age in astronomy and in the astronomical instrumentation that fueled it. This paper will summarize 31 years of development of high-resolution spectroscopic instrumentation at McDonald Observatory, from the construction of the 2.7-m Harlan J. Smith Telescope and its coudé spectrograph through the completion of the 9.2-m Hobby-Eberly Telescope with its high-resolution fiber-fed spectrograph. We begin with photographic spectroscopy and advance through rapid-scanning photon counting spectrometry under computer control, addition of echelle gratings, Reticon and self-scanned Digicon solid-state imaging detectors, and innovative cross-dispersed echelle spectrometers with large-format CCDs. Funding for all these projects by the National Science Foundation and the National Aeronautics and Space Administration is gratefully acknowledged, as are additional support from University of Texas matching grants and from the Texas state legislature. Thanks also to the many colleagues who have shared this adventure with me: Ed Nather, who taught me computer interfacing techniques; Johnnie Floyd, Don Wells, Steve Vogt, Phil Kelton, Richard Stover, Brenda Young, Phillip MacQueen, David Doss, John Good, Harland Epps, and Mark Cornell, who were involved in various phases of instrument development; and Hans Dekker, who shared ideas developed at ESO. The users developed the observing and data reduction techniques; among these are David Lambert, Chris Sneden, Ed Barker, Larry Trafton, Joc Tomkin, and many others. Tom Barnes and Frank Bash provided moral and logistical support, and Joyce Sampson spent many hours in fund-raising efforts. Finally, I wish to dedicate this work to the memory of Harlan J. Smith who gave unswerving encouragement and support over a period of many years.

  15. Two Decades of Advances in High-Resolution Spectroscopy of Large-Amplitude Motions in N-Fold Potential Wells, as Illustrated by Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong

    2016-06-01

    Methanol is a simple and intensively studied organic molecule possessing one large-amplitude torsional motion. It has, for nearly a century, been a favorite of researchers in many fields, e.g., instrument builders, for whom methanol is often the first molecule chosen for testing an improved or a newly built instrument (including HIFI, the Heterodyne Instrument for the Far Infrared on board the Herschel space mission); theorists and/or dynamicists studying the challenging effects of a large-amplitude motion coupling with small-amplitude motions to enhance intramolecular vibrational energy redistribution; astronomers who have elevated methanol to their #1 interstellar weed because of its rich and omnipresent spectrum in the interstellar garden, where it serves as a unique probe for diagnosing conditions in star-forming regions; astrochemists studying isotopic ratios as clues to the chemical evolution of the universe; and fundamentalists seeking possible time variation of the proton/electron mass ratio in the standard model; just to name a few. From high-resolution to high-precision spectroscopy, the large-amplitude internal rotation of the methyl top against its OH framework in methanol has never failed to produce new surprises in spectral regions from the microwave all the way to the near IR. The very recent observation of completely unexpected large methanol hyperfine splittings is a vivid testimonial that the large-amplitude torsional motion can still lead us to unexplored landscapes. This talk will focus on the complicated vibration-torsion-rotation energy networks and interactions deduced from high resolution spectra; our efforts to understand some of them using ab-initio-assisted approaches and the modeling of torsion-rotation and torsionally mediated spin-rotation hyperfine splittings in methanol. These topics represent one part of the much larger fascinating world inhabited by methanolics.

  16. The Wesleyan Hobby-Eberly High-resolution Exoplanetary Atmospheric Transmission Spectroscopy Survey (W[HE]2ATS2): First Results

    NASA Astrophysics Data System (ADS)

    Jensen, Adam G.; Redfield, S.; Cochran, W. D.; Endl, M.; Koesterke, L.; Barman, T.

    2011-01-01

    We present the first results of W[HE]2ATS2 (The Wesleyan Hobby-Eberly High-resolution Exoplanetary Atmospheric Transmission Spectroscopy Survey). To date, this survey has collected approximately 90 hours worth of high-resolution (R 60k) ground-based optical spectra with the 9.2m Hobby-Eberly Telescope, with additional observations in progress. The survey includes five different solar-type stellar systems with transiting hot Jupiters or Neptunes. Spectra are taken both in and out of transit; the two categories of observations are each coadded with the resulting coadded spectra differenced to search for absorption from resonance lines of alkali metals that are expected in these atmospheres. We will present our confirmation of previous detections of Na I absorption in HD 189733 and HD 209458 and present upper limits on and possible new detections of Na I and K I in these and other targets. In addition, we will describe the details and challenges of our data reduction and analysis. Finally, we will discuss our prospects for future work in searching for additional alkali metal lines and exospheric absorption. This work is supported by the National Science Foundation through an Astronomy and Astrophysics Research Grant (AST-0903573). The Hobby-Eberly Telescope is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen and is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

  17. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL.

    PubMed

    Nahon, Laurent; de Oliveira, Nelson; Garcia, Gustavo A; Gil, Jean-François; Pilette, Bertrand; Marcouillé, Olivier; Lagarde, Bruno; Polack, François

    2012-07-01

    DESIRS is a new undulator-based VUV beamline on the 2.75 GeV storage ring SOLEIL (France) optimized for gas-phase studies of molecular and electronic structures, reactivity and polarization-dependent photodynamics on model or actual systems encountered in the universe, atmosphere and biosphere. It is equipped with two dedicated endstations: a VUV Fourier-transform spectrometer (FTS) for ultra-high-resolution absorption spectroscopy (resolving power up to 10(6)) and an electron/ion imaging coincidence spectrometer. The photon characteristics necessary to fulfill its scientific mission are: high flux in the 5-40 eV range, high spectral purity, high resolution, and variable and well calibrated polarizations. The photon source is a 10 m-long pure electromagnetic variable-polarization undulator producing light from the very near UV up to 40 eV on the fundamental emission with tailored elliptical polarization allowing fully calibrated quasi-perfect horizontal, vertical and circular polarizations, as measured with an in situ VUV polarimeter with absolute polarization rates close to unity, to be obtained at the sample location. The optical design includes a beam waist allowing the implementation of a gas filter to suppress the undulator high harmonics. This harmonic-free radiation can be steered toward the FTS for absorption experiments, or go through a highly efficient pre-focusing optical system, based on a toroidal mirror and a reflective corrector plate similar to a Schmidt plate. The synchrotron radiation then enters a 6.65 m Eagle off-plane normal-incidence monochromator equipped with four gratings with different groove densities, from 200 to 4300 lines mm(-1), allowing the flux-to-resolution trade-off to be smoothly adjusted. The measured ultimate instrumental resolving powers are 124000 (174 µeV) around 21 eV and 250000 (54 µeV) around 13 eV, while the typical measured flux is in the 10(10)-10(11) photons s(-1) range in a 1

  18. Cathodoluminescence plasmon microscopy

    NASA Astrophysics Data System (ADS)

    Kuttge, M.

    2009-03-01

    Surface plasmon polaritons (SPPs) are electromagnetic waves that are strongly coupled to the collective oscillation of free electrons at an interface between a dielectric and a metal. Strong confinement of the electromagnetic field and tunability of SPP dispersion allow two-dimensional optics. This thesis focuses on acquiring fundamental understanding of the generation and confinement of SPPs using electron beam irradiation. SPPs are generated using the focused electron beam of a scanning electron microscope. The electron beam acts as point source for circular SPP waves. The resulting emission is detected using a cathodoluminescence (CL) spectroscopy setup The CL emission in front of a grating patterned in an otherwise planar gold surface shows oscillations with distance from the grating. These oscillations are caused by the coherent interaction of transition radiation and SPPs scattered by the grating, which leads to interference in the far field. We present a detailed theoretical analysis that successfully explains the measured CL signal. A connection between the CL signal and the photonic local density of states associated to SPPs is established. The SPP damping was determined by measuring the decay of the CL intensity on a line scan perpendicular to gratings fabricated into the surface. We find that the propagation length for single-crystalline gold is in agreement with calculations based on dielectric constants while for poly-crystalline films the propagation length is reduced. Scattering of SPPs at grain boundaries is identified as additional loss mechanism. We have numerically studied the reflectivity for SPPs of single grooves structured into the surface. Using FDTD calculations we find that the reflectivity shows resonances that are related to localized groove modes. The groove reflectivity is the result of coupling of the incident plasmon wave to the localized modes that then reradiate to cause a reflected plasmon wave. Two parallel grooves structured

  19. Feedback in the Antennae Galaxies (NGC 4038/9): I. High-Resolution Infrared Spectroscopy of Winds from Super Star Clusters

    SciTech Connect

    Gilbert, A; Graham, J

    2007-06-05

    We present high-resolution (R {approx} 24,600) near-IR spectroscopy of the youngest super star clusters (SSCs) in the prototypical starburst merger, the Antennae Galaxies. These SSCs are young (3-7 Myr old) and massive (10{sup 5}-10{sup 7} M{sub {circle_dot}} for a Kroupa IMF) and their spectra are characterized by broad, extended Brackett {gamma} emission, so we refer to them as emission-line clusters (ELCs) to distinguish them from older SSCs. The Br {gamma} lines of most ELCs have supersonic widths (60-110 km s{sup -1} FWHM) and non-Gaussian wings whose velocities exceed the clusters escape velocities. This high-velocity unbound gas is flowing out in winds that are powered by the clusters massive O and W-R stars over the course of at least several crossing times. The large sizes of some ELCs relative to those of older SSCs may be due to expansion caused by these outflows; many of the ELCs may not survive as bound stellar systems, but rather dissipate rapidly into the field population. The observed tendency of older ELCs to be more compact than young ones is consistent with the preferential survival of the most concentrated clusters at a given age.

