Science.gov

Sample records for high-resolution comparative map

  1. A high-resolution comparative radiation hybrid map of equine chromosome 4q12-q22.

    PubMed

    Dierks, C; Mömke, S; Drögemüller, C; Leeb, T; Chowdhary, B P; Distl, O

    2006-10-01

    In this study, we present a comprehensive 5000-rad radiation hybrid map of a 40-cM region on equine chromosome 4 (ECA4) that contains quantitative trait loci for equine osteochondrosis. We mapped 29 gene-associated sequence tagged site markers using primers designed from equine expressed sequence tags or BAC clones in the ECA4q12-q22 region. Three blocks of conserved synteny, showing two chromosomal breakpoints, were identified in the segment of ECA4q12-q22. Markers from other segments of HSA7q mapped to ECA13p and ECA4p, and a region of HSA7p was homologous to ECA13p. Therefore, we have improved the resolution of the human-equine comparative map, which allows the identification of candidate genes underlying traits of interest.

  2. A high-resolution whole-genome cattle-human comparative map reveals details of mammalian chromosome evolution.

    PubMed

    Everts-van der Wind, Annelie; Larkin, Denis M; Green, Cheryl A; Elliott, Janice S; Olmstead, Colleen A; Chiu, Readman; Schein, Jacqueline E; Marra, Marco A; Womack, James E; Lewin, Harris A

    2005-12-20

    Approximately 3,000 cattle bacterial artificial chromosome (BAC)-end sequences were added to the Illinois-Texas 5,000-rad RH (RH, radiation hybrid) map. The BAC-end sequences selected for mapping are approximately 1 Mbp apart on the human chromosomes as determined by blastn analysis. The map has 3,484 ordered markers, of which 3,204 are anchored in the human genome. Two hundred-and-one homologous synteny blocks (HSBs) were identified, of which 27 are previously undiscovered, 79 are extended, 26 were formed by previously unrecognized breakpoints in 18 previously defined HSBs, and 23 are the result of fusions. The comparative coverage relative to the human genome is approximately 91%, or 97% of the theoretical maximum. The positions of 64% of all cattle centromeres and telomeres were reassigned relative to their positions on the previous map, thus facilitating a more detailed comparative analysis of centromere and telomere evolution. As an example of the utility of the high-resolution map, 22 cattle BAC fingerprint contigs were directly anchored to cattle chromosome 19 [Bos taurus, (BTA) 19]. The order of markers on the cattle RH and fingerprint maps of BTA19 and the sequence-based map of human chromosome 17 [Homo sapiens, (HSA) 17] were found to be highly consistent, with only two minor ordering discrepancies between the RH map and fingerprint contigs. The high-resolution Illinois-Texas 5,000-rad RH and comparative maps will facilitate identification of candidate genes for economically important traits, the phylogenomic analysis of mammalian chromosomes, proofing of the BAC fingerprint map and, ultimately, aid the assembly of cattle whole-genome sequence.

  3. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale.

    PubMed

    Carver, E A; Stubbs, L

    1997-12-01

    Over the past decade, conservation of genetic linkage groups has been shown in mammals and used to great advantage, fueling significant exchanges of gene mapping and functional information especially between the genomes of humans and mice. As human physical maps increase in resolution from chromosome bands to nucleotide sequence, comparative alignments of mouse and human regions have revealed striking similarities and surprising differences between the genomes of these two best-mapped mammalian species. Whereas, at present, very few mouse and human regions have been compared on the physical level, existing studies provide intriguing insights to genome evolution, including the observation of recent duplications and deletions of genes that may play significant roles in defining some of the biological differences between the two species. Although high-resolution conserved marker-based maps are currently available only for human and mouse, a variety of new methods and resources are speeding the development of comparative maps of additional organisms. These advances mark the first step toward establishment of the human genome as a reference map for vertebrate species, providing evolutionary and functional annotation to human sequence and vast new resources for genetic analysis of a variety of commercially, medically, and ecologically important animal models.

  4. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  5. Venus gravity - A high-resolution map

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  6. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  7. High-Resolution Mapping in Manus Basin

    NASA Astrophysics Data System (ADS)

    Roman, C. N.; Ferrini, V. L.

    2006-12-01

    Near-bottom seafloor mapping with precisely navigated deep submergence vehicles has become increasingly common in a range of oceanographic settings. Recent mapping efforts at deep-water hydrothermal vent sites have resulted in high-resolution (sub-meter) bathymetry datasets that can be used to identify morphological features associated with volcanic, tectonic, and hydrothermal processes. The resolution of these maps, and our ability to accurately quantify the complex morphologic details of hydrothermal structures has been limited by a number of variables including navigational accuracy, sonar settings (e.g. acoustic wavelength, sonar orientation, ping rate), survey parameters (e.g. altitude, speed), data density, and data processing techniques (e.g. gridding algorithms). We present the results of two near-bottom surveys conducted in August 2006 at the PACMANUS (Papua New Guinea-Australia-Canada Manus) hydrothermal field in the eastern Manus Basin of the Bismarck Sea, south of New Ireland, Papua New Guinea. Data were simultaneously acquired with two high-resolution multibeam sonar systems mounted on the Remote Operated Vehicle (ROV) Jason 2. A Simrad SM2000 (200 kHz) multibeam system was mounted in down-looking mode, and an Imagenex DeltaT (675 kHz) multibeam system was mounted on the brow of the vehicle in a forward-looking orientation. Surveys were conducted in parallel survey lines at 15 m altitude (15 m line spacing), and the can be used to generate sub-meter resolution maps of the seafloor. The maps were assembled using a terrain registration algorithm designed to minimize the affects of navigation error. Together, these sonars provide a complementary dataset that allows us to better quantify the 3-dimensional morphological characteristics of complex hydrothermal vent structures. This information can be used to more accurately estimate the volume of hydrothermal deposits, and render a more complete environmental picture that is less hindered by occlusions and

  8. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization.

    PubMed

    Zhang, Xiaoxiao; Snijders, Antoine; Segraves, Richard; Zhang, Xiuqing; Niebuhr, Anita; Albertson, Donna; Yang, Huanming; Gray, Joe; Niebuhr, Erik; Bolund, Lars; Pinkel, Dan

    2005-02-01

    We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.

  9. High-resolution mapping of genotype-phenotype relationships in cridu chat syndrome using array comparative genomic hybridization

    SciTech Connect

    Zhang, Xiaoxiao; Snijders, Antoine; Segraves, Richard; Zhang,Xiuqing; Niebuhr, Anita; Albertson, Donna; Yang, Huanming; Gray, Joe; Niebuhr, Erik; Bolund, Lars; Pinkel, Dan

    2007-07-03

    We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.

  10. High Resolution Mapping of Pluto's Albedo Distribution

    NASA Astrophysics Data System (ADS)

    Stern, S.

    1994-01-01

    This proposal requests time to map Pluto's albedo distribution, using the highest possible resolution of the CYCLE 4 HST. Maps will be made in several key UV and visible bandpasses. Our scientific objectives are to (a) study the distribution of light and dark areas, (b) make the first disk-resolved estimates of Pluto's limb darkening, and (c) compositional discriminate pure from contaminated frost regions. These objectives have not been previously achievable, but are essential to understanding the surface morphology, volatile transport, and the root cause of Pluto's secular lightcurve variations. It may also be possible to detect evidence of the reported limb haze layer(s) in Pluto's atmosphere. These maps will also provide the first direct check on Pluto maps made through indirect techniques. Owing to Pluto's elliptic orbit, we expect the distribution of albedo to change (on a years-to-decade timescale) as Pluto draws away from perihelion and volatile transport proceeds. The proposed observations will document the albedo state at three rotational epochs near the time of perihelion. These maps will be obtained in two colors, by the FOC. No other astronomical instrument has sufficient resolution to accomplish these important scientific objectives.

  11. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  12. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis.

    PubMed

    Shao, Changwei; Niu, Yongchao; Rastas, Pasi; Liu, Yang; Xie, Zhiyuan; Li, Hengde; Wang, Lei; Jiang, Yong; Tai, Shuaishuai; Tian, Yongsheng; Sakamoto, Takashi; Chen, Songlin

    2015-04-01

    High-resolution genetic maps are essential for fine mapping of complex traits, genome assembly, and comparative genomic analysis. Single-nucleotide polymorphisms (SNPs) are the primary molecular markers used for genetic map construction. In this study, we identified 13,362 SNPs evenly distributed across the Japanese flounder (Paralichthys olivaceus) genome. Of these SNPs, 12,712 high-confidence SNPs were subjected to high-throughput genotyping and assigned to 24 consensus linkage groups (LGs). The total length of the genetic linkage map was 3,497.29 cM with an average distance of 0.47 cM between loci, thereby representing the densest genetic map currently reported for Japanese flounder. Nine positive quantitative trait loci (QTLs) forming two main clusters for Vibrio anguillarum disease resistance were detected. All QTLs could explain 5.1-8.38% of the total phenotypic variation. Synteny analysis of the QTL regions on the genome assembly revealed 12 immune-related genes, among them 4 genes strongly associated with V. anguillarum disease resistance. In addition, 246 genome assembly scaffolds with an average size of 21.79 Mb were anchored onto the LGs; these scaffolds, comprising 522.99 Mb, represented 95.78% of assembled genomic sequences. The mapped assembly scaffolds in Japanese flounder were used for genome synteny analyses against zebrafish (Danio rerio) and medaka (Oryzias latipes). Flounder and medaka were found to possess almost one-to-one synteny, whereas flounder and zebrafish exhibited a multi-syntenic correspondence. The newly developed high-resolution genetic map, which will facilitate QTL mapping, scaffold assembly, and genome synteny analysis of Japanese flounder, marks a milestone in the ongoing genome project for this species.

  13. High resolution mapping of martian neutron albedo

    NASA Astrophysics Data System (ADS)

    Sanin, A.

    It is known from data of High Energy Neutron Detector (HEND) on Mars Odyssey that there is very large regional variation of leakage flux of epithermal neutrons on the surface of Mars. The factor of regional variations is about 10 for mapping with linear resolution of about 200-300 km. Two circumpolar depressions of epithermal neutrons emission were found above latitudes of 50 - 60, which correspond to Northern and Southern permafrost regions with very high (up to 50 wt%) content of water ice. Also, according to the HEND mapping data, there are two opposite equatorial regions Arabia Terra and Memnonia, which contain about 10 wt% of water under the top layer of dry soil with a column density of about 30 g/cm2. The surface resolution of orbital data about 300 km is determined by natural collimation of neutrons in the subsurface and in the atmosphere. For a territory larger than this size, the average content of water could be estimated by the large area approximation. In this case the comparison is performed between the average counts of neutrons over the territory and predicted counts for the planet with the same model of the entire surface. The content of water is found, as the best fitting parameter of this model. For local spots of depression with much smaller sizes this procedure underestimates the content of water. Thus, according this approximation, the spot with largest depression in the Arabia Terra at 10-12 N and 30-32 E contains at least 16 wt% of water, but in reality this value could be much larger. The content of water at this spot will be obtained with better spatial resolution by so-called inverse projection procedure. This model-dependent procedure allows to test water content for areas much smaller than the size of HEND surface resolution. The results of water content according to this procedure will be presented for the Arabia spot with the greatest depression of epithermal neutrons.

  14. Updating Maps Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  15. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  16. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  17. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining

  18. Clickstream data yields high-resolution maps of science

    SciTech Connect

    Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  19. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  20. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  1. High-Resolution Underwater Mapping Using Side-Scan Sonar.

    PubMed

    Burguera, Antoni; Oliver, Gabriel

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region.

  2. High-Resolution Underwater Mapping Using Side-Scan Sonar

    PubMed Central

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  3. Spatial-temperature high resolution map for early cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Gheorghe V.; Hurduc, Anca; Ghimigean, Ana-Maria; Fumarel, Radu

    2009-02-01

    Heat is one of the most important parameters of living beings. Skin temperature is not the same on the entire body and so, a thermal signature can be got. Infrared map on serial imaging can constitute an early sign of an abnormality. Thermography detects changes in tissue that appear before and accompany many diseases including cancer. As this map has a better resolution an early cancer diagnosis can be done. The temperature of neoplasic tissue is different up to 1.5 °C than that of the healthy tissue as a result of the specific metabolic rate. The infrared camera images show very quickly the heat transferred by radiation. A lot of factors disturb the temperature conversion to pixel intensity. A sensitive temperature sensor with a 10 Mpixels video camera, showing its spatial position, and a computer fusion program were used for the map with high spatial-temperature resolution. A couple of minutes are necessary to get a high resolution map. The asymmetry and borders were the main parameters analyzed. The right cancer diagnosis was for about 78.4% of patients with thyroid cancer, and more than 89.6% from patients with breast cancer. In the near future, the medical prognosis will be improved by fractal analysis.

  4. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  5. Exploring for subtle traps with high-resolution paleogeographic maps

    SciTech Connect

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  6. High-Resolution Geologic Mapping in the Eastern Manus Basin

    NASA Astrophysics Data System (ADS)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D. R.

    2011-12-01

    AUV-based microbathymetry combined with ROV video data was used to create the first high-resolution geologic maps of two hydrothermal active areas in the eastern Manus Basin: North Su volcano and PACManus hydrothermal field on Pual Ridge. The data were recorded in 2006 and 2011 during the research cruises Magellan-06 operated by the Woods Hole Oceanographic Institution and BAMBUS (SO-216) operated by MARUM / University Bremen. High accuracy underwater navigation transponder-based and Posidonia systems allowed us to combine video data with bathymetry. The navigation on both cruises was very precise (m-scale) and navigation offsets were less than 10 m. We conducted detailed geologic mapping and sampling to identify the seafloor volcanic and hydrothermal features and created highly detailed maps that provide a comprehensive picture of the seafloor and vent distribution in the eastern Manus Basin. Several different types of dacite lava morphology were mapped, including pillow lava, lobate flows and massive block lava. We have compiled all available information on rock chemistry, fluid and temperature measurements, video data, bathymetry and navigation data into a GIS database. We find that, in contrast to the tectonic control on vent distribution at slow spreading mid-ocean ridges, the pathways of upwelling hydrothermal vent fluids at PACManus are dominated by volcanic features, such as lava domes and thick, massive block lava flows. Vent fields are developed preferentially along the margins of major flow units, probably because the cores of these units are impermeable to fluid flow, while the autobrecciated outer parts of the flows are not. In the North Su area, a comparison of seafloor maps from 2006 and 2011 reveals recent volcanic activity, which has strongly modified the bathymetry and hydrothermal vent distribution on the southern flank of the volcano. An ash cone with multiple small craters on the SW flank of the North-Su volcano that didn't exist in 2006 was

  7. High resolution mapping of flood hazard for South Korea

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos

    2015-04-01

    Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood

  8. A high-resolution map of transcriptional repression

    PubMed Central

    Liang, Ziwei; Brown, Karen E; Carroll, Thomas; Taylor, Benjamin; Vidal, Isabel Ferreirós; Hendrich, Brian; Rueda, David; Fisher, Amanda G; Merkenschlager, Matthias

    2017-01-01

    Turning genes on and off is essential for development and homeostasis, yet little is known about the sequence and causal role of chromatin state changes during the repression of active genes. This is surprising, as defective gene silencing underlies developmental abnormalities and disease. Here we delineate the sequence and functional contribution of transcriptional repression mechanisms at high temporal resolution. Inducible entry of the NuRD-interacting transcriptional regulator Ikaros into mouse pre-B cell nuclei triggered immediate binding to target gene promoters. Rapid RNAP2 eviction, transcriptional shutdown, nucleosome invasion, and reduced transcriptional activator binding required chromatin remodeling by NuRD-associated Mi2beta/CHD4, but were independent of HDAC activity. Histone deacetylation occurred after transcriptional repression. Nevertheless, HDAC activity contributed to stable gene silencing. Hence, high resolution mapping of transcriptional repression reveals complex and interdependent mechanisms that underpin rapid transitions between transcriptional states, and elucidates the temporal order, functional role and mechanistic separation of NuRD-associated enzymatic activities. DOI: http://dx.doi.org/10.7554/eLife.22767.001 PMID:28318487

  9. Towards a Global High Resolution Peatland Map in 2020

    NASA Astrophysics Data System (ADS)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Joosten, Hans; Dommain, Rene; Margalef, Olga

    2015-04-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has currently been recognized in international policy - since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes e.g. for the East African countries Rwanda, Burundi, Uganda and Zambia. Furthermore, we

  10. Towards a Global High Resolution Peatland Map in 2020

    NASA Astrophysics Data System (ADS)

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Dommain, Rene; Margalef, Olga; Joosten, Hans

    2014-05-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has only recently been recognized in international policy - only since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes for East Africa (including the Horn of Africa, the African Great Lakes region and

  11. Visualizing sediment dynamics through repeated high-resolution multibeam mapping

    NASA Astrophysics Data System (ADS)

    de Vries, J. J.; Greinert, J.; Maierhofer, T.

    2013-12-01

    abundance of smaller ripples and different net-transport rates of sediment into the Wadden Sea. Vertical stratification in the Marsdiep is determined by salinity with stronger vertical stratification in winter time. The Texelstroom channel is ebb-dominant with an outflow over the entire water column. However, during more vertically stratified conditions, the residual circulation is smaller at the bottom because the outflow at the surface is balanced at the bottom resulting in more symmetrical sand waves in summer. The repeated high-resolution multibeam surveys shed light on the highly dynamic seasonal behavior of sand waves in the Texelstroom channel and corroborates the high value of repeated multibeam surveys to visualize these dynamics.

