Sample records for high-resolution comparative map

  1. High resolution physical mapping of single gene fragments on pachytene chromosome 4 and 7 of Rosa.

    PubMed

    Kirov, Ilya V; Van Laere, Katrijn; Khrustaleva, Ludmila I

    2015-07-02

    Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes. Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4. High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae.

  2. Local discrepancies in continental scale biomass maps: a case study over forested and non-forested landscapes in Maryland, USA

    Treesearch

    Wenli Huang; Anu Swatantran; Kristofer Johnson; Laura Duncanson; Hao Tang; Jarlath O' Neil Dunne; George Hurtt; Ralph Dubayah

    2015-01-01

    Continental-scale aboveground biomass maps are increasingly available, but their estimates vary widely, particularly at high resolution. A comprehensive understanding of map discrepancies is required to improve their effectiveness in carbon accounting and local decision-making. To this end, we compare four continental-scale maps with a recent high-resolution lidar-...

  3. Spatial resolution requirements for urban land cover mapping from space

    NASA Technical Reports Server (NTRS)

    Todd, William J.; Wrigley, Robert C.

    1986-01-01

    Very low resolution (VLR) satellite data (Advanced Very High Resolution Radiometer, DMSP Operational Linescan System), low resolution (LR) data (Landsat MSS), medium resolution (MR) data (Landsat TM), and high resolution (HR) satellite data (Spot HRV, Large Format Camera) were evaluated and compared for interpretability at differing spatial resolutions. VLR data (500 m - 1.0 km) is useful for Level 1 (urban/rural distinction) mapping at 1:1,000,000 scale. Feature tone/color is utilized to distinguish generalized urban land cover using LR data (80 m) for 1:250,000 scale mapping. Advancing to MR data (30 m) and 1:100,000 scale mapping, confidence in land cover mapping is greatly increased, owing to the element of texture/pattern which is now evident in the imagery. Shape and shadow contribute to detailed Level II/III urban land use mapping possible if the interpreter can use HR (10-15 m) satellite data; mapping scales can be 1:25,000 - 1:50,000.

  4. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  5. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  6. Earth mapping - aerial or satellite imagery comparative analysis

    NASA Astrophysics Data System (ADS)

    Fotev, Svetlin; Jordanov, Dimitar; Lukarski, Hristo

    Nowadays, solving the tasks for revision of existing map products and creation of new maps requires making a choice of the land cover image source. The issue of the effectiveness and cost of the usage of aerial mapping systems versus the efficiency and cost of very-high resolution satellite imagery is topical [1, 2, 3, 4]. The price of any remotely sensed image depends on the product (panchromatic or multispectral), resolution, processing level, scale, urgency of task and on whether the needed image is available in the archive or has to be requested. The purpose of the present work is: to make a comparative analysis between the two approaches for mapping the Earth having in mind two parameters: quality and cost. To suggest an approach for selection of the map information sources - airplane-based or spacecraft-based imaging systems with very-high spatial resolution. Two cases are considered: area that equals approximately one satellite scene and area that equals approximately the territory of Bulgaria.

  7. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    PubMed Central

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-01-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales. PMID:27996974

  8. Single Image Super-Resolution Using Global Regression Based on Multiple Local Linear Mappings.

    PubMed

    Choi, Jae-Seok; Kim, Munchurl

    2017-03-01

    Super-resolution (SR) has become more vital, because of its capability to generate high-quality ultra-high definition (UHD) high-resolution (HR) images from low-resolution (LR) input images. Conventional SR methods entail high computational complexity, which makes them difficult to be implemented for up-scaling of full-high-definition input images into UHD-resolution images. Nevertheless, our previous super-interpolation (SI) method showed a good compromise between Peak-Signal-to-Noise Ratio (PSNR) performances and computational complexity. However, since SI only utilizes simple linear mappings, it may fail to precisely reconstruct HR patches with complex texture. In this paper, we present a novel SR method, which inherits the large-to-small patch conversion scheme from SI but uses global regression based on local linear mappings (GLM). Thus, our new SR method is called GLM-SI. In GLM-SI, each LR input patch is divided into 25 overlapped subpatches. Next, based on the local properties of these subpatches, 25 different local linear mappings are applied to the current LR input patch to generate 25 HR patch candidates, which are then regressed into one final HR patch using a global regressor. The local linear mappings are learned cluster-wise in our off-line training phase. The main contribution of this paper is as follows: Previously, linear-mapping-based conventional SR methods, including SI only used one simple yet coarse linear mapping to each patch to reconstruct its HR version. On the contrary, for each LR input patch, our GLM-SI is the first to apply a combination of multiple local linear mappings, where each local linear mapping is found according to local properties of the current LR patch. Therefore, it can better approximate nonlinear LR-to-HR mappings for HR patches with complex texture. Experiment results show that the proposed GLM-SI method outperforms most of the state-of-the-art methods, and shows comparable PSNR performance with much lower computational complexity when compared with a super-resolution method based on convolutional neural nets (SRCNN15). Compared with the previous SI method that is limited with a scale factor of 2, GLM-SI shows superior performance with average 0.79 dB higher in PSNR, and can be used for scale factors of 3 or higher.

  9. High-resolution mapping of motor vehicle carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    McDonald, Brian C.; McBride, Zoe C.; Martin, Elliot W.; Harley, Robert A.

    2014-05-01

    A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2) and mapped at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel trucks. Emission estimates from this study are compared with the Emissions Database for Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. cities. High-resolution emission maps are presented for Los Angeles, New York City, San Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal variations in vehicle emissions are characterized using extensive day- and time-specific traffic count data and are described over diurnal, day of week, and seasonal time scales. Clear differences are observed when comparing light- and heavy-duty vehicle traffic patterns and comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 when traffic volumes were increasing and a more recent period (2007-2010) when traffic volumes declined due to recession. We found large nonuniform changes in on-road CO2 emissions over a period of 5 years, highlighting the importance of timely updates to motor vehicle emission inventories.

  10. Clinical high-resolution mapping of the proteoglycan-bound water fraction in articular cartilage of the human knee joint.

    PubMed

    Bouhrara, Mustapha; Reiter, David A; Sexton, Kyle W; Bergeron, Christopher M; Zukley, Linda M; Spencer, Richard G

    2017-11-01

    We applied our recently introduced Bayesian analytic method to achieve clinically-feasible in-vivo mapping of the proteoglycan water fraction (PgWF) of human knee cartilage with improved spatial resolution and stability as compared to existing methods. Multicomponent driven equilibrium single-pulse observation of T 1 and T 2 (mcDESPOT) datasets were acquired from the knees of two healthy young subjects and one older subject with previous knee injury. Each dataset was processed using Bayesian Monte Carlo (BMC) analysis incorporating a two-component tissue model. We assessed the performance and reproducibility of BMC and of the conventional analysis of stochastic region contraction (SRC) in the estimation of PgWF. Stability of the BMC analysis of PgWF was tested by comparing independent high-resolution (HR) datasets from each of the two young subjects. Unlike SRC, the BMC-derived maps from the two HR datasets were essentially identical. Furthermore, SRC maps showed substantial random variation in estimated PgWF, and mean values that differed from those obtained using BMC. In addition, PgWF maps derived from conventional low-resolution (LR) datasets exhibited partial volume and magnetic susceptibility effects. These artifacts were absent in HR PgWF images. Finally, our analysis showed regional variation in PgWF estimates, and substantially higher values in the younger subjects as compared to the older subject. BMC-mcDESPOT permits HR in-vivo mapping of PgWF in human knee cartilage in a clinically-feasible acquisition time. HR mapping reduces the impact of partial volume and magnetic susceptibility artifacts compared to LR mapping. Finally, BMC-mcDESPOT demonstrated excellent reproducibility in the determination of PgWF. Published by Elsevier Inc.

  11. A self-trained classification technique for producing 30 m percent-water maps from Landsat data

    USGS Publications Warehouse

    Rover, Jennifer R.; Wylie, Bruce K.; Ji, Lei

    2010-01-01

    Small bodies of water can be mapped with moderate-resolution satellite data using methods where water is mapped as subpixel fractions using field measurements or high-resolution images as training datasets. A new method, developed from a regression-tree technique, uses a 30 m Landsat image for training the regression tree that, in turn, is applied to the same image to map subpixel water. The self-trained method was evaluated by comparing the percent-water map with three other maps generated from established percent-water mapping methods: (1) a regression-tree model trained with a 5 m SPOT 5 image, (2) a regression-tree model based on endmembers and (3) a linear unmixing classification technique. The results suggest that subpixel water fractions can be accurately estimated when high-resolution satellite data or intensively interpreted training datasets are not available, which increases our ability to map small water bodies or small changes in lake size at a regional scale.

  12. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio)

    PubMed Central

    Peng, Wenzhu; Xu, Jian; Zhang, Yan; Feng, Jianxin; Dong, Chuanju; Jiang, Likun; Feng, Jingyan; Chen, Baohua; Gong, Yiwen; Chen, Lin; Xu, Peng

    2016-01-01

    High density genetic linkage maps are essential for QTL fine mapping, comparative genomics and high quality genome sequence assembly. In this study, we constructed a high-density and high-resolution genetic linkage map with 28,194 SNP markers on 14,146 distinct loci for common carp based on high-throughput genotyping with the carp 250 K single nucleotide polymorphism (SNP) array in a mapping family. The genetic length of the consensus map was 10,595.94 cM with an average locus interval of 0.75 cM and an average marker interval of 0.38 cM. Comparative genomic analysis revealed high level of conserved syntenies between common carp and the closely related model species zebrafish and medaka. The genome scaffolds were anchored to the high-density linkage map, spanning 1,357 Mb of common carp reference genome. QTL mapping and association analysis identified 22 QTLs for growth-related traits and 7 QTLs for sex dimorphism. Candidate genes underlying growth-related traits were identified, including important regulators such as KISS2, IGF1, SMTLB, NPFFR1 and CPE. Candidate genes associated with sex dimorphism were also identified including 3KSR and DMRT2b. The high-density and high-resolution genetic linkage map provides an important tool for QTL fine mapping and positional cloning of economically important traits, and improving common carp genome assembly. PMID:27225429

  13. Construction of a High-Density Genetic Map from RNA-Seq Data for an Arabidopsis Bay-0 × Shahdara RIL Population

    PubMed Central

    Serin, Elise A. R.; Snoek, L. B.; Nijveen, Harm; Willems, Leo A. J.; Jiménez-Gómez, Jose M.; Hilhorst, Henk W. M.; Ligterink, Wilco

    2017-01-01

    High-density genetic maps are essential for high resolution mapping of quantitative traits. Here, we present a new genetic map for an Arabidopsis Bayreuth × Shahdara recombinant inbred line (RIL) population, built on RNA-seq data. RNA-seq analysis on 160 RILs of this population identified 30,049 single-nucleotide polymorphisms (SNPs) covering the whole genome. Based on a 100-kbp window SNP binning method, 1059 bin-markers were identified, physically anchored on the genome. The total length of the RNA-seq genetic map spans 471.70 centimorgans (cM) with an average marker distance of 0.45 cM and a maximum marker distance of 4.81 cM. This high resolution genotyping revealed new recombination breakpoints in the population. To highlight the advantages of such high-density map, we compared it to two publicly available genetic maps for the same population, comprising 69 PCR-based markers and 497 gene expression markers derived from microarray data, respectively. In this study, we show that SNP markers can effectively be derived from RNA-seq data. The new RNA-seq map closes many existing gaps in marker coverage, saturating the previously available genetic maps. Quantitative trait locus (QTL) analysis for published phenotypes using the available genetic maps showed increased QTL mapping resolution and reduced QTL confidence interval using the RNA-seq map. The new high-density map is a valuable resource that facilitates the identification of candidate genes and map-based cloning approaches. PMID:29259624

  14. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis

    PubMed Central

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-01-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1–8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species. PMID:25762582

  15. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  16. Investigating Mercury's South Polar Deposits with High-Resolution Determination of Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Shread, E. E.; Chabot, N. L.

    2018-05-01

    High-resolution images acquired by MESSENGER's Mercury Dual Imaging System were used to investigate the illumination conditions of Mercury's south polar deposits and to map the areas of permanent shadow in the region to compare with radar imaging.

  17. Genetics Home Reference: cri-du-chat syndrome

    MedlinePlus

    ... Pinkel D. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  18. Large-Scale, High-Resolution Neurophysiological Maps Underlying fMRI of Macaque Temporal Lobe

    PubMed Central

    Papanastassiou, Alex M.; DiCarlo, James J.

    2013-01-01

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods. PMID:24048850

  19. On the influence of zero-padding on the nonlinear operations in Quantitative Susceptibility Mapping

    PubMed Central

    Eskreis-Winkler, Sarah; Zhou, Dong; Liu, Tian; Gupta, Ajay; Gauthier, Susan A.; Wang, Yi; Spincemaille, Pascal

    2016-01-01

    Purpose Zero padding is a well-studied interpolation technique that improves image visualization without increasing image resolution. This interpolation is often performed as a last step before images are displayed on clinical workstations. Here, we seek to demonstrate the importance of zero padding before rather than after performing non-linear post-processing algorithms, such as Quantitative Susceptibility Mapping (QSM). To do so, we evaluate apparent spatial resolution, relative error and depiction of multiple sclerosis (MS) lesions on images that were zero padded prior to, in the middle of, and after the application of the QSM algorithm. Materials and Methods High resolution gradient echo (GRE) data were acquired on twenty MS patients, from which low resolution data were derived using k-space cropping. Pre-, mid-, and post-zero padded QSM images were reconstructed from these low resolution data by zero padding prior to field mapping, after field mapping, and after susceptibility mapping, respectively. Using high resolution QSM as the gold standard, apparent spatial resolution, relative error, and image quality of the pre-, mid-, and post-zero padded QSM images were measured and compared. Results Both the accuracy and apparent spatial resolution of the pre-zero padded QSM was higher than that of mid-zero padded QSM (p < 0.001; p < 0.001), which was higher than that of post-zero padded QSM (p < 0.001; p < 0.001). The image quality of pre-zero padded reconstructions was higher than that of mid- and post-zero padded reconstructions (p = 0.004; p < 0.001). Conclusion Zero padding of the complex GRE data prior to nonlinear susceptibility mapping improves image accuracy and apparent resolution compared to zero padding afterwards. It also provides better delineation of MS lesion geometry, which may improve lesion subclassification and disease monitoring in MS patients. PMID:27587225

  20. On the influence of zero-padding on the nonlinear operations in Quantitative Susceptibility Mapping.

    PubMed

    Eskreis-Winkler, Sarah; Zhou, Dong; Liu, Tian; Gupta, Ajay; Gauthier, Susan A; Wang, Yi; Spincemaille, Pascal

    2017-01-01

    Zero padding is a well-studied interpolation technique that improves image visualization without increasing image resolution. This interpolation is often performed as a last step before images are displayed on clinical workstations. Here, we seek to demonstrate the importance of zero padding before rather than after performing non-linear post-processing algorithms, such as Quantitative Susceptibility Mapping (QSM). To do so, we evaluate apparent spatial resolution, relative error and depiction of multiple sclerosis (MS) lesions on images that were zero padded prior to, in the middle of, and after the application of the QSM algorithm. High resolution gradient echo (GRE) data were acquired on twenty MS patients, from which low resolution data were derived using k-space cropping. Pre-, mid-, and post-zero padded QSM images were reconstructed from these low resolution data by zero padding prior to field mapping, after field mapping, and after susceptibility mapping, respectively. Using high resolution QSM as the gold standard, apparent spatial resolution, relative error, and image quality of the pre-, mid-, and post-zero padded QSM images were measured and compared. Both the accuracy and apparent spatial resolution of the pre-zero padded QSM was higher than that of mid-zero padded QSM (p<0.001; p<0.001), which was higher than that of post-zero padded QSM (p<0.001; p<0.001). The image quality of pre-zero padded reconstructions was higher than that of mid- and post-zero padded reconstructions (p=0.004; p<0.001). Zero padding of the complex GRE data prior to nonlinear susceptibility mapping improves image accuracy and apparent resolution compared to zero padding afterwards. It also provides better delineation of MS lesion geometry, which may improve lesion subclassification and disease monitoring in MS patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. NREL: International Activities - Afghanistan Resource Maps

    Science.gov Websites

    facilities, load centers, terrain conditions, and land use. The high-resolution (1-km) annual wind power maps . The high-resolution (10-km) annual and seasonal solar resource maps were developed using weather -km Resolution Annual Maps (Direct) Low-Res (JPG 104 KB) | High-Res (ZIP 330 KB) 40-km Resolution

  2. Use of Road Maps in National Assessments of Forest Fragmentation in the United States

    Treesearch

    Kurt H. Riitters; James Wickham; John Coulston

    2004-01-01

    The question of incorporating road maps into U.S. national assessments of forest fragmentation has been a contentious issue, but there has not been a comparative national analysis to inform the debate. Using data and indices from previous national assessments, we compared fragmentation as calculated from high-resolution land-cover maps alone (Method 1) and after...

  3. Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes.

    PubMed

    Kumar, Ajay; Seetan, Raed; Mergoum, Mohamed; Tiwari, Vijay K; Iqbal, Muhammad J; Wang, Yi; Al-Azzam, Omar; Šimková, Hana; Luo, Ming-Cheng; Dvorak, Jan; Gu, Yong Q; Denton, Anne; Kilian, Andrzej; Lazo, Gerard R; Kianian, Shahryar F

    2015-10-16

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high resolution genome maps with saturated marker scaffolds to anchor and orient BAC contigs/ sequence scaffolds for whole genome assembly. Radiation hybrid (RH) mapping has proven to be an excellent tool for the development of such maps for it offers much higher and more uniform marker resolution across the length of the chromosome compared to genetic mapping and does not require marker polymorphism per se, as it is based on presence (retention) vs. absence (deletion) marker assay. In this study, a 178 line RH panel was genotyped with SSRs and DArT markers to develop the first high resolution RH maps of the entire D-genome of Ae. tauschii accession AL8/78. To confirm map order accuracy, the AL8/78-RH maps were compared with:1) a DArT consensus genetic map constructed using more than 100 bi-parental populations, 2) a RH map of the D-genome of reference hexaploid wheat 'Chinese Spring', and 3) two SNP-based genetic maps, one with anchored D-genome BAC contigs and another with anchored D-genome sequence scaffolds. Using marker sequences, the RH maps were also anchored with a BAC contig based physical map and draft sequence of the D-genome of Ae. tauschii. A total of 609 markers were mapped to 503 unique positions on the seven D-genome chromosomes, with a total map length of 14,706.7 cR. The average distance between any two marker loci was 29.2 cR which corresponds to 2.1 cM or 9.8 Mb. The average mapping resolution across the D-genome was estimated to be 0.34 Mb (Mb/cR) or 0.07 cM (cM/cR). The RH maps showed almost perfect agreement with several published maps with regard to chromosome assignments of markers. The mean rank correlations between the position of markers on AL8/78 maps and the four published maps, ranged from 0.75 to 0.92, suggesting a good agreement in marker order. With 609 mapped markers, a total of 2481 deletions for the whole D-genome were detected with an average deletion size of 42.0 Mb. A total of 520 markers were anchored to 216 Ae. tauschii sequence scaffolds, 116 of which were not anchored earlier to the D-genome. This study reports the development of first high resolution RH maps for the D-genome of Ae. tauschii accession AL8/78, which were then used for the anchoring of unassigned sequence scaffolds. This study demonstrates how RH mapping, which offered high and uniform resolution across the length of the chromosome, can facilitate the complete sequence assembly of the large and complex plant genomes.

  4. A multi-temporal analysis approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan; van Aardt, Jan A. N.; McKeown, Donald M.; Messinger, David W.

    2012-06-01

    Remote sensing can be used to rapidly generate land use maps for assisting emergency response personnel with resource deployment decisions and impact assessments. In this study we focus on constructing accurate land cover maps to map the impacted area in the case of a nuclear material release. The proposed methodology involves integration of results from two different approaches to increase classification accuracy. The data used included RapidEye scenes over Nine Mile Point Nuclear Power Station (Oswego, NY). The first step was building a coarse-scale land cover map from freely available, high temporal resolution, MODIS data using a time-series approach. In the case of a nuclear accident, high spatial resolution commercial satellites such as RapidEye or IKONOS can acquire images of the affected area. Land use maps from the two image sources were integrated using a probability-based approach. Classification results were obtained for four land classes - forest, urban, water and vegetation - using Euclidean and Mahalanobis distances as metrics. Despite the coarse resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. The classifications were augmented using this fused approach, with few supplementary advantages such as correction for cloud cover and independence from time of year. We concluded that this method would generate highly accurate land maps, using coarse spatial resolution time series satellite imagery and a single date, high spatial resolution, multi-spectral image.

  5. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  6. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    PubMed

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in high resolution remote sensing have the potential to improve the characterization and management of urban vegetation. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A system and method for online high-resolution mapping of gastric slow-wave activity.

    PubMed

    Bull, Simon H; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2014-11-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed "off-line" (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for "online" HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application.

  8. Navigating 3D electron microscopy maps with EM-SURFER.

    PubMed

    Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke

    2015-05-30

    The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.

  9. New Insights Into an Old Arrhythmia: High-Resolution Mapping Demonstrates Conduction and Substrate Variability in Right Atrial Macro-Re-Entrant Tachycardia.

    PubMed

    Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Bates, Matthew G; Lipton, Jonathan; Joseph, Stephen; Morton, Joseph; Sparks, Paul; Kistler, Peter; Kalman, Jonathan M

    2017-09-01

    Using high-resolution 3-dimensional (3D) mapping, the aim of this study was to further characterize right atrial macro-re-entrant tachycardias and answer unresolved questions in the understanding of this arrhythmia. Despite advances in understanding of the mechanisms of right atrial macro-re-entrant tachycardias, many questions lack definitive answers. The advent of high-resolution 3D mapping provides an opportunity to gain further insights into the nature of these common circuits. A total of 25 patients with right atrial macro-re-entrant tachycardia were studied. High-resolution 3D mapping (Rhythmia mapping system, Boston Scientific, Natick, Massachusetts) was performed. Regional voltage and conduction velocity were determined. Maps were analyzed to characterize wave front propagation patterns in all atrial regions. The relationship between substrate and conduction was evaluated. A total of 42 right atrial macro-re-entrant circuits were observed. The most common location of the posterior line of block was the posteromedial right atrium (73%). This line of block continued superiorly into the superior vena cava, taking an oblique course to finish on the anterior superior vena cava aspect in 73%. Conduction delay at the crista terminalis was less common (23%). Conduction slowing or block was seen at the limbus of the fossa ovalis (73%) and Eustachian ridge (77%). Highly variable and localized areas of slow conduction were also observed in the inferior septum (45%), superior septum (27%), anterosuperior right atrium (23%), and lateral right atrium (23%). Localized conduction slowing was seen in the cavotricuspid isthmus in 50% of patients, but there was no generalized conduction slowing in this isthmus. The voltage in regions of slow conduction was significantly lower compared with areas of normal conduction velocity (p < 0.001). Conduction channels were observed in 55% of patients. High-resolution 3D mapping has provided new insights into the nature of right atrial macro-re-entrant tachycardias. Variable regions of abnormal atrial substrate were associated with conduction slowing and block. Individual variation in propagation patterns was observed in association with this variable substrate. (Mapping of Atrial Arrhythmias Using High Spatial Resolution Mapping Catheters and the Rhythmia Mapping System; ACTRN12615000544572). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    PubMed

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. High Resolution Stratigraphic Mapping in Complex Terrain: A Comparison of Traditional Remote Sensing Techniques with Unmanned Aerial Vehicle - Structure from Motion Photogrammetry

    NASA Astrophysics Data System (ADS)

    Nesbit, P. R.; Hugenholtz, C.; Durkin, P.; Hubbard, S. M.; Kucharczyk, M.; Barchyn, T.

    2016-12-01

    Remote sensing and digital mapping have started to revolutionize geologic mapping in recent years as a result of their realized potential to provide high resolution 3D models of outcrops to assist with interpretation, visualization, and obtaining accurate measurements of inaccessible areas. However, in stratigraphic mapping applications in complex terrain, it is difficult to acquire information with sufficient detail at a wide spatial coverage with conventional techniques. We demonstrate the potential of a UAV and Structure from Motion (SfM) photogrammetric approach for improving 3D stratigraphic mapping applications within a complex badland topography. Our case study is performed in Dinosaur Provincial Park (Alberta, Canada), mapping late Cretaceous fluvial meander belt deposits of the Dinosaur Park formation amidst a succession of steeply sloping hills and abundant drainages - creating a challenge for stratigraphic mapping. The UAV-SfM dataset (2 cm spatial resolution) is compared directly with a combined satellite and aerial LiDAR dataset (30 cm spatial resolution) to reveal advantages and limitations of each dataset before presenting a unique workflow that utilizes the dense point cloud from the UAV-SfM dataset for analysis. The UAV-SfM dense point cloud minimizes distortion, preserves 3D structure, and records an RGB attribute - adding potential value in future studies. The proposed UAV-SfM workflow allows for high spatial resolution remote sensing of stratigraphy in complex topographic environments. This extended capability can add value to field observations and has the potential to be integrated with subsurface petroleum models.

  12. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. Copyright © 2016 Li et al.

  13. High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.

    PubMed

    Angeli, T R; Du, P; Paskaranandavadivel, N; Sathar, S; Hall, A; Asirvatham, S J; Farrugia, G; Windsor, J A; Cheng, L K; O'Grady, G

    2017-05-01

    Gastric motility is coordinated by bioelectrical slow waves, and gastric dysrhythmias are reported in motility disorders. High-resolution (HR) mapping has advanced the accurate assessment of gastric dysrhythmias, offering promise as a diagnostic technique. However, HR mapping has been restricted to invasive surgical serosal access. This study investigates the feasibility of HR mapping from the gastric mucosal surface. Experiments were conducted in vivo in 14 weaner pigs. Reference serosal recordings were performed with flexible-printed-circuit (FPC) arrays (128-192 electrodes). Mucosal recordings were performed by two methods: (i) FPC array aligned directly opposite the serosal array, and (ii) cardiac mapping catheter modified for gastric mucosal recordings. Slow-wave propagation and morphology characteristics were quantified and compared between simultaneous serosal and mucosal recordings. Slow-wave activity was consistently recorded from the mucosal surface from both electrode arrays. Mucosally recorded slow-wave propagation was consistent with reference serosal activation pattern, frequency (P≥.3), and velocity (P≥.4). However, mucosally recorded slow-wave morphology exhibited reduced amplitude (65-72% reduced, P<.001) and wider downstroke width (18-31% wider, P≤.02), compared to serosal data. Dysrhythmias were successfully mapped and classified from the mucosal surface, accorded with serosal data, and were consistent with known dysrhythmic mechanisms in the porcine model. High-resolution gastric electrical mapping was achieved from the mucosal surface, and demonstrated consistent propagation characteristics with serosal data. However, mucosal signal morphology was attenuated, demonstrating necessity for optimized electrode designs and analytical algorithms. This study demonstrates feasibility of endoscopic HR mapping, providing a foundation for advancement of minimally invasive spatiotemporal gastric mapping as a clinical and scientific tool. © 2016 John Wiley & Sons Ltd.

  14. Strategy for reliable strain measurement in InAs/GaAs materials from high-resolution Z-contrast STEM images

    NASA Astrophysics Data System (ADS)

    Vatanparast, Maryam; Vullum, Per Erik; Nord, Magnus; Zuo, Jian-Min; Reenaas, Turid W.; Holmestad, Randi

    2017-09-01

    Geometric phase analysis (GPA), a fast and simple Fourier space method for strain analysis, can give useful information on accumulated strain and defect propagation in multiple layers of semiconductors, including quantum dot materials. In this work, GPA has been applied to high resolution Z-contrast scanning transmission electron microscopy (STEM) images. Strain maps determined from different g vectors of these images are compared to each other, in order to analyze and assess the GPA technique in terms of accuracy. The SmartAlign tool has been used to improve the STEM image quality getting more reliable results. Strain maps from template matching as a real space approach are compared with strain maps from GPA, and it is discussed that a real space analysis is a better approach than GPA for aberration corrected STEM images.

  15. Mapping snow depth in open alpine terrain from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Marti, R.; Gascoin, S.; Berthier, E.; de Pinel, M.; Houet, T.; Laffly, D.

    2016-07-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km2) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km2). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available.

  16. High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images

    NASA Astrophysics Data System (ADS)

    Mojica, Jhon F.; Sallarès, Valentí; Biescas, Berta

    2018-06-01

    The Alboran Sea is a dynamically active region where the salty and warm Mediterranean water first encounters the incoming milder and cooler Atlantic water. The interaction between these two water masses originates a set of sub-mesoscale structures and a complex sequence of processes that entail mixing close to the thermocline. Here we present a high-resolution map of the diapycnal diffusivity around the thermocline depth obtained using acoustic data recorded with a high-resolution multichannel seismic system. The map reveals a patchy thermocline, with spots of strong diapycnal mixing juxtaposed with areas of weaker mixing. The patch size is of a few kilometers in the horizontal scale and of 10-15 m in the vertical one. The comparison of the obtained maps with the original acoustic images shows that mixing tends to concentrate in areas where internal waves, which are ubiquitous in the surveyed area, become unstable and shear instabilities develop, enhancing energy transfer towards the turbulent regime. These results are also compared with others obtained using more conventional oceanographic probes. The values estimated based on the seismic data are within the ranges of values obtained from oceanographic data analysis, and they are also consistent with reference theoretical values. Overall, our results demonstrate that high-resolution seismic systems allow the remote quantification of mixing at the thermocline depth with unprecedented resolution.

  17. NREL: International Activities - Pakistan Resource Maps

    Science.gov Websites

    . The high-resolution (1-km) annual wind power maps were developed using a numerical modeling approach along with NREL's empirical validation methodology. The high-resolution (10-km) annual and seasonal KB) | High-Res (ZIP 281 KB) 40-km Resolution Annual Maps (Direct) Low-Res (JPG 156 KB) | High-Res

  18. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  19. A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity

    PubMed Central

    Bull, Simon H.; O’Grady, Gregory; Du, Peng

    2015-01-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024

  20. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.

    2016-12-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  1. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    USGS Publications Warehouse

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  2. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    NASA Astrophysics Data System (ADS)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  3. A high-resolution genetic, physical, and comparative gene map of the doublefoot (Dbf) region of mouse chromosome 1 and the region of conserved synteny on human chromosome 2q35.

    PubMed

    Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D

    2001-12-01

    The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.

  4. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).

  5. Comparison of different landform classification methods for digital landform and soil mapping of the Iranian loess plateau

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Kramm, Tanja; Curdt, Constanze; Maleki, Sedigheh; Khormali, Farhad; Kehl, Martin

    2016-04-01

    The Iranian loess plateau is covered by loess deposits, up to 70 m thick. Tectonic uplift triggered deep erosion and valley incision into the loess and underlying marine deposits. Soil development strongly relates to the aspect of these incised slopes, because on northern slopes vegetation protects the soil surface against erosion and facilitates formation and preservation of a Cambisol, whereas on south-facing slopes soils were probably eroded and weakly developed Entisols formed. While the whole area is intensively stocked with sheep and goat, rain-fed cropping of winter wheat is practiced on the valley floors. Most time of the year, the soil surface is unprotected against rainfall, which is one of the factors promoting soil erosion and serious flooding. However, little information is available on soil distribution, plant cover and the geomorphological evolution of the plateau, as well as on potentials and problems in land use. Thus, digital landform and soil mapping is needed. As a requirement of digital landform and soil mapping, four different landform classification methods were compared and evaluated. These geomorphometric classifications were run on two different scales. On the whole area an ASTER GDEM and SRTM dataset (30 m pixel resolution) was used. Likewise, two high-resolution digital elevation models were derived from Pléiades satellite stereo-imagery (< 1m pixel resolution, 10 by 10 km). The high-resolution information of this dataset was aggregated to datasets of 5 and 10 m scale. The applied classification methods are the Geomorphons approach, an object-based image approach, the topographical position index and a mainly slope based approach. The accuracy of the classification was checked with a location related image dataset obtained in a field survey (n ~ 150) in September 2015. The accuracy of the DEMs was compared to measured DGPS trenches and map-based elevation data. The overall derived accuracy of the landform classification based on the high-resolution DEM with a resolution of 5 m is approximately 70% and on a 10 m resolution >58%. For the 30 m resolution datasets is the achieved accuracy approximately 40%, as several small scale features are not recognizable in this resolution. Thus, for an accurate differentiation between different important landform types, high-resolution datasets are necessary for this strongly shaped area. One major problem of this approach are the different classes derived by each method and the various class annotations. The result of this evaluation will be regarded for the derivation of landform and soil maps.

  6. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  7. High-spatial-resolution mapping of precipitable water vapour using SAR interferograms, GPS observations and ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin

    2016-09-01

    A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.

  8. Construction of a high-density high-resolution genetic map and its integration with BAC-based physical map in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the pre...

  9. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011

    NASA Technical Reports Server (NTRS)

    Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen

    2016-01-01

    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.

  10. A high-resolution cattle CNV map by population-scale genome sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. Prior studies in cattle have produced low-resolution CNV maps. We constructed a draft, high-resolution map of cattle CNVs based on whole genome sequencing data from 7...

  11. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current dust models associated with poor characterization of dust sources. The baseline dust scheme used in this study is the Dust Entrainment and Deposition (DEAD) model, which is also a component of the community land model (CLM). Proposed improvements in the dust emission representation will help to better understand the accurate effect of dust on climate processes.

  12. Comparison of four machine learning methods for object-oriented change detection in high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Bai, Ting; Sun, Kaimin; Deng, Shiquan; Chen, Yan

    2018-03-01

    High resolution image change detection is one of the key technologies of remote sensing application, which is of great significance for resource survey, environmental monitoring, fine agriculture, military mapping and battlefield environment detection. In this paper, for high-resolution satellite imagery, Random Forest (RF), Support Vector Machine (SVM), Deep belief network (DBN), and Adaboost models were established to verify the possibility of different machine learning applications in change detection. In order to compare detection accuracy of four machine learning Method, we applied these four machine learning methods for two high-resolution images. The results shows that SVM has higher overall accuracy at small samples compared to RF, Adaboost, and DBN for binary and from-to change detection. With the increase in the number of samples, RF has higher overall accuracy compared to Adaboost, SVM and DBN.

  13. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    NASA Astrophysics Data System (ADS)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  14. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    NASA Astrophysics Data System (ADS)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.

  15. Targeted Recombinant Progeny: a design for ultra-high resolution mapping of Quantitative Trait Loci in crosses between inbred or pure lines.

    PubMed

    Heifetz, Eliyahu M; Soller, Morris

    2015-07-07

    High-resolution mapping of the loci (QTN) responsible for genetic variation in quantitative traits is essential for positional cloning of candidate genes, and for effective marker assisted selection. The confidence interval (QTL) flanking the point estimate of QTN-location is proportional to the number of individuals in the mapping population carrying chromosomes recombinant in the given interval. Consequently, many designs for high resolution QTN mapping are based on increasing the proportion of recombinants in the mapping population. The "Targeted Recombinant Progeny" (TRP) design is a new design for high resolution mapping of a target QTN in crosses between pure, or inbred lines. It is a three-generation procedure generating a large number of recombinant individuals within a QTL previously shown to contain a QTN. This is achieved by having individuals that carry chromosomes recombinant across the target QTL interval as parents of a large mapping population; most of whom will therefore carry recombinant chromosomes targeted to the given QTL. The TRP design is particularly useful for high resolution mapping of QTN that differentiate inbred or pure lines, and hence are not amenable to high resolution mapping by genome-wide association tests. In the absence of residual polygenic variation, population sizes required for achieving given mapping resolution by the TRP-F2 design relative to a standard F2 design ranged from 0.289 for a QTN with standardized allele substitution effect = 0.2, mapped to an initial QTL of 0.2 Morgan to 0.041 for equivalent QTN mapped to an initial QTL of 0.02 M. In the presence of residual polygenic variation, the relative effectiveness of the TRP design ranges from 1.068 to 0.151 for the same initial QTL intervals and QTN effect. Thus even in the presence of polygenic variation, the TRP can still provide major savings. Simulation showed that mapping by TRP should be based on 30-50 markers spanning the initial interval; and on at least 50 or more G2 families representing this number of recombination points,. The TRP design can be an effective procedure for achieving high and ultra-high mapping resolution of a target QTN previously mapped to a known confidence interval (QTL).

  16. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S

    2005-10-01

    To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.

  17. Anatomy assisted PET image reconstruction incorporating multi-resolution joint entropy

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman

    2015-01-01

    A promising approach in PET image reconstruction is to incorporate high resolution anatomical information (measured from MR or CT) taking the anato-functional similarity measures such as mutual information or joint entropy (JE) as the prior. These similarity measures only classify voxels based on intensity values, while neglecting structural spatial information. In this work, we developed an anatomy-assisted maximum a posteriori (MAP) reconstruction algorithm wherein the JE measure is supplied by spatial information generated using wavelet multi-resolution analysis. The proposed wavelet-based JE (WJE) MAP algorithm involves calculation of derivatives of the subband JE measures with respect to individual PET image voxel intensities, which we have shown can be computed very similarly to how the inverse wavelet transform is implemented. We performed a simulation study with the BrainWeb phantom creating PET data corresponding to different noise levels. Realistically simulated T1-weighted MR images provided by BrainWeb modeling were applied in the anatomy-assisted reconstruction with the WJE-MAP algorithm and the intensity-only JE-MAP algorithm. Quantitative analysis showed that the WJE-MAP algorithm performed similarly to the JE-MAP algorithm at low noise level in the gray matter (GM) and white matter (WM) regions in terms of noise versus bias tradeoff. When noise increased to medium level in the simulated data, the WJE-MAP algorithm started to surpass the JE-MAP algorithm in the GM region, which is less uniform with smaller isolated structures compared to the WM region. In the high noise level simulation, the WJE-MAP algorithm presented clear improvement over the JE-MAP algorithm in both the GM and WM regions. In addition to the simulation study, we applied the reconstruction algorithms to real patient studies involving DPA-173 PET data and Florbetapir PET data with corresponding T1-MPRAGE MRI images. Compared to the intensity-only JE-MAP algorithm, the WJE-MAP algorithm resulted in comparable regional mean values to those from the maximum likelihood algorithm while reducing noise. Achieving robust performance in various noise-level simulation and patient studies, the WJE-MAP algorithm demonstrates its potential in clinical quantitative PET imaging.

  18. Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

    PubMed Central

    Gatenby, J. Christopher; Gore, John C.; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI. PMID:22514646

  19. Multishot versus single-shot pulse sequences in very high field fMRI: a comparison using retinotopic mapping.

    PubMed

    Swisher, Jascha D; Sexton, John A; Gatenby, J Christopher; Gore, John C; Tong, Frank

    2012-01-01

    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI.

  20. Mapping snow depth from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.

    2016-12-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.

  1. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  2. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Shapiro, Kristen; Haverkamp, Paul J; Lay, Mui

    2018-02-12

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed better than either of the three satellite sensors. The ability to acquire imagery during certain times (midday, low tide, etc.) or a certain date (cloud-free, etc.) is also important in these tidal wetlands; WorldView2 imagery captured at high-tide detected a narrower band of shoreline affected by oil likely because some of the impacted wetland was below the tideline. These results suggest that while multispectral data may be sufficient for detecting the extent of oil-impacted wetlands, high spectral and spatial resolution, high-quality sensor characteristics, and the ability to control time of image acquisition may improve assessment and monitoring of vegetation stress and recovery post oil spills.

  3. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact

    PubMed Central

    Santos, Maria J.; Ustin, Susan L.; Haverkamp, Paul J.; Lay, Mui

    2018-01-01

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed better than either of the three satellite sensors. The ability to acquire imagery during certain times (midday, low tide, etc.) or a certain date (cloud-free, etc.) is also important in these tidal wetlands; WorldView2 imagery captured at high-tide detected a narrower band of shoreline affected by oil likely because some of the impacted wetland was below the tideline. These results suggest that while multispectral data may be sufficient for detecting the extent of oil-impacted wetlands, high spectral and spatial resolution, high-quality sensor characteristics, and the ability to control time of image acquisition may improve assessment and monitoring of vegetation stress and recovery post oil spills. PMID:29439504

  4. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  5. A super-resolution ultrasound method for brain vascular mapping

    PubMed Central

    O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408

  6. Comparing the information content of coral reef geomorphological and biological habitat maps, Amirantes Archipelago (Seychelles), Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hamylton, S.; Andréfouët, S.; Spencer, T.

    2012-10-01

    Increasing the use of geomorphological map products in marine spatial planning has the potential to greatly enhance return on mapping investment as they are commonly two orders of magnitude cheaper to produce than biologically-focussed maps of benthic communities and shallow substrates. The efficacy of geomorphological maps derived from remotely sensed imagery as surrogates for habitat diversity is explored by comparing two map sets of the platform reefs and atolls of the Amirantes Archipelago (Seychelles), Western Indian Ocean. One mapping campaign utilised Compact Airborne Spectrographic Imagery (19 wavebands, 1 m spatial resolution) to classify 11 islands and associated reefs into 25 biological habitat classes while the other campaign used Landsat 7 + ETM imagery (7 bands, 30 m spatial resolution) to generate maps of 14 geomorphic classes. The maps were compared across a range of characteristics, including habitat richness (number of classes mapped), diversity (Shannon-Weiner statistic) and thematic content (Cramer's V statistic). Between maps, a strong relationship was revealed for habitat richness (R2 = 0.76), a moderate relationship for class diversity and evenness (R2 = 0.63) and a variable relationship for thematic content, dependent on site complexity (V range 0.43-0.93). Geomorphic maps emerged as robust predictors of the habitat richness in the Amirantes. Such maps therefore demonstrate high potential value for informing coastal management activities and conservation planning by drawing on information beyond their own thematic content and thus maximizing the return on mapping investment.

  7. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Yepes Quintero, A. P.; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-07-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40%) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  8. High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Asner, G. P.; Clark, J. K.; Mascaro, J.; Galindo García, G. A.; Chadwick, K. D.; Navarrete Encinales, D. A.; Paez-Acosta, G.; Cabrera Montenegro, E.; Kennedy-Bowdoin, T.; Duque, Á.; Balaji, A.; von Hildebrand, P.; Maatoug, L.; Bernal, J. F. Phillips; Knapp, D. E.; García Dávila, M. C.; Jacobson, J.; Ordóñez, M. F.

    2012-03-01

    High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR) samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 %) of the Colombian Amazon - a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i) employing a universal approach to airborne LiDAR-calibration with limited field data; (ii) quantifying environmental controls over carbon densities; and (iii) developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  9. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  10. Mapping from Space - Ontology Based Map Production Using Satellite Imageries

    NASA Astrophysics Data System (ADS)

    Asefpour Vakilian, A.; Momeni, M.

    2013-09-01

    Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.

  11. High-Resolution Global Soil Moisture Map

    NASA Image and Video Library

    2015-05-19

    High-resolution global soil moisture map from NASA SMAP combined radar and radiometer instruments, acquired between May 4 and May 11, 2015 during SMAP commissioning phase. The map has a resolution of 5.6 miles (9 kilometers). The data gap is due to turning the instruments on and off during testing. http://photojournal.jpl.nasa.gov/catalog/PIA19337

  12. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  13. High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing

    DTIC Science & Technology

    2010-10-14

    High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and Massively Parallel Sequencing...Venezuelan equine encephalitis virus (VEEV) genome. We initially used a capillary electrophoresis method to gain insight into the role of the VEEV...Smith JM, Schmaljohn CS (2010) High-Resolution Functional Mapping of the Venezuelan Equine Encephalitis Virus Genome by Insertional Mutagenesis and

  14. Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea

    PubMed Central

    Kujur, Alice; Upadhyaya, Hari D.; Shree, Tanima; Bajaj, Deepak; Das, Shouvik; Saxena, Maneesha S.; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K.; Parida, Swarup K.

    2015-01-01

    We discovered 26785 and 16573 high-quality SNPs differentiating two parental genotypes of a RIL mapping population using reference desi and kabuli genome-based GBS assay. Of these, 3625 and 2177 SNPs have been integrated into eight desi and kabuli chromosomes, respectively in order to construct ultra-high density (0.20–0.37 cM) intra-specific chickpea genetic linkage maps. One of these constructed high-resolution genetic map has potential to identify 33 major genomic regions harbouring 35 robust QTLs (PVE: 17.9–39.7%) associated with three agronomic traits, which were mapped within <1 cM mean marker intervals on desi chromosomes. The extended LD (linkage disequilibrium) decay (~15 cM) in chromosomes of genetic maps have encouraged us to use a rapid integrated approach (comparative QTL mapping, QTL-region specific haplotype/LD-based trait association analysis, expression profiling and gene haplotype-based association mapping) rather than a traditional QTL map-based cloning method to narrow-down one major seed weight (SW) robust QTL region. It delineated favourable natural allelic variants and superior haplotype-containing one seed-specific candidate embryo defective gene regulating SW in chickpea. The ultra-high-resolution genetic maps, QTLs/genes and alleles/haplotypes-related genomic information generated and integrated strategy for rapid QTL/gene identification developed have potential to expedite genomics-assisted breeding applications in crop plants, including chickpea for their genetic enhancement. PMID:25942004

  15. High-spatial-resolution mapping of catalytic reactions on single particles

    DOE PAGES

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan; ...

    2017-01-26

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  16. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    USGS Publications Warehouse

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  17. HetMappsS: Heterozygous mapping strategy for high resolution Genotyping-by-Sequencing Markers

    USDA-ARS?s Scientific Manuscript database

    Reduced representation genotyping approaches, such as genotyping-by-sequencing (GBS), provide opportunities to generate high-resolution genetic maps at a low per-sample cost. However, missing data and non-uniform sequence coverage can complicate map creation in highly heterozygous species. To facili...

  18. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  19. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  20. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region.

    Treesearch

    L. Arroyo; S.P. Healey; W.B. Cohen; D. Cocero; J.A. Manzanera

    2006-01-01

    Knowledge of fuel load and composition is critical in fighting, preventing, and understanding wildfires. Commonly, the generation of fuel maps from remotely sensed imagery has made use of medium-resolution sensors such as Landsat. This paper presents a methodology to generate fuel type maps from high spatial resolution satellite data through object-oriented...

  1. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia.

    PubMed

    Wang, Bin; Waters, Cathy; Orgill, Susan; Gray, Jonathan; Cowie, Annette; Clark, Anthony; Liu, De Li

    2018-07-15

    Efficient and effective modelling methods to assess soil organic carbon (SOC) stock are central in understanding the global carbon cycle and informing related land management decisions. However, mapping SOC stocks in semi-arid rangelands is challenging due to the lack of data and poor spatial coverage. The use of remote sensing data to provide an indirect measurement of SOC to inform digital soil mapping has the potential to provide more reliable and cost-effective estimates of SOC compared with field-based, direct measurement. Despite this potential, the role of remote sensing data in improving the knowledge of soil information in semi-arid rangelands has not been fully explored. This study firstly investigated the use of high spatial resolution satellite data (seasonal fractional cover data; SFC) together with elevation, lithology, climatic data and observed soil data to map the spatial distribution of SOC at two soil depths (0-5cm and 0-30cm) in semi-arid rangelands of eastern Australia. Overall, model performance statistics showed that random forest (RF) and boosted regression trees (BRT) models performed better than support vector machine (SVM). The models obtained moderate results with R 2 of 0.32 for SOC stock at 0-5cm and 0.44 at 0-30cm, RMSE of 3.51MgCha -1 at 0-5cm and 9.16MgCha -1 at 0-30cm without considering SFC covariates. In contrast, by including SFC, the model accuracy for predicting SOC stock improved by 7.4-12.7% at 0-5cm, and by 2.8-5.9% at 0-30cm, highlighting the importance of including SFC to enhance the performance of the three modelling techniques. Furthermore, our models produced a more accurate and higher resolution digital SOC stock map compared with other available mapping products for the region. The data and high-resolution maps from this study can be used for future soil carbon assessment and monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Validation of Satellite Snow Cover Maps in North America and Norway

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Solberg, Rune; Riggs, George A.

    2002-01-01

    Satellite-derived snow maps from NASA's Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) have been produced since February of 2000. The global maps are available daily at 500-m resolution, and at a climate-modeling grid (CMG) resolution of 1/20 deg (approximately 5.6 km). We compared the 8-day composite CMG MODIS-derived global maps from November 1,2001, through March 21,2002, and daily CMG maps from February 26 - March 5,2002, with National Oceanic and Atmospheric Administration (NOAA) Interactive Multisensor Snow and Ice Mapping System (IMS) 25-km resolution maps for North America. For the Norwegian study area, national snow maps, based on synoptic measurements as well as visual interpretation of AVHRR images, published by the Det Norske Meteorologiske Institutt (Norwegian Meteorological Institute) (MI) maps, as well as Landsat ETM+ images were compared with the MODIS maps. The MODIS-derived maps agreed over most areas with the IMS or MI maps, however, there are important areas of disagreement between the maps, especially when the 8-day composite maps were used. It is concluded that MODIS daily CMG maps should be studied for validation purposes rather than the 8-day composite maps, despite the limitations imposed by cloud obscuration when using the daily maps.

  3. Studies at high frequencies of the 30 Doradus and RCW 57 regions.

    NASA Astrophysics Data System (ADS)

    Sabalisck, N. S. P.; Abraham, Z.

    1990-11-01

    The authors present maps of the 30 Dor region at 22 GHz and of the RCW 57 region at 43 GHz. The data are compared with maps at lower frequencies and similar resolutions. In the 30 Dor region 3 supernova remnants of plerionic type were detected: N 1578, MC 78 and MC 89.

  4. High-resolution geological mapping at 3D Environments: A case study from the fold-and-thrust belt in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.

    2016-12-01

    Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.

  5. Linking in situ LAI and fine resolution remote sensing data to map reference LAI over cropland and grassland using geostatistical regression method

    NASA Astrophysics Data System (ADS)

    He, Yaqian; Bo, Yanchen; Chai, Leilei; Liu, Xiaolong; Li, Aihua

    2016-08-01

    Leaf Area Index (LAI) is an important parameter of vegetation structure. A number of moderate resolution LAI products have been produced in urgent need of large scale vegetation monitoring. High resolution LAI reference maps are necessary to validate these LAI products. This study used a geostatistical regression (GR) method to estimate LAI reference maps by linking in situ LAI and Landsat TM/ETM+ and SPOT-HRV data over two cropland and two grassland sites. To explore the discrepancies of employing different vegetation indices (VIs) on estimating LAI reference maps, this study established the GR models for different VIs, including difference vegetation index (DVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI). To further assess the performance of the GR model, the results from the GR and Reduced Major Axis (RMA) models were compared. The results show that the performance of the GR model varies between the cropland and grassland sites. At the cropland sites, the GR model based on DVI provides the best estimation, while at the grassland sites, the GR model based on DVI performs poorly. Compared to the RMA model, the GR model improves the accuracy of reference LAI maps in terms of root mean square errors (RMSE) and bias.

  6. Fractional Snow Cover Mapping by Artificial Neural Networks and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Çiftçi, B. B.; Kuter, S.; Akyürek, Z.; Weber, G.-W.

    2017-11-01

    Snow is an important land cover whose distribution over space and time plays a significant role in various environmental processes. Hence, snow cover mapping with high accuracy is necessary to have a real understanding for present and future climate, water cycle, and ecological changes. This study aims to investigate and compare the design and use of artificial neural networks (ANNs) and support vector machines (SVMs) algorithms for fractional snow cover (FSC) mapping from satellite data. ANN and SVM models with different model building settings are trained by using Moderate Resolution Imaging Spectroradiometer surface reflectance values of bands 1-7, normalized difference snow index and normalized difference vegetation index as predictor variables. Reference FSC maps are generated from higher spatial resolution Landsat ETM+ binary snow cover maps. Results on the independent test data set indicate that the developed ANN model with hyperbolic tangent transfer function in the output layer and the SVM model with radial basis function kernel produce high FSC mapping accuracies with the corresponding values of R = 0.93 and R = 0.92, respectively.

  7. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps.

    PubMed

    Mitchard, Edward Ta; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra

    2013-10-26

    Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density.

  8. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  9. High-Resolution Geologic Mapping of Martian Terraced Fan Deposits

    NASA Astrophysics Data System (ADS)

    Wolak, J. M.; Patterson, A. B.; Smith, S. D.; Robbins, N. N.

    2018-06-01

    This abstract documents our initial progress (year 1) mapping terraced fan features on Mars. Our objective is to investigate the role of fluids during fan formation and produce the first high-resolution geologic map (1:18k) of a terraced fan.

  10. High Resolution Image Reconstruction from Projection of Low Resolution Images DIffering in Subpixel Shifts

    NASA Technical Reports Server (NTRS)

    Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome

    2016-01-01

    In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.

  11. Mapping Vegetation Community Types in a Highly-Disturbed Landscape: Integrating Hiearchical Object-Based Image Analysis with Digital Surface Models

    NASA Astrophysics Data System (ADS)

    Snavely, Rachel A.