  20. Probing molecular dynamics in chromatographic systems using high-resolution 1H magic-angle-spinning NMR spectroscopy: interaction between p-Xylene and C18-bonded silica.

    PubMed

    Coen, Muireann; Wilson, Ian D; Nicholson, Jeremy K; Tang, Huiru; Lindon, John C

    2004-06-01

    The exact nature of the interaction between small molecules and chromatographic solid phases has been the subject of much research, but detailed understanding of the molecular dynamics in such systems remains elusive. High-resolution (1)H magic-angle-spinning (MAS) NMR spectroscopy has been applied to the investigation of C18-bonded silica material as used in chromatographic separation techniques together with an adsorbed model analyte, p-xylene. Two distinct p-xylene and water environments were identified within the C18-bonded silica through the measurement of (1)H NMR chemical shifts, T(1) and T(2) relaxation times and diffusion coefficients, including their temperature dependence. The results have been analyzed in terms of two environments, p-xylene within the C18 chains, in slow exchange on the NMR time scale with p-xylene in a more mobile state adsorbed as a layer in close proximity to the C18 particles, but which is distinct from free liquid p-xylene. The techniques used here could have more general applications, including the study of drug molecules bound into phospholipid membranes in micelles or vesicles.

  1. Enhanced characterization of oil sands acid-extractable organics fractions using electrospray ionization-high-resolution mass spectrometry and synchronous fluorescence spectroscopy.

    PubMed

    Bauer, Anthony E; Frank, Richard A; Headley, John V; Peru, Kerry M; Hewitt, L Mark; Dixon, D George

    2015-05-01

    The open pit oil sands mining operations north of Fort McMurray, Alberta, Canada, are accumulating tailings waste at a rate approximately equal to 4.9 million m(3) /d. Naphthenic acids are among the most toxic components within tailings to aquatic life, but structural components have largely remained unidentified. In the present study, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and synchronous fluorescence spectroscopy (SFS) were used to characterize fractions derived from the distillation of an acid-extractable organics (AEO) mixture isolated from oil sands process-affected water (OSPW). Mean molecular weights of each fraction, and their relative proportions to the whole AEO extract, were as follows: fraction 1: 237 Da, 8.3%; fraction 2: 240 Da, 23.8%; fraction 3: 257 Da, 26.7%; fraction 4: 308 Da, 18.9%; fraction 5: 355 Da, 10.0%. With increasing mean molecular weight of the AEO fractions, a concurrent increase occurred in the relative abundance of nitrogen-, sulfur-, and oxygen-containing ions, double-bond equivalents, and degree of aromaticity. Structures present in the higher-molecular-weight fractions (fraction 4 and fraction 5) suggested the presence of heteroatoms, dicarboxyl and dihydroxy groups, and organic acid compounds with the potential to function as estrogens. Because organic acid compositions become dominated by more recalcitrant, higher-molecular-weight acids during natural degradation, these findings are important in the context of oil sands tailings pond water remediation.

  2. Multiple pre-edge structures in Cu K -edge x-ray absorption spectra of high- Tc cuprates revealed by high-resolution x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gougoussis, C.; Rueff, J.-P.; Calandra, M.; D'Astuto, M.; Jarrige, I.; Ishii, H.; Shukla, A.; Yamada, I.; Azuma, M.; Takano, M.

    2010-06-01

    Using high-resolution x-ray absorption spectroscopy and state-of-the-art electronic structure calculations we demonstrate that the pre-edge region at the Cu K edge of high- Tc cuprates is composed of several excitations invisible in standard x-ray absorption spectra. We consider in detail the case of Ca2-xCuO2Cl2 and show that the many pre-edge excitations (two for c -axis polarization, four for in-plane polarization and out-of-plane incident x-ray momentum) are dominated by off-site transitions and intersite hybridization. This demonstrates the relevance of approaches beyond the single-site model for the description of the pre edges of correlated materials. Finally, we show the occurrence of a doubling of the main edge peak that is most visible when the polarization is along the c axis. This doubling, that has not been seen in any previous absorption data in cuprates, is not reproduced by first-principles calculations. We suggest that this peak is due to many-body charge-transfer excitations while all the other visible far-edge structures are single particle in origin. Our work indicates that previous interpretations of the Cu K -edge x-ray absorption spectra in high- Tc cuprates can be profitably reconsidered.

  3. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    SciTech Connect

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  4. Proline Adsorption on TiO2(1 1 0) Single Crystal Surface: A Study by High Resolution Photoelectron Spectroscopy

    SciTech Connect

    Fleming,G.; Adib, K.; Rodriguez, J.; Barteau, M.; Idriss, H.

    2007-01-01

    The surface chemistry and binding of dl-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO2(1 1 0) single crystal surfaces. TiO2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that dl-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO2 surface. On TiO2(1 1 0) surfaces reduced by Ar+ sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  5. Analysis of adhesive binding forces between laminin-1 and C2C12 muscle cell membranes measured via high resolution force spectroscopy

    NASA Astrophysics Data System (ADS)

    Gluck, George; Gilbert, Richard; Ortiz, Christine

    2002-03-01

    Laminins are a family of glycoproteins that regulate cell differentiation, shape, and motility through interactions with various cell surface receptors. Here, we have directly measured the biomolecular adhesive binding forces between a cantilever / probe tip that was covalently attached with laminin-1 and membrane receptors on C2C12 muscle cells using the technique of high-resolution force spectroscopy (HRFS). On retraction of the probe tip away from the membrane surface, discrete, long-range adhesive unbinding events were always observed. Statistical analysis of the data revealed an initial broad distribution of heterogeneous unbinding events (occurring at separation distances, D=0-2µm from the point of maximum compression) of magnitude 92.23±37.87pN followed by a narrow distribution of homogeneous unbinding events (occurring at D > 2µm) of magnitude 38.16±9.10pN, which is suggestive of an individual biomolecular adhesive interaction. On-going studies include loading rate dependence and effect of dystroglycan mutation.

  6. Hydrogen bonding configuration and thermal stability of ambient exposed and in situ hydrogenated polycrystalline diamond surfaces studied by high resolution electron energy loss spectroscopy.

    PubMed

    Michaelson, Sh; Akhvlediani, R; Hoffman, A

    2011-06-28

    In this work we report on an investigation of hydrogen bonding and thermal stability on the surface of poly-crystalline diamond by high resolution electron energy loss spectroscopy (HR-EELS). Diamond films were grown on silicon substrates from CH(4)/H(2) as well as from CD(4)/D(2) gas mixtures by hot filament chemical vapor deposition (HF-CVD). The impact of ex situ ambient exposure on hydrogen bonding and its thermal stability was examined for: (i) as deposited films from a CH(4)/H(2) gas mixture; (ii) the same sample treated ex situ in micro-wave activated hydrogen plasma; and (iii) as deposited films from a CD(4)/D(2) gas mixture. In order to clarify the changes in the hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing in situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and low temperature vacuum annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the poly-crystalline diamond surfaces.

  7. High Resolution Direct Frequency Comb Spectroscopy of Vinyl Bromide (C_2H_3Br) and Nitromethane (CH_3NO_2) in the CH Stretch Region

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Spaun, Ben; Patterson, David; Ye, Jun

    2016-06-01

    We present high resolution rovibrational spectra of buffer gas cooled vinyl bromide (C_2H_3Br) and nitromethane (CH_3NO_2) in the 3 μm CH stretch region, acquired via cavity-enhanced direct frequency comb absorption spectroscopy. The ˜10 K translational and rotational temperatures of the molecular gas, as well as the narrow linewidth of the frequency comb, yield well resolved rotational structure, isotope shifts, and nuclear hyperfine splittings. Given the wide bandwidth of the light source and the long path length of the enhancement cavity, we measure entire vibrational bands in a single shot with high signal-to-noise ratios. We discuss spectra of the entire fundamental CH stretch manifolds of both C_2H_3Br and CH_3NO_2, which provide contrasting examples of rovibrational structure of rigid and non-rigid systems. C_2H_3Br is a relatively normal asymmetric top, exhibiting local perturbations to its rotational structure. Conversely, CH_3NO_2 contains an essentially unhindered methyl rotor. Of particular interest are its quasi-degenerate asymmetric CH stretch modes. Here, one must consider multiple couplings between torsional, rotational, and vibrational angular momentum, leading to qualitatively new level patterns and structure.