  12. High Resolution Velocity Map Imaging Photoelectron Spectroscopy of the Beryllium Oxide Anion, BeO-

    NASA Astrophysics Data System (ADS)

    Dermer, Amanda Reed; Mascaritolo, Kyle; Heaven, Michael

    2016-06-01

    The photodetachment spectrum of BeO- has been studied using high resolution velocity map imaging photoelectron spectroscopy. The vibrational contours were imaged and compared with Franck-Condon simulations for the ground and excited states of the neutral. The electron affinity of BeO was measured for the first time, and anisotropies of several transitions were determined. Experimental findings are compared to high level ab initio calculations.

  13. With high resolution DEM to enhanced maps of Dominant Runoff Processes (DRP)

    NASA Astrophysics Data System (ADS)

    Margreth, Michael; Naef, Felix

    2010-05-01

    . Erosion ditches indicate the generation of quick SOF, caused by limited soil depth. In 20 catchments of different sizes, with different topography and different geology, the automatically derived DRP maps were compared with manually developed ones. In 80% to 99%, the automatically derived DRP areas match the manually developed ones or differ by 1 step in process intensity. As this method allows the derivation of enhanced DRP maps in high resolution, the DRP maps can also be used to forecast the runoff reaction of small catchments.

  14. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    PubMed Central

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-01-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000–2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales. PMID:27996974

  15. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015

    NASA Astrophysics Data System (ADS)

    Ambika, Anukesh Krishnankutty; Wardlow, Brian; Mishra, Vimal

    2016-12-01

    India is among the countries that uses a significant fraction of available water for irrigation. Irrigated area in India has increased substantially after the Green revolution and both surface and groundwater have been extensively used. Under warming climate projections, irrigation frequency may increase leading to increased irrigation water demands. Water resources planning and management in agriculture need spatially-explicit irrigated area information for different crops and different crop growing seasons. However, annual, high-resolution irrigated area maps for India for an extended historical record that can be used for water resources planning and management are unavailable. Using 250 m normalized difference vegetation index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) and 56 m land use/land cover data, high-resolution irrigated area maps are developed for all the agroecological zones in India for the period of 2000-2015. The irrigated area maps were evaluated using the agricultural statistics data from ground surveys and were compared with the previously developed irrigation maps. High resolution (250 m) irrigated area maps showed satisfactory accuracy (R2=0.95) and can be used to understand interannual variability in irrigated area at various spatial scales.

  16. Estimation of high-resolution dust column density maps. Empirical model fits

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Montillaud, J.

    2013-09-01

    Context. Sub-millimetre dust emission is an important tracer of column density N of dense interstellar clouds. One has to combine surface brightness information at different spatial resolutions, and specific methods are needed to derive N at a resolution higher than the lowest resolution of the observations. Some methods have been discussed in the literature, including a method (in the following, method B) that constructs the N estimate in stages, where the smallest spatial scales being derived only use the shortest wavelength maps. Aims: We propose simple model fitting as a flexible way to estimate high-resolution column density maps. Our goal is to evaluate the accuracy of this procedure and to determine whether it is a viable alternative for making these maps. Methods: The new method consists of model maps of column density (or intensity at a reference wavelength) and colour temperature. The model is fitted using Markov chain Monte Carlo methods, comparing model predictions with observations at their native resolution. We analyse simulated surface brightness maps and compare its accuracy with method B and the results that would be obtained using high-resolution observations without noise. Results: The new method is able to produce reliable column density estimates at a resolution significantly higher than the lowest resolution of the input maps. Compared to method B, it is relatively resilient against the effects of noise. The method is computationally more demanding, but is feasible even in the analysis of large Herschel maps. Conclusions: The proposed empirical modelling method E is demonstrated to be a good alternative for calculating high-resolution column density maps, even with considerable super-resolution. Both methods E and B include the potential for further improvements, e.g., in the form of better a priori constraints.

  17. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  18. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  19. High-resolution EEG mapping: an equivalent charge-layer approach

    NASA Astrophysics Data System (ADS)

    Yao, Dezhong

    2003-07-01

    Brain electrical signal is one of the windows to understanding neural activities. Various high-resolution imaging techniques have been developed to reveal the electrical activities underneath the cortical surface from scalp electroencephalographic recordings, such as scalp Laplacian, cortical surface potential, equivalent charge layer (ECL) and equivalent dipole layer (EDL). In this work, we develop forward density formulae for the ECL and the EDL of neural electric sources in a 4-concentric-sphere head model, and compare ECL with EDL in theory, simulation and real evoked data tests. The results confirm that the ECL map may be of higher spatial resolution than the EDL map.

  20. Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe.

    PubMed

    Issa, Elias B; Papanastassiou, Alex M; DiCarlo, James J

    2013-09-18

    Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods.

  1. THEMIS high-resolution digital terrain: Topographic and thermophysical mapping of Gusev Crater, Mars

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Soderblom, L.A.; Kirk, R.L.

    2009-01-01

    We discuss a new technique to generate high-resolution digital terrain models (DTMs) and to quantitatively derive and map slope-corrected thermophysical properties such as albedo, thermal inertia, and surface temperatures. This investigation is a continuation of work started by Kirk et al. (2005), who empirically deconvolved Thermal Emission Imaging System (THEMIS) visible and thermal infrared data of this area, isolating topographic information that produced an accurate DTM. Surface temperatures change as a function of many variables such as slope, albedo, thermal inertia, time, season, and atmospheric opacity. We constrain each of these variables to construct a DTM and maps of slope-corrected albedo, slope- and albedo-corrected thermal inertia, and surface temperatures across the scene for any time of day or year and at any atmospheric opacity. DTMs greatly facilitate analyses of the Martian surface, and the MOLA global data set is not finely scaled enough (128 pixels per degree, ???0.5 km per pixel near the equator) to be combined with newer data sets (e.g., High Resolution Imaging Science Experiment, Context Camera, and Compact Reconnaissance Imaging Spectrometer for Mars at ???0.25, ???6, and ???20 m per pixel, respectively), so new techniques to derive high-resolution DTMs are always being explored. This paper discusses our technique of combining a set of THEMIS visible and thermal infrared observations such that albedo and thermal inertia variations within the scene are eliminated and only topographic variations remain. This enables us to produce a high-resolution DTM via photoclinometry techniques that are largely free of albedo-induced errors. With this DTM, THEMIS observations, and a subsurface thermal diffusion model, we generate slope-corrected maps of albedo, thermal inertia, and surface temperatures. In addition to greater accuracy, these products allow thermophysical properties to be directly compared with topography.

  2. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    PubMed Central

    Balcárková, Barbora; Frenkel, Zeev; Škopová, Monika; Abrouk, Michael; Kumar, Ajay; Chao, Shiaoman; Kianian, Shahryar F.; Akhunov, Eduard; Korol, Abraham B.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Bread wheat has a large and complex allohexaploid genome with low recombination level at chromosome centromeric and peri-centromeric regions. This significantly hampers ordering of markers, contigs of physical maps and sequence scaffolds and impedes obtaining of high-quality reference genome sequence. Here we report on the construction of high-density and high-resolution radiation hybrid (RH) map of chromosome 4A supported by high-density chromosome deletion map. A total of 119 endosperm-based RH lines of two RH panels and 15 chromosome deletion bin lines were genotyped with 90K iSelect single nucleotide polymorphism (SNP) array. A total of 2316 and 2695 markers were successfully mapped to the 4A RH and deletion maps, respectively. The chromosome deletion map was ordered in 19 bins and allowed precise identification of centromeric region and verification of the RH panel reliability. The 4A-specific RH map comprises 1080 mapping bins and spans 6550.9 cR with a resolution of 0.13 Mb/cR. Significantly higher mapping resolution in the centromeric region was observed as compared to recombination maps. Relatively even distribution of deletion frequency along the chromosome in the RH panel was observed and putative functional centromere was delimited within a region characterized by two SNP markers. PMID:28119729

  3. Creating High-Resolution Maps of Leaf Water Isotopes Using IM-CRDS and IRMS Techniques

    NASA Astrophysics Data System (ADS)

    Gerlein-Safdi, C.; Sinkler, C. J.; Caylor, K. K.

    2014-12-01

    Since the development of isotope ratio infrared spectroscopy (IRIS), the applications of water isotope analysis have been increasing. Here, we present a new protocol to create high-resolution maps of leaf water isotopes 18O and 2H. We use the Picarro induction module (IM-CRDS) combined with an isotope analyzer (L2130-i) to sample up to 25 locations in one half of each leaf. Each sampling location corresponds to four samples (6 mm outside diameter punched-holes) punched next to each other. In the induction module, an induction coil heats a metal holder containing the leaf sample. The sample will release water vapor that is then sent to the isotope analyzer. The IM-CRDS allows us to significantly reduce the sample size and therefore increase the sample density, compared to the traditional cryogenic extraction method. Using spatial analysis tools, we create high-resolution spatial maps of each isotope as well as d-excess maps. The water in the second half of the leaf is extracted by cryogenic extraction and analyzed using both IRIS and isotope ratio mass spectroscopy. The isotopic composition of the extracted water is compared to the average composition calculated from the maps and used for calibration. We present applications of this protocol to the analysis of the spatio-temporal evolution of foliar uptake in Colocasia esculenta under laboratory conditions.

  4. High Resolution Maps of the Moon Surface with AMIE/SMART-1

    NASA Astrophysics Data System (ADS)

    Despan, Daniela; Erard, S.; Barucci, A.; Josset, J. L.; Beauvivre, S.; Chevrel, S.; Pinet, P.; Koschny, D.; Almeida, M.; Grieger, B.; Foing, B.; AMIE Team

    2008-09-01

    The Advanced Moon micro-Imager Experiment (AMIE) on board the ESA lunar mission Smart-1 has performed colour imaging of the lunar surface using various filters in the visible and NIR range. This micro-camera provided high resolution images of selected parts of the lunar surface, including the North and South pole areas. Being give that the SMART-1 mission was in a 300km x 300km orbit with perilune over the South pole, the coverage between the North and the South regions is different. The AMIE images were obtained using a tele-objective with 5.3° x 5.3° field of view and a sensor of 1024 x 1024 pixels. The output images have resolution 45m/pixel at 500km, and are encoded with 10 bits/pixel. The data for the North pole were obtained at a much higher altitude than the South pole data. From the 300 Km pericenter altitude, the same field of view corresponds to a spatial resolution about 27 m/pixel. The high resolution imaging of the Moon surface makes possible detailed analysis of the morphological features and physical characteristics of the lunar surface. In order to construct AMIE data maps, systematic analysis and processing is being carried on using the whole data set. Geometrical analysis of AMIE images relies on the SPICE system: image coordinates are computed to get precise projection at the surface, and illumination angles are computed to analyze the photometric sequences. Using this method, high resolution mosaics were constructed then compared to lower resolution Clementine UV-Vis and NIR images. Maps of both North and South pole were obtained as well as other regions of interest. Eventually, this method will be applied in all areas where AMIE has provided high resolution observations of the surface, typically a factor of 3 higher than the Clementine UV-Vis camera. New results will be presented at the conference.

  5. High-resolution terrain map from multiple sensor data

    NASA Technical Reports Server (NTRS)

    Kweon, In S.; Kanade, Takeo

    1992-01-01

    The authors present 3-D vision techniques for incrementally building an accurate 3-D representation of rugged terrain using multiple sensors. They have developed the locus method to model the rugged terrain. The locus method exploits sensor geometry to efficiently build a terrain representation from multiple sensor data. The locus method is used to estimate the vehicle position in the digital elevation map (DEM) by matching a sequence of range images with the DEM. Experimental results from large-scale real and synthetic terrains demonstrate the feasibility and power of the 3-D mapping techniques for rugged terrain. In real world experiments, a composite terrain map was built by merging 125 real range images. Using synthetic range images, a composite map of 150 m was produced from 159 images. With the proposed system, mobile robots operating in rugged environments can build accurate terrain models from multiple sensor data.

  6. High resolution hybrid optical and acoustic sea floor maps (Invited)

    NASA Astrophysics Data System (ADS)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  7. High-resolution Geophysical Mapping of Submarine Glacial Landforms

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.; Mayer, L. A.

    2014-12-01

    Glacial landforms are generated from the activity of glaciers and display spatial dimensions ranging from below one meter up to tens of kilometers. Glacial landforms are used as diagnostic features of past activity of ice sheets and glaciers; they are specifically important in the field of palaeoglaciology. Mapping of submarine glacial landforms is largely dependent on geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full "global" seafloor mapping coverage, equivalent to what exists for land elevation, is to-date only achieved by the powerful method of deriving bathymetry from altimeters on satellites like GEOSAT and ERS-1. The lateral resolution of satellite derived bathymetry is, however, limited by the footprint of the satellite and the need to average out local wave and wind effects resulting in values of around 15 km. Consequently, mapping submarine glacial landforms requires for the most part higher resolution than is achievable by satellite derived bathymetry. The most widely-used methods for mapping submarine glacial landforms are based on echo-sounding principles. This presentation shows how the evolution of marine geophysical mapping techniques, in particular the advent of side-scan and multibeam bathymetric sonars, has made it possible to study submarine glacial landforms in unprecedented detail. Examples are shown from the Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, which will be published in late 2015 in the Memoir Series of the Geological Society of London.

  8. High-resolution Mapping of Offshore and Onshore Glaciogenic Features in Melville Bay, Northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Freire, F.; Gyllencreutz, R.; Greenwood, S.; Mayer, L. A.; Jakobsson, M.

    2014-12-01

    This study presents results from high resolution mapping in the northwestern part of Greenland's continental shelf, offshore from the Greenland Ice Sheet. The study area is located at about 74o30'N and 58 o40'W where high-resolution seafloor imagery were collected from ~200-500 m water depth. These data were analyzed and compared to existing high-resolution satellite imagery of exposed glacial landforms from the nearby coastal areas. Offshore geophysical mapping equipment consisted of a Kongsberg EM2040 multibeam that was bow-mounted on the sailing vessel Explorer of Sweden together with a Seatex MRU5+ motion sensor and GPS antennas. In addition, a GAVIA autonomous underwater vehicle (AUV) from University of Iceland with installed Geoswath interfometric sonar and Marine Sonic side-scan was used. The data from these systems permitted the production of both 5-m (for the EM2040) and 2-m (for the Geoswath) resolution bathymetric grids for landform analyzes. Sediment characterization analysis was also undertaken using the co-registered backscatter data. The exposed onshore landforms were studied using data from the high-res QuickBird satellite images with a 2-m pixel resolution. Geomorphic analysis of the data shows that past tectonic and glacial scouring processes have shaped the present-day landscape in both the offshore and onshore study areas. The terrain consists of glacially eroded bedrock covered with very thin surficial sediments resembling a 'cnoc-and-lochan' terrain, although the degree of erosion varies spatially, probably as a result of local variations in the rock properties. Different glacially influenced features are identified and described in the study. These features have been used to understand and infer past ice-sheet processes, particularly ice-flow direction and the extent of ice-cover on the continental shelves from previous extreme glaciation events. The backscatter information from the high-resolution interferometric sonar show fine

  9. High resolution weak lensing mass mapping combining shear and flexion

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2016-06-01

    Aims: We propose a new mass mapping algorithm, specifically designed to recover small-scale information from a combination of gravitational shear and flexion. Including flexion allows us to supplement the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map without relying on strong lensing constraints. Methods: To preserve all available small scale information, we avoid any binning of the irregularly sampled input shear and flexion fields and treat the mass mapping problem as a general ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators. Results: We tested our reconstruction method on a set of realistic weak lensing simulations corresponding to typical HST/ACS cluster observations and demonstrate our ability to recover substructures with the inclusion of flexion, which are otherwise lost if only shear information is used. In particular, we can detect substructures on the 15'' scale well outside of the critical region of the clusters. In addition, flexion also helps to constrain the shape of the central regions of the main dark matter halos. Our mass mapping software, called Glimpse2D, is made freely available at http://www.cosmostat.org/software/glimpse

  10. High Resolution Urban Feature Extraction for Global Population Mapping using High Performance Computing

    SciTech Connect

    Vijayaraj, Veeraraghavan; Bright, Eddie A; Bhaduri, Budhendra L

    2007-01-01

    The advent of high spatial resolution satellite imagery like Quick Bird (0.6 meter) and IKONOS (1 meter) has provided a new data source for high resolution urban land cover mapping. Extracting accurate urban regions from high resolution images has many applications and is essential to the population mapping efforts of Oak Ridge National Laboratory's (ORNL) LandScan population distribution program. This paper discusses an automated parallel algorithm that has been implemented on a high performance computing environment to extract urban regions from high resolution images using texture and spectral features

  11. High-resolution genome-wide mapping of histone modifications.

    PubMed

    Roh, Tae-young; Ngau, Wing Chi; Cui, Kairong; Landsman, David; Zhao, Keji

    2004-08-01

    The expression patterns of eukaryotic genomes are controlled by their chromatin structure, consisting of nucleosome subunits in which DNA of approximately 146 bp is wrapped around a core of 8 histone molecules. Post-translational histone modifications play an essential role in modifying chromatin structure. Here we apply a combination of SAGE and chromatin immunoprecipitation (ChIP) protocols to determine the distribution of hyperacetylated histones H3 and H4 in the Saccharomyces cerevisiae genome. We call this approach genome-wide mapping technique (GMAT). Using GMAT, we find that the highest acetylation levels are detected in the 5' end of a gene's coding region, but not in the promoter. Furthermore, we show that the histone acetyltransferase, GCN5p, regulates H3 acetylation in the promoter and 5' end of the coding regions. These findings indicate that GMAT should find valuable applications in mapping target sites of chromatin-modifying enzymes.