    Focusing on the semi-arid and highly disturbed landscape of San Clemente Island, California, this research tests the effectiveness of incorporating a hierarchal object-based image analysis (OBIA) approach with high-spatial resolution imagery and light detection and range (LiDAR) derived canopy height surfaces for mapping vegetation communities. The study is part of a large-scale research effort conducted by researchers at San Diego State University's (SDSU) Center for Earth Systems Analysis Research (CESAR) and Soil Ecology and Restoration Group (SERG), to develop an updated vegetation community map which will support both conservation and management decisions on Naval Auxiliary Landing Field (NALF) San Clemente Island. Trimble's eCognition Developer software was used to develop and generate vegetation community maps for two study sites, with and without vegetation height data as input. Overall and class-specific accuracies were calculated and compared across the two classifications. The highest overall accuracy (approximately 80%) was observed with the classification integrating airborne visible and near infrared imagery having very high spatial resolution with a LiDAR derived canopy height model. Accuracies for individual vegetation classes differed between both classification methods, but were highest when incorporating the LiDAR digital surface data. The addition of a canopy height model, however, yielded little difference in classification accuracies for areas of very dense shrub cover. Overall, the results show the utility of the OBIA approach for mapping vegetation with high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accuracy characterizing highly disturbed landscapes. The integrated imagery and digital canopy height model approach presented both advantages and limitations, which have to be considered prior to its operational use in mapping vegetation communities.

  12. Automatic public access to documents and maps stored on and internal secure system.

    NASA Astrophysics Data System (ADS)

    Trench, James; Carter, Mary

    2013-04-01

    The Geological Survey of Ireland operates a Document Management System for providing documents and maps stored internally in high resolution and in a high level secure environment, to an external service where the documents are automatically presented in a lower resolution to members of the public. Security is devised through roles and Individual Users where role level and folder level can be set. The application is an electronic document/data management (EDM) system which has a Geographical Information System (GIS) component integrated to allow users to query an interactive map of Ireland for data that relates to a particular area of interest. The data stored in the database consists of Bedrock Field Sheets, Bedrock Notebooks, Bedrock Maps, Geophysical Surveys, Geotechnical Maps & Reports, Groundwater, GSI Publications, Marine, Mine Records, Mineral Localities, Open File, Quaternary and Unpublished Reports. The Konfig application Tool is both an internal and public facing application. It acts as a tool for high resolution data entry which are stored in a high resolution vault. The public facing application is a mirror of the internal application and differs only in that the application furnishes high resolution data into low resolution format which is stored in a low resolution vault thus, making the data web friendly to the end user for download.

  13. Heterozygous mapping strategy (HetMapps)for high resolution genotyping-by-sequencing markers: a case study in grapevine

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...

  14. Comparing long-term geomorphic model outcomes with sediment archives highlights the need for high-resolution Holocene land cover reconstructions

    NASA Astrophysics Data System (ADS)

    De Brue, Hanne; Verstraeten, Gert

    2013-04-01

    During the last decade, several global land cover reconstructions have been produced that enable to quantify human impact on the landscape since the introduction of agriculture. Application of these land cover maps in geomorphic models potentially allows to estimate the anthropogenic impact on sediment fluxes and thus to reconstruct changes in landscape morphology through time. However, current land cover reconstructions face some drawbacks. First of all, their low spatial resolution (i.e. 5 arc-minutes at best) questions their use in geomorphic models, as sub-catchment vegetation patterns play an important role in sediment dynamics. Existing global land cover reconstructions also do not differentiate the typology of human impact (cropland, grazing land, disturbed forests), although the susceptibility of different anthropogenic land uses towards erosion varies greatly. Finally, the various land cover reconstructions differ significantly regarding the estimated intensity of human impact for the preindustrial period. In this study, we assessed the performance of a spatially distributed erosion and sediment redistribution model that operates at high resolution (100 m) to the quality and spatial resolution of input land cover maps. This was done through a comparison of two sets of model runs. Firstly, low-resolution land cover (expressed as percentage of non-natural vegetation) maps were resampled to a spatial resolution of 100 m without differentiation of non-natural vegetation types. For the second set of model runs, estimated non-natural vegetation was differentiated in areas of cropland and grassland, and spatially allocated to a high-resolution grid (100 m) using a logistic model that relates contemporary land cover classes to slope, soil characteristics, landforms and distance to rivers. For both land cover maps, different scenarios for the ratio between cropland and grassland were simulated. Analyses were performed for several time periods throughout the Holocene, for the Scheldt River Basin (19,000 km2) in Belgium and northern France. Results indicate that low-resolution land cover information, regardless of the considered cropland/grassland ratio, leads to largely overestimated sediment fluxes when compared to field-based sediment budgets. Allocation of land cover to a higher spatial resolution yields far better results. Variations in model outcomes are related to differences in landscape connectivity between allocated and non-allocated land cover. These results point towards the need for higher-resolution land cover maps that incorporate the patchiness of vegetation at relevant scales regarding geomorphic processes. Also, model results with allocated and non-allocated land cover maps differ greatly for different cropland/grassland ratios. This indicates that there is not only a need for land cover reconstructions at high spatial resolution, but also that differentiation between cropland and grassland is essential for accurate geomorphic modeling. Further improvements in land cover reconstructions are thus needed before reliable quantitative estimates of anthropogenic impact on soil profiles and sediment redistribution can be simulated at continental scales. Detailed historic sediment budgets can provide an important tool not only for validating but also for reconstructing land cover histories.

  15. Urban cover mapping using digital, high-resolution aerial imagery

    Treesearch

    Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock

    2003-01-01

    High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...

  16. High quality high spatial resolution functional classification in low dose dynamic CT perfusion using singular value decomposition (SVD) and k-means clustering

    NASA Astrophysics Data System (ADS)

    Pisana, Francesco; Henzler, Thomas; Schönberg, Stefan; Klotz, Ernst; Schmidt, Bernhard; Kachelrieß, Marc

    2017-03-01

    Dynamic CT perfusion acquisitions are intrinsically high-dose examinations, due to repeated scanning. To keep radiation dose under control, relatively noisy images are acquired. Noise is then further enhanced during the extraction of functional parameters from the post-processing of the time attenuation curves of the voxels (TACs) and normally some smoothing filter needs to be employed to better visualize any perfusion abnormality, but sacrificing spatial resolution. In this study we propose a new method to detect perfusion abnormalities keeping both high spatial resolution and high CNR. To do this we first perform the singular value decomposition (SVD) of the original noisy spatial temporal data matrix to extract basis functions of the TACs. Then we iteratively cluster the voxels based on a smoothed version of the three most significant singular vectors. Finally, we create high spatial resolution 3D volumes where to each voxel is assigned a distance from the centroid of each cluster, showing how functionally similar each voxel is compared to the others. The method was tested on three noisy clinical datasets: one brain perfusion case with an occlusion in the left internal carotid, one healthy brain perfusion case, and one liver case with an enhancing lesion. Our method successfully detected all perfusion abnormalities with higher spatial precision when compared to the functional maps obtained with a commercially available software. We conclude this method might be employed to have a rapid qualitative indication of functional abnormalities in low dose dynamic CT perfusion datasets. The method seems to be very robust with respect to both spatial and temporal noise and does not require any special a priori assumption. While being more robust respect to noise and with higher spatial resolution and CNR when compared to the functional maps, our method is not quantitative and a potential usage in clinical routine could be as a second reader to assist in the maps evaluation, or to guide a dataset smoothing before the modeling part.

  17. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish

    PubMed Central

    Li, Yun; Liu, Shikai; Qin, Zhenkui; Waldbieser, Geoff; Wang, Ruijia; Sun, Luyang; Bao, Lisui; Danzmann, Roy G.; Dunham, Rex; Liu, Zhanjiang

    2015-01-01

    Construction of genetic linkage map is essential for genetic and genomic studies. Recent advances in sequencing and genotyping technologies made it possible to generate high-density and high-resolution genetic linkage maps, especially for the organisms lacking extensive genomic resources. In the present work, we constructed a high-density and high-resolution genetic map for channel catfish with three large resource families genotyped using the catfish 250K single-nucleotide polymorphism (SNP) array. A total of 54,342 SNPs were placed on the linkage map, which to our knowledge had the highest marker density among aquaculture species. The estimated genetic size was 3,505.4 cM with a resolution of 0.22 cM for sex-averaged genetic map. The sex-specific linkage maps spanned a total of 4,495.1 cM in females and 2,593.7 cM in males, presenting a ratio of 1.7 : 1 between female and male in recombination fraction. After integration with the previously established physical map, over 87% of physical map contigs were anchored to the linkage groups that covered a physical length of 867 Mb, accounting for ∼90% of the catfish genome. The integrated map provides a valuable tool for validating and improving the catfish whole-genome assembly and facilitates fine-scale QTL mapping and positional cloning of genes responsible for economically important traits. PMID:25428894

  18. A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis.

    PubMed

    Bakker, Erin; Achenbach, Ute; Bakker, Jeroen; van Vliet, Joke; Peleman, Johan; Segers, Bart; van der Heijden, Stefan; van der Linde, Piet; Graveland, Robert; Hutten, Ronald; van Eck, Herman; Coppoolse, Eric; van der Vossen, Edwin; Bakker, Jaap; Goverse, Aska

    2004-06-01

    The resistance gene H1 confers resistance to the potato cyst nematode Globodera rostochiensis and is located at the distal end of the long arm of chromosome V of potato. For marker enrichment of the H1 locus, a bulked segregant analysis (BSA) was carried out using 704 AFLP primer combinations. A second source of markers tightly linked to H1 is the ultra-high-density (UHD) genetic map of the potato cross SH x RH. This map has been produced with 387 AFLP primer combinations and consists of 10,365 AFLP markers in 1,118 bins (http://www.dpw.wageningen-ur.nl/uhd/). Comparing these two methods revealed that BSA resulted in one marker/cM and the UHD map in four markers/cM in the H1 interval. Subsequently, a high-resolution genetic map of the H1 locus has been developed using a segregating F(1) SH x RH population consisting of 1,209 genotypes. Two PCR-based markers were designed at either side of the H1 gene to screen the 1,209 genotypes for recombination events. In the high-resolution genetic map, two of the four co-segregating AFLP markers could be separated from the H1 gene. Marker EM1 is located at a distance of 0.2 cM, and marker EM14 is located at a distance of 0.8 cM. The other two co-segregating markers CM1 (in coupling) and EM15 (in repulsion) could not be separated from the H1 gene.

  19. Deriving Continuous Fields of Tree Cover at 1-m over the Continental United States From the National Agriculture Imagery Program (NAIP) Imagery to Reduce Uncertainties in Forest Carbon Stock Estimation

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Basu, S.; Mukhopadhyay, S.; Michaelis, A.; Milesi, C.; Votava, P.; Nemani, R. R.

    2013-12-01

    An unresolved issue with coarse-to-medium resolution satellite-based forest carbon mapping over regional to continental scales is the high level of uncertainty in above ground biomass (AGB) estimates caused by the absence of forest cover information at a high enough spatial resolution (current spatial resolution is limited to 30-m). To put confidence in existing satellite-derived AGB density estimates, it is imperative to create continuous fields of tree cover at a sufficiently high resolution (e.g. 1-m) such that large uncertainties in forested area are reduced. The proposed work will provide means to reduce uncertainty in present satellite-derived AGB maps and Forest Inventory and Analysis (FIA) based regional estimates. Our primary objective will be to create Very High Resolution (VHR) estimates of tree cover at a spatial resolution of 1-m for the Continental United States using all available National Agriculture Imaging Program (NAIP) color-infrared imagery from 2010 till 2012. We will leverage the existing capabilities of the NASA Earth Exchange (NEX) high performance computing and storage facilities. The proposed 1-m tree cover map can be further aggregated to provide percent tree cover at any medium-to-coarse resolution spatial grid, which will aid in reducing uncertainties in AGB density estimation at the respective grid and overcome current limitations imposed by medium-to-coarse resolution land cover maps. We have implemented a scalable and computationally-efficient parallelized framework for tree-cover delineation - the core components of the algorithm [that] include a feature extraction process, a Statistical Region Merging image segmentation algorithm and a classification algorithm based on Deep Belief Network and a Feedforward Backpropagation Neural Network algorithm. An initial pilot exercise has been performed over the state of California (~11,000 scenes) to create a wall-to-wall 1-m tree cover map and the classification accuracy has been assessed. Results show an improvement in accuracy of tree-cover delineation as compared to existing forest cover maps from NLCD, especially over fragmented, heterogeneous and urban landscapes. Estimates of VHR tree cover will complement and enhance the accuracy of present remote-sensing based AGB modeling approaches and forest inventory based estimates at both national and local scales. A requisite step will be to characterize the inherent uncertainties in tree cover estimates and propagate them to estimate AGB.

  20. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric traits, at leaf, canopy and stand level, which makes the OBIA approach a very suitable technique for management purposes.

  1. The Effect of Shadow Area on Sgm Algorithm and Disparity Map Refinement from High Resolution Satellite Stereo Images

    NASA Astrophysics Data System (ADS)

    Tatar, N.; Saadatseresht, M.; Arefi, H.

    2017-09-01

    Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant increase in the rate of matched pixels compared to standard SGM algorithm.

  2. A Tool for Creating Regionally Calibrated High-Resolution Land Cover Data Sets for the West African Sahel: Using Machine Learning to Scale Up Hand-Classified Maps in a Data-Sparse Environment

    NASA Astrophysics Data System (ADS)

    Van Gordon, M.; Van Gordon, S.; Min, A.; Sullivan, J.; Weiner, Z.; Tappan, G. G.

    2017-12-01

    Using support vector machine (SVM) learning and high-accuracy hand-classified maps, we have developed a publicly available land cover classification tool for the West African Sahel. Our classifier produces high-resolution and regionally calibrated land cover maps for the Sahel, representing a significant contribution to the data available for this region. Global land cover products are unreliable for the Sahel, and accurate land cover data for the region are sparse. To address this gap, the U.S. Geological Survey and the Regional Center for Agriculture, Hydrology and Meteorology (AGRHYMET) in Niger produced high-quality land cover maps for the region via hand-classification of Landsat images. This method produces highly accurate maps, but the time and labor required constrain the spatial and temporal resolution of the data products. By using these hand-classified maps alongside SVM techniques, we successfully increase the resolution of the land cover maps by 1-2 orders of magnitude, from 2km-decadal resolution to 30m-annual resolution. These high-resolution regionally calibrated land cover datasets, along with the classifier we developed to produce them, lay the foundation for major advances in studies of land surface processes in the region. These datasets will provide more accurate inputs for food security modeling, hydrologic modeling, analyses of land cover change and climate change adaptation efforts. The land cover classification tool we have developed will be publicly available for use in creating additional West Africa land cover datasets with future remote sensing data and can be adapted for use in other parts of the world.

  3. Coastal habitat mapping in the Aegean Sea using high resolution orthophoto maps

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Papakonstantinou, Apostolos; Doukari, Michaela; Stamatis, Panagiotis; Makri, Despina; Katsanevakis, Stelios

    2017-09-01

    The significance of coastal habitat mapping lies in the need to prevent from anthropogenic interventions and other factors. Until 2015, Landsat-8 (30m) imagery were used as medium spatial resolution satellite imagery. So far, Sentinel-2 satellite imagery is very useful for more detailed regional scale mapping. However, the use of high resolution orthophoto maps, which are determined from UAV data, is expected to improve the mapping accuracy. This is due to small spatial resolution of the orthophoto maps (30 cm). This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. Additionally, the produced orthophoto maps analyzed through an object-based image analysis (OBIA) and nearest-neighbor classification for mapping the coastal habitats. Classification classes included the main general habitat types, i.e. seagrass, soft bottom, and hard bottom The developed methodology applied at the Koumbara beach (Ios Island - Greece). Results showed that UAS's data revealed the sub-bottom complexity in large shallow areas since they provide such information in the spatial resolution that permits the mapping of seagrass meadows with extreme detail. The produced habitat vectors are ideal as reference data for studies with satellite data of lower spatial resolution.

  4. A high-resolution genetic linkage map and QTL fine mapping for growth-related traits and sex in the Yangtze River common carp (Cyprinus carpio haematopterus).

    PubMed

    Feng, Xiu; Yu, Xiaomu; Fu, Beide; Wang, Xinhua; Liu, Haiyang; Pang, Meixia; Tong, Jingou

    2018-04-02

    A high-density genetic linkage map is essential for QTL fine mapping, comparative genome analysis, identification of candidate genes and marker-assisted selection for economic traits in aquaculture species. The Yangtze River common carp (Cyprinus carpio haematopterus) is one of the most important aquacultured strains in China. However, quite limited genetics and genomics resources have been developed for genetic improvement of economic traits in such strain. A high-resolution genetic linkage map was constructed by using 7820 2b-RAD (2b-restriction site-associated DNA) and 295 microsatellite markers in a F2 family of the Yangtze River common carp (C. c. haematopterus). The length of the map was 4586.56 cM with an average marker interval of 0.57 cM. Comparative genome mapping revealed that a high proportion (70%) of markers with disagreed chromosome location was observed between C. c. haematopterus and another common carp strain (subspecies) C. c. carpio. A clear 2:1 relationship was observed between C. c. haematopterus linkage groups (LGs) and zebrafish (Danio rerio) chromosomes. Based on the genetic map, 21 QTLs for growth-related traits were detected on 12 LGs, and contributed values of phenotypic variance explained (PVE) ranging from 16.3 to 38.6%, with LOD scores ranging from 4.02 to 11.13. A genome-wide significant QTL (LOD = 10.83) and three chromosome-wide significant QTLs (mean LOD = 4.84) for sex were mapped on LG50 and LG24, respectively. A 1.4 cM confidence interval of QTL for all growth-related traits showed conserved synteny with a 2.06 M segment on chromosome 14 of D. rerio. Five potential candidate genes were identified by blast search in this genomic region, including a well-studied multi-functional growth related gene, Apelin. We mapped a set of suggestive and significant QTLs for growth-related traits and sex based on a high-density genetic linkage map using SNP and microsatellite markers for Yangtze River common carp. Several candidate growth genes were also identified from the QTL regions by comparative mapping. This genetic map would provide a basis for genome assembly and comparative genomics studies, and those QTL-derived candidate genes and genetic markers are useful genomic resources for marker-assisted selection (MAS) of growth-related traits in the Yangtze River common carp.

  5. Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment

    NASA Astrophysics Data System (ADS)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil

    2016-05-01

    Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.

  6. Compressed sensing for high-resolution nonlipid suppressed 1 H FID MRSI of the human brain at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Avdievitch, Nikolai; Henning, Anke

    2018-04-29

    The aim of this study was to apply compressed sensing to accelerate the acquisition of high resolution metabolite maps of the human brain using a nonlipid suppressed ultra-short TR and TE 1 H FID MRSI sequence at 9.4T. X-t sparse compressed sensing reconstruction was optimized for nonlipid suppressed 1 H FID MRSI data. Coil-by-coil x-t sparse reconstruction was compared with SENSE x-t sparse and low rank reconstruction. The effect of matrix size and spatial resolution on the achievable acceleration factor was studied. Finally, in vivo metabolite maps with different acceleration factors of 2, 4, 5, and 10 were acquired and compared. Coil-by-coil x-t sparse compressed sensing reconstruction was not able to reliably recover the nonlipid suppressed data, rather a combination of parallel and sparse reconstruction was necessary (SENSE x-t sparse). For acceleration factors of up to 5, both the low-rank and the compressed sensing methods were able to reconstruct the data comparably well (root mean squared errors [RMSEs] ≤ 10.5% for Cre). However, the reconstruction time of the low rank algorithm was drastically longer than compressed sensing. Using the optimized compressed sensing reconstruction, acceleration factors of 4 or 5 could be reached for the MRSI data with a matrix size of 64 × 64. For lower spatial resolutions, an acceleration factor of up to R∼4 was successfully achieved. By tailoring the reconstruction scheme to the nonlipid suppressed data through parameter optimization and performance evaluation, we present high resolution (97 µL voxel size) accelerated in vivo metabolite maps of the human brain acquired at 9.4T within scan times of 3 to 3.75 min. © 2018 International Society for Magnetic Resonance in Medicine.

  7. High-resolution mid-infrared observations of NGC 7469

    NASA Technical Reports Server (NTRS)

    Miles, J. W.; Houck, J. R.; Hayward, T. L.

    1994-01-01

    We present a high-resolution 11.7 micrometer image of the starburst/Seyfert hybrid galaxy NGC 7469 using the Hale 5 m telescope at Palomar Observatory. Our map, with diffraction limited spatial resolution of 0.6 sec, shows a 3 sec diameter ring of emission around an unresolved nucleus. The map is similar to the Very Large Array (VLA) 6 cm map of this galaxy made with 0.4 sec resolution by Wilson et al. (1991). About half of the mid-infrared flux in our map emerges from the unresolved nucleus. We also present spatially resolved low resolution spectra that show that the 11.3 micrometer polycyclic aromatic hydrocarbon (PAH) feature comes from the circumnuclear ring but not from the nucleus of the galaxy.

  8. High-resolution maps of real and illusory tactile activation in primary somatosensory cortex in individual monkeys with functional magnetic resonance imaging and optical imaging.

    PubMed

    Chen, Li M; Turner, Gregory H; Friedman, Robert M; Zhang, Na; Gore, John C; Roe, Anna W; Avison, Malcolm J

    2007-08-22

    Although blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to explore human brain function, questions remain regarding the ultimate spatial resolution of positive BOLD fMRI, and indeed the extent to which functional maps revealed by positive BOLD correlate spatially with maps obtained with other high-spatial-resolution mapping techniques commonly used in animals, such as optical imaging of intrinsic signal (OIS) and single-unit electrophysiology. Here, we demonstrate that the positive BOLD signal at 9.4T can reveal the fine topography of individual fingerpads in single-condition activation maps in nonhuman primates. These digit maps are similar to maps obtained from the same animal using intrinsic optical imaging. Furthermore, BOLD fMRI reliably resolved submillimeter spatial shifts in activation in area 3b previously identified with OIS (Chen et al., 2003) as neural correlates of the "funneling illusion." These data demonstrate that at high field, high-spatial-resolution topographic maps can be achieved using the positive BOLD signal, weakening previous notions regarding the spatial specificity of the positive BOLD signal.

  9. Evaluation of a Moderate Resolution, Satellite-Based Impervious Surface Map Using an Independent, High-Resolution Validation Dataset

    EPA Science Inventory

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...

  10. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jung Kyung; Prasad, Bibin; Kim, Suzy

    2017-02-01

    To evaluate the synergistic effect of radiotherapy and radiofrequency hyperthermia therapy in the treatment of lung and liver cancers, we studied the mechanism of heat absorption and transfer in the tumor using electro-thermal simulation and high-resolution temperature mapping techniques. A realistic tumor-induced mouse anatomy, which was reconstructed and segmented from computed tomography images, was used to determine the thermal distribution in tumors during radiofrequency (RF) heating at 13.56 MHz. An RF electrode was used as a heat source, and computations were performed with the aid of the multiphysics simulation platform Sim4Life. Experiments were carried out on a tumor-mimicking agar phantom and a mouse tumor model to obtain a spatiotemporal temperature map and thermal dose distribution. A high temperature increase was achieved in the tumor from both the computation and measurement, which elucidated that there was selective high-energy absorption in tumor tissue compared to the normal surrounding tissues. The study allows for effective treatment planning for combined radiation and hyperthermia therapy based on the high-resolution temperature mapping and high-precision thermal dose calculation.

  11. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography.

    PubMed

    Gardberg, Anna S; Del Castillo, Alexis Rae; Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew P; Myles, Dean A A

    2010-05-01

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  12. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland

    PubMed Central

    2013-01-01

    Background As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Methods Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. Conclusions The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination. PMID:23398628

  14. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland.

    PubMed

    Cohen, Justin M; Dlamini, Sabelo; Novotny, Joseph M; Kandula, Deepika; Kunene, Simon; Tatem, Andrew J

    2013-02-11

    As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination.

  15. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.

    PubMed

    Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R

    2018-02-01

    High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.

  16. Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.).

    PubMed

    Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech

    2015-01-01

    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

  17. Improved Visualization of Glaucomatous Retinal Damage Using High-speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Mumcuoglu, Tarkan; Wollstein, Gadi; Wojtkowski, Maciej; Kagemann, Larry; Ishikawa, Hiroshi; Gabriele, Michelle L.; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.

    2009-01-01

    Purpose To test if improving optical coherence tomography (OCT) resolution and scanning speed improves the visualization of glaucomatous structural changes as compared with conventional OCT. Design Prospective observational case series. Participants Healthy and glaucomatous subjects in various stages of disease. Methods Subjects were scanned at a single visit with commercially available OCT (StratusOCT) and high-speed ultrahigh-resolution (hsUHR) OCT. The prototype hsUHR OCT had an axial resolution of 3.4 μm (3 times higher than StratusOCT), with an A-scan rate of 24 000 hertz (60 times faster than StratusOCT). The fast scanning rate allowed the acquisition of novel scanning patterns such as raster scanning, which provided dense coverage of the retina and optic nerve head. Main Outcome Measures Discrimination of retinal tissue layers and detailed visualization of retinal structures. Results High-speed UHR OCT provided a marked improvement in tissue visualization as compared with StratusOCT. This allowed the identification of numerous retinal layers, including the ganglion cell layer, which is specifically prone to glaucomatous damage. Fast scanning and the enhanced A-scan registration properties of hsUHR OCT provided maps of the macula and optic nerve head with unprecedented detail, including en face OCT fundus images and retinal nerve fiber layer thickness maps. Conclusion High-speed UHR OCT improves visualization of the tissues relevant to the detection and management of glaucoma. PMID:17884170

  18. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    PubMed

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T 1 , and transverse, T 2 , relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T 1 and T 2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T 1 and T 2 , with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T 2 fraction, T 2,l , and the longitudinal relaxation time of the short T 1 fraction, T 1,s , clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC-mcDESPOT, shows excellent performance for accurate high-resolution whole-brain mapping of MWF and bi-component transverse and longitudinal relaxation times within a clinically realistic acquisition time. Published by Elsevier Inc.

  19. Radiofrequency Ablation, MR Thermometry, and High-Spatial-Resolution MR Parametric Imaging with a Single, Minimally Invasive Device.

    PubMed

    Ertürk, M Arcan; Sathyanarayana Hegde, Shashank; Bottomley, Paul A

    2016-12-01

    Purpose To develop and demonstrate in vitro and in vivo a single interventional magnetic resonance (MR)-active device that integrates the functions of precise identification of a tissue site with the delivery of radiofrequency (RF) energy for ablation, high-spatial-resolution thermal mapping to monitor thermal dose, and quantitative MR imaging relaxometry to document ablation-induced tissue changes for characterizing ablated tissue. Materials and Methods All animal studies were approved by the institutional animal care and use committee. A loopless MR imaging antenna composed of a tuned microcable either 0.8 or 2.2 mm in diameter with an extended central conductor was switched between a 3-T MR imaging unit and an RF power source to monitor and perform RF ablation in bovine muscle and human artery samples in vitro and in rabbits in vivo. High-spatial-resolution (250-300-μm) proton resonance frequency shift MR thermometry was interleaved with ablations. Quantitative spin-lattice (T1) and spin-spin (T2) relaxation time MR imaging mapping was performed before and after ablation. These maps were compared with findings from gross tissue examination of the region of ablated tissue after MR imaging. Results High-spatial-resolution MR imaging afforded temperature mapping in less than 8 seconds for monitoring ablation temperatures in excess of 85°C delivered by the same device. This produced irreversible thermal injury and necrosis. Quantitative MR imaging relaxation time maps demonstrated up to a twofold variation in mean regional T1 and T2 after ablation versus before ablation. Conclusion A simple, integrated, minimally invasive interventional probe that provides image-guided therapy delivery, thermal mapping of dose, and detection of ablation-associated MR imaging parametric changes was developed and demonstrated. With this single-device approach, coupling-related safety concerns associated with multiple conductor approaches were avoided. © RSNA, 2016 Online supplemental material is available for this article.

  20. Time-efficient high-resolution whole-brain three-dimensional macromolecular proton fraction mapping

    PubMed Central

    Yarnykh, Vasily L.

    2015-01-01

    Purpose Macromolecular proton fraction (MPF) mapping is a quantitative MRI method that reconstructs parametric maps of a relative amount of macromolecular protons causing the magnetization transfer (MT) effect and provides a biomarker of myelination in neural tissues. This study aimed to develop a high-resolution whole-brain MPF mapping technique utilizing a minimal possible number of source images for scan time reduction. Methods The described technique is based on replacement of an actually acquired reference image without MT saturation by a synthetic one reconstructed from R1 and proton density maps, thus requiring only three source images. This approach enabled whole-brain three-dimensional MPF mapping with isotropic 1.25×1.25×1.25 mm3 voxel size and scan time of 20 minutes. The synthetic reference method was validated against standard MPF mapping with acquired reference images based on data from 8 healthy subjects. Results Mean MPF values in segmented white and gray matter appeared in close agreement with no significant bias and small within-subject coefficients of variation (<2%). High-resolution MPF maps demonstrated sharp white-gray matter contrast and clear visualization of anatomical details including gray matter structures with high iron content. Conclusions Synthetic reference method improves resolution of MPF mapping and combines accurate MPF measurements with unique neuroanatomical contrast features. PMID:26102097

  1. Resolution and contrast in Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A.

    1998-08-01

    The combination of atomic force microscopy and Kelvin probe technology is a powerful tool to obtain high-resolution maps of the surface potential distribution on conducting and nonconducting samples. However, resolution and contrast transfer of this method have not been fully understood, so far. To obtain a better quantitative understanding, we introduce a model which correlates the measured potential with the actual surface potential distribution, and we compare numerical simulations of the three-dimensional tip-specimen model with experimental data from test structures. The observed potential is a locally weighted average over all potentials present on the sample surface. The model allows us to calculate these weighting factors and, furthermore, leads to the conclusion that good resolution in potential maps is obtained by long and slender but slightly blunt tips on cantilevers of minimal width and surface area.

  2. Moulin Migration and Development on the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Chu, V. W.; Yang, L.

    2017-12-01

    Extensive river networks that terminate into moulins efficiently drain the surface of the Greenland ice sheet. These river moulins connect surface meltwater to englacial and subglacial drainage networks, where increased meltwater can enhance ice sliding dynamics. Previous moulin studies were limited to small geographic areas using field observations and/or high-resolution aerial/satellite imagery, or to medium-resolution satellite imagery for larger areas. In this study, high-resolution moulin maps created from WorldView-1/2/3 imagery near Russell Glacier in southwest Greenland show development of moulins and their migration between 2012 and 2015. Moulins are mapped and categorized as being located: in crevasse fields, along a single ice fracture, within drained lake basins, or having no visible formation mechanism. A majority of moulins mapped in 2015 (73%) are linked to moulins in 2012 and are analysed for their movement patterns and compared to ice velocity and strain rates. New moulins most commonly form in crevassed, thinner ice near the ice sheet edge, but significant quantities also develop at higher elevations (22% above 1300 m elevation).

  3. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  4. High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.

    2006-01-01

    Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.

  5. A high-resolution radiation hybrid map of the bovine genome

    USDA-ARS?s Scientific Manuscript database

    We are building high-resolution radiation hybrid maps of all 29 bovine autosomes and chromosome X, using a 58,000-marker genotyping assay, and a 12,000-rad whole-genome radiation hybrid (RH) panel. To accommodate the large number of markers, and to automate the map building procedure, a software pip...

  6. Leveraging North Carolina's QL2 Lidar to Quantify Sensitivity of National Water Model Derived Flood Inundation Extent to DEM Resolution

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Lenhardt, W. C.; Blanton, B.; Duncan, J. M.; Stillwell, L.

    2017-12-01

    The National Water Model (NWM) has provided a novel framework for near real time flood inundation mapping across CONUS at a 10m resolution. In many regions, this spatial scale is quickly being surpassed through the collection of high resolution lidar (1 - 3m). As one of the leading states in data collection for flood inundation mapping, North Carolina is currently improving their previously available 20 ft statewide elevation product to a Quality Level 2 (QL2) product with a nominal point spacing of 0.7 meters. This QL2 elevation product increases the ground points by roughly ten times over the previous statewide lidar product, and by over 250 times when compared to the 10m NED elevation grid. When combining these new lidar data with the discharge estimates from the NWM, we can further improve statewide flood inundation maps and predictions of at-risk areas. In the context of flood risk management, these improved predictions with higher resolution elevation models consistently represent an improvement on coarser products. Additionally, the QL2 lidar also includes coarse land cover classification data for each point return, opening the possibility for expanding analysis beyond the use of only digital elevation models (e.g. improving estimates of surface roughness, identifying anthropogenic features in floodplains, characterizing riparian zones, etc.). Using the NWM Height Above Nearest Drainage approach, we compare flood inundation extents derived from multiple lidar-derived grid resolutions to assess the tradeoff between precision and computational load in North Carolina's coastal river basins. The elevation data distributed through the state's new lidar collection program provide spatial resolutions ranging from 5-50 feet, with most inland areas also including a 3 ft product. Data storage increases by almost two orders of magnitude across this range, as does processing load. In order to further assess the validity of the higher resolution elevation products on flood inundation, we examine the NWM outputs from Hurricane Matthew, which devastated southeastern North Carolina in October 2016. When compared with numerous surveyed high water marks across the coastal plain, this assessment provides insight on the impacts of grid resolution on flood inundation extent.

  7. Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-01-01

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139

  8. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  9. Modelling the distribution of chickens, ducks, and geese in China

    USGS Publications Warehouse

    Prosser, Diann J.; Wu, Junxi; Ellis, Erie C.; Gale, Fred; Van Boeckel, Thomas P.; Wint, William; Robinson, Tim; Xiao, Xiangming; Gilbert, Marius

    2011-01-01

    Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China's chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for 1/4 of the sample data which were not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China's first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives.

  10. Modelling the distribution of chickens, ducks, and geese in China

    PubMed Central

    Prosser, Diann J.; Wu, Junxi; Ellis, Erle C.; Gale, Fred; Van Boeckel, Thomas P.; Wint, William; Robinson, Tim; Xiao, Xiangming; Gilbert, Marius

    2011-01-01

    Global concerns over the emergence of zoonotic pandemics emphasize the need for high-resolution population distribution mapping and spatial modelling. Ongoing efforts to model disease risk in China have been hindered by a lack of available species level distribution maps for poultry. The goal of this study was to develop 1 km resolution population density models for China’s chickens, ducks, and geese. We used an information theoretic approach to predict poultry densities based on statistical relationships between poultry census data and high-resolution agro-ecological predictor variables. Model predictions were validated by comparing goodness of fit measures (root mean square error and correlation coefficient) for observed and predicted values for ¼ of the sample data which was not used for model training. Final output included mean and coefficient of variation maps for each species. We tested the quality of models produced using three predictor datasets and 4 regional stratification methods. For predictor variables, a combination of traditional predictors for livestock mapping and land use predictors produced the best goodness of fit scores. Comparison of regional stratifications indicated that for chickens and ducks, a stratification based on livestock production systems produced the best results; for geese, an agro-ecological stratification produced best results. However, for all species, each method of regional stratification produced significantly better goodness of fit scores than the global model. Here we provide descriptive methods, analytical comparisons, and model output for China’s first high resolution, species level poultry distribution maps. Output will be made available to the scientific and public community for use in a wide range of applications from epidemiological studies to livestock policy and management initiatives. PMID:21765567

  11. Mapping informal small-scale mining features in a data-sparse tropical environment with a small UAS

    USGS Publications Warehouse

    Chirico, Peter G.; Dewitt, Jessica D.

    2017-01-01

    This study evaluates the use of a small unmanned aerial system (UAS) to collect imagery over artisanal mining sites in West Africa. The purpose of this study is to consider how very high-resolution imagery and digital surface models (DSMs) derived from structure-from-motion (SfM) photogrammetric techniques from a small UAS can fill the gap in geospatial data collection between satellite imagery and data gathered during field work to map and monitor informal mining sites in tropical environments. The study compares both wide-angle and narrow field of view camera systems in the collection and analysis of high-resolution orthoimages and DSMs of artisanal mining pits. The results of the study indicate that UAS imagery and SfM photogrammetric techniques permit DSMs to be produced with a high degree of precision and relative accuracy, but highlight the challenges of mapping small artisanal mining pits in remote and data sparse terrain.

  12. Maps of the Magellanic clouds from combined South Pole Telescope and Planck data

    DOE PAGES

    Crawford, T. M.; Chown, R.; Holder, G. P.; ...

    2016-12-09

    Here, we present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. Both instruments are designed to make measurements of the cosmic microwave background but are sensitive to any source of millimeter-wave (mm-wave) emission. The Planck satellite observes in nine mm-wave bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera. The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data in these bands ranges from 5 tomore » 10 arcmin, while the SPT resolution in these bands ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and the long-timescale stability of the space-based Planck observations to deliver high signal-to-noise and robust brightness measurements on scales from the size of the maps down to ~1 arcmin. In each of the three bands, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument's beam, or point-spread function, to make the inverse-variance-weighted combination of the two instruments' data as a function of angular scale. Furthermore, we create maps assuming a range of underlying emission spectra (for the color correction) and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in the maps. Finally, we compare the maps of the Large Magellanic Cloud (LMC) from this work to maps from the Herschel HERITAGE survey, finding general consistency between the datasets. Furthermore, the broad wavelength coverage provides evidence of different emission mechanisms at work in different environments in the LMC.« less

  13. Mapping the True 3D Morphology of Deep-Sea Canyons

    NASA Astrophysics Data System (ADS)

    Huvenne, V. A.; Masson, D.; Tyler, P. A.; Huehnerbach, V.

    2010-12-01

    The importance of submarine canyons as ecosystem hotspots and sediment transport pathways has been recognised for decades (e.g. Heezen et al., 1955; Vetter & Dayton, 1998). However, studying canyon systems in detail is a challenge, because of the complexity and steepness of the terrain. Acoustic surveys are hampered by side-echoes, while the high slope angles cause most types of sampling equipment, deployed from surface vessels, to fail. Ship-borne bathymetric surveys tend to represent the canyon topography in an overly smoothed way as a result of their limited resolution in deep water compared to the scale of the terrain variability. Moreover, it is clear that overhanging cliffs cannot be mapped correctly with traditional, downward looking multibeam echosounders. The increasing availability of underwater vehicles, however, opens new opportunities. During summer 2009, we mapped several submarine canyon habitats in detail, using the UK deep-water Remotely Operated Vehicle (ROV) ISIS. In particular, we developed a new methodology to map vertical cliffs and overhangs by placing the high-resolution Simrad SM2000 multibeam system of the ROV in a forward-looking position rather than in the traditional downward-looking configuration. The cliff morphology was then mapped by moving the ROV laterally in parallel passes at different depths. Repeating this approach at different distances from the cliff face, we obtained maps of varying resolution and extent. The low resolution maps provide an overview of the general geological framework, while individual strata and faunal colonies can be recognised on the highest resolution maps. Using point-cloud models, we combined the ship-borne bathymetry with the ROV-based data, in order to obtain a true 3D seabed morphology of the canyon study site, which can be used for fly-throughs, geomorphological analysis or habitat mapping. With this approach, we could visualise the spatial structure and density distribution of a unique and previously unknown cold-water coral reef, formed as a hanging garden under a 1600 m long and 120 m high overhanging wall, at 1350 m water depth in the Whittard Canyon, NE Atlantic margin. Heezen, B.C., Ewing, M. and Menzies, R. (1955). The influence of submarine turbidity currents on abyssal productivity. Oikos, 6, 170-182. Vetter, E.W. & Dayton, P.K. (1998). Macrofaunal communities within and adjacent to a detritus-rich submarine canyon system. Deep-Sea Research II, 45, 25-54.

  14. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  15. Multiscale Reconstruction for Magnetic Resonance Fingerprinting

    PubMed Central

    Pierre, Eric Y.; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A.

    2015-01-01

    Purpose To reduce acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in-vivo data using the highly-undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD) and B0 field variations in the brain was achieved in vivo for a 256×256 matrix for a total acquisition time of 10.2s, representing a 3-fold reduction in acquisition time. Conclusions The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. PMID:26132462

  16. Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates

    NASA Astrophysics Data System (ADS)

    Picton, J.; Galantowicz, J. F.; Root, B.

    2016-12-01

    The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.

  17. High-resolution mapping and spatial variability of soil organic carbon storage of permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias; Hugelius, Gustaf

    2017-04-01

    Permafrost-affected soils store large amounts of soil organic carbon (SOC). Mapping of this SOC provides a first order spatial input variable for research that relates carbon stored in permafrost regions to carbon cycle dynamics. High-resolution satellite imagery is becoming increasingly available even in circum-polar regions. The presented research highlights findings of high-resolution mapping efforts of SOC from five study areas in the northern circum-polar permafrost region. These study areas are located in Siberia (Kytalyk, Spasskaya Pad /Neleger, Lena delta), Northern Sweden (Abisko) and Northwestern Canada (Herschel Island). Our high spatial resolution analyses show how geomorphology has a strong influence on the distribution of SOC. This is organized at different spatial scales. Periglacial landforms and processes dictate local scale SOC distribution due to patterned ground. Such landforms are non-sorted circles and ice-wedge polygons of different age and scale. Palsas and peat plateaus are formed and can cover larger areas in Sub-Arctic environments. Study areas that have not been affected by Pleistocene glaciation feature ice-rich Yedoma sediments that dominate the local relief through thermokarst formation and create landscape scale macro environments that dictate the distribution of SOC. A general trend indicates higher SOC storage in Arctic tundra soils compared to forested Boreal or Sub-Arctic taiga soils. Yet, due to the shallower active layer depth in the Arctic, much of the SOC may be permanently frozen and thus not be available to ecosystem processes. Significantly more SOC is stored in soils compared to vegetation, indicating that vegetation growth and incorporation of the carbon into the plant phytomass alone will not be able to offset SOC released from permafrost. This contribution also addresses advances in thematic mapping methods and digital soil mapping of SOC in permafrost terrain. In particular machine-learning methods, such as support vector machines, artificial neural networks and random forests show promising results as a toolbox for mapping permafrost-affected soils. Yet, these new methods do not decrease our dependency from soil pedon data from the field. In contrary, soil pedon data represents an urgent research priority. Statistical analyses are provided as an indication for best practice of soil pedon sampling for the quantification and the model representation of SOC stored in permafrost-affected soils.

  18. Sub-pixel mapping of hyperspectral imagery using super-resolution

    NASA Astrophysics Data System (ADS)

    Sharma, Shreya; Sharma, Shakti; Buddhiraju, Krishna M.

    2016-04-01

    With the development of remote sensing technologies, it has become possible to obtain an overview of landscape elements which helps in studying the changes on earth's surface due to climate, geological, geomorphological and human activities. Remote sensing measures the electromagnetic radiations from the earth's surface and match the spectral similarity between the observed signature and the known standard signatures of the various targets. However, problem lies when image classification techniques assume pixels to be pure. In hyperspectral imagery, images have high spectral resolution but poor spatial resolution. Therefore, the spectra obtained is often contaminated due to the presence of mixed pixels and causes misclassification. To utilise this high spectral information, spatial resolution has to be enhanced. Many factors make the spatial resolution one of the most expensive and hardest to improve in imaging systems. To solve this problem, post-processing of hyperspectral images is done to retrieve more information from the already acquired images. The algorithm to enhance spatial resolution of the images by dividing them into sub-pixels is known as super-resolution and several researches have been done in this domain.In this paper, we propose a new method for super-resolution based on ant colony optimization and review the popular methods of sub-pixel mapping of hyperspectral images along with their comparative analysis.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Schulz, Carl; Konijnenburg, Marco

    High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging enables the spatial mapping and identification of biomolecules from complex surfaces. The need for long time-domain transients, and thus large raw file sizes, results in a large amount of raw data (“big data”) that must be processed efficiently and rapidly. This can be compounded by largearea imaging and/or high spatial resolution imaging. For FT-ICR, data processing and data reduction must not compromise the high mass resolution afforded by the mass spectrometer. The continuous mode “Mosaic Datacube” approach allows high mass resolution visualization (0.001 Da) of mass spectrometry imaging data, butmore » requires additional processing as compared to featurebased processing. We describe the use of distributed computing for processing of FT-ICR MS imaging datasets with generation of continuous mode Mosaic Datacubes for high mass resolution visualization. An eight-fold improvement in processing time is demonstrated using a Dutch nationally available cloud service.« less

  20. Using High Spatial Resolution Digital Imagery

    DTIC Science & Technology

    2005-02-01

    digital base maps were high resolution U.S. Geological Survey (USGS) Digital Orthophoto Quarter Quadrangles (DOQQ). The Root Mean Square Errors (RMSE...next step was to assign real world coordinates to the linear im- age. The mosaics were geometrically registered to the panchromatic orthophotos ...useable thematic map from high-resolution imagery. A more practical approach may be to divide the Refuge into a set of smaller areas, or tiles

  1. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    PubMed Central

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  2. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15–28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89–2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea. PMID:27695461

  3. Pluto Topography and Composition Map

    NASA Image and Video Library

    2017-09-28

    These maps are from New Horizons' data on the topography (top) and composition (bottom) of Pluto's surface. In the high-resolution topographical map, the highlighted red region is high in elevation. The map below, showing the composition, indicates the same section also contains methane, color-coded in orange. One can see the orange features spread into the fuzzier, lower-resolution data that covers the rest of the globe, meaning those areas, too, are high in methane, and therefore likely to be high in elevation. https://photojournal.jpl.nasa.gov/catalog/PIA22036

  4. An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts

    PubMed Central

    2012-01-01

    Background The turbot (Scophthalmus maximus) is a relevant species in European aquaculture. The small turbot genome provides a source for genomics strategies to use in order to understand the genetic basis of productive traits, particularly those related to sex, growth and pathogen resistance. Genetic maps represent essential genomic screening tools allowing to localize quantitative trait loci (QTL) and to identify candidate genes through comparative mapping. This information is the backbone to develop marker-assisted selection (MAS) programs in aquaculture. Expressed sequenced tag (EST) resources have largely increased in turbot, thus supplying numerous type I markers suitable for extending the previous linkage map, which was mostly based on anonymous loci. The aim of this study was to construct a higher-resolution turbot genetic map using EST-linked markers, which will turn out to be useful for comparative mapping studies. Results A consensus gene-enriched genetic map of the turbot was constructed using 463 SNP and microsatellite markers in nine reference families. This map contains 438 markers, 180 EST-linked, clustered at 24 linkage groups. Linkage and comparative genomics evidences suggested additional linkage group fusions toward the consolidation of turbot map according to karyotype information. The linkage map showed a total length of 1402.7 cM with low average intermarker distance (3.7 cM; ~2 Mb). A global 1.6:1 female-to-male recombination frequency (RF) ratio was observed, although largely variable among linkage groups and chromosome regions. Comparative sequence analysis revealed large macrosyntenic patterns against model teleost genomes, significant hits decreasing from stickleback (54%) to zebrafish (20%). Comparative mapping supported particular chromosome rearrangements within Acanthopterygii and aided to assign unallocated markers to specific turbot linkage groups. Conclusions The new gene-enriched high-resolution turbot map represents a useful genomic tool for QTL identification, positional cloning strategies, and future genome assembling. This map showed large synteny conservation against model teleost genomes. Comparative genomics and data mining from landmarks will provide straightforward access to candidate genes, which will be the basis for genetic breeding programs and evolutionary studies in this species. PMID:22747677

  5. Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network

    NASA Astrophysics Data System (ADS)

    Mukashema, A.; Veldkamp, A.; Vrieling, A.

    2014-12-01

    African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.

  6. Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Rose, A.

    2017-12-01

    At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.

  7. High-spatial resolution multispectral and panchromatic satellite imagery for mapping perennial desert plants

    NASA Astrophysics Data System (ADS)

    Alsharrah, Saad A.; Bruce, David A.; Bouabid, Rachid; Somenahalli, Sekhar; Corcoran, Paul A.

    2015-10-01

    The use of remote sensing techniques to extract vegetation cover information for the assessment and monitoring of land degradation in arid environments has gained increased interest in recent years. However, such a task can be challenging, especially for medium-spatial resolution satellite sensors, due to soil background effects and the distribution and structure of perennial desert vegetation. In this study, we utilised Pleiades high-spatial resolution, multispectral (2m) and panchromatic (0.5m) imagery and focused on mapping small shrubs and low-lying trees using three classification techniques: 1) vegetation indices (VI) threshold analysis, 2) pre-built object-oriented image analysis (OBIA), and 3) a developed vegetation shadow model (VSM). We evaluated the success of each approach using a root of the sum of the squares (RSS) metric, which incorporated field data as control and three error metrics relating to commission, omission, and percent cover. Results showed that optimum VI performers returned good vegetation cover estimates at certain thresholds, but failed to accurately map the distribution of the desert plants. Using the pre-built IMAGINE Objective OBIA approach, we improved the vegetation distribution mapping accuracy, but this came at the cost of over classification, similar to results of lowering VI thresholds. We further introduced the VSM which takes into account shadow for further refining vegetation cover classification derived from VI. The results showed significant improvements in vegetation cover and distribution accuracy compared to the other techniques. We argue that the VSM approach using high-spatial resolution imagery provides a more accurate representation of desert landscape vegetation and should be considered in assessments of desertification.

  8. Predicting the Location of Human Perirhinal Cortex, Brodmann's area 35, from MRI

    PubMed Central

    Augustinack, Jean C.; Huber, Kristen E.; Stevens, Allison A.; Roy, Michelle; Frosch, Matthew P.; van der Kouwe, André J.W.; Wald, Lawrence L.; Van Leemput, Koen; McKee, Ann; Fischl, Bruce

    2012-01-01

    The perirhinal cortex (Brodmann's area 35) is a multimodal area that is important for normal memory function. Specifically, perirhinal cortex is involved in detection of novel objects and manifests neurofibrillary tangles in Alzheimer's disease very early in disease progression. We scanned ex vivo brain hemispheres at standard resolution (1 mm × 1 mm × 1 mm) to construct pial/white matter surfaces in FreeSurfer and scanned again at high resolution (120 μm × 120 μm × 120 μm) to determine cortical architectural boundaries. After labeling perirhinal area 35 in the high resolution images, we mapped the high resolution labels to the surface models to localize area 35 in fourteen cases. We validated the area boundaries determined using histological Nissl staining. To test the accuracy of the probabilistic mapping, we measured the Hausdorff distance between the predicted and true labels and found that the median Hausdorff distance was 4.0 mm for left hemispheres (n = 7) and 3.2 mm for right hemispheres (n = 7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates the analysis of atrophic changes in a large dataset for earlier detection and diagnosis. PMID:22960087

  9. Automated Plantation Mapping in Indonesia Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Karpatne, A.; Jia, X.; Khandelwal, A.; Kumar, V.

    2017-12-01

    Plantation mapping is critical for understanding and addressing deforestation, a key driver of climate change and ecosystem degradation. Unfortunately, most plantation maps are limited to small areas for specific years because they rely on visual inspection of imagery. In this work, we propose a data-driven approach which automatically generates yearly plantation maps for large regions using MODIS multi-spectral data. While traditional machine learning algorithms face manifold challenges in this task, e.g. imperfect training labels, spatio-temporal data heterogeneity, noisy and high-dimensional data, lack of evaluation data, etc., we introduce a novel deep learning-based framework that combines existing imperfect plantation products as training labels and models the spatio-temporal relationships of land covers. We also explores the post-processing steps based on Hidden Markov Model that further improve the detection accuracy. Then we conduct extensive evaluation of the generated plantation maps. Specifically, by randomly sampling and comparing with high-resolution Digital Globe imagery, we demonstrate that the generated plantation maps achieve both high precision and high recall. When compared with existing plantation mapping products, our detection can avoid both false positives and false negatives. Finally, we utilize the generated plantation maps in analyzing the relationship between forest fires and growth of plantations, which assists in better understanding the cause of deforestation in Indonesia.

  10. Intercomparison of Satellite-Derived Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Tait, Andrew B.; Foster, James L.; Chang, Alfred T. C.; Allen, Milan

    1999-01-01

    In anticipation of the launch of the Earth Observing System (EOS) Terra, and the PM-1 spacecraft in 1999 and 2000, respectively, efforts are ongoing to determine errors of satellite-derived snow-cover maps. EOS Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer-E (AMSR-E) snow-cover products will be produced. For this study we compare snow maps covering the same study area acquired from different sensors using different snow- mapping algorithms. Four locations are studied: 1) southern Saskatchewan; 2) a part of New England (New Hampshire, Vermont and Massachusetts) and eastern New York; 3) central Idaho and western Montana; and 4) parts of North and South Dakota. Snow maps were produced using a prototype MODIS snow-mapping algorithm used on Landsat Thematic Mapper (TM) scenes of each study area at 30-m and when the TM data were degraded to 1 -km resolution. National Operational Hydrologic Remote Sensing Center (NOHRSC) 1 -km resolution snow maps were also used, as were snow maps derived from 1/2 deg. x 1/2 deg. resolution Special Sensor Microwave Imager (SSM/1) data. A land-cover map derived from the International Geosphere-Biosphere Program (IGBP) land-cover map of North America was also registered to the scenes. The TM, NOHRSC and SSM/I snow maps, and land-cover maps were compared digitally. In most cases, TM-derived maps show less snow cover than the NOHRSC and SSM/I maps because areas of incomplete snow cover in forests (e.g., tree canopies, branches and trunks) are seen in the TM data, but not in the coarser-resolution maps. The snow maps generally agree with respect to the spatial variability of the snow cover. The 30-m resolution TM data provide the most accurate snow maps, and are thus used as the baseline for comparison with the other maps. Comparisons show that the percent change in amount of snow cover relative to the 3 0-m resolution TM maps is lowest using the TM I -km resolution maps, ranging from 0 to 40%. The highest percent change (less than 100%) is found in the New England study area, probably due to the presence of patchy snow cover. A scene with patchy snow cover is more difficult to map accurately than is a scene with a well-defined snowline such as is found on the North and South Dakota scene where the percent change ranged from 0 to 40%. There are also some important differences in the amount of snow mapped using the two different SSM/I algorithms because they utilize different channels.