  8. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  9. High resolution x-ray absorption and emission spectroscopy of Li x CoO2 single crystals as a function delithiation

    NASA Astrophysics Data System (ADS)

    Simonelli, L.; Paris, E.; Iwai, C.; Miyoshi, K.; Takeuchi, J.; Mizokawa, T.; Saini, N. L.

    2017-03-01

    The effect of delithiation in Li x CoO2 is studied by high resolution Co K-edge x-ray absorption and x-ray emission spectroscopy. Polarization dependence of the x-ray absorption spectra on single crystal samples is exploited to reveal information on the anisotropic electronic structure. We find that the electronic structure of Li x CoO2 is significantly affected by delithiation in which the Co ions oxidation state tending to change from 3+  to 4+. The Co intersite (intrasite) 4p–3d hybridization suffers a decrease (increase) by delithiation. The unoccupied 3d t 2g orbitals with a 1g symmetry, containing substantial O 2p character, hybridize isotropically with Co 4p orbitals and likely to have itinerant character unlike anisotropically hybridized 3d e g orbitals. Such a peculiar electronic structure could have significant effect on the mobility of Li in Li x CoO2 cathode and hence the battery characteristics.

  10. High-resolution magic angle spinning (1)H magnetic resonance spectroscopy detects choline as a biomarker in a swine obstructive chronic pancreatitis model at an early stage.

    PubMed

    Sun, Gaofeng; Wang, Jianhua; Zhang, Jian; Ma, Chao; Shao, Chengwei; Hao, Jun; Zheng, Jianming; Feng, Xiaoyuan; Zuo, Changjing

    2014-03-04

    Chronic pancreatitis (CP) is a progressive inflammatory and fibrotic disease of the pancreas which encompasses a variety of clinical syndromes ranging from mild to life-threatening complications. Metabolomics has increasingly been applied to identify biomarkers for disease diagnosis with particular interest in diseases at an early stage. In this study, we tested a swine obstructive CP model by subtotal ligation of the main pancreatic duct, and the metabolic profiles of the Bama miniature swine pancreas were investigated using high-resolution magic angle spinning proton magnetic resonance spectroscopy (HR MAS (1)H MRS) combined with principal components analysis (PCA). Increases in lactate and choline for mild CP and decreases in glycerophosphocholine, phosphocholine, betaine and glycine were observed from normal pancreas to mild, moderate and severe CP. PCA results showed visual separations among the groups. The increase of choline at an early stage of CP and the decrease of glycerophosphocholine, phosphocholine, betaine and glycine reveal the pathogenesis of CP at a molecular level. The MRS results presented here demonstrate the potential of metabolic profiles in discriminating a normal pancreas from different stages of CP, which may be used to achieve CP early diagnosis and timely intervention to prevent irreversible destruction of the pancreas.

  11. Assignment and Analysis of the NO2 In-Plane Rock Band of Nitromethane Recorded by High-Resolution FTIR Synchrotron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dawadi, Mahesh B.; Perry, David S.; Twagirayezu, Sylvestre; Billinghurst, Brant E.

    2014-06-01

    The high-resolution rotationally resolved Fourier Transform Far-infrared spectrum of the NO2 in plane-rock band (440-510 cm-1) of nitromethane (CH3NO2) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm-1. More than 1500 transitions lines have been assigned for ' = 0; {_a}' {≤ 7}; ' {≤ 50}; using an automated ground state combination difference program together with the traditional Loomis Wood approach. Transitions involving ' = 0; {_a}' {≤7}; ' {≤ 20}; in the upper vibrational state are fit using the six-fold torsion-rotation program developed by Ilyushin et.al. The torsion-rotation energy pattern in the lowest torsional state ( ' = 0) of the upper vibrational state is similar to that of the vibrational ground state. C. F. Neese., An Interactive Loomis-Wood Package, V2.0, {56th},OSU Interanational Symposium on Molecular Spectroscopy (2001). V. V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H. Mader, and J. T. Hougen, M. Mol. Spectrosc., 259, 26, (2010).

  12. Valence band study of Sm0.1Ca0.9 - xSrxMnO3 using high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Dalai, Manas Kumar; Sekhar, Biju Raja; Biswas, Deepnarayan; Thakur, Sangeeta; Maiti, Kalobaran; Chiang, Tai-Chang; Martin, Christine

    2014-03-01

    We have studied the valence band electronic structure of Sm0.1Ca0.9- xSrxMnO3 (x = 0, 0.1, 0.3 and 0.6) at various temperatures using high resolution photoemission spectroscopy (HRPES). The data were taken using a Scienta R4000 energy analyser and the resolution was set at 5 meV. The doping dependent studies of Sm0.1Ca0.9-x SrxMnO3 at 50 K, 100 K and 295 K are quite interesting. The density of eg states near the Fermi level decreases with Sr substitution at the Ca site at 50 K. Also the similar trend has been observed at 100 K. At 295 K the changes in the eg states is quite different than the earlier temperatures where the intensity remains the same for x = 0, 0.1 and 0.3 and then decreases for x = 0.6. These changes in the density of states near the Fermi level will be explained by taking into account the structural, electrical and magnetic properties associated with this system. Permanent affiliation of Manas Kumar Dalai ; CSIR-National Physical Laboratory, New Delhi-110012, India. MKD acknowledges the Indo-US Science and Technology Forum (IUSSTF) for the fellowship.

  13. Two bonding configurations of acetylene on Si(001)-(2 x 1): a combined high-resolution electron energy loss spectroscopy and density functional theory study.

    PubMed

    Mineva, T; Nathaniel, R; Kostov, K L; Widdra, W

    2006-11-21

    Two coexisting adsorption states of molecularly adsorbed acetylene on the Si(001)-(2 x 1) surface have been identified by a combined study based on the high-resolution electron energy loss spectroscopy and density functional computations. Seven possible adsorbate-substrate structures are considered theoretically including their full vibrational analysis. Based on a significantly enhanced experimental resolution, the assignment of 15 C2H2- and C2D2-derived vibrational modes identifies a dominant di-sigma bonded molecule adsorbed on top of a single Si-Si dimer. Additionally there is clear evidence for a second minority species which is di-sigma bonded between two Si-Si dimers within the same dimer row (end-bridge geometry). The possible symmetries of the adsorbate complexes are discussed based on the specular and off-specular vibrational measurements. They suggest lower than ideal C(2v) and C(s) symmetries for on-top and end-bridge species, respectively. At low coverages the symmetry reductions might be lifted.

  14. High resolution UV resonance enhanced two-photon ionization spectroscopy with mass selection of biologically relevant molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Chervenkov, S.; Wang, P. Q.; Karaminkov, R.; Chakraborty, T.; Braun, Juergen E.; Neusser, Hans J.

    2005-04-01

    The high resolution Doppler-free resonance-enhanced two-photon ionization (R2PI) spectroscopy with mass selection of jet-cooled (2-12 K) molecular species is a powerful experimental method providing comprehensive information on both isolated molecules and molecular clusters. We have demonstrated for the first time that this technique can be applied to large molecules and provides detailed information on their conformational structure. It allows rotationally resolved (FWHM = 70 MHz) spectra of the vibronic bands of the S1<--S0 electronic transition of the studied molecular systems to be measured. A specially designed computer-assisted fitting routine based on genetic algorithms is used to determine their rotational constants in the ground and excited electronic states, respectively, and the transition moment ratio. To interpret the experimental information and to discriminate and unambiguously assign the observed approach to the study of the neurotransmitter molecule, ephedrine. The results elucidate the role of the intramolecular hydrogen bonds stabilizing the respective conformations and affecting their intrinsic properties.

  15. Probing optical band gaps at the nanoscale in NiFe₂O₄ and CoFe₂O₄ epitaxial films by high resolution electron energy loss spectroscopy

    SciTech Connect

    Dileep, K.; Loukya, B.; Datta, R.; Pachauri, N.; Gupta, A.

    2014-09-14

    Nanoscale optical band gap variations in epitaxial thin films of two different spinel ferrites, i.e., NiFe₂O₄ (NFO) and CoFe₂O₄ (CFO), have been investigated by spatially resolved high resolution electron energy loss spectroscopy. Experimentally, both NFO and CFO show indirect/direct band gaps around 1.52 eV/2.74 and 2.3 eV, and 1.3 eV/2.31 eV, respectively, for the ideal inverse spinel configuration with considerable standard deviation in the band gap values for CFO due to various levels of deviation from the ideal inverse spinel structure. Direct probing of the regions in both the systems with tetrahedral A site cation vacancy, which is distinct from the ideal inverse spinel configuration, shows significantly smaller band gap values. The experimental results are supported by the density functional theory based modified Becke-Johnson exchange correlation potential calculated band gap values for the different cation configurations.