  12. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  13. High Resolution Aircraft Scanner Mapping of Geothermal and Volcanic Areas

    SciTech Connect

    Mongillo, M.A.; Cochrane, G.R.; Wood, C.P.; Shibata, Y.

    1995-01-01

    High spectral resolution GEOSCAN Mkll multispectral aircraft scanner imagery has been acquired, at 3-6 m spatial resolutions, over much of the Taupo Volcanic Zone as part of continuing investigations aimed at developing remote sensing techniques for exploring and mapping geothermal and volcanic areas. This study examined the 24-band: visible, near-IR (NIR), mid-IR (MIR) and thermal-IR (TIR) imagery acquired over Waiotapu geothermal area (3 m spatial resolution) and White Island volcano (6 m resolution). Results show that color composite images composed of visible and NIR wavelengths that correspond to color infrared (CIR) photographic wavelengths can be useful for distinguishing among bare ground, water and vegetation features and, in certain cases, for mapping various vegetation types. However, combinations which include an MIR band ({approx} 2.2 {micro}m) with either visible and NIR bands, or two NIR bands, are the most powerful for mapping vegetation types, water bodies, and bare and hydrothermally altered ground. Combinations incorporating a daytime TIR band with NIR and MIR bands are also valuable for locating anomalously hot features and distinguishing among different types of surface hydrothermal alteration.

  14. Mapping Urban Ecosystem Services Using High Resolution Aerial Photography

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Neale, A.; Wilhelm, D.

    2010-12-01

    Ecosystem services (ES) are the many life-sustaining benefits we receive from nature: e.g., clean air and water, food and fiber, cultural-aesthetic-recreational benefits, pollination and flood control. The ES concept is emerging as a means of integrating complex environmental and economic information to support informed environmental decision making. The US EPA is developing a web-based National Atlas of Ecosystem Services, with a component for urban ecosystems. Currently, the only wall-to-wall, national scale land cover data suitable for this analysis is the National Land Cover Data (NLCD) at 30 m spatial resolution with 5 and 10 year updates. However, aerial photography is acquired at higher spatial resolution (0.5-3 m) and more frequently (1-5 years, typically) for most urban areas. Land cover was mapped in Raleigh, NC using freely available USDA National Agricultural Imagery Program (NAIP) with 1 m ground sample distance to test the suitability of aerial photography for urban ES analysis. Automated feature extraction techniques were used to extract five land cover classes, and an accuracy assessment was performed using standard techniques. Results will be presented that demonstrate applications to mapping ES in urban environments: greenways, corridors, fragmentation, habitat, impervious surfaces, dark and light pavement (urban heat island). Automated feature extraction results mapped over NAIP color aerial photograph. At this scale, we can look at land cover and related ecosystem services at the 2-10 m scale. Small features such as individual trees and sidewalks are visible and mappable. Classified aerial photo of Downtown Raleigh NC Red: impervious surface Dark Green: trees Light Green: grass Tan: soil

  15. High resolution spatial map imaging of a gaseous target

    NASA Astrophysics Data System (ADS)

    Stei, Martin; von Vangerow, Johannes; Otto, Rico; Kelkar, Aditya H.; Carrascosa, Eduardo; Best, Thorsten; Wester, Roland

    2013-06-01

    Electrostatic ion imaging with the velocity map imaging mode is a widely used method in atomic and molecular physics and physical chemistry. In contrast, the spatial map imaging (SMI) mode has received very little attention, despite the fact that it has been proposed earlier [A. T. J. B. Eppink and D. H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)], 10.1063/1.1148310. Here, we present a detailed parametric characterization of SMI both by simulation and experiment. One-, two- and three-dimensional imaging modes are described. The influence of different parameters on the imaging process is described by means of a Taylor expansion. To experimentally quantify elements of the Taylor expansion and to infer the spatial resolution of our spectrometer, photoionization of toluene with a focused laser beam has been carried out. A spatial resolution of better than 4 μm out of a focal volume of several mm in diameter has been achieved. Our results will be useful for applications of SMI to the characterization of laser beams, the overlap control of multiple particle or light beams, and the determination of absolute collision cross sections.

  16. High-resolution electroencephalogram (EEG) mapping: scalp charge layer

    NASA Astrophysics Data System (ADS)

    Yao, Dezhong; Yin, Zhong Ke; Tang, Xiang Hong; Arendt-Nielsen, Lars; Chen, Andrew C. N.

    2004-11-01

    The neural electrical signal related to the human brain function is one of the tracks to understanding ourselves. Various electroencephalogram imaging techniques have been developed to reveal spatial information on neural activities in the brain from scalp recordings, such as Laplacian, equivalent source layer and potential. Physically, these methods may be classified into two categories: scalp surface or cortical surface based techniques. In this work, the focus is on the scalp surface based equivalent charge layer (ECL), with a comparison to the scalp potential with different references and scalp Laplacian (SL). The contents include theoretical analysis and numeric evaluation of simulated data and real alpha (8-12 Hz) data. The results confirm the fact that SL and ECL are of higher spatial resolution than various scalp potential maps, and for SL and ECL, SL is of higher resolution but more sensitive to noise.

  17. DNA fiber mapping techniques for the assembly of high-resolution physical maps.

    PubMed

    Weier, H U

    2001-08-01

    High-resolution physical maps are indispensable for directed sequencing projects or the finishing stages of shotgun sequencing projects. These maps are also critical for the positional cloning of disease genes and genetic elements that regulate gene expression. Typically, physical maps are based on ordered sets of large insert DNA clones from cosmid, P1/PAC/BAC, or yeast artificial chromosome (YAC) libraries. Recent technical developments provide detailed information about overlaps or gaps between clones and precisely locate the position of sequence tagged sites or expressed sequences, and thus support efforts to determine the complete sequence of the human genome and model organisms. Assembly of physical maps is greatly facilitated by hybridization of non-isotopically labeled DNA probes onto DNA molecules that were released from interphase cell nuclei or recombinant DNA clones, stretched to some extent and then immobilized on a solid support. The bound DNA, collectively called "DNA fibers," may consist of single DNA molecules in some experiments or bundles of chromatin fibers in others. Once released from the interphase nuclei, the DNA fibers become more accessible to probes and detection reagents. Hybridization efficiency is therefore increased, allowing the detection of DNA targets as small as a few hundred base pairs. This review summarizes different approaches to DNA fiber mapping and discusses the detection sensitivity and mapping accuracy as well as recent achievements in mapping expressed sequence tags and DNA replication sites.

  18. A new map of the vegetation of central European Russia based on high-resolution satellite data.

    PubMed

    Ershov, D V; Gavrilyuk, E A; Karpukhina, D A; Kovganko, K A

    2015-01-01

    The scientific basis of and approaches to regional thematic mapping of vegetation based on high-resolution satellite data have been elaborated. A vegetation map of central European Russia has been compiled. The map includes 12 thematic classes, six of which pertain to forest ecosystems. The map has been compared to the data of the GFC project (University of Maryland, United States) and the official data of the Rosstat Federal Service of State Statistics (Russia). The new vegetation map is currently used in the information system of the remote monitoring of forest fires in Russia.

  19. A high-resolution radiation hybrid map of the bovine genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We are building high-resolution radiation hybrid maps of all 29 bovine autosomes and chromosome X, using a 58,000-marker genotyping assay, and a 12,000-rad whole-genome radiation hybrid (RH) panel. To accommodate the large number of markers, and to automate the map building procedure, a software pip...

  20. HetMappsS: Heterozygous mapping strategy for high resolution Genotyping-by-Sequencing Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reduced representation genotyping approaches, such as genotyping-by-sequencing (GBS), provide opportunities to generate high-resolution genetic maps at a low per-sample cost. However, missing data and non-uniform sequence coverage can complicate map creation in highly heterozygous species. To facili...

  1. High-resolution fracture aperture mapping using optical profilometry

    NASA Astrophysics Data System (ADS)

    Ameli, Pasha; Elkhoury, Jean E.; Detwiler, Russell L.

    2013-10-01

    Fractures play an important role in the Earth's crust, often controlling both mechanical and transport processes. Developing a mechanistic understanding of these processes requires quantifying the roughness of fracture surfaces and the contacts and void spaces between fracture surfaces at high spatial resolution (10s of microns) over a broad range of scales (centimeters to meters). Here we present a scalable method for measuring fracture surfaces and reconstructing fracture aperture fields using an optical profilometer. We evaluate the method by measuring two fractured limestone cores; one is a tensile fracture with strong cross correlation between the surfaces and the other is a saw-cut, sand-blasted fracture with negligible cross correlation between the surfaces. Results of repeated measurements of these two fractures suggest that well-correlated surfaces, where the correlation between the surfaces can aid reconstruction, can be reproduced with local uncertainties with median standard deviation of 8 μm . Poorly correlated surfaces, where reconstruction relies solely upon the precision of the placement of the halves of the core on the profilometer stage, can be reproduced with local uncertainties with median standard deviation of 20 μm . Additionally, we quantified the accuracy of the technique by comparing calculated aperture profiles of a fractured concrete core to thin sections cut from the core after impregnating it with epoxy. The median deviation between the two measurements, which includes errors due to residual misalignment of the profiles, was 29 μm supporting the accuracy of the method. Our results emphasize the potential for using noncontact surface measurement techniques to accurately and precisely reconstruct fracture apertures over a wide range of length scales.

  2. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    PubMed Central

    Buschmann, Tilo; Lohmann, Gabriele; Margulies, Daniel S.; Trampel, Robert; Turner, Robert

    2014-01-01

    Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a non-parametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM). The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships. PMID:24795548

  3. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  4. Fine Resolution Topographic Mapping of the Jovian Moons: A Ka-Band High Resolution Topographic Mapping Interferometric Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Madsen, S. N.; Carsey, F. D.; Turtle, E. P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through use of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  5. Mangrove species mapping in Kuala Sepetang Mangrove Forest, Perak using high resolution airborne data

    NASA Astrophysics Data System (ADS)

    Beh, B. C.; MatJafri, M. Z.; Lim, H. S.

    2015-10-01

    Mangrove vegetation is widely employed and studied as it is a unique ecosystem which is able to provide plenty of goods and applications to our country. In this paper, high resolution airborne image data obtained the flight mission on Kuala Sepetang Mangrove Forest Reserve, Perak, Malaysia will be used for mangrove species mapping. Supervised classification using the retrieved surface reflectance will be performed to classify the airborne data using Geomatica 2013 software package. The ground truth data will be used to validate the classification accuracy. High correlation of R2=0.873 was achieved in this study indicate that high resolution airborne data is reliable and suitable used for mangrove species mapping.

  6. Geospatial mapping of vegetation in the Antarctic environment using very high-resolution WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Udhayaraj, A. D.; Alvarinho, Luis J.

    2016-05-01

    A robust monitoring of the changes in the distribution and density of cryospheric plant species requires accurate and high-resolution baseline maps of vegetation. Mapping such change at the landscape scale is often problematic, particularly in remote areas, such as Antarctica. Vegetation mapping of plant communities at fine spatial scales is increasingly supported by remote sensing technology in cryospheric regions. Less frequent imaging with high spatial resolution satellite sensors enable more detailed analyses of vegetation change frequently. This study is the first to use high-resolution WorldView-2 (WV-2) imagery to classify vegetation communities on Antarctic oases and to provide semi-automated means to map vegetation, as an imperative indicator for environmental change. Multispectral imagery (MSI) and panchromatic imagery (PAN) from very high resolution WV-2 have been used for mapping of vegetation in different forms in Antarctic environment. A range of supervised classification methods have been executed using pan-sharpened WV-2 data. This study comparatively and statistically evaluates vegetation mapping results using supervised and unsupervised classification methods to extract vegetation in Larsemann Hills and Schirmacher oasis, east Antarctica. We also discuss on the use of supervised pixel-based classifiers and textural measures, in addition to standard multispectral information, to improve the classification of Antarctic vegetation communities. Classification results were validated with independent reference datasets. This work indicates that the overall accuracy of mapping vegetation using WV-2 imagery and semi-automated target extraction methods ranged from 90% to 94%.

  7. High-resolution MRI velocimetry compared with numerical simulations

    NASA Astrophysics Data System (ADS)

    Edelhoff, Daniel; Walczak, Lars; Henning, Stefan; Weichert, Frank; Suter, Dieter

    2013-10-01

    Alterations of the blood flow are associated with various cardiovascular diseases. Precise knowledge of the velocity distribution is therefore important for understanding these diseases and predicting the effect of different medical intervention schemes. The goal of this work is to estimate the precision with which the velocity field can be measured and predicted by studying two simple model geometries with NMR micro imaging and computational fluid dynamics. For these initial experiments, we use water as an ideal test medium. The phantoms consist of tubes simulating a straight blood vessel and a step between two tubes of different diameters, which can be seen as a minimal model of the situation behind a stenosis. For both models, we compare the experimental data with the numerical prediction, using the experimental boundary conditions. For the simpler model, we also compare the data to the analytical solution. As an additional validation, we determine the divergence of the velocity field and verify that it vanishes within the experimental uncertainties. We discuss the resulting precision of the simulation and the outlook for extending this approach to the analysis of specific cases of arteriovascular problems.

  8. High-resolution comparative modeling with RosettaCM.

    PubMed

    Song, Yifan; DiMaio, Frank; Wang, Ray Yu-Ruei; Kim, David; Miles, Chris; Brunette, Tj; Thompson, James; Baker, David

    2013-10-08

    We describe an improved method for comparative modeling, RosettaCM, which optimizes a physically realistic all-atom energy function over the conformational space defined by homologous structures. Given a set of sequence alignments, RosettaCM assembles topologies by recombining aligned segments in Cartesian space and building unaligned regions de novo in torsion space. The junctions between segments are regularized using a loop closure method combining fragment superposition with gradient-based minimization. The energies of the resulting models are optimized by all-atom refinement, and the most representative low-energy model is selected. The CASP10 experiment suggests that RosettaCM yields models with more accurate side-chain and backbone conformations than other methods when the sequence identity to the templates is greater than ∼15%.

  9. Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar

    NASA Astrophysics Data System (ADS)

    Swatantran, Anu; Tang, Hao; Barrett, Terence; Decola, Phil; Dubayah, Ralph

    2016-06-01

    Single photon lidar (SPL) is an innovative technology for rapid forest structure and terrain characterization over large areas. Here, we evaluate data from an SPL instrument - the High Resolution Quantum Lidar System (HRQLS) that was used to map the entirety of Garrett County in Maryland, USA (1700 km2). We develop novel approaches to filter solar noise to enable the derivation of forest canopy structure and ground elevation from SPL point clouds. SPL attributes are compared with field measurements and an existing leaf-off, low-point density discrete return lidar dataset as a means of validation. We find that canopy and ground characteristics from SPL are similar to discrete return lidar despite differences in wavelength and acquisition periods but the higher point density of the SPL data provides more structural detail. Our experience suggests that automated noise removal may be challenging, particularly over high albedo surfaces and rigorous instrument calibration is required to reduce ground measurement biases to accepted mapping standards. Nonetheless, its efficiency of data collection, and its ability to produce fine-scale, three-dimensional structure over large areas quickly strongly suggests that SPL should be considered as an efficient and potentially cost-effective alternative to existing lidar systems for large area mapping.

  10. Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar

    PubMed Central

    Swatantran, Anu; Tang, Hao; Barrett, Terence; DeCola, Phil; Dubayah, Ralph

    2016-01-01

    Single photon lidar (SPL) is an innovative technology for rapid forest structure and terrain characterization over large areas. Here, we evaluate data from an SPL instrument - the High Resolution Quantum Lidar System (HRQLS) that was used to map the entirety of Garrett County in Maryland, USA (1700 km2). We develop novel approaches to filter solar noise to enable the derivation of forest canopy structure and ground elevation from SPL point clouds. SPL attributes are compared with field measurements and an existing leaf-off, low-point density discrete return lidar dataset as a means of validation. We find that canopy and ground characteristics from SPL are similar to discrete return lidar despite differences in wavelength and acquisition periods but the higher point density of the SPL data provides more structural detail. Our experience suggests that automated noise removal may be challenging, particularly over high albedo surfaces and rigorous instrument calibration is required to reduce ground measurement biases to accepted mapping standards. Nonetheless, its efficiency of data collection, and its ability to produce fine-scale, three-dimensional structure over large areas quickly strongly suggests that SPL should be considered as an efficient and potentially cost-effective alternative to existing lidar systems for large area mapping. PMID:27329078

  11. Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar.