  11. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  12. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  13. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  14. Combination of AUV high resolution mapping and submersible visual observations on the Guaymas Hydrothermal Fields (Southern Trough Ridge)

    NASA Astrophysics Data System (ADS)

    Ondreas, H.; Fouquet, Y.; Normand, A.; Rouxel, O.; Godfroy, A.

    2011-12-01

    The BIG cruise -leg I- was carried out on the Guaymas basin in June 2010 on board the French research vessel L'Atalante. An AUV high-resolution survey was made on the southern trough ridge to gather fine-scale bathymetry and acoustic imagery data. The results of the high resolution survey were used, the next days, to explore the vent's area during several Nautile dives. The southern trough hydrothermal fields of the Guaymas basin have often been studied. However, the local geological context was not really well-defined. During the AUV surveys, maps at 70 m above the seafloor were done over the hydrothermal area. The data were gridded at 2 m spacing. During the same cruise, Nautile dives help us to compare the field observations and the geological features revealed by the high resolution mapping and to investigate the fine-scale relationships between the vents and their geological environment. Integration of these data is made easier by the use of the GIS software technology. It helps us perpetuate data, undertake comparisons, combine different types of data, realize fine-scale geological mapping. Even if some problems are recurrent (precision of positioning, integration of old data...), such combinations of high resolution mapping and visual observations and sampling have changed our vision of hydrothermal geological context. In the Guaymas sedimented spreading axis, our new data show that major hydrothermal sites, in the south part of the southern trough only, are located inside or at the border of 100 to 250 m long, 60 to 150 m wide, 6 to 12 m deep small collapsed sub-circular depressions. The direction of the collapse is variable. Curved faults at the outer border of these depressions control the largest and mature edifices. Smaller, possibly younger, immature chimneys are located at the centre of some depressions. The mature hydrothermal structures appear as mounds up to 80 m in diameter, 20 m in high, each hydrothermal edifice being very-well identified on the 2 m resolution map. Classical high temperature chimneys are present but also areas of high temperature fluids percolating through the petroleum-rich sediment. Echosounder profiles, realized near the bottom with the AUV, show the root of some hydrothermal edifice 40 m down in the sediment and their link with the small depressions. The profiles also show normal faults buried in the sediment and the collapsed depression controlling the hydrothermal edifices. The bordering curved-faults appear as superficial features. To explain the local features seen on high resolution data, we propose a succession of process: i) collapse related to deep recent fissuration in the volcanic basement, ii) discharge controlled along the border of the sub-circular collapse structures and starting of chimneys construction, iii) maturation of the external edifices and collapse of the depression enhanced by mobilisation of sediment out of the depression by fluid discharge.

  15. Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates

    NASA Astrophysics Data System (ADS)

    Sánchez-Ruiz, Sergio; Piles, María; Sánchez, Nilda; Martínez-Fernández, José; Vall-llossera, Mercè; Camps, Adriano

    2014-08-01

    Sensors in the range of visible and near-shortwave-thermal infrared regions can be used in combination with passive microwave observations to provide soil moisture maps at much higher spatial resolution than the original resolution of current radiometers. To do so, a new downscaling algorithm ultimately based on the land surface temperature (LST) - Normalized Difference Vegetation Index (NDVI) - Brightness Temperature (TB) relationship is used, in which shortwave infrared indices are used as vegetation descriptors, instead of the more common near infrared ones. The theoretical basis of those indices, calculated as the normalized ratio of the 1240, 1640 and 2130 nm shortwave infrared (SWIR) bands and the 858 nm near infrared (NIR) band indicate that they are able to provide estimates of the vegetation water content. These so-called water indices extracted from MODIS products, have been used together with MODIS LST, and SMOS TB to improve the spatial resolution of ∼40 km SMOS soil moisture estimates. The aim was to retrieve soil moisture maps with the same accuracy as SMOS, but at the same resolution of the MODIS dataset, i.e., 500 m, which were then compared against in situ measurements from the REMEDHUS network in Spain. Results using two years of SMOS and MODIS data showed a similar performance for the four indices, with slightly better results when using the index derived from the first SWIR band. For the areal-average, a coefficient of correlation (R) of ∼0.61 and ∼0.72 for the morning and afternoon orbits, respectively, and a centered root mean square difference (cRMSD) of ∼0.04 m3 m-3 for both orbits was obtained. A twofold improvement of the current versions of this downscaling approach has been achieved by using more frequent and higher spatial resolution water indexes as vegetation descriptors: (1) the spatial resolution of the resulting soil moisture maps can be enhanced from ∼40 km up to 500 m, and (2) more accurate soil moisture maps (in terms of R and cRMSD) can be obtained, especially in periods of high vegetation activity. The results of this study support the use of high resolution LST and SWIR-based vegetation indices to disaggregate SMOS observations down to 500 m soil moisture maps, meeting the needs of fine-scale hydrological applications.

  16. TH-EF-207A-06: High-Resolution Optical-CT/ECT Imaging of Unstained Mice Femur, Brain, Spleen, and Tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S; Dewhirst, M; Oldham, M

    2016-06-15

    Purpose: Optical transmission and emission computed tomography (optical-CT/ECT) provides high-resolution 3D attenuation and emission maps in unsectioned large (∼1cm{sup 3}) ex vivo tissue samples at a resolution of 12.9µm{sup 3} per voxel. Here we apply optical-CT/ECT to investigate high-resolution structure and auto-fluorescence in a range of optically cleared mice organs, including, for the first time, mouse bone (femur), opening the potential for study of bone metastasis and bone-mediated immune response. Methods: Three BALBc mice containing 4T1 flank tumors were sacrificed to obtain spleen, brain, tumor, and femur. Tissues were washed in 4% PFA, fixed in EtOH solution (for 5, 10,more » 10, and 2 days respectively), and then optically cleared for 3 days in BABBs. The femur was also placed in 0.25M aqueous EDTA for 15–30 days to remove calcium. Optical-CT/ECT attenuation and emission maps at 633nm (the latter using 530nm excitation light) were obtained for all samples. Bi-telecentric optical-CT was compared side-by-side with conventional optical projection tomography (OPT) imaging to evaluate imaging capability of these two rival techniques. Results: Auto-fluorescence mapping of femurs reveals vasculatures and fluorescence heterogeneity. High signals (A.U.=10) are reported in the medullary cavity but not in the cortical bone (A.U.=1). The brain strongly and uniform auto-fluoresces (A.U.=5). Thick, optically dense organs such as the spleen and the tumor (0.12, 0.46OD/mm) are reconstructed at depth without significant loss of resolution, which we attribute to the bi-telecentric optics of optical-CT. The attenuation map of tumor reveals vasculature, attenuation heterogeneity, and possibly necrotic tissue. Conclusion: We demonstrate the feasibility of optical-CT/ECT imaging of un-sectioned mice bones (femurs) and spleen with high resolution. This result, and the characterization of unstained organs, are important steps enabling future studies involving optical-CT/ECT applied to study metastasis and immunologic responses via fluorescence staining.« less

  17. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  18. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    NASA Astrophysics Data System (ADS)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (<1m). These metrics are essential for modeling the HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  19. ISED: Constructing a high-resolution elevation road dataset from massive, low-quality in-situ observations derived from geosocial fitness tracking data.

    PubMed

    McKenzie, Grant; Janowicz, Krzysztof

    2017-01-01

    Gaining access to inexpensive, high-resolution, up-to-date, three-dimensional road network data is a top priority beyond research, as such data would fuel applications in industry, governments, and the broader public alike. Road network data are openly available via user-generated content such as OpenStreetMap (OSM) but lack the resolution required for many tasks, e.g., emergency management. More importantly, however, few publicly available data offer information on elevation and slope. For most parts of the world, up-to-date digital elevation products with a resolution of less than 10 meters are a distant dream and, if available, those datasets have to be matched to the road network through an error-prone process. In this paper we present a radically different approach by deriving road network elevation data from massive amounts of in-situ observations extracted from user-contributed data from an online social fitness tracking application. While each individual observation may be of low-quality in terms of resolution and accuracy, taken together they form an accurate, high-resolution, up-to-date, three-dimensional road network that excels where other technologies such as LiDAR fail, e.g., in case of overpasses, overhangs, and so forth. In fact, the 1m spatial resolution dataset created in this research based on 350 million individual 3D location fixes has an RMSE of approximately 3.11m compared to a LiDAR-based ground-truth and can be used to enhance existing road network datasets where individual elevation fixes differ by up to 60m. In contrast, using interpolated data from the National Elevation Dataset (NED) results in 4.75m RMSE compared to the base line. We utilize Linked Data technologies to integrate the proposed high-resolution dataset with OpenStreetMap road geometries without requiring any changes to the OSM data model.

  20. Megahertz-resolution programmable microwave shaper.

    PubMed

    Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun

    2018-04-15

    A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.

  1. Performance Evaluation of Dsm Extraction from ZY-3 Three-Line Arrays Imagery

    NASA Astrophysics Data System (ADS)

    Xue, Y.; Xie, W.; Du, Q.; Sang, H.

    2015-08-01

    ZiYuan-3 (ZY-3), launched in January 09, 2012, is China's first civilian high-resolution stereo mapping satellite. ZY-3 is equipped with three-line scanners (nadir, backward and forward) for stereo mapping, the resolutions of the panchromatic (PAN) stereo mapping images are 2.1-m at nadir looking and 3.6-m at tilt angles of ±22° forward and backward looking, respectively. The stereo base-height ratio is 0.85-0.95. Compared with stereo mapping from two views images, three-line arrays images of ZY-3 can be used for DSM generation taking advantage of one more view than conventional photogrammetric methods. It would enrich the information for image matching and enhance the accuracy of DSM generated. The primary result of positioning accuracy of ZY-3 images has been reported, while before the massive mapping applications of utilizing ZY-3 images for DSM generation, the performance evaluation of DSM extraction from three-line arrays imagery of ZY-3 has significant meaning for the routine mapping applications. The goal of this research is to clarify the mapping performance of ZY-3 three-line arrays scanners on china's first civilian high-resolution stereo mapping satellite of ZY-3 through the accuracy evaluation of DSM generation. The comparison of DSM product in different topographic areas generated with three views images with different two views combination images of ZY-3 would be presented. Besides the comparison within different topographic study area, the accuracy deviation of the DSM products with different grid size including 25-m, 10-m and 5-m is delineated in order to clarify the impact of grid size on accuracy evaluation.

  2. Quantitative x-ray phase-contrast imaging using a single grating of comparable pitch to sample feature size.

    PubMed

    Morgan, Kaye S; Paganin, David M; Siu, Karen K W

    2011-01-01

    The ability to quantitatively retrieve transverse phase maps during imaging by using coherent x rays often requires a precise grating or analyzer-crystal-based setup. Imaging of live animals presents further challenges when these methods require multiple exposures for image reconstruction. We present a simple method of single-exposure, single-grating quantitative phase contrast for a regime in which the grating period is much greater than the effective pixel size. A grating is used to create a high-visibility reference pattern incident on the sample, which is distorted according to the complex refractive index and thickness of the sample. The resolution, along a line parallel to the grating, is not restricted by the grating spacing, and the detector resolution becomes the primary determinant of the spatial resolution. We present a method of analysis that maps the displacement of interrogation windows in order to retrieve a quantitative phase map. Application of this analysis to the imaging of known phantoms shows excellent correspondence.

  3. Uncertainty Analysis in the Creation of a Fine-Resolution Leaf Area Index (LAI) Reference Map for Validation of Moderate Resolution LAI Products

    EPA Science Inventory

    The validation process for a moderate resolution leaf area index (LAI) product (i.e., MODIS) involves the creation of a high spatial resolution LAI reference map (Lai-RM), which when scaled to the moderate LAI resolution (i.e., >1 km) allows for comparison and analysis with this ...

  4. Characterization and delineation of caribou habitat on Unimak Island using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Atkinson, Brain M.

    The assessment of herbivore habitat quality is traditionally based on quantifying the forages available to the animal across their home range through ground-based techniques. While these methods are highly accurate, they can be time-consuming and highly expensive, especially for herbivores that occupy vast spatial landscapes. The Unimak Island caribou herd has been decreasing in the last decade at rates that have prompted discussion of management intervention. Frequent inclement weather in this region of Alaska has provided for little opportunity to study the caribou forage habitat on Unimak Island. The overall objectives of this study were two-fold 1) to assess the feasibility of using high-resolution color and near-infrared aerial imagery to map the forage distribution of caribou habitat on Unimak Island and 2) to assess the use of a new high-resolution multispectral satellite imagery platform, RapidEye, and use of the "red-edge" spectral band on vegetation classification accuracy. Maximum likelihood classification algorithms were used to create land cover maps in aerial and satellite imagery. Accuracy assessments and transformed divergence values were produced to assess vegetative spectral information and classification accuracy. By using RapidEye and aerial digital imagery in a hierarchical supervised classification technique, we were able to produce a high resolution land cover map of Unimak Island. We obtained overall accuracy rates of 71.4 percent which are comparable to other land cover maps using RapidEye imagery. The "red-edge" spectral band included in the RapidEye imagery provides additional spectral information that allows for a more accurate overall classification, raising overall accuracy 5.2 percent.

  5. Production of high-resolution forest-ecosite maps based on model predictions of soil moisture and nutrient regimes over a large forested area.

    PubMed

    Yang, Qi; Meng, Fan-Rui; Bourque, Charles P-A; Zhao, Zhengyong

    2017-09-08

    Forest ecosite reflects the local site conditions that are meaningful to forest productivity as well as basic ecological functions. Field assessments of vegetation and soil types are often used to identify forest ecosites. However, the production of high-resolution ecosite maps for large areas from interpolating field data is difficult because of high spatial variation and associated costs and time requirements. Indices of soil moisture and nutrient regimes (i.e., SMR and SNR) introduced in this study reflect the combined effects of biogeochemical and topographic factors on forest growth. The objective of this research is to present a method for creating high-resolution forest ecosite maps based on computer-generated predictions of SMR and SNR for an area in Atlantic Canada covering about 4.3 × 10 6 hectares (ha) of forestland. Field data from 1,507 forest ecosystem classification plots were used to assess the accuracy of the ecosite maps produced. Using model predictions of SMR and SNR alone, ecosite maps were 61 and 59% correct in identifying 10 Acadian- and Maritime-Boreal-region ecosite types, respectively. This method provides an operational framework for the production of high-resolution maps of forest ecosites over large areas without the need for data from expensive, supplementary field surveys.

  6. Analysis of multispectral and hyperspectral longwave infrared (LWIR) data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.; McDowell, Meryl

    2015-05-01

    Multispectral MODIS/ASTER Airborne Simulator (MASTER) data and Hyperspectral Thermal Emission Spectrometer (HyTES) data covering the 8 - 12 μm spectral range (longwave infrared or LWIR) were analyzed for an area near Mountain Pass, California. Decorrelation stretched images were initially used to highlight spectral differences between geologic materials. Both datasets were atmospherically corrected using the ISAC method, and the Normalized Emissivity approach was used to separate temperature and emissivity. The MASTER data had 10 LWIR spectral bands and approximately 35-meter spatial resolution and covered a larger area than the HyTES data, which were collected with 256 narrow (approximately 17nm-wide) spectral bands at approximately 2.3-meter spatial resolution. Spectra for key spatially-coherent, spectrally-determined geologic units for overlap areas were overlain and visually compared to determine similarities and differences. Endmember spectra were extracted from both datasets using n-dimensional scatterplotting and compared to emissivity spectral libraries for identification. Endmember distributions and abundances were then mapped using Mixture-Tuned Matched Filtering (MTMF), a partial unmixing approach. Multispectral results demonstrate separation of silica-rich vs non-silicate materials, with distinct mapping of carbonate areas and general correspondence to the regional geology. Hyperspectral results illustrate refined mapping of silicates with distinction between similar units based on the position, character, and shape of high resolution emission minima near 9 μm. Calcite and dolomite were separated, identified, and mapped using HyTES based on a shift of the main carbonate emissivity minimum from approximately 11.3 to 11.2 μm respectively. Both datasets demonstrate the utility of LWIR spectral remote sensing for geologic mapping.

  7. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI.

    PubMed

    Guo, Yi; Lingala, Sajan Goud; Zhu, Yinghua; Lebel, R Marc; Nayak, Krishna S

    2017-10-01

    The purpose of this work was to develop and evaluate a T 1 -weighted dynamic contrast enhanced (DCE) MRI methodology where tracer-kinetic (TK) parameter maps are directly estimated from undersampled (k,t)-space data. The proposed reconstruction involves solving a nonlinear least squares optimization problem that includes explicit use of a full forward model to convert parameter maps to (k,t)-space, utilizing the Patlak TK model. The proposed scheme is compared against an indirect method that creates intermediate images by parallel imaging and compressed sensing before to TK modeling. Thirteen fully sampled brain tumor DCE-MRI scans with 5-second temporal resolution are retrospectively undersampled at rates R = 20, 40, 60, 80, and 100 for each dynamic frame. TK maps are quantitatively compared based on root mean-squared-error (rMSE) and Bland-Altman analysis. The approach is also applied to four prospectively R = 30 undersampled whole-brain DCE-MRI data sets. In the retrospective study, the proposed method performed statistically better than indirect method at R ≥ 80 for all 13 cases. This approach provided restoration of TK parameter values with less errors in tumor regions of interest, an improvement compared to a state-of-the-art indirect method. Applied prospectively, the proposed method provided whole-brain, high-resolution TK maps with good image quality. Model-based direct estimation of TK maps from k,t-space DCE-MRI data is feasible and is compatible up to 100-fold undersampling. Magn Reson Med 78:1566-1578, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    NASA Astrophysics Data System (ADS)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  9. Seeing tobacco mosaic virus through direct electron detectors

    PubMed Central

    Fromm, Simon A.; Bharat, Tanmay A.M.; Jakobi, Arjen J.; Hagen, Wim J.H.; Sachse, Carsten

    2015-01-01

    With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM. PMID:25528571

  10. High-Resolution Regional Biomass Map of Siberia from Glas, Palsar L-Band Radar and Landsat Vcf Data

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ranson, K.; Montesano, P.; Zhang, Z.; Kharuk, V.

    2015-12-01

    The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. The taiga or boreal forest covers over 16 x106 km2 of Arctic North America, Scandinavia, and Eurasia. A large part of the northern Boreal forests are in Russia's Siberia, as area with recent accelerated climate warming. During the last two decades we have been working on characterization of boreal forests in north-central Siberia using field and satellite measurements. We have published results of circumpolar biomass using field plots, airborne (PALS, ACTM) and spaceborne (GLAS) lidar data with ASTER DEM, LANDSAT and MODIS land cover classification, MODIS burned area and WWF's ecoregion map. Researchers from ESA and Russia have also been working on biomass (or growing stock) mapping in Siberia. For example, they developed a pan-boreal growing stock volume map at 1-kilometer scale using hyper-temporal ENVISAT ASAR ScanSAR backscatter data. Using the annual PALSAR mosaics from 2007 to 2010 growing stock volume maps were retrieved based on a supervised random forest regression approach. This method is being used in the ESA/Russia ZAPAS project for Central Siberia Biomass mapping. Spatially specific biomass maps of this region at higher resolution are desired for carbon cycle and climate change studies. In this study, our work focused on improving resolution ( 50 m) of a biomass map based on PALSAR L-band data and Landsat Vegetation Canopy Fraction products. GLAS data were carefully processed and screened using land cover classification, local slope, and acquisition dates. The biomass at remaining footprints was estimated using a model developed from field measurements at GLAS footprints. The GLAS biomass samples were then aggregated into 1 Mg/ha bins of biomass and mean VCF and PALSAR backscatter and textures were calculated for each of these biomass bins. The resulted biomass/signature data was used to train a random forest model for biomass mapping of entire region from 50oN to 75oN, and 80oE to 145oE. The spatial patterns of the new biomass map is much better than the previous maps due to spatially specific mapping in high resolution. The uncertainties of field/GLAS and GLAS/imagery models were investigated using bootstrap procedure, and the final biomass map was compared with previous maps.

  11. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokarski, Tomasz, E-mail: tokarski@agh.edu.pl

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis ofmore » very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.« less

  12. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography

    NASA Astrophysics Data System (ADS)

    Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.

  13. High-resolution genetic map for understanding the effect of genome-wide recombination rate, selection sweep and linkage disequilibrium on nucleotide diversity in watermelon

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...

  14. A Comparison of Spatial and Spectral Image Resolution for Mapping Invasive Plants in Coastal California

    NASA Astrophysics Data System (ADS)

    Underwood, Emma C.; Ustin, Susan L.; Ramirez, Carlos M.

    2007-01-01

    We explored the potential of detecting three target invasive species: iceplant ( Carpobrotus edulis), jubata grass ( Cortaderia jubata), and blue gum ( Eucalyptus globulus) at Vandenberg Air Force Base, California. We compared the accuracy of mapping six communities (intact coastal scrub, iceplant invaded coastal scrub, iceplant invaded chaparral, jubata grass invaded chaparral, blue gum invaded chaparral, and intact chaparral) using four images with different combinations of spatial and spectral resolution: hyperspectral AVIRIS imagery (174 wavebands, 4 m spatial resolution), spatially degraded AVIRIS (174 bands, 30 m), spectrally degraded AVIRIS (6 bands, 4 m), and both spatially and spectrally degraded AVIRIS (6 bands, 30 m, i.e., simulated Landsat ETM data). Overall success rates for classifying the six classes was 75% (kappa 0.7) using full resolution AVIRIS, 58% (kappa 0.5) for the spatially degraded AVIRIS, 42% (kappa 0.3) for the spectrally degraded AVIRIS, and 37% (kappa 0.3) for the spatially and spectrally degraded AVIRIS. A true Landsat ETM image was also classified to illustrate that the results from the simulated ETM data were representative, which provided an accuracy of 50% (kappa 0.4). Mapping accuracies using different resolution images are evaluated in the context of community heterogeneity (species richness, diversity, and percent species cover). Findings illustrate that higher mapping accuracies are achieved with images possessing high spectral resolution, thus capturing information across the visible and reflected infrared solar spectrum. Understanding the tradeoffs in spectral and spatial resolution can assist land managers in deciding the most appropriate imagery with respect to target invasives and community characteristics.

  15. Generation of real-time mode high-resolution water vapor fields from GPS observations

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  16. Time series evapotranspiration maps at a regional scale: A methodology, evaluation, and their use in water resources management

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.

    2016-12-01

    Evapotranspiration (ET) is an important process in ecosystems' water budget and closely linked to its productivity. Therefore, regional scale daily time series ET maps developed at high and medium resolutions have large utility in studying the carbon-energy-water nexus and managing water resources. There are efforts to develop such datasets on a regional to global scale but often faced with the limitations of spatial-temporal resolution tradeoffs in satellite remote sensing technology. In this study, we developed frameworks for generating high and medium resolution daily ET maps from Landsat and MODIS (Moderate Resolution Imaging Spectroradiometer) data, respectively. For developing high resolution (30-m) daily time series ET maps with Landsat TM data, the series version of Two Source Energy Balance (TSEB) model was used to compute sensible and latent heat fluxes of soil and canopy separately. Landsat 5 (2000-2011) and Landsat 8 (2013-2014) imageries for row 28/35 and 27/36 covering central Oklahoma was used. MODIS data (2001-2014) covering Oklahoma and Texas Panhandle was used to develop medium resolution (250-m), time series daily ET maps with SEBS (Surface Energy Balance System) model. An extensive network of weather stations managed by Texas High Plains ET Network and Oklahoma Mesonet was used to generate spatially interpolated inputs of air temperature, relative humidity, wind speed, solar radiation, pressure, and reference ET. A linear interpolation sub-model was used to estimate the daily ET between the image acquisition days. Accuracy assessment of daily ET maps were done against eddy covariance data from two grassland sites at El Reno, OK. Statistical results indicated good performance by modeling frameworks developed for deriving time series ET maps. Results indicated that the proposed ET mapping framework is suitable for deriving daily time series ET maps at regional scale with Landsat and MODIS data.

  17. Functional connectivity density mapping: comparing multiband and conventional EPI protocols.

    PubMed

    Cohen, Alexander D; Tomasi, Dardo; Shokri-Kojori, Ehsan; Nencka, Andrew S; Wang, Yang

    2018-06-01

    Functional connectivity density mapping (FCDM) is a newly developed data-driven technique that quantifies the number of local and global functional connections for each voxel in the brain. In this study, we evaluated reproducibility, sensitivity, and specificity of both local functional connectivity density (lFCD) and global functional connectivity density (gFCD). We compared these metrics using the human connectome project (HCP) compatible high-resolution (2 mm isotropic, TR = 0.8 s) multiband (MB), and more typical, lower resolution (3.5 mm isotropic, TR = 2.0 s) single-band (SB) resting state functional MRI (rs-fMRI) acquisitions. Furthermore, in order to be more clinically feasible, only rs-fMRI scans that lasted seven minutes were tested. Subjects were scanned twice within a two-week span. We found sensitivity and specificity increased and reproducibility either increased or did not change for the MB compared to the SB acquisitions. The MB scans also showed improved gray matter/white matter contrast compared to the SB scans. The lFCD and gFCD patterns were similar across MB and SB scans and confined predominantly to gray matter. We also observed a strong spatial correlation of FCD between MB and SB scans indicating the two acquisitions provide similar information. These findings indicate high-resolution MB acquisitions improve the quality of FCD data, and seven minute rs-fMRI scan can provide robust FCD measurements.

  18. Multiscale reconstruction for MR fingerprinting.

    PubMed

    Pierre, Eric Y; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A

    2016-06-01

    To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  19. Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco

    2015-01-01

    Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥ 65). A long time-series (2001-2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using "Crichton's Risk Triangle" hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat-related emergencies.

  20. Urban-Hazard Risk Analysis: Mapping of Heat-Related Risks in the Elderly in Major Italian Cities

    PubMed Central

    Morabito, Marco; Crisci, Alfonso; Gioli, Beniamino; Gualtieri, Giovanni; Toscano, Piero; Di Stefano, Valentina; Orlandini, Simone; Gensini, Gian Franco

    2015-01-01

    Background Short-term impacts of high temperatures on the elderly are well known. Even though Italy has the highest proportion of elderly citizens in Europe, there is a lack of information on spatial heat-related elderly risks. Objectives Development of high-resolution, heat-related urban risk maps regarding the elderly population (≥65). Methods A long time-series (2001–2013) of remote sensing MODIS data, averaged over the summer period for eleven major Italian cities, were downscaled to obtain high spatial resolution (100 m) daytime and night-time land surface temperatures (LST). LST was estimated pixel-wise by applying two statistical model approaches: 1) the Linear Regression Model (LRM); 2) the Generalized Additive Model (GAM). Total and elderly population density data were extracted from the Joint Research Centre population grid (100 m) from the 2001 census (Eurostat source), and processed together using “Crichton’s Risk Triangle” hazard-risk methodology for obtaining a Heat-related Elderly Risk Index (HERI). Results The GAM procedure allowed for improved daytime and night-time LST estimations compared to the LRM approach. High-resolution maps of daytime and night-time HERI levels were developed for inland and coastal cities. Urban areas with the hazardous HERI level (very high risk) were not necessarily characterized by the highest temperatures. The hazardous HERI level was generally localized to encompass the city-centre in inland cities and the inner area in coastal cities. The two most dangerous HERI levels were greater in the coastal rather than inland cities. Conclusions This study shows the great potential of combining geospatial technologies and spatial demographic characteristics within a simple and flexible framework in order to provide high-resolution urban mapping of daytime and night-time HERI. In this way, potential areas for intervention are immediately identified with up-to-street level details. This information could support public health operators and facilitate coordination for heat-related emergencies. PMID:25985204

  1. Land use/land cover mapping using multi-scale texture processing of high resolution data

    NASA Astrophysics Data System (ADS)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  2. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  3. Assessment of the spatial extent and height of flooding in Lake Champlain during May 2011, using satellite remote sensing and ground-based information

    USGS Publications Warehouse

    Bjerklie, David M.; Trombley, Thomas J.; Olson, Scott A.

    2014-01-01

    Landsat 5 and moderate resolution imaging spectro-radiometer satellite imagery were used to map the area of inundation of Lake Champlain, which forms part of the border between New York and Vermont, during May 2011. During this month, the lake’s water levels were record high values not observed in the previous 150 years. Lake inundation area determined from the satellite imagery is correlated with lake stage measured at three U.S. Geological Survey lake level gages to provide estimates of lake area at different lake levels (stage/area rating) and also compared with the levels of the high-water marks (HWMs) located on the Vermont side of the lake. The rating developed from the imagery shows a somewhat different relation than a similar stage/area rating developed from a medium-resolution digital elevation model (DEM) of the region. According to the rating derived from the imagery, the lake surface area during the peak lake level increased by about 17 percent above the average or “normal” lake level. By using a comparable rating developed from the DEM, the increase above average is estimated to be about 12 percent. The northern part of the lake (north of Burlington) showed the largest amount of flooding. Based on intersecting the inundation maps with the medium-resolution DEM, lake levels were not uniform around the lake. This is also evident from the lake level gage measurements and HWMs. The gage data indicate differences up to 0.5 feet between the northern and southern end of the lake. Additionally, the gage data show day-to-day and intradaily variation of the same range (0.5 foot). The high-water mark observations show differences up to 2 feet around the lake, with the highest level generally along the south- and west-facing shorelines. The data suggest that during most of May 2011, water levels were slightly higher and less variable in the northern part of the lake. These phenomena may be caused by wind effects as well as proximity to major river inputs to the lake. The inundation areas generated from the imagery generally coincide with flood mapping as estimated by the Federal Emergency Management Agency (FEMA) and shown on its digital flood insurance rate maps. Where areas in the flood inundation map derived from the imagery and the FEMA estimated flooded areas differ substantially, this difference may be due to differences between the flood magnitude at the time of the image and the assumed flood condition used for the FEMA modeling and mapping, wind/storage effects not accounted for by the FEMA modeling, and the resolution of the image compared to the DEM used in the FEMA mapping.

  4. BARNARD 59: NO EVIDENCE FOR FURTHER FRAGMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roman-Zuniga, C. G.; Frau, P.; Girart, J. M.

    2012-03-10

    The dense molecular clump at the center of the Barnard 59 (B59) complex is the only region in the Pipe Nebula that has formed a small, stellar cluster. The previous analysis of a high-resolution near-IR dust extinction map revealed that the nuclear region in B59 is a massive, mostly quiescent clump of 18.9 M{sub Sun }. The clump shows a monolithic profile, possibly indicating that the clump is on the way to collapse, with no evident fragmentation that could lead to another group of star systems. In this paper, we present new analysis that compares the dust extinction map withmore » a new dust emission radio-continuum map of higher spatial resolution. We confirm that the clump does not show any significant evidence for prestellar fragmentation at scales smaller than those probed previously.« less

  5. Constructing Synoptic Maps of Stratospheric Column Ozone from HALOE, SAGE and Balloonsonde Data Using Potential Vorticity Isentropic Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.

    1999-01-01

    In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show the technique is useful in the lower stratosphere at most latitudes throughout the year,and in the winter hemisphere in the middle stratosphere. The results are problematic in the summer hemisphere middle stratosphere due to increased ozone photochemistry and weak PV gradients. Alternate techniques in these regions will be discussed. An additional limitation is the quality and resolution of the meteorological data.

  6. a Spiral-Based Downscaling Method for Generating 30 M Time Series Image Data

    NASA Astrophysics Data System (ADS)

    Liu, B.; Chen, J.; Xing, H.; Wu, H.; Zhang, J.

    2017-09-01

    The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland) make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these high spatial resolution images image by image. Simulated experiment and remote sensing image downscaling experiment were conducted. In simulated experiment, the 30 meters class map dataset Globeland30 was adopted to investigate the effect on avoid the underdetermined problem in downscaling procedure and a comparison between spiral and window was conducted. Further, the MODIS NDVI and Landsat image data was adopted to generate the 30m time series NDVI in remote sensing image downscaling experiment. Simulated experiment results showed that the proposed method had a robust performance in downscaling pixel in heterogeneous region and indicated that it was superior to the traditional window-based methods. The high resolution time series generated may be a benefit to the mapping and updating of land cover data.

  7. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid

    PubMed Central

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A.; Bandera, Antonio

    2016-01-01

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms. PMID:27898029

  8. Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid.

    PubMed

    González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A; Bandera, Antonio

    2016-11-26

    There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms.

  9. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery

    NASA Astrophysics Data System (ADS)

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  10. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery.

    PubMed

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms ( R 2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  11. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map.

    PubMed

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-09-11

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate.

  12. A Semi-Automated Machine Learning Algorithm for Tree Cover Delineation from 1-m Naip Imagery Using a High Performance Computing Architecture

    NASA Astrophysics Data System (ADS)

    Basu, S.; Ganguly, S.; Nemani, R. R.; Mukhopadhyay, S.; Milesi, C.; Votava, P.; Michaelis, A.; Zhang, G.; Cook, B. D.; Saatchi, S. S.; Boyda, E.

    2014-12-01

    Accurate tree cover delineation is a useful instrument in the derivation of Above Ground Biomass (AGB) density estimates from Very High Resolution (VHR) satellite imagery data. Numerous algorithms have been designed to perform tree cover delineation in high to coarse resolution satellite imagery, but most of them do not scale to terabytes of data, typical in these VHR datasets. In this paper, we present an automated probabilistic framework for the segmentation and classification of 1-m VHR data as obtained from the National Agriculture Imagery Program (NAIP) for deriving tree cover estimates for the whole of Continental United States, using a High Performance Computing Architecture. The results from the classification and segmentation algorithms are then consolidated into a structured prediction framework using a discriminative undirected probabilistic graphical model based on Conditional Random Field (CRF), which helps in capturing the higher order contextual dependencies between neighboring pixels. Once the final probability maps are generated, the framework is updated and re-trained by incorporating expert knowledge through the relabeling of misclassified image patches. This leads to a significant improvement in the true positive rates and reduction in false positive rates. The tree cover maps were generated for the state of California, which covers a total of 11,095 NAIP tiles and spans a total geographical area of 163,696 sq. miles. Our framework produced correct detection rates of around 85% for fragmented forests and 70% for urban tree cover areas, with false positive rates lower than 3% for both regions. Comparative studies with the National Land Cover Data (NLCD) algorithm and the LiDAR high-resolution canopy height model shows the effectiveness of our algorithm in generating accurate high-resolution tree cover maps.

  13. Robust isotropic super-resolution by maximizing a Laplace posterior for MRI volumes

    NASA Astrophysics Data System (ADS)

    Han, Xian-Hua; Iwamoto, Yutaro; Shiino, Akihiko; Chen, Yen-Wei

    2014-03-01

    Magnetic resonance imaging can only acquire volume data with finite resolution due to various factors. In particular, the resolution in one direction (such as the slice direction) is much lower than others (such as the in-plane direction), yielding un-realistic visualizations. This study explores to reconstruct MRI isotropic resolution volumes from three orthogonal scans. This proposed super- resolution reconstruction is formulated as a maximum a posterior (MAP) problem, which relies on the generation model of the acquired scans from the unknown high-resolution volumes. Generally, the deviation ensemble of the reconstructed high-resolution (HR) volume from the available LR ones in the MAP is represented as a Gaussian distribution, which usually results in some noise and artifacts in the reconstructed HR volume. Therefore, this paper investigates a robust super-resolution by formulating the deviation set as a Laplace distribution, which assumes sparsity in the deviation ensemble based on the possible insight of the appeared large values only around some unexpected regions. In addition, in order to achieve reliable HR MRI volume, we integrates the priors such as bilateral total variation (BTV) and non-local mean (NLM) into the proposed MAP framework for suppressing artifacts and enriching visual detail. We validate the proposed robust SR strategy using MRI mouse data with high-definition resolution in two direction and low-resolution in one direction, which are imaged in three orthogonal scans: axial, coronal and sagittal planes. Experiments verifies that the proposed strategy can achieve much better HR MRI volumes than the conventional MAP method even with very high-magnification factor: 10.

  14. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    USDA-ARS?s Scientific Manuscript database

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  15. High-resolution forest mapping for behavioural studies in the Nature Reserve ‘Les Nouragues’, French Guiana

    PubMed Central

    Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva

    2015-01-01

    For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943

  16. Data-driven nonlinear optimisation of a simple air pollution dispersion model generating high resolution spatiotemporal exposure

    NASA Astrophysics Data System (ADS)

    Yuval; Bekhor, Shlomo; Broday, David M.

    2013-11-01

    Spatially detailed estimation of exposure to air pollutants in the urban environment is needed for many air pollution epidemiological studies. To benefit studies of acute effects of air pollution such exposure maps are required at high temporal resolution. This study introduces nonlinear optimisation framework that produces high resolution spatiotemporal exposure maps. An extensive traffic model output, serving as proxy for traffic emissions, is fitted via a nonlinear model embodying basic dispersion properties, to high temporal resolution routine observations of traffic-related air pollutant. An optimisation problem is formulated and solved at each time point to recover the unknown model parameters. These parameters are then used to produce a detailed concentration map of the pollutant for the whole area covered by the traffic model. Repeating the process for multiple time points results in the spatiotemporal concentration field. The exposure at any location and for any span of time can then be computed by temporal integration of the concentration time series at selected receptor locations for the durations of desired periods. The methodology is demonstrated for NO2 exposure using the output of a traffic model for the greater Tel Aviv area, Israel, and the half-hourly monitoring and meteorological data from the local air quality network. A leave-one-out cross-validation resulted in simulated half-hourly concentrations that are almost unbiased compared to the observations, with a mean error (ME) of 5.2 ppb, normalised mean error (NME) of 32%, 78% of the simulated values are within a factor of two (FAC2) of the observations, and the coefficient of determination (R2) is 0.6. The whole study period integrated exposure estimations are also unbiased compared with their corresponding observations, with ME of 2.5 ppb, NME of 18%, FAC2 of 100% and R2 that equals 0.62.

  17. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  18. A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Griffiths, Natalie A.; DeRolph, Christopher R.

    Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelitymore » of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.« less

  19. The effects of digital elevation model resolution on the calculation and predictions of topographic wetness indices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drover, Damion, Ryan

    2011-12-01

    One of the largest exports in the Southeast U.S. is forest products. Interest in biofuels using forest biomass has increased recently, leading to more research into better forest management BMPs. The USDA Forest Service, along with the Oak Ridge National Laboratory, University of Georgia and Oregon State University are researching the impacts of intensive forest management for biofuels on water quality and quantity at the Savannah River Site in South Carolina. Surface runoff of saturated areas, transporting excess nutrients and contaminants, is a potential water quality issue under investigation. Detailed maps of variable source areas and soil characteristics would thereforemore » be helpful prior to treatment. The availability of remotely sensed and computed digital elevation models (DEMs) and spatial analysis tools make it easy to calculate terrain attributes. These terrain attributes can be used in models to predict saturated areas or other attributes in the landscape. With laser altimetry, an area can be flown to produce very high resolution data, and the resulting data can be resampled into any resolution of DEM desired. Additionally, there exist many maps that are in various resolutions of DEM, such as those acquired from the U.S. Geological Survey. Problems arise when using maps derived from different resolution DEMs. For example, saturated areas can be under or overestimated depending on the resolution used. The purpose of this study was to examine the effects of DEM resolution on the calculation of topographic wetness indices used to predict variable source areas of saturation, and to find the best resolutions to produce prediction maps of soil attributes like nitrogen, carbon, bulk density and soil texture for low-relief, humid-temperate forested hillslopes. Topographic wetness indices were calculated based on the derived terrain attributes, slope and specific catchment area, from five different DEM resolutions. The DEMs were resampled from LiDAR, which is a laser altimetry remote sensing method, obtained from the USDA Forest Service at Savannah River Site. The specific DEM resolutions were chosen because they are common grid cell sizes (10m, 30m, and 50m) used in mapping for management applications and in research. The finer resolutions (2m and 5m) were chosen for the purpose of determining how finer resolutions performed compared with coarser resolutions at predicting wetness and related soil attributes. The wetness indices were compared across DEMs and with each other in terms of quantile and distribution differences, then in terms of how well they each correlated with measured soil attributes. Spatial and non-spatial analyses were performed, and predictions using regression and geostatistics were examined for efficacy relative to each DEM resolution. Trends in the raw data and analysis results were also revealed.« less

  20. Operational shoreline mapping with high spatial resolution radar and geographic processing

    USGS Publications Warehouse

    Rangoonwala, Amina; Jones, Cathleen E; Chi, Zhaohui; Ramsey, Elijah W.

    2017-01-01

    A comprehensive mapping technology was developed utilizing standard image processing and available GIS procedures to automate shoreline identification and mapping from 2 m synthetic aperture radar (SAR) HH amplitude data. The development used four NASA Uninhabited Aerial Vehicle SAR (UAVSAR) data collections between summer 2009 and 2012 and a fall 2012 collection of wetlands dominantly fronted by vegetated shorelines along the Mississippi River Delta that are beset by severe storms, toxic releases, and relative sea-level rise. In comparison to shorelines interpreted from 0.3 m and 1 m orthophotography, the automated GIS 10 m alongshore sampling found SAR shoreline mapping accuracy to be ±2 m, well within the lower range of reported shoreline mapping accuracies. The high comparability was obtained even though water levels differed between the SAR and photography image pairs and included all shorelines regardless of complexity. The SAR mapping technology is highly repeatable and extendable to other SAR instruments with similar operational functionality.

  1. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.

  2. A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea

    PubMed Central

    Bajaj, Deepak; Upadhyaya, Hari D.; Khan, Yusuf; Das, Shouvik; Badoni, Saurabh; Shree, Tanima; Kumar, Vinod; Tripathi, Shailesh; Gowda, C. L. L.; Singh, Sube; Sharma, Shivali; Tyagi, Akhilesh K.; Chattopdhyay, Debasis; Parida, Swarup K.

    2015-01-01

    High experimental validation/genotyping success rate (94–96%) and intra-specific polymorphic potential (82–96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8–25.8% with LOD: 7.0–13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1–171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea. PMID:25786576

  3. Characterizing Watersheds with Geophysical Methods: Some uses of GPR and EMI in Hydropedological Investigations.

    NASA Astrophysics Data System (ADS)

    Doolittle, J.; Lin, H.; Jenkinson, B.; Zhou, X.

    2006-05-01

    The USDA-NRCS and its cooperators use ground-penetrating radar (GPR) and electromagnetic induction (EMI) as rapid, noninvasive tools to support soil surveys at different scales and levels of resolution. The effective use of GPR is site-specific and generally restricted to soils having low electrical conductivity (e.g., soils with low clay and soluble salt contents). In suitable soils, GPR provides high resolution data, which are used to estimate depths to soil horizons and geologic layers that restrict, redirect, and/or concentrate the flow of water through landscapes. In areas of coarse-textured soils, GPR has been used to map spatiotemporal variations in water-table depths and local ground-water flow patterns. Compared with GPR, EMI can be effectively used across a broader spectrum of soils and spatial scales, but provides lower resolution of subsurface features. EMI is used to refine and improve soil maps prepared with traditional soil survey methods. Differences in apparent conductivity (ECa) are associated with different soils and soil properties (e.g., clay, moisture and soluble salt contents). Apparent conductivity maps provide an additional layer of information, which directs soil sampling, aids the identification and delineation of some soil polygons, and enhances the quality of soil maps. More recently, these tools were used to characterize the hydropedological character of a small, steeply sloping, forested watershed. Within the watershed, EMI was used to characterize the principal soil-landscape components, and GPR was used to provide high resolution data on soil depth and layering within colluvial deposits located in swales and depressional areas.

  4. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    PubMed

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  5. High Resolution IRAS Maps and IR Emission of M31 -- II. Diffuse Component and Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Xu, C.; Helou, G.

    1995-01-01

    Large-scale dust heating and cooling in the diffuse medium of M31 is studied using the high resolution (HiRes) IRAS maps in conjunction with UV, optical (UBV), and the HI maps. A dust heating/cooling model is developed based on a radiative transfer model which assumes a 'Sandwich' configuration of dust and stars takes account of the effect of dust grain scattering.

  6. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    NASA Astrophysics Data System (ADS)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the sustainable dissemination of technologies and concepts developed in the projects through workshops for stakeholders and the publication of a handbook "Methods and Technologies for Mapping of Soil Properties, Function and Threat Risks". Besides, the CEN Workshop offers a new mechanism and approach to standardization. During the project we decided that the topic of the CEN Workshop should focus on a voluntary standardization of electromagnetic induction measurement to ensure that results can be evaluated and processed under uniform circumstances and can be comparable. At the poster we will also present the idea and the objectives of our CEN Workshop "Best Practice Approach for electromagnetic induction measurements of the near surface"and invite every interested person to participate.

  7. Mapping Chinese tallow with color-infrared photography

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Seeger, E.B.; Martella, K.D.

    2002-01-01

    Airborne color-infrared photography (CIR) (1:12,000 scale) was used to map localized occurrences of the widespread and aggressive Chinese tallow (Sapium sebiferum), an invasive species. Photography was collected during senescence when Chinese tallow's bright red leaves presented a high spectral contrast within the native bottomland hardwood and upland forests and marsh land-cover types. Mapped occurrences were conservative because not all senescing tallow leaves are bright red simultaneously. To simulate low spectral but high spatial resolution satellite/airborne image and digital video data, the CIR photography was transformed into raster images at spatial resolutions approximating 0.5 in and 1.0 m. The image data were then spectrally classified for the occurrence of bright red leaves associated with senescing Chinese tallow. Classification accuracies were greater than 95 percent at both spatial resolutions. There was no significant difference in either forest in the detection of tallow or inclusion of non-tallow trees associated with the two spatial resolutions. In marshes, slightly more tallow occurrences were mapped with the lower spatial resolution, but there were also more misclassifications of native land covers as tallow. Combining all land covers, there was no difference at detecting tallow occurrences (equal omission errors) between the two resolutions, but the higher spatial resolution was associated with less inclusion of non-tallow land covers as tallow (lower commission error). Overall, these results confirm that high spatial (???1 m) but low spectral resolution remote sensing data can be used for mapping Chinese tallow trees in dominant environments found in coastal and adjacent upland landscapes.

  8. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  9. MAPS OF THE MAGELLANIC CLOUDS FROM COMBINED SOUTH POLE TELESCOPE AND PLANCK DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, T. M.; Benson, B. A.; Bleem, L. E.

    We present maps of the Large and Small Magellanic Clouds from combined South Pole Telescope (SPT) and Planck data. The Planck satellite observes in nine bands, while the SPT data used in this work were taken with the three-band SPT-SZ camera, The SPT-SZ bands correspond closely to three of the nine Planck bands, namely those centered at 1.4, 2.1, and 3.0 mm. The angular resolution of the Planck data ranges from 5 to 10 arcmin, while the SPT resolution ranges from 1.0 to 1.7 arcmin. The combined maps take advantage of the high resolution of the SPT data and themore » long-timescale stability of the space-based Planck observations to deliver robust brightness measurements on scales from the size of the maps down to ∼1 arcmin. In each band, we first calibrate and color-correct the SPT data to match the Planck data, then we use noise estimates from each instrument and knowledge of each instrument’s beam to make the inverse-variance-weighted combination of the two instruments’ data as a function of angular scale. We create maps assuming a range of underlying emission spectra and at a range of final resolutions. We perform several consistency tests on the combined maps and estimate the expected noise in measurements of features in them. We compare maps from this work to those from the Herschel HERITAGE survey, finding general consistency between the data sets. All data products described in this paper are available for download from the NASA Legacy Archive for Microwave Background Data Analysis server.« less

  10. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  11. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother

    USDA-ARS?s Scientific Manuscript database

    This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed...

  12. A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Kretke, K. A.; Smith, M. D.; Pelkey, S. M.

    2002-01-01

    TES (thermal emission spectrometry) has obtained high spatial resolution surface temperature observations from which thermal inertia has been derived. Seasonal coverage of these data now provides a nearly global view of Mars, including the polar regions, at high resolution. Additional information is contained in the original extended abstract.

  13. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  14. Development of Global 30m Resolution Water Body Map with Permanent/Temporal Water Body Separation Using Satellite Acquired Images of Landsat GLS Datasets

    NASA Astrophysics Data System (ADS)

    Ikeshima, D.; Yamazaki, D.; Yoshikawa, S.; Kanae, S.

    2015-12-01

    The specification of worldwide water body distribution is important for discovering hydrological cycle. Global 3-second Water Body Map (G3WBM) is a global scale map, which indicates the distribution of water body in 90m resolutions (http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/index.html). This dataset was mainly built to identify the width of river channels, which is one of major uncertainties of continental-scale river hydrodynamics models. To survey the true width of the river channel, this water body map distinguish Permanent Water Body from Temporary Water Body, which means separating river channel and flood plain. However, rivers with narrower width, which is a major case in usual river, could not be observed in this map. To overcome this problem, updating the algorithm of G3WBM and enhancing the resolutions to 30m is the goal of this research. Although this 30m-resolution water body map uses similar algorithm as G3WBM, there are many technical issues attributed to relatively high resolutions. Those are such as lack of same high-resolution digital elevation map, or contamination problem of sub-pixel scale object on satellite acquired image, or invisibility of well-vegetated water body such as swamp. To manage those issues, this research used more than 30,000 satellite images of Landsat Global Land Survey (GLS), and lately distributed topography data of Shuttle Rader Topography Mission (SRTM) 1 arc-second (30m) digital elevation map. Also the effect of aerosol, which would scatter the sun reflectance and disturb the acquired result image, was considered. Due to these revises, the global water body distribution was established in more precise resolution.

  15. Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays

    PubMed Central

    Bernardo, Amy N; Bradbury, Peter J; Ma, Hongxiang; Hu, Shengwa; Bowden, Robert L; Buckler, Edward S; Bai, Guihua

    2009-01-01

    Background Wheat (Triticum aestivum L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome. Results Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data. Conclusion The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat. PMID:19480702

  16. Clinical Impact and Implication of Real-Time Oscillation Analysis for Language Mapping.

    PubMed

    Ogawa, Hiroshi; Kamada, Kyousuke; Kapeller, Christoph; Prueckl, Robert; Takeuchi, Fumiya; Hiroshima, Satoru; Anei, Ryogo; Guger, Christoph

    2017-01-01

    We developed a functional brain analysis system that enabled us to perform real-time task-related electrocorticography (ECoG) and evaluated its potential in clinical practice. We hypothesized that high gamma activity (HGA) mapping would provide better spatial and temporal resolution with high signal-to-noise ratios. Seven awake craniotomy patients were evaluated. ECoG was recorded during language tasks using subdural grids, and HGA (60-170 Hz) maps were obtained in real time. The patients also underwent electrocortical stimulation (ECS) mapping to validate the suspected functional locations on HGA mapping. The results were compared and calculated to assess the sensitivity and specificity of HGA mapping. For reference, bedside HGA-ECS mapping was performed in 5 epilepsy patients. HGA mapping demonstrated functional brain areas in real time and was comparable with ECS mapping. Sensitivity and specificity for the language area were 90.1% ± 11.2% and 90.0% ± 4.2%, respectively. Most HGA-positive areas were consistent with ECS-positive regions in both groups, and there were no statistical between-group differences. Although this study included a small number of subjects, it showed real-time HGA mapping with the same setting and tasks under different conditions. This study demonstrates the clinical feasibility of real-time HGA mapping. Real-time HGA mapping enabled simple and rapid detection of language functional areas in awake craniotomy. The mapping results were highly accurate, although the mapping environment was noisy. Further studies of HGA mapping may provide the potential to elaborate complex brain functions and networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Nominal 30-M Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine

    NASA Technical Reports Server (NTRS)

    Xiong, Jun; Thenkabail, Prasad S.; Tilton, James C.; Gumma, Murali K.; Teluguntla, Pardhasaradhi; Oliphant, Adam; Congalton, Russell G.; Yadav, Kamini; Gorelick, Noel

    2017-01-01

    A satellite-derived cropland extent map at high spatial resolution (30-m or better) is a must for food and water security analysis. Precise and accurate global cropland extent maps, indicating cropland and non-cropland areas, is a starting point to develop high-level products such as crop watering methods (irrigated or rainfed), cropping intensities (e.g., single, double, or continuous cropping), crop types, cropland fallows, as well as assessment of cropland productivity (productivity per unit of land), and crop water productivity (productivity per unit of water). Uncertainties associated with the cropland extent map have cascading effects on all higher-level cropland products. However, precise and accurate cropland extent maps at high spatial resolution over large areas (e.g., continents or the globe) are challenging to produce due to the small-holder dominant agricultural systems like those found in most of Africa and Asia. Cloud-based Geospatial computing platforms and multi-date, multi-sensor satellite image inventories on Google Earth Engine offer opportunities for mapping croplands with precision and accuracy over large areas that satisfy the requirements of broad range of applications. Such maps are expected to provide highly significant improvements compared to existing products, which tend to be coarser in resolution, and often fail to capture fragmented small-holder farms especially in regions with high dynamic change within and across years. To overcome these limitations, in this research we present an approach for cropland extent mapping at high spatial resolution (30-m or better) using the 10-day, 10 to 20-m, Sentinel-2 data in combination with 16-day, 30-m, Landsat-8 data on Google Earth Engine (GEE). First, nominal 30-m resolution satellite imagery composites were created from 36,924 scenes of Sentinel-2 and Landsat-8 images for the entire African continent in 2015-2016. These composites were generated using a median-mosaic of five bands (blue, green, red, near-infrared, NDVI) during each of the two periods (period 1: January-June 2016 and period 2: July-December 2015) plus a 30-m slope layer derived from the Shuttle Radar Topographic Mission (SRTM) elevation dataset. Second, we selected Cropland/Non-cropland training samples (sample size 9791) from various sources in GEE to create pixel-based classifications. As supervised classification algorithm, Random Forest (RF) was used as the primary classifier because of its efficiency, and when over-fitting issues of RF happened due to the noise of input training data, Support Vector Machine (SVM) was applied to compensate for such defects in specific areas. Third, the Recursive Hierarchical Segmentation (RHSeg) algorithm was employed to generate an object-oriented segmentation layer based on spectral and spatial properties from the same input data. This layer was merged with the pixel-based classification to improve segmentation accuracy. Accuracies of the merged 30-m crop extent product were computed using an error matrix approach in which 1754 independent validation samples were used. In addition, a comparison was performed with other available cropland maps as well as with LULC maps to show spatial similarity. Finally, the cropland area results derived from the map were compared with UN FAO statistics. The independent accuracy assessment showed a weighted overall accuracy of 94, with a producers accuracy of 85.9 (or omission error of 14.1), and users accuracy of 68.5 (commission error of 31.5) for the cropland class. The total net cropland area (TNCA) of Africa was estimated as 313 Mha for the nominal year 2015.