  16. High-resolution Brillouin spectroscopy with angular dispersion-type Fabry-Perot interferometer and its application to a quartz crystal.

    PubMed

    Ike, Y; Tsukada, S; Kojima, S

    2007-07-01

    Although the multichannel Brillouin spectroscopy with an angular dispersion-type Fabry-Perot interferometer (ADFPI) becomes a powerful tool for quick measurements, its resolution and contrast are not enough for the study of single crystals. A highly sensitive multichannel detector enables the ADFPI to use a solid etalon with high reflectivity (99.5%); hence, the high resolution and the high contrast of a spectrum are achieved. The finesse, the inverse of the resolution, reaches 100 with a 10 mm diameter of aperture size. The highest finesse of 140 is obtained by using a smaller diameter of 2 mm. The accuracy is examined by the measurement of a quartz crystal. The improvement in the resolution and contrast enables investigations of weak attenuation in a quartz crystal. The elastic anomaly of the alpha-beta transition of a quartz crystal is clearly observed both in sound velocity and attenuation. From the elastic constant c(11), the critical parameter K=0.76 is determined.

  17. Insights into atomic-level interaction between mefenamic acid and eudragit EPO in a supersaturated solution by high-resolution magic-angle spinning NMR spectroscopy.

    PubMed

    Higashi, Kenjirou; Yamamoto, Kazutoshi; Pandey, Manoj Kumar; Mroue, Kamal H; Moribe, Kunikazu; Yamamoto, Keiji; Ramamoorthy, Ayyalusamy

    2014-01-06

    The intermolecular interaction between mefenamic acid (MFA), a poorly water-soluble nonsteroidal anti-inflammatory drug, and Eudragit EPO (EPO), a water-soluble polymer, is investigated in their supersaturated solution using high-resolution magic-angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy. The stable supersaturated solution with a high MFA concentration of 3.0 mg/mL is prepared by dispersing the amorphous solid dispersion into a d-acetate buffer at pH 5.5 and 37 °C. By virtue of MAS at 2.7 kHz, the extremely broad and unresolved (1)H resonances of MFA in one-dimensional (1)H NMR spectrum of the supersaturated solution are well-resolved, thus enabling the complete assignment of MFA (1)H resonances in the aqueous solution. Two-dimensional (2D) (1)H/(1)H nuclear Overhauser effect spectroscopy (NOESY) and radio frequency-driven recoupling (RFDR) under MAS conditions reveal the interaction of MFA with EPO in the supersaturated solution at an atomic level. The strong cross-correlations observed in the 2D (1)H/(1)H NMR spectra indicate a hydrophobic interaction between the aromatic group of MFA and the backbone of EPO. Furthermore, the aminoalkyl group in the side chain of EPO forms a hydrophilic interaction, which can be either electrostatic or hydrogen bonding, with the carboxyl group of MFA. We believe these hydrophobic and hydrophilic interactions between MFA and EPO molecules play a key role in the formation of this extremely stable supersaturated solution. In addition, 2D (1)H/(1)H RFDR demonstrates that the molecular MFA-EPO interaction is quite flexible and dynamic.

  18. Microtomography and improved resolution in cathodoluminescence microscopy using confocal mirror optics

    SciTech Connect

    Chan, D.S.H.; Liu, Y.Y.; Phang, J.C.H.; Rau, E.; Sennov, R.; Gostev, A.V.

    2004-10-01

    Cathodoluminescence in scanning electron microscopy observed using an ellipsoidal confocal light collector system can offer improved resolution and an implementation of microtomography. With this signal collection system, the resolution limit is no longer determined by the beam and specimen properties but by the system optics. This possibility is demonstrated by the modeling of light transport in cathodoluminescent materials and in the ellipsoidal confocal system which collects the light emission. The conditions for the high-resolution three-dimensional visualization of microstructure within the generation volume of cathodoluminescence emission is described.

  19. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  20. High-Resolution Magic-Angle Spinning-(1)H NMR Spectroscopy-Based Metabolic Profiling of Hippocampal Tissue in Rats with Depression-Like Symptoms.

    PubMed

    Akimoto, Hayato; Oshima, Shinji; Ohara, Kousuke; Negishi, Akio; Hiroyama, Hanako; Nemoto, Tadashi; Kobayashi, Daisuke

    2017-03-04

    Depressive disorders cause large socioeconomic effects influencing not only the patients themselves but also their family and broader community as well. To better understand the physiologic factors underlying depression, in this study, we performed metabolomics analysis, an omics technique that comprehensively analyzes small molecule metabolites in biological samples. Specifically, we utilized high-resolution magic-angle spinning-(1)H NMR (HRMAS-(1)H NMR) spectroscopy to comprehensively analyze the changes in metabolites in the hippocampal tissue of rats exposed to chronic stress (CS) via multi-step principal component analysis (multi-step PCA). The rats subjected to CS exhibited obvious depression-like behaviors. High correlations were observed between the first principal component (PC1) score in the score plot obtained using multi-step PCA and measurements from depression-like behavioral testing (body weight, sucrose preference test, and open field test). Alanine, glutamate, glutamine, and aspartate levels in the hippocampal tissue were significantly lower, whereas N-acetylaspartate, myo-inositol, and creatine were significantly higher in the CS group compared to the control (non-CS) group. As alanine, glutamate, and glutamine are known to be involved in energy metabolism, especially in the TCA cycle, chronic exogenous stress may have induced abnormalities in energy metabolism in the brains of the rats. The results suggest that N-acetylaspartate and creatine levels may have increased in order to complement the loss of energy-producing activity resulting from the development of the depression-like disorder. Multi-step PCA therefore allowed an exploration of the degree of depression-like symptoms as represented by changes in intrinsic metabolites.

  1. High-resolution X-Ray Spectroscopy of the Seyfert 1 Galaxy Mrk 1040. Revealing the Failed Nuclear Wind with Chandra

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.

    2017-03-01

    High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013–2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm‑2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s‑1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.

  2. High-Resolution X-Ray Spectroscopy of a Low-Luminosity Active Galactic Nucleus: The Structure and Dynamics of M81*

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Nowak, M. A.; Markoff, S.; Marshall, H. L.; Canizares, C. R.

    2007-11-01

    We present Chandra HETGS observations of the low-luminosity active galactic nucleus (LLAGN) of M81. The HETGS is unique in providing high-resolution spectroscopy of the central 1" of M81, including the iron K bandpass. The continuum is a power law of photon index Γ=1.8, similar to that seen in highly luminous AGNs. Highly ionized emission lines, characteristic of gas at temperatures of T=106-108 K, are detected. Many of these thermal lines are velocity broadened, with a FWHM of approximately 1500 km s-1. A separate thermal component is associated with a 2557 km s-1 redshifted Fe XXVI emission line, characteristic of gas at temperatures T=107.4-108 K. Neutral Fe, Ar, and Si Kα fluorescence lines indicate the presence of cold, dense material. The Si Kα fluorescence line is velocity broadened, with a FWHM of 1200 km s-1. If the fluorescence lines are produced by reflection from cold, Compton thick material, then the line strengths are not compatible with solar abundances, instead favoring enhanced Ar and Si abundances with respect to the Fe abundance. The Fe Kα line is narrow, with no evidence of a thin disk extending inside 55rg (where rg=GM/c2 is the gravitational radius for a black hole of mass M). We show that a simple spectral model used to represent the expectations from a radiatively inefficient accretion flow (RIAF) describes the X-ray data well, while in a companion paper we will show that jet models with parameters similar to fits of hard state X-ray binaries describe both the X-ray and broadband (radio/optical) spectra. The HETGS spectra we present here offer an unprecedented view of the inner workings of a low-luminosity accretion flow, and thus can quantitatively constrain theoretical accretion flow models of LLAGNs such as M81*.

  3. High-resolution {upsilon}{sub OH} = 3{l_arrow}0 and {upsilon}{sub OH} = 4{l_arrow}0 overtone spectroscopy of HOD

    SciTech Connect

    Fair, J.R.; Votava, O.; Nesbitt, D.J.