    PubMed

    Swatantran, Anu; Tang, Hao; Barrett, Terence; DeCola, Phil; Dubayah, Ralph

    2016-06-22

    Single photon lidar (SPL) is an innovative technology for rapid forest structure and terrain characterization over large areas. Here, we evaluate data from an SPL instrument - the High Resolution Quantum Lidar System (HRQLS) that was used to map the entirety of Garrett County in Maryland, USA (1700 km(2)). We develop novel approaches to filter solar noise to enable the derivation of forest canopy structure and ground elevation from SPL point clouds. SPL attributes are compared with field measurements and an existing leaf-off, low-point density discrete return lidar dataset as a means of validation. We find that canopy and ground characteristics from SPL are similar to discrete return lidar despite differences in wavelength and acquisition periods but the higher point density of the SPL data provides more structural detail. Our experience suggests that automated noise removal may be challenging, particularly over high albedo surfaces and rigorous instrument calibration is required to reduce ground measurement biases to accepted mapping standards. Nonetheless, its efficiency of data collection, and its ability to produce fine-scale, three-dimensional structure over large areas quickly strongly suggests that SPL should be considered as an efficient and potentially cost-effective alternative to existing lidar systems for large area mapping.

  12. High-resolution mapping of the Palos outflow channel: Preliminary results.

    NASA Astrophysics Data System (ADS)

    Rauhala, A. I.; Kukkonen, S.; Kostama, V.-P.

    2013-09-01

    We have begun a high-resolution geomorphic mapping of the "Palos outflow channel" in order to further characterize the paleofluvial activity in the Amenthes region. Preliminary findings, such as multiple instances of hanging valleys, suggest a complex history of flooding.

  13. High Resolution QTL Maps Of 31 Traits in Contemporary U.S. Holstein Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-resolution QTL maps of 1586 SNPs affecting 31 dairy traits (top 100 effects per trait)were constructed based on a genome-wide association analysis of 1,654 contemporary U.S. Holstein cows genotyped with 45,878 SNPs. The 31 traits include net merit and its 8 compnent traits, 4 calving traits, an...

  14. High-resolution mirror temperature mapping in GaN-based diode lasers by thermoreflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pierścińska, Dorota; Marona, Łucja; Pierściński, Kamil; Wiśniewski, Przemysław; Perlin, Piotr; Bugajski, Maciej

    2017-02-01

    In this paper accurate measurements of temperature distribution on the facet of GaN-based diode lasers are presented as well as development of the instrumentation for high-resolution thermal imaging based on thermoreflectance. It is shown that thermoreflectance can be successfully applied to provide information on heat dissipation in these devices. We demonstrate the quantitative measurements of the temperature profiles and high-resolution temperature maps on the front facet of nitride lasers and prove that thermoreflectance spectroscopy can be considered as the accurate and fast nondestructive tool for investigation of thermally induced degradation modes of GaN lasers.

  15. Land use/land cover mapping using multi-scale texture processing of high resolution data

    NASA Astrophysics Data System (ADS)

    Wong, S. N.; Sarker, M. L. R.

    2014-02-01

    Land use/land cover (LULC) maps are useful for many purposes, and for a long time remote sensing techniques have been used for LULC mapping using different types of data and image processing techniques. In this research, high resolution satellite data from IKONOS was used to perform land use/land cover mapping in Johor Bahru city and adjacent areas (Malaysia). Spatial image processing was carried out using the six texture algorithms (mean, variance, contrast, homogeneity, entropy, and GLDV angular second moment) with five difference window sizes (from 3×3 to 11×11). Three different classifiers i.e. Maximum Likelihood Classifier (MLC), Artificial Neural Network (ANN) and Supported Vector Machine (SVM) were used to classify the texture parameters of different spectral bands individually and all bands together using the same training and validation samples. Results indicated that texture parameters of all bands together generally showed a better performance (overall accuracy = 90.10%) for land LULC mapping, however, single spectral band could only achieve an overall accuracy of 72.67%. This research also found an improvement of the overall accuracy (OA) using single-texture multi-scales approach (OA = 89.10%) and single-scale multi-textures approach (OA = 90.10%) compared with all original bands (OA = 84.02%) because of the complementary information from different bands and different texture algorithms. On the other hand, all of the three different classifiers have showed high accuracy when using different texture approaches, but SVM generally showed higher accuracy (90.10%) compared to MLC (89.10%) and ANN (89.67%) especially for the complex classes such as urban and road.

  16. Application of high-resolution multispectral data for mapping blue ice areas in the Antarctic environment

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-05-01

    High resolution calibrated PAN-sharpened images from WorldView-2 (WV-2) were used for extracting blue ice areas in Schirmacher Oasis, east Antarctica. The Schirmacher oasis extends from 70°45' S to 70° 75' S and 11°38' E to 11° 38' E. Blue ice areas represents long-term ablation. The amplitude of blue ice is lower than that of snow, because the ice surface is smoother than the latter. But the difference is not so obvious when applying automatic extraction techniques. To achieve desirable results and support comparative analysis, multiband image combinations were generated from atmospherically-corrected WV-2 data. For feature extraction process, regions of interest (ROI) were considered in which blue ice was used as target and white snow/ice appearing on the blue ice was considered as non-target. Various semiautomatic feature extraction methods, such as, target detection, mapping methods, etc, and many trials were used for extracting blue ice areas. Surface patterns of alternating snow and blue ice bands were found in east Antarctica which becomes obstacle to clearly extract blue ice feature. From the high resolution WV-2 data, reference data (digitized data) were prepared for blue ice area. By comparing reference data and extracted data, bias and root mean square (RMS) error values were calculated. Accuracy assessment was done considering the entire necessary prior results of the blue ice area. Our results indicate that the pixel-based supervised classification methods yielded an overall accuracy ranging from 82%-89% for extraction of blue ice areas.

  17. Aircraft Detection in High-Resolution SAR Images Based on a Gradient Textural Saliency Map

    PubMed Central

    Tan, Yihua; Li, Qingyun; Li, Yansheng; Tian, Jinwen

    2015-01-01

    This paper proposes a new automatic and adaptive aircraft target detection algorithm in high-resolution synthetic aperture radar (SAR) images of airport. The proposed method is based on gradient textural saliency map under the contextual cues of apron area. Firstly, the candidate regions with the possible existence of airport are detected from the apron area. Secondly, directional local gradient distribution detector is used to obtain a gradient textural saliency map in the favor of the candidate regions. In addition, the final targets will be detected by segmenting the saliency map using CFAR-type algorithm. The real high-resolution airborne SAR image data is used to verify the proposed algorithm. The results demonstrate that this algorithm can detect aircraft targets quickly and accurately, and decrease the false alarm rate. PMID:26378543

  18. High-Resolution Debris Flow Volume Mapping with Unmanned Aerial Systems (uas) and Photogrammetric Techniques

    NASA Astrophysics Data System (ADS)

    Adams, M. S.; Fromm, R.; Lechner, V.

    2016-06-01

    Debris flows cause an average € 30 million damages and 1-2 fatalities every year in Austria. Detailed documentation of their extent and magnitude is essential for understanding, preventing and mitigating these natural hazard events. The recent development of unmanned aerial systems (UAS) has provided a new possibility for on-demand high-resolution monitoring and mapping. Here, we present a study, where the spatial extent and volume of a large debris flow event were mapped with different UAS, fitted with commercial off-the-shelf sensors. Orthophotos and digital terrain models (DTM) were calculated using structure-from-motion photogrammetry software. Terrain height differences caused by the debris flow in the catchment and valley floor were derived by subtracting the pre-event airborne laser scanning (ALS) DTM from a post-event UAS-DTM. The analysis of the volumetric sediment budget showed, that approximately 265,000 m³ material was mobilised in the catchment, of which 45,000 m³ settled there; of the material, which reached the valley floor, 120,000 m³ was deposited, while another 10,000 m³ was eroded from there. The UAS-results were validated against ALS data and imagery from a traditional manned-aircraft photogrammetry campaign. In conclusion, the UAS-data can reach an accuracy and precision comparable to manned aircraft data, but with the added benefits of higher flexibility, easier repeatability, less operational constraints and higher spatial resolution.

  19. Ecosystem services of boreal forests - Carbon budget mapping at high resolution.

    PubMed

    Akujärvi, Anu; Lehtonen, Aleksi; Liski, Jari

    2016-10-01

    The carbon (C) cycle of forests produces ecosystem services (ES) such as climate regulation and timber production. Mapping these ES using simple land cover -based proxies might add remarkable inaccuracy to the estimates. A framework to map the current status of the C budget of boreal forested landscapes was developed. The C stocks of biomass and soil and the annual change in these stocks were quantified in a 20 × 20 m resolution at the regional level on mineral soils in southern Finland. The fine-scale variation of the estimates was analyzed geo-statistically. The reliability of the estimates was evaluated by comparing them to measurements from the national multi-source forest inventory. The C stocks of forests increased slightly from the south coast to inland whereas the changes in these stocks were more uniform. The spatial patches of C stocks were larger than those of C stock changes. The patch size of the C stocks reflected the spatial variation in the environmental conditions, and that of the C stock changes the typical area of forest management compartments. The simulated estimates agreed well with the measurements indicating a good mapping framework performance. The mapping framework is the basis for evaluating the effects of forest management alternatives on C budget at high resolution across large spatial scales. It will be coupled with the assessment of other ES and biodiversity to study their relationships. The framework integrated a wide suite of simulation models and extensive inventory data. It provided reliable estimates of the human influence on C cycle in forested landscapes.

  20. Soil Erosion map of Europe based on high resolution input datasets

    NASA Astrophysics Data System (ADS)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Ballabio, Cristiano; Alewell, Christine

    2015-04-01

    Modelling soil erosion in European Union is of major importance for agro-environmental policies. Soil erosion estimates are important inputs for the Common Agricultural Policy (CAP) and the implementation of the Soil Thematic Strategy. Using the findings of a recent pan-European data collection through the EIONET network, it was concluded that most Member States are applying the empirical Revised Universal Soil Loss Equation (RUSLE) for the modelling soil erosion at National level. This model was chosen for the pan-European soil erosion risk assessment and it is based on 6 input factors. Compared to past approaches, each of the factors is modelled using the latest pan-European datasets, expertise and data from Member states and high resolution remote sensing data. The soil erodibility (K-factor) is modelled using the recently published LUCAS topsoil database with 20,000 point measurements and incorporating the surface stone cover which can reduce K-factor by 15%. The rainfall erosivity dataset (R-factor) has been implemented using high temporal resolution rainfall data from more than 1,500 precipitation stations well distributed in Europe. The cover-management (C-factor) incorporates crop statistics and management practices such as cover crops, tillage practices and plant residuals. The slope length and steepness (combined LS-factor) is based on the first ever 25m Digital Elevation Model (DEM) of Europe. Finally, the support practices (P-factor) is modelled for first time at this scale taking into account the 270,000 LUCAS earth observations and the Good Agricultural and Environmental Condition (GAEC) that farmers have to follow in Europe. The high resolution input layers produce the final soil erosion risk map at 100m resolution and allow policy makers to run future land use, management and climate change scenarios.

  1. Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network

    NASA Astrophysics Data System (ADS)

    Mukashema, A.; Veldkamp, A.; Vrieling, A.

    2014-12-01

    African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.

  2. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  3. Upsampling range camera depth maps using high-resolution vision camera and pixel-level confidence classification

    NASA Astrophysics Data System (ADS)

    Tian, Chao; Vaishampayan, Vinay; Zhang, Yifu

    2011-03-01

    We consider the problem of upsampling a low-resolution depth map generated by a range camera, by using information from one or more additional high-resolution vision cameras. The goal is to provide an accurate high resolution depth map from the viewpoint of one of the vision cameras. We propose an algorithm that first converts the low resolution depth map into a depth/disparity map through coordinate mappings into the coordinate frame of one vision camera, then classifies the pixels into regions according to whether the range camera depth map is trustworthy, and finally refine the depth values for the pixels in the untrustworthy regions. For the last refinement step, both a method based on graph cut optimization and that based on bilateral filtering are examined. Experimental results show that the proposed methods using classification are able to upsample the depth map by a factor of 10 x 10 with much improved depth details, with significantly better accuracy comparing to those without the classification. The improvements are visually perceptible on a 3D auto-stereoscopic display.

  4. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    NASA Astrophysics Data System (ADS)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  5. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  6. RAVEN - High-resolution Mapping of Venus within a Discovery Mission Budget

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.; Herrick, R. R.; Rogers, F.; Waterman, S.

    2009-12-01

    It has been more than 15 years since the Magellan mission mapped Venus with S-band synthetic aperture radar (SAR) images at ~100-m resolution. Advances in radar technology are such that current Earth-orbiting SAR instruments are capable of providing images at meter-scale resolution. RAVEN (RAdar at VENus) is a mission concept that utilizes the instrument developed for the RADARSAT Constellation Mission (RCM) to map Venus in an economical, highly capable, and reliable way. RCM relies on a C-band SAR that can be tuned to generate images at a wide variety of resolutions and swath widths, ranging from ScanSAR mode (broad swaths at 30-m resolution) to strip-map mode (resolutions as fine as 3 m), as well as a spotlight mode that can image patches at 1-m resolution. In particular, the high-resolution modes allow the landing sites of previous missions to be pinpointed and characterized. Repeat-pass interferometric SAR (InSAR) and stereo radargrammetry provide options for constraining topography to better than 100-m horizontal and 10-m vertical resolution. InSAR also provides the potential for detecting surface deformation at centimeter precision. Performing InSAR requires precise knowledge and control of the orbital geometry, and for this reason a 600-km circular polar orbit is favored. This configuration causes the equatorial nadir point to move ~9 km per orbit. Considering both ascending and descending passes, the spacecraft will pass over every point on the planet in half a Venus day (~4 Earth months). The ability to transmit data back to Earth via the Deep Space Network is the primary limiting factor on the volume of data that can be collected. Our current estimates indicate that within an imaging cycle of one Venus day we can image 20-30 percent of the planet at 20-30-m resolution and several percent at 3-5 m resolution. These figures compare favorably to the coverage provided by recent imaging systems orbiting Mars. Our strategy calls for the first cycle of coverage

  7. National scale high-resolution mapping of coastal wave overtopping risk in England and Wales

    NASA Astrophysics Data System (ADS)

    Alexandre, Rebecca; Hird, Matthew

    2015-04-01

    The coastal flooding associated with the 2013-2014 UK winter storms caused widespread property damage and one fatality along the coastlines of south-west England and Wales. High spring tides and large waves combined to unexpectedly overtop coastal flood defences. The increasing risk of waves overtopping sea defences coupled with the rise in property development along the coast highlights the need for new and innovative tools for understanding coastal flood risk. Until now, broad-scale coastal hazard maps have overlooked coastal wave overtopping inundation, thereby underestimating flood risk. Recognising this gap has led to the development of the first nation-wide wave overtopping flood map for England and Wales, which we present here. Aimed primarily at the re/insurance sector, JBA has established a methodology for rapidly modelling large-scale wave overtopping flooding. An inception study investigated a range of modelling approaches for national scale modelling and the most suitable design computed general peak wave overtopping rates representative of four separate return period events. Hydrographs were calculated to reflect the changes in the overtopping rate as a result of changes to the water levels throughout the tidal cycle. Overtopping volumes were then computed from the overtopping rates and defence polylines digitised in ArcGIS. Finally, topographically controlled inundation was simulated across a high-resolution digital terrain model using a 2D hydrodynamic flood model. Results from the selected methodology compared well against test areas modelled in detail using additional data on bathymetry, beach profiles, and defence geometry. Sensibility checks were performed using extreme sea level value data to ensure that the model outputs were consistent with the sea level heights expected during a storm event of a particular return period. Moreover, model results corroborated well with media reports on flood extents experienced by communities during the 2013

  8. Automated High Resolution Optical Mapping Using Arrayed, Fluid-Fixed DNA Molecules

    NASA Astrophysics Data System (ADS)

    Jing, Junping; Reed, Jason; Huang, John; Hu, Xinghua; Clarke, Virginia; Edington, Joanne; Housman, Dan; Anantharaman, Thomas S.; Huff, Edward J.; Mishra, Bud; Porter, Brett; Shenker, Alexander; Wolfson, Estarose; Hiort, Catharina; Kantor, Ron; Aston, Christopher; Schwartz, David C.

    1998-07-01

    New mapping approaches construct ordered restriction maps from fluorescence microscope images of individual, endonuclease-digested DNA molecules. In optical mapping, molecules are elongated and fixed onto derivatized glass surfaces, preserving biochemical accessibility and fragment order after enzymatic digestion. Measurements of relative fluorescence intensity and apparent length determine the sizes of restriction fragments, enabling ordered map construction without electrophoretic analysis. The optical mapping system reported here is based on our physical characterization of an effect using fluid flows developed within tiny, evaporating droplets to elongate and fix DNA molecules onto derivatized surfaces. Such evaporation-driven molecular fixation produces well elongated molecules accessible to restriction endonucleases, and notably, DNA polymerase I. We then developed the robotic means to grid DNA spots in well defined arrays that are digested and analyzed in parallel. To effectively harness this effect for high-throughput genome mapping, we developed: (i) machine vision and automatic image acquisition techniques to work with fixed, digested molecules within gridded samples, and (ii) Bayesian inference approaches that are used to analyze machine vision data, automatically producing high-resolution restriction maps from images of individual DNA molecules. The aggregate significance of this work is the development of an integrated system for mapping small insert clones allowing biochemical data obtained from engineered ensembles of individual molecules to be automatically accumulated and analyzed for map construction. These approaches are sufficiently general for varied biochemical analyses of individual molecules using statistically meaningful population sizes.