  18. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  19. Large Scale Crop Mapping in Ukraine Using Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Shelestov, A.; Lavreniuk, M. S.; Kussul, N.

    2016-12-01

    There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13-18 July 2014, Quebec City, Canada. F.J. Gallego, N. Kussul, S. Skakun, O. Kravchenko, A. Shelestov, O. Kussul, "Efficiency assessment of using satellite data for crop area estimation in Ukraine," International Journal of Applied Earth Observation and Geoinformation vol. 29, pp. 22-30, 2014.

  20. Identifying high production, low production and degraded rangelands in Senegal with normalized difference vegetation index data

    USGS Publications Warehouse

    Tappan, G. Gray; Wood, Lynette; Moore, Donald G.

    1993-01-01

    Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.

  1. Identification of minor effect QTLs for plant architecture related traits using super high density genotyping and large recombinant inbred population in maize (Zea mays).

    PubMed

    Wang, Baobao; Liu, Han; Liu, Zhipeng; Dong, Xiaomei; Guo, Jinjie; Li, Wei; Chen, Jing; Gao, Chi; Zhu, Yanbin; Zheng, Xinmei; Chen, Zongliang; Chen, Jian; Song, Weibin; Hauck, Andrew; Lai, Jinsheng

    2018-01-18

    Plant Architecture Related Traits (PATs) are of great importance for maize breeding, and mainly controlled by minor effect quantitative trait loci (QTLs). However, cloning or even fine-mapping of minor effect QTLs is very difficult in maize. Theoretically, large population and high density genetic map can be helpful for increasing QTL mapping resolution and accuracy, but such a possibility have not been actually tested. Here, we employed a genotyping-by-sequencing (GBS) strategy to construct a linkage map with 16,769 marker bins for 1021 recombinant inbred lines (RILs). Accurately mapping of well studied genes P1, pl1 and r1 underlying silk color demonstrated the map quality. After QTL analysis, a total of 51 loci were mapped for six PATs. Although all of them belong to minor effect alleles, the lengths of the QTL intervals, with a minimum and median of 1.03 and 3.40 Mb respectively, were remarkably reduced as compared with previous reports using smaller size of population or small number of markers. Several genes with known function in maize were shown to be overlapping with or close neighboring to these QTL peaks, including na1, td1, d3 for plant height, ra1 for tassel branch number, and zfl2 for tassel length. To further confirm our mapping results, a plant height QTL, qPH1a, was verified by an introgression lines (ILs). We demonstrated a method for high resolution mapping of minor effect QTLs in maize, and the resulted comprehensive QTLs for PATs are valuable for maize molecular breeding in the future.

  2. The Circumpolar Arctic vegetation map

    USGS Publications Warehouse

    Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.

    2005-01-01

    Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.

  3. SU-F-T-315: Comparative Studies of Planar Dose with Different Spatial Resolution for Head and Neck IMRT QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, T; Koo, T

    Purpose: To quantitatively investigate the planar dose difference and the γ value between the reference fluence map with the 1 mm detector-to-detector distance and the other fluence maps with less spatial resolution for head and neck intensity modulated radiation (IMRT) therapy. Methods: For ten head and neck cancer patients, the IMRT quality assurance (QA) beams were generated using by the commercial radiation treatment planning system, Pinnacle3 (ver. 8.0.d Philips Medical System, Madison, WI). For each beam, ten fluence maps (detector-to-detector distance: 1 mm to 10 mm by 1 mm) were generated. The fluence maps with larger than 1 mm detector-todetectormore » distance were interpolated using MATLAB (R2014a, the Math Works,Natick, MA) by four different interpolation Methods: for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. These interpolated fluence maps were compared with the reference one using the γ value (criteria: 3%, 3 mm) and the relative dose difference. Results: As the detector-to-detector distance increases, the dose difference between the two maps increases. For the fluence map with the same resolution, the cubic spline interpolation and the bicubic interpolation are almost equally best interpolation methods while the nearest neighbor interpolation is the worst.For example, for 5 mm distance fluence maps, γ≤1 are 98.12±2.28%, 99.48±0.66%, 99.45±0.65% and 82.23±0.48% for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. For 7 mm distance fluence maps, γ≤1 are 90.87±5.91%, 90.22±6.95%, 91.79±5.97% and 71.93±4.92 for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. Conclusion: We recommend that the 2-dimensional detector array with high spatial resolution should be used as an IMRT QA tool and that the measured fluence maps should be interpolated using by the cubic spline interpolation or the bicubic interpolation for head and neck IMRT delivery. This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less

  4. Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3 Tesla clinical MRI scanner

    PubMed Central

    Chang, Hing-Chiu; Sundman, Mark; Petit, Laurent; Guhaniyogi, Shayan; Chu, Mei-Lan; Petty, Christopher; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    The advantages of high-resolution diffusion tensor imaging (DTI) have been demonstrated in a recent post-mortem human brain study (Miller et al., NeuroImage 2011;57(1):167–181), showing that white matter fiber tracts can be much more accurately detected in data at submillimeter isotropic resolution. To our knowledge, in vivo human brain DTI at submillimeter isotropic resolution has not been routinely achieved yet because of the difficulty in simultaneously achieving high resolution and high signal-to-noise ratio (SNR) in DTI scans. Here we report a 3D multi-slab interleaved EPI acquisition integrated with multiplexed sensitivity encoded (MUSE) reconstruction, to achieve high-quality, high-SNR and submillimeter isotropic resolution (0.85 × 0.85 × 0.85 mm3) in vivo human brain DTI on a 3 Tesla clinical MRI scanner. In agreement with the previously reported post-mortem human brain DTI study, our in vivo data show that the structural connectivity networks of human brains can be mapped more accurately and completely with high-resolution DTI as compared with conventional DTI (e.g., 2 × 2 × 2 mm3). PMID:26072250

  5. Accuracy, resolution, and cost comparisons between small format and mapping cameras for environmental mapping

    NASA Technical Reports Server (NTRS)

    Clegg, R. H.; Scherz, J. P.

    1975-01-01

    Successful aerial photography depends on aerial cameras providing acceptable photographs within cost restrictions of the job. For topographic mapping where ultimate accuracy is required only large format mapping cameras will suffice. For mapping environmental patterns of vegetation, soils, or water pollution, 9-inch cameras often exceed accuracy and cost requirements, and small formats may be better. In choosing the best camera for environmental mapping, relative capabilities and costs must be understood. This study compares resolution, photo interpretation potential, metric accuracy, and cost of 9-inch, 70mm, and 35mm cameras for obtaining simultaneous color and color infrared photography for environmental mapping purposes.

  6. Influence of resolution in irrigated area mapping and area estimation

    USGS Publications Warehouse

    Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L.

    2009-01-01

    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that "the finer the spatial resolution of the sensor used, greater was the irrigated area derived," since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent). ?? 2009 American Society for Photogrammetry and Remote Sensing.

  7. High-resolution mapping based on an Unmanned Aerial Vehicle (UAV) to capture paleoseismic offsets along the Altyn-Tagh fault, China.

    PubMed

    Gao, Mingxing; Xu, Xiwei; Klinger, Yann; van der Woerd, Jerome; Tapponnier, Paul

    2017-08-15

    The recent dramatic increase in millimeter- to centimeter- resolution topographic datasets obtained via multi-view photogrammetry raises the possibility of mapping detailed offset geomorphology and constraining the spatial characteristics of active faults. Here, for the first time, we applied this new method to acquire high-resolution imagery and generate topographic data along the Altyn Tagh fault, which is located in a remote high elevation area and shows preserved ancient earthquake surface ruptures. A digital elevation model (DEM) with a resolution of 0.065 m and an orthophoto with a resolution of 0.016 m were generated from these images. We identified piercing markers and reconstructed offsets based on both the orthoimage and the topography. The high-resolution UAV data were used to accurately measure the recent seismic offset. We obtained the recent offset of 7 ± 1 m. Combined with the high resolution satellite image, we measured cumulative offsets of 15 ± 2 m, 20 ± 2 m, 30 ± 2 m, which may be due to multiple paleo-earthquakes. Therefore, UAV mapping can provide fine-scale data for the assessment of the seismic hazards.

  8. Comparative studies of the interaction between the Sun and planetary near space environments with the Solar Connections Observatory for Planetary Environments (SCOPE)

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Scope Team

    2003-04-01

    The Solar Connections Observatory for Planetary Environments (SCOPE) is a remote sensing facility designed to probe the nature of the relationship of planetary bodies and the local interstellar medium to the solar wind and UV-EUV radiation field. In particular, the SCOPE program seeks to comparatively monitor the near space environments and thermosphere/ionospheres of planets, planetesimals, and satellites under different magnetospheric configurations and as a function of heliocentric distance and solar activity. In addition, SCOPE will include the Earth as a science target, providing new remote observations of auroral and upper atmospheric phenomena and utilizing it as baseline for direct comparison with other planetary bodies. The observatory will be scheduled into discrete campaigns interleaving Target-Terrestrial observations to provide a comparative annual activity map over the course of a solar half cycle. The SCOPE science instrument consists of binocular UV (115-310 nm) and EUV (500-120 nm) telescopes and a side channel sky-mapping interferometer on a spacecraft stationed in a remote orbit. The telescope instruments provide a mix of capabilities including high spatial resolution narrow band imaging, moderate resolution broadband spectro-imaging, and high-resolution line spectroscopy. The side channel instrument will be optimized for line profile measurements of diagnostic terrestrial upper atmospheric, comet, interplanetary, and interstellar extended emissions.

  9. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.

    PubMed

    Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio

    2017-11-16

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  10. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    PubMed Central

    Eugenio, Francisco; Marcello, Javier; Martin, Javier

    2017-01-01

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones. PMID:29144444

  11. UAS Photogrammetry for Rapid Response Characterization of Subaerial Coastal Change

    NASA Astrophysics Data System (ADS)

    Do, C.; Anarde, K.; Figlus, J.; Prouse, W.; Bedient, P. B.

    2016-12-01

    Unmanned aerial systems (UASs) provide an exciting new platform for rapid response measurement of subaerial coastal change. Here we validate the use of a coupled hobbyist UAS and optical photogrammetry framework for high-resolution mapping of portions of a low-lying barrier island along the Texas Gulf Coast. A DJI Phantom 3 Professional was used to capture 2D nadir images of the foreshore and back-beach environments containing both vegetated and non-vegetated features. The images were georeferenced using ground-truth markers surveyed via real-time kinematic (RTK) GPS and were then imported into Agisoft Photoscan, a photo-processing software, to generate 3D point clouds and digital elevation maps (DEMs). The georeferenced elevation models were then compared to RTK measurements to evaluate accuracy and precision. Thus far, DEMs derived from UAS photogrammetry show centimeter resolution for renderings of non-vegetated landforms. High-resolution renderings of vegetated and back-barrier regions have proven more difficult due to interstitial wetlands (surface reflectance) and uneven terrain for GPS backpack surveys. In addition to producing high-quality models, UAS photogrammetry has demonstrated to be more time-efficient than traditional mapping methods, making it advantageous for rapid response deployments. This study is part of a larger effort to relate field measurements of storm hydrodynamics to subaerial evidence of geomorphic change to better understand barrier island response to extreme storms.

  12. Development and characterization of a 3D high-resolution terrain database

    NASA Astrophysics Data System (ADS)

    Wilkosz, Aaron; Williams, Bryan L.; Motz, Steve

    2000-07-01

    A top-level description of methods used to generate elements of a high resolution 3D characterization database is presented. The database elements are defined as ground plane elevation map, vegetation height elevation map, material classification map, discrete man-made object map, and temperature radiance map. The paper will cover data collection by means of aerial photography, techniques of soft photogrammetry used to derive the elevation data, and the methodology followed to generate the material classification map. The discussion will feature the development of the database elements covering Fort Greely, Alaska. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems.

  13. Conflict resolution efforts through stakeholder mapping in Labanan Research Forest, Berau, East Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Wiati, C. B.; Indriyanti, S. Y.; Maharani, R.; Subarudi

    2018-04-01

    Conflict resolution in Labanan Research Forest (LRF) by the Dipterocarps Forest Ecosystem Research and Development Center (Balai Besar Penelitian dan Pengembangan Ekosistem Hutan Dipterokarpa – B2P2EHD) needs support from other parties that are also interested in such forest management. This paper aimed to presented conflict resolution in LRF through stakeholder mapping for its engagement. This research was conducted for seven months (June to December 2015) with interviews and literature study as its data collection. Collected data were analysed by a stakeholder analysis and matrix based on their interest and power levels. Two important findings were: (1) There are 19 parties having interests in the existence of LRF should be engaged; (2) Conflict resolution of LRF can be achieved: (a) ensuring key stakeholders which have high interest and high power level has same perception in existence and management of LRF, (b) establishing a partnership with primary stakeholders which have high interest and high power levels; (c) building partnerships between primary stakeholders which have high interest but low power levels, (d) building partnerships between key and secondary stakeholders which have low interest but high power levels and (e) gaining support from primary and secondary stakeholders which have low interest and low power levels. Stakeholder mapping is an important tool for tenure conflict resolution through mapping the power and interest of the conflicted parties and finding the proper parties to be approached.

  14. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping.

    PubMed

    Patil, Gunvant; Vuong, Tri D; Kale, Sandip; Valliyodan, Babu; Deshmukh, Rupesh; Zhu, Chengsong; Wu, Xiaolei; Bai, Yonghe; Yungbluth, Dennis; Lu, Fang; Kumpatla, Siva; Shannon, J Grover; Varshney, Rajeev K; Nguyen, Henry T

    2018-04-04

    The cultivated [Glycine max (L) Merr.] and wild [Glycine soja Siebold & Zucc.] soybean species comprise wide variation in seed composition traits. Compared to wild soybean, cultivated soybean contains low protein, high oil, and high sucrose. In this study, an interspecific population was derived from a cross between G. max (Williams 82) and G. soja (PI 483460B). This recombinant inbred line (RIL) population of 188 lines was sequenced at 0.3× depth. Based on 91 342 single nucleotide polymorphisms (SNPs), recombination events in RILs were defined, and a high-resolution bin map was developed (4070 bins). In addition to bin mapping, quantitative trait loci (QTL) analysis for protein, oil, and sucrose was performed using 3343 polymorphic SNPs (3K-SNP), derived from Illumina Infinium BeadChip sequencing platform. The QTL regions from both platforms were compared, and a significant concordance was observed between bin and 3K-SNP markers. Importantly, the bin map derived from next-generation sequencing technology enhanced mapping resolution (from 1325 to 50 Kb). A total of five, nine, and four QTLs were identified for protein, oil, and sucrose content, respectively, and some of the QTLs coincided with soybean domestication-related genomic loci. The major QTL for protein and oil were mapped on Chr. 20 (qPro_20) and suggested negative correlation between oil and protein. In terms of sucrose content, a novel and major QTL were identified on Chr. 8 (qSuc_08) and harbours putative genes involved in sugar transport. In addition, genome-wide association using 91 342 SNPs confirmed the genomic loci derived from QTL mapping. A QTL-based haplotype using whole-genome resequencing of 106 diverse soybean lines identified unique allelic variation in wild soybean that could be utilized to widen the genetic base in cultivated soybean. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. High resolution and low altitude magnetic surveys for structural geology mapping in the Seabee mine, Saskatchewan, Canada, using UAV-MAG™ technology.

    NASA Astrophysics Data System (ADS)

    Braun, A.; Parvar, K.; Burns, M.

    2017-12-01

    Uninhabited Aerial Vehicles (UAV) provide the operational flexibility and ease of use which makes them ideal tools for low altitude and high resolution magnetic surveys. Being able to fly at lower altitudes compared to manned aircrafts provides the proximity to the target needed to increase the sensitivity to detect smaller and less magnetic targets. Considering the same sensor specifications, this further increases the signal to noise ratio. However, to increase spatial resolution, a tighter line spacing is needed which increases the survey time. We describe a case study in the Seabee mine in Saskatchewan, Canada. Using Pioneer Exploration Ltd. UAV-MAG™ technology, we emphasize the importance of altitude and line spacing in magnetic surveys with UAVs in order to resolve smaller and less magnetic targets compared to conventional manned airborne magnetic surveys. Mapping lithological or stratigraphic changes along the target structure requires an existing gradient in magnetic susceptibility. Mostly, this criterium is either not presented or the is weaker than the sensor's signal to noise ratio at a certain flying altitude. However, the folded structure in the study region shows high susceptibility changes in rock formations in high altitude regional magnetic surveys. In order to confirm that there are no missed structural elements in the target region, a UAV magnetic survey using a GEM Systems GSMP-35A potassium vapor magnetometer on Pioneer Exploration's UAV-MAG™ platform was conducted to exploit the structure in detail and compare the gain in spatial resolution from flying at lower altitude and with denser flight lines. The survey was conducted at 25 meters above ground level (AGL). Line spacing was set to 15 meters and a total of 550 kilometers was covered using an autonomous UAV. The collected data were compared to the regional airborne data which were collected at 150 meters AGL with a line spacing of 100 meters. Comparison revealed an anticline with plunge in the northeastern side of the gird. The analysis of the magnetic data, both total magnetic intensity and gradients, reveals that the UAV survey is able to resolve much smaller structures than the manned airborne survey. These details also match observations made in previous geological mapping missions.

  16. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  17. Venus gravity anomalies and their correlations with topography

    NASA Technical Reports Server (NTRS)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  18. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  19. A comparison of the IGBP DISCover and University of Maryland 1 km global land cover products

    USGS Publications Warehouse

    Hansen, M.C.; Reed, B.

    2000-01-01

    Two global 1 km land cover data sets derived from 1992-1993 Advanced Very High Resolution Radiometer (AVHRR) data are currently available, the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) DISCover and the University of Maryland (UMd) 1 km land cover maps. This paper makes a preliminary comparison of the methodologies and results of the two products. The DISCover methodology employed an unsupervised clustering classification scheme on a per-continent basis using 12 monthly maximum NDVI composites as inputs. The UMd approach employed a supervised classification tree method in which temporal metrics derived from all AVHRR bands and the NDVI were used to predict class membership across the entire globe. The DISCover map uses the IGBP classification scheme, while the UMd map employs a modified IGBP scheme minus the classes of permanent wetlands, cropland/natural vegetation mosaic and ice and snow. Global area totals of aggregated vegetation types are very similar and have a per-pixel agreement of 74%. For tall versus short/no vegetation, the per-pixel agreement is 84%. For broad vegetation types, core areas map similarly, while transition zones around core areas differ significantly. This results in high regional variability between the maps. Individual class agreement between the two 1 km maps is 49%. Comparison of the maps at a nominal 0.5 resolution with two global ground-based maps shows an improvement of thematic concurrency of 46% when viewing average class agreement. The absence of the cropland mosaic class creates a difficulty in comparing the maps, due to its significant extent in the DISCover map. The DISCover map, in general, has more forest, while the UMd map has considerably more area in the intermediate tree cover classes of woody savanna/ woodland and savanna/wooded grassland.

  20. Acoustic and satellite remote sensing of shallow nearshore marine habitats in the Gwaii Haanas National Marine Conservation Area

    NASA Astrophysics Data System (ADS)

    Reshitnyk, Luba Yvanka

    The ability to map nearshore habitat (i.e. submerged aquatic vegetation) is an integral component of marine conservation. The main goal of this thesis was to examine the ability of high resolution, multispectral satellite imagery and a single-beam acoustic ground discrimination system to map the location of marine habitats in Bag Harbour, found in the Gwaii Haanas National Marine Conservation Area Reserve. To meet this goal, two objectives were addressed: (1) Using the QTC View V sing-beam acoustic ground discrimination system, identify which frequency (50 kHz or 200 kHz) is best suited for mapping marine habitat; (2) evaluate the ability to map nearshore marine habitat using WorldView-2 high resolution, multispectral satellite imagery and compare the results of marine habitat maps derived from the acoustic and satellite datasets. Ground-truth data for both acoustic and satellite data were collected via towed underwater video camera on June 3rd and 4th, 2012. Acoustic data (50 and 200 kHz) were collected on June 23rd and 24 th, 2012, respectively. The results of this study are organized into two papers. The first paper focuses on objective 1 where the QTC View V single-beam acoustic ground discrimination system was used to map nearshore habitat at a site within the Gwaii Haanas National Marine Conservation Area using two survey frequencies -- 50 kHz and 200 kHz. The results show that the 200 kHz data outperformed the 50 kHz data set in both thematic and spatial accuracy. The 200 kHz dataset was able to identify two species of submerged aquatic vegetation, eelgrass ( Zostera marina) and a red algae (Chondrocanthus exasperatus ) while the 50 kHz dataset was only able to detect the distribution of eelgrass. The best overall accuracy achieved with the 200 kHz dataset was 86% for a habitat map with three classes (dense eelgrass, dense red algae and unvegetated substrate) compared to the 50 kHz habitat classification with two classes (dense eelgrass and unvegetated substrate) that had an overall accuracy of 70%. Neither dataset was capable if discerning the distribution of green algae (Ulva spp.) or brown algae (Fucus spp.), also present at the site. The second paper examines the benthic habitat maps created using WorldView-2 satellite imagery and the QTC View V single-beam acoustic ground discrimination system (AGDS) at 200 kHz (objective 2). Optical and acoustic remote sensing technologies both present unique capabilities of mapping nearshore habitat. Acoustic systems are able to map habitat in subtidal regions outside of the range of optical sensors while optical sensors such as WorldView-2 provide higher spatial and spectral resolution. The results of this study found that the WorldView-2 achieved the highest overall accuracy (75%) for mapping shallow (<3 m) benthic classes (green algae, brown algae, eelgrass and unvegetated substrate). The 200 kHz data were found to perform best in deeper (>3 m) regions and were able to detect the distribution of eelgrass, red algae and unvegetated substrate. A final habitat map was produced composed of these outputs to create a final, comprehensive habitat map of Bag Harbour. These results highlight the benefits and limitations of each remote sensing technology from a conservation management perspective. The main benefits of the WorldView-2 imagery stem from the high resolution (2 x 2 m) pixel resolution, with a single image covering many kilometers of coastline, and ability to discern habitats in the intertidal region that were undetectable by AGDS. However, the main limitation of this technology is the ability to acquire imagery under ideal conditions (low tide and calm seas). In contrast, the QTC View V system requires more hours spent collecting acoustic data in the field, is limited in the number of habitats it is able to detect and creates maps based on interpolated point data (compared to the continuous raster data of the WorldView-2 imagery). If, however, the objectives of the conservation management to create high resolution benthic habitat maps of subtidal habitats (e.g. eelgrass and benthic red algae) at a handful of sites (in contrast to continuous coastal coverage), the QTC View V system is more suitable. Whichever system is used ground-truth data are required to train and validate each dataset.

  1. Moon Mineralogy Mapper: Unlocking the Mysteries of the Moon

    NASA Technical Reports Server (NTRS)

    Runyon, Cassandra

    2006-01-01

    Moon Mineralogy Mapper (M3) is a state-of-the-art high spectral resolution imaging spectrometer that will characterize and map the mineral composition of the Moon. The M3 instrument will be flown on Chandrayaan-I, the Indian Space Research Organization (ISRO) mission to be launched in March 2008. The Moon is a cornerstone to understanding early solar system processes. M3 high-resolution compositional maps will dramatically improve our understanding about the early evolution of the terrestrial planets and will provide an assessment of lunar resources at high spatial resolution.

  2. Mapping Sub-Antarctic Cushion Plants Using Random Forests to Combine Very High Resolution Satellite Imagery and Terrain Modelling

    PubMed Central

    Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805

  3. Tamarisk Mapping and Monitoring Using High Resolution Satellite Imagery

    Treesearch

    Jason W. San Souci; John T. Doyle

    2006-01-01

    QuickBird high resolution multispectral satellite imagery (60 cm GSD, 4 spectral bands) and calibrated products from DigitalGlobe’s AgroWatch program were used as inputs to Visual Learning System’s Feature Analyst automated feature extraction software to map localized occurrences of pervasive and aggressive Tamarisk (Tamarix ramosissima), an invasive...

  4. Targeted carbon conservation at national scales with high-resolution monitoring

    PubMed Central

    Asner, Gregory P.; Knapp, David E.; Martin, Roberta E.; Tupayachi, Raul; Anderson, Christopher B.; Mascaro, Joseph; Sinca, Felipe; Chadwick, K. Dana; Higgins, Mark; Farfan, William; Llactayo, William; Silman, Miles R.

    2014-01-01

    Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Perú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations. PMID:25385593

  5. Targeted carbon conservation at national scales with high-resolution monitoring.

    PubMed

    Asner, Gregory P; Knapp, David E; Martin, Roberta E; Tupayachi, Raul; Anderson, Christopher B; Mascaro, Joseph; Sinca, Felipe; Chadwick, K Dana; Higgins, Mark; Farfan, William; Llactayo, William; Silman, Miles R

    2014-11-25

    Terrestrial carbon conservation can provide critical environmental, social, and climate benefits. Yet, the geographically complex mosaic of threats to, and opportunities for, conserving carbon in landscapes remain largely unresolved at national scales. Using a new high-resolution carbon mapping approach applied to Perú, a megadiverse country undergoing rapid land use change, we found that at least 0.8 Pg of aboveground carbon stocks are at imminent risk of emission from land use activities. Map-based information on the natural controls over carbon density, as well as current ecosystem threats and protections, revealed three biogeographically explicit strategies that fully offset forthcoming land-use emissions. High-resolution carbon mapping affords targeted interventions to reduce greenhouse gas emissions in rapidly developing tropical nations.

  6. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    PubMed Central

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808

  7. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  8. A large-area, spatially continuous assessment of land cover map error and its impact on downstream analyses.

    PubMed

    Estes, Lyndon; Chen, Peng; Debats, Stephanie; Evans, Tom; Ferreira, Stefanus; Kuemmerle, Tobias; Ragazzo, Gabrielle; Sheffield, Justin; Wolf, Adam; Wood, Eric; Caylor, Kelly

    2018-01-01

    Land cover maps increasingly underlie research into socioeconomic and environmental patterns and processes, including global change. It is known that map errors impact our understanding of these phenomena, but quantifying these impacts is difficult because many areas lack adequate reference data. We used a highly accurate, high-resolution map of South African cropland to assess (1) the magnitude of error in several current generation land cover maps, and (2) how these errors propagate in downstream studies. We first quantified pixel-wise errors in the cropland classes of four widely used land cover maps at resolutions ranging from 1 to 100 km, and then calculated errors in several representative "downstream" (map-based) analyses, including assessments of vegetative carbon stocks, evapotranspiration, crop production, and household food security. We also evaluated maps' spatial accuracy based on how precisely they could be used to locate specific landscape features. We found that cropland maps can have substantial biases and poor accuracy at all resolutions (e.g., at 1 km resolution, up to ∼45% underestimates of cropland (bias) and nearly 50% mean absolute error (MAE, describing accuracy); at 100 km, up to 15% underestimates and nearly 20% MAE). National-scale maps derived from higher-resolution imagery were most accurate, followed by multi-map fusion products. Constraining mapped values to match survey statistics may be effective at minimizing bias (provided the statistics are accurate). Errors in downstream analyses could be substantially amplified or muted, depending on the values ascribed to cropland-adjacent covers (e.g., with forest as adjacent cover, carbon map error was 200%-500% greater than in input cropland maps, but ∼40% less for sparse cover types). The average locational error was 6 km (600%). These findings provide deeper insight into the causes and potential consequences of land cover map error, and suggest several recommendations for land cover map users. © 2017 John Wiley & Sons Ltd.

  9. Multi-frequency SAR, SSM/I and AVHRR derived geophysical information of the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Onstott, R. G.; Wackerman, C. C.; Russel, C. A.; Sutherland, L. L.; Johannessen, O. M.; Johannessen, J. A.; Sandven, S.; Gloerson, P.

    1991-01-01

    A description is given of the fusion of synthetic aperture radar (SAR), special sensor microwave imager (SSM/I), and NOAA Advanced Very High Resolution Radiometer (AVHRR) data to study arctic processes. These data were collected during the SIZEX/CEAREX experiments that occurred in the Greenland Sea in March of 1989. Detailed comparisons between the SAR, AVHRR, and SSM/I indicated: (1) The ice edge position was in agreement to within 25 km, (2) The SSM/I SAR total ice concentration compared favorably, however, the SSM/I significantly underpredicted the multiyear fraction, (3) Combining high resolution SAR with SSM/I can potentially map open water and new ice features in the marginal ice zone (MIZ) which cannot be mapped by the single sensors, and (4) The combination of all three sensors provides accurate ice information as well as sea surface temperature and wind speeds.

  10. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  11. Reporting of quantitative oxygen mapping in EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.

    2012-01-01

    Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are necessary to interpret digitally processed pO 2 illustrations.

  12. Applicability of Various Interpolation Approaches for High Resolution Spatial Mapping of Climate Data in Korea

    NASA Astrophysics Data System (ADS)

    Jo, A.; Ryu, J.; Chung, H.; Choi, Y.; Jeon, S.

    2018-04-01

    The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m) by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA). Automatic Weather System (AWS) and Automated Synoptic Observing System (ASOS) data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478) and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM) with 30 m resolution, inverse distance weighting (IDW), co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  13. Surface-material maps of Viking landing sites on Mars

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Keller, J. M.

    1991-01-01

    Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.

  14. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    PubMed

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Observational Requirements for High-Fidelity Reverberation Mapping

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Peterson, Bradley M.; Collier, Stefan J.; Netzer, Hagai

    2004-01-01

    We present a series of simulations to demonstrate that high-fidelity velocity-delay maps of the emission-line regions in active galactic nuclei can be obtained from time-resolved spectrophotometric data sets like those that will arise from the proposed Kronos satellite. While previous reverberation-mapping experiments have established the size scale R of the broad emission-line regions from the mean time delay tau = R/c between the line and continuum variations and have provided strong evidence for supermassive black holes, the detailed structure and kinematics of the broad-line region remain ambiguous and poorly constrained. Here we outline the technical improvements that will be required to successfully map broad-line regions by reverberation techniques. For typical AGN continuum light curves, characterized by power-law power spectra P (f) is proportional to f(exp -alpha) with a = -1.5 +/- 0.5, our simulations show that a small UV/optical spectrometer like Kronos will clearly distinguish between currently viable alternative kinematic models. From spectra sampled at time intervals Delta t and sustained for a total duration T(sub dur), we can reconstruct high-fidelity velocity-delay maps with velocity resolution comparable to that of the spectra, and delay resolution Delta tau approx. 2 Delta t, provided T(sub dur) exceeds the broad-line region light crossing time by at least a factor of three. Even very complicated kinematical models, such as a Keplerian flow with superimposed spiral wave pattern, are resolved in maps from our simulated Kronos datasets. Reverberation mapping with Kronos data is therefore likely deliver the first clear maps of the geometry and kinematics in the broad emission-line regions 1-100 microarcseconds from supermassive black holes.

  16. Lidar postcards

    USGS Publications Warehouse

    Schreppel, Heather A.; Cimitile, Matthew J.

    2011-01-01

    The U.S. Geological Survey (USGS) Coastal and Marine Geology Program develops and uses specialized technology to build high-resolution topographic and habitat maps. High-resolution maps of topography, bathymetry, and habitat describe important features affected by coastal-management decisions. The mapped information serves as a baseline for evaluating resources and tracking the effectiveness of resource- and conservation-management decisions. These data products are critical to researchers, decision makers, resource managers, planners, and the public. To learn more about Lidar (light detection and ranging) technology visit: http://ngom.usgs.gov/dsp/.

  17. Global Land Survey Impervious Mapping Project Web Site

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Phillips, Jacqueline

    2014-01-01

    The Global Land Survey Impervious Mapping Project (GLS-IMP) aims to produce the first global maps of impervious cover at the 30m spatial resolution of Landsat. The project uses Global Land Survey (GLS) Landsat data as its base but incorporates training data generated from very high resolution commercial satellite data and using a Hierarchical segmentation program called Hseg. The web site contains general project information, a high level description of the science, examples of input and output data, as well as links to other relevant projects.

  18. EMRinger: side chain–directed model and map validation for 3D cryo-electron microscopy

    DOE PAGES

    Barad, Benjamin A.; Echols, Nathaniel; Wang, Ray Yu-Ruei; ...

    2015-08-17

    Advances in high-resolution cryo-electron microscopy (cryo-EM) require the development of validation metrics to independently assess map quality and model geometry. We report that EMRinger is a tool that assesses the precise fitting of an atomic model into the map during refinement and shows how radiation damage alters scattering from negatively charged amino acids. EMRinger (https://github.com/fraser-lab/EMRinger) will be useful for monitoring progress in resolving and modeling high-resolution features in cryo-EM.

  19. Rapid model building of beta-sheets in electron-density maps.

    PubMed

    Terwilliger, Thomas C

    2010-03-01

    A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.

  20. Satellite Remote Sensing of Cropland Characteristics in 30m Resolution: The First North American Continental-Scale Classification on High Performance Computing Platforms

    NASA Astrophysics Data System (ADS)

    Massey, Richard

    Cropland characteristics and accurate maps of their spatial distribution are required to develop strategies for global food security by continental-scale assessments and agricultural land use policies. North America is the major producer and exporter of coarse grains, wheat, and other crops. While cropland characteristics such as crop types are available at country-scales in North America, however, at continental-scale cropland products are lacking at fine sufficient resolution such as 30m. Additionally, applications of automated, open, and rapid methods to map cropland characteristics over large areas without the need of ground samples are needed on efficient high performance computing platforms for timely and long-term cropland monitoring. In this study, I developed novel, automated, and open methods to map cropland extent, crop intensity, and crop types in the North American continent using large remote sensing datasets on high-performance computing platforms. First, a novel method was developed in this study to fuse pixel-based classification of continental-scale Landsat data using Random Forest algorithm available on Google Earth Engine cloud computing platform with an object-based classification approach, recursive hierarchical segmentation (RHSeg) to map cropland extent at continental scale. Using the fusion method, a continental-scale cropland extent map for North America at 30m spatial resolution for the nominal year 2010 was produced. In this map, the total cropland area for North America was estimated at 275.2 million hectares (Mha). This map was assessed for accuracy using randomly distributed samples derived from United States Department of Agriculture (USDA) cropland data layer (CDL), Agriculture and Agri-Food Canada (AAFC) annual crop inventory (ACI), Servicio de Informacion Agroalimentaria y Pesquera (SIAP), Mexico's agricultural boundaries, and photo-interpretation of high-resolution imagery. The overall accuracies of the map are 93.4% with a producer's accuracy for crop class at 85.4% and user's accuracy of 74.5% across the continent. The sub-country statistics including state-wise and county-wise cropland statistics derived from this map compared well in regression models resulting in R2 > 0.84. Secondly, an automated phenological pattern matching (PPM) method to efficiently map cropping intensity was also developed in this study. This study presents a continental-scale cropping intensity map for the North American continent at 250m spatial resolution for 2010. In this map, the total areas for single crop, double crop, continuous crop, and fallow were estimated to be 123.5 Mha, 11.1 Mha, 64.0 Mha, and 83.4 Mha, respectively. This map was assessed using limited country-level reference datasets derived from United States Department of Agriculture cropland data layer and Agriculture and Agri-Food Canada annual crop inventory with overall accuracies of 79.8% and 80.2%, respectively. Third, two novel and automated decision tree classification approaches to map crop types across the conterminous United States (U.S.) using MODIS 250 m resolution data: 1) generalized, and 2) year-specific classification were developed. The classification approaches use similarities and dissimilarities in crop type phenology derived from NDVI time-series data for the two approaches. Annual crop type maps were produced for 8 major crop types in the United States using the generalized classification approach for 2001-2014 and the year-specific approach for 2008, 2010, 2011 and 2012. The year-specific classification had overall accuracies greater than 78%, while the generalized classifier had accuracies greater than 75% for the conterminous U.S. for 2008, 2010, 2011, and 2012. The generalized classifier enables automated and routine crop type mapping without repeated and expensive ground sample collection year after year with overall accuracies > 70% across all independent years. Taken together, these cropland products of extent, cropping intensity, and crop types, are significantly beneficial in agricultural and water use planning and monitoring to formulate policies towards global and North American food security issues.

  1. Meltwater channel scars and the extent of Mid-Pleistocene glaciation in central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Marsh, Ben

    2017-10-01

    High-resolution digital topographic data permit morphological analyses of glacial processes in detail that was previously infeasible. High-level glaciofluvial erosional scars in central Pennsylvania, identified and delimited using LiDAR data, define the approximate ice depth during a pre-Wisconsin advance, > 770,000 BP, on a landscape unaffected by Wisconsin glaciation. Distinctive scars on the prows of anticlinal ridges at 175-350 m above the valley floor locate the levels of subice meltwater channels. A two-component planar GIS model of the ice surface is derived using these features and intersected with a digital model of contemporary topography to create a glacial limit map. The map is compared to published maps, demonstrating the limits of conventional sediment-based mapping. Additional distinctive meltwater features that were cut during deglaciation are modeled in a similar fashion.

  2. Detection of changes in semi-natural grasslands by cross correlation analysis with WorldView-2 images and new Landsat 8 data.

    PubMed

    Tarantino, Cristina; Adamo, Maria; Lucas, Richard; Blonda, Palma

    2016-03-15

    Focusing on a Mediterranean Natura 2000 site in Italy, the effectiveness of the cross correlation analysis (CCA) technique for quantifying change in the area of semi-natural grasslands at different spatial resolutions (grain) was evaluated. In a fine scale analysis (2 m), inputs to the CCA were a) a semi-natural grasslands layer extracted from an existing validated land cover/land use (LC/LU) map (1:5000, time T 1 ) and b) a more recent single date very high resolution (VHR) WorldView-2 image (time T 2 ), with T 2  > T 1 . The changes identified through the CCA were compared against those detected by applying a traditional post-classification comparison (PCC) technique to the same reference T 1 map and an updated T 2 map obtained by a knowledge driven classification of four multi-seasonal Worldview-2 input images. Specific changes observed were those associated with agricultural intensification and fires. The study concluded that prior knowledge (spectral class signatures, awareness of local agricultural practices and pressures) was needed for the selection of the most appropriate image (in terms of seasonality) to be acquired at T 2 . CCA was also applied to the comparison of the existing T 1 map with recent high resolution (HR) Landsat 8 OLS images. The areas of change detected at VHR and HR were broadly similar with larger error values in HR change images.

  3. Acoustic radiation force optical coherence elastography using vibro-acoustography

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao (.; Ma, Teng; Li, Rui; Qi, Wenjuan; Zhu, Jiang; He, Youmin; Shung, K. K.; Zhou, Qifa; Chen, Zhongping

    2015-03-01

    High-resolution elasticity mapping of tissue biomechanical properties is crucial in early detection of many diseases. We report a method of acoustic radiation force optical coherence elastography (ARF-OCE) based on the methods of vibroacoustography, which uses a dual-ring ultrasonic transducer in order to excite a highly localized 3-D field. The single element transducer introduced previously in our ARF imaging has low depth resolution because the ARF is difficult to discriminate along the entire ultrasound propagation path. The novel dual-ring approach takes advantage of two overlapping acoustic fields and a few-hundred-Hertz difference in the signal frequencies of the two unmodulated confocal ring transducers in order to confine the acoustic stress field within a smaller volume. This frequency difference is the resulting "beating" frequency of the system. The frequency modulation of the transducers has been validated by comparing the dual ring ARF-OCE measurement to that of the single ring using a homogeneous silicone phantom. We have compared and analyzed the phantom resonance frequency to show the feasibility of our approach. We also show phantom images of the ARF-OCE based vibro-acoustography method and map out its acoustic stress region. We concluded that the dual-ring transducer is able to better localize the excitation to a smaller region to induce a focused force, which allows for highly selective excitation of small regions. The beat-frequency elastography method has great potential to achieve high-resolution elastography for ophthalmology and cardiovascular applications.

  4. Analysis of improved government geological map information for mineral exploration: Incorporating efficiency, productivity, effectiveness, and risk considerations

    USGS Publications Warehouse

    Bernknopf, R.L.; Wein, A.M.; St-Onge, M. R.; Lucas, S.B.

    2007-01-01

    This bulletin/professional paper focuses on the value of geoscientific information and knowledge, as provided in published government bedrock geological maps, to the mineral exploration sector. An economic model is developed that uses an attribute- ranking approach to convert geological maps into domains of mineral favourability. Information about known deposits in these (or analogous) favourability domains allow the calculation of exploration search statistics that provide input into measures of exploration efficiency, productivity, effectiveness, risk, and cost stemming from the use of the published geological maps. Two case studies, the Flin Flon Belt (Manitoba and Saskatchewan) and the south Baffin Island area (Nunavut), demonstrate that updated, finer resolution maps can be used to identify more exploration campaign options, and campaigns thats are more efficient, more effective, and less risky than old, coarser resolution maps when used as a guide for mineral exploration. The Flin Flon Belt study illustrates that an updated, coarser resolution bedrock map enables improved mineral exploration efficiency, productivity, and effectiveness by locating 60% more targets and supporting an exploration campaign that is 44% more efficient. Refining the map resolution provides an additional 17% reduction in search effort across all favourable domains and a 55% reduction in search effort in the most favourable domain. The south Baffin Island case study projects a 40% increase in expected targets and a 27% reduction in search effort when the updated, finer resolution map is used in lieu of the old, coarser resolution map. On southern Baffin Island, the economic value of the up dated map ranges from CAN$2.28 million to CAN$15.21 million, which can be compared to the CAN$1.86 million that it cost to produce the map (a multiplier effect of up to eight).

  5. Estimating floodwater depths from flood inundation maps and topography

    USGS Publications Warehouse

    Cohen, Sagy; Brakenridge, G. Robert; Kettner, Albert; Bates, Bradford; Nelson, Jonathan M.; McDonald, Richard R.; Huang, Yu-Fen; Munasinghe, Dinuke; Zhang, Jiaqi

    2018-01-01

    Information on flood inundation extent is important for understanding societal exposure, water storage volumes, flood wave attenuation, future flood hazard, and other variables. A number of organizations now provide flood inundation maps based on satellite remote sensing. These data products can efficiently and accurately provide the areal extent of a flood event, but do not provide floodwater depth, an important attribute for first responders and damage assessment. Here we present a new methodology and a GIS-based tool, the Floodwater Depth Estimation Tool (FwDET), for estimating floodwater depth based solely on an inundation map and a digital elevation model (DEM). We compare the FwDET results against water depth maps derived from hydraulic simulation of two flood events, a large-scale event for which we use medium resolution input layer (10 m) and a small-scale event for which we use a high-resolution (LiDAR; 1 m) input. Further testing is performed for two inundation maps with a number of challenging features that include a narrow valley, a large reservoir, and an urban setting. The results show FwDET can accurately calculate floodwater depth for diverse flooding scenarios but also leads to considerable bias in locations where the inundation extent does not align well with the DEM. In these locations, manual adjustment or higher spatial resolution input is required.

  6. Coupling high-resolution hydraulic and hydrologic models for flash flood forecasting and inundation mapping in urban areas - A case study for the City of Fort Worth

    NASA Astrophysics Data System (ADS)

    Nazari, B.; Seo, D.; Cannon, A.

    2013-12-01

    With many diverse features such as channels, pipes, culverts, buildings, etc., hydraulic modeling in urban areas for inundation mapping poses significant challenges. Identifying the practical extent of the details to be modeled in order to obtain sufficiently accurate results in a timely manner for effective emergency management is one of them. In this study we assess the tradeoffs between model complexity vs. information content for decision making in applying high-resolution hydrologic and hydraulic models for real-time flash flood forecasting and inundation mapping in urban areas. In a large urban area such as the Dallas-Fort Worth Metroplex (DFW), there exists very large spatial variability in imperviousness depending on the area of interest. As such, one may expect significant sensitivity of hydraulic model results to the resolution and accuracy of hydrologic models. In this work, we present the initial results from coupling of high-resolution hydrologic and hydraulic models for two 'hot spots' within the City of Fort Worth for real-time inundation mapping.

  7. An automated approach for mapping persistent ice and snow cover over high latitude regions

    USGS Publications Warehouse

    Selkowitz, David J.; Forster, Richard R.

    2016-01-01

    We developed an automated approach for mapping persistent ice and snow cover (glaciers and perennial snowfields) from Landsat TM and ETM+ data across a variety of topography, glacier types, and climatic conditions at high latitudes (above ~65°N). Our approach exploits all available Landsat scenes acquired during the late summer (1 August–15 September) over a multi-year period and employs an automated cloud masking algorithm optimized for snow and ice covered mountainous environments. Pixels from individual Landsat scenes were classified as snow/ice covered or snow/ice free based on the Normalized Difference Snow Index (NDSI), and pixels consistently identified as snow/ice covered over a five-year period were classified as persistent ice and snow cover. The same NDSI and ratio of snow/ice-covered days to total days thresholds applied consistently across eight study regions resulted in persistent ice and snow cover maps that agreed closely in most areas with glacier area mapped for the Randolph Glacier Inventory (RGI), with a mean accuracy (agreement with the RGI) of 0.96, a mean precision (user’s accuracy of the snow/ice cover class) of 0.92, a mean recall (producer’s accuracy of the snow/ice cover class) of 0.86, and a mean F-score (a measure that considers both precision and recall) of 0.88. We also compared results from our approach to glacier area mapped from high spatial resolution imagery at four study regions and found similar results. Accuracy was lowest in regions with substantial areas of debris-covered glacier ice, suggesting that manual editing would still be required in these regions to achieve reasonable results. The similarity of our results to those from the RGI as well as glacier area mapped from high spatial resolution imagery suggests it should be possible to apply this approach across large regions to produce updated 30-m resolution maps of persistent ice and snow cover. In the short term, automated PISC maps can be used to rapidly identify areas where substantial changes in glacier area have occurred since the most recent conventional glacier inventories, highlighting areas where updated inventories are most urgently needed. From a longer term perspective, the automated production of PISC maps represents an important step toward fully automated glacier extent monitoring using Landsat or similar sensors.

  8. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  9. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    PubMed Central

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  10. Mapping day-of-burning with coarse-resolution satellite fire-detection data

    Treesearch

    Sean A. Parks

    2014-01-01

    Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps ­ in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution -...

  11. High-Resolution Underwater Mapping Using Side-Scan Sonar

    PubMed Central

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  12. Mapping disease at an approximated individual level using aggregate data: a case study of mapping New Hampshire birth defects.

    PubMed

    Shi, Xun; Miller, Stephanie; Mwenda, Kevin; Onda, Akikazu; Reese, Judy; Onega, Tracy; Gui, Jiang; Karagas, Margret; Demidenko, Eugene; Moeschler, John

    2013-09-06

    Limited by data availability, most disease maps in the literature are for relatively large and subjectively-defined areal units, which are subject to problems associated with polygon maps. High resolution maps based on objective spatial units are needed to more precisely detect associations between disease and environmental factors. We propose to use a Restricted and Controlled Monte Carlo (RCMC) process to disaggregate polygon-level location data to achieve mapping aggregate data at an approximated individual level. RCMC assigns a random point location to a polygon-level location, in which the randomization is restricted by the polygon and controlled by the background (e.g., population at risk). RCMC allows analytical processes designed for individual data to be applied, and generates high-resolution raster maps. We applied RCMC to the town-level birth defect data for New Hampshire and generated raster maps at the resolution of 100 m. Besides the map of significance of birth defect risk represented by p-value, the output also includes a map of spatial uncertainty and a map of hot spots. RCMC is an effective method to disaggregate aggregate data. An RCMC-based disease mapping maximizes the use of available spatial information, and explicitly estimates the spatial uncertainty resulting from aggregation.

  13. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    PubMed

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  14. A Comparative Object-Based Sugarcane Classification from Sentinel-2 Data Using Random Forests and Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K.; Lay, J. G.

    2016-12-01

    Sugarcane mostly grown in tropical and subtropical regions is one of the important commercial crops worldwide, providing significant employment, foreign exchange earnings, and other social and environmental benefits. The sugar industry is a vital component of Belize's economy as it provides employment to 15% of the country's population and 60% of the national agricultural exports. Sugarcane mapping is thus an important task due to official initiatives to provide reliable information on sugarcane-growing areas in respect to improved accuracy in monitoring sugarcane production and yield estimates. Policymakers need such monitoring information to formulate timely plans to ensure sustainably socioeconomic development. Sugarcane monitoring in Belize is traditionally carried out through time-consuming and costly field surveys. Remote sensing is an indispensable tool for crop monitoring on national, regional and global scales. The use of high and low resolution satellites for sugarcane monitoring in Belize is often restricted due to cost limitations and mixed pixel problems because sugarcane fields are small and fragmental. With the launch of Sentinel-2 satellite, it is possible to collectively map small patches of sugarcane fields over a large region as the data are free of charge and have high spectral, spatial, and temporal resolutions. This study aims to develop an object-based classification approach to comparatively map sugarcane fields in Belize from Sentinel-2 data using random forests (RF) and support vector machines (SVM). The data were processed through four main steps: (1) data pre-processing, (2) image segmentation, (3) sugarcane classification, and (4) accuracy assessment. The mapping results compared with the ground reference data indicated satisfactory results. The overall accuracies and Kappa coefficients were generally higher than 80% and 0.7, in both cases. The RF produced slightly more accurate mapping results than SVM. This study demonstrates the realization of the potential application of Sentinel-2 data for sugarcane mapping in Belize with the aid of RF and SVM methods. The methods are thus proposed for monitoring purposes in the country.

  15. Can Satellite Remote Sensing be Applied in Geological Mapping in Tropics?

    NASA Astrophysics Data System (ADS)

    Magiera, Janusz

    2018-03-01

    Remote sensing (RS) techniques are based on spectral data registered by RS scanners as energy reflected from the Earth's surface or emitted by it. In "geological" RS the reflectance (or emittence) should come from rock or sediment. The problem in tropical and subtropical areas is a dense vegetation. Spectral response from the rocks and sediments is gathered only from the gaps among the trees and shrubs. Images of high resolution are appreciated here, therefore. New generation of satellites and scanners (Digital Globe WV2, WV3 and WV4) yield imagery of spatial resolution of 2 m and up to 16 spectral bands (WV3). Images acquired by Landsat (TM, ETM+, OLI) and Sentinel 2 have good spectral resolution too (6-12 bands in visible and infrared) and, despite lower spatial resolution (10-60 m of pixel size) are useful in extracting lithological information too. Lithological RS map may reveal good precision (down to a single rock or outcrop of a meter size). Supplemented with the analysis of Digital Elevation Model and high resolution ortophotomaps (Google Maps, Bing etc.) allows for quick and cheap mapping of unsurveyed areas.

  16. Mapping Mexico's Forest Lands with Advanced Very High Resolution Radiometer

    Treesearch

    David J. Evans; Zhiliang Zhu; Susan Eggen-McIntosh; Pedro García Mayoral; Jose Luis Ornelas de Anda

    1992-01-01

    Data from the Advanced Very High Resolution Radiometer (AVHRR) were used in a program sponsored by the U.S. Department of Agriculture, Forest Service, and the United Nations Food and Agriculture Organization to help scientists from Mexico generate forest-cover maps of that country. Two near-cloud-free composite images were generated for December and March 1990 from...

  17. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data

    NASA Astrophysics Data System (ADS)

    Jia, Mingming; Zhang, Yuanzhi; Wang, Zongming; Song, Kaishan; Ren, Chunying

    2014-12-01

    Mangrove species compositions and distributions are essential for conservation and restoration efforts. In this study, hyperspectral data of EO-1 HYPERION sensor and high spatial resolution data of SPOT-5 sensor were used in Mai Po mangrove species mapping. Objected-oriented method was used in mangrove species classification processing. Firstly, mangrove objects were obtained via segmenting high spatial resolution data of SPOT-5. Then the objects were classified into different mangrove species based on the spectral differences of HYPERION image. The classification result showed that in the top canopy, Kandelia obovata and Avicennia marina dominated Mai Po Marshes Natural Reserve, with area of 196.8 ha and 110.8 ha, respectively, Acanthus ilicifolius and Aegiceras corniculatum were mixed together and living at the edge of channels with an area of 11.7 ha. Additionally, mangrove species shows clearly zonations and associations in the Mai Po Core Zone. The overall accuracy of our mangrove map was 88% and the Kappa confidence was 0.83, which indicated great potential of using hyperspectral and high-resolution data for distinguishing and mapping mangrove species.