    1996-12-31

    High-resolution (0.005 cm{sup -1}) IR overtone excitation with an injection seeded optical parametric oscillator (OPO) is used to investigate the spectroscopy of HOD in the {upsilon}{sub OH} = 3{l_arrow}0 region via room temperature photoacoustic detection methods. Comparison of the photoacoustic spectra from an H{sub 2}O/D{sub 2}O/HOD mixture and from pure H{sub 2}O determines the lines corresponding to {upsilon}{sub OH} = 3{l_arrow}0 absorptions in HOD. A prediction of the HOD spectrum in this region is generated from an extrapolation of {upsilon}{sub OH} = 0 and 1 rotational constants and from the {upsilon}{sub OH} = 3{l_arrow}0 band origin calculated by Tennyson and coworkers [private communication]. This predicted spectrum enables the HOD {upsilon}{sub OH} = 3{l_arrow}0 photoacoustic spectrum to be assigned; a fit of the experimental data produces the low-order rotational constants for this transition as well as a Birge-Sponer analysis of the overtone series. The vibrational dependence of the HOD rotational constants is demonstrated to be quite linear in {upsilon}{sub OH}, permitting reliable extrapolation to the {upsilon}{sub OH} = 4 manifold. As a result, the {upsilon}{sub OH} = 0, 1 and 3 constants can be used to predict the spectrum of HOD {upsilon}{sub OH} = 4{l_arrow}0, which now enables the assignment of the vibrationally mediated photodissociation spectrum measured by Crim and coworkers. The overtone spectroscopic data for HOD is further confirmed in double resonance IR and UV photolysis of HOD and HOD-containing clusters in slit supersonic expansions.

  4. Analysis of metabolic characteristics in a rat model of chronic pancreatitis using high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy.

    PubMed

    Tian, Bing; Ma, Chao; Wang, Jian; Pan, Chun-Shu; Yang, Gen-Jin; Lu, Jian-Ping

    2015-01-01

    Pathological and metabolic alterations co-exist and co-develop in the progression of chronic pancreatitis (CP). The aim of the present study was to investigate the metabolic characteristics and disease severity of a rat model of CP in order to determine associations in the observed pathology and the metabolites of CP using high-resolution magic-angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR). Wistar rats (n=36) were randomly assigned into 6 groups (n=6 per group). CP was established by administering dibutyltin dichloride solution into the tail vein. After 0, 7, 14, 21, 28 and 35 days, the pancreatic tissues were collected for pathological scoring or for HR-MAS NMR. Correlation analyses between the major pathological scores and the integral areas of the major metabolites were determined. The most representative metabolites, aspartate, betaine and fatty acids, were identified as possessing the greatest discriminatory significance. The Spearman's rank correlation coefficients between the pathology and metabolites of the pancreatic tissues were as follows: Betaine and fibrosis, 0.454 (P=0.044); betaine and inflammatory cell infiltration, 0.716 (P=0.0001); aspartate and fibrosis, -0.768 (P=0.0001); aspartate and inflammatory cell infiltration, -0.394 (P=0.085); fatty acid and fibrosis, -0.764 (P=0.0001); and fatty acid and inflammatory cell infiltration, -0.619 (P=0.004). The metabolite betaine positively correlated with fibrosis and inflammatory cell infiltration in CP. In addition, aspartate negatively correlated with fibrosis, but exhibited no significant correlation with inflammatory cell infiltration. Furthermore, the presence of fatty acids negatively correlated with fibrosis and inflammatory cell infiltration in CP. HR-MAS NMR may be used to analyze metabolic characteristics in a rat model of different degrees of chronic pancreatitis.

  5. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  6. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  7. Matrix effects on the triplet state of the OLED emitter Ir(4,6-dFppy)2(pic) (FIrpic): investigations by high-resolution optical spectroscopy.

    PubMed

    Rausch, Andreas F; Thompson, Mark E; Yersin, Hartmut

    2009-03-02

    The sky-blue emitting compound Ir(4,6-dFppy)(2)(pic) (iridium(III)bis[2-(4',6'-difluorophenyl)pyridinato-N,C(2')]-picolinate), commonly referred to as FIrpic and representing a well-known emitter material for organic light emitting diodes (OLEDs), has been investigated in detail by optical spectroscopy. Studies at temperatures from T = 1.5 K to T = 300 K were carried out in CH(2)Cl(2) and tetrahydrofuran (THF). In CH(2)Cl(2), two discrete sites were observed at cryogenic temperatures and studied by site-selective, high-resolution spectroscopy. The investigations reveal that the molecules located at the two sites exhibit distinctly different photophysical properties. For example, the three substates I, II, and III of the emitting triplet state T(1) of the low-energy site A show a distinctly larger zero-field splitting (ZFS) and exhibit shorter individual decay times than observed for the high-energy site B. The vibrational satellite structures in the emission spectra of the substates I(A) and I(B) exhibit clear differences in the ranges of metal-ligand (M-L) vibrations. For the compound studied in a polycrystalline THF host, giving only strongly inhomogeneously broadened spectra, the ZFS parameters and substate decay times vary in a similar range as observed for the two discrete sites in the CH(2)Cl(2) matrix. Thus, the amount of ZFS, the emission decay times, and also the intensities of the M-L vibrational satellites are affected by the matrix cage, that is, the host environment of the emitting complex. These properties are discussed with respect to variations of spin-orbit coupling routes. In particular, changes of d-orbital admixtures, that is, differences of the metal-to-ligand charge transfer (MLCT) character in the emitting triplet, play an important role. The matrix effects are expected to be also of importance for FIrpic and other Ir(III) compounds when applied as emitters in amorphous OLED matrixes.

  8. High-Resolution Spectroscopy of He{_2}^+ Using Rydberg-Series Extrapolation and Zeeman-Decelerated Supersonic Beams of Metastable He_2

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Merkt, Frederic

    2016-06-01

    Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M

  9. Dynamic High-Resolution H-1 and P-31 NMR Spectroscopy and H-1 T-2 Measurements in Postmortem Rabbit Muscles Using Slow Magic Angle Spinning

    SciTech Connect

    Bertram, Hanne Christine; Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Andersen, Henrik J.

    2004-05-05

    Postmortem changes in rabbit muscle tissue with different glycogen status (normal vs low) were followed continuously from 13 min postmortem until 8 h postmortem and again 20 h postmortem using simultaneous magic angle spinning 1H and 31P NMR spectroscopy together with measurement of the transverse relaxation time, T2, of the muscle water. The 1H metabolite spectra were measured using the phase-altered spinning sidebands (PASS) technique at a spinning rate of 40 Hz. pH values calculated from the 31P NMR spectra using the chemical shifts of the C-6 line of histidine in the 1H spectra and the chemical shifts of inorganic phosphate in the 31P spectra confirmed the different muscle glycogen status in the tissues. High-resolution 1H spectra obtained from the PASS technique revealed the presence of a new resonance line at 6.8 ppm during the postmortem period, which were absent in muscles with low muscle glycogen content. This new resonance line may originate from the aminoprotons in creatine, and its appearance may be a result of a pH effect on the exchange rate between the amino and the water protons and thereby the NMR visibility. Alternatively, the new resonance line may originate from the aromatic protons in tyrosine, and its appearance may be a result of a pH-induced protein unfolding exposing hydrophobic amino acid residues to the aqueous environment. Further studies are needed to evaluate these hypotheses. Finally, distributed analysis of the water T2 relaxation data revealed three relaxation populations and an increase in the population believed to reflect extramyofibrillar water through the postmortem period. This increase was significantly reduced (p < 0.0001) in samples from animals with low muscle glycogen content, indicating that the pH is controlling the extent of postmortem expulsion of water from myofibrillar structures. The significance of the postmortem increase in the amount extramyofibrillar water on the water-holding capacity was verified by

  10. Looking for a correlation between infrasound and volcanic gas in strombolian explosions by using high resolution UV spectroscopy and thermal imagery

    NASA Astrophysics Data System (ADS)

    Delle Donne, Dario; Tamburello, Giancarlo; Ripepe, Maurizio; Aiuppa, Alessandro

    2014-05-01

    According to the linear theory of sound, acoustic pressure propagating in a homogeneous atmosphere can be modelled in terms of the rate of change of a volumetric source. At open-vent volcanoes, this acoustic source process is commonly related to the explosive dynamics triggered by the rise, expansion and bursting of a gas slug at the magma free surface with the conduit. Just before an explosion, the magma surface will undergo deformation by the expanding gas slug. The deformation of the magma surface will then produce an equivalent displacement of the atmosphere, inducing a volumetric compression and generating an excess pressure that scales to the rate of volumetric change of the atmosphere displaced. Linear theory of sound thus predicts that pressure amplitude of infrasonic waves associated to volcanic explosions should be generated by the first time-derivative of the gas mass flux during the burst. In some cases a correlation between the first time-derivative and the SO2 mass flux has been found. However no clear correlation has yet been established between infrasonic amplitude and total ejected gas mass; therefore, the origin of infrasound in volcanic systems remains matter of debate. In the framework of the FP7-ERC BRIDGE Project, we tested different possible hypotheses on the acoustic source model, by correlating infrasound with the total gas mass retrieved from high-resolution UV spectroscopy techniques (UV camera). Experiments were conducted at Stromboli volcano (Italy), where we also employed a thermal camera to measure the total fragments/gas mass. Both techniques allowed independent estimation of total mass flux of gas and fragments within the volcanic plume. During the experiments, explosions detected by the UV camera emitted between 2 and 55 kg SO2, corresponding to SO2 peak fluxes of 0.1-0.8 kg/s. SO2 mass was converted into a total (maximum) erupted gas of 1310 kg, which is generating a peak pressure of ~8 Pa recorded at ~450 m from the source vent

  11. High Resolution Infrared Spectra of Plasma Jet-Cooled - and Triacetylene in the C-H Stretch Region by CW Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Guss, J.; Walsh, A.; Doney, K.; Linnartz, H.