  9. Very High Resolution Mapping of Tree Cover Using Scalable Deep Learning Architectures

    NASA Astrophysics Data System (ADS)

    ganguly, sangram; basu, saikat; nemani, ramakrishna; mukhopadhyay, supratik; michaelis, andrew; votava, petr; saatchi, sassan

    2016-04-01

    Several studies to date have provided an extensive knowledge base for estimating forest aboveground biomass (AGB) and recent advances in space-based modeling of the 3-D canopy structure, combined with canopy reflectance measured by passive optical sensors and radar backscatter, are providing improved satellite-derived AGB density mapping for large scale carbon monitoring applications. A key limitation in forest AGB estimation from remote sensing, however, is the large uncertainty in forest cover estimates from the coarse-to-medium resolution satellite-derived land cover maps (present resolution is limited to 30-m of the USGS NLCD Program). As part of our NASA Carbon Monitoring System Phase II activities, we have demonstrated that uncertainties in forest cover estimates at the Landsat scale result in high uncertainties in AGB estimation, predominantly in heterogeneous forest and urban landscapes. We have successfully tested an approach using scalable deep learning architectures (Feature-enhanced Deep Belief Networks and Semantic Segmentation using Convolutional Neural Networks) and High-Performance Computing with NAIP air-borne imagery data for mapping tree cover at 1-m over California and Maryland. Our first high resolution satellite training label dataset from the NAIP data can be found here at http://csc.lsu.edu/~saikat/deepsat/ . In a comparison with high resolution LiDAR data available over selected regions in the two states, we found our results to be promising both in terms of accuracy as well as our ability to scale nationally. In this project, we propose to estimate very high resolution forest cover for the continental US at spatial resolution of 1-m in support of reducing uncertainties in the AGB estimation. The proposed work will substantially contribute to filling the gaps in ongoing carbon monitoring research and help quantifying the errors and uncertainties in related carbon products.

  10. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites

    PubMed Central

    Skene, Peter J; Henikoff, Steven

    2017-01-01

    We describe Cleavage Under Targets and Release Using Nuclease (CUT&RUN), a chromatin profiling strategy in which antibody-targeted controlled cleavage by micrococcal nuclease releases specific protein-DNA complexes into the supernatant for paired-end DNA sequencing. Unlike Chromatin Immunoprecipitation (ChIP), which fragments and solubilizes total chromatin, CUT&RUN is performed in situ, allowing for both quantitative high-resolution chromatin mapping and probing of the local chromatin environment. When applied to yeast and human nuclei, CUT&RUN yielded precise transcription factor profiles while avoiding crosslinking and solubilization issues. CUT&RUN is simple to perform and is inherently robust, with extremely low backgrounds requiring only ~1/10th the sequencing depth as ChIP, making CUT&RUN especially cost-effective for transcription factor and chromatin profiling. When used in conjunction with native ChIP-seq and applied to human CTCF, CUT&RUN mapped directional long range contact sites at high resolution. We conclude that in situ mapping of protein-DNA interactions by CUT&RUN is an attractive alternative to ChIP-seq. DOI: http://dx.doi.org/10.7554/eLife.21856.001 PMID:28079019

  11. High-Resolution Geologic Mapping of the Inner Continental Shelf: Cape Ann to Salisbury Beach, Massachusetts

    USGS Publications Warehouse

    Barnhardt, Walter A.; Andrews, Brian D.; Ackerman, Seth D.; Baldwin, Wayne E.; Hein, Christopher J.

    2009-01-01

    The geologic framework of the Massachusetts inner continental shelf between Cape Ann and Salisbury Beach has been shaped by a complicated history of glaciation, deglaciation, and changes in relative sea level. New geophysical data (swath bathymetry, sidescan sonar and seismic-reflection profiling), sediment samples, and seafloor photography provide insight into the geomorphic and stratigraphic record generated by these processes. High-resolution spatial data and geologic maps in this report support coastal research and efforts to understand the type, distribution, and quality of subtidal marine habitats in the Massachusetts coastal ocean.

  12. High-resolution geologic mapping of the inner continental shelf: Nahant to Gloucester, Massachusetts

    USGS Publications Warehouse

    Barnhardt, Walter A.; Andrews, Brian D.; Butman, Bradford

    2006-01-01

    This report presents high-resolution maps of the seafloor offshore of Massachusetts, from Nahant to Gloucester. Approximately 134 km² of the inner shelf were mapped with a focus on the nearshore region in water depths less than 40 m (fig. 1.1). The maps were prepared as part of a cooperative mapping program between the U.S. Geological Survey (USGS) and the Massachusetts Office of Coastal Zone Management (CZM). They are based on marine geophysical data, sediment sampling, and bottom photography obtained on two research cruises carried out in 2003 and 2004. The primary objective of this program is to develop a suite of seafloor maps that provide geologic information for management of coastal and marine resources. Accurate maps of seafloor geology are important first steps toward protecting fish habitat, delineating marine reserves, and assessing environmental changes due to natural or human impacts. The maps also provide a geologic framework for scientific research, industry and the public. The organization of this report is outlined in the navigation bar along the left-hand margin of the page. This is section 1, the introduction. Section 2 briefly describes the mapping products contained in this report and has links to large-format map sheets, that can be viewed on line or downloaded. Section 3 is a description of the data collection, processing, and analysis procedures used to create the map products. Section 4 examines the geologic framework and late Quaternary evolution of the region, and presents two different strategies for mapping the complex seafloor. This report also contains four appendices that include GIS layers of all data collected in this study, and copies of the sample and photographic data used to validate the interpretations.

  13. High-Resolution Association Mapping of Quantitative Trait Loci: A Population-Based Approach

    PubMed Central

    Fan, Ruzong; Jung, Jeesun; Jin, Lei

    2006-01-01

    In this article, population-based regression models are proposed for high-resolution linkage disequilibrium mapping of quantitative trait loci (QTL). Two regression models, the “genotype effect model” and the “additive effect model,” are proposed to model the association between the markers and the trait locus. The marker can be either diallelic or multiallelic. If only one marker is used, the method is similar to a classical setting by Nielsen and Weir, and the additive effect model is equivalent to the haplotype trend regression (HTR) method by Zaykin et al. If two/multiple marker data with phase ambiguity are used in the analysis, the proposed models can be used to analyze the data directly. By analytical formulas, we show that the genotype effect model can be used to model the additive and dominance effects simultaneously; the additive effect model takes care of the additive effect only. On the basis of the two models, F-test statistics are proposed to test association between the QTL and markers. By a simulation study, we show that the two models have reasonable type I error rates for a data set of moderate sample size. The noncentrality parameter approximations of F-test statistics are derived to make power calculation and comparison. By a simulation study, it is found that the noncentrality parameter approximations of F-test statistics work very well. Using the noncentrality parameter approximations, we compare the power of the two models with that of the HTR. In addition, a simulation study is performed to make a comparison on the basis of the haplotype frequencies of 10 SNPs of angiotensin-1 converting enzyme (ACE) genes. PMID:16172503

  14. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    PubMed

    Ma, Xue-Feng; Jensen, Elaine; Alexandrov, Nickolai; Troukhan, Maxim; Zhang, Liping; Thomas-Jones, Sian; Farrar, Kerrie; Clifton-Brown, John; Donnison, Iain; Swaller, Timothy; Flavell, Richard

    2012-01-01

    We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS), identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7), presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  15. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  16. A high-resolution PAC and BAC map of the SCA2 region.

    PubMed

    Nechiporuk, T; Nechiporuk, A; Sahba, S; Figueroa, K; Shibata, H; Chen, X N; Korenberg, J R; de Jong, P; Pulst, S M

    1997-09-15

    The spinocerebellar ataxia type 2 (SCA2) gene has been localized to chromosome 12q24.1. To characterize this region and to aid in the identification of the SCA2 gene, we have constructed a 3.9-Mb physical map, which covers markers D12S1328 and D12S1329 known to flank the gene. The map comprises a contig of 84 overlapping yeast artificial chromosomes (YACs), P1 artificial chromosomes (PACs), and bacterial artificial chromosomes (BACs) onto which we placed 82 PCR markers. We localized eight genes and expressed sequence tags on this map, many of which had not been precisely mapped before. In contrast to YACs, which showed a high degree of chimerism and deletions in this region, PACs and BACs were stable. Only 1 in 65 PACs contained a small deletion, and 2 in 18 BACs were chimeric. The high-resolution physical map, which was used in the identification of the SCA2 gene, will be useful for the positional cloning of other disease genes mapped to this region.

  17. High-resolution genetic maps of Eucalyptus improve Eucalyptus grandis genome assembly.

    PubMed

    Bartholomé, Jérôme; Mandrou, Eric; Mabiala, André; Jenkins, Jerry; Nabihoudine, Ibouniyamine; Klopp, Christophe; Schmutz, Jeremy; Plomion, Christophe; Gion, Jean-Marc

    2015-06-01

    Genetic maps are key tools in genetic research as they constitute the framework for many applications, such as quantitative trait locus analysis, and support the assembly of genome sequences. The resequencing of the two parents of a cross between Eucalyptus urophylla and Eucalyptus grandis was used to design a single nucleotide polymorphism (SNP) array of 6000 markers evenly distributed along the E. grandis genome. The genotyping of 1025 offspring enabled the construction of two high-resolution genetic maps containing 1832 and 1773 markers with an average marker interval of 0.45 and 0.5 cM for E. grandis and E. urophylla, respectively. The comparison between genetic maps and the reference genome highlighted 85% of collinear regions. A total of 43 noncollinear regions and 13 nonsynthetic regions were detected and corrected in the new genome assembly. This improved version contains 4943 scaffolds totalling 691.3 Mb of which 88.6% were captured by the 11 chromosomes. The mapping data were also used to investigate the effect of population size and number of markers on linkage mapping accuracy. This study provides the most reliable linkage maps for Eucalyptus and version 2.0 of the E. grandis genome.

  18. Exploring for subtle traps with high-resolution paleogeographic maps: Reklaw 1 interval (Eocene), south Texas

    SciTech Connect

    Bulling, T.P.; Breyer, J.A.

    1989-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwestward by longshore currents to form the barrier bar that became Atkinson field. The hydrocarbons were trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of an extensive barrier-bar system. After the barrier bar formed, distributary mouth bars prograded seaward, depositing the bar-finger sands that became the Hysaw and Flax fields. Subtle structural traps could be present today where small up-to-the-coast faults associated with the sample fault system cut the bar-finger sands downdip from established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary mouth bars coalesced to form a broad delta-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand at the unstable shelf margin. A rapid rise in relative sea level terminated the Reklaw 1 interval. Many of the oil and gas fields still to be discovered in the US are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps are the key to finding these subtle traps. 11 figures, 2 tables.

  19. Transfer of Technology for Cadastral Mapping in Tajikistan Using High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kaczynski, R.

    2012-07-01

    European Commission funded project entitled: "Support to the mapping and certification capacity of the Agency of Land Management, Geodesy and Cartography" in Tajikistan was run by FINNMAP FM-International and Human Dynamics from Nov. 2006 to June 2011. The Agency of Land Management, Geodesy and Cartography is the state agency responsible for development, implementation, monitoring and evaluation of state policies on land tenure and land management, including the on-going land reform and registration of land use rights. The specific objective was to support and strengthen the professional capacity of the "Fazo" Institute in the field of satellite geodesy, digital photogrammetry, advanced digital satellite image processing of high resolution satellite data and digital cartography. Lectures and on-the-job trainings for the personnel of "Fazo" and Agency in satellite geodesy, digital photogrammetry, cartography and the use of high resolution satellite data for cadastral mapping have been organized. Standards and Quality control system for all data and products have been elaborated and implemented in the production line. Technical expertise and trainings in geodesy, photogrammetry and satellite image processing to the World Bank project "Land Registration and Cadastre System for Sustainable Agriculture" has also been completed in Tajikistan. The new map projection was chosen and the new unclassified geodetic network has been established for all of the country in which all agricultural parcel boundaries are being mapped. IKONOS, QuickBird and WorldView1 panchromatic data have been used for orthophoto generation. Average accuracy of space triangulation of non-standard (long up to 90km) satellite images of QuickBird Pan and IKONOS Pan on ICPs: RMSEx = 0.5m and RMSEy = 0.5m have been achieved. Accuracy of digital orthophoto map is RMSExy = 1.0m. More then two and half thousands of digital orthophoto map sheets in the scale of 1:5000 with pixel size 0.5m have been produced

  20. High-resolution, genome-wide mapping of chromatin modifications by GMAT.

    PubMed

    Roh, Tae-Young; Zhao, Keji

    2008-01-01

    One major postgenomic challenge is to characterize the epigenomes that control genome functions. The epigenomes are mainly defined by the specific association of nonhistone proteins with chromatin and the covalent modifications of chromatin, including DNA methylation and posttranslational histone modifications. The in vivo protein-binding and chromatin-modification patterns can be revealed by the chromatin immunoprecipitation assay (ChIP). By combining the ChIP assays and the serial analysis of gene expression (SAGE) protocols, we have developed an unbiased and high-resolution genome-wide mapping technique (GMAT) to determine the genome-wide protein-targeting and chromatin-modification patterns. GMAT has been successfully applied to mapping the target sites of the histone acetyltransferase, Gcn5p, in yeast and to the discovery of the histone acetylation islands as an epigenetic mark for functional regulatory elements in the human genome.

  1. USGS advances in integrated, high-resolution sea-floor mapping: inner continental shelf to estuaries

    USGS Publications Warehouse

    Denny, J.F.; Schwab, W.C.; Twichell, D.C.; O'Brien, T.F.; Danforth, W.W.; Foster, D.S.; Bergeron, E.; Worley, C.W.; Irwin, B.J.; Butman, B.; Valentine, P.C.; Baldwin, W.E.; Morton, R.A.; Thieler, E.R.; Nichols, D.R.; Andrews, B.D.

    2007-01-01

    The U.S. Geological Survey (USGS) has been involved in geological mapping of the sea floor for the past thirty years. Early geophysical and acoustic mapping efforts using GLORIA (Geologic LOng Range Inclined ASDIC) a long-range sidescan-sonar system, provided broad-scale imagery of deep waters within the U.S. Exclusive Economic Zone (EEZ). In the early 1990's, research emphasis shifted from deep- to shallow-water environments to address pertinent coastal research and resource management issues. Use of shallow-water, high-resolution geophysical systems has enhanced our understanding of the processes shaping shallow marine environments. However, research within these shallow-water environments continues to present technological challenges.

  2. Rockfall susceptibility mapping of Yosemite Valley (USA) using a high-resolution digital elevation model

    NASA Astrophysics Data System (ADS)

    Pannatier, A.; Oppikofer, T.; Jaboyedoff, M.; Stock, G. M.

    2009-04-01

    In Yosemite National Park (California, USA) rockfalls from the steep valley flanks are frequent (>600 documented events in 150 years) and threaten infrastructure in this popular tourist area. This study focuses on a methodology to map the susceptibility to rockfall initiation based on a high-resolution digital elevation model (HRDEM) obtained from aerial laser scanning (1 meter cell size). This methodology is based on geometric factors derived from the HRDEM, i.e., the steepness of the topography, the presence of joints or fractures enabling either a planar or a wedge failure mechanism, and a high denudation potential. The slope angle histogram computed using standard GIS routines was simulated using Gaussian distributions, which were attributed to different parts of the topography, i.e., the cliffs, the valley flanks and the valley floor. Slopes steeper than 36° are found to form cliffs and thus potentially lead to rockfalls. A morpho-structural analysis of the HRDEM was performed in Coltop3D software to determine the major discontinuity sets that shape the topography. Kinematic analyses were made for each of these 7 discontinuity sets in order to determine the HRDEM cells that fulfil the geometric criteria for a planar or wedge failure mechanism. Most of the cliffs in Yosemite Valley enable one or both of these failure mechanisms. The denudation potential was assessed using the sloping local base level (SLBL) concept. The SLBL defines a basal erosion surface and the above lying rock masses (up to 400 m in some of the vertical cliffs) are susceptible to erosion by mass wasting. A thickness of 20 m above the SLBL surface was chosen as lower limit for the denudation potential criterion. The HRDEM cells that satisfy 1, 2 or all 3 criteria are considered having low, moderate and high susceptibility to rockfall initiation. The areas with highest susceptibility (El Capitan, Glacier Point, Yosemite Falls and Half Dome) coincide well with post-glacial talus accumulations

  3. The need for sustained and integrated high-resolution mapping of dynamic coastal environments

    USGS Publications Warehouse

    Stockdon, Hilary F.; Lillycrop, Jeff W.; Howd, Peter A.; Wozencraft, Jennifer M.

    2007-01-01

    The evolution of the United States' coastal zone response to both human activities and natural processes is dynamic. Coastal resource and population protection requires understanding, in detail, the processes needed for change as well as the physical setting. Sustained coastal area mapping allows change to be documented and baseline conditions to be established, as well as future behavior to be predicted in conjunction with physical process models. Hyperspectral imagers and airborne lidars, as well as other recent mapping technology advances, allow rapid national scale land use information and high-resolution elevation data collection. Coastal hazard risk evaluation has critical dependence on these rich data sets. A fundamental storm surge model parameter in predicting flooding location, for example, is coastal elevation data, and a foundation in identifying the most vulnerable populations and resources is land use maps. A wealth of information for physical change process study, coastal resource and community management and protection, and coastal area hazard vulnerability determination, is available in a comprehensive national coastal mapping plan designed to take advantage of recent mapping technology progress and data distribution, management, and collection.