  18. Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity

    PubMed Central

    Angeli, Timothy R; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; Du, Peng; Pullan, Andrew J; Bissett, Ian P

    2013-01-01

    Background/Aims Small intestine motility is governed by an electrical slow wave activity, and abnormal slow wave events have been associated with intestinal dysmotility. High-resolution (HR) techniques are necessary to analyze slow wave propagation, but progress has been limited by few available electrode options and laborious manual analysis. This study presents novel methods for in vivo HR mapping of small intestine slow wave activity. Methods Recordings were obtained from along the porcine small intestine using flexible printed circuit board arrays (256 electrodes; 4 mm spacing). Filtering options were compared, and analysis was automated through adaptations of the falling-edge variable-threshold (FEVT) algorithm and graphical visualization tools. Results A Savitzky-Golay filter was chosen with polynomial-order 9 and window size 1.7 seconds, which maintained 94% of slow wave amplitude, 57% of gradient and achieved a noise correction ratio of 0.083. Optimized FEVT parameters achieved 87% sensitivity and 90% positive-predictive value. Automated activation mapping and animation successfully revealed slow wave propagation patterns, and frequency, velocity, and amplitude were calculated and compared at 5 locations along the intestine (16.4 ± 0.3 cpm, 13.4 ± 1.7 mm/sec, and 43 ± 6 µV, respectively, in the proximal jejunum). Conclusions The methods developed and validated here will greatly assist small intestine HR mapping, and will enable experimental and translational work to evaluate small intestine motility in health and disease. PMID:23667749

  19. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

    PubMed

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-08-12

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights.

  20. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

    PubMed Central

    Borra-Serrano, Irene; Peña, José Manuel; Torres-Sánchez, Jorge; Mesas-Carrascosa, Francisco Javier; López-Granados, Francisca

    2015-01-01

    Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a technique to create a new version of an image with a different width and/or height in pixels, and it has been used in satellite imagery with different spatial and temporal resolutions. In this paper, the efficiency of resampled-images (RS-images) created from real UAV-images (UAV-images; the UAVs were equipped with two types of sensors, i.e., visible and visible plus near-infrared spectra) captured at different altitudes is examined to test the quality of the RS-image output. The performance of the object-based-image-analysis (OBIA) implemented for the early weed mapping using different weed thresholds was also evaluated. Our results showed that resampling accurately extracted the spectral values from high spatial resolution UAV-images at an altitude of 30 m and the RS-image data at altitudes of 60 and 100 m, was able to provide accurate weed cover and herbicide application maps compared with UAV-images from real flights. PMID:26274960

  1. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    PubMed

    Gaughan, Andrea E; Stevens, Forrest R; Linard, Catherine; Jia, Peng; Tatem, Andrew J

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  2. High Resolution Population Distribution Maps for Southeast Asia in 2010 and 2015

    PubMed Central

    Gaughan, Andrea E.; Stevens, Forrest R.; Linard, Catherine; Jia, Peng; Tatem, Andrew J.

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org. PMID:23418469

  3. Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm

    NASA Astrophysics Data System (ADS)

    Foroutan, M.; Zimbelman, J. R.

    2017-09-01

    Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.

  4. Phase Composition Maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale

    NASA Astrophysics Data System (ADS)

    Willis, Kyle V.; Srogi, LeeAnn; Lutz, Tim; Monson, Frederick C.; Pollock, Meagen

    2017-12-01

    Textures and compositions are critical information for interpreting rock formation. Existing methods to integrate both types of information favor high-resolution images of mineral compositions over small areas or low-resolution images of larger areas for phase identification. The method in this paper produces images of individual phases in which textural and compositional details are resolved over three orders of magnitude, from tens of micrometers to tens of millimeters. To construct these images, called Phase Composition Maps (PCMs), we make use of the resolution in backscattered electron (BSE) images and calibrate the gray scale values with mineral analyses by energy-dispersive X-ray spectrometry (EDS). The resulting images show the area of a standard thin section (roughly 40 mm × 20 mm) with spatial resolution as good as 3.5 μm/pixel, or more than 81 000 pixels/mm2, comparable to the resolution of X-ray element maps produced by wavelength-dispersive spectrometry (WDS). Procedures to create PCMs for mafic igneous rocks with multivariate linear regression models for minerals with solid solution (olivine, plagioclase feldspar, and pyroxenes) are presented and are applicable to other rock types. PCMs are processed using threshold functions based on the regression models to image specific composition ranges of minerals. PCMs are constructed using widely-available instrumentation: a scanning-electron microscope (SEM) with BSE and EDS X-ray detectors and standard image processing software such as ImageJ and Adobe Photoshop. Three brief applications illustrate the use of PCMs as petrologic tools: to reveal mineral composition patterns at multiple scales; to generate crystal size distributions for intracrystalline compositional zones and compare growth over time; and to image spatial distributions of minerals at different stages of magma crystallization by integrating textures and compositions with thermodynamic modeling.

  5. California State Waters Map Series-Offshore of Point Reyes, California

    USGS Publications Warehouse

    Watt, Janet T.; Dartnell, Peter; Golden, Nadine E.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Johnson, Samuel Y.; Hartwell, Stephen R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Sliter, Ray W.; Krigsman, Lisa M.; Lowe, Erik; Chinn, John L.; Watt, Janet T.; Cochran, Susan A.

    2015-01-01

    This publication about the Offshore of Point Reyes map area includes ten map sheets that contain explanatory text, in addition to this descriptive pamphlet and a data catalog of geographic information system (GIS) files. Sheets 1, 2, and 3 combine data from four different sonar surveys to generate comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic features (highlighted in the perspective views on sheet 4) such as the flat, sediment-covered seafloor in Drakes Bay, as well as abundant “scour depressions” on the Bodega Head–Tomales Point shelf (see sheet 9) and local, tectonically controlled bedrock uplifts. To validate geological and biological interpretations of the sonar data shown in sheets 1, 2, and 3, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are summarized on sheet 6. Sheet 5 is a “seafloor character” map, which classifies the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. Sheet 7 is a map of “potential habitats,” which are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Sheet 8 compiles representative seismic-reflection profiles from the map area, providing information on the subsurface stratigraphy and structure of the map area. Sheet 9 shows the distribution and thickness of young sediment (deposited over the last about 21,000 years, during the most recent sea-level rise) in both the map area and the larger Salt Point to Drakes Bay region, interpreted on the basis of the seismic-reflection data, and it identifies the Offshore of Point Reyes map area as lying within the Bodega Head–Tomales Point shelf, Point Reyes bar, and Bolinas shelf domains. Sheet 10 is a geologic map that merges onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery (sheets 1, 2, 3), seafloor-sediment and rock samples (Reid and others, 2006), digital camera and video imagery (sheet 6), and high-resolution seismic-reflection profiles (sheet 8), as well as aerial-photographic interpretation of nearshore areas. The information provided by the map sheets, pamphlet, and data catalog have a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues.

  6. Determination of minority-carrier lifetime and surface recombination velocity with high spacial resolution

    NASA Technical Reports Server (NTRS)

    Watanabe, M.; Actor, G.; Gatos, H. C.

    1977-01-01

    Quantitative analysis of the electron beam induced current in conjunction with high-resolution scanning makes it possible to evaluate the minority-carrier lifetime three dimensionally in the bulk and the surface recombination velocity two dimensionally, with a high spacial resolution. The analysis is based on the concept of the effective excitation strength of the carriers which takes into consideration all possible recombination sources. Two-dimensional mapping of the surface recombination velocity of phosphorus-diffused silicon diodes is presented as well as a three-dimensional mapping of the changes in the minority-carrier lifetime in ion-implanted silicon.

  7. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  8. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  9. Simultaneous anterior and posterior serosal mapping of gastric slow-wave dysrhythmias induced by vasopressin.

    PubMed

    Du, Peng; O'Grady, Gregory; Paskaranandavadivel, Niranchan; Tang, Shou-Jiang; Abell, Thomas; Cheng, Leo K

    2016-06-06

    What is the central question of this study? This study aimed to provide the first comparison of simultaneous high-resolution mapping of anterior and posterior gastric serosa over sustained periods. What is the main finding and its importance? Episodes of spontaneous gastric slow-wave dysrhythmias increased significantly following intravenous infusion of vasopressin compared with the baseline state. A number of persistent dysrhythmias were defined, including ectopic activation, conduction block, rotor, retrograde and collision/merger of wavefronts. Slow-wave dysrhythmias could occur either simultaneously or independently on the anterior and posterior gastric serosa, and interacted depending on activation-repolarization and frequency dynamics. High-resolution mapping enables mechanistic insights into gastric slow-wave dysrhythmias and is now achieving clinical translation. However, previous studies have focused mainly on dysrhythmias occurring on the anterior gastric wall. The present study simultaneously mapped the anterior and posterior gastric serosa during episodes of dysrhythmias induced by vasopressin to aid understanding of dysrhythmia initiation, maintenance and termination. High-resolution mapping (8 × 16 electrodes on each serosa; 20-74 cm 2 ) was performed in anaesthetized dogs. Baseline recordings (21 ± 8 min) were followed by intravenous infusion of vasopressin (0.1-0.5 IU ml -1 at 60-190 ml h -1 ) and further recordings (22 ± 13 min). Slow-wave activation maps, amplitudes, velocity, interval and frequency were calculated, and differences compared between baseline and postinfusion. All dogs demonstrated an increased prevalence of dysrhythmic events following infusion of vasopressin (17 versus 51%). Both amplitude and velocity demonstrated significant differences (baseline versus postinfusion: 3.6 versus 2.2 mV; 7.7 versus 6.5 mm s -1 ; P < 0.05 for both). Dysrhythmias occurred simultaneously or independently on the anterior and posterior serosa, and then interacted according to frequency dynamics. A number of persistent dysrhythmias were compared, including the following: ectopic activation (n = 2 animals), conduction block (n = 1), rotor (n = 2), retrograde (n = 3) and collision/merger of wavefronts (n = 2). We conclude that infusion of vasopressin induces gastric dysrhythmias, which occur across a heterogeneous range of frequencies and patterns. The results demonstrate that different classes of gastric dysrhythmias may arise simultaneously or independently in one or both surfaces of the serosa, then interact according to their relative frequencies. These results will help to inform interpretation of clinical dysrhythmia. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  10. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.

    2015-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform) .Compared with various other proposed methods of validation based on either situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed (~km scale) coverage at very high spatial resolution (~15 m) suitable for scaling scale studies, and at comparatively low operator cost. The LDCR on Tempest unit can supply the soil moisture mapping with different resolution which is of order the Tempest altitude.

  12. High-Resolution Global Geologic Map of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Buczkowski, D. L.; Crown, D. A.; Frigeri, A.; Hughson, K.; Kneissl, T.; Krohn, K.; Mest, S. C.; Pasckert, J. H.; Platz, T.; Ruesch, O.; Schulzeck, F.; Scully, J. E. C.; Sizemore, H. G.; Nass, A.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-06-01

    This presentation will discuss the completed 1:4,000,000 global geologic map of dwarf planet Ceres derived from Dawn Framing Camera Low Altitude Mapping Orbit (LAMo) images, combining 15 quadrangle maps.

  13. Verification of small-scale water vapor features in VAS imagery using high resolution MAMS imagery. [VISSR Atmospheric Sounder - Multispectral Atmospheric Mapping Sensor

    NASA Technical Reports Server (NTRS)

    Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory

    1986-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.

  14. Cruise report: RV Ocean Alert Cruise A2-98-SC: mapping the southern California continental margin; March 26 through April 11, 1998; San Diego to Long Beach, California

    USGS Publications Warehouse

    Gardner, James V.; Mayer, Larry A.

    1998-01-01

    The major objective of cruise A2-98 was to map portions of the southern California continental margin, including mapping in detail US Environmental Protection Agency (USEPA) ocean dumping sites. Mapping was accomplished using a high-resolution multibeam mapping system. The cruise was a jointly funded project between the USEPA and the US Geological Survey (USGS). The USEPA is specifically interested in a series of ocean dump sites off San Diego, Newport Beach, and Long Beach (see Fig. 1 in report) that require high-resolution base maps for site monitoring purposes. The USGS Coastal and Marine Geology Program has several on-going projects off southern California that lack high-precision base maps for a variety of ongoing geological studies. The cruise was conducted under a Cooperative Agreement between the USGS and the Ocean Mapping Group, University of New Brunswick, Canada.

  15. A Modeling Approach to Global Land Surface Monitoring with Low Resolution Satellite Imaging

    NASA Technical Reports Server (NTRS)

    Hlavka, Christine A.; Dungan, Jennifer; Livingston, Gerry P.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    The effects of changing land use/land cover on global climate and ecosystems due to greenhouse gas emissions and changing energy and nutrient exchange rates are being addressed by federal programs such as NASA's Mission to Planet Earth (MTPE) and by international efforts such as the International Geosphere-Biosphere Program (IGBP). The quantification of these effects depends on accurate estimates of the global extent of critical land cover types such as fire scars in tropical savannas and ponds in Arctic tundra. To address the requirement for accurate areal estimates, methods for producing regional to global maps with satellite imagery are being developed. The only practical way to produce maps over large regions of the globe is with data of coarse spatial resolution, such as Advanced Very High Resolution Radiometer (AVHRR) weather satellite imagery at 1.1 km resolution or European Remote-Sensing Satellite (ERS) radar imagery at 100 m resolution. The accuracy of pixel counts as areal estimates is in doubt, especially for highly fragmented cover types such as fire scars and ponds. Efforts to improve areal estimates from coarse resolution maps have involved regression of apparent area from coarse data versus that from fine resolution in sample areas, but it has proven difficult to acquire sufficient fine scale data to develop the regression. A method for computing accurate estimates from coarse resolution maps using little or no fine data is therefore needed.

  16. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    PubMed

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  17. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    USDA-ARS?s Scientific Manuscript database

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  18. High-resolution mapping of Martian water ice clouds using Mars Express OMEGA observations - Derivation of the diurnal cloud life cycle

    NASA Astrophysics Data System (ADS)

    Szantai, Andre; Audouard, Joachim; Madeleine, Jean-Baptiste; Forget, Francois; Pottier, Alizée; Millour, Ehouarn; Gondet, Brigitte; Langevin, Yves; Bibring, Jean-Pierre

    2016-10-01

    The mapping in space and time of water ice clouds can help to explain the Martian water cycle and atmospheric circulation. For this purpose, an ice cloud index (ICI) corresponding to the depth of a water ice absorption band at 3.4 microns is derived from a series of OMEGA images (spectels) covering 5 Martian years. The ICI values for the corresponding pixels are then binned on a high-resolution regular grid (1° longitude x 1° latitude x 5° Ls x 1 h local time) and averaged. Inside each bin, the cloud cover is calculated by dividing the number of pixels considered as cloudy (after comparison to a threshold) to the number of all (valid) pixelsWe compare the maps of clouds obtained around local time 14:00 with collocated TES cloud observations (which were only obtained around this time of the day). A good agreement is found.Averaged ICI compared to the water ice column variable from the Martian Climate Database (MCD) show a correct correlation (~0.5) , which increases when values limited to the tropics only are compared.The number of gridpoints containing ICI values is small ( ~1%), but by taking several neighbor gridpoints and over longer periods, we can observe a cloud life cycle during daytime. An example in the the tropics, around the northern summer solstice, shows a decrease of cloudiness in the morning followed by an increase in the afternoon.

  19. A high-resolution cattle CNV map by population-scale genome sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are common genomic structural variations that have been linked to human diseases and phenotypic traits. CNVs represent an important type of genetic variation among cattle breeds and even individual animals; however, only low-resolution maps of cattle CNVs currently exis...

  20. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    NASA Astrophysics Data System (ADS)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  1. Perceptual Real-Time 2D-to-3D Conversion Using Cue Fusion.

    PubMed

    Leimkuhler, Thomas; Kellnhofer, Petr; Ritschel, Tobias; Myszkowski, Karol; Seidel, Hans-Peter

    2018-06-01

    We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different metrics, as well as a user study and validate our notion of perceptually plausible disparity.

  2. TSPmap, a tool making use of traveling salesperson problem solvers in the efficient and accurate construction of high-density genetic linkage maps.

    PubMed

    Monroe, J Grey; Allen, Zachariah A; Tanger, Paul; Mullen, Jack L; Lovell, John T; Moyers, Brook T; Whitley, Darrell; McKay, John K

    2017-01-01

    Recent advances in nucleic acid sequencing technologies have led to a dramatic increase in the number of markers available to generate genetic linkage maps. This increased marker density can be used to improve genome assemblies as well as add much needed resolution for loci controlling variation in ecologically and agriculturally important traits. However, traditional genetic map construction methods from these large marker datasets can be computationally prohibitive and highly error prone. We present TSPmap , a method which implements both approximate and exact Traveling Salesperson Problem solvers to generate linkage maps. We demonstrate that for datasets with large numbers of genomic markers (e.g. 10,000) and in multiple population types generated from inbred parents, TSPmap can rapidly produce high quality linkage maps with low sensitivity to missing and erroneous genotyping data compared to two other benchmark methods, JoinMap and MSTmap . TSPmap is open source and freely available as an R package. With the advancement of low cost sequencing technologies, the number of markers used in the generation of genetic maps is expected to continue to rise. TSPmap will be a useful tool to handle such large datasets into the future, quickly producing high quality maps using a large number of genomic markers.

  3. High-resolution Ceres LAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C.

    2016-12-01

    Introduction: NASA's Dawn spacecraft has been orbiting the dwarf planet Ceres since December 2015 in LAMO (High Altitude Mapping Orbit) with an altitude of about 400 km to characterize for instance the geology, topography, and shape of Ceres. One of the major goals of this mission phase is the global high-resolution mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera took until the time of writing about 27,500 clear filter images in LAMO with a resolution of about 30 m/pixel and dif-ferent viewing angles and different illumination condi-tions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. A high-resolution shape model was provided by stereo processing of the HAMO dataset, orbit and attitude data are available as reconstructed SPICE data. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself was done onto a reference sphere of Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:250,000 and will consist of 62 tiles that conforms to the quadrangle schema for Venus at 1:5,000,000. A map scale of 1:250,000 is a compro-mise between the very high resolution in LAMO and a proper map sheet size of the single tiles. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters and to use names of agricultural festivals of the world for other geological features. This proposal was ac-cepted by the IAU and the team proposed 92 names for geological features to the IAU based on the LAMO mosaic. These feature names will be applied to the map tiles.

  4. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing

    USDA-ARS?s Scientific Manuscript database

    Nested association mapping is an approach to map trait loci in which families within populations are interconnected by a common parent. By implementing joint-linkage association analysis, this approach is able to map causative loci with higher power and resolution compared to biparental linkage mapp...

  5. Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping.

    PubMed

    Wang, Xiandi; Zhang, Hanlu; Dong, Lin; Han, Xun; Du, Weiming; Zhai, Junyi; Pan, Caofeng; Wang, Zhong Lin

    2016-04-20

    A triboelectric sensor matrix (TESM) can accurately track and map 2D tactile sensing. A self-powered, high-resolution, pressure-sensitive, flexible and durable TESM with 16 × 16 pixels is fabricated for the fast detection of single-point and multi-point touching. Using cross-locating technology, a cross-type TESM with 32 × 20 pixels is developed for more rapid tactile mapping, which significantly reduces the addressing lines from m × n to m + n. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ecosystem services of boreal forests - Carbon budget mapping at high resolution.

    PubMed

    Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari

    2016-10-01

    The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Geologic map of Ophir and central Candor Chasmata (MTM -05072) of Mars

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1999-01-01

    The geologic map of Ophir and central Candor Chasmata is one of a series of 1:500,000 scale maps prepared for areas on Mars that are of particular scientific interest and may serve as potential future landing sites. This map is also part of a set that includes east Candor Chasma, west Candor Chasma, and Melas Chasma. The geologic interpretations are based dominantly on medium- and high-resolution Viking images, many of them stereoscopic, and supplemented by lower resolution apoapsis and other color images. A strip of very high resolution stereoscopic images (~20 m/pixel) crosses the central part of the quadrangle from northwest to southeast and served to clarify detailed relations not obvious on other images. A topographic map with contour intervals of 200 m was also used, as were multidirectional oblique images derived from merged image mosaics and topography (see fig. 1) (Bertolini and McEwen, 1990). Geologic relations and interpretations are based on the entire central Valles Marineris map set. The map area is included in the Valles Marineris map of Witbeck and others (1991), but units were defined independently. Age assignments, however, were integrated with those by Witbeck and others and Scott and Tanaka (1986).

  8. Application of full field optical studies for pulsatile flow in a carotid artery phantom

    PubMed Central

    Nemati, M.; Loozen, G. B.; van der Wekken, N.; van de Belt, G.; Urbach, H. P.; Bhattacharya, N.; Kenjeres, S.

    2015-01-01

    A preliminary comparative measurement between particle imaging velocimetry (PIV) and laser speckle contrast analysis (LASCA) to study pulsatile flow using ventricular assist device in a patient-specific carotid artery phantom is reported. These full-field optical techniques have both been used to study flow and extract complementary parameters. We use the high spatial resolution of PIV to generate a full velocity map of the flow field and the high temporal resolution of LASCA to extract the detailed frequency spectrum of the fluid pulses. Using this combination of techniques a complete study of complex pulsatile flow in an intricate flow network can be studied. PMID:26504652

  9. NOAA AVHRR and its uses for rainfall and evapotranspiration monitoring

    NASA Technical Reports Server (NTRS)

    Kerr, Yann H.; Imbernon, J.; Dedieu, G.; Hautecoeur, O.; Lagouarde, J. P.

    1989-01-01

    NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Indices (GVI) were used during the 1986 rainy season (June-September) over Senegal to monitor rainfall. The satellite data were used in conjunction with ground-based measurements so as to derive empirical relationships between rainfall and GVI. The regression obtained was then used to map the total rainfall corresponding to the growing season, yielding good results. Normalized Difference Vegetation Indices (NDVI) derived from High Resolution Picture Transmission (HRPT) data were also compared with actual evapotranspiration (ET) data and proved to be closely correlated with it with a time lapse of 20 days.

  10. High-Resolution Maps of Mouse Reference Populations

    PubMed Central

    Simecek, Petr; Forejt, Jiri; Williams, Robert W.; Shiroishi, Toshihiko; Takada, Toyoyuki; Lu, Lu; Johnson, Thomas E.; Bennett, Beth; Deschepper, Christian F.; Scott-Boyer, Marie-Pier; Pardo-Manuel de Villena, Fernando; Churchill, Gary A.

    2017-01-01

    Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#, and C57BL/6J-Chr#). We genotyped all samples using the Affymetrix Mouse Diversity Array with an average intermarker spacing of 4.3 kb. The new genetic maps provide increased precision in the localization of recombination breakpoints compared to the previous maps. Although the strains were presumed to be fully inbred, we found residual heterozygosity in 40% of individual mice from five of the six panels. We also identified de novo deletions and duplications, in homozygous or heterozygous state, ranging in size from 21 kb to 8.4 Mb. Almost two-thirds (46 out of 76) of these deletions overlap exons of protein coding genes and may have phenotypic consequences. Twenty-nine putative gene conversions were identified in the chromosome substitution strains. We find that gene conversions are more likely to occur in regions where the homologous chromosomes are more similar. The raw genotyping data and genetic maps of these strain panels are available at http://churchill-lab.jax.org/website/MDA. PMID:28839117

  11. High-Resolution Maps of Mouse Reference Populations.

    PubMed

    Simecek, Petr; Forejt, Jiri; Williams, Robert W; Shiroishi, Toshihiko; Takada, Toyoyuki; Lu, Lu; Johnson, Thomas E; Bennett, Beth; Deschepper, Christian F; Scott-Boyer, Marie-Pier; Pardo-Manuel de Villena, Fernando; Churchill, Gary A

    2017-10-05

    Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#, and C57BL/6J-Chr#). We genotyped all samples using the Affymetrix Mouse Diversity Array with an average intermarker spacing of 4.3 kb. The new genetic maps provide increased precision in the localization of recombination breakpoints compared to the previous maps. Although the strains were presumed to be fully inbred, we found residual heterozygosity in 40% of individual mice from five of the six panels. We also identified de novo deletions and duplications, in homozygous or heterozygous state, ranging in size from 21 kb to 8.4 Mb. Almost two-thirds (46 out of 76) of these deletions overlap exons of protein coding genes and may have phenotypic consequences. Twenty-nine putative gene conversions were identified in the chromosome substitution strains. We find that gene conversions are more likely to occur in regions where the homologous chromosomes are more similar. The raw genotyping data and genetic maps of these strain panels are available at http://churchill-lab.jax.org/website/MDA. Copyright © 2017 Simecek et al.

  12. Providing Internet Access to High-Resolution Lunar Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  13. Providing Internet Access to High-Resolution Mars Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  14. An Integrated Photogrammetric and Photoclinometric Approach for Pixel-Resolution 3d Modelling of Lunar Surface

    NASA Astrophysics Data System (ADS)

    Liu, W. C.; Wu, B.

    2018-04-01

    High-resolution 3D modelling of lunar surface is important for lunar scientific research and exploration missions. Photogrammetry is known for 3D mapping and modelling from a pair of stereo images based on dense image matching. However dense matching may fail in poorly textured areas and in situations when the image pair has large illumination differences. As a result, the actual achievable spatial resolution of the 3D model from photogrammetry is limited by the performance of dense image matching. On the other hand, photoclinometry (i.e., shape from shading) is characterised by its ability to recover pixel-wise surface shapes based on image intensity and imaging conditions such as illumination and viewing directions. More robust shape reconstruction through photoclinometry can be achieved by incorporating images acquired under different illumination conditions (i.e., photometric stereo). Introducing photoclinometry into photogrammetric processing can therefore effectively increase the achievable resolution of the mapping result while maintaining its overall accuracy. This research presents an integrated photogrammetric and photoclinometric approach for pixel-resolution 3D modelling of the lunar surface. First, photoclinometry is interacted with stereo image matching to create robust and spatially well distributed dense conjugate points. Then, based on the 3D point cloud derived from photogrammetric processing of the dense conjugate points, photoclinometry is further introduced to derive the 3D positions of the unmatched points and to refine the final point cloud. The approach is able to produce one 3D point for each image pixel within the overlapping area of the stereo pair so that to obtain pixel-resolution 3D models. Experiments using the Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC NAC) images show the superior performances of the approach compared with traditional photogrammetric technique. The results and findings from this research contribute to optimal exploitation of image information for high-resolution 3D modelling of the lunar surface, which is of significance for the advancement of lunar and planetary mapping.

  15. Quantification of the Arrhythmogenic Effects of Spontaneous Atrial Extrasystole Using High-Resolution Epicardial Mapping.

    PubMed

    Teuwen, Christophe P; Kik, Charles; van der Does, Lisette J M E; Lanters, Eva A H; Knops, Paul; Mouws, Elisabeth M J P; Bogers, Ad J J C; de Groot, Natasja M S

    2018-01-01

    Atrial extrasystoles (AES) can initiate atrial fibrillation. However, the impact of spontaneous AES on intra-atrial conduction is unknown. The aims of this study were to examine conduction disorders provoked by AES and to correlate these conduction differences with patient characteristics, mapping locations, and type of AES. High-resolution epicardial mapping (electrodes N=128 or N=192; interelectrode distance, 2 mm) of the entire atrial surface was performed in patients (N=164; 69.5% male; age 67.2±10.5 years) undergoing open-chest cardiac surgery. AES were classified as premature, aberrant, or prematurely aberrant. Conduction delay and conduction block were quantified during sinus rhythm and AES and subsequently compared. Median incidence of conduction delay and conduction block during sinus rhythm was 1.2% (interquartile, 0%-2.3%) and 0.4% (interquartile, 0%-2.1%). In comparison, the median incidence of conduction delay and conduction block during 339 AES was respectively 2.8% (interquartile, 1.3%-4.6%) and 2.2% (interquartile, 0.3%-5.1%) and differed between the types of AES (prematurely aberrant>aberrant>premature). The degree of prematurity was not associated with a higher incidence of conduction disorders ( P >0.05). In contrast, a higher degree of aberrancy was associated with a higher incidence of conduction disorders; AES emerging as epicardial breakthrough provoked most conduction disorders ( P ≥0.002). AES caused most conduction disorders in patients with diabetes mellitus and left atrial dilatation ( P <0.05). Intraoperative high-resolution epicardial mapping showed that conduction disorders are mainly provoked by prematurely aberrant AES, particularly in patients with left atrial dilation and diabetes mellitus or emerging as epicardial breakthrough. © 2017 American Heart Association, Inc.

  16. Implications of the SPEAR FUV Maps on Our Understanding of the ISM

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Sirk, Martin; Edelstein, Jerry; Seon, Kwangil; Min, Kyoung-Wook; Han, Wonyong

    2009-08-01

    The distribution of a low-density transition temperature (104.5-105.5 K) gas in the interstellar medium conveys the character and evolution of diffuse matter in the Galaxy. This difficult to observe component of the ISM emits mainly in the far-ultraviolet (FUV) (912-1800 A˚) band. We describe spectral maps of FUV emission lines from the highly ionized species CIV and OVI likely to be the dominant cooling mechanisms of transition temperature gas in the ISM. The maps were obtained using an orbital spectrometer, SPEAR, that was launched in 2003 and has observed the FUV sky with a spectral resolution of ~550 and an angular resolution of 10'. We compare distribution of flux in these maps with three basic models of the distribution of transition temperature gas. We find that the median distribution of CIV and OVI emission is consistent with the spatial distribution and line ratios expected from a McKee-Ostriker (MO) type model of evaporative interfaces. However, the intensities are a factor of three higher than would be expected at the MO preferred parameters. Some high intensity regions are clearly associated with supernova remnants and superbubble structures. Others may indicate regions where gas is cooling through the transition temperature.

  17. Efficient parallel reconstruction for high resolution multishot spiral diffusion data with low rank constraint.

    PubMed

    Liao, Congyu; Chen, Ying; Cao, Xiaozhi; Chen, Song; He, Hongjian; Mani, Merry; Jacob, Mathews; Magnotta, Vincent; Zhong, Jianhui

    2017-03-01

    To propose a novel reconstruction method using parallel imaging with low rank constraint to accelerate high resolution multishot spiral diffusion imaging. The undersampled high resolution diffusion data were reconstructed based on a low rank (LR) constraint using similarities between the data of different interleaves from a multishot spiral acquisition. The self-navigated phase compensation using the low resolution phase data in the center of k-space was applied to correct shot-to-shot phase variations induced by motion artifacts. The low rank reconstruction was combined with sensitivity encoding (SENSE) for further acceleration. The efficiency of the proposed joint reconstruction framework, dubbed LR-SENSE, was evaluated through error quantifications and compared with ℓ1 regularized compressed sensing method and conventional iterative SENSE method using the same datasets. It was shown that with a same acceleration factor, the proposed LR-SENSE method had the smallest normalized sum-of-squares errors among all the compared methods in all diffusion weighted images and DTI-derived index maps, when evaluated with different acceleration factors (R = 2, 3, 4) and for all the acquired diffusion directions. Robust high resolution diffusion weighted image can be efficiently reconstructed from highly undersampled multishot spiral data with the proposed LR-SENSE method. Magn Reson Med 77:1359-1366, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Conformational Map of Phenolic Acids.

    PubMed

    Cortijo, Vanessa; Alonso, Elena R; Mata, Santiago; Alonso, José L

    2018-01-18

    The benefits of vaporization by laser ablation and the high resolution and sensitivity attained by the chirped pulse Fourier transform microwave spectroscopy CP-FTMW have provided the first conformational map of the simplest phenolic acids of trans-cinnamic and p-coumaric. Two conformers of trans-cinnamic acid and four conformers of trans-p-coumaric acid have been characterized under the isolation conditions of a supersonic expansion. The spectroscopic constants derived from the analysis of the rotational spectra compared with those predicted theoretically provide an unmatched means to achieve an unambiguous identification of the observed species.

  19. High-resolution crossover maps for each bivalent of Zea mays using recombination nodules.

    PubMed Central

    Anderson, Lorinda K; Doyle, Gregory G; Brigham, Brian; Carter, Jenna; Hooker, Kristina D; Lai, Ann; Rice, Mindy; Stack, Stephen M

    2003-01-01

    Recombination nodules (RNs) are closely correlated with crossing over, and, because they are observed by electron microscopy of synaptonemal complexes (SCs) in extended pachytene chromosomes, RNs provide the highest-resolution cytological marker currently available for defining the frequency and distribution of crossovers along the length of chromosomes. Using the maize inbred line KYS, we prepared an SC karyotype in which each SC was identified by relative length and arm ratio and related to the proper linkage group using inversion heterozygotes. We mapped 4267 RNs on 2080 identified SCs to produce high-resolution maps of RN frequency and distribution on each bivalent. RN frequencies are closely correlated with both chiasma frequencies and SC length. The total length of the RN recombination map is about twofold shorter than that of most maize linkage maps, but there is good correspondence between the relative lengths of the different maps when individual bivalents are considered. Each bivalent has a unique distribution of crossing over, but all bivalents share a high frequency of distal RNs and a severe reduction of RNs at and near kinetochores. The frequency of RNs at knobs is either similar to or higher than the average frequency of RNs along the SCs. These RN maps represent an independent measure of crossing over along maize bivalents. PMID:14573493

  20. Fusion of spectral and panchromatic images using false color mapping and wavelet integrated approach

    NASA Astrophysics Data System (ADS)

    Zhao, Yongqiang; Pan, Quan; Zhang, Hongcai

    2006-01-01

    With the development of sensory technology, new image sensors have been introduced that provide a greater range of information to users. But as the power limitation of radiation, there will always be some trade-off between spatial and spectral resolution in the image captured by specific sensors. Images with high spatial resolution can locate objects with high accuracy, whereas images with high spectral resolution can be used to identify the materials. Many applications in remote sensing require fusing low-resolution imaging spectral images with panchromatic images to identify materials at high resolution in clutter. A pixel-based false color mapping and wavelet transform integrated fusion algorithm is presented in this paper, the resulting images have a higher information content than each of the original images and retain sensor-specific image information. The simulation results show that this algorithm can enhance the visibility of certain details and preserve the difference of different materials.

  1. Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.

    With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less

  2. Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data

    DOE PAGES

    Zhu, Lei; Holden, Jacob R.; Gonder, Jeffrey D.

    2017-01-01

    With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similaritymore » score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.« less

  3. A HYBRID HIGH RESOLUTION IMAGE CLASSIFICATION METHOD FOR MAPPING EELGRASS DISTRIBUTIONS IN YAQUINA BAY ESTUARY, OREGON

    EPA Science Inventory

    False-color infrared aerial photography of the Yaquina Bay Estuary, Oregon was acquired at extreme low tides and digitally orthorectified with a ground pixel resolution of 20 cm to provide data for intertidal vegetation mapping. Submerged, semi-exposed and exposed eelgrass mead...

  4. Lunar Polar Illumination for Power Analysis

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    2008-01-01

    This paper presents illumination analyses using the latest Earth-based radar digital elevation model (DEM) of the lunar south pole and an independently developed analytical tool. These results enable the optimum sizing of solar/energy storage lunar surface power systems since they quantify the timing and durations of illuminated and shadowed periods. Filtering and manual editing of the DEM based on comparisons with independent imagery were performed and a reduced resolution version of the DEM was produced to reduce the analysis time. A comparison of the DEM with lunar limb imagery was performed in order to validate the absolute heights over the polar latitude range, the accuracy of which affects the impact of long range, shadow-casting terrain. Average illumination and energy storage duration maps of the south pole region are provided for the worst and best case lunar day using the reduced resolution DEM. Average illumination fractions and energy storage durations are presented for candidate low energy storage duration south pole sites. The best site identified using the reduced resolution DEM required a 62 hr energy storage duration using a fast recharge power system. Solar and horizon terrain elevations as well as illumination fraction profiles are presented for the best identified site and the data for both the reduced resolution and high resolution DEMs compared. High resolution maps for three low energy storage duration areas are presented showing energy storage duration for the worst case lunar day, surface height, and maximum absolute surface slope.

  5. Optical mapping reveals a large genetic inversion between two methicillin-resistant Staphylococcus aureus strains.

    PubMed

    Shukla, Sanjay K; Kislow, Jennifer; Briska, Adam; Henkhaus, John; Dykes, Colin

    2009-09-01

    Staphylococcus aureus is a highly versatile and evolving bacterium of great clinical importance. S. aureus can evolve by acquiring single nucleotide polymorphisms and mobile genetic elements and by recombination events. Identification and location of novel genomic elements in a bacterial genome are not straightforward, unless the whole genome is sequenced. Optical mapping is a new tool that creates a high-resolution, in situ ordered restriction map of a bacterial genome. These maps can be used to determine genomic organization and perform comparative genomics to identify genomic rearrangements, such as insertions, deletions, duplications, and inversions, compared to an in silico (virtual) restriction map of a known genome sequence. Using this technology, we report here the identification, approximate location, and characterization of a genetic inversion of approximately 500 kb of a DNA element between the NRS387 (USA800) and FPR3757 (USA300) strains. The presence of the inversion and location of its junction sites were confirmed by site-specific PCR and sequencing. At both the left and right junction sites in NRS387, an IS1181 element and a 73-bp sequence were identified as inverted repeats, which could explain the possible mechanism of the inversion event.

  6. A study of the Herald-Phillipstown fault in the Wabash Valley using drillhole and 3-D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Kroenke, Samantha E.

    In June 2009, a 2.2 square mile 3-D high resolution seismic reflection survey was shot in southeastern Illinois in the Phillipstown Consolidated oilfield. A well was drilled in the 3-D survey area to tie the seismic to the geological data with a synthetic seismogram from the sonic log. The objectives of the 3-D seismic survey were three-fold: (1) To image and interpret faulting of the Herald-Phillipstown Fault using drillhole-based geological and seismic cross-sections and structural contour maps created from the drillhole data and seismic reflection data, (2) To test the effectiveness of imaging the faults by selected seismic attributes, and (3) To compare spectral decomposition amplitude maps with an isochron map and an isopach map of a selected geologic interval (VTG interval). Drillhole and seismic reflection data show that various formation offsets increase near the main Herald-Phillipstown fault, and that the fault and its large offset subsidiary faults penetrate the Precambrian crystalline basement. A broad, northeast-trending 10,000 feet wide graben is consistently observed in the drillhole data. Both shallow and deep formations in the geological cross-sections reveal small horst and graben features within the broad graben created possibly in response to fault reactivations. The HPF faults have been interpreted as originally Precambrian age high-angle, normal faults reactivated with various amounts and types of offset. Evidence for strike-slip movement is also clear on several faults. Changes in the seismic attribute values in the selected interval and along various time slices throughout the whole dataset correlate with the Herald-Phillipstown faults. Overall, seismic attributes could provide a means of mapping large offset faults in areas with limited or absent drillhole data. Results of the spectral decomposition suggest that if the interval velocity is known for a particular formation or interval, high-resolution 3-D seismic reflection surveys could utilize these amplitudes as an alternative seismic interpretation method for estimating formation thicknesses. A VTG isopach map was compared with an isochron map and a spectral decomposition amplitude map. The results reveal that the isochron map strongly correlates with the isopach map as well as the spectral decomposition map. It was also found that thicker areas in the isopach correlated with higher amplitude values in the spectral decomposition amplitude map. Offsets along the faults appear sharper in these amplitudes and isochron maps than in the isopach map, possibly as a result of increased spatial sampling.

  7. Identification of trace additives in polymer materials by attenuated total reflection Fourier transform infrared mapping coupled with multivariate curve resolution

    NASA Astrophysics Data System (ADS)

    Li, Qian; Tang, Yongjiao; Yan, Zhiwei; Zhang, Pudun

    2017-06-01

    Although multivariate curve resolution (MCR) has been applied to the analysis of Fourier transform infrared (FTIR) imaging, it is still problematic to determine the number of components. The reported methods at present tend to cause the components of low concentration missed. In this paper a new idea was proposed to resolve this problem. First, MCR calculation was repeated by increasing the number of components sequentially, then each retrieved pure spectrum of as-resulted MCR component was directly compared with a real-world pixel spectrum of the local high concentration in the corresponding MCR map. One component was affirmed only if the characteristic bands of the MCR component had been included in its pixel spectrum. This idea was applied to attenuated total reflection (ATR)/FTIR mapping for identifying the trace additives in blind polymer materials and satisfactory results were acquired. The successful demonstration of this novel approach opens up new possibilities for analyzing additives in polymer materials.

  8. Mapping the surface characteristics of the Mojave with remote sensing for terrestrial habitat modeling

    NASA Astrophysics Data System (ADS)

    Nowicki, S. A.; Skuse, R. J.

    2012-12-01

    High-resolution ecological and climate modeling requires quantification of surface characteristics such as rock abundance, soil induration and surface roughness at fine-scale, since these features can affect the micro and macro habitat of a given area and ultimately determine the assemblage of plant and animal species that may occur there. Our objective is to develop quantitative data layers of thermophysical properties of the entire Mojave Desert Ecoregion for applications to habitat modeling being conducted by the USGS Western Ecological Research Center. These research efforts are focused on developing habitat models and a better physical understanding of the Mojave Desert, which have implications the development of solar and wind energy resources, military installation expansion and residential development planned for the Mojave. Thus there is a need to improve our understanding of the mechanical composition and thermal characteristics of natural and modified surfaces in the southwestern US at as high-resolution as possible. Since the Mojave is a sparsely-vegetated, arid landscape with little precipitation, remote sensing-based thermophysical analyses using Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) day and nighttime imagery are ideal for determining the physical properties of the surface. New mosaicking techniques for thermal imagery acquired at different dates, seasons and temperatures have allowed for the highest-resolution mosaics yet generated at 100m/pixel for thermal infrared wavelengths. Among our contributions is the development of seamless day and night ASTER mosaics of land surface temperatures that are calibrated to Moderate Resolution Imaging Spectroradiometer (MODIS) coincident observations to produce both a seamless mosaic and quantitative temperatures across the region that varies spectrally and thermophysically over a large number of orbit tracks. Products derived from this dataset include surface rock abundance, apparent thermal inertia, and diurnal/seasonal thermal regime. Additionally, the combination of moderate and high-resolution thermal observations are used to map the spatial and temporal variation of significant rain storms that intermittently increase the surface moisture. The resulting thermally-derived layers are in the process of being combined with composition, vegetation and surface reflectance datasets to map the Mojave at the highest VNIR resolution (20m/pixel) and compared to currently-available lower-resolution datasets.

  9. Using DNase Hi-C techniques to map global and local three-dimensional genome architecture at high resolution.

    PubMed

    Ma, Wenxiu; Ay, Ferhat; Lee, Choli; Gulsoy, Gunhan; Deng, Xinxian; Cook, Savannah; Hesson, Jennifer; Cavanaugh, Christopher; Ware, Carol B; Krumm, Anton; Shendure, Jay; Blau, C Anthony; Disteche, Christine M; Noble, William S; Duan, ZhiJun

    2018-06-01

    The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Mapping Dependence Between Extreme Rainfall and Storm Surge

    NASA Astrophysics Data System (ADS)

    Wu, Wenyan; McInnes, Kathleen; O'Grady, Julian; Hoeke, Ron; Leonard, Michael; Westra, Seth

    2018-04-01

    Dependence between extreme storm surge and rainfall can have significant implications for flood risk in coastal and estuarine regions. To supplement limited observational records, we use reanalysis surge data from a hydrodynamic model as the basis for dependence mapping, providing information at a resolution of approximately 30 km along the Australian coastline. We evaluated this approach by comparing the dependence estimates from modeled surge to that calculated using historical surge records from 79 tide gauges around Australia. The results show reasonable agreement between the two sets of dependence values, with the exception of lower seasonal variation in the modeled dependence values compared to the observed data, especially at locations where there are multiple processes driving extreme storm surge. This is due to the combined impact of local bathymetry as well as the resolution of the hydrodynamic model and its meteorological inputs. Meteorological drivers were also investigated for different combinations of extreme rainfall and surge—namely rain-only, surge-only, and coincident extremes—finding that different synoptic patterns are responsible for each combination. The ability to supplement observational records with high-resolution modeled surge data enables a much more precise quantification of dependence along the coastline, strengthening the physical basis for assessments of flood risk in coastal regions.

  11. Depth image super-resolution via semi self-taught learning framework

    NASA Astrophysics Data System (ADS)

    Zhao, Furong; Cao, Zhiguo; Xiao, Yang; Zhang, Xiaodi; Xian, Ke; Li, Ruibo

    2017-06-01

    Depth images have recently attracted much attention in computer vision and high-quality 3D content for 3DTV and 3D movies. In this paper, we present a new semi self-taught learning application framework for enhancing resolution of depth maps without making use of ancillary color images data at the target resolution, or multiple aligned depth maps. Our framework consists of cascade random forests reaching from coarse to fine results. We learn the surface information and structure transformations both from a small high-quality depth exemplars and the input depth map itself across different scales. Considering that edge plays an important role in depth map quality, we optimize an effective regularized objective that calculates on output image space and input edge space in random forests. Experiments show the effectiveness and superiority of our method against other techniques with or without applying aligned RGB information

  12. California State Waters Map Series Data Catalog

    USGS Publications Warehouse

    Golden, Nadine E.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps and associated data layers through the collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. CSMP has divided coastal California into 110 map blocks (fig. 1), each to be published individually as USGS Scientific Investigations Maps (SIMs) at a scale of 1:24,000. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the seafloor geology and shallow (to about 100 m) subsurface geology. This CSMP data catalog contains much of the data used to prepare the SIMs in the California State Waters Map Series. Other data that were used to prepare the maps were compiled from previously published sources (for example, onshore geology) and, thus, are not included herein.

  13. The use of Sentinel-2 imagery for seagrass mapping: Kalloni Gulf (Lesvos Island, Greece) case study

    NASA Astrophysics Data System (ADS)

    Topouzelis, Konstantinos; Charalampis Spondylidis, Spyridon; Papakonstantinou, Apostolos; Soulakellis, Nikolaos

    2016-08-01

    Seagrass meadows play a significant role in ecosystems by stabilizing sediment and improving water clarity, which enhances seagrass growing conditions. It is high on the priority of EU legislation to map and protect them. The traditional use of medium spatial resolution satellite imagery e.g. Landsat-8 (30m) is very useful for mapping seagrass meadows on a regional scale. However, the availability of Sentinel-2 data, the recent ESA's satellite with its payload Multi-Spectral Instrument (MSI) is expected to improve the mapping accuracy. MSI designed to improve coastline studies due to its enhanced spatial and spectral capabilities e.g. optical bands with 10m spatial resolution. The present work examines the quality of Sentinel-2 images for seagrass mapping, the ability of each band in detection and discrimination of different habitats and estimates the accuracy of seagrass mapping. After pre-processing steps, e.g. radiometric calibration and atmospheric correction, image classified into four classes. Classification classes included sub-bottom composition e.g. seagrass, soft bottom, and hard bottom. Concrete vectors describing the areas covered by seagrass extracted from the high-resolution satellite image and used as in situ measurements. The developed methodology applied in the Gulf of Kalloni, (Lesvos Island - Greece). Results showed that Sentinel-2 images can be robustly used for seagrass mapping due to their spatial resolution, band availability and radiometric accuracy.

  14. Monturaqui meteorite impact crater, Chile: A field test of the utility of satellite-based mapping of ejecta at small craters

    NASA Astrophysics Data System (ADS)

    Rathbun, K.; Ukstins, I.; Drop, S.

    2017-12-01

    Monturaqui Crater is a small ( 350 m diameter), simple meteorite impact crater located in the Atacama Desert of northern Chile that was emplaced in Ordovician granite overlain by discontinuous Pliocene ignimbrite. Ejecta deposits are granite and ignimbrite, with lesser amounts of dark impact melt and rare tektites and iron shale. The impact restructured existing drainage systems in the area that have subsequently eroded through the ejecta. Satellite-based mapping and modeling, including a synthesis of photographic satellite imagery and ASTER thermal infrared imagery in ArcGIS, were used to construct a basic geological interpretation of the site with special emphasis on understanding ejecta distribution patterns. This was combined with field-based mapping to construct a high-resolution geologic map of the crater and its ejecta blanket and field check the satellite-based geologic interpretation. The satellite- and modeling-based interpretation suggests a well-preserved crater with an intact, heterogeneous ejecta blanket that has been subjected to moderate erosion. In contrast, field mapping shows that the crater has a heavily-eroded rim and ejecta blanket, and the ejecta is more heterogeneous than previously thought. In addition, the erosion rate at Monturaqui is much higher than erosion rates reported elsewhere in the Atacama Desert. The bulk compositions of the target rocks at Monturaqui are similar and the ejecta deposits are highly heterogeneous, so distinguishing between them with remote sensing is less effective than with direct field observations. In particular, the resolution of available imagery for the site is too low to resolve critical details that are readily apparent in the field on the scale of 10s of cm, and which significantly alter the geologic interpretation. The limiting factors for effective remote interpretation at Monturaqui are its target composition and crater size relative to the resolution of the remote sensing methods employed. This suggests that satellite-based mapping of ejecta may have limited utility at small craters due to limitations in source resolution compared to the geology of the site in question.

  15. Raman Microspectroscopic Mapping with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) Applied to the High-Pressure Polymorph of Titanium Dioxide, TiO2-II.

    PubMed

    Smith, Joseph P; Smith, Frank C; Ottaway, Joshua; Krull-Davatzes, Alexandra E; Simonson, Bruce M; Glass, Billy P; Booksh, Karl S

    2017-08-01

    The high-pressure, α-PbO 2 -structured polymorph of titanium dioxide (TiO 2 -II) was recently identified in micrometer-sized grains recovered from four Neoarchean spherule layers deposited between ∼2.65 and ∼2.54 billion years ago. Several lines of evidence support the interpretation that these layers represent distal impact ejecta layers. The presence of shock-induced TiO 2 -II provides physical evidence to further support an impact origin for these spherule layers. Detailed characterization of the distribution of TiO 2 -II in these grains may be useful for correlating the layers, estimating the paleodistances of the layers from their source craters, and providing insight into the formation of the TiO 2 -II. Here we report the investigation of TiO 2 -II-bearing grains from these four spherule layers using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping. Raman spectra provide evidence of grains consisting primarily of rutile (TiO 2 ) and TiO 2 -II, as shown by Raman bands at 174 cm -1 (TiO 2 -II), 426 cm -1 (TiO 2 -II), 443 cm -1 (rutile), and 610 cm -1 (rutile). Principal component analysis (PCA) yielded a predominantly three-phase system comprised of rutile, TiO 2 -II, and substrate-adhesive epoxy. Scanning electron microscopy (SEM) suggests heterogeneous grains containing polydispersed micrometer- and submicrometer-sized particles. Multivariate curve resolution-alternating least squares applied to the Raman microspectroscopic mapping yielded up to five distinct chemical components: three phases of TiO 2 (rutile, TiO 2 -II, and anatase), quartz (SiO 2 ), and substrate-adhesive epoxy. Spectral profiles and spatially resolved chemical maps of the pure chemical components were generated using MCR-ALS applied to the Raman microspectroscopic maps. The spatial resolution of the Raman microspectroscopic maps was enhanced in comparable, cost-effective analysis times by limiting spectral resolution and optimizing spectral acquisition parameters. Using the resolved spectra of TiO 2 -II generated from MCR-ALS analysis, a Raman spectrum for pure TiO 2 -II was estimated to further facilitate its identification.

  16. Multiscale/multiresolution landslides susceptibility mapping

    NASA Astrophysics Data System (ADS)

    Grozavu, Adrian; Cătălin Stanga, Iulian; Valeriu Patriche, Cristian; Toader Juravle, Doru

    2014-05-01

    Within the European strategies, landslides are considered an important threatening that requires detailed studies to identify areas where these processes could occur in the future and to design scientific and technical plans for landslide risk mitigation. In this idea, assessing and mapping the landslide susceptibility is an important preliminary step. Generally, landslide susceptibility at small scale (for large regions) can be assessed through qualitative approach (expert judgements), based on a few variables, while studies at medium and large scale requires quantitative approach (e.g. multivariate statistics), a larger set of variables and, necessarily, the landslide inventory. Obviously, the results vary more or less from a scale to another, depending on the available input data, but also on the applied methodology. Since it is almost impossible to have a complete landslide inventory on large regions (e.g. at continental level), it is very important to verify the compatibility and the validity of results obtained at different scales, identifying the differences and fixing the inherent errors. This paper aims at assessing and mapping the landslide susceptibility at regional level through a multiscale-multiresolution approach from small scale and low resolution to large scale and high resolution of data and results, comparing the compatibility of results. While the first ones could be used for studies at european and national level, the later ones allows results validation, including through fields surveys. The test area, namely the Barlad Plateau (more than 9000 sq.km) is located in Eastern Romania, covering a region where both the natural environment and the human factor create a causal context that favor these processes. The landslide predictors were initially derived from various databases available at pan-european level and progressively completed and/or enhanced together with scale and the resolution: the topography (from SRTM at 90 meters to digital elevation models based on topographical maps, 1:25,000 and 1:5,000), the lithology (from geological maps, 1:200,000), land cover and land use (from CLC 2006 to maps derived from orthorectified aerial images, 0.5 meters resolution), rainfall (from Worldclim, ECAD to our own data), the seismicity (the seismic zonation of Romania) etc. The landslide inventory was created as polygonal data based on aerial images (resolution 0.5 meters), the information being considered at county level (NUTS 3) and, eventually, at communal level (LAU2). The methodological framework is based on the logistic regression as a quantitative method and the analytic hierarchy process as a semi-qualitative methods, both being applied once identically for all scales and once recalibrated for each scale and resolution (from 1:1,000,000 and one km pixel resolution to 1:25,000 and ten meters resolution). The predictive performance of the two models was assessed using the ROC (Receiver Operating Characteristic) curve and the AUC (Area Under Curve) parameter and the results indicate a good correspondence between the susceptibility estimated for the test samples (0.855-0.890) and for the validation samples (0.830-0.865). Finally, the results were compared in pairs in order to fix the errors at small scale and low resolution and to optimize the methodology for landslide susceptibility mapping on large areas.