    2013-06-01

    Polyacetylenes form an important series of unsaturated hydrocarbons that are of astrophysical interest. Small polyacetylenes have been detected from infrared observations in dense atmosphere of Titan and in a protoplanetary nebula CRL 618. We present here high-resolution mid-infrared spectra of diacetylene (HC_{4}H) and triacetylene (HC_{6}H) that are recorded in a supersonically expanded pulsed planar plasma using an ultra-sensitive detection technique. This method uses an all fiber-laser-based optical parametric oscillator (OPO), in combination with continuous wave cavity ring-down spectroscopy (cw-CRDS) as a direct absorption detection tool. A hardware-based multi-trigger concept is developed to apply cw-CRDS to pulsed plasmas. Vibrationally hot but rotationally cold HC_{4}H and HC_{6}H are produced by discharging a C_{2}H_{2}/He/Ar gas mixture which is supersonically expanded into a vacuum chamber through a slit discharge nozzle. Experimental spectra are recorded at a resolution of ˜100 MHz in the 3305-3340 cm^{-1} region, which is characteristic of the C-H stretch vibrations of HC_{4}H and HC_{6}H. Jet-cooling in our experiment reduces the rotational temperature of both HC_{4}H and HC_{6}H to <20 K. In total, ˜2000 lines are measured. More than fourteen (vibrationally hot) bands for HC_{4}H and four bands for HC_{6}H are assigned based on Loomis-Wood diagrams, and nearly half of these bands are analyzed for the first time. For both molecules improved and new molecular constants of a series of vibrational levels are presented. The accurate molecular data reported here, particularly those for low-lying (bending) vibrational levels may be used to interpret the ro-vibrational transitions in the FIR and submillimeter/THz region. D. Zhao, J. Guss, A. Walsh, H. Linnartz Chem. Phys. Lett., {dx.doi.org/10.1016/j.cplett.2013.02.025}, in press, 2013.

  12. High resolution infrared spectroscopy of slit-jet cooled transient molecules: From van der Waals clusters, to hydrogen bound dimers, to small organic radicals

    NASA Astrophysics Data System (ADS)

    Davis, Scott Robert

    2000-10-01

    This dissertation describes high resolution (<0.0005 cm-1 ), high sensitivity (absorbance sensitivity ~2 × 10 -6 per root Hz), direct absorption, infrared laser spectroscopy of transient molecules formed in a slit supersonic expansion. A series of molecular species, ranging from weakly bound van der Waals clusters, through hydrogen bound dimers, to a group of small organic free radicals are investigated. The advantages provided by the combination of a high optical resolution and the rotational and translational cooling of a slit supersonic expansion are exploited to probe an array of spectroscopic and dynamic phenomena. Investigations which probe the v = 1 <-- 0 vibrational transition for the hydrogen halides DF and HCl sequentially clustered with one through three Ar atoms are presented. Vibrational redshifts and rotational constants are compared with theoretical calculations on accurate pairwise additive potentials, providing insight into the importance of many body terms. Near-ir spectroscopic investigations of the hydrogen bond prototype (HF) 2 and it isotopomer (DF)2 are also presented. For both isotopomers, all four, large amplitude intermolecular vibrations are observed as combination bands built on top of intramolecular excitation. In addition to vibrational energies, mode specific vibrational predissociation rates, interconversion tunneling rates, and rotational constants are reported. Comparison with full 6-D quantum calculations provide an unprecedented test of trial hydrogen bonding potential energy surfaces. A novel high-intensity source of jet-cooled molecular radicals and ions is also described based on the combination of (i)slit supersonic expansions with (ii)electric discharges. Confinement of the discharge to a region just prior to supersonic expansion results in efficient rotational cooling of molecular radicals. Infrared studies of methyl, ethyl, allyl, and cyclopropyl are presented. Resolution of fine and hyperfine structure provides

  13. Emerging trends and a comet taxonomy based on the volatile chemistry measured in thirty comets with high-resolution infrared spectroscopy between 1997 and 2013

    NASA Astrophysics Data System (ADS)

    Dello Russo, Neil; Kawakita, Hideyo; Vervack, Ronald J.; Weaver, Harold A.

    2016-11-01

    A systematic analysis of the mixing ratios with respect to H2O for eight species (CH3OH, HCN, NH3, H2CO, C2H2, C2H6, CH4, and CO) measured with high-resolution infrared spectroscopy in thirty comets between 1997 and 2013 is presented. Some trends are beginning to emerge when mixing ratios in individual comets are compared to average mixing ratios obtained for all species within the population. The variation in mixing ratios for all measured species is at least an order of magnitude. Overall, Jupiter-family comets are depleted in volatile species with respect to H2O compared to long-period Oort cloud comets, with the most volatile species showing the greatest relative depletion. There is a high positive correlation between the mixing ratios of HCN, C2H6, and CH4, whereas NH3, H2CO, and C2H2 are moderately correlated with each other but generally uncorrelated or show only weak correlation with other species. CO is generally uncorrelated with the other measured species possibly because it has the highest volatility and is therefore more susceptible to thermal evolutionary effects. Most of these correlations appear to be independent of dynamical class with a few possible exceptions. Molecular mixing ratios for CH3OH, HCN, C2H6, and CH4 show an expected behavior with heliocentric distance suggesting a dominant ice source, whereas there is emerging evidence that the mixing ratios of NH3, H2CO, C2H2, NH2, and CN may increase at small heliocentric distances, suggesting the possibility of additional sources related to the thermal decomposition of organic dust. Although this provides information on the composition of the most volatile grains in comets, it presents an additional difficulty in classifying comet chemistry because most comets within this dataset were only observed over a limited range of heliocentric distance. Although there is remarkable compositional diversity resulting in a unique chemical fingerprint for each comet, a hierarchical tree cluster analysis is

  14. High-resolution Spectroscopy of a Young, Low-metallicity Optically Thin L = 0.02L* Star-forming Galaxy at z = 3.12

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; De Barros, S.; Cupani, G.; Karman, W.; Gronke, M.; Balestra, I.; Coe, D.; Mignoli, M.; Brusa, M.; Calura, F.; Caminha, G.-B.; Caputi, K.; Castellano, M.; Christensen, L.; Comastri, A.; Cristiani, S.; Dijkstra, M.; Fontana, A.; Giallongo, E.; Giavalisco, M.; Gilli, R.; Grazian, A.; Grillo, C.; Koekemoer, A.; Meneghetti, M.; Nonino, M.; Pentericci, L.; Rosati, P.; Schaerer, D.; Verhamme, A.; Vignali, C.; Zamorani, G.

    2016-04-01

    We present VLT/X-Shooter and MUSE spectroscopy of a faint F814W = 28.60 ± 0.33 ({M}{UV}=-17.0), low-mass (≲{10}7{M}⊙ ), and compact (R eff = 62 pc) freshly star-forming galaxy at z = 3.1169 magnified (16×) by the Hubble Frontier Fields galaxy cluster Abell S1063. Gravitational lensing allows for a significant jump toward low-luminosity regimes, in moderately high-resolution spectroscopy (R=λ /dλ ˜ 3000{--}7400). We measured C iv λ 1548,1550, He ii λ 1640, O iii]λ 1661,1666, C iii]λ λ 1907,1909, Hβ, [O iii]λ λ 4959,5007 emission lines with {FWHM}≲ 50 km s-1 and (de-lensed) fluxes spanning the interval 1.0× {10}-19{--}2× {10}-18 erg s-1 cm-2 at signal-to-noise ratio (S/N) = 4-30. The double-peaked Lyα emission with {{Δ }}v({red}-{blue})=280(±7) km s-1 and de-lensed fluxes {2.4}({blue)}| {8.5}({red)}× {10}-18 erg s-1 cm-2 (S/N = {38}({blue)}| {110}({red)}) indicate a low column density of neutral hydrogen gas consistent with a highly ionized interstellar medium as also inferred from the large [O iii]λ 5007/ [O ii]λ 3727 \\gt \\quad 10 ratio. We detect C iv λ 1548,1550 resonant doublet in emission, each component with {FWHM}≲ 45 km s-1 and redshifted by +51(±10) km s-1 relative to the systemic redshift. We interpret this as nebular emission tracing an expanding optically thin interstellar medium. Both C iv λ 1548,1550 and He ii λ 1640 suggest the presence of hot and massive stars (with a possible faint active galactic nucleus). The ultraviolet slope is remarkably blue, β =-2.95+/- 0.20 ({F}λ ={λ }β ), consistent with a dust-free and young ≲20 Myr galaxy. Line ratios suggest an oxygen abundance 12 + log(O/H)\\quad \\lt \\quad 7.8. We are witnessing an early episode of star formation in which a relatively low N H i and negligible dust attenuation might favor a leakage of ionizing radiation. This galaxy currently represents a unique low-luminosity reference object for future studies of the reionization epoch with the James Webb Space

  15. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  16. High-resolution imaging spectroscopy of two micro-pores and an arch filament system in a small emerging-flux region

    NASA Astrophysics Data System (ADS)

    González Manrique, S. J.; Bello González, N.; Denker, C.