  4. Lunar Topographic Mapping Using a New High Resolution Mode for the GSSR Radar

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Gurrola, Eric; Slade, Martin; Quirk, Kevin; Srinivasan, Meera; Lee, Clement; Yun, Sang-Ho; Jao, Joseph; Wilson, Barbara; De Jong, Eric; Marechal, Nick; Weintraub, Lawrence; Dickinson, Richard; Bloom, Ronald; Karamyan, Grant; Lilje, Anneliese; Harcke, Leif

    2010-01-01

    Mapping the Moon's topography using Earth based radar interferometric measurements by the Goldstone Solar System Radar (GSSR) has been done several times since the mid 1990s. In 2008 we reported at this conference the generation of lunar topographic maps having approximately 4 m height accuracy at a horizontal posting of 40 m. Since then GSSR radar has been improved to allow 40 MHz bandwidth imaging and consequently obtained images and interferograms with a resolution of about 4 m in range by 5 m in azimuth. The long synthetic aperture times of approximately 90 minutes in duration necessitated a migration from range/Doppler image formation techniques to spotlight mode processing and autofocusing methods. The improved resolution imagery should permit the generation of topographic maps with a factor of two better spatial resolution with about same height accuracy. Coupled the with the recent availability of new lidar topography maps of the lunar surface made by orbiting satellites of Japan and the United States the geodetic control of the radar generated maps products can be improved dramatically. This paper will discuss the hardware and software improvements made to the GSSR and present some of the new high resolution products.

  5. A new ant based distributed framework for urban road map updating from high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Zarrinpanjeh, Nima; Samadzadegan, Farhad; Schenk, Toni

    2013-04-01

    Receiving updated information about the network of roads from high resolution satellite imagery is a crucially important issue in continuously changing developing urban regions. Considering experiences in road extraction and also exploiting distributed evolutionary computational approaches, in this paper a new framework for road map updating from remotely sensed data is proposed. Three main computational entities of ant-agent, seed extractor and algorithm library are designed and road map updating is performed through three main stages of verification of the old map, extraction of possible roads and grouping of the results of both stages. Extracting corresponding pixels to each road element in the map, an object level supervised classification or any available road verification algorithm from the library capable of producing a road likeliness value is applied. Since road extraction is a simple and also a complex problem, more comprehensive algorithms are chosen from library iteratively by ant-agents so the decision about verification and rejection of each road element is finally made. Ant-agents facilitate choosing road elements and moving of ant agents via stigmergic communication by pheromone cast and evaporation. The proposed method is developed and tested using GeoEye-1 pan-sharpen imagery and 1:2000 corresponding digital vector map of the region. As observed, the results are satisfactory in terms of detection, verification and extraction of roads and generation of the updated map specifically in case of inspection of main roads. Besides, some missed road items are reported in case of inspection of bystreets and alleys specially when situated at the margin of the image. Completeness, correctness and quality measures are computed for evaluation of the initial and the resulted updated maps. The computed measures verify the improvement of the updated map.

  6. Fast Mean-Shift Based Classification of Very High Resolution Images: Application to Forest Cover Mapping

    NASA Astrophysics Data System (ADS)

    Boukir, S.; Jones, S.; Reinke, K.

    2012-07-01

    This paper presents a new unsupervised classification method which aims to effectively and efficiently map remote sensing data. The Mean-Shift (MS) algorithm, a non parametric density-based clustering technique, is at the core of our method. This powerful clustering algorithm has been successfully used for both the classification and the segmentation of gray scale and color images during the last decade. However, very little work has been reported regarding the performance of this technique on remotely sensed images. The main disadvantage of the MS algorithm lies on its high computational costs. Indeed, it is based on an optimization procedure to determine the modes of the pixels density. To investigate the MS algorithm in the difficult context of very high resolution remote sensing imagery, we use a fast version of this algorithm which has been recently proposed, namely the Path-Assigned Mean Shift (PAMS). This algorithm is up to 5 times faster than other fast MS algorithms while inducing a low loss in quality compared to the original MS version. To compensate for this loss, we propose to use the K modes (cluster centroids) obtained after convergence of the PAMS algorithm as an initialization of a K-means clustering algorithm. The latter converges very quickly to a refined solution to the underlying clustering problem. Furthermore, it does not suffer the main drawback of the classic K-means algorithm (the number of clusters K needs to be specified) as K is automatically determined via the MS mode-seeking procedure. We demonstrate the effectiveness of this two-stage clustering method in performing automatic classification of aerial forest images. Both individual bands and band combination trails are presented. When compared to the classical PAMS algorithm, our technique is better in terms of classification quality. The improvement in classification is significant both visually and statistically. The whole classification process is performed in a few seconds on

  7. Whole-Genome Mapping as a Novel High-Resolution Typing Tool for Legionella pneumophila.

    PubMed

    Bosch, Thijs; Euser, Sjoerd M; Landman, Fabian; Bruin, Jacob P; IJzerman, Ed P; den Boer, Jeroen W; Schouls, Leo M

    2015-10-01

    Legionella is the causative agent for Legionnaires' disease (LD) and is responsible for several large outbreaks in the world. More than 90% of LD cases are caused by Legionella pneumophila, and studies on the origin and transmission routes of this pathogen rely on adequate molecular characterization of isolates. Current typing of L. pneumophila mainly depends on sequence-based typing (SBT). However, studies have shown that in some outbreak situations, SBT does not have sufficient discriminatory power to distinguish between related and nonrelated L. pneumophila isolates. In this study, we used a novel high-resolution typing technique, called whole-genome mapping (WGM), to differentiate between epidemiologically related and nonrelated L. pneumophila isolates. Assessment of the method by various validation experiments showed highly reproducible results, and WGM was able to confirm two well-documented Dutch L. pneumophila outbreaks. Comparison of whole-genome maps of the two outbreaks together with WGMs of epidemiologically nonrelated L. pneumophila isolates showed major differences between the maps, and WGM yielded a higher discriminatory power than SBT. In conclusion, WGM can be a valuable alternative to perform outbreak investigations of L. pneumophila in real time since the turnaround time from culture to comparison of the L. pneumophila maps is less than 24 h.

  8. High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population

    PubMed Central

    Cubillos, Francisco A.; Parts, Leopold; Salinas, Francisco; Bergström, Anders; Scovacricchi, Eugenio; Zia, Amin; Illingworth, Christopher J. R.; Mustonen, Ville; Ibstedt, Sebastian; Warringer, Jonas; Louis, Edward J.; Durbin, Richard; Liti, Gianni

    2013-01-01

    A large fraction of human complex trait heritability is due to a high number of variants with small marginal effects and their interactions with genotype and environment. Such alleles are more easily studied in model organisms, where environment, genetic makeup, and allele frequencies can be controlled. Here, we examine the effect of natural genetic variation on heritable traits in a very large pool of baker’s yeast from a multiparent 12th generation intercross. We selected four representative founder strains to produce the Saccharomyces Genome Resequencing Project (SGRP)-4X mapping population and sequenced 192 segregants to generate an accurate genetic map. Using these individuals, we mapped 25 loci linked to growth traits under heat stress, arsenite, and paraquat, the majority of which were best explained by a diverging phenotype caused by a single allele in one condition. By sequencing pooled DNA from millions of segregants grown under heat stress, we further identified 34 and 39 regions selected in haploid and diploid pools, respectively, with most of the selection against a single allele. While the most parsimonious model for the majority of loci mapped using either approach was the effect of an allele private to one founder, we could validate examples of pleiotropic effects and complex allelic series at a locus. SGRP-4X is a deeply characterized resource that provides a framework for powerful and high-resolution genetic analysis of yeast phenotypes and serves as a test bed for testing avenues to attack human complex traits. PMID:24037264

  9. High-resolution mapping of vehicle emissions in China in 2008

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.

    2014-09-01

    This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  10. Hydropower potential mapping in mountain basins by high-resolution hydrological and GIS analysis

    NASA Astrophysics Data System (ADS)

    Claps, P.; Gallo, E.; Ganora, D.; Laio, F.; Masoero, A.

    2013-12-01

    Even in regions with mature hydropower development, needs for stable renewable power sources suggest to revise plans of exploitation of water resources, in compliance to the framework of international and national environmental regulations. This goal requires high-resolution hydrological analysis, that allows to : i) comply with the effects of existing hydropower plants or of other types of water withdrawals; ii) to assist the planner to figure out potential of new plants with still high marginal efficiency; iii) to assist the regulator in the process of comparing projects based on different solutions and different underlying hydrologic estimation methods. Flow duration curves (FDC) are the tool usually adopted to represent water availability and variability for hydropower purposes. They are usually determined in ungauged basins by means of regional statistical analysis. For this study, a 'spatially smooth' regional estimation method (SSEM) has been developed for FDC estimation, with some evolutions from a previous version: i) the method keeps the estimates of mean annual runoff congruent in the confluences by considering only raster-summable explanatory variables; ii) the presence of existing reservoirs and hydropower plants is taken into account by restoring the ';natural' statistics of the curve. The SSEM reconstructs the the FDC in ungauged basins using its L-moments from regressions on geomorphoclimatic descriptors. Relations are obtained on more than 100 gauged basins located in Northwestern Italy. To support the assessment of residual hydropower potential on two specific mountain watersheds the model has been applied extensively (Hi-Res) by mapping the estimated mean flow for each pixel of a DEM-derived river network raster model. 25000 sections were then identified over the network extracted from a 50m-resolution DTM. Spatial algorithms and data management were developed using Free&OpenSource Software (FOSS) (GRASS GIS and PostgreSQL/PostGIS), with the

  11. BrainMaps.org - Interactive High-Resolution Digital Brain Atlases and Virtual Microscopy.

    PubMed

    Mikula, Shawn; Stone, James M; Jones, Edward G

    2008-01-01

    BrainMaps.org is an interactive high-resolution digital brain atlas and virtual microscope that is based on over 20 million megapixels of scanned images of serial sections of both primate and non-primate brains and that is integrated with a high-speed database for querying and retrieving data about brain structure and function over the internet. Complete brain datasets for various species, including Homo sapiens, Macaca mulatta, Chlorocebus aethiops, Felis catus, Mus musculus, Rattus norvegicus, and Tyto alba, are accessible online. The methods and tools we describe are useful for both research and teaching, and can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. These tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level, and can facilitate large-scale connectional tracing, histochemical and stereological analyses.

  12. Exploiting crowdsourced observations: High-resolution mapping of real-time urban air quality throughout Europe

    NASA Astrophysics Data System (ADS)

    Schneider, Philipp; Castell, Nuria; Vallejo, Islen; van den Bossche, Joris; Lahoz, William; Bartonova, Alena

    2016-04-01

    With the technology of air quality sensors improving rapidly in recent years and with an increasing number of initiatives for collecting air quality information being established worldwide, there is a rapidly increasing amount of information on air quality. Such datasets can provide unprecedented spatial detail and thus exhibit a significant potential for allowing to create observation-based high-resolution maps of air quality in the urban environment. However, most datasets of observations made within a citizen science or crowdsourcing framework tend to have highly variable characteristics in terms of quantity, accuracy, measured parameters, and representativeness, and many more. It is therefore currently unknown how to best exploit this information for mapping purposes. In order to address this challenge we present a novel approach for combining crowdsourced observations of urban air quality with model information, allowing us to produce near-real-time, high-resolution maps of air quality in the urban environment. The approach is based on data fusion techniques, which allow for combining observations with model data in a mathematically objective way and therefore provide a means of adding value to both the observations and the model. The observations are improved by filling spatio-temporal gaps in the data and the model is improved by constraining it with observations. The model further provides detailed spatial patterns in areas where no observations are available. As such, data fusion of observations from high-density low-cost sensor networks together with air quality models can contribute to significantly improving urban-scale air quality mapping. The system has been implemented to run in an automated fashion in near real-time (once every hour) for several cities in Europe. Evaluation of the methodology is being carried out using the leave-one-out cross validation technique and simulated datasets. We present case studies demonstrating the methodology for

  13. High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer

    USGS Publications Warehouse

    Mellon, M.T.; Jakosky, B.M.; Kieffer, H.H.; Christensen, P.R.

    2000-01-01

    High-resolution thermal inertia mapping results are presented, derived from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) observations of the surface temperature of Mars obtained during the early portion of the MGS mapping mission. Thermal inertia is the key property controlling the diurnal surface temperature variations, and is dependent on the physical character of the top few centimeters of the surface. It represents a complex combination of particle size, rock abundance, exposures of bedrock, and degree of induration. In this work we describe the derivation of thermal inertia from TES data, present global scale analysis, and place these results into context with earlier work. A global map of nighttime thermal-bolometer-based thermal inertia is presented at 14?? per pixel resolution, with approximately 63% coverage between 50??S and 70??N latitude. Global analysis shows a similar pattern of high and low thermal inertia as seen in previous Viking low-resolution mapping. Significantly more detail is present in the high-resolution TES thermal inertia. This detail represents horizontal small-scale variability in the nature of the surface. Correlation with albedo indicates the presence of a previously undiscovered surface unit of moderate-to-high thermal inertia and intermediate albedo. This new unit has a modal peak thermal inertia of 180-250 J m-2 K-1 s-12 and a narrow range of albedo near 0.24. The unit, covering a significant fraction of the surface, typically surrounds the low thermal inertia regions and may comprise a deposit of indurated fine material. Local 3-km-resolution maps are also presented as examples of eolian, fluvial, and volcanic geology. Some impact crater rims and intracrater dunes show higher thermal inertias than the surrounding terrain; thermal inertia of aeolian deposits such as intracrater dunes may be related to average particle size. Outflow channels and valleys consistently show higher thermal inertias than the

  14. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    USGS Publications Warehouse

    Finn, C.A.; Morgan, L.A.

    2002-01-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  15. High-resolution aeromagnetic mapping of volcanic terrain, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Morgan, Lisa A.

    2002-06-01

    High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic anomalies, strongly contrasting with the less magnetic, younger, latest Cenozoic, Yellowstone Plateau Group, primarily a series of fresh and variably altered rhyolitic rocks covering most of YNP. The Yellowstone caldera is the centerpiece of the Yellowstone Plateau; part of its boundary can be identified on the aeromagnetic map as a series of discontinuous, negative magnetic anomalies that reflect faults or zones along which extensive hydrothermal alteration is localized. The large-volume rhyolitic ignimbrite deposits of the 0.63-Ma Lava Creek Tuff and the 2.1-Ma Huckleberry Ridge Tuff, which are prominent lithologies peripheral to the Yellowstone caldera, produce insignificant magnetic signatures. A zone of moderate amplitude positive anomalies coincides with the mapped extent of several post-caldera rhyolitic lavas. Linear magnetic anomalies reflect the rectilinear fault systems characteristic of resurgent domes in the center of the caldera. Peripheral to the caldera, the high-resolution aeromagnetic map clearly delineates flow unit boundaries of pre- and post-caldera basalt flows, which occur stratigraphically below the post-caldera rhyolitic lavas and are not exposed extensively at the surface. All of the hot spring and geyser basins, such as Norris, Upper and Lower Geyser Basins, West Thumb, and Gibbon, are associated with negative magnetic anomalies, reflecting hydrothermal alteration that has destroyed the magnetic susceptibility of minerals in the volcanic rocks. Within

  16. Quantitative analysis of anthropogenic relief features: automated mapping of charcoal kiln sites from high-resolution ALS data

    NASA Astrophysics Data System (ADS)

    Schneider, Anna; Takla, Melanie; Nicolay, Alexander; Raab, Alexandra; Raab, Thomas

    2014-05-01

    High-resolution digital elevation data from airborne laser scanning (ALS) allow for identification and mapping of so far unknown small-scale relief features that are hidden by forest cover. Especially as a result of historic land use, small anthropogenic landforms can occur, e.g., remains of charcoal kilns on sites that were used for charcoal production or ridge and furrow systems in former farmland areas. Mapping such relief features and analyzing their spatial distribution patterns can help to understand past land-use systems and their effects on landscapes. To efficiently detect and quantify small-scale relief features from high-resolution DEMs for larger areas, (semi-) automated mapping routines are required. In order to describe the number and spatial distribution of historic charcoal kiln sites in the area around Cottbus, Germany, we developed a GIS-based routine for the detection and mapping of kiln remnants from ALS elevation models with a resolution of 1 or 2 meters. The method is based on a template matching algorithm, using a combination of morphometric parameters, and is implemented within ArcGIS. The mapping results could be validated against a comprehensive database of kiln sites and diameters recorded from archaeological excavations in the forefield of the opencast mine Jänschwalde and from manual digitization of kiln remnants from Shaded Relief maps for the Jänschwalder Heide and the Tauersche Forst, north of Cottbus. A considerably high number of charcoal kiln sites could be detected in ALS data, and the diameters of the identified charcoal kilns are remarkable large in the area. For the Jänschwalder Heide, more than 5000 kiln sites in an area of 32 km2 were detected by manual digitization, with 1355 kiln sites that are wider than 12 m. These relatively large kiln sites could be mapped with detection rates that are close to those of manual digitization using the automated mapping routine. Detection quality was improved by the combination of

  17. Creating High-Resolution Multiscale Maps of Human Tissue Using Multi-beam SEM

    PubMed Central

    Hageman, Daniel J.; Garbowski, Tomasz; Riedesel, Christof; Knothe, Ulf; Zeidler, Dirk; Knothe Tate, Melissa L.