  17. A Prototype MODI- SSM/I Snow Mapping Algorithm

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Barton, Jonathan S.; Hall, Dorothy K.

    1999-01-01

    Data in the wavelength range 0.545 - 1.652 microns from the Moderate Resolution Imaging Spectroradiometer (MODIS), to be launched aboard the Earth Observing System (EOS) Terra in the fall of 1999, will be used to map daily global snow cover at 500m resolution. However, during darkness, or when the satellite's view of the surface is obscured by cloud, snow cover cannot be mapped using MODIS data. We show that during these conditions, it is possible to supplement the MODIS product by mapping the snow cover using passive microwave data from the Special Sensor Microwave Imager (SSM/I), albeit with much poorer resolution. For a 7-day time period in March 1999, a prototype MODIS snow-cover product was compared with a prototype MODIS-SSM/I product for the same area in the mid-western United States. The combined MODIS-SSM/I product mapped 9% more snow cover than the MODIS-only product.

  18. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.

    PubMed

    Amir, El-ad David; Davis, Kara L; Tadmor, Michelle D; Simonds, Erin F; Levine, Jacob H; Bendall, Sean C; Shenfeld, Daniel K; Krishnaswamy, Smita; Nolan, Garry P; Pe'er, Dana

    2013-06-01

    New high-dimensional, single-cell technologies offer unprecedented resolution in the analysis of heterogeneous tissues. However, because these technologies can measure dozens of parameters simultaneously in individual cells, data interpretation can be challenging. Here we present viSNE, a tool that allows one to map high-dimensional cytometry data onto two dimensions, yet conserve the high-dimensional structure of the data. viSNE plots individual cells in a visual similar to a scatter plot, while using all pairwise distances in high dimension to determine each cell's location in the plot. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow automatically maps into a consistent shape, whereas leukemia samples map into malformed shapes that are distinct from healthy bone marrow and from each other. We also use viSNE and mass cytometry to compare leukemia diagnosis and relapse samples, and to identify a rare leukemia population reminiscent of minimal residual disease. viSNE can be applied to any multi-dimensional single-cell technology.

  19. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R.

    2000-01-01

    High-resolution thermal inertia mapping results are presented, derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) observations of the surface temperature of Mars obtained during the early portion of the MGS mapping mission. Thermal inertia is the key property controlling the diurnal surface temperature variations, and is dependent on the physical character of the top few centimeters of the surface. It represents a complex combination of particle size, rock abundance, exposures of bedrock, and degree of induration. In this work we describe the derivation of thermal inertia from TES data, present global scale analysis, and place these results into context with earlier work. A global map of nighttime thermal-bolometer-based thermal inertia is presented at 14?? per pixel resolution, with approximately 63% coverage between 50??S and 70??N latitude. Global analysis shows a similar pattern of high and low thermal inertia as seen in previous Viking low-resolution mapping. Significantly more detail is present in the high-resolution TES thermal inertia. This detail represents horizontal small-scale variability in the nature of the surface. Correlation with albedo indicates the presence of a previously undiscovered surface unit of moderate-to-high thermal inertia and intermediate albedo. This new unit has a modal peak thermal inertia of 180-250 J m-2 K-1 s-12 and a narrow range of albedo near 0.24. The unit, covering a significant fraction of the surface, typically surrounds the low thermal inertia regions and may comprise a deposit of indurated fine material. Local 3-km-resolution maps are also presented as examples of eolian, fluvial, and volcanic geology. Some impact crater rims and intracrater dunes show higher thermal inertias than the surrounding terrain; thermal inertia of aeolian deposits such as intracrater dunes may be related to average particle size. Outflow channels and valleys consistently show higher thermal inertias than the surrounding terrain. Generally, correlations between spatial variations in thermal inertia and geologic features suggest a relationship between the hundred-meter-scale morphology and the centimeter-scale surface layer. ?? 2000 Academic Press.

  20. Fluid Lensing based Machine Learning for Augmenting Earth Science Coral Datasets

    NASA Astrophysics Data System (ADS)

    Li, A.; Instrella, R.; Chirayath, V.

    2016-12-01

    Recently, there has been increased interest in monitoring the effects of climate change upon the world's marine ecosystems, particularly coral reefs. These delicate ecosystems are especially threatened due to their sensitivity to ocean warming and acidification, leading to unprecedented levels of coral bleaching and die-off in recent years. However, current global aquatic remote sensing datasets are unable to quantify changes in marine ecosystems at spatial and temporal scales relevant to their growth. In this project, we employ various supervised and unsupervised machine learning algorithms to augment existing datasets from NASA's Earth Observing System (EOS), using high resolution airborne imagery. This method utilizes NASA's ongoing airborne campaigns as well as its spaceborne assets to collect remote sensing data over these afflicted regions, and employs Fluid Lensing algorithms to resolve optical distortions caused by the fluid surface, producing cm-scale resolution imagery of these diverse ecosystems from airborne platforms. Support Vector Machines (SVMs) and K-mean clustering methods were applied to satellite imagery at 0.5m resolution, producing segmented maps classifying coral based on percent cover and morphology. Compared to a previous study using multidimensional maximum a posteriori (MAP) estimation to separate these features in high resolution airborne datasets, SVMs are able to achieve above 75% accuracy when augmented with existing MAP estimates, while unsupervised methods such as K-means achieve roughly 68% accuracy, verified by manually segmented reference data provided by a marine biologist. This effort thus has broad applications for coastal remote sensing, by helping marine biologists quantify behavioral trends spanning large areas and over longer timescales, and to assess the health of coral reefs worldwide.

  1. Enhancing SMAP Soil Moisture Retrievals via Superresolution Techniques

    NASA Astrophysics Data System (ADS)

    Beale, K. D.; Ebtehaj, A. M.; Romberg, J. K.; Bras, R. L.

    2017-12-01

    Soil moisture is a key state variable that modulates land-atmosphere interactions and its high-resolution global scale estimates are essential for improved weather forecasting, drought prediction, crop management, and the safety of troop mobility. Currently, NASA's Soil Moisture Active/Passive (SMAP) satellite provides a global picture of soil moisture variability at a resolution of 36 km, which is prohibitive for some hydrologic applications. The goal of this research is to enhance the resolution of SMAP passive microwave retrievals by a factor of 2 to 4 using modern superresolution techniques that rely on the knowledge of high-resolution land surface models. In this work, we explore several super-resolution techniques including an empirical dictionary method, a learned dictionary method, and a three-layer convolutional neural network. Using a year of global high-resolution land surface model simulations as training set, we found that we are able to produce high-resolution soil moisture maps that outperform the original low-resolution observations both qualitatively and quantitatively. In particular, on a patch-by-patch basis we are able to produce estimates of high-resolution soil moisture maps that improve on the original low-resolution patches by on average 6% in terms of mean-squared error, and 14% in terms of the structural similarity index.

  2. Compositional Mapping of the Transantarctic Mountains Using Orbital Reflectance Data

    NASA Astrophysics Data System (ADS)

    Salvatore, M. R.; Niebuhr, S.; Morin, P. J.; Cox, S.

    2014-12-01

    We report on our progress of remotely mapping compositional variations throughout the Transantarctic Mountains (TAM) using orbital spectroscopic data. These techniques were originally proven effective in Antarctica using moderate spatial resolution (30 m/pixel) Advanced Land Imager (ALI) data, and showed great successes in identifying even minor variations in composition throughout the McMurdo Dry Valleys (MDV) [Salvatore et al., 2013]. However, due to the orbital inclination of the Earth Observing-1 spacecraft, ALI is unable to image the central and southern TAM, making comparable studies at comparable resolutions impossible on a continental scale. Fortunately, the WorldView-2 satellite (DigitalGlobe, Inc.) boasts high-resolution (2 m/pixel) multispectral capabilities, with 8 spectral bands located between 427 nm and 908 nm, and is able to image the entirety of the TAM through off-nadir pointing capabilities. This provides the ability to continue our remote spectral mapping campaign throughout the TAM to identify compositional variations in support of past and future field operations. We present an updated map of relative spectral variability (RSV) in the vicinity of Shackleton Glacier. This mapping product consists of 91 individual WorldView-2 images, each corrected to top-of-atmosphere radiance and parameterized to highlight known compositional properties. The mapped area covers approximately 17,850 square kilometers of ice-covered and exposed terrain. Compositional variations are easily mapped, and small-scale variations in iron-bearing mineralogy are particularly well resolved. We also describe our updated atmospheric correction algorithm for the WorldView-2 dataset, which utilizes in-scene techniques to derive surface reflectance and does not necessitate the use of radiative transfer modeling. Our technique is validated using laboratory reflectance measurements. In conjunction with the Polar Rock Repository at the Ohio State University, we have measured hundreds of individual samples in an effort to verify and "ground-truth" this atmospheric removal algorithm. Using these methodologies and revised techniques, our objective is to make a fully calibrated and atmospherically corrected spectral map of the central TAM available to the scientific community.

  3. Evaluating Crop Area Mapping from MODIS Time-Series as an Assessment Tool for Zimbabwe’s “Fast Track Land Reform Programme”

    PubMed Central

    2016-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) data forms the basis for numerous land use and land cover (LULC) mapping and analysis frameworks at regional scale. Compared to other satellite sensors, the spatial, temporal and spectral specifications of MODIS are considered as highly suitable for LULC classifications which support many different aspects of social, environmental and developmental research. The LULC mapping of this study was carried out in the context of the development of an evaluation approach for Zimbabwe’s land reform program. Within the discourse about the success of this program, a lack of spatially explicit methods to produce objective data, such as on the extent of agricultural area, is apparent. We therefore assessed the suitability of moderate spatial and high temporal resolution imagery and phenological parameters to retrieve regional figures about the extent of cropland area in former freehold tenure in a series of 13 years from 2001–2013. Time-series data was processed with TIMESAT and was stratified according to agro-ecological potential zoning of Zimbabwe. Random Forest (RF) classifications were used to produce annual binary crop/non crop maps which were evaluated with high spatial resolution data from other satellite sensors. We assessed the cropland products in former freehold tenure in terms of classification accuracy, inter-annual comparability and heterogeneity. Although general LULC patterns were depicted in classification results and an overall accuracy of over 80% was achieved, user accuracies for rainfed agriculture were limited to below 65%. We conclude that phenological analysis has to be treated with caution when rainfed agriculture and grassland in semi-humid tropical regions have to be separated based on MODIS spectral data and phenological parameters. Because classification results significantly underestimate redistributed commercial farmland in Zimbabwe, we argue that the method cannot be used to produce spatial information on land-use which could be linked to tenure change. Hence capabilities of moderate resolution data are limited to assess Zimbabwe’s land reform. To make use of the unquestionable potential of MODIS time-series analysis, we propose an analysis of plant productivity which allows to link annual growth and production of vegetation to ownership after Zimbabwe’s land reform. PMID:27253327

  4. Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy.

    PubMed

    Avti, Pramod K; Hu, Song; Favazza, Christopher; Mikos, Antonios G; Jansen, John A; Shroyer, Kenneth R; Wang, Lihong V; Sitharaman, Balaji

    2012-01-01

    In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Optical-resolution (OR) and acoustic-resolution (AR)--Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs.

  5. Super-resolved refocusing with a plenoptic camera

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiliang; Yuan, Yan; Bin, Xiangli; Qian, Lulu

    2011-03-01

    This paper presents an approach to enhance the resolution of refocused images by super resolution methods. In plenoptic imaging, we demonstrate that the raw sensor image can be divided to a number of low-resolution angular images with sub-pixel shifts between each other. The sub-pixel shift, which defines the super-resolving ability, is mathematically derived by considering the plenoptic camera as equivalent camera arrays. We implement simulation to demonstrate the imaging process of a plenoptic camera. A high-resolution image is then reconstructed using maximum a posteriori (MAP) super resolution algorithms. Without other degradation effects in simulation, the super resolved image achieves a resolution as high as predicted by the proposed model. We also build an experimental setup to acquire light fields. With traditional refocusing methods, the image is rendered at a rather low resolution. In contrast, we implement the super-resolved refocusing methods and recover an image with more spatial details. To evaluate the performance of the proposed method, we finally compare the reconstructed images using image quality metrics like peak signal to noise ratio (PSNR).

  6. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    PubMed

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus.

  7. Correlation between Preoperative High Resolution Computed Tomography (CT) Findings with Surgical Findings in Chronic Otitis Media (COM) Squamosal Type.

    PubMed

    Karki, S; Pokharel, M; Suwal, S; Poudel, R

    Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.

  8. High Resolution, Low Altitude Aeromagnetic and Electromagnetic Survey of Mt Rainier

    USGS Publications Warehouse

    Rystrom, V.L.; Finn, C.; Deszcz-Pan, Maryla

    2000-01-01

    In October 1996, the USGS conducted a high resolution airborne magnetic and electromagnetic survey in order to discern through-going sections of exposed altered rocks and those obscured beneath snow, vegetation and surficial unaltered rocks. Hydrothermally altered rocks weaken volcanic edifices, creating the potential for catastrophic sector collapses and ensuing formation of destructive volcanic debris flows. This data once compiled and interpreted, will be used to examine the geophysical properties of the Mt. Rainier volcano, and help assist the USGS in its Volcanic Hazards Program and at its Cascades Volcano Observatory. Aeromagnetic and electromagnetic data provide a means for seeing through surficial layers and have been tools for delineating structures within volcanoes. However, previously acquired geophysical data were not useful for small-scale geologic mapping. In this report, we present the new aeromagnetic and electromagnetic data, compare results from previously obtained, low-resolution aeromagnetic data with new data collected at a low-altitude and closely spaced flightlines, and provide information on potential problems with using high-resolution data.

  9. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images

    PubMed Central

    Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-01-01

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images. PMID:29614745

  10. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    PubMed

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  11. High-resolution maps of H2 regions at far-infrared wavelengths. [balloon-borne cassegrain telescope

    NASA Technical Reports Server (NTRS)

    Fazio, G. G.; Kleinmann, D. E.; Noyes, R. W.; Wright, E. L.; Zeilik, M., II; Low, F. J.

    1974-01-01

    The first successful flight of a balloon-borne 1-m telescope for far-infrared (40 micron) astronomy occurred on 4 February 1974 (UT), from Palestine, Texas. During 6 h at float altitude, the gyrostabilized telescope mapped the intensity of far-infrared radiation from the H 2 regions Ori A and W3 with a resolution of 1 prime. Partial maps of these regions were made with a resolution of 0.5 prime. These sources were resolved into several components, some of which were previously unknown. Observations of Mars were used for calibration.

  12. Resolution Enhancement of MODIS-derived Water Indices for Studying Persistent Flooding

    NASA Astrophysics Data System (ADS)

    Underwood, L. W.; Kalcic, M. T.; Fletcher, R. M.

    2012-12-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250-m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.

  13. Resolution Enhancement of MODIS-Derived Water Indices for Studying Persistent Flooding

    NASA Technical Reports Server (NTRS)

    Underwood, L. W.; Kalcic, Maria; Fletcher, Rose

    2012-01-01

    Monitoring coastal marshes for persistent flooding and salinity stress is a high priority issue in Louisiana. Remote sensing can identify environmental variables that can be indicators of marsh habitat conditions, and offer timely and relatively accurate information for aiding wetland vegetation management. Monitoring activity accuracy is often limited by mixed pixels which occur when areas represented by the pixel encompasses more than one cover type. Mixtures of marsh grasses and open water in 250m Moderate Resolution Imaging Spectroradiometer (MODIS) data can impede flood area estimation. Flood mapping of such mixtures requires finer spatial resolution data to better represent the cover type composition within 250m MODIS pixel. Fusion of MODIS and Landsat can improve both spectral and temporal resolution of time series products to resolve rapid changes from forcing mechanisms like hurricane winds and storm surge. For this study, using a method for estimating sub-pixel values from a MODIS time series of a Normalized Difference Water Index (NDWI), using temporal weighting, was implemented to map persistent flooding in Louisiana coastal marshes. Ordinarily NDWI computed from daily 250m MODIS pixels represents a mixture of fragmented marshes and water. Here, sub-pixel NDWI values were derived for MODIS data using Landsat 30-m data. Each MODIS pixel was disaggregated into a mixture of the eight cover types according to the classified image pixels falling inside the MODIS pixel. The Landsat pixel means for each cover type inside a MODIS pixel were computed for the Landsat data preceding the MODIS image in time and for the Landsat data succeeding the MODIS image. The Landsat data were then weighted exponentially according to closeness in date to the MODIS data. The reconstructed MODIS data were produced by summing the product of fractional cover type with estimated NDWI values within each cover type. A new daily time series was produced using both the reconstructed 250-m MODIS, with enhanced features, and the approximated daily 30-m high-resolution image based on Landsat data. The algorithm was developed and tested over the Calcasieu-Sabine Basin, which was heavily inundated by storm surge from Hurricane Ike to study the extent and duration of flooding following the storm. Time series for 2000-2009, covering flooding events by Hurricane Rita in 2005 and Hurricane Ike in 2008, were derived. High resolution images were formed for all days in 2008 between the first cloud free Landsat scene and the last cloud-free Landsat scene. To refine and validate flooding maps, each time series was compared to Louisiana Coastwide Reference Monitoring System (CRMS) station water levels adjusted to marsh to optimize thresholds for MODIS-derived time series of NDWI. Seasonal fluctuations were adjusted by subtracting ten year average NDWI for marshes, excluding the hurricane events. Results from different NDWI indices and a combination of indices were compared. Flooding persistence that was mapped with higher-resolution data showed some improvement over the original MODIS time series estimates. The advantage of this novel technique is that improved mapping of extent and duration of inundation can be provided.

  14. Comparison of glomerular activity patterns by fMRI and wide-field calcium imaging: implications for principles underlying odor mapping

    PubMed Central

    Sanganahalli, Basavaraju G.; Rebello, Michelle R.; Herman, Peter; Papademetris, Xenophon; Shepherd, Gordon M.; Verhagen, Justus V.; Hyder, Fahmeed

    2015-01-01

    Functional imaging signals arise from distinct metabolic and hemodynamic events at the neuropil, but how these processes are influenced by pre- and post-synaptic activities need to be understood for quantitative interpretation of stimulus-evoked mapping data. The olfactory bulb (OB) glomeruli, spherical neuropil regions with well-defined neuronal circuitry, can provide insights into this issue. Optical calcium-sensitive fluorescent dye imaging (OICa2+) reflects dynamics of pre-synaptic input to glomeruli, whereas high-resolution functional magnetic resonance imaging (fMRI) using deoxyhemoglobin contrast reveals neuropil function within the glomerular layer where both pre- and post-synaptic activities contribute. We imaged odor-specific activity patterns of the dorsal OB in the same anesthetized rats with fMRI and OICa2+ and then co-registered the respective maps to compare patterns in the same space. Maps by each modality were very reproducible as trial-to-trial patterns for a given odor, overlapping by ~80%. Maps evoked by ethyl butyrate and methyl valerate for a given modality overlapped by ~80%, suggesting activation of similar dorsal glomerular networks by these odors. Comparison of maps generated by both methods for a given odor showed ~70% overlap, indicating similar odor-specific maps by each method. These results suggest that odor-specific glomerular patterns by high-resolution fMRI primarily tracks pre-synaptic input to the OB. Thus combining OICa2+ and fMRI lays the framework for studies of OB processing over a range of spatiotemporal scales, where OICa2+ can feature the fast dynamics of dorsal glomerular clusters and fMRI can map the entire glomerular sheet in the OB. PMID:26631819

  15. New Release of the High-Resolution Mimas Atlas derived from Cassini-ISS Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.-D.; Porco, C. C.

    2017-09-01

    The Cassini Imaging Science Subsystem (ISS) acquired 128 high-resolution images (< 1 km/pixel) of Mimas during its tour through the Saturnian system since 2004. We combined new images from orbit 249 (Nov. 2016) and orbit 259 (Jan. 2017) with the high-resolution global semi-controlled mosaic of Mimas from 2012. This global mosaic is the baseline for the new high-resolution Mimas atlas that still consists of three tiles mapped at a scale of 1:1,000,000 [1]. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The entire atlas will become available to the public through the Imaging Team's website [http://ciclops.org/maps] and the Planetary Data System (PDS) [https://pds- imaging.jpl.nasa.gov/volumes/carto.html].

  16. New approaches to high-resolution mapping of marine vertical structures.

    PubMed

    Robert, Katleen; Huvenne, Veerle A I; Georgiopoulou, Aggeliki; Jones, Daniel O B; Marsh, Leigh; D O Carter, Gareth; Chaumillon, Leo

    2017-08-21

    Vertical walls in marine environments can harbour high biodiversity and provide natural protection from bottom-trawling activities. However, traditional mapping techniques are usually restricted to down-looking approaches which cannot adequately replicate their 3D structure. We combined sideways-looking multibeam echosounder (MBES) data from an AUV, forward-looking MBES data from ROVs and ROV-acquired videos to examine walls from Rockall Bank and Whittard Canyon, Northeast Atlantic. High-resolution 3D point clouds were extracted from each sonar dataset and structure from motion photogrammetry (SfM) was applied to recreate 3D representations of video transects along the walls. With these reconstructions, it was possible to interact with extensive sections of video footage and precisely position individuals. Terrain variables were derived on scales comparable to those experienced by megabenthic individuals. These were used to show differences in environmental conditions between observed and background locations as well as explain spatial patterns in ecological characteristics. In addition, since the SfM 3D reconstructions retained colours, they were employed to separate and quantify live coral colonies versus dead framework. The combination of these new technologies allows us, for the first time, to map the physical 3D structure of previously inaccessible habitats and demonstrates the complexity and importance of vertical structures.

  17. 3D single point imaging with compressed sensing provides high temporal resolution R 2* mapping for in vivo preclinical applications.

    PubMed

    Rioux, James A; Beyea, Steven D; Bowen, Chris V

    2017-02-01

    Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging. TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2 * systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo. An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2 * mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h. Accelerated TurboSPI enables preclinical R 2 * mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.

  18. Lidar-revised geologic map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington

    USGS Publications Warehouse

    Tabor, Rowland W.; Haugerud, Ralph A.; Haeussler, Peter J.; Clark, Kenneth P.

    2011-01-01

    This map is an interpretation of a 6-ft-resolution (2-m-resolution) lidar (light detection and ranging) digital elevation model combined with the geology depicted on the Geologic Map of the Wildcat Lake 7.5' quadrangle, Kitsap and Mason Counties, Washington (Haeussler and Clark, 2000). Haeussler and Clark described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Wildcat Lake 7.5' quadrangle. This map, derived from 1951 aerial photographs, has 20-ft contours, nominal horizontal resolution of approximately 40 ft (12 m), and nominal mean vertical accuracy of approximately 10 ft (3 m). Similar to many geologic maps, much of the geology in the Haeussler and Clark (2000) map-especially the distribution of surficial deposits-was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound lidar Consortium obtained a lidar-derived digital elevation model (DEM) for Kitsap Peninsula including all of the Wildcat Lake 7.5' quadrangle. This new DEM has a horizontal resolution of 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air photo stereo models have much improved the interpretation of geology in this heavily vegetated landscape, especially the distribution and relative age of some surficial deposits. Many contacts of surficial deposits are adapted unmodified or slightly modified from Haugerud (2009).

  19. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  20. High-resolution carbon mapping on the million-hectare Island of Hawaii

    Treesearch

    Gregory P. Asner; R. Flint Hughes; Joseph Mascaro; Amanda L. Uowolo; David E. Knapp; James Jacobson; Ty Kennedy-Bowdoin; John K . Clark

    2011-01-01

    Current markets and international agreements for reducing emissions from deforestation and forest degradation (REDD) rely on carbon (C) monitoring techniques. Combining field measurements, airborne light detection and ranging (LiDAR)-based observations, and satellite-based imagery, we developed a 30-meter-resolution map of aboveground C density spanning 40 vegetation...

  1. Developing a Carbon Monitoring System For Pinyon-juniper Forests and Woodlands

    NASA Astrophysics Data System (ADS)

    Falkowski, M. J.; Hudak, A. T.; Fekety, P.; Filippelli, S.

    2017-12-01

    Pinyon-juniper (PJ) forests and woodlands are the third largest vegetation type in the United States. They cover over 40 million hectares across the western US, representing 40% of the total forest and woodland area in the Intermountain West. Although the density of carbon stored in these ecosystems is relatively low compared to other forest types, the vast area of short stature forests and woodlands (both nationally and globally) make them critical components of regional, national, and global carbon budgets. The overarching goal of this research is to prototype a carbon monitoring, reporting, and verification (MRV) system for characterizing total aboveground biomass stocks and flux across the PJ vegetation gradient in the western United States. We achieve this by combining in situ forest measurements and novel allometric equations with tree measurements derived from high resolution airborne imagery to map aboveground biomass across 500,000 km2 in the Western US. These high-resolution maps of aboveground biomass are then leveraged as training data to predict biomass flux through time from Landsat time-series data. The results from this research highlight the potential in mapping biomass stocks and flux in open forests and woodlands, and could be easily adopted into an MRV framework.

  2. Damage Map of Latest Italian Quake Produced by NASA

    NASA Image and Video Library

    2016-11-16

    Damage Proxy Map (DPM) v0.5, derived from the Italian Space Agency's COSMO-SkyMed Spotlight synthetic aperture radar (SAR) data acquired from an ascending orbit, covering an area of 6.2-by-6.2 miles (10-by-10 kilometers), centered at Norcia, Italy. Red pixels (pixel size about 16 feet, or 5 meters)represent areas of potential damage due to the Magnitude 6.6 Oct 30, 2016, Central Italy earthquakes, as well as ground surface change during the time period Oct. 30, 2016 -- Oct. 31, 2016. The color variation from yellow to red indicate increasingly more significant ground surface change. Preliminary validation was carried out by comparing with high-resolution pre- and post-event optical imagery acquired by DigitalGlobe's WorldView satellites, and a damage map produced by the European Commission Copernicus Emergency Management Service based upon visual inspection of high-resolution pre- (Orthophoto) and post-event (Pleiades-1) optical imagery. This DPM provides broad geographic coverage of the earthquake's impact in the region. Areas that fall in radar shadow and layover were masked out. The DPM should be used as guidance to identify damaged areas, and may be less reliable over vegetated areas. http://photojournal.jpl.nasa.gov/catalog/PIA15374

  3. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high resolution imagery and Lidar ancillary data for classification of urban land cover.

  4. Spatio Temporal Detection and Virtual Mapping of Landslide Using High-Resolution Airborne Laser Altimetry (lidar) in Densely Vegetated Areas of Tropics

    NASA Astrophysics Data System (ADS)

    Bibi, T.; Azahari Razak, K.; Rahman, A. Abdul; Latif, A.

    2017-10-01

    Landslides are an inescapable natural disaster, resulting in massive social, environmental and economic impacts all over the world. The tropical, mountainous landscape in generally all over Malaysia especially in eastern peninsula (Borneo) is highly susceptible to landslides because of heavy rainfall and tectonic disturbances. The purpose of the Landslide hazard mapping is to identify the hazardous regions for the execution of mitigation plans which can reduce the loss of life and property from future landslide incidences. Currently, the Malaysian research bodies e.g. academic institutions and government agencies are trying to develop a landslide hazard and risk database for susceptible areas to backing the prevention, mitigation, and evacuation plan. However, there is a lack of devotion towards landslide inventory mapping as an elementary input of landslide susceptibility, hazard and risk mapping. The developing techniques based on remote sensing technologies (satellite, terrestrial and airborne) are promising techniques to accelerate the production of landslide maps, shrinking the time and resources essential for their compilation and orderly updates. The aim of the study is to provide a better perception regarding the use of virtual mapping of landslides with the help of LiDAR technology. The focus of the study is spatio temporal detection and virtual mapping of landslide inventory via visualization and interpretation of very high-resolution data (VHR) in forested terrain of Mesilau river, Kundasang. However, to cope with the challenges of virtual inventory mapping on in forested terrain high resolution LiDAR derivatives are used. This study specifies that the airborne LiDAR technology can be an effective tool for mapping landslide inventories in a complex climatic and geological conditions, and a quick way of mapping regional hazards in the tropics.

  5. Object-based Landslide Mapping: Examples, Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Hölbling, Daniel; Eisank, Clemens; Friedl, Barbara; Chang, Kang-Tsung; Tsai, Tsai-Tsung; Birkefeldt Møller Pedersen, Gro; Betts, Harley; Cigna, Francesca; Chiang, Shou-Hao; Aubrey Robson, Benjamin; Bianchini, Silvia; Füreder, Petra; Albrecht, Florian; Spiekermann, Raphael; Weinke, Elisabeth; Blaschke, Thomas; Phillips, Chris

    2016-04-01

    Over the last decade, object-based image analysis (OBIA) has been increasingly used for mapping landslides that occur after triggering events such as heavy rainfall. The increasing availability and quality of Earth Observation (EO) data in terms of temporal, spatial and spectral resolution allows for comprehensive mapping of landslides at multiple scales. Most often very high resolution (VHR) or high resolution (HR) optical satellite images are used in combination with a digital elevation model (DEM) and its products such as slope and curvature. Semi-automated object-based mapping makes use of various characteristics of image objects that are derived through segmentation. OBIA enables numerous spectral, spatial, contextual and textural image object properties to be applied during an analysis. This is especially useful when mapping complex natural features such as landslides and constitutes an advantage over pixel-based image analysis. However, several drawbacks in the process of object-based landslide mapping have not been overcome yet. The developed classification routines are often rather complex and limited regarding their transferability across areas and sensors. There is still more research needed to further improve present approaches and to fully exploit the capabilities of OBIA for landslide mapping. In this study several examples of object-based landslide mapping from various geographical regions with different characteristics are presented. Examples from the Austrian and Italian Alps are shown, whereby one challenge lies in the detection of small-scale landslides on steep slopes while preventing the classification of false positives with similar spectral properties (construction areas, utilized land, etc.). Further examples feature landslides mapped in Iceland, where the differentiation of landslides from other landscape-altering processes in a highly dynamic volcanic landscape poses a very distinct challenge, and in Norway, which is exposed to multiple types of landslides. Unlike in these northern European countries, landslides in Taiwan can be effectively delineated based on spectral differences as the surrounding is most often densely vegetated. In this tropical/subtropical region the fast information provision after Typhoon events is important. This need can be addressed in OBIA by automatically calculating thresholds based on vegetation indices and using them for a first rough identification of areas affected by landslides. Moreover, the differentiation in landslide source and transportation area is of high relevance in Taiwan. Finally, an example from New Zealand, where landslide inventory mapping is important for estimating surface erosion, will demonstrate the performance of OBIA compared to visual expert interpretation and on-screen mapping. The associated challenges and opportunities related to case studies in each of these regions are discussed and reviewed. In doing so, open research issues in object-based landslide mapping based on EO data are identified and highlighted.

  6. Colorectal carcinoma: Ex vivo evaluation using 3-T high-spatial-resolution quantitative T2 mapping and its correlation with histopathologic findings.

    PubMed

    Yamada, Ichiro; Yoshino, Norio; Hikishima, Keigo; Miyasaka, Naoyuki; Yamauchi, Shinichi; Uetake, Hiroyuki; Yasuno, Masamichi; Saida, Yukihisa; Tateishi, Ukihide; Kobayashi, Daisuke; Eishi, Yoshinobu

    2017-05-01

    In this study, we aimed to evaluate the feasibility of determining the mural invasion depths of colorectal carcinomas using high-spatial-resolution (HSR) quantitative T2 mapping on a 3-T magnetic resonance (MR) scanner. Twenty colorectal specimens containing adenocarcinomas were imaged on a 3-T MR system equipped with a 4-channel phased-array surface coil. HSR quantitative T2 maps were acquired using a spin-echo sequence with a repetition time/echo time of 7650/22.6-361.6ms (16 echoes), 87×43.5-mm field of view, 2-mm section thickness, 448×224 matrix, and average of 1. HSR fast-spin-echo T2-weighted images were also acquired. Differences between the T2 values (ms) of the tumor tissue, colorectal wall layers, and fibrosis were measured, and the MR images and histopathologic findings were compared. In all specimens (20/20, 100%), the HSR quantitative T2 maps clearly depicted an 8-layer normal colorectal wall in which the T2 values of each layer differed from those of the adjacent layer(s) (P<0.001). Using this technique, fibrosis (73.6±9.4ms) and tumor tissue (104.2±6.4ms) could also be clearly differentiated (P<0.001). In 19 samples (95%), the HSR quantitative T2 maps and histopathologic data yielded the same findings regarding the tumor invasion depth. Our results indicate that 3-T HSR quantitative T2 mapping is useful for distinguishing colorectal wall layers and differentiating tumor and fibrotic tissues. Accordingly, this technique could be used to determine mural invasion by colorectal carcinomas with a high level of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Whole-central nervous system functional imaging in larval Drosophila

    PubMed Central

    Lemon, William C.; Pulver, Stefan R.; Höckendorf, Burkhard; McDole, Katie; Branson, Kristin; Freeman, Jeremy; Keller, Philipp J.

    2015-01-01

    Understanding how the brain works in tight concert with the rest of the central nervous system (CNS) hinges upon knowledge of coordinated activity patterns across the whole CNS. We present a method for measuring activity in an entire, non-transparent CNS with high spatiotemporal resolution. We combine a light-sheet microscope capable of simultaneous multi-view imaging at volumetric speeds 25-fold faster than the state-of-the-art, a whole-CNS imaging assay for the isolated Drosophila larval CNS and a computational framework for analysing multi-view, whole-CNS calcium imaging data. We image both brain and ventral nerve cord, covering the entire CNS at 2 or 5 Hz with two- or one-photon excitation, respectively. By mapping network activity during fictive behaviours and quantitatively comparing high-resolution whole-CNS activity maps across individuals, we predict functional connections between CNS regions and reveal neurons in the brain that identify type and temporal state of motor programs executed in the ventral nerve cord. PMID:26263051

  8. Morphological characterization of coral reefs by combining lidar and MBES data: A case study from Yuanzhi Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Yang, Fanlin; Zhang, Hande; Su, Dianpeng; Li, QianQian

    2017-06-01

    The correlation between seafloor morphological features and biological complexity has been identified in numerous recent studies. This research focused on the potential for accurate characterization of coral reefs based on high-resolution bathymetry from multiple sources. A standard deviation (STD) based method for quantitatively characterizing terrain complexity was developed that includes robust estimation to correct for irregular bathymetry and a calibration for the depth-dependent variablity of measurement noise. Airborne lidar and shipborne sonar bathymetry measurements from Yuanzhi Island, South China Sea, were merged to generate seamless high-resolution coverage of coral bathymetry from the shoreline to deep water. The new algorithm was applied to the Yuanzhi Island surveys to generate maps of quantitive terrain complexity, which were then compared to in situ video observations of coral abundance. The terrain complexity parameter is significantly correlated with seafloor coral abundance, demonstrating the potential for accurately and efficiently mapping coral abundance through seafloor surveys, including combinations of surveys using different sensors.

  9. Mapping Land Cover and Land Use Changes in the Congo Basin Forests with Optical Satellite Remote Sensing: a Pilot Project Exploring Methodologies that Improve Spatial Resolution and Map Accuracy

    NASA Astrophysics Data System (ADS)

    Molinario, G.; Baraldi, A.; Altstatt, A. L.; Nackoney, J.

    2011-12-01

    The University of Maryland has been a USAID Central Africa Rregional Program for the Environment (CARPE) cross-cutting partner for many years, providing remote sensing derived information on forest cover and forest cover changes in support of CARPE's objectives of diminishing forest degradation, loss and biodiversity loss as a result of poor or inexistent land use planning strategies. Together with South Dakota State University, Congo Basin-wide maps have been provided that map forest cover loss at a maximum of 60m resolution, using Landsat imagery and higher resolution imagery for algorithm training and validation. However, to better meet the needs within the CARPE Landscapes, which call for higher resolution, more accurate land cover change maps, UMD has been exploring the use of the SIAM automatic spectral -rule classifier together with pan-sharpened Landsat data (15m resolution) and Very High Resolution imagery from various sources. The pilot project is being developed in collaboration with the African Wildlife Foundation in the Maringa Lopori Wamba CARPE Landscape. If successful in the future this methodology will make the creation of high resolution change maps faster and easier, making it accessible to other entities in the Congo Basin that need accurate land cover and land use change maps in order, for example, to create sustainable land use plans, conserve biodiversity and resources and prepare Reducing Emissions from forest Degradation and Deforestation (REDD) Measurement, Reporting and Verification (MRV) projects. The paper describes the need for higher resolution land cover change maps that focus on forest change dynamics such as the cycling between primary forests, secondary forest, agriculture and other expanding and intensifying land uses in the Maringa Lopori Wamba CARPE Landscape in the Equateur Province of the Democratic Republic of Congo. The Methodology uses the SIAM remote sensing imagery automatic spectral rule classifier, together with pan-sharpened Landsat imagery with 15m resolution and Very High Resolution imagery from different sensors, obtained from the Department of Defense database that was recently opened to NASA and its Earth Observation partners. Particular emphasis is placed on the detection of agricultural fields and their expansion in primary forests or intensification in secondary forests and fallow fields, as this is the primary driver of deforestation in this area. Fields in this area area also of very small size and irregular shapes, often partly obscured by neighboring forest canopy, hence the technical challenge of correctly detecting them and tracking them through time. Finally, the potential for use of this methodology in other regions where information on land cover changes is needed for land use sustainability planning, is also addressed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chung-Yeh; Wolf, William J.; Levartovsky, Yehonatan

    We report the critical role in surface reactions and heterogeneous catalysis of metal atoms with low coordination numbers, such as found at atomic steps and surface defects, is firmly established. But despite the growing availability of tools that enable detailed in situ characterization, so far it has not been possible to document this role directly. Surface properties can be mapped with high spatial resolution, and catalytic conversion can be tracked with a clear chemical signature; however, the combination of the two, which would enable high-spatial-resolution detection of reactions on catalytic surfaces, has rarely been achieved. Single-molecule fluorescence spectroscopy has beenmore » used to image and characterize single turnover sites at catalytic surfaces, but is restricted to reactions that generate highly fluorescing product molecules. Herein the chemical conversion of N-heterocyclic carbene molecules attached to catalytic particles is mapped using synchrotron-radiation-based infrared nanospectroscopy with a spatial resolution of 25 nanometres, which enabled particle regions that differ in reactivity to be distinguished. Lastly, these observations demonstrate that, compared to the flat regions on top of the particles, the peripheries of the particles-which contain metal atoms with low coordination numbers-are more active in catalysing oxidation and reduction of chemically active groups in surface-anchored N-heterocyclic carbene molecules.« less

  11. Clickstream data yields high-resolution maps of science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  12. Uncertainties in mapping forest carbon in urban ecosystems.

    PubMed

    Chen, Gang; Ozelkan, Emre; Singh, Kunwar K; Zhou, Jun; Brown, Marilyn R; Meentemeyer, Ross K

    2017-02-01

    Spatially explicit urban forest carbon estimation provides a baseline map for understanding the variation in forest vertical structure, informing sustainable forest management and urban planning. While high-resolution remote sensing has proven promising for carbon mapping in highly fragmented urban landscapes, data cost and availability are the major obstacle prohibiting accurate, consistent, and repeated measurement of forest carbon pools in cities. This study aims to evaluate the uncertainties of forest carbon estimation in response to the combined impacts of remote sensing data resolution and neighborhood spatial patterns in Charlotte, North Carolina. The remote sensing data for carbon mapping were resampled to a range of resolutions, i.e., LiDAR point cloud density - 5.8, 4.6, 2.3, and 1.2 pt s/m 2 , aerial optical NAIP (National Agricultural Imagery Program) imagery - 1, 5, 10, and 20 m. Urban spatial patterns were extracted to represent area, shape complexity, dispersion/interspersion, diversity, and connectivity of landscape patches across the residential neighborhoods with built-up densities from low, medium-low, medium-high, to high. Through statistical analyses, we found that changing remote sensing data resolution introduced noticeable uncertainties (variation) in forest carbon estimation at the neighborhood level. Higher uncertainties were caused by the change of LiDAR point density (causing 8.7-11.0% of variation) than changing NAIP image resolution (causing 6.2-8.6% of variation). For both LiDAR and NAIP, urban neighborhoods with a higher degree of anthropogenic disturbance unveiled a higher level of uncertainty in carbon mapping. However, LiDAR-based results were more likely to be affected by landscape patch connectivity, and the NAIP-based estimation was found to be significantly influenced by the complexity of patch shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Analysis of very-high-resolution Galileo images of Europa: Implications for small-scale structure and surface evolution

    NASA Astrophysics Data System (ADS)

    Leonard, E. J.; Pappalardo, R. T.; Yin, A.; Prockter, L. M.; Patthoff, D. A.

    2014-12-01

    The Galileo Solid State Imager (SSI) recorded nine very high-resolution frames (8 at 12 m/pixel and 1 at 6 m/pixel) during the E12 flyby of Europa in Dec. 1997. To understand the implications for the small-scale structure and evolution of Europa, we mosaicked these frames (observations 12ESMOTTLE01 and 02, incidence ≈18°, emission ≈77°) into their regional context (part of observation 11ESREGMAP01, 220 m/pixel, incidence ≈74°, emission ≈23°), despite their very different viewing and lighting conditions. We created a map of geological units based on morphology, structure, and albedo along with stereoscopic images where the frames overlapped. The highly diverse units range from: high albedo sub-parallel ridge and grooved terrain; to variegated-albedo hummocky terrain; to low albedo and relatively smooth terrain. We classified and analyzed the diverse units solely based on the high-resolution image mosaic, prior to comparison to the context image, to obtain an in-depth look at possible surface evolution and underlying formational processes. We infer that some of these units represent different stages and forms of resurfacing, including cryovolcanic and tectonic resurfacing. However, significant morphological variation among units in the region indicates that there are different degrees of resurfacing at work. We have created candidate morphological sequences that provide insight into the conversion of ridged plains to chaotic terrain—generally, a process of subduing formerly sharp features through tectonic modification and/or cryovolcanism. When the map of the high-resolution area is compared to the regional context, features that appear to be one unit at regional resolution are comprised of several distinct units at high resolution, and features that appear to be smooth in the context image are found to show distinct textures. Moreover, in the context image, transitions from ridged units to disrupted units appear to be gradual; however the high-resolution image reveals them to be abrupt, suggesting tectonic control of these boundaries. These discrepancies could have important implications for a future landed exploration.

  14. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  15. A comparative study of the SMAP passive soil moisture product with existing satellite-based soil moisture products

    USDA-ARS?s Scientific Manuscript database

    NASA Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015 to provide global mapping of high-resolution soil moisture and freeze thaw state every 2-3 days using an L-band (active) radar and an L-band (passive) radiometer. The radiometer-only soil moisture product (L2...

  16. Analysis and quality control of carbohydrates in therapeutic proteins with fluorescence HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kun; Huang, Jian; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054

    Conbercept is an Fc fusion protein with very complicated carbohydrate profiles which must be carefully monitored through manufacturing process. Here, we introduce an optimized fluorescence derivatization high-performance liquid chromatographic method for glycan mapping in conbercept. Compared with conventional glycan analysis method, this method has much better resolution and higher reproducibility making it excellent for product quality control.

  17. New insights into the geodiversity of the southeast Indian Ocean seafloor revealed by Malaysia Airlines flight MH370 search data

    NASA Astrophysics Data System (ADS)

    Picard, K.; Brooke, B. B.; Harris, P. T.; Siwabessy, J. P. W.; Coffin, M. F.; Tran, M.; Spinoccia, M.; Weales, J.; Macmillan-Lawler, M.; Sullivan, J.

    2017-12-01

    A large multibeam echo sounder (MBES) dataset (710, 000 km2, inclusive of transit data) was acquired in the SE Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370). Here, we present the results of a geomorphic analysis of this new data and compare with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite-derived bathymetry data. The analyses show that abyssal plains and basins are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting a greater number of these features than previously estimated for the broader region and indeed globally. This is important considering the potential ecological significance of these high-relief structures. Analyses of the new data also enabled knolls, fans, valleys, canyons, troughs and holes to be identified, doubling the number of discrete features mapped and revealing the true geodiversity of the deep ocean in this area. This high-resolution mapping of the seafloor also provides new insights into the geological evolution of the region, both in terms of structural, tectonic, and sedimentary processes. For example, sub-parallel ridges extend over approximately 20% of the area mapped and their form and alignment provide valuable insight into Southeast Indian Ridge seafloor spreading processes. Rifting is recorded along the Broken Ridge - Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock exposures discernible down to 2,400 m water depth. Ocean floor sedimentary processes are represented in sediment mass transport features, especially along and north of Broken Ridge, and pockmarks (the finest-scale features mapped) south of Diamantina Trench. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the 85-90% of the ocean floor that has not been mapped with this technology. The availability of high-resolution and accurate maps of the ocean floor can clearly provide new insights into the Earth's geological evolution, modern ocean floor processes, and the location of sites that are likely to have relatively high biodiversity.

  18. Single-pass Airborne InSAR for Wide-swath, High-Resolution Cryospheric Surface Topography Mapping

    NASA Astrophysics Data System (ADS)

    Moller, D.; Hensley, S.; Wu, X.; Muellerschoen, R.

    2014-12-01

    In May 2009 a mm-wave single-pass interferometric synthetic aperture radar (InSAR) for the first time demonstrated ice surface topography swath-mapping in Greenland. This was achieved with the airborne Glacier and Ice Surface Topography Interferometer (GLISTIN-A). Ka-band (35.6GHz) was chosen for high-precision topographic mapping from a compact sensor with minimal surface penetration. In recent years, the system was comprehensively upgraded for improved performance, stability and calibration. In April 2013, after completing the upgrades, GLISTIN-A flew a brief campaign to Alaska. The primary purpose was to demonstrate the InSAR's ability to generate high-precision, high resolution maps of ice surface topography with swaths in excess of 10km. Comparison of GLISTIN-A's elevations over glacial ice with lidar verified the precision requirements and established elevation accuracies to within 2 m without tie points. Feature tracking of crevasses on Columbia Glacier using data acquired with a 3-day separation exhibit an impressive velocity mapping capability. Furthermore, GLISTIN-A flew over the Beaufort sea to determine if we could not only map sea ice, but also measure freeboard. Initial analysis has established we can measure sea-ice freeboard using height differences from the top of the sea-ice and the sea surface in open leads. In the future, a campaign with lidar is desired for a quantitative validation. Another proof-of-concept collection mapped snow-basins for hydrology. Snow depth measurements using summer and winter collections in the Sierras were compared with lidar measurements. Unsurprisingly when present, trees complicate the interpretation, but additional filtering and processing is in work. For each application, knowledge of the interferometric penetration is important for scientific interpretation. We present analytical predictions and experimental data to upper bound the elevation bias of the InSAR measurements over snow and snow-covered ice.

  19. A new MAP for Mars

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Price, Steve; Clark, Ben; Cantrell, Jim; Bourke, Roger

    1993-01-01

    A Mars Aerial Platform (MAP) mission capable of generating thousands of very-high-resolution (20 cm/pixel) pictures of the Martian surface is considered. The MAP entry vehicle will map the global circulation of the planet's atmosphere and examine the surface and subsurface. Data acquisition will use instruments carried aboard balloons flying at nominal altitude of about 7 km over the Martian surface. The MAP balloons will take high- and medium-resolution photographs of Mars, sound its surface with radar, and provide tracking data to chart its winds. Mars vehicle design is based on the fourth-generation NTP, NEP, SEP vehicle set that provides a solid database for determining transportation system costs. Interference analysis and 3D image generation are performed using manual system sizing and sketching in conjunction with precise CAD modeling.

  20. Colorized Map of Ceres Mercator Projection

    NASA Image and Video Library

    2016-03-22

    The map is a Mercator projection and has a resolution of 460 feet 140 meters per pixel. The images used to make this map were taken from Dawn high-altitude mapping orbit HAMO, at a distance of 915 miles 1,470 kilometers from Ceres.

  1. Rainfall-induced slope failures near Los Angeles detected by time series of high-resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    McKinney, E.; Moon, S.

    2017-12-01

    Tectonically active, soil mantled, and often fire-scorched landscapes of the Los Angeles region are susceptible to slope failures, such as mudflow and landslides, during high-intensity precipitation events. During 2016-2017, this area received a precipitation rate that was 90 mm higher than the long-term precipitation rates averaged over 30 years. These precipitation rates were 24 % higher than the long-term averages and 245 % higher than those over the 2011-2016 period of drought. In this study, we examined the occurrences of slopes failures near Los Angeles in response to high rainfall rates over 2016-2017. We composited time series of high-resolution Planetscope satellite images with resolutions of 3 - 4 m/pixel for 4 selected locations after reviewing 190,000 km2 area in total. We mapped the surface changes by comparing satellite images before and after the winter 2016-2017. Preliminary analysis using spectral bands highlighted the surface changes made by mudflows, landslides, lake levels and land developments. We compared these changes across 2016-2017 with those over a period of recent drought (2011-2016) to assess the influence of high rainfall rates on slope failures.

  2. A new high resolution permafrost map of Iceland from Earth Observation data

    NASA Astrophysics Data System (ADS)

    Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair

    2017-04-01

    High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.

  3. Intra-operative mapping of the atria: the first step towards individualization of atrial fibrillation therapy?

    PubMed

    Kik, Charles; Mouws, Elisabeth M J P; Bogers, Ad J J C; de Groot, Natasja M S

    2017-07-01

    Atrial fibrillation (AF), an age-related progressive disease, is becoming a worldwide epidemic with a prevalence rate of 33 million. Areas covered: In this expert review, an overview of important results obtained from previous intra-operative mapping studies is provided. In addition, our novel intra-operative high resolution mapping studies, its surgical considerations and data analyses are discussed. Furthermore, the importance of high resolution mapping studies of both sinus rhythm and AF for the development of future AF therapy is underlined by our most recent results. Expert commentary: Progression of AF is determined by the extensiveness of electropathology which is defined as conduction disorders caused by structural damage of atrial tissue. The severity of electropathology is a major determinant of therapy failure. At present, we do not have any diagnostic tool to determine the degree of electropathology in the individual patient and we can thus not select the most optimal treatment modality for the individual patient. An intra-operative, high resolution scale, epicardial mapping approach combined with quantification of electrical parameters may serve as a diagnostic tool to stage AF in the individual patient and to provide patient tailored therapy.

  4. Overcoming complexities for consistent, continental-scale flood mapping

    NASA Astrophysics Data System (ADS)

    Smith, Helen; Zaidman, Maxine; Davison, Charlotte

    2013-04-01

    The EU Floods Directive requires all member states to produce flood hazard maps by 2013. Although flood mapping practices are well developed in Europe, there are huge variations in the scale and resolution of the maps between individual countries. Since extreme flood events are rarely confined to a single country, this is problematic, particularly for the re/insurance industry whose exposures often extend beyond country boundaries. Here, we discuss the challenges of large-scale hydrological and hydraulic modelling, using our experience of developing a 12-country model and set of maps, to illustrate how consistent, high-resolution river flood maps across Europe can be produced. The main challenges addressed include: data acquisition; manipulating the vast quantities of high-resolution data; and computational resources. Our starting point was to develop robust flood-frequency models that are suitable for estimating peak flows for a range of design flood return periods. We used the index flood approach, based on a statistical analysis of historic river flow data pooled on the basis of catchment characteristics. Historical flow data were therefore sourced for each country and collated into a large pan-European database. After a lengthy validation these data were collated into 21 separate analysis zones or regions, grouping smaller river basins according to their physical and climatic characteristics. The very large continental scale basins were each modelled separately on account of their size (e.g. Danube, Elbe, Drava and Rhine). Our methodology allows the design flood hydrograph to be predicted at any point on the river network for a range of return periods. Using JFlow+, JBA's proprietary 2D hydraulic hydrodynamic model, the calculated out-of-bank flows for all watercourses with an upstream drainage area exceeding 50km2 were routed across two different Digital Terrain Models in order to map the extent and depth of floodplain inundation. This generated modelling for a total river length of approximately 250,000km. Such a large-scale, high-resolution modelling exercise is extremely demanding on computational resources and would have been unfeasible without the use of Graphics Processing Units on a network of standard specification gaming computers. Our GPU grid is the world's largest flood-dedicated computer grid. The European river basins were split out into approximately 100 separate hydraulic models and managed individually, although care was taken to ensure flow continuity was maintained between models. The flood hazard maps from the modelling were pieced together using GIS techniques, to provide flood depth and extent information across Europe to a consistent scale and standard. After discussing the methodological challenges, we shall present our flood hazard maps and, from extensive validation work, compare these against historical flow records and observed flood extents.