    2017-03-01

    Context. Emerging flux regions mark the first stage in the accumulation of magnetic flux eventually leading to pores, sunspots, and (complex) active regions. These flux regions are highly dynamic, show a variety of fine structure, and in many cases live only for a short time (less than a day) before dissolving quickly into the ubiquitous quiet-Sun magnetic field. Aims: The purpose of this investigation is to characterize the temporal evolution of a minute emerging flux region, the associated photospheric and chromospheric flow fields, and the properties of the accompanying arch filament system. We aim to explore flux emergence and decay processes and investigate if they scale with structure size and magnetic flux contents. Methods: This study is based on imaging spectroscopy with the Göttingen Fabry-Pérot Interferometer at the Vacuum Tower Telescope, Observatorio del Teide, Tenerife, Spain on 2008 August 7. Photospheric horizontal proper motions were measured with Local correlation tracking using broadband images restored with multi-object multi-frame blind deconvolution. Cloud model (CM) inversions of line scans in the strong chromospheric absorption Hαλ656.28 nm line yielded CM parameters (Doppler velocity, Doppler width, optical thickness, and source function), which describe the cool plasma contained in the arch filament system. Results: The high-resolution observations cover the decay and convergence of two micro-pores with diameters of less than one arcsecond and provide decay rates for intensity and area. The photospheric horizontal flow speed is suppressed near the two micro-pores indicating that the magnetic field is already sufficiently strong to affect the convective energy transport. The micro-pores are accompanied by a small arch filament system as seen in Hα, where small-scale loops connect two regions with Hα line-core brightenings containing an emerging flux region with opposite polarities. The Doppler width, optical thickness, and source

  17. Spitzer-IRS High-Resolution Spectroscopy of the 12 μm Seyfert Galaxies. II. Results for the Complete Data Set

    NASA Astrophysics Data System (ADS)

    Tommasin, Silvia; Spinoglio, Luigi; Malkan, Matthew A.; Fazio, Giovanni

    2010-02-01

    We present our Spitzer-Infrared Spectrometer (IRS) spectroscopic survey from 10 μm to 37 μm of the Seyfert galaxies of the 12 μm Galaxy Sample, collected in a high-resolution mode (R ~ 600). The new spectra of 61 galaxies, together with the data we already published, give us a total of 91 12 μm Seyfert galaxies observed, out of 112. We discuss the mid-IR emission lines and features of the Seyfert galaxies, using an improved active galactic nucleus (AGN) classification scheme: instead of adopting the usual classes of Seyfert 1's and Seyfert 2's, we use the spectropolarimetric data from the literature to divide the objects into categories "AGN 1" and "AGN 2," where AGN 1's include all broad-line objects, including the Seyfert 2's showing hidden broad lines in polarized light. The remaining category, AGN 2's, contains only Seyferts with no detectable broad lines in either direct or polarized spectroscopy. We present various mid-IR observables, such as ionization-sensitive and density-sensitive line ratios, the polycyclic aromatic hydrocarbon (PAH) 11.25 μm feature and the H2 S(1) rotational line equivalent widths (EWs), the (60-25 μm) spectral index, and the source extendedness at 19 μm, to characterize similarities and differences in the AGN populations, in terms of AGN dominance versus star formation dominance. We find that the mid-IR emission properties characterize all the AGN 1's objects as a single family, with strongly AGN-dominated spectra. In contrast, the AGN 2's can be divided into two groups, the first one with properties similar to the AGN 1's except without detected broad lines, and the second with properties similar to the non-Seyfert galaxies, such as LINERs or starburst galaxies. We computed a semianalytical model to estimate the AGN and the starburst contributions to the mid-IR galaxy emission at 19 μm. For 59 galaxies with appropriate data, we can separate the 19 μm emission into AGN and starburst components using the measured mid

  18. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  19. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  20. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  1. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  2. Trajectory retrieval and component investigations of the southern polar stratosphere based on high-resolution spectroscopy of the totally eclipsed moon surface

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg S.; Punanova, Anna F.; Krushinsky, Vadim V.

    2013-02-01

    In this paper we present the high-resolution spectral observations of the fragment of lunar surface during the total lunar eclipse of December 10, 2011. The observations were carried out with the fiber-fed echelle spectrograph at the 1.2-m telescope in Kourovka Astronomical observatory (Ural mountains, central Russia). The observed radiation is transmitted by tangent trajectory through the southern polar stratosphere before the reflection from the Moon and the spectra contain a number of absorption bands of atmospheric gases (O2, O3, O4, NO2, H2O). High-resolution analysis of three O2 bands and O4 absorption effects is used to trace the effective trajectory of solar emission through the stratosphere and to detect the contribution of scattered light. Bands of other gases allow us to measure their abundances along the trajectory.

  3. Temperature-Induced Electronic Structure Evolution of ZrTe5 Revealed by High resolution & Laser Angle-Resolved Photoemission Spectroscopy (ARPES)

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Wang, Chenlu; Liu, Guodong; Chen, Genfu; Yu, Li; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    The transition metal pentatellurides ZrTe5 have attracted consideration attention since the 70s, due to the unusual transport properties like resistivity peak at ~140K and the sign change of the Hall coefficient and thermopower. The origin of the most peculiar resistivity peak remains controversial. In this talk we will present high resolution angle-resolved photoemission (ARPES) study on the Fermi surface and band structure of ZrTe5, by using our high resolution ARPES system equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer. Upon cooling down, we found a gradual transition from hole-like band into electron-like band around the Brillouin zone center. Such an electron state transition forms the underlying physics for the abnormal transport properties. We will also comment on the possibility of a Dirac semimetal in ZrTe5.

  4. High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses

    NASA Astrophysics Data System (ADS)

    Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.

    2000-03-01

    The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.

  5. High resolution selective reflection spectroscopy as a probe of long-range surface interaction : measurement of the surface van der Waals attraction exerted on excited Cs atoms

    NASA Astrophysics Data System (ADS)

    Chevrollier, Martine; Fichet, Michèle; Oria, Marcos; Rahmat, Gabriel; Bloch, Daniel; Ducloy, Martial

    1992-04-01

    Selective reflection spectroscopy at an interface with a low-density resonant vapor, especially when combined with a frequency modulation technique, is a high-resolution Doppler-free tool for probing atoms interacting with a surface. We analyze different types of relevant surface interaction, emphasizing the spectral consequences of a van der Waals surface attraction associated to a z^{-3} potential dependence (z: distance to the wall). We present detailed results of two series of experiments at a Cs vapor/dielectric window interface on the 6S{1/2}-6P{3/2} (λ = 852 nm) resonance line and on the 6S{1/2}-7P second resonance line (λ = 455 nm and 459 nm). Lineshape analysis at various pressures consistently shows that a van der Waals-type surface attraction has to be considered to interpret strong lineshape distortions and resonance shift. The attractive strengths are found to be equal respectively to ≈ 2 kHz μm^3 and ≈ 20 kHz μm^3, independently of the considered hyperfine component, within the experimental accuracy. It yields also typical parameters of pressure broadening and shift, which are shown to originate in collisional processes, at densities where the medium is opaque. Theoretical expectations for the VW strength are discussed on the basis of the results of atomic theory. The predicted values are smaller, by a typical factor of 2, than those deduced from the experiments. The validity of the theory, when applied to a dielectric interface, is discussed and seems questionable when the frequency of virtual atomic transitions involved in the van der Waals attraction potential lies in the dielectric window absorption range. La spectroscopie de réflexion sélective à l'interface d'une vapeur résonnante de faible densité, combinée à une technique de modulation de fréquence, permet de sonder à haute résolution et sans effet Doppler des atomes en interaction avec une surface. On analyse différents types d'interaction de surface envisageables, en

  6. High-resolution spectroscopy of the CN red system in comet C/2013 R1 (Lovejoy) using WINERED at Koyama Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Kawakita, Hideyo; Shinnaka, Yoshiharu; Kondo, Sohei; Hamano, Satoshi; Sameshima, Hiroaki; Nakanishi, Kenshi; Kawanishi, Takafumi; Nakaoka, Tetsuya; Otsubo, Shogo; Kinoshita, Masaomi; Ikeda, Yuji; Yamamoto, Ryo; Izumi, Natsuko; Fukue, Kei; Yasui, Chikako; Mito, Hiroyuki; Sarugaku, Yuki; Matsunaga, Noriyuki; Kobayashi, Naoto