    2016-01-01

    Multi-beam scanning electron microscopy (mSEM) enables high-throughput, nano-resolution imaging of macroscopic tissue samples, providing an unprecedented means for structure-function characterization of biological tissues and their cellular inhabitants, seamlessly across multiple length scales. Here we describe computational methods to reconstruct and navigate a multitude of high-resolution mSEM images of the human hip. We calculated cross-correlation shift vectors between overlapping images and used a mass-spring-damper model for optimal global registration. We utilized the Google Maps API to create an interactive map and provide open access to our reconstructed mSEM datasets to both the public and scientific communities via our website www.mechbio.org. The nano- to macro-scale map reveals the tissue’s biological and material constituents. Living inhabitants of the hip bone (e.g. osteocytes) are visible in their local extracellular matrix milieu (comprising collagen and mineral) and embedded in bone’s structural tissue architecture, i.e. the osteonal structures in which layers of mineralized tissue are organized in lamellae around a central blood vessel. Multi-beam SEM and our presented methodology enable an unprecedented, comprehensive understanding of health and disease from the molecular to organ length scale. PMID:27870847

  18. Calculating High Resolution CWSI Maps for Entire Growing Season of a Cultivated Barley Field with UAV-Collected Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Jensen, R.; Nieto Solana, H.; Friborg, T.; Thomsen, A.

    2015-12-01

    With agriculture as the largest consumer of freshwater and an overall increasing pressure on water resources, developing more efficient irrigation systems is important. Combining the crop water stress index (CWSI) with unmanned aerial vehicles (UAVs) enables detection of which specific areas within a cultivated field that requires irrigation to ensure healthy growing plants. In this study remotely sensed, high resolution surface temperatures are collected with a thermal camera onboard an UAV. Temperatures are used to calculate spatially distributed, high resolution CWSI maps over a barley field during growing seasons 2014 and 2015. In early stages of the barley growing season, surface temperatures are an ensemble of both soil and canopy temperatures. Canopy temperatures are extracted using leaf area index and the two source energy balance modelling scheme. This approach enables CWSI calculations for homogeneous and evenly distributed crops (such as barley) during early as well as late stages of a growing season. CWSI maps are calculated using both an empirical and an analytical approach and are compared and validated against modelled canopy conductance and transpiration rates.

  19. Comparative Analysis of two Methods for High-Resolution Differential Conductance Measurement

    NASA Astrophysics Data System (ADS)

    Cusick, David; Naito, Michio; Ramos, Roberto

    We compare two methods of differential conductance measurement. The first is a traditional method in which current and voltage data is acquired via four-wire measurement, then averaged and differentiated numerically. The second method calculates dI / dV in real time by superimposing a small DC signal dI on the input step function, alternating between addition and subtraction of the signal with each step, then averaging the small signal voltage response over three steps to obtain dV . This requires two instruments: a DC current source and a high-resolution voltmeter. Keithley Instruments has commercially promoted the Keithley 622x current source and 2182A nanovoltmeter as means to achieve this measurement; we therefore refer to it as the Keithley method. We compare the two methods by performing high-resolution measurements of the energy gap of MgB2 thin film Josephson junctions. We show that the Keithley method has advantages of cleaner data, easier implementation, and overall faster data collection, but may lack the traditional method's high resolution. R.C.R. acknowledges support from National Science Foundation Grant # DMR-1555775.

  20. High-resolution geologic mapping of the inner continental shelf: Boston Harbor and approaches, Massachusetts

    USGS Publications Warehouse

    Ackerman, Seth D.; Butman, Bradford; Barnhardt, Walter A.; Danforth, William W.; Crocker, James M.

    2006-01-01

    This report presents the surficial geologic framework data and information for the sea floor of Boston Harbor and Approaches, Massachusetts (fig. 1.1). This mapping was conducted as part of a cooperative program between the U.S. Geological Survey (USGS), the Massachusetts Office of Coastal Zone Management (CZM), and the National Oceanic and Atmospheric Administration (NOAA). The primary objective of this project was to provide sea floor geologic information and maps of Boston Harbor to aid resource management, scientific research, industry and the public. A secondary objective was to test the feasibility of using NOAA hydrographic survey data, normally collected to update navigation charts, to create maps of the sea floor suitable for geologic and habitat interpretations. Defining sea-floor geology is the first steps toward managing ocean resources and assessing environmental changes due to natural or human activity. The geophysical data for these maps were collected as part of hydrographic surveys carried out by NOAA in 2000 and 2001 (fig. 1.2). Bottom photographs, video, and samples of the sediments were collected in September 2004 to help in the interpretation of the geophysical data. Included in this report are high-resolution maps of the sea floor, at a scale of 1:25,000; the data used to create these maps in Geographic Information Systems (GIS) format; a GIS project; and a gallery of photographs of the sea floor. Companion maps of sea floor to the north Boston Harbor and Approaches are presented by Barnhardt and others (2006) and to the east by Butman and others (2003a,b,c). See Butman and others (2004) for a map of Massachusetts Bay at a scale of 1:125,000. The sections of this report are listed in the navigation bar along the left-hand margin of this page. Section 1 (this section) introduces the report. Section 2 presents the large-format map sheets. Section 3 describes data collection, processing, and analysis. Section 4 summarizes the geologic history of

  1. Heterozygous mapping strategy (HetMapps)for high resolution genotyping-by-sequencing markers: a case study in grapevine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...

  2. Estimation of Stand Height and Forest Volume Using High Resolution Stereo Photography and Forest Type Map

    NASA Astrophysics Data System (ADS)

    Kim, K. M.

    2016-06-01

    Traditional field methods for measuring tree heights are often too costly and time consuming. An alternative remote sensing approach is to measure tree heights from digital stereo photographs which is more practical for forest managers and less expensive than LiDAR or synthetic aperture radar. This work proposes an estimation of stand height and forest volume(m3/ha) using normalized digital surface model (nDSM) from high resolution stereo photography (25cm resolution) and forest type map. The study area was located in Mt. Maehwa model forest in Hong Chun-Gun, South Korea. The forest type map has four attributes such as major species, age class, DBH class and crown density class by stand. Overlapping aerial photos were taken in September 2013 and digital surface model (DSM) was created by photogrammetric methods(aerial triangulation, digital image matching). Then, digital terrain model (DTM) was created by filtering DSM and subtracted DTM from DSM pixel by pixel, resulting in nDSM which represents object heights (buildings, trees, etc.). Two independent variables from nDSM were used to estimate forest stand volume: crown density (%) and stand height (m). First, crown density was calculated using canopy segmentation method considering live crown ratio. Next, stand height was produced by averaging individual tree heights in a stand using Esri's ArcGIS and the USDA Forest Service's FUSION software. Finally, stand volume was estimated and mapped using aerial photo stand volume equations by species which have two independent variables, crown density and stand height. South Korea has a historical imagery archive which can show forest change in 40 years of successful forest rehabilitation. For a future study, forest volume change map (1970s-present) will be produced using this stand volume estimation method and a historical imagery archive.

  3. High-resolution entrainment mapping of gastric pacing: a new analytical tool.

    PubMed

    O'Grady, Gregory; Du, Peng; Lammers, Wim J E P; Egbuji, John U; Mithraratne, Pulasthi; Chen, Jiande D Z; Cheng, Leo K; Windsor, John A; Pullan, Andrew J

    2010-02-01

    Gastric pacing has been investigated as a potential treatment for gastroparesis. New pacing protocols are required to improve symptom and motility outcomes; however, research progress has been constrained by a limited understanding of the effects of electrical stimulation on slow-wave activity. This study introduces high-resolution (HR) "entrainment mapping" for the analysis of gastric pacing and presents four demonstrations. Gastric pacing was initiated in a porcine model (typical amplitude 4 mA, pulse width 400 ms, period 17 s). Entrainment mapping was performed using flexible multielectrode arrays (mapped in HR, revealing an ectopic slow-wave focus and uncoupled propagations. In the fourth demonstration, differences were observed between paced and native slow-wave amplitudes (0.24 +/- 0.08 vs. 0.38 +/- 0.14 mV; P < 0.001), velocities (6.2 +/- 2.8 vs. 11.5 +/- 4.7 mm/s; P < 0.001), and activated areas (20.6 +/- 1.9 vs. 32.8 +/- 2.6 cm(2); P < 0.001). Entrainment mapping enables an accurate quantification of the effects of gastric pacing on slow-wave activity, offering an improved method to assess whether pacing protocols are likely to achieve physiologically and clinically useful outcomes.

  4. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    NASA Astrophysics Data System (ADS)

    Xia, T.; Kustas, W. P.; Anderson, M. C.; Alfieri, J. G.; Gao, F.; McKee, L.; Prueger, J. H.; Geli, H. M. E.; Neale, C. M. U.; Sanchez, L.; Mar Alsina, M.; Wang, Z.

    2015-11-01

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (≤ 10 m) and plant canopy (≤ 1m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral shortwave data are used to map ET over vineyards in central California with the Two Source Energy Balance (TSEB) model and with a simple model called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature) which uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from five days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based energy flux measurements of sensible (H) and latent heat (LE) or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EF = LE/(H + LE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on two of the five days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in

  5. High-Resolution Temperature Mapping of Mesospheric Gravity Waves and Breaking Events

    NASA Astrophysics Data System (ADS)

    Taylor, Michael J.; Pautet, Pierre-Dominique; Zhao, Yucheng; Yuan, Tao; Pendleon, William R.; Fritts, David; Esplin, Roy; McLain, David; Stober, Gunter

    2016-04-01

    This presentation highlights new research capabilities and recent results using a novel infra-red imaging system operating at high-latitudes at the ALOMAR Arctic Observatory, Norway (69°N), and at Amundsen-Scott South Pole Station, Antarctica (90°S). The Advanced Mesospheric Temperature Mapper (AMTM) is a high-performance digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ~1.55 μm) to create high-quality intensity and temperature maps of a broad spectrum of gravity waves at the ~87 km level (with periods ranging from several minutes to many hours). The temperature data are obtained with an unprecedented spatial (~0.5 km) and temporal (typically 30 sec) resolution over a large 120° field of view enabling detailed studies of gravity wave propagation and breaking events in the Mesosphere and Lower Thermosphere (MLT) region, even in the presence of strong aurora and moonlight. New results include high-resolution wintertime studies of continuous (24-hr) gravity wave activity and spectral evolution, and first evidence of gravity wave "self-acceleration" in the MLT region using coordinated lidar and radar measurements. These results are complemented by very high resolution (~4 sec) gravity wave observations using a third AMTM developed for airborne measurements on the National Science Foundation (NSF) Gulfstream V aircraft as part of the DEEPWAVE program. This mission was successfully conducted from New Zealand during the Austral winter, June-July 2014, and obtained spectacular new data on mesospheric mountain waves, including large amplitude breaking events associated with variable orographic forcing over the Southern Alps.

  6. High resolution mapping of dust sources in Central Asia using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Nobakht, Mohamad; Shahgedanova, Maria; White, Kevin

    2015-04-01

    Dust impacts the energy balance of the Earth via absorption and scattering of radiation in the atmosphere and through the mechanism by which aerosols modify the optical properties of clouds and land surfaces. It is now established that the deposition of mineral dust significantly affects high-altitude environments, including both snow pack and glacier ice. Central Asia is a region where large deserts are located in close proximity to the mountains whose extensive glaciers and snow pack provide runoff supporting agriculture in the densely populated foothills. More than 75% of the territory in Central Asia is desert lowland varying from sandy to stony, salt, and clay deserts. Significant amounts of wind-blown desert dust, originating from these deserts, are deposited on glaciers of Tian Shan Mountains in Central Asia. Satellite remote sensing using optical imagery has provided us with a powerful tool for identification and characterization of dust emission sources. In this study we investigated the spatial distribution and seasonal pattern of dust emissions in surrounding lowlands of the Tian Shan Mountains using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Seasonality of dust emission is studied by analyzing MODIS Deep Blue aerosol optical depth, acquired over a period of 12 years from January 2003 to December 2014. We analyzed the spatial distribution and frequency of occurrence of dust optical depth to identify the main dust sources in this region. In order to produce a detailed map of dust emission sources, we also employed a dust enhancement algorithm to obtain high resolution (1km) dust enhancement products from MODIS imageries. The high resolution of MODIS dust enhancement products enabled us to identify several small, eroding point sources within the dust source areas. Different seasonal patterns of dust emissions were observed in northern, western and southern deserts around the Tian Shan Mountains and their relation to climatological

  7. High resolution mapping of interstitial long arm deletions of chromosome 16: relationship to phenotype.

    PubMed Central

    Callen, D F; Eyre, H; Lane, S; Shen, Y; Hansmann, I; Spinner, N; Zackai, E; McDonald-McGinn, D; Schuffenhauer, S; Wauters, J

    1993-01-01

    The breakpoints of seven interstitial deletions of the long arm of chromosome 16 and two ring chromosomes of this chromosome were mapped by in situ hybridisation or by analysis of mouse/human somatic cell hybrids containing the deleted chromosome 16. Use of a high resolution cytogenetic based physical map of chromosome 16 enabled breakpoints to be assigned to an average resolution of at least 1.6 Mb. In general, interstitial deletions involving q12 or q22.1 have broadly similar phenotypes though there are differences in specific abnormalities. Deletions involving regions more distal, from 16q22.1 to 16q24.1, were associated with relatively mild dysmorphism. One region of the long arm, q24.2 to q24.3, was not involved in any deletion, either in this study or in any previous report. Presumably, monosomy for this region is lethal. In contrast, patients with deletions of 16q21 have a normal phenotype. These results are consistent with the proposed distribution of genes, frequent in telomeric Giesma light band regions but infrequent in G positive bands. Images PMID:8230159

  8. High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria

    NASA Astrophysics Data System (ADS)

    Salcher, Bernhard C.; Hinsch, Ralph; Wagreich, Michael

    2010-10-01

    In this study results from traditional field mapping were merged with precise elevation information from airborne LiDAR (Light detection and ranging) surveys. Morphological and sedimentological data provide new results from the Austrian (eastern) part of the Salzach piedmont glacier during times of and shortly after the Last Glacial Maximum (LGM). The variations in meltwater discharge had a major impact on the development of glacial landforms. In areas with high meltwater supply erosional or debris reworking processes play a major role, represented by drainage channels, drumlins and kettled, low relief hummocky moraine with low slope angles. Low discharge areas are associated with distinct depositional forms such as high relief end moraines (up to 30 m) and hummocky moraine (averaging 20 m) with high slope angles. Isolated conical kames may reach heights up to 45 m. Fluvial activity is supposed to rise towards the end of the glacial cycle causing high melting rates and comprehensive debris reworking. The formation of terminal lakes and associated widespread, inorganic lake clays are the last deposits within the study area before the Salzach Glacier completely receded to its main valley. The survey of glacial landforms through the combination of field mapping and high-resolution DEM derived from airborne LiDAR missions gives precise information on transport and deposition during the last glacial cycle of the eastern Salzach Glacier piedmont lobe.

  9. Combination of AUV high resolution mapping and submersible visual observations on the Guaymas Hydrothermal Fields (Southern Trough Ridge)

    NASA Astrophysics Data System (ADS)

    Ondreas, H.; Fouquet, Y.; Normand, A.; Rouxel, O.; Godfroy, A.

    2011-12-01

    The BIG cruise -leg I- was carried out on the Guaymas basin in June 2010 on board the French research vessel L'Atalante. An AUV high-resolution survey was made on the southern trough ridge to gather fine-scale bathymetry and acoustic imagery data. The results of the high resolution survey were used, the next days, to explore the vent's area during several Nautile dives. The southern trough hydrothermal fields of the Guaymas basin have often been studied. However, the local geological context was not really well-defined. During the AUV surveys, maps at 70 m above the seafloor were done over the hydrothermal area. The data were gridded at 2 m spacing. During the same cruise, Nautile dives help us to compare the field observations and the geological features revealed by the high resolution mapping and to investigate the fine-scale relationships between the vents and their geological environment. Integration of these data is made easier by the use of the GIS software technology. It helps us perpetuate data, undertake comparisons, combine different types of data, realize fine-scale geological mapping. Even if some problems are recurrent (precision of positioning, integration of old data...), such combinations of high resolution mapping and visual observations and sampling have changed our vision of hydrothermal geological context. In the Guaymas sedimented spreading axis, our new data show that major hydrothermal sites, in the south part of the southern trough only, are located inside or at the border of 100 to 250 m long, 60 to 150 m wide, 6 to 12 m deep small collapsed sub-circular depressions. The direction of the collapse is variable. Curved faults at the outer border of these depressions control the largest and mature edifices. Smaller, possibly younger, immature chimneys are located at the centre of some depressions. The mature hydrothermal structures appear as mounds up to 80 m in diameter, 20 m in high, each hydrothermal edifice being very-well identified on the

  10. Comparison of Methods to Map and Measure River Terraces using High-Resolution Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Hopkins, A. J.; Snyder, N. P.