  5. UAS close range remote sensing for mapping coastal environments

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Apostolos; Topouzelis, Kostantinos; Doukari, Michaela

    2017-09-01

    Coastline change and marine litter concentration in shoreline zones are two different emerging problems indicating the vulnerability as well as the quality of a coastal environment. Both problems present spatiotemporal changes due to weather and anthropogenic factors. Traditionally spatiotemporal changes in coastal environments are monitored using high-resolution satellite images and manned surveys. The last years, Unmanned Aerial Systems (UAS) are used as additional tool for monitoring environmental phenomena in sensitive coastal areas. In this study, two different case studies for mapping emerging coastal phenomena i.e. coastline changes and marine litter in Lesvos island, are presented. Both phenomena have increasing interest among scientists monitoring sensitive coastal areas. This paper outlines the integration of UAS for data acquisition and Structure from Motion (SfM) pipeline for the visualization of selected coastal areas in the Aegean Sea. The followed UAS-SfM methodology produces very detailed orthophoto maps. This high resolution spatial information is used for mapping and detecting primarily, marine litter on coastal and underwater zones and secondly, coastline changes and coastal erosion. More specific the produced orthophoto maps analyzed through GIS and with the use of the appropriate cartographic techniques the objective environmental parameters were mapped. Results showed that UAS-SfM pipeline produces geoinformation with high accuracy and spatial resolution that helps scientists to map with confidence environmental changes that take place in shoreline zones.

  6. Evaluation of a novel high-resolution mapping technology for ablation of recurrent scar-related atrial tachycardias.

    PubMed

    Anter, Elad; McElderry, Thomas H; Contreras-Valdes, Fernando M; Li, Jianqing; Tung, Patricia; Leshem, Eran; Haffajee, Charles I; Nakagawa, Hiroshi; Josephson, Mark E

    2016-10-01

    Rhythmia is a new technology capable of rapid and high-resolution mapping. However, its potential advantage over existing technologies in mapping complex scar-related atrial tachycardias (ATs) has not yet been evaluated. The purpose of this study was to examine the utility of Rhythmia for mapping scar-related ATs in patients who had failed previous ablation procedure(s). This multicenter study included 20 patients with recurrent ATs within 2 years after a previous ablation procedure (1.8 ± 0.7 per patient). In all cases, the ATs could not be adequately mapped during the index procedure because of scar with fractionated electrograms, precluding accurate time annotation, frequent change in the tachycardia in response to pacing, and/or degeneration into atrial fibrillation. These patients underwent repeat mapping and ablation procedure with Rhythmia. From a total of 28 inducible ATs, 24 were successfully mapped. Eighteen ATs (75%) terminated during radiofrequency ablation and 4 (16.6%) with catheter pressure or entrainment from the site of origin or isthmus. Two ATs that were mapped to the interatrial septum slowed but did not terminate with ablation. In 21 of 24 ATs the mechanism was macroreentry, while in 3 of 24 the mechanism was focal. Interestingly, in 5 patients with previously failed ablation of an allegedly "focal" tachycardia, high-resolution mapping demonstrated macroreentrant arrhythmia. The mean mapping time was 28.6 ± 17 minutes, and the mean radiofrequency ablation time to arrhythmia termination was 3.2 ± 2.6 minutes. During a mean follow-up of 7.5 ± 3.1 months, 15 of 20 patients (75%) were free of AT recurrences. The Rhythmia mapping system may be advantageous for mapping complex scar-related ATs. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. A map of dust reddening to 4.5 kpc from Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F.

    2014-07-01

    We present a map of the dust reddening to 4.5 kpc derived from Pan-STARRS1 stellar photometry. The map covers almost the entire sky north of declination –30° at a resolution of 7'-14', and is based on the estimated distances and reddenings to more than 500 million stars. The technique is designed to map dust in the Galactic plane, where many other techniques are stymied by the presence of multiple dust clouds at different distances along each line of sight. This reddening-based dust map agrees closely with the Schlegel et al. (SFD) far-infrared emission-based dust map away from the Galactic plane,more » and the most prominent differences between the two maps stem from known limitations of SFD in the plane. We also compare the map with Planck, finding likewise good agreement in general at high latitudes. The use of optical data from Pan-STARRS1 yields reddening uncertainty as low as 25 mmag E(B – V).« less

  8. Low cost, multiscale and multi-sensor application for flooded area mapping

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Notti, Davide; Villa, Alfredo; Zucca, Francesco; Calò, Fabiana; Pepe, Antonio; Dutto, Furio; Pari, Paolo; Baldo, Marco; Allasia, Paolo

    2018-05-01

    Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy) flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM) for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  9. Compartmentalized Low-Rank Recovery for High-Resolution Lipid Unsuppressed MRSI

    PubMed Central

    Bhattacharya, Ipshita; Jacob, Mathews

    2017-01-01

    Purpose To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition. Methods The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization. Results The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE)=55 ms. Conclusion The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. PMID:27851875

  10. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  11. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing.

    PubMed

    Midekisa, Alemayehu; Holl, Felix; Savory, David J; Andrade-Pacheco, Ricardo; Gething, Peter W; Bennett, Adam; Sturrock, Hugh J W

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth's land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources.

  12. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing

    PubMed Central

    Holl, Felix; Savory, David J.; Andrade-Pacheco, Ricardo; Gething, Peter W.; Bennett, Adam; Sturrock, Hugh J. W.

    2017-01-01

    Quantifying and monitoring the spatial and temporal dynamics of the global land cover is critical for better understanding many of the Earth’s land surface processes. However, the lack of regularly updated, continental-scale, and high spatial resolution (30 m) land cover data limit our ability to better understand the spatial extent and the temporal dynamics of land surface changes. Despite the free availability of high spatial resolution Landsat satellite data, continental-scale land cover mapping using high resolution Landsat satellite data was not feasible until now due to the need for high-performance computing to store, process, and analyze this large volume of high resolution satellite data. In this study, we present an approach to quantify continental land cover and impervious surface changes over a long period of time (15 years) using high resolution Landsat satellite observations and Google Earth Engine cloud computing platform. The approach applied here to overcome the computational challenges of handling big earth observation data by using cloud computing can help scientists and practitioners who lack high-performance computational resources. PMID:28953943

  13. Gauge Adjusted Global Satellite Mapping of Precipitation (GSMAP_GAUGE)

    NASA Astrophysics Data System (ADS)

    Mega, T.; Ushio, T.; Yoshida, S.; Kawasaki, Z.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S.

    2013-12-01

    Precipitation is one of the most important parameters on the earth system, and the global distribution of precipitation and its change are essential data for modeling the water cycle, maintaining the ecosystem environment, agricultural production, improvements of the weather forecast precision, flood warning and so on. The GPM (Global Precipitation Measurement) project is led mainly by the United States and Japan, and is now being actively promoted in Europe, France, India, and China with international cooperation. In this project, the microwave radiometers observing microwave emission from rain will be placed on many low-orbit satellites, to reduce the interval to about 3 hours in observation time for each location on the earth. However, the problem of sampling error arises if the global precipitation estimates are less than three hours. Therefore, it is necessary to utilize a gap-filling technique to generate precipitation maps with high temporal resolution, which is quite important for operational uses such as flash flood warning systems. Global Satellite Mapping of Precipitation (GSMaP) project was established by the Japan Science and Technology Agency (JST) in 2002 to produce global precipitation products with high resolution and high precision from not only microwave radiometers but also geostationary infrared radiometers. Currently, the GSMaP_MVK product has been successfully producing fairly good pictures in near real time, and the products shows a comparable score compared with other high-resolution precipitation systems (Ushio et al. 2009 and Kubota et al. 2009). However some evaluations particularly of the operational applications show the tendency of underestimation compared to some ground based observations for the cases showing extremely high precipitation rates. This is partly because the spatial and temporal samplings of the satellite estimates are different from that of the ground based estimates. The microwave imager observes signals from precipitation instantaneously, while the ground based rain gauges collects precipitation particles for one hour at a certain point. This discrepancy can cause the mismatch between the two estimates, and we need to fill the gap of the precipitation estimates between the satellite and rain gauge attributable to the spatial and temporal resolution difference. To that end, the gauge adjusted product named as GSMaP_Gauge has been developed. In this product, the CPC global gauge data analysis by Xie et al. (2007) and Chen et al. (2008) is used for the adjustment of the GSMaP_MVK data. In this presentation, the algorithm concept, examples of the product, and some validation results are presented.

  14. High-resolution imaging of the large non-human primate brain using microPET: a feasibility study

    NASA Astrophysics Data System (ADS)

    Naidoo-Variawa, S.; Hey-Cunningham, A. J.; Lehnert, W.; Kench, P. L.; Kassiou, M.; Banati, R.; Meikle, S. R.

    2007-11-01

    The neuroanatomy and physiology of the baboon brain closely resembles that of the human brain and is well suited for evaluating promising new radioligands in non-human primates by PET and SPECT prior to their use in humans. These studies are commonly performed on clinical scanners with 5 mm spatial resolution at best, resulting in sub-optimal images for quantitative analysis. This study assessed the feasibility of using a microPET animal scanner to image the brains of large non-human primates, i.e. papio hamadryas (baboon) at high resolution. Factors affecting image accuracy, including scatter, attenuation and spatial resolution, were measured under conditions approximating a baboon brain and using different reconstruction strategies. Scatter fraction measured 32% at the centre of a 10 cm diameter phantom. Scatter correction increased image contrast by up to 21% but reduced the signal-to-noise ratio. Volume resolution was superior and more uniform using maximum a posteriori (MAP) reconstructed images (3.2-3.6 mm3 FWHM from centre to 4 cm offset) compared to both 3D ordered subsets expectation maximization (OSEM) (5.6-8.3 mm3) and 3D reprojection (3DRP) (5.9-9.1 mm3). A pilot 18F-2-fluoro-2-deoxy-d-glucose ([18F]FDG) scan was performed on a healthy female adult baboon. The pilot study demonstrated the ability to adequately resolve cortical and sub-cortical grey matter structures in the baboon brain and improved contrast when images were corrected for attenuation and scatter and reconstructed by MAP. We conclude that high resolution imaging of the baboon brain with microPET is feasible with appropriate choices of reconstruction strategy and corrections for degrading physical effects. Further work to develop suitable correction algorithms for high-resolution large primate imaging is warranted.

  15. Downscaling Satellite Land Surface Temperatures in Urban Regions for Surface Energy Balance Study and Heat Index Development

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.

    2017-12-01

    A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This enables us to accurately build the relationship between LST, air temperature, and the heat index in the future.

  16. High resolution mapping of riffle-pool dynamics based on ADCP and close-range remote sensing data

    NASA Astrophysics Data System (ADS)

    Salmela, Jouni; Kasvi, Elina; Alho, Petteri

    2017-04-01

    Present development of mobile laser scanning (MLS) and close-range photogrammetry with unmanned aerial vehicle (UAV) enable us to create seamless digital elevation models (DEMs) of the riverine environment. Remote-controlled flow measurement platforms have also improved spatio-temporal resolution of the flow field data. In this study, acoustic Doppler current profiler (ADCP) attached to remote-controlled mini-boat, UAV-based bathymetry and MLS techniques were utilized to create the high-resolution DEMs of the river channel. These high-resolution measurements can be used in many fluvial applications such as computational fluid dynamics, channel change detection, habitat mapping or hydro-electric power plant planning. In this study we aim: 1) to analyze morphological changes of river channel especially riffle and pool formations based on fine-scale DEMs and ADCP measurements, 2) to analyze flow fields and their effect on morphological changes. The interest was mainly focused on reach-scale riffle-pool dynamics within two-year period of 2013 and 2014. The study was performed in sub-arctic meandering Pulmankijoki River located in Northern Finland. The river itself has shallow and clear water and sandy bed sediment. Discharge remains typically below 10 m3s-1 most of the year but during snow melt period in spring the discharge may exceed 70 m3s-1. We compared DEMs and ADCP measurements to understand both magnitude and spatio-temporal change of the river bed. Models were accurate enough to study bed form changes and locations and persistence of riffles and pools. We analyzed their locations with relation to flow during the peak and low discharge. Our demonstrated method has improved significantly spatio-temporal resolution of riverine DEMs compared to other cross-sectional and photogrammetry based models. Together with flow field measurements we gained better understanding of riverbed-water interaction

  17. Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping.

    PubMed

    Branco, Paulo; Seixas, Daniela; Castro, São Luís

    2018-03-01

    Resting-state fMRI is a well-suited technique to map functional networks in the brain because unlike task-based approaches it requires little collaboration from subjects. This is especially relevant in clinical settings where a number of subjects cannot comply with task demands. Previous studies using conventional scanner fields have shown that resting-state fMRI is able to map functional networks in single subjects, albeit with moderate temporal reliability. Ultra-high resolution (7T) imaging provides higher signal-to-noise ratio and better spatial resolution and is thus well suited to assess the temporal reliability of mapping results, and to determine if resting-state fMRI can be applied in clinical decision making including preoperative planning. We used resting-state fMRI at ultra-high resolution to examine whether the sensorimotor and language networks are reliable over time - same session and one week after. Resting-state networks were identified for all subjects and sessions with good accuracy. Both networks were well delimited within classical regions of interest. Mapping was temporally reliable at short and medium time-scales as demonstrated by high values of overlap in the same session and one week after for both networks. Results were stable independently of data quality metrics and physiological variables. Taken together, these findings provide strong support for the suitability of ultra-high field resting-state fMRI mapping at the single-subject level. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Soil Erosion map of Europe based on high resolution input datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Ballabio, Cristiano; Alewell, Christine

    2015-04-01

    Modelling soil erosion in European Union is of major importance for agro-environmental policies. Soil erosion estimates are important inputs for the Common Agricultural Policy (CAP) and the implementation of the Soil Thematic Strategy. Using the findings of a recent pan-European data collection through the EIONET network, it was concluded that most Member States are applying the empirical Revised Universal Soil Loss Equation (RUSLE) for the modelling soil erosion at National level. This model was chosen for the pan-European soil erosion risk assessment and it is based on 6 input factors. Compared to past approaches, each of the factors is modelled using the latest pan-European datasets, expertise and data from Member states and high resolution remote sensing data. The soil erodibility (K-factor) is modelled using the recently published LUCAS topsoil database with 20,000 point measurements and incorporating the surface stone cover which can reduce K-factor by 15%. The rainfall erosivity dataset (R-factor) has been implemented using high temporal resolution rainfall data from more than 1,500 precipitation stations well distributed in Europe. The cover-management (C-factor) incorporates crop statistics and management practices such as cover crops, tillage practices and plant residuals. The slope length and steepness (combined LS-factor) is based on the first ever 25m Digital Elevation Model (DEM) of Europe. Finally, the support practices (P-factor) is modelled for first time at this scale taking into account the 270,000 LUCAS earth observations and the Good Agricultural and Environmental Condition (GAEC) that farmers have to follow in Europe. The high resolution input layers produce the final soil erosion risk map at 100m resolution and allow policy makers to run future land use, management and climate change scenarios.

  19. Correlation between high-resolution remote-sensing imagery and detailed field mapping in Cordilleran Miogeocline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, S.C.; Taranik, J.V.

    1986-05-01

    Selected areas were mapped at a scale of 1:6000 in the southern hot Creek Range (south-central Nevada), which is underlain by Paleozoic autochthonous limestone, shale, and sandstone, Paleozoic allochthonous chert and siltstone, and Tertiary rhyolitic to dactitic ash flow tuff. The mapping was compared with computer-processed Airborne Imaging Spectrometer (AIS) data and Landsat Thematic Mapper (TM) imagery. The AIS imagery of the Hot Creek Range was acquired in 1984 by a NASA C-130 aircraft; it has a spatial resolution of 12 m, and swath width of 380 m. The sensor was developed by the Jet Propulsion Laboratory and is themore » first in a series of NASA imaging spectrometers. The AIS collects 128 spectral bands, having a bandwidth of approximately 9 nm, in the short-wave infrared between 1.2 and 2.4 ..mu..m. This part of the spectrum contains important narrow spectral absorption features for the carbonate ion, hydroxyl ion, and water of hydration. Using computer-processed AIS imagery, therefore, the authors can separate calcite from dolomite, and kaolinite from illite and montmorillonite as well as differentiate geologic units containing these minerals. On the AIS imagery, the Upper Mississippian Tripon Pass Limestone shows a distinctive calcite absorption feature at 2.34 ..mu..m; this feature is not as pronounced in Cambrian and Ordovician limestones. The dolomitized Nevada Formation exhibits the dolomite absorption feature at 2.32 ..mu..m. Clay mineral absorption features near 2.2 ..mu..m can be distinguished in altered volcanics. Mineralogic identification was confirmed with field and laboratory spectroradiometer measurements, thin-section examination, and x-ray analysis. AIS results and field mapping were also compared to computer-processed Landsat TM imagery, the highest spectral and spatial resolution worldwide data set currently available.« less

  20. Updating National Topographic Data Base Using Change Detection Methods

    NASA Astrophysics Data System (ADS)

    Keinan, E.; Felus, Y. A.; Tal, Y.; Zilberstien, O.; Elihai, Y.

    2016-06-01

    The traditional method for updating a topographic database on a national scale is a complex process that requires human resources, time and the development of specialized procedures. In many National Mapping and Cadaster Agencies (NMCA), the updating cycle takes a few years. Today, the reality is dynamic and the changes occur every day, therefore, the users expect that the existing database will portray the current reality. Global mapping projects which are based on community volunteers, such as OSM, update their database every day based on crowdsourcing. In order to fulfil user's requirements for rapid updating, a new methodology that maps major interest areas while preserving associated decoding information, should be developed. Until recently, automated processes did not yield satisfactory results, and a typically process included comparing images from different periods. The success rates in identifying the objects were low, and most were accompanied by a high percentage of false alarms. As a result, the automatic process required significant editorial work that made it uneconomical. In the recent years, the development of technologies in mapping, advancement in image processing algorithms and computer vision, together with the development of digital aerial cameras with NIR band and Very High Resolution satellites, allow the implementation of a cost effective automated process. The automatic process is based on high-resolution Digital Surface Model analysis, Multi Spectral (MS) classification, MS segmentation, object analysis and shape forming algorithms. This article reviews the results of a novel change detection methodology as a first step for updating NTDB in the Survey of Israel.

  1. Comparison of CO2 Emissions Data for 30 Cities from Different Sources

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Koide, D.; Ito, A.; Saito, M.; Hirata, R.

    2017-12-01

    Many sources suggest that cities account for a large proportion of global anthropogenic greenhouse gas emissions. Therefore, in search for the best ways to reduce total anthropogenic greenhouse gas emissions, a focus on the city emission is crucial. In this study, we collected CO2 emissions data in 30 cities during 1990-2015 and evaluated the degree of variance between data sources. The CO2 emissions data were obtained from academic papers, municipal reports, and high-resolution emissions maps (CIDIACv2016, EDGARv4.2, ODIACv2016, and FFDASv2.0). To extract urban CO2 emissions from the high-resolution emissions maps, urban fraction ranging from 0 to 1 was calculated for each 1×1 degree grid cell using the global land cover data (SYNMAP). Total CO2 emissions from the grid cells in which urban fraction occupies greater than or equal to 0.9 were regarded as urban CO2 emissions. The estimated CO2 emissions varied greatly depending on the information sources, even in the same year. There was a large difference between CO2 emissions collected from academic papers, municipal reports, and those extracted from high-resolution emissions maps. One reason is that they use different city boundaries. That is, the city proper (i.e. the political city boundary) is often defined as the city boundary in academic papers and municipal reports, whereas the urban area is used in the high-resolution emissions maps. Furthermore, there was a large variation in CO2 emissions collected from academic papers and municipal reports. These differences may be due to the difference in the assumptions such as allocation ratio of CO2 emissions to producers and consumers. In general, the consumption-based assignment of emissions gives higher estimates of urban CO2 emission in comparison with production-based assignment. Furthermore, there was also a large variation in CO2 emissions extracted from high-resolution emissions maps. This difference would be attributable to differences in information used in the spatial disaggregation of emissions. To identify the CO2 emissions from cities, it is necessary to determine common definitions of city boundaries, allocation ratio of CO2 emissions to consumption and production, and refined approach of the spatial disaggregation of CO2 emissions in high-resolution emissions maps.

  2. Geologic map of the Galaxias quadrangle (MTM 35217) of Mars

    USGS Publications Warehouse

    De Hon, Rene A.; Mouginis-Mark, Peter J.; Brick, Eugene E.

    1999-01-01

    The Galaxias region (MTM 35217) is one of a series of 1:500,000-scale science study areas on Mars sponsored by NASA's Planetary Geology and Geophysics Program. Situated near the northern limit of lava flows associated with Elysium Mons, this region includes a mixture of volcanic and nonvolcanic terrains. The region is also of interest for the fluvial systems that originate along the distal margins of the Elysium lava flows. Resolution of Viking Orbiter images used to prepare the base map ranges from 40 to 160 m/pixel. High-resolution frames (40 to 80 m/pixel) are found in the southeastern part of the map area and along the north edge of the quadrangle, but over half the quadrangle is included in medium-resolution frames (150 m/pixel). Two 8 m/pixel, very high resolution scenes are available (see fig. 1). Interpretation is complicated by variable resolution and sun angles that vary from east to west illumination on different images. Mapping methods and principles are adapted from those developed for lunar photogeologic mapping by Shoemaker and Hackman (1962), refined by Wilhelms (1972), and successfully applied by many workers to a variety of planetary surfaces. Mapping units are distinguished by topography and texture and are ranked by relative age on the basis of superposition and transection relations. Material units are assigned to time-stratigraphic systems defined by Scott and Carr (1978) and Tanaka (1986). This area is included within earlier maps that used Mariner 9 images at 1:5,000,000 scale (Elston, 1979) and globally at 1:25,000,000 scale (Scott and Carr, 1978). Regional maps based on the much higher resolutions of Viking Orbiter allowed more detailed discrimination of materials by Greeley and Guest (1987) at 1:15,000,000 scale and Tanaka and others (1992) at 1:5,000,000 scale. Some map units on this 1:500,000-scale map correspond to, or are partially equivalent to, units on the larger scale maps of Greeley and Guest (1987) and Tanaka and others (1992). Established terminology is used where feasible, but the scale of this map requires that some new units be introduced and that some previous terminology be redefined. Photogeologic methods are limited; therefore, more than one geologic explanation is given for some material units that do not readily lend themselves to an unequivocal interpretation.

  3. An integrated and highly sensitive ultrafast acoustoelectric imaging system for biomedical applications

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Dansette, Pierre-Marc; Tanter, Mickaël; Pernot, Mathieu; Provost, Jean

    2017-07-01

    Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium’s electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.

  4. The sea lamprey meiotic map improves resolution of ancient vertebrate genome duplications.

    PubMed

    Smith, Jeramiah J; Keinath, Melissa C

    2015-08-01

    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ∼550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ∼ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution. © 2015 Smith and Keinath; Published by Cold Spring Harbor Laboratory Press.

  5. The Importance of Chaos and Lenticulae on Europa for the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Spaun, Nicole A.

    2003-01-01

    The Galileo Solid State Imaging (SSI) experiment provided high-resolution images of Europa's surface allowing identification of surface features barely distinguishable at Voyager's resolution. SSI revealed the visible pitting on Europa's surface to be due to large disrupted features, chaos, and smaller sub-circular patches, lenticulae. Chaos features contain a hummocky matrix material and commonly contain dislocated blocks of ridged plains. Lenticulae are morphologically interrelated and can be divided into three classes: domes, spots, and micro-chaos. Domes are broad, upwarped features that generally do not disrupt the texture of the ridged plains. Spots are areas of low albedo that are generally smooth in texture compared to other units. Micro-chaos are disrupted features with a hummocky matrix material, resembling that observed within chaos regions. Chaos and lenticulae are ubiquitous in the SSI regional map observations, which average approximately 200 meters per pixel (m/pxl) in resolution, and appear in several of the ultra-high resolution, i.e., better than 50 m/pxl, images of Europa as well. SSI also provided a number of multi-spectral observations of chaos and lenticulae. Using this dataset we have undertaken a thorough study of the morphology, size, spacing, stratigraphy, and color of chaos and lenticulae to determine their properties and evaluate models of their formation. Geological mapping indicates that chaos and micro-chaos have a similar internal morphology of in-situ degradation suggesting that a similar process was operating during their formation. The size distribution denotes a dominant size of 4-8 km in diameter for features containing hummocky material (i.e., chaos and micro-chaos). Results indicate a dominant spacing of 15 - 36 km apart. Chaos and lenticulae are generally among the youngest features stratigraphically observed on the surface, suggesting a recent change in resurfacing style. Also, the reddish non-icy materials on Europa's surface have high concentrations in many chaos and lenticulae features. Nonetheless, a complete global map of the distribution of chaos and lenticulae is not possible with the SSI dataset. Only <20% of the surface has been imaged at 200 m/pxl or better resolution, mostly of the near-equatorial regions. Color and ultra-high-res images have much less surface coverage. Thus we suggest that full global imaging of Europa at 200 m/pxl or better resolution, preferably in multi-spectral wavelengths, should be a high priority for the JIMO mission.

  6. High-resolution mapping of the triangle of Koch: Spatial heterogeneity of fast pathway atrionodal connections.

    PubMed

    Chua, Kelvin; Upadhyay, Gaurav A; Lee, Elliot; Aziz, Zaid; Beaser, Andrew D; Ozcan, Cevher; Broman, Michael; Nayak, Hemal M; Tung, Roderick

    2018-03-01

    Dedicated mapping studies of the triangle of Koch to characterize retrograde fast pathway activation have not been previously performed using high-resolution, 3-dimensional, multielectrode mapping technology. To delineate the activation pattern and spatial distribution of the retrograde fast pathway within the triangle of Koch during typical atrioventricular nodal reentrant tachycardia (AVNRT) and right ventricular pacing in a consecutive series of patients using the Rhythmia mapping system (Boston Scientific, Natick, MA). A total of 18 patients with symptomatic typical AVNRT referred for ablation underwent ultra high-density mapping of atrial activation with minielectrode basket configuration during tachycardia. The earliest atrial activation was mapped using automated annotation, with manual overreading by 2 independent observers. The triangle of Koch was classified into 3 anatomic regions: anteroseptal (His), midseptal, and posteroseptal (coronary sinus roof). Thirteen patients underwent mapping of atrial activation during ventricular pacing. A median of 422 mapping points (interquartile range 258-896 points) was acquired within the triangle of Koch during tachycardia. The most common site of earliest atrial activation within the triangle of Koch was anterior in 67% of patients (n = 12). Midseptal early atrial activation was seen in 17% (n = 3), and posteroseptal activation was observed in 11% (n = 2). One patient exhibited broad simultaneous activation of the entire triangle of Koch. Slow pathway potentials were not identified. With high-resolution multielectrode mapping, atrial activation during typical AVNRT exhibited anatomic variability and spatially heterogeneous activation within the triangle of Koch. These findings highlight the limitations of an anatomically based classification of atrioventricular nodal retrograde pathways. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. Comparing Pixel and Object-Based Approaches to Map an Understorey Invasive Shrub in Tropical Mixed Forests

    PubMed Central

    Niphadkar, Madhura; Nagendra, Harini; Tarantino, Cristina; Adamo, Maria; Blonda, Palma

    2017-01-01

    The establishment of invasive alien species in varied habitats across the world is now recognized as a genuine threat to the preservation of biodiversity. Specifically, plant invasions in understory tropical forests are detrimental to the persistence of healthy ecosystems. Monitoring such invasions using Very High Resolution (VHR) satellite remote sensing has been shown to be valuable in designing management interventions for conservation of native habitats. Object-based classification methods are very helpful in identifying invasive plants in various habitats, by their inherent nature of imitating the ability of the human brain in pattern recognition. However, these methods have not been tested adequately in dense tropical mixed forests where invasion occurs in the understorey. This study compares a pixel-based and object-based classification method for mapping the understorey invasive shrub Lantana camara (Lantana) in a tropical mixed forest habitat in the Western Ghats biodiversity hotspot in India. Overall, a hierarchical approach of mapping top canopy at first, and then further processing for the understorey shrub, using measures such as texture and vegetation indices proved effective in separating out Lantana from other cover types. In the first method, we implement a simple parametric supervised classification for mapping cover types, and then process within these types for Lantana delineation. In the second method, we use an object-based segmentation algorithm to map cover types, and then perform further processing for separating Lantana. The improved ability of the object-based approach to delineate structurally distinct objects with characteristic spectral and spatial characteristics of their own, as well as with reference to their surroundings, allows for much flexibility in identifying invasive understorey shrubs among the complex vegetation of the tropical forest than that provided by the parametric classifier. Conservation practices in tropical mixed forests can benefit greatly by adopting methods which use high resolution remotely sensed data and advanced techniques to monitor the patterns and effective functioning of native ecosystems by periodically mapping disturbances such as invasion. PMID:28620400

  8. Algorithms and methodology used in constructing high-resolution terrain databases

    NASA Astrophysics Data System (ADS)

    Williams, Bryan L.; Wilkosz, Aaron

    1998-07-01

    This paper presents a top-level description of methods used to generate high-resolution 3D IR digital terrain databases using soft photogrammetry. The 3D IR database is derived from aerial photography and is made up of digital ground plane elevation map, vegetation height elevation map, material classification map, object data (tanks, buildings, etc.), and temperature radiance map. Steps required to generate some of these elements are outlined. The use of metric photogrammetry is discussed in the context of elevation map development; and methods employed to generate the material classification maps are given. The developed databases are used by the US Army Aviation and Missile Command to evaluate the performance of various missile systems. A discussion is also presented on database certification which consists of validation, verification, and accreditation procedures followed to certify that the developed databases give a true representation of the area of interest, and are fully compatible with the targeted digital simulators.

  9. Semi-automated Approach to Mapping Sub-hectare Agricultural Fields using Very High Resolution Data in a High-Performance Computing Environment

    NASA Astrophysics Data System (ADS)

    Wooten, M.; Neigh, C. S. R.; Carroll, M.; McCarty, J. L.

    2017-12-01

    In areas susceptible to drought such as sub-Saharan Africa, Crop Area (CA) and agricultural mapping have become increasingly important as strain on natural ecosystems increases. In Ethiopia alone, the population has grown four-fold in the last 70 years, and rapidly growing human populations bring added stress to ecosystems as more wildlands are converted to pastures and subsistence agriculture. Monitoring change in agriculture is one of the more essential goals of famine early warning systems. However, due to the sub-hectare size of rainfed agricultural fields in regions such as Tigray, Ethiopia, moderate resolution satellite imagery is insufficient at capturing these smallholder farms. Thanks to the increasing density of observations and ease of access to very high resolution (VHR) data, we have developed a generalized method for mapping CA with VHR data and have used this to generate wall-to-wall CA map for the entire Tigray region and samples in Myanmar, Senegal, and Vietnam. Here we present the methodology and early results as well as potential future applications.

  10. Topographic Mapping of Pluto and Charon Using New Horizons Data

    NASA Astrophysics Data System (ADS)

    Schenk, P. M.; Beyer, R. A.; Moore, J. M.; Spencer, J. R.; McKinnon, W. B.; Howard, A. D.; White, O. M.; Umurhan, O. M.; Singer, K.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Ennico Smith, K.; Olkin, C.; Horizons Geology, New; Geophysics Imaging Team

    2016-06-01

    New Horizons 2015 flyby of the Pluto system has resulted in high-resolution topographic maps of Pluto and Charon, the most distant objects so mapped. DEM's over ~30% of each object were produced at 100-300 m vertical and 300-800 m spatial resolutions, in hemispheric maps and high-resolution linear mosaics. Both objects reveal more relief than was observed at Triton. The dominant 800-km wide informally named Sputnik Planum bright ice deposit on Pluto lies in a broad depression 3 km deep, flanked by dispersed mountains 3-5 km high. Impact craters reveal a wide variety of preservation states from pristine to eroded, and long fractures are several km deep with throw of 0-2 km. Topography of this magnitude suggests the icy shell of Pluto is relatively cold and rigid. Charon has global relief of at least 10 km, including ridges of 2-3 km and troughs of 3-5 km of relief. Impact craters are up to 6 km deep. Vulcan Planum consists of rolling plains and forms a topographic moat along its edge, suggesting viscous flow.

  11. Results on the spatial resolution of repetitive transcranial magnetic stimulation for cortical language mapping during object naming in healthy subjects.

    PubMed

    Sollmann, Nico; Hauck, Theresa; Tussis, Lorena; Ille, Sebastian; Maurer, Stefanie; Boeckh-Behrens, Tobias; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-10-24

    The spatial resolution of repetitive navigated transcranial magnetic stimulation (rTMS) for language mapping is largely unknown. Thus, to determine a minimum spatial resolution of rTMS for language mapping, we evaluated the mapping sessions derived from 19 healthy volunteers for cortical hotspots of no-response errors. Then, the distances between hotspots (stimulation points with a high error rate) and adjacent mapping points (stimulation points with low error rates) were evaluated. Mean distance values of 13.8 ± 6.4 mm (from hotspots to ventral points, range 0.7-30.7 mm), 10.8 ± 4.8 mm (from hotspots to dorsal points, range 2.0-26.5 mm), 16.6 ± 4.8 mm (from hotspots to apical points, range 0.9-27.5 mm), and 13.8 ± 4.3 mm (from hotspots to caudal points, range 2.0-24.2 mm) were measured. According to the results, the minimum spatial resolution of rTMS should principally allow for the identification of a particular gyrus, and according to the literature, it is in good accordance with the spatial resolution of direct cortical stimulation (DCS). Since measurement was performed between hotspots and adjacent mapping points and not on a finer-grained basis, we only refer to a minimum spatial resolution. Furthermore, refinement of our results within the scope of a prospective study combining rTMS and DCS for resolution measurement during language mapping should be the next step.

  12. High resolution and high sensitivity methods for oligosaccharide mapping and characterization by normal phase high performance liquid chromatography following derivatization with highly fluorescent anthranilic acid.

    PubMed

    Anumula, K R; Dhume, S T

    1998-07-01

    Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.

  13. Multiscale sampling of plant diversity: Effects of minimum mapping unit size

    USGS Publications Warehouse

    Stohlgren, T.J.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.

    1997-01-01

    Only a small portion of any landscape can be sampled for vascular plant diversity because of constraints of cost (salaries, travel time between sites, etc.). Often, the investigator decides to reduce the cost of creating a vegetation map by increasing the minimum mapping unit (MMU), and/or by reducing the number of vegetation classes to be considered. Questions arise about what information is sacrificed when map resolution is decreased. We compared plant diversity patterns from vegetation maps made with 100-ha, 50-ha, 2-ha, and 0.02-ha MMUs in a 754-ha study area in Rocky Mountain National Park, Colorado, United States, using four 0.025-ha and 21 0.1-ha multiscale vegetation plots. We developed and tested species-log(area) curves, correcting the curves for within-vegetation type heterogeneity with Jaccard's coefficients. Total species richness in the study area was estimated from vegetation maps at each resolution (MMU), based on the corrected species-area curves, total area of the vegetation type, and species overlap among vegetation types. With the 0.02-ha MMU, six vegetation types were recovered, resulting in an estimated 552 species (95% CI = 520-583 species) in the 754-ha study area (330 plant species were observed in the 25 plots). With the 2-ha MMU, five vegetation types were recognized, resulting in an estimated 473 species for the study area. With the 50-ha MMU, 439 plant species were estimated for the four vegetation types recognized in the study area. With the 100-ha MMU, only three vegetation types were recognized, resulting in an estimated 341 plant species for the study area. Locally rare species and keystone ecosystems (areas of high or unique plant diversity) were missed at the 2-ha, 50-ha, and 100-ha scales. To evaluate the effects of minimum mapping unit size requires: (1) an initial stratification of homogeneous, heterogeneous, and rare habitat types; and (2) an evaluation of within-type and between-type heterogeneity generated by environmental gradients and other factors. We suggest that at least some portions of vegetation maps created at a coarser level of resolution be validated at a higher level of resolution.

  14. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  15. Mapping global cropland and field size.

    PubMed

    Fritz, Steffen; See, Linda; McCallum, Ian; You, Liangzhi; Bun, Andriy; Moltchanova, Elena; Duerauer, Martina; Albrecht, Fransizka; Schill, Christian; Perger, Christoph; Havlik, Petr; Mosnier, Aline; Thornton, Philip; Wood-Sichra, Ulrike; Herrero, Mario; Becker-Reshef, Inbal; Justice, Chris; Hansen, Matthew; Gong, Peng; Abdel Aziz, Sheta; Cipriani, Anna; Cumani, Renato; Cecchi, Giuliano; Conchedda, Giulia; Ferreira, Stefanus; Gomez, Adriana; Haffani, Myriam; Kayitakire, Francois; Malanding, Jaiteh; Mueller, Rick; Newby, Terence; Nonguierma, Andre; Olusegun, Adeaga; Ortner, Simone; Rajak, D Ram; Rocha, Jansle; Schepaschenko, Dmitry; Schepaschenko, Maria; Terekhov, Alexey; Tiangwa, Alex; Vancutsem, Christelle; Vintrou, Elodie; Wenbin, Wu; van der Velde, Marijn; Dunwoody, Antonia; Kraxner, Florian; Obersteiner, Michael

    2015-05-01

    A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website. © 2015 John Wiley & Sons Ltd.

  16. Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Arthur; van Beuzekom, Martin; Bouwens, Bram

    Here, we demonstrate a coincidence velocity map imaging apparatus equipped with a novel time-stamping fast optical camera, Tpx3Cam, whose high sensitivity and nanosecond timing resolution allow for simultaneous position and time-of-flight detection. This single detector design is simple, flexible, and capable of highly differential measurements. We show detailed characterization of the camera and its application in strong field ionization experiments.

  17. Coincidence velocity map imaging using Tpx3Cam, a time stamping optical camera with 1.5 ns timing resolution

    DOE PAGES

    Zhao, Arthur; van Beuzekom, Martin; Bouwens, Bram; ...

    2017-11-07

    Here, we demonstrate a coincidence velocity map imaging apparatus equipped with a novel time-stamping fast optical camera, Tpx3Cam, whose high sensitivity and nanosecond timing resolution allow for simultaneous position and time-of-flight detection. This single detector design is simple, flexible, and capable of highly differential measurements. We show detailed characterization of the camera and its application in strong field ionization experiments.

  18. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.

  19. Spatial downscaling of soil prediction models based on weighted generalized additive models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D

    2017-09-11

    Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.

  20. Imaging Performance of Quantitative Transmission Ultrasound

    PubMed Central

    Lenox, Mark W.; Wiskin, James; Lewis, Matthew A.; Darrouzet, Stephen; Borup, David; Hsieh, Scott

    2015-01-01

    Quantitative Transmission Ultrasound (QTUS) is a tomographic transmission ultrasound modality that is capable of generating 3D speed-of-sound maps of objects in the field of view. It performs this measurement by propagating a plane wave through the medium from a transmitter on one side of a water tank to a high resolution receiver on the opposite side. This information is then used via inverse scattering to compute a speed map. In addition, the presence of reflection transducers allows the creation of a high resolution, spatially compounded reflection map that is natively coregistered to the speed map. A prototype QTUS system was evaluated for measurement and geometric accuracy as well as for the ability to correctly determine speed of sound. PMID:26604918

  1. Integration of myocardial scar identified by preoperative delayed contrast-enhanced MRI into a high-resolution mapping system for planning and guidance of VT ablation procedures

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.

    2017-03-01

    Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.

  2. Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing

    DOE PAGES

    Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.; ...

    2016-03-26

    In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less

  3. Mapping ephemeral stream networks in desert environments using very-high-spatial-resolution multispectral remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamada, Yuki; O'Connor, Ben L.; Orr, Andrew B.

    In this paper, understanding the spatial patterns of ephemeral streams is crucial for understanding how hydrologic processes influence the abundance and distribution of wildlife habitats in desert regions. Available methods for mapping ephemeral streams at the watershed scale typically underestimate the size of channel networks. Although remote sensing is an effective means of collecting data and obtaining information on large, inaccessible areas, conventional techniques for extracting channel features are not sufficient in regions that have small topographic gradients and subtle target-background spectral contrast. By using very high resolution multispectral imagery, we developed a new algorithm that applies landscape information tomore » map ephemeral channels in desert regions of the Southwestern United States where utility-scale solar energy development is occurring. Knowledge about landscape features and structures was integrated into the algorithm using a series of spectral transformation and spatial statistical operations to integrate information about landscape features and structures. The algorithm extracted ephemeral stream channels at a local scale, with the result that approximately 900% more ephemeral streams was identified than what were identified by using the U.S. Geological Survey’s National Hydrography Dataset. The accuracy of the algorithm in detecting channel areas was as high as 92%, and its accuracy in delineating channel center lines was 91% when compared to a subset of channel networks that were digitized by using the very high resolution imagery. Although the algorithm captured stream channels in desert landscapes across various channel sizes and forms, it often underestimated stream headwaters and channels obscured by bright soils and sparse vegetation. While further improvement is warranted, the algorithm provides an effective means of obtaining detailed information about ephemeral streams, and it could make a significant contribution toward improving the hydrological modelling of desert environments.« less

  4. Validation and Temporal Analysis of Lai and Fapar Products Derived from Medium Resolution Sensor

    NASA Astrophysics Data System (ADS)

    Claverie, M.; Vermote, E. F.; Baret, F.; Weiss, M.; Hagolle, O.; Demarez, V.

    2012-12-01

    Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) have been defined as Essential Climate Variables. Many Earth surface monitoring applications are based on global estimation combined with a relatively high frequency. The medium spatial resolution sensors (MRS), such as SPOT-VGT, MODIS or MERIS, have been widely used to provide land surface products (mainly LAI and FAPAR) to the scientific community. These products require quality assessment and consistency. However, due to consistency of the ground measurements spatial sampling, the medium resolution is not appropriate for direct validation with in situ measurements sampling. It is thus more adequate to use high spatial resolution sensors which can integrate the spatial variability. The recent availability of combined high spatial (8 m) and temporal resolutions (daily) Formosat-2 data allows to evaluate the accuracy and the temporal consistency of medium resolution sensors products. In this study, we proposed to validate MRS products over a cropland area and to analyze their spatial and temporal consistency. As a matter of fact, this study belongs to the Stage 2 of the validation, as defined by the Land Product Validation sub-group of the Earth Observation Satellites. Reference maps, derived from the aggregation of Formosat-2 data (acquired during the 2006-2010 period over croplands in southwest of France), were compared with (i) two existing global biophysical variables products (GEOV1/VGT and MODIS-15 coll. 5), and (ii) a new product (MODdaily) derived from the inversion of PROSAIL radiative transfer model (EMMAH, INRA Avignon) applied on MODIS BRDF-corrected daily reflectance. Their uncertainty was calculated with 105 LAI and FAPAR reference maps, which uncertainties (22 % for LAI and 12% for FAPAR) were evaluated with in situ measurements performed over maize, sunflower and soybean. Inter-comparison of coarse resolution (0.05°) products showed that LAI and FAPAR have consistent phenology (Figure). The GEOLAND-2 showed the smoothest time series due to a 30-day composite, while MODdaily noise was satisfactory (<12%). The RMSE of LAI calculated for the period 2006-2010 were 0.46 for GEOV1/VGT, 0.19 for MODIS-15 and 0.16 for MODdaily. A significant overestimation (bias=0.43) of the LAI peak were observed for GEOV1/VGT products, while MOD-15 showed a small underestimation (bias=-0.14) of highest LAI. Finally, over a larger area (a quarter of France) covered by cropland, grassland and forest, the products displayed a good spatial consistency.; LAI 2006-2010 time-series of a coarse resolution pixel of cropland (extent in upper-left corner). Products are compared to Formosat-2 reference maps.

  5. Near-real-time mosaics from high-resolution side-scan sonar

    USGS Publications Warehouse

    Danforth, William W.; O'Brien, Thomas F.; Schwab, W.C.

    1991-01-01

    High-resolution side-scan sonar has proven to be a very effective tool for stuyding and understanding the surficial geology of the seafloor. Since the mid-1970s, the US Geological Survey has used high-resolution side-scan sonar systems for mapping various areas of the continental shelf. However, two problems typically encountered included the short range and the high sampling rate of high-resolution side-scan sonar systems and the acquisition and real-time processing of the enormous volume of sonar data generated by high-resolution suystems. These problems were addressed and overcome in August 1989 when the USGS conducted a side-scan sonar and bottom sampling survey of a 1000-sq-km section of the continental shelf in the Gulf of Farallones located offshore of San Francisco. The primary goal of this survey was to map an area of critical interest for studying continental shelf sediment dynamics. This survey provided an opportunity to test an image processing scheme that enabled production of a side-scan sonar hard-copy mosaic during the cruise in near real-time.

  6. Evaluating an image-fusion algorithm with synthetic-image-generation tools

    NASA Astrophysics Data System (ADS)

    Gross, Harry N.; Schott, John R.

    1996-06-01

    An algorithm that combines spectral mixing and nonlinear optimization is used to fuse multiresolution images. Image fusion merges images of different spatial and spectral resolutions to create a high spatial resolution multispectral combination. High spectral resolution allows identification of materials in the scene, while high spatial resolution locates those materials. In this algorithm, conventional spectral mixing estimates the percentage of each material (called endmembers) within each low resolution pixel. Three spectral mixing models are compared; unconstrained, partially constrained, and fully constrained. In the partially constrained application, the endmember fractions are required to sum to one. In the fully constrained application, all fractions are additionally required to lie between zero and one. While negative fractions seem inappropriate, they can arise from random spectral realizations of the materials. In the second part of the algorithm, the low resolution fractions are used as inputs to a constrained nonlinear optimization that calculates the endmember fractions for the high resolution pixels. The constraints mirror the low resolution constraints and maintain consistency with the low resolution fraction results. The algorithm can use one or more higher resolution sharpening images to locate the endmembers to high spatial accuracy. The algorithm was evaluated with synthetic image generation (SIG) tools. A SIG developed image can be used to control the various error sources that are likely to impair the algorithm performance. These error sources include atmospheric effects, mismodeled spectral endmembers, and variability in topography and illumination. By controlling the introduction of these errors, the robustness of the algorithm can be studied and improved upon. The motivation for this research is to take advantage of the next generation of multi/hyperspectral sensors. Although the hyperspectral images will be of modest to low resolution, fusing them with high resolution sharpening images will produce a higher spatial resolution land cover or material map.

  7. Introduction and Testing of a Monitoring and Colony-Mapping Method for Waterbird Populations That Uses High-Speed and Ultra-Detailed Aerial Remote Sensing

    PubMed Central

    Bakó, Gábor; Tolnai, Márton; Takács, Ádám

    2014-01-01

    Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012

  8. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine

    PubMed Central

    Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to adapt portions of the pipeline to other family types, genotyping technologies or applications. PMID:26244767

  9. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; ...

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  10. Two-component Thermal Dust Emission Model: Application to the Planck HFI Maps

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2014-06-01

    We present full-sky, 6.1 arcminute resolution maps of dust optical depth and temperature derived by fitting the Finkbeiner et al. (1999) two-component dust emission model to the Planck HFI and IRAS 100 micron maps. This parametrization of the far infrared thermal dust SED as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody dust emission model. We expect our Planck-based maps of dust temperature and optical depth to form the basis for a next-generation, high-resolution extinction map which will additionally incorporate small-scale detail from WISE imaging.

  11. Block Adjustment and Image Matching of WORLDVIEW-3 Stereo Pairs and Accuracy Evaluation

    NASA Astrophysics Data System (ADS)

    Zuo, C.; Xiao, X.; Hou, Q.; Li, B.

    2018-05-01

    WorldView-3, as a high-resolution commercial earth observation satellite, which is launched by Digital Global, provides panchromatic imagery of 0.31 m resolution. The positioning accuracy is less than 3.5 meter CE90 without ground control, which can use for large scale topographic mapping. This paper presented the block adjustment for WorldView-3 based on RPC model and achieved the accuracy of 1 : 2000 scale topographic mapping with few control points. On the base of stereo orientation result, this paper applied two kinds of image matching algorithm for DSM extraction: LQM and SGM. Finally, this paper compared the accuracy of the point cloud generated by the two image matching methods with the reference data which was acquired by an airborne laser scanner. The results showed that the RPC adjustment model of WorldView-3 image with small number of GCPs could satisfy the requirement of Chinese Surveying and Mapping regulations for 1 : 2000 scale topographic maps. And the point cloud result obtained through WorldView-3 stereo image matching had higher elevation accuracy, the RMS error of elevation for bare ground area is 0.45 m, while for buildings the accuracy can almost reach 1 meter.

  12. Commercial vs professional UAVs for mapping

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Koukouvelas, Ioannis

    2017-09-01

    The continuous advancements in the technology behind Unmanned Aerial Vehicles (UAVs), in accordance with the consecutive decrease to their cost and the availability of photogrammetric software, make the use of UAVs an excellent tool for large scale mapping. In addition with the use of UAVs, the problems of increased costs, time consumption and the possible terrain accessibility problems, are significantly reduced. However, despite the growing number of UAV applications there has been a little quantitative assessment of UAV performance and of the quality of the derived products (orthophotos and Digital Surface Models). Here, we present results from field experiments designed to evaluate the accuracy of photogrammetrically-derived digital surface models (DSM) developed from imagery acquired with onboard digital cameras. We also show the comparison of the high resolution vs moderate resolution imagery for largescale geomorphic mapping. The acquired data analyzed in this study comes from a small commercial and a professional UAV. The test area was mapped using the same photogrammetric grid by the two UAVs. 3D models, DSMs and orthophotos were created using special software. Those products were compared to in situ survey measurements and the results are presented in this paper.

  13. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  14. Lessons Learned From Large-Scale Evapotranspiration and Root Zone Soil Moisture Mapping Using Ground Measurements (meteorological, LAS, EC) and Remote Sensing (METRIC)

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Allen, R. G.; Myint, S. W.; Ogden, F. L.

    2015-12-01

    Large scale mapping of evapotranspiration and root zone soil moisture is only possible when satellite images are used. The spatial resolution of this imagery typically depends on its temporal resolution or the satellite overpass time. For example, the Landsat satellite acquires images at 30 m resolution every 16 days while the MODIS satellite acquires images at 250 m resolution every day. In this study we deal with optical/thermal imagery that is impacted by cloudiness contrary to radar imagery that penetrates through clouds. Due to cloudiness, the temporal resolution of Landsat drops from 16 days to about one clear sky Landsat image per month in the southwestern USA and about one every ten years in the humid tropics of Panama. Only by launching additional satellites can the temporal resolution be improved. Since this is too costly, an alternative is found by using ground measurements with high temporal resolution (from minutes to days) but poor spatial resolution. The challenge for large-scale evapotranspiration and root zone soil moisture mapping is to construct a layer stack consisting of N time layers covering the period of interest each containing M pixels covering the region of interest. We will present examples of the Phoenix Active Management Area in AZ (14,600 km2), Green River Basin in WY (44,000 km2), the Kishwaukee Watershed in IL (3,150 km2), the area covered by Landsat Path 28/Row 35 in OK (30,000 km2) and the Agua Salud Watershed in Panama (200 km2). In these regions we used Landsat or MODIS imagery for mapping evapotranspiration and root zone soil moisture by the algorithm Mapping EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) together with meteorological measurements and sometimes either Large Aperture Scintillometers (LAS) or Eddy Covariance (EC). We conclude with lessons learned for future large-scale hydrological studies.

  15. A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome

    PubMed Central

    Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states. PMID:23675425

  16. Sub-hectare crop area mapped wall-to-wall in Tigray Ethiopia with HEC processing of WorldView sub-meter panchromatic image texture

    NASA Astrophysics Data System (ADS)

    Neigh, C. S. R.; Carroll, M.; Wooten, M.; McCarty, J. L.; Powell, B.; Husak, G. J.; Enenkel, M.; Hain, C.

    2017-12-01

    Global food production in the developing world occurs within sub-hectare fields that are difficult to identify with moderate resolution satellite imagery. Knowledge about the distribution of these fields is critical in food security programs. We developed a semi-automated image segmentation approach using wall-to-wall sub-meter imagery with high-end computing (HEC) to map crop area (CA) throughout Tigray, Ethiopia that encompasses over 41,000 km2. Our approach tested multiple HEC processing streams to reduce processing time and minimize mapping error. We applied multiple resolution smoothing kernels to capture differences in land surface texture associated to CA. Typically, very-small fields (mean < 2 ha) have a smooth image roughness compared to natural scrub/shrub woody vegetation at the 1 m scale and these features can be segmented in panchromatic imagery with multi-level histogram thresholding. We found multi-temporal very-high resolution (VHR) panchromatic imagery with multi-spectral VHR and moderate resolution imagery are sufficient in extracting critical CA information needed in food security programs. We produced a 2011 ‒ 2015 CA map using over 3,000 WorldView-1 panchromatic images wall-to-wall in 1/2° mosaics for Tigray, Ethiopia in 1 week. We evaluated CA estimates with nearly 3,000 WorldView-2 2 m multispectral 250 × 250 m image subsets, with seven expert interpretations, and with in-situ global positioning system (GPS) photography. Our CA estimates ranged from 32 to 41% in sub-regions of Tigray with median maximum per bin commission and omission errors of 11% and 1% respectively, with most of the error occurring in bins less than 15%. This empirical, simple, and low direct cost approach via U.S. government license agreement and HEC could be a viable big-data methodology to extract wall-to-wall CA for other regions of the world that have very-small agriculture fields with similar image texture.