    2015-11-01

    CN radical has the strong electronic transition moments in optical wavelength region and CN has extensively observed in comets. Especially, the CN violet system (B2Σ+—X2Σ+) has been observed by using high-resolution spectroscopic technique in order to infer the isotopic ratios of carbon and nitrogen in comets via 12C14N, 13C14N and 12C15N. However, the wavelength range for this system (~388 nm) is severely extinct if a comet is close to the Sun (we have to observe the comet at low elevations from the ground-based observatories). On the other hand, CN radical also has the strong electronic transition in near-infrared (~1.1 microns), the CN red system (A2Πi—X2Σ+). Although there are few reports on the high-resolution spectra of this band in comets, this wavelength region is not severely affected by the telluric extinction and considered as the new window for the observations of the carbon and nitrogen isotopic ratios in comets.High resolution near-infrared spectra of comet C/2013 R1 (Lovejoy) using the WINERED (R~3x104) spectrometer mounted on the 1.3-m Araki telescope at Koyama Astronomical Observatory were acquired on UT 2013 Nov 30. The heliocentric and geocentric distances were 0.91 AU and 0.49 AU, respectively. We detected strong emission lines of the CN red system (0,0) at around 1.1 microns. The rotational line intensities of this band approximately follow the Boltzmann distribution at ~300K for our observations. We present the detailed analysis of the CN red system in comet C/2013 R1 (Lovejoy) and discuss about the isotopic ratios in CN.This research program is supported by the MEXT --- Supported Program for the Strategic Research Foundation at Private Universities, 2014 - 2018 and partially supported by JSPS, 15J10864.

  7. High Resolution Emission Spectroscopy of the Alpha Pi-1 - Chi Sigma-1(+) Fourth Positive Band System of CO from Electron Impact

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Ajello, Joseph M.; James, Geoffrey K.; Alvarez, Marcos; Dziczek, Dariusz

    2000-01-01

    We report electron-impact induced fluorescence spectra [300 mA full width at half maximum (FWHM)] of CO for 20 and 100 eV impact energies of the spectral region of 1300 to 2050 A and high resolution spectra (FWHM) of the v'=5 to v"=l and the v'=3 to v"=O bands showing that the rotational structure of the band system are modeled accurately. The excitation function of the (0,1) band (1597 A) was measured from electron impact in the energy range from threshold to 750 eV and placed on an absolute scale from modem calibration standards.

  8. Semiexperimental Structure of the Non-Rigid BF_2OH Molecule by Combining High Resolution Infrared Spectroscopy and AB Initio Calculations.

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Demaison, Jean; Perrin, Agnes; Bürger, Hans

    2015-06-01

    In BF_2OH, difluoroboric acid, the OH group is the subject of a large amplitude torsion motion which induces a splitting in the rotational spectrum as well as in the high-resolution infrared spectrum. It is interesting to check whether it is still posible to determine a semiexperimental equilibrium structure for such a molecule. For this goal, the rotation-vibration interactions constants have been experimentally determined by analyzing all the fondamental bands. They have also been computed ab initio using two different levels of theory. The results of the analysis as well as the determination of the structure will be reported.

  9. Ultra-high resolution 17O solid-state NMR spectroscopy of biomolecules: a comprehensive spectral analysis of monosodium L-glutamate·monohydrate.

    PubMed

    Wong, Alan; Howes, Andy P; Yates, Jonathan R; Watts, Anthony; Anupõld, Tiit; Past, Jaan; Samoson, Ago; Dupree, Ray; Smith, Mark E

    2011-07-14

    Monosodium L-glutamate monohydrate, a multiple oxygen site (eight) compound, is used to demonstrate that a combination of high-resolution solid-state NMR spectroscopic techniques opens up new possibilities for (17)O as a nuclear probe of biomolecules. Eight oxygen sites have been resolved by double rotation (DOR) and multiple quantum (MQ) NMR experiments, despite the (17)O chemical shifts lying within a narrow shift range of <50 ppm. (17)O DOR NMR not only provides high sensitivity and spectral resolution, but also allows a complete set of the NMR parameters (chemical shift anisotropy and electric-field gradient) to be determined from the DOR spinning-sideband manifold. These (17)O NMR parameters provide an important multi-parameter comparison with the results from the quantum chemical NMR calculations, and enable unambiguous oxygen-site assignment and allow the hydrogen positions to be refined in the crystal lattice. The difference in sensitivity between DOR and MQ NMR experiments of oxygen in bio/organic molecules is also discussed. The data presented here clearly illustrates that a high resolution (17)O solid-state NMR methodology is now available for the study of biomolecules, offering new opportunities for resolving structural information and hence new molecular insights.

  10. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  11. Incorporation of Mn in AlxGa1 -xN probed by x-ray absorption and emission spectroscopy, high-resolution microscopy, x-ray diffraction, and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Rovezzi, Mauro; Schlögelhofer, Wolfgang; Devillers, Thibaut; Szwacki, Nevill Gonzalez; Li, Tian; Adhikari, Rajdeep; Glatzel, Pieter; Bonanni, Alberta

    2015-09-01

    Synchrotron radiation x-ray absorption and emission spectroscopy techniques, complemented by high-resolution transmission electron microscopy methods and density functional theory calculations, are employed to investigate the effect of Mn in AlxGa1 -xN :Mn samples with an Al content up to 100%. The atomic and electronic structure of Mn is established together with its local environment and valence state. A dilute alloy without precipitation is obtained for AlxGa1 -xN :Mn with Al concentrations up to 82%, and the surfactant role of Mn in the epitaxial process is confirmed.

  12. High resolution magic angle spinning NMR spectroscopy reveals that pectoralis muscle dystrophy in chicken is associated with reduced muscle content of anserine and carnosine.

    PubMed

    Sundekilde, Ulrik K; Rasmussen, Martin K; Young, Jette F; Bertram, Hanne Christine

    2017-02-15

    Increased incidences of pectoralis muscle dystrophy are observed in commercial chicken products, but the muscle physiological causes for the condition remain to be identified. In the present study a high-resolution magic angle spinning (HR-MAS) proton ((1)H) NMR spectroscopic examination of intact pectoralis muscle samples (n=77) were conducted to explore metabolite perturbations associated with the muscle dystrophy condition for the very first time. Both in chicken with an age of 21 and 31days, respectively, pectoralis muscle dystrophy was associated with a significantly lower content of anserine (p=0.034), carnosine (p=0.019) and creatine (p=0.049). These findings must be considered intriguing as they corroborate that characteristic muscle di-peptides composed of β-alanine and histidine derivatives such as anserine are extremely important in homeostasis of contractile muscles as a results of their role as buffering, anti-oxidative, and anti-glycation capacities.

  13. Complete Fermi Surface and Surface State in WTe2 Revealed by High-Resolution Laser-Based Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chenlu; Zhang, Yan; Liu, Guodong; Mao, Zhiqiang; He, Shaolong; Zhao, Lin; Chen, Chuangtian; Xu, Zuyan; Zhou, Xingjiang

    WTe2, an unique transition metal dichalcogenide, attracts considerable attention recently, which shows an extremely large magnetoresistance (MR) with no saturation under very high field. In this talk, we will present our high resolution laser-ARPES study on WTe2. Our distinctive ARPES system is equipped with the VUV laser and the time-of-flight (TOF) electron energy analyzer, being featured by super-high energy resolution, simultaneous data acquisition for two-dimensional momentum space and much reduced nonlinearity effect. With this advanced apparatus, the very high quality of electronic structure data are obtained for WTe2 which gives a full picture of the Fermi surface. Meanwhile, the obtained systematic temperature dependence of its electronic state leads us to a better understanding on the origin of large magnetoresistance in WTe2.

  14. High-resolution spectroscopy, crystal-field calculations, and quadrupole helix chirality of DyFe3(BO3)4

    NASA Astrophysics Data System (ADS)

    Popova, M. N.; Malkin, B. Z.; Stanislavchuk, T. N.; Chukalina, E. P.; Boldyrev, K. N.; Gudim, I. A.

    2016-12-01

    High-resolution polarized transmission spectra of DyFe3(BO3)4 single crystals were investigated in broad spectral (10-23000 cm-1) and temperature (3.5-300 K) ranges. Energies of the dysprosium levels in the paramagnetic and antiferromagnetic phases were determined. On the basis of these data and preliminary calculations in the frameworks of the exchange-charge model, we determined the crystal-field and Dy-Fe exchange interaction parameters of the Dy3+ ions at sites with the point C2 symmetry corresponding to the enantiomorphic P3121 and P3221 space groups. The values of electronic quadrupole moment