    2013-12-01

    Fluvial terraces are important recorders of land-use, climate, and tectonic history that form in both erosional and depositional landscapes and consist of a flat surface bounded by valley walls and a steep-sloping scarp adjacent to the river channel. Combining these defining characteristics with high-resolution digital elevation models (DEMs) derived from airborne light detection and ranging (lidar) surveys, several methods have been developed to identify and map terraces. The goals of this research are to compare some of these existing techniques and develop an objective approach to map terraces over entire watersheds using lidar DEMs. Additionally, we aim to quantify the thickness and volume of fill terrace deposits. Our preliminary application is to the Sheepscot River watershed, Maine, where strath and fill terraces are present and record Pleistocene deglaciation, Holocene eustatic forcing, and Anthropocene land-use change. We identify terraces along the longitudinal profile using an algorithm developed by Finnegan and Balco (2013), that computes the elevation frequency distribution at regularly spaced cross-sections normal to the channel. Next, we delineate terrace spatial extent using three separate methodologies: (1) image processing using Matlab, (2) feature classification algorithms developed by Wood (1996), and (3) image interpretation using manually placed points on known terraces to construct interpolated surfaces (Walter and Merritts, 2008). Lastly, we determine the thickness and volume of fill terrace sediments by subtracting an interpolated, adjacent water surface elevation from the defined terrace points. We compare our LiDAR-based results with field mapping, stratigraphic columns of terrace landforms, and ground penetrating radar over terrace surfaces. These findings suggest powerful new ways to rapidly analyze landscape history over large regions using high-resolution lidar DEMs, with less reliance on detailed and costly field data collection.

  11. High-resolution Pleiades DEMs and improved mapping methods for the E-Corinth marine terraces

    NASA Astrophysics Data System (ADS)

    de Gelder, Giovanni; Fernández-Blanco, David; Delorme, Arthur; Jara-Muñoz, Julius; Melnick, Daniel; Lacassin, Robin; Armijo, Rolando

    2016-04-01

    The newest generation of satellite imagery provides exciting new possibilities for highly detailed mapping, with ground resolution of sub-metric pixels and absolute accuracy within a few meters. This opens new venues for the analysis of geologic and geomorphic landscape features, especially since photogrammetric methods allow the extraction of detailed topographic information from these satellite images. We used tri-stereo imagery from the Pleiades platform of the CNES in combination with Euclidium software for image orientation, and Micmac software for dense matching, to develop state-of-the-art, 2m-resolution digital elevation models (DEMs) for eight areas in Greece. Here, we present our mapping results for an area in the eastern Gulf of Corinth, which contains one of the most extensive and well-preserved flights of marine terraces world-wide. The spatial extent of the terraces has been determined by an iterative combination of an automated surface classification model for terrain slope and roughness, and qualitative assessment of satellite imagery, DEM hillshade maps, slope maps, as well as detailed topographic analyses of profiles and contours. We determined marine terrace shoreline angles by means of swath profiles that run perpendicularly to the paleo-seacliffs, using the graphical interface TerraceM. Our analysis provided us with a minimum and maximum estimate of the paleoshoreline location on ~750 swath profiles, by using the present-day cliff slope as an approximation for its paleo-cliff counterpart. After correlating the marine terraces laterally we obtained 16 different terrace-levels, recording Quaternary sea-level highstands of both major interglacial and several interstadial periods. Our high-resolution Pleiades-DEMs and improved method for paleoshoreline determination allowed us to produce a marine terrace map of unprecedented detail, containing more terrace sub-levels than hitherto. Our mapping demonstrates that we are no longer limited by the

  12. The interaction of high-resolution electrophoresis and computational analysis in genome mapping

    SciTech Connect

    Carrano, A.V.; Branscomb, E.W.; de Jong, P.J.; Mohrenweiser, H.; Olsen, A.; Slezak, T.

    1990-07-26

    The construction of physical maps and the determination of the DNA sequence of chromosome-size segments of the human genome is a complex, multidisciplinary undertaking. The approach we have taken to construct a physical map and sequence of human chromosome 19 typifies these interactions. We exploit the power of both acrylamide and agarose gel electrophoresis to provide a simple and versatile method for DNA fingerprinting and the creation of contigs or sets of overlapping genomic clones. Cosmid libraries are constructed from Yeast Artificial Chromosomes (YAC) clones or from flow-sorted chromosomes. Cosmid DNA isolated from the screened library array is cut with a combination of five restriction enzymes and the fragment ends labeled with one of four different fluorochromes. Our approach to contig construction uses a robotic system to label restriction fragments from cosmids with fluorochromes, use of an automated DNA sequencer to capture fragment mobility data in a high resolution multiplex mode processes the mobility data to determine fragment length and provide a statistical measure of overlap among cosmids; and display the contigs and underlying cosmids for operator interaction and access to a database. Data analyses and interactions are conducted over a network of SUN workstations using a set of software tools that we developed and coupled to a commercially available database. Applying these methods, we have analyzed 5154 cosmid clones and assembled 515 contigs for chromosome 19. Some of these contigs have been identified with known genes and many have been mapped to the chromosome by fluorescence in situ hybridization. Existing contigs are being extended by a combination of walking and fingerprinting. 21 refs., 2 figs.

  13. High resolution wetland mapping in West Siberian taiga zone for methane emission inventory

    NASA Astrophysics Data System (ADS)

    Terentieva, I. E.; Glagolev, M. V.; Lapshina, E. D.; Sabrekov, A. F.; Maksyutov, S. S.

    2015-12-01

    High latitude wetlands are important for understanding climate change risks because these environments sink carbon and emit methane. Fine scale heterogeneity of wetland landscapes pose challenges for producing the greenhouse gas flux inventories based on point observations. To reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of West Siberia on a scene-by-scene basis using a supervised classification of Landsat imagery. The training dataset was based on high-resolution images and field data that were collected at 28 test areas. Classification scheme was aimed at methane inventory applications and included 7 wetland ecosystem types composing 9 wetland complexes in different proportions. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixels indicated an overall map accuracy of 79 %. The total area of the wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WS's taiga, occupying 33 % of the domain, followed by forested bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among the wetland ecosystems, while fens cover only 14 % of the area. Because of the significant update in the wetland ecosystem coverage, a considerable revaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WS's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland datasets in high latitudes.

  14. Machine Learning Approaches for High-resolution Urban Land Cover Classification: A Comparative Study

    SciTech Connect

    Vatsavai, Raju; Chandola, Varun; Cheriyadat, Anil M; Bright, Eddie A; Bhaduri, Budhendra L; Graesser, Jordan B

    2011-01-01

    The proliferation of several machine learning approaches makes it difficult to identify a suitable classification technique for analyzing high-resolution remote sensing images. In this study, ten classification techniques were compared from five broad machine learning categories. Surprisingly, the performance of simple statistical classification schemes like maximum likelihood and Logistic regression over complex and recent techniques is very close. Given that these two classifiers require little input from the user, they should still be considered for most classification tasks. Multiple classifier systems is a good choice if the resources permit.

  15. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    PubMed

    Wang, Yu; Du, Haixiao; Xia, Mingrui; Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  16. High-Resolution Regional Biomass Map of Siberia from Glas, Palsar L-Band Radar and Landsat Vcf Data

    NASA Astrophysics Data System (ADS)

    Sun, G.; Ranson, K.; Montesano, P.; Zhang, Z.; Kharuk, V.

    2015-12-01

    N to 75oN, and 80oE to 145oE. The spatial patterns of the new biomass map is much better than the previous maps due to spatially specific mapping in high resolution. The uncertainties of field/GLAS and GLAS/imagery models were investigated using bootstrap procedure, and the final biomass map was compared with previous maps.

  17. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  18. High resolution aeromagnetic anomaly map of Mount Etna volcano, Southern Italy

    NASA Astrophysics Data System (ADS)

    D'Ajello Caracciolo, F.; Nicolosi, I.; Carluccio, R.; Chiappini, S.; De Ritis, R.; Giuntini, A.; Materni, V.; Messina, A.; Chiappini, M.

    2014-05-01

    A high resolution aeromagnetic survey of Mount Etna Volcano was carried out by the Airborne Geophysics Science Team of Istituto Nazionale di Geofisica e Vulcanologia (INGV), aimed at producing the most detailed magnetic anomaly map existing so far for this area. Two datasets of the total intensity of the Earth's Magnetic Field were collected at different altitudes to take into account the huge topographic variations of Etna volcano, that reaches elevations above 3300 m asl. One level was flown at the altitude of 2200 m whereas a second one over the central part, at about 3500 m of altitude. Since the region is characterized by a large presence of strongly magnetized volcanic products, the survey was carried out acquiring profile lines only, in order to optimize the resources. From the residual magnetic anomaly analysis we inferred two main trending lineaments (- 35°N and 0°N) that are related to regional tectonic stress field and we interpret the main magnetic anomaly as the effect of thickness variation of magnetized volcanic products due to the complex pre-volcanic basement morphology of Etna.

  19. Subsurface Feature Mapping of Mars using a High Resolution Ground Penetrating Radar System

    NASA Astrophysics Data System (ADS)

    Wu, T. S.; Persaud, D. M.; Preudhomme, M. A.; Jurg, M.; Smith, M. K.; Buckley, H.; Tarnas, J.; Chalumeau, C.; Lombard-Poirot, N.; Mann, B.

    2015-12-01

    As the closest Earth-like, potentially life-sustaining planet in the solar system, Mars' future of human exploration is more a question of timing than possibility. The Martian surface remains hostile, but its subsurface geology holds promise for present or ancient astrobiology and future habitation, specifically lava tube (pyroduct) systems, whose presence has been confirmed by HiRISE imagery.The location and characterization of these systems could provide a basis for understanding the evolution of the red planet and long-term shelters for future manned missions on Mars. To detect and analyze the subsurface geology of terrestrial bodies from orbit, a novel compact (smallsat-scale) and cost-effective approach called the High-resolution Orbiter for Mapping gEology by Radar (HOMER) has been proposed. Adapting interferometry techniques with synthetic aperture radar (SAR) to a ground penetrating radar system, a small satellite constellation is able to achieve a theoretical resolution of 50m from low-Mars orbit (LMO). Alongside this initial prototype design of HOMER, proposed data processing methodology and software and a Mars mission design are presented. This project was developed as part of the 2015 NASA Ames Academy for Space Exploration.

  20. Bow Shocks Around Runaway Stars.III.The High Resolution Maps

    NASA Astrophysics Data System (ADS)

    Noriega-Crespo, Alberto; van Buren, Dave; Dgani, Ruth

    1997-02-01

    In a recent survey for bow shock structures around OB runaway stars using the ISSA/IRAS archival data and excess maps at 60 \\mum, 58 candidates were found. These objects are surrounded by extended infrared emission at 60 \\mum, characteristic of warm dust heated by ultraviolet photons, a signature of wind bow shocks. High resolution IRAS (HiRes) images have been produced for these 58 objects and some of those spatially resolved are presented in this study. The images were used to distinguish between multiple confused IR sources, possible artifacts and unambiguous bow shocks, as the sources of the extended 60 \\mum emission. Six new bow shocks have been identified using this method, and three have been rejected. Twenty two of the targets, however, remain spatially unresolved even at the nominal HiRes resolution of ~ 1arcmin . For the larger and better defined bow shocks some internal substructure is discernible. The length of these features suggest that they arise as the result of a subtle dynamical instability. It can not be ruled out, however, that some of the bow shock morphology could be imprinted by the surrounding medium.

  1. ATLAS: an airborne active linescan system for high-resolution topographic mapping

    NASA Astrophysics Data System (ADS)

    Willetts, David V.; Kightley, Peter J.; Mole, S. G.; Pearson, Guy N.; Pearson, P.; Coffey, Adrian S.; Stokes, Tim J.; Tapster, Paul R.; Westwood, M.

    2004-12-01

    High resolution ground mapping is of interest for survey and management of long linear features such as roads, railways and pipelines, and for georeferencing of areas such as flood plains for hydrological purposes. ATLAS (Airborne Topographic Laser System) is an active linescan system operating at the eyesafe wavelength of 1.5μm. Built for airborne survey, it is currently certified for use on a Twin Squirrel helicopter for operation from low levels to heights above 500 feet allowing commercial survey in built up areas. The system operates at a pulse repetition frequency of 56kHz with a line completed in 15ms, giving 36 points/m2 at the surface at the design flight speed. At each point the range to the ground is measured together with the scan angle of the system. This data is combined with a system attitude measurement from an integrated inertial navigation system and with system position derived from differential GPS data aboard the platform. A recording system captures the data with a synchronised time-stamp to enable post-processed reconstruction of a cloud of data points that will give a three-dimensional representation of the terrain, allowing the points to be located with respect to absolute Earth referenced coordinates to a precision of 5cm in three axes. This paper summarises the design, harmonisation, evaluation and performance of the system, and shows examples of survey data.

  2. A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes

    PubMed Central

    Hallers, Boudewijn F.H. ten; Zhu, Baoli; Osoegawa, Kazutoyo; Mootnick, Alan; Kofler, Andrea; Wienberg, Johannes; Rogers, Jane; Humphray, Sean; Scott, Carol; Harris, R. Alan; Milosavljevic, Aleksandar; de Jong, Pieter J

    2006-01-01

    Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon–human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state. PMID:17196042

  3. A high-resolution map of synteny disruptions in gibbon and human genomes.

    PubMed

    Carbone, Lucia; Vessere, Gery M; ten Hallers, Boudewijn F H; Zhu, Baoli; Osoegawa, Kazutoyo; Mootnick, Alan; Kofler, Andrea; Wienberg, Johannes; Rogers, Jane; Humphray, Sean; Scott, Carol; Harris, R Alan; Milosavljevic, Aleksandar; de Jong, Pieter J

    2006-12-29

    Gibbons are part of the same superfamily (Hominoidea) as humans and great apes, but their karyotype has diverged faster from the common hominoid ancestor. At least 24 major chromosome rearrangements are required to convert the presumed ancestral karyotype of gibbons into that of the hominoid ancestor. Up to 28 additional rearrangements distinguish the various living species from the common gibbon ancestor. Using the northern white-cheeked gibbon (2n = 52) (Nomascus leucogenys leucogenys) as a model, we created a high-resolution map of the homologous regions between the gibbon and human. The positions of 100 synteny breakpoints relative to the assembled human genome were determined at a resolution of about 200 kb. Interestingly, 46% of the gibbon-human synteny breakpoints occur in regions that correspond to segmental duplications in the human lineage, indicating a common source of plasticity leading to a different outcome in the two species. Additionally, the full sequences of 11 gibbon BACs spanning evolutionary breakpoints reveal either segmental duplications or interspersed repeats at the exact breakpoint locations. No specific sequence element appears to be common among independent rearrangements. We speculate that the extraordinarily high level of rearrangements seen in gibbons may be due to factors that increase the incidence of chromosome breakage or fixation of the derivative chromosomes in a homozygous state.

  4. Mapping and delineating wetlands of Huntington Wildlife Forest using very high resolution digital color-infrared imagery

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet

    The effectiveness of off-site wetland delineation methods using very high resolution digital color-infrared aerial imagery (the color-IR imagery) is compared to the traditional on-site wetland delineation method. The on-site delineation results created using the US Fish and Wildlife Service's National Wetland Inventory (NWI map procedures are compared to the following mapping techniques; heads-up digitizing, hybrid classification, Normalized Difference Vegetation Index (NDVI) and unsupervised classifications (ISODATA) using the same image source. Each of the mapping techniques was applied using the seasonal color-IR imagery. Pair-wise significance tests of the closest mean distances indicated that heads-up digitizing was significantly more accurate than other classification techniques for the color-IR imagery. A combination of the heads-up digitizing and the hybrid classification showed that emergent wetland and scrub-shrub wetlands can be delineated without visiting the ground from the color-IR imagery. Applying logarithmic and hyperbolic sine algorithms to enhance the radiometric property of the color-IR imagery increased delineation accuracy 98% in the spring color-IR imagery and 28% in the fall color-IR imagery. Methods for measuring the accuracy of linear features are reviewed and a new method Points-in-Buffer Analysis (PIBA) is proposed. Keywords. Wetland boundary delineation, heads-up digitizing, radiometric enhancement, wetland boundary accuracy, point-in-buffer analysis (PIBA)

  5. High resolution mapping of combustion processes and implications for CO2 emissions

    NASA Astrophysics Data System (ADS)

    Wang, R.; Tao, S.; Ciais, P.; Shen, H. Z.; Huang, Y.; Chen, H.; Shen, G. F.; Wang, B.; Li, W.; Zhang, Y. Y.; Lu, Y.; Zhu, D.; Chen, Y. C.; Liu, X. P.; Wang, W. T.; Wang, X. L.; Liu, W. X.; Li, B. G.; Piao, S. L.

    2012-08-01

    High-resolution mapping of fuel combustion and CO2 emission provides valuable information for inferring terrestrial carbon balance, modeling pollutant transport, and developing mitigation strategies. Previous inventories included only a limited number of fuel types and anthropogenic emissions were mapped using national population proxies which may distort the geographical distribution within countries. In this study, a sub-national disaggregation method (SDM) was applied to establish a global 0.1°×0.1° geo-referenced inventory of fuel combustion (PKU-FUEL) and a corresponding CO2 emission inventory (PKU-CO2) based upon 64 fuel sub-types for the year 2007. Uncertainties of the new inventories were evaluated using a Monte Carlo method. The total combustion CO2 emission in 2007 was 11.2 (9.11 and 13.3 as 5th and 95th percentiles) Pg C yr-1. By replacing national disaggregation with sub-national disaggregation in this study, the average 95th minus 5th percentile ranges of CO2 emission for all grids can be reduced from 417 to 68.2 Mg km-2 yr-1, indicating a significant reduction in uncertainty, because the uneven distribution of per-capita fuel consumptions within countries has been taken into account by using the sub-national fuel consumption data directly. Significant difference in per-capita CO2 emissions between urban and rural areas was found in developing nations (2.09 vs. 0.600 Mg C cap-1 yr-1), but not in developed ones (3.57 vs. 3.42 Mg C cap-1 yr-1), suggesting strong influence of the rapid urbanization of