  17. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  18. Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

    PubMed Central

    Mikos, Antonios G.; Jansen, John A.; Shroyer, Kenneth R.; Wang, Lihong V.; Sitharaman, Balaji

    2012-01-01

    Aims In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). Materials and Methods Optical-resolution (OR) and acoustic-resolution (AR) - Photoacoustic microscopy (PAM) was employed to detect, map and quantify the SWCNTs in a variety of tissue histological specimens and compared with other optical techniques (bright-field optical microscopy, Raman microscopy, near infrared (NIR) fluorescence microscopy). Results Both optical-resolution and acoustic-resolution PAM, allow the detection and quantification of SWCNTs in histological specimens with scalable spatial resolution and depth penetration. The noise-equivalent detection sensitivity to SWCNTs in the specimens was calculated to be as low as ∼7 pg. Image processing analysis further allowed the mapping, distribution, and quantification of the SWCNTs in the histological sections. Conclusions The results demonstrate the potential of PAM as a promising imaging technique to detect, map, and quantify SWCNTs in histological specimens, and could complement the capabilities of current optical and electron microscopy techniques in the analysis of histological specimens containing SWCNTs. PMID:22496892

  19. Analysis of lidar elevation data for improved identification and delineation of lands vulnerable to sea-level rise

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The importance of sea-level rise in shaping coastal landscapes is well recognized within the earth science community, but as with many natural hazards, communicating the risks associated with sea-level rise remains a challenge. Topography is a key parameter that influences many of the processes involved in coastal change, and thus, up-to-date, high-resolution, high-accuracy elevation data are required to model the coastal environment. Maps of areas subject to potential inundation have great utility to planners and managers concerned with the effects of sea-level rise. However, most of the maps produced to date are simplistic representations derived from older, coarse elevation data. In the last several years, vast amounts of high quality elevation data derived from lidar have become available. Because of their high vertical accuracy and spatial resolution, these lidar data are an excellent source of up-to-date information from which to improve identification and delineation of vulnerable lands. Four elevation datasets of varying resolution and accuracy were processed to demonstrate that the improved quality of lidar data leads to more precise delineation of coastal lands vulnerable to inundation. A key component of the comparison was to calculate and account for the vertical uncertainty of the elevation datasets. This comparison shows that lidar allows for a much more detailed delineation of the potential inundation zone when compared to other types of elevation models. It also shows how the certainty of the delineation of lands vulnerable to a given sea-level rise scenario is much improved when derived from higher resolution lidar data.

  20. Vastly accelerated linear least-squares fitting with numerical optimization for dual-input delay-compensated quantitative liver perfusion mapping.

    PubMed

    Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal

    2018-04-01

    To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Reciprocal Space Mapping of Macromolecular Crystals in the Home Laboratory

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Fewster, P. F.; Andrew, Norman; Boggon, T. J.; Judge, Russell A.; Pusey, Marc A.

    1999-01-01

    Reciprocal space mapping techniques are used widely by the materials science community to provide physical information about their crystal samples. We have used similar methods at synchrotron sources to look at the quality of macromolecular crystals produced both on the ground and under microgravity conditions. The limited nature of synchrotron time has led us to explore the use of a high resolution materials research diffractometer to perform similar measurements in the home laboratory. Although the available intensity is much reduced due to the beam conditioning necessary for high reciprocal space resolution, lower resolution data can be collected in the same detail as the synchrotron source. Experiments can be optimized at home to make most benefit from the synchrotron time available. Preliminary results including information on the mosaicity and the internal strains from reciprocal space maps will be presented.

  2. Rapid quantitative chemical mapping of surfaces with sub-2 nm resolution

    NASA Astrophysics Data System (ADS)

    Lai, Chia-Yun; Perri, Saverio; Santos, Sergio; Garcia, Ricardo; Chiesa, Matteo

    2016-05-01

    We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems.We present a theory that exploits four observables in bimodal atomic force microscopy to produce maps of the Hamaker constant H. The quantitative H maps may be employed by the broader community to directly interpret the high resolution of standard bimodal AFM images as chemical maps while simultaneously quantifying chemistry in the non-contact regime. We further provide a simple methodology to optimize a range of operational parameters for which H is in the closest agreement with the Lifshitz theory in order to (1) simplify data acquisition and (2) generalize the methodology to any set of cantilever-sample systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00496b

  3. Mapping the geographic distribution of canopy species communities in lowland Amazon rainforest with CAO-AToMS (Invited)

    NASA Astrophysics Data System (ADS)

    Feret, J.; Asner, G. P.

    2013-12-01

    Mapping regional canopy diversity will greatly advance our understanding as well as the conservation of tropical rainforests. Changes in species composition across space and time are particularly important to understand the influence of climate, human activity and environmental factors on these ecosystems, but to date such monitoring is extremely challenging and is facing a scale gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. Advances were recently made in the field of spectroscopic imagery for the estimation of canopy alpha-diversity, and an original approach based on the segmentation of the spectral space proved its ability to estimate Shannon diversity index with unprecedented accuracy. We adapted this method in order to estimate spectral dissimilarity across landscape as a proxy for changes in species composition. We applied this approach and mapped species composition over four sites located in lowland rainforest of Peruvian Amazon. This study was based on spectroscopic imagery acquired using the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS), operating a unique sensor combining the fine spectral and spatial resolution required for such task. We obtained accurate estimation of Bray-Curtis distance between pairs of plots, which is the most commonly used metric to estimate dissimilarity in species composition (n=497 pairs, r=0.63). The maps of species composition were then compared to topo-hydrographic properties. Our results indicated a strong shift in species composition and community diversity between floodplain and terra firme terrain conditions as well as a significantly higher diversity of species communities within Amazonian floodplains. These results pave the way for global mapping of tropical canopy diversity at fine geographic resolution.

  4. Maps showing the change in modern sediment thickness on the Inner Continental Shelf offshore of Fire Island, New York, between 1996-97 and 2011

    USGS Publications Warehouse

    Schwab, William C.; Baldwin, Wayne E.; Denny, Jane F.

    2015-01-01

    The U.S. Geological Survey mapped approximately 336 square kilometers of the lower shoreface and inner continental shelf offshore of Fire Island, New York, in 1996 and 1997, using high-resolution sidescan-sonar and seismic-reflection systems, and again in 2011, using interferometric sonar and high-resolution chirp seismic-reflection systems. This report presents a comparison of sediment thickness and distribution as mapped during these two investigations. These spatial data support research on the Quaternary evolution of the Fire Island coastal system and provide baseline information for research on coastal processes along southern Long Island.

  5. A comparison of results obtained from foil chaff clouds at 69 deg northern latitude during winter, summer and autumn

    NASA Technical Reports Server (NTRS)

    Widdel, H. U.; Vonzahn, U.

    1989-01-01

    Results from high resolution foil chaff experiments flown during the campaigns MAP/WINE (December 83 to February 84), MAC/SINE (June to July 1987) and Epsilon (October to November 1987) at Andenes (Northern Norway) are compared to each other and the differences in wind direction and wave activity during the different seasons are worked out.

  6. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance

    Treesearch

    Elizabeth A. Freeman; Gretchen G. Moisen; John W. Coulston; Barry T. (Ty) Wilson

    2015-01-01

    As part of the development of the 2011 National Land Cover Database (NLCD) tree canopy cover layer, a pilot project was launched to test the use of high-resolution photography coupled with extensive ancillary data to map the distribution of tree canopy cover over four study regions in the conterminous US. Two stochastic modeling techniques, random forests (RF...

  7. Lidar on small UAV for 3D mapping

    NASA Astrophysics Data System (ADS)

    Tulldahl, H. Michael; Larsson, Hâkan

    2014-10-01

    Small UAV:s (Unmanned Aerial Vehicles) are currently in an explosive technical development phase. The performance of UAV-system components such as inertial navigation sensors, propulsion, control processors and algorithms are gradually improving. Simultaneously, lidar technologies are continuously developing in terms of reliability, accuracy, as well as speed of data collection, storage and processing. The lidar development towards miniature systems with high data rates has, together with recent UAV development, a great potential for new three dimensional (3D) mapping capabilities. Compared to lidar mapping from manned full-size aircraft a small unmanned aircraft can be cost efficient over small areas and more flexible for deployment. An advantage with high resolution lidar compared to 3D mapping from passive (multi angle) photogrammetry is the ability to penetrate through vegetation and detect partially obscured targets. Another advantage is the ability to obtain 3D data over the whole survey area, without the limited performance of passive photogrammetry in low contrast areas. The purpose of our work is to demonstrate 3D lidar mapping capability from a small multirotor UAV. We present the first experimental results and the mechanical and electrical integration of the Velodyne HDL-32E lidar on a six-rotor aircraft with a total weight of 7 kg. The rotating lidar is mounted at an angle of 20 degrees from the horizontal plane giving a vertical field-of-view of 10-50 degrees below the horizon in the aircraft forward directions. For absolute positioning of the 3D data, accurate positioning and orientation of the lidar sensor is of high importance. We evaluate the lidar data position accuracy both based on inertial navigation system (INS) data, and on INS data combined with lidar data. The INS sensors consist of accelerometers, gyroscopes, GPS, magnetometers, and a pressure sensor for altimetry. The lidar range resolution and accuracy is documented as well as the capability for target surface reflectivity estimation based on measurements on calibration standards. Initial results of the general mapping capability including the detection through partly obscured environments is demonstrated through field data collection and analysis.

  8. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  9. Agricultural Land Use mapping by multi-sensor approach for hydrological water quality monitoring

    NASA Astrophysics Data System (ADS)

    Brodsky, Lukas; Kodesova, Radka; Kodes, Vit

    2010-05-01

    The main objective of this study is to demonstrate potential of operational use of the high and medium resolution remote sensing data for hydrological water quality monitoring by mapping agriculture intensity and crop structures. In particular use of remote sensing mapping for optimization of pesticide monitoring. The agricultural mapping task is tackled by means of medium spatial and high temporal resolution ESA Envisat MERIS FR images together with single high spatial resolution IRS AWiFS image covering the whole area of interest (the Czech Republic). High resolution data (e.g. SPOT, ALOS, Landsat) are often used for agricultural land use classification, but usually only at regional or local level due to data availability and financial constraints. AWiFS data (nominal spatial resolution 56 m) due to the wide satellite swath seems to be more suitable for use at national level. Nevertheless, one of the critical issues for such a classification is to have sufficient image acquisitions over the whole vegetation period to describe crop development in appropriate way. ESA MERIS middle-resolution data were used in several studies for crop classification. The high temporal and also spectral resolution of MERIS data has indisputable advantage for crop classification. However, spatial resolution of 300 m results in mixture signal in a single pixel. AWiFS-MERIS data synergy brings new perspectives in agricultural Land Use mapping. Also, the developed methodology procedure is fully compatible with future use of ESA (GMES) Sentinel satellite images. The applied methodology of hybrid multi-sensor approach consists of these main stages: a/ parcel segmentation and spectral pre-classification of high resolution image (AWiFS); b/ ingestion of middle resolution (MERIS) vegetation spectro-temporal features; c/ vegetation signatures unmixing; and d/ semantic object-oriented classification of vegetation classes into final classification scheme. These crop groups were selected to be classified: winter crops, spring crops, oilseed rape, legumes, summer and other crops. This study highlights operational potentials of high temporal full resolution MERIS images in agricultural land use monitoring. Practical application of this methodology is foreseen, among others, in the water quality monitoring. Effective pesticide monitoring relies also on spatial distribution of applied pesticides, which can be derived from crop - plant protection product relationship. Knowledge of areas with predominant occurrence of specific crop based on remote sensing data described above can be used for a forecast of probable plant protection product application, thus cost-effective pesticide monitoring. The remote sensing data used on a continuous basis can be used in other long-term water management issues and provide valuable data for decision makers. Acknowledgement: Authors acknowledge the financial support of the Ministry of Education, Youth and Sports of the Czech Republic (grants No. 2B06095 and No. MSM 6046070901). The study was also supported by ESA CAT-1 (ref. 4358) and SOSI projects (Spatial Observation Services and Infrastructure; ref. GSTP-RTDA-EOPG-SW-08-0004).

  10. High-resolution three-dimensional imaging with compress sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  11. Scanning magnetic tunnel junction microscope for high-resolution imaging of remanent magnetization fields

    NASA Astrophysics Data System (ADS)

    Lima, E. A.; Bruno, A. C.; Carvalho, H. R.; Weiss, B. P.

    2014-10-01

    Scanning magnetic microscopy is a new methodology for mapping magnetic fields with high spatial resolution and field sensitivity. An important goal has been to develop high-performance instruments that do not require cryogenic technology due to its high cost, complexity, and limitation on sensor-to-sample distance. Here we report the development of a low-cost scanning magnetic microscope based on commercial room-temperature magnetic tunnel junction (MTJ) sensors that typically achieves spatial resolution better than 7 µm. By comparing different bias and detection schemes, optimal performance was obtained when biasing the MTJ sensor with a modulated current at 1.0 kHz in a Wheatstone bridge configuration while using a lock-in amplifier in conjunction with a low-noise custom-made preamplifier. A precision horizontal (x-y) scanning stage comprising two coupled nanopositioners controls the position of the sample and a linear actuator adjusts the sensor-to-sample distance. We obtained magnetic field sensitivities better than 150 nT/Hz1/2 between 0.1 and 10 Hz, which is a critical frequency range for scanning magnetic microscopy. This corresponds to a magnetic moment sensitivity of 10-14 A m2, a factor of 100 better than achievable with typical commercial superconducting moment magnetometers. It also represents an improvement in sensitivity by a factor between 10 and 30 compared to similar scanning MTJ microscopes based on conventional bias-detection schemes. To demonstrate the capabilities of the instrument, two polished thin sections of representative geological samples were scanned along with a synthetic sample containing magnetic microparticles. The instrument is usable for a diversity of applications that require mapping of samples at room temperature to preserve magnetic properties or viability, including paleomagnetism and rock magnetism, nondestructive evaluation of materials, and biological assays.

  12. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    NASA Astrophysics Data System (ADS)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  13. High-resolution mapping of the NO2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing

    NASA Astrophysics Data System (ADS)

    Tack, Frederik; Merlaud, Alexis; Iordache, Marian-Daniel; Danckaert, Thomas; Yu, Huan; Fayt, Caroline; Meuleman, Koen; Deutsch, Felix; Fierens, Frans; Van Roozendael, Michel

    2017-05-01

    We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear-sky conditions over the two largest and most heavily polluted Belgian cities, i.e. Antwerp and Brussels on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 aeroplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing urban plumes to be resolved at the resolution of 60 × 80 m2. The main sources in the Antwerp area appear to be related to the (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35 × 1015 molec cm-2, with a mean VCD of 17.4 ± 3.7 × 1015 molec cm-2. In the Brussels area, smaller levels are found, ranging between 1 and 20 × 1015 molec cm-2 and a mean VCD of 7.7 ± 2.1 × 1015 molec cm-2. The overall errors on the retrieved NO2 VCDs are on average 21 and 28 % for the Antwerp and Brussels data sets. Low VCD retrievals are mainly limited by noise (1σ slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements taken in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be, on average, 12 and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine-scale variability, can be mapped accurately with high spatial resolution and in a relatively short time frame, and the contributing emission sources can be resolved. High-resolution quantitative information about the atmospheric NO2 horizontal variability is currently rare, but can be very valuable for (air quality) studies at the urban scale.

  14. A novel intra-operative, high-resolution atrial mapping approach.

    PubMed

    Yaksh, Ameeta; van der Does, Lisette J M E; Kik, Charles; Knops, Paul; Oei, Frans B S; van de Woestijne, Pieter C; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S

    2015-12-01

    A new technique is demonstrated for extensive high-resolution intra-operative atrial mapping that will facilitate the localization of atrial fibrillation (AF) sources and identification of the substrate perpetuating AF. Prior to the start of extra-corporal circulation, a 8 × 24-electrode array (2-mm inter-electrode distance) is placed subsequently on all the right and left epicardial atrial sites, including Bachmann's bundle, for recording of unipolar electrograms during sinus rhythm and (induced) AF. AF is induced by high-frequency pacing at the right atrial free wall. A pacemaker wire stitched to the right atrium serves as a reference signal. The indifferent pole is connected to a steal wire fixed to subcutaneous tissue. Electrograms are recorded by a computerized mapping system and, after amplification (gain 1000), filtering (bandwidth 0.5-400 Hz), sampling (1 kHz) and analogue to digital conversion (16 bits), automatically stored on hard disk. During the mapping procedure, real-time visualization secures electrogram quality. Analysis will be performed offline. This technique was performed in 168 patients of 18 years and older, with coronary and/or structural heart disease, with or without AF, electively scheduled for cardiac surgery and a ventricular ejection fraction above 40 %. The mean duration of the entire mapping procedure including preparation time was 9 ± 2 min. Complications related to the mapping procedure during or after cardiac surgery were not observed. We introduce the first epicardial atrial mapping approach with a high resolution of ≥1728 recording sites which can be performed in a procedure time of only 9±2 mins. This mapping technique can potentially identify areas responsible for initiation and persistence of AF and hopefully can individualize both diagnosis and therapy of AF.

  15. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2002-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the south and southeastern shores of the United States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4-meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5-meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Gorges. Classification accuracy is being addressed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  16. Low Altitude AVIRIS Data for Mapping Landform Types on West Ship Island, Mississippi

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Otvos, Ervin; Giardino, Marco

    2003-01-01

    A chain of barrier islands provides protection against hurricanes and severe storms along the southern and southeastern shores of the Unites States. Barrier island landform types can be spectrally similar and as small as a few meters across, making highly detailed maps difficult to produce. To determine whether high-resolution airborne hyperspectral imagery could provide detailed maps of barrier island landform types, we used low-altitude hyperspectral and multispectral imagery to map surface environments of West Ship Island, Mississippi. We employed 3.4 meter AVIRIS hyperspectral imagery acquired in July 1999 and 0.5 meter ADAR multispectral data acquired in November 1997. The data were co-registered to digital ortho aerial imagery, and the AVIRIS data was scaled to ground reflectance using ATREM software. Unsupervised classification of AVIRIS and ADAR data proceeded using ISODATA clustering techniques. The resulting landform maps were field-checked and compared to aerial photography and digital elevation maps. Preliminary analyses indicated that the AVIRIS classification mapped more landform types, while the ADAR-based map enabled smaller patches to be identified. Used together, these maps provided a means to assess landform distributions of West Ship Island before and after Hurricane Georges. Classification accuracy is being assessed through photo-interpretation and field surveys of sample areas selected with stratified random sampling.

  17. Mapping seabed sediments: Comparison of manual, geostatistical, object-based image analysis and machine learning approaches

    NASA Astrophysics Data System (ADS)

    Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton

    2014-08-01

    Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.

  18. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  19. Comparison of Object-Based Image Analysis Approaches to Mapping New Buildings in Accra, Ghana Using Multi-Temporal QuickBird Satellite Imagery

    PubMed Central

    Tsai, Yu Hsin; Stow, Douglas; Weeks, John

    2013-01-01

    The goal of this study was to map and quantify the number of newly constructed buildings in Accra, Ghana between 2002 and 2010 based on high spatial resolution satellite image data. Two semi-automated feature detection approaches for detecting and mapping newly constructed buildings based on QuickBird very high spatial resolution satellite imagery were analyzed: (1) post-classification comparison; and (2) bi-temporal layerstack classification. Feature Analyst software based on a spatial contextual classifier and ENVI Feature Extraction that uses a true object-based image analysis approach of image segmentation and segment classification were evaluated. Final map products representing new building objects were compared and assessed for accuracy using two object-based accuracy measures, completeness and correctness. The bi-temporal layerstack method generated more accurate results compared to the post-classification comparison method due to less confusion with background objects. The spectral/spatial contextual approach (Feature Analyst) outperformed the true object-based feature delineation approach (ENVI Feature Extraction) due to its ability to more reliably delineate individual buildings of various sizes. Semi-automated, object-based detection followed by manual editing appears to be a reliable and efficient approach for detecting and enumerating new building objects. A bivariate regression analysis was performed using neighborhood-level estimates of new building density regressed on a census-derived measure of socio-economic status, yielding an inverse relationship with R2 = 0.31 (n = 27; p = 0.00). The primary utility of the new building delineation results is to support spatial analyses of land cover and land use and demographic change. PMID:24415810

  20. High spatial resolution infrared camera as ISS external experiment

    NASA Astrophysics Data System (ADS)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  1. Correlation matching method for high-precision position detection of optical vortex using Shack-Hartmann wavefront sensor.

    PubMed

    Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng

    2012-11-19

    We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.

  2. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  3. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data.

    PubMed

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  4. Individual Brain Charting, a high-resolution fMRI dataset for cognitive mapping.

    PubMed

    Pinho, Ana Luísa; Amadon, Alexis; Ruest, Torsten; Fabre, Murielle; Dohmatob, Elvis; Denghien, Isabelle; Ginisty, Chantal; Becuwe-Desmidt, Séverine; Roger, Séverine; Laurier, Laurence; Joly-Testault, Véronique; Médiouni-Cloarec, Gaëlle; Doublé, Christine; Martins, Bernadette; Pinel, Philippe; Eger, Evelyn; Varoquaux, Gaël; Pallier, Christophe; Dehaene, Stanislas; Hertz-Pannier, Lucie; Thirion, Bertrand

    2018-06-12

    Functional Magnetic Resonance Imaging (fMRI) has furthered brain mapping on perceptual, motor, as well as higher-level cognitive functions. However, to date, no data collection has systematically addressed the functional mapping of cognitive mechanisms at a fine spatial scale. The Individual Brain Charting (IBC) project stands for a high-resolution multi-task fMRI dataset that intends to provide the objective basis toward a comprehensive functional atlas of the human brain. The data refer to a cohort of 12 participants performing many different tasks. The large amount of task-fMRI data on the same subjects yields a precise mapping of the underlying functions, free from both inter-subject and inter-site variability. The present article gives a detailed description of the first release of the IBC dataset. It comprises a dozen of tasks, addressing both low- and high- level cognitive functions. This openly available dataset is thus intended to become a reference for cognitive brain mapping.

  5. Cruise report, RV ocean alert cruise A1-98-HW; January 30 through February 23, 1998, Honolulu to Honolulu, Hawaii

    USGS Publications Warehouse

    Gardner, James V.; Hughes-Clarke, John E.

    1998-01-01

    The major objective of cruise A1-98 was to map portions of the insular slopes of Oahu, Kauai, Maui, Molokai, and Hawaii and to survey in detail US Environmental Protection Agency (USEPA) ocean dumping sites using a Simrad EM300 high-resolution multibeam mapping system. The cruise was a jointly funded project between the US Army Corps of Engineers (USCOE), USEPA, and the US Geological Survey (USGS). The USACOE and EPA are interested in these areas because of a series of ocean dump sites off Oahu, Kauai, Maui, and Hawaii (Fig. 1) that require high-resolution base maps for site monitoring purposes. The USGS Coastal and Marine Geology Program has several on-going projects off Oahu and Maui that lack high-precision base maps for a variety of ongoing geological studies. The cruise was conducted under a Cooperative Agreement between the USGS and the Ocean Mapping Group, University of New Brunswick, Canada.

  6. A 50-m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment.

    PubMed

    Dong, Jinwei; Xiao, Xiangming; Sheldon, Sage; Biradar, Chandrashekhar; Zhang, Geli; Duong, Nguyen Dinh; Hazarika, Manzul; Wikantika, Ketut; Takeuhci, Wataru; Moore, Berrien

    2014-01-01

    Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×10(6) km(2) (GlobCover) to 2.69×10(6) km(2) (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity.

  7. A 50-m Forest Cover Map in Southeast Asia from ALOS/PALSAR and Its Application on Forest Fragmentation Assessment

    PubMed Central

    Dong, Jinwei; Xiao, Xiangming; Sheldon, Sage; Biradar, Chandrashekhar; Zhang, Geli; Dinh Duong, Nguyen; Hazarika, Manzul; Wikantika, Ketut; Takeuhci, Wataru; Moore, Berrien

    2014-01-01

    Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×106 km2 (GlobCover) to 2.69×106 km2 (MCD12Q1) in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR) onboard the Advanced Land Observing Satellite (ALOS) became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%). The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+) implementation, and biodiversity. PMID:24465714

  8. Dynamic maps of UV damage formation and repair for the human genome

    PubMed Central

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-01-01

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS–Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS–Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage. PMID:28607063

  9. Dynamic maps of UV damage formation and repair for the human genome.

    PubMed

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  10. MAGSAT anomaly field inversion and interpretation for the US

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A. (Principal Investigator)

    1982-01-01

    Long wavelength anomalies in the total magnetic field measured by MAGSAT over the United States and adjacent areas are inverted to an equivalent layer crustal magnetization distribution. The model is based on an equal area dipole grid at the Earth's surface. Model resolution, defined as the closest dipole spacing giving a solution having physical significance, is about 220 km for MAGSAT data in the elevation range 300-500 km. The magnetization contours correlate well with large scale tectonic provinces. A higher resolution (200 km) model based on relatively noise free synthetic "pseudodata" is also presented. Magnetic anomaly component data measured by MAGSAT is compared with synthetic anomaly component fields arising from an equivalent source dipole array at the Earth's surface generated from total field anomaly data alone. An excellent inverse correlation between apparent magnetization and heat flow in the western U.S. is demonstrated. A regional heat flow map which is presented and compared with published maps, predicts high heat flow in Nebraska and the Dakotas, suggesting the presence of a "blind" geothermal area of regional extent.

  11. Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Hinshaw, G.; Bennett, C. L.

    1995-01-01

    High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.

  12. Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration

    PubMed Central

    Chen, Shoubin; Liu, Jingbin; Huang, Wenchao

    2018-01-01

    The development of Earth observation systems has changed the nature of survey and mapping products, as well as the methods for updating maps. Among optical satellite mapping methods, the multiline array stereo and agile stereo modes are the most common methods for acquiring stereo images. However, differences in temporal resolution and spatial coverage limit their application. In terms of this issue, our study takes advantage of the wide spatial coverage and high revisit frequencies of wide swath images and aims at verifying the feasibility of stereo mapping with the wide swath stereo mode and reaching a reliable stereo accuracy level using calibration. In contrast with classic stereo modes, the wide swath stereo mode is characterized by both a wide spatial coverage and high-temporal resolution and is capable of obtaining a wide range of stereo images over a short period. In this study, Gaofen-1 (GF-1) wide-field-view (WFV) images, with total imaging widths of 800 km, multispectral resolutions of 16 m and revisit periods of four days, are used for wide swath stereo mapping. To acquire a high-accuracy digital surface model (DSM), the nonlinear system distortion in the GF-1 WFV images is detected and compensated for in advance. The elevation accuracy of the wide swath stereo mode of the GF-1 WFV images can be improved from 103 m to 30 m for a DSM with proper calibration, meeting the demands for 1:250,000 scale mapping and rapid topographic map updates and showing improved efficacy for satellite imaging. PMID:29494540

  13. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  14. In vivo correlation mapping microscopy

    NASA Astrophysics Data System (ADS)

    McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh; Leahy, Martin

    2016-04-01

    To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.

  15. Glimpse: Sparsity based weak lensing mass-mapping tool

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2018-02-01

    Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

  16. High-resolution near real-time drought monitoring in South Asia

    NASA Astrophysics Data System (ADS)

    Aadhar, Saran; Mishra, Vimal

    2017-10-01

    Drought in South Asia affect food and water security and pose challenges for millions of people. For policy-making, planning, and management of water resources at sub-basin or administrative levels, high-resolution datasets of precipitation and air temperature are required in near-real time. We develop a high-resolution (0.05°) bias-corrected precipitation and temperature data that can be used to monitor near real-time drought conditions over South Asia. Moreover, the dataset can be used to monitor climatic extremes (heat and cold waves, dry and wet anomalies) in South Asia. A distribution mapping method was applied to correct bias in precipitation and air temperature, which performed well compared to the other bias correction method based on linear scaling. Bias-corrected precipitation and temperature data were used to estimate Standardized precipitation index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) to assess the historical and current drought conditions in South Asia. We evaluated drought severity and extent against the satellite-based Normalized Difference Vegetation Index (NDVI) anomalies and satellite-driven Drought Severity Index (DSI) at 0.05°. The bias-corrected high-resolution data can effectively capture observed drought conditions as shown by the satellite-based drought estimates. High resolution near real-time dataset can provide valuable information for decision-making at district and sub-basin levels.

  17. Developing Land Use Land Cover Maps for the Lower Mekong Basin to Aid SWAT Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Bolten, J. D.; Srinivasan, R.

    2017-12-01

    This presentation discusses research to develop Land Use Land Cover (LULC) maps for the Lower Mekong Basin (LMB). Funded by a NASA ROSES Disasters grant, the main objective was to produce updated LULC maps to aid the Mekong River Commission's (MRC's) Soil and Water Assessment Tool (SWAT) hydrologic model. In producing needed LULC maps, temporally processed MODIS monthly NDVI data for 2010 were used as the primary data source for classifying regionally prominent forest and agricultural types. The MODIS NDVI data was derived from processing MOD09 and MYD09 8-day reflectance data with the Time Series Product Tool, a custom software package. Circa 2010 Landsat multispectral data from the dry season were processed into top of atmosphere reflectance mosaics and then classified to derive certain locally common LULC types, such as urban areas and industrial forest plantations. Unsupervised ISODATA clustering was used to derive most LULC classifications. GIS techniques were used to merge MODIS and Landsat classifications into final LULC maps for Sub-Basins (SBs) 1-8 of the LMB. The final LULC maps were produced at 250-meter resolution and delivered to the MRC for use in SWAT modeling for the LMB. A map accuracy assessment was performed for the SB 7 LULC map with 14 classes. This assessment was performed by comparing random locations for sampled LULC types to geospatial reference data such as Landsat RGBs, MODIS NDVI phenologic profiles, high resolution satellite data from Google Map/Earth, and other reference data from the MRC (e.g., crop calendars). LULC accuracy assessment results for SB 7 indicated an overall agreement to reference data of 81% at full scheme specificity. However, by grouping 3 deciduous forest classes into 1 class, the overall agreement improved to 87%. The project enabled updated LULC maps, plus more specific rice types were classified compared to the previous LULC maps. The LULC maps from this project should improve the use of SWAT for modeling hydrology in the LMB, plus improve water and disaster management in a region vulnerable to flooding, droughts, and anthropogenic change (e.g., from dam building and other LULC change).

  18. Dual-Frequency VLBI Study of Centaurus A on Sub-Parsec Scales: The Highest-Resolution View of an Extragalactic Jet

    NASA Technical Reports Server (NTRS)

    Mueller, C.; Kadler, M.; Ojha, R.; Wilms, J.; Boeck, M.; Edwards, P.; Fromm, C. M.; Hase, H.; Horiuchi, S.; Katz, U.; hide

    2011-01-01

    Centaurus A is the closest active galactic nucleus. High resolution imaging using Very Long Baseline Interferometry (VLBI) enables us to study the spectral and kinematic behavior of the radio jet-<:ounterjet system on sub-parsec scales, providing essential information for jet emission and formation models. Aims. Our aim is to study the structure and spectral shape of the emission from the central-parsec region of Cen A. Methods. As a target of the Southern Hemisphere VLBI monitoring program TANAMI (Tracking Active Galactic Nuclei with Millliarcsecond Interferometry), VLBI observations of Cen A are made regularly at 8.4 and 22.3 GHz with the Australian Long Baseline Array (LBA) and associated telescopes in Antarctica, Chile, and South Africa. Results. The first dual-frequency images of this source are presented along with the resulting spectral index map. An angular resolution of 0.4 mas x 0.7 mas is achieved at 8.4 GHz, corresponding to a linear scale of less than 0.013 pc. Hence, we obtain the highest resolution VLBI image of Cen A, comparable to previous space-VLBI observations. By combining with the 22.3 GHz image, we present the corresponding dual-frequency spectral index distribution along the sub-parsec scale jet revealing the putative emission regions for recently detected y-rays from the core region by Fermi/LAT. Conclusions. We resolve the innermost structure of the milliarcsecond scale jet and counter jet system of Cen A into discrete components. The simultaneous observations at two frequencies provide the highest resolved spectral index map of an AGN jet allowing us to identify up to four possible sites as the origin of the high energy emission. Key words. galaxies: active galaxies: individual (Centaurus A, NGC 5128) - galaxies: jets - techniques: high angular resolution

  19. Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope.

    PubMed

    Brodusch, N; Demers, H; Gauvin, R

    2013-04-01

    A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  20. A multi-temporal fusion-based approach for land cover mapping in support of nuclear incident response

    NASA Astrophysics Data System (ADS)

    Sah, Shagan

    An increasingly important application of remote sensing is to provide decision support during emergency response and disaster management efforts. Land cover maps constitute one such useful application product during disaster events; if generated rapidly after any disaster, such map products can contribute to the efficacy of the response effort. In light of recent nuclear incidents, e.g., after the earthquake/tsunami in Japan (2011), our research focuses on constructing rapid and accurate land cover maps of the impacted area in case of an accidental nuclear release. The methodology involves integration of results from two different approaches, namely coarse spatial resolution multi-temporal and fine spatial resolution imagery, to increase classification accuracy. Although advanced methods have been developed for classification using high spatial or temporal resolution imagery, only a limited amount of work has been done on fusion of these two remote sensing approaches. The presented methodology thus involves integration of classification results from two different remote sensing modalities in order to improve classification accuracy. The data used included RapidEye and MODIS scenes over the Nine Mile Point Nuclear Power Station in Oswego (New York, USA). The first step in the process was the construction of land cover maps from freely available, high temporal resolution, low spatial resolution MODIS imagery using a time-series approach. We used the variability in the temporal signatures among different land cover classes for classification. The time series-specific features were defined by various physical properties of a pixel, such as variation in vegetation cover and water content over time. The pixels were classified into four land cover classes - forest, urban, water, and vegetation - using Euclidean and Mahalanobis distance metrics. On the other hand, a high spatial resolution commercial satellite, such as RapidEye, can be tasked to capture images over the affected area in the case of a nuclear event. This imagery served as a second source of data to augment results from the time series approach. The classifications from the two approaches were integrated using an a posteriori probability-based fusion approach. This was done by establishing a relationship between the classes, obtained after classification of the two data sources. Despite the coarse spatial resolution of MODIS pixels, acceptable accuracies were obtained using time series features. The overall accuracies using the fusion-based approach were in the neighborhood of 80%, when compared with GIS data sets from New York State. This fusion thus contributed to classification accuracy refinement, with a few additional advantages, such as correction for cloud cover and providing for an approach that is robust against point-in-time seasonal anomalies, due to the inclusion of multi-temporal data. We concluded that this approach is capable of generating land cover maps of acceptable accuracy and rapid turnaround, which in turn can yield reliable estimates of crop acreage of a region. The final algorithm is part of an automated software tool, which can be used by emergency response personnel to generate a nuclear ingestion pathway information product within a few hours of data collection.

  1. Mapping Cortical Laminar Structure in the 3D BigBrain.

    PubMed

    Wagstyl, Konrad; Lepage, Claude; Bludau, Sebastian; Zilles, Karl; Fletcher, Paul C; Amunts, Katrin; Evans, Alan C

    2018-07-01

    Histological sections offer high spatial resolution to examine laminar architecture of the human cerebral cortex; however, they are restricted by being 2D, hence only regions with sufficiently optimal cutting planes can be analyzed. Conversely, noninvasive neuroimaging approaches are whole brain but have relatively low resolution. Consequently, correct 3D cross-cortical patterns of laminar architecture have never been mapped in histological sections. We developed an automated technique to identify and analyze laminar structure within the high-resolution 3D histological BigBrain. We extracted white matter and pial surfaces, from which we derived histologically verified surfaces at the layer I/II boundary and within layer IV. Layer IV depth was strongly predicted by cortical curvature but varied between areas. This fully automated 3D laminar analysis is an important requirement for bridging high-resolution 2D cytoarchitecture and in vivo 3D neuroimaging. It lays the foundation for in-depth, whole-brain analyses of cortical layering.

  2. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded by incomplete beam filling. Users of level three TRMM PR products should be aware of this scale dependency.

  3. Mediterranean Land Use and Land Cover Classification Assessment Using High Spatial Resolution Data

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2016-10-01

    Landscape fragmentation is noticeably practiced in Mediterranean regions and imposes substantial complications in several satellite image classification methods. To some extent, high spatial resolution data were able to overcome such complications. For better classification performances in Land Use Land Cover (LULC) mapping, the current research adopts different classification methods comparison for LULC mapping using Sentinel-2 satellite as a source of high spatial resolution. Both of pixel-based and an object-based classification algorithms were assessed; the pixel-based approach employs Maximum Likelihood (ML), Artificial Neural Network (ANN) algorithms, Support Vector Machine (SVM), and, the object-based classification uses the Nearest Neighbour (NN) classifier. Stratified Masking Process (SMP) that integrates a ranking process within the classes based on spectral fluctuation of the sum of the training and testing sites was implemented. An analysis of the overall and individual accuracy of the classification results of all four methods reveals that the SVM classifier was the most efficient overall by distinguishing most of the classes with the highest accuracy. NN succeeded to deal with artificial surface classes in general while agriculture area classes, and forest and semi-natural area classes were segregated successfully with SVM. Furthermore, a comparative analysis indicates that the conventional classification method yielded better accuracy results than the SMP method overall with both classifiers used, ML and SVM.

  4. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the cost of high resolution imagery continues to decline, this research makes an important contribution to this exciting era in the science of remote sensing.

  5. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  6. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  7. GIS Tool for Real-time Decision Making and Analysis of Multidisciplinary Cryosphere Datasets.

    NASA Astrophysics Data System (ADS)

    Roberts, S. D.; Moore, J. A.

    2004-12-01

    In support of the Western Arctic Shelf-Basin Interaction Project(SBI) a web-based interactive mapping server was installed on the USCGC Healy's on-board science computer network during its 2004 spring(HLY-04-02) and summer cruises (HLY-04-03) in the Chukchi and Beaufort Seas. SBI is a National Science Foundation sponsored multi-year and multidisciplinary project studying the biological productivity in the region. The mapping server was developed by the UCAR Joint Office of Science Support(JOSS) using OpenSource GIS tools(University of Minnesota Mapserver and USGS MapSurfer). Additional OpenSource tools such as GMT and MB-Systems were also utilized. The key layers in this system are the current ship track, station locations, multibeam bottom bathymetry, IBCAO bathymetry, DMSP satellite imagery , NOAA AVHRR Sea Surface temperature and all past SBI Project ship tracks and station locations. The ship track and multibeam layers are updated in real-time and the satellite layers are updated daily only during clear weather. In addition to using current high resolution multibeam bathymetry data, a composite high resolution bathymetry layer was created using multibeam data from past cruises in the SBI region. The server provides click-and-drag zooms, pan, feature query, distance measure and lat/lon/depth querys on a polar projection map of the arctic ocean. The main use of the system on the ship was for cruise track and station position planning by the scientists utilizing all available historical data and high resolution bathymetry. It was also the main source of information to all the scientist on board as to the cruise progress and plans. The system permitted on-board scientists to integrate historical cruise information for comparative purposes. A mirror web site was set up on land and the current ship track/station information was copied once a day to this site via a satellite link so people interested SBI research could follow the cruise progress.

  8. Variation of Rayleigh and Love Wave Fundamental Mode Group Velocity Dispersion Across India and Surrounding Regions

    NASA Astrophysics Data System (ADS)

    Acton, C. E.; Priestley, K.; Mitra, S.; Gaur, V. K.; Rai, S. S.

    2007-12-01

    We present group velocity dispersion results from a study of regional fundamental mode Rayleigh and Love waves propagating across India and surrounding regions. Data used in this study comes from broadband stations operated in India by us in addition to data from seismograms in the region whose data is archived at the IRIS Data Management Centre. The large amount of new and available data allows an improved path coverage and accordingly increased lateral resolution than in previous similar global and regional studies. 1D path- averaged dispersion measurements have been made using multiple filter analyis for source-receiver paths and are combined to produce tomographic group velocity maps for periods between 10 and 60 s. Preliminary Rayleigh wave group velocity maps have been produced using ~2500 paths and checkerboard tests indicate an average resolution of 5 degrees with substantially higher resolution achieved over the more densely sampled Himalayan regions. Short period velocity maps correlate well with surface geology resolving low velocity regions (2.0-2.4 km/s) corresponding to the Ganges and Brahmaputra river deltas, the Indo-Gangetic plains, the Katawaz Basin in Pakhistan, the Tarim Basin in China and the Turan Depression. The Tibetan Plateau is well defined as a high velocity region (2.9-3.2 km/s) at 10 s period, but for periods greater than 20 s it becomes a low velocity region which remains a distinct feature at 60 s and is consistent with the increased crustal thickness. The southern Indian shield is characterized by high crustal group velocities (3.0-3.4 km/s) and at short periods of 10 and 15 s it is possible to make some distinction between the Singhbhum, Dharwar and Aravali cratons. Initial Love wave group velocity maps from 500 dispersion measurements show similarly low velocities at short periods across regions with high sedimentation but higher velocities compared to Rayleigh waves across the Indian shield.

  9. Remote sensing of atmospheric water vapor from synthetic aperture radar interferometry: case studies in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Chang, Liang; Liu, Min; Guo, Lixin; He, Xiufeng; Gao, Guoping

    2016-10-01

    The estimation of atmospheric water vapor with high resolution is important for operational weather forecasting, climate monitoring, atmospheric research, and numerous other applications. The 40 m×40 m and 30 m×30 m differential precipitable water vapor (ΔPWV) maps are generated with C- and L-band synthetic aperture radar interferometry (InSAR) images over Shanghai, China, respectively. The ΔPWV maps are accessed via comparisons with the spatiotemporally synchronized PWV measurements from the European Centre for Medium-Range Weather Forecasts Interim reanalysis at the finest resolution and global positioning system observations, respectively. Results reveal that the ΔPWV maps can be estimated from both C- and L-band InSAR images with an accuracy of better than 2.0 mm, which, therefore, demonstrates the ability of InSAR observations at both C- and L-band to detect the water vapor distribution with high spatial resolution.

  10. A Bike Built for Magnetic Mapping

    NASA Astrophysics Data System (ADS)

    Schattner, U.; Segev, A.; Lyakhovsky, V.

    2017-12-01

    Understanding the magnetic signature of the subsurface geology is crucial for structural, groundwater, earthquake propagation, and mineral studies. The cheapest measuring method is by walking with sensors. This approach yields high-resolution maps, yet its coverage is limited. We invented a new design that records magnetic data while riding a bicycle. The new concept offers an efficient, low-cost method of collecting high-resolution ground magnetic field data over rough terrain where conventional vehicles dare not venture. It improves the efficiency of the traditional method by more than five times. The Bike-magnetic scales up ground magnetism from a localized site survey to regional coverage. By now we covered 3300 square KM (about the size of Rhode Island) across northern Israel, in profile spacing of 1-2 km. Initial Total Magnetic Intensity maps reveal a myriad of new features that were not detected by the low-resolution regional aeromagnetic survey that collected data from 1000 m height.

  11. A meiotic linkage map of the silver fox, aligned and compared to the canine genome.

    PubMed

    Kukekova, Anna V; Trut, Lyudmila N; Oskina, Irina N; Johnson, Jennifer L; Temnykh, Svetlana V; Kharlamova, Anastasiya V; Shepeleva, Darya V; Gulievich, Rimma G; Shikhevich, Svetlana G; Graphodatsky, Alexander S; Aguirre, Gustavo D; Acland, Gregory M

    2007-03-01

    A meiotic linkage map is essential for mapping traits of interest and is often the first step toward understanding a cryptic genome. Specific strains of silver fox (a variant of the red fox, Vulpes vulpes), which segregate behavioral and morphological phenotypes, create a need for such a map. One such strain, selected for docility, exhibits friendly dog-like responses to humans, in contrast to another strain selected for aggression. Development of a fox map is facilitated by the known cytogenetic homologies between the dog and fox, and by the availability of high resolution canine genome maps and sequence data. Furthermore, the high genomic sequence identity between dog and fox allows adaptation of canine microsatellites for genotyping and meiotic mapping in foxes. Using 320 such markers, we have constructed the first meiotic linkage map of the fox genome. The resulting sex-averaged map covers 16 fox autosomes and the X chromosome with an average inter-marker distance of 7.5 cM. The total map length corresponds to 1480.2 cM. From comparison of sex-averaged meiotic linkage maps of the fox and dog genomes, suppression of recombination in pericentromeric regions of the metacentric fox chromosomes was apparent, relative to the corresponding segments of acrocentric dog chromosomes. Alignment of the fox meiotic map against the 7.6x canine genome sequence revealed high conservation of marker order between homologous regions of the two species. The fox meiotic map provides a critical tool for genetic studies in foxes and identification of genetic loci and genes implicated in fox domestication.

  12. High-resolution multibeam mapping and submersible surveys of topographic features in the northwestern Gulf of Mexico

    USGS Publications Warehouse

    Hickerson, E.L.; Schmahl, G.P.; Weaver, D.C.; Gardner, J.V.

    2003-01-01

    The Flower Garden Banks National Marine Sanctuary (FGBNMS) and the USGS Pacific Seafloor Mapping Project mapped about 2000 km2 of the northwestern Gulf of Mexico continental shelf during June 2002, using a Kongsberg Simrad EM1000 multibeam echosounder. Mapping focused on select topographic highs thave hae been idetnnfied as biological features warranting protection from oil and gas activities by the Minerals Management Service (MMS). The base maps will be used for all future ROV and submersible missions.

  13. Mapping and spatiotemporal analysis tool for hydrological data: Spellmap

    USDA-ARS?s Scientific Manuscript database

    Lack of data management and analyses tools is one of the major limitations to effectively evaluate and use large datasets of high-resolution atmospheric, surface, and subsurface observations. High spatial and temporal resolution datasets better represent the spatiotemporal variability of hydrologica...

  14. A comparison of airborne evapotranspiration maps and sapflow measurements in oak and beech forest stands

    NASA Astrophysics Data System (ADS)

    Schlerf, M.; Mallick, K.; Hassler, S. K.; Blume, T.; Ronellenfitsch, F.; Gerhards, M.; Udelhoven, T.; Weiler, M.

    2017-12-01

    Accurate estimations of spatially explicit daily Evapotranspiration (ET) may help water managers quantifying the water requirements of agricultural crops or trees. Airborne remote sensing may provide suitable ET maps, but uncertainties need to be better understood. In this study we compared high spatial resolution remotely sensed ET maps for 7 July 2016 with sap flow measurements over 32 forest stands located in the Attert catchment, Luxembourg. Forest stands differed in terms of species (Quercus robur, Fagus sylvatica), geology (schist, marl, sandstone), and geomorphology (slope position, plain, valley). Within each plot, at 1-3 trees the sap flow velocity (cm per hour) was measured between 8 am and 8 pm in 10 min intervals and averaged into a single value per plot and converted into values of volume flux (litres per day). Remotely sensed ET maps were derived by integrating airborne thermal infrared (TIR) images with an analytical surface energy balance model, Surface Temperature Initiated Closure (STIC1.2, Mallick et al. 2016). Airborne TIR images were acquired under clear sky conditions at 9:12, 10:08, 13:56, 14:50, 15:54, and 18:41 local time using a hyperspectral-thermal instrument. Images were geometrically corrected, calibrated, mosaicked, and converted to surface radiometric temperature. Surface temperature maps in conjunction with meteorological measurements recorded in the forest plots (air temperature, global radiation, relative humidity) were used as input to STIC1.2, for simultaneously estimating ET, sensible heat flux as well as surface and aerodynamic conductances. Instantaneous maps of ET were converted into daily ET maps and compared with the sap flow measurements. Results reveal a significant correspondence between remote sensing and field measured ET. The differences in the magnitude of predicted versus observed ET was found to be associated the biophysical conductances, radiometric surface temperature, and ecohydrological characteristics of the underlying landscape. Forest plots reveal differences in ET depending on the underlying geology and the slope position. Airborne remote sensing offers new ways of estimating the diurnal course of plant transpiration over entire landscapes and is an important bridging technology before high resolution TIR sensors will come into space.

  15. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery

    USGS Publications Warehouse

    Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P.

    2008-01-01

    The National Estuarine Research Reserve (NERR) program is a nationally coordinated research and monitoring program that identifies and tracks changes in ecological resources of representative estuarine ecosystems and coastal watersheds. In recent years, attention has focused on using high spatial and spectral resolution satellite imagery to map and monitor wetland plant communities in the NERRs, particularly invasive plant species. The utility of this technology for that purpose has yet to be assessed in detail. To that end, a specific high spatial resolution satellite imagery, QuickBird, was used to map plant communities and monitor invasive plants within the Hudson River NERR (HRNERR). The HRNERR contains four diverse tidal wetlands (Stockport Flats, Tivoli Bays, Iona Island, and Piermont), each with unique water chemistry (i.e., brackish, oligotrophic and fresh) and, consequently, unique assemblages of plant communities, including three invasive plants (Trapa natans, Phragmites australis, and Lythrum salicaria). A maximum-likelihood classification was used to produce 20-class land cover maps for each of the four marshes within the HRNERR. Conventional contingency tables and a fuzzy set analysis served as a basis for an accuracy assessment of these maps. The overall accuracies, as assessed by the contingency tables, were 73.6%, 68.4%, 67.9%, and 64.9% for Tivoli Bays, Stockport Flats, Piermont, and Iona Island, respectively. Fuzzy assessment tables lead to higher estimates of map accuracies of 83%, 75%, 76%, and 76%, respectively. In general, the open water/tidal channel class was the most accurately mapped class and Scirpus sp. was the least accurately mapped. These encouraging accuracies suggest that high-resolution satellite imagery offers significant potential for the mapping of invasive plant species in estuarine environments. ?? 2007 Elsevier Inc. All rights reserved.

  16. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    NASA Astrophysics Data System (ADS)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  17. Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.

    2012-03-01

    Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.

  18. Comparative analysis of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and Hyperspectral Thermal Emission Spectrometer (HyTES) longwave infrared (LWIR) hyperspectral data for geologic mapping

    NASA Astrophysics Data System (ADS)

    Kruse, Fred A.

    2015-05-01

    Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and spatially coincident Hyperspectral Thermal Emission Spectrometer (HyTES) data were used to map geology and alteration for a site in northern Death Valley, California and Nevada, USA. AVIRIS, with 224 bands at 10 nm spectral resolution over the range 0.4 - 2.5 μm at 3-meter spatial resolution were converted to reflectance using an atmospheric model. HyTES data with 256 bands at approximately 17 nm spectral resolution covering the 8 - 12 μm range at 4-meter spatial resolution were converted to emissivity using a longwave infrared (LWIR) radiative transfer atmospheric compensation model and a normalized temperature-emissivity separation approach. Key spectral endmembers were separately extracted for each wavelength region and identified, and the predominant material at each pixel was mapped for each range using Mixture-Tuned-Matched Filtering (MTMF), a partial unmixing approach. AVIRIS mapped iron oxides, clays, mica, and silicification (hydrothermal alteration); and the difference between calcite and dolomite. HyTES separated and mapped several igneous phases (not possible using AVIRIS), silicification, and validated separation of calcite from dolomite. Comparison of the material maps from the different modes, however, reveals complex overlap, indicating that multiple materials/processes exist in many areas. Combined and integrated analyses were performed to compare individual results and more completely characterize occurrences of multiple materials. Three approaches were used 1) integrated full-range analysis, 2) combined multimode classification, and 3) directed combined analysis in geologic context. Results illustrate that together, these two datasets provide an improved picture of the distribution of geologic units and subsequent alteration.

  19. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    NASA Astrophysics Data System (ADS)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  20. Earth observation data based rapid flood-extent modelling for tsunami-devastated coastal areas

    NASA Astrophysics Data System (ADS)

    Hese, Sören; Heyer, Thomas

    2016-04-01

    Earth observation (EO)-based mapping and analysis of natural hazards plays a critical role in various aspects of post-disaster aid management. Spatial very high-resolution Earth observation data provide important information for managing post-tsunami activities on devastated land and monitoring re-cultivation and reconstruction. The automatic and fast use of high-resolution EO data for rapid mapping is, however, complicated by high spectral variability in densely populated urban areas and unpredictable textural and spectral land-surface changes. The present paper presents the results of the SENDAI project, which developed an automatic post-tsunami flood-extent modelling concept using RapidEye multispectral satellite data and ASTER Global Digital Elevation Model Version 2 (GDEM V2) data of the eastern coast of Japan (captured after the Tohoku earthquake). In this paper, the authors developed both a bathtub-modelling approach and a cost-distance approach, and integrated the roughness parameters of different land-use types to increase the accuracy of flood-extent modelling. Overall, the accuracy of the developed models reached 87-92%, depending on the analysed test site. The flood-modelling approach was explained and results were compared with published approaches. We came to the conclusion that the cost-factor-based approach reaches accuracy comparable to published results from hydrological modelling. However the proposed cost-factor approach is based on a much simpler dataset, which is available globally.

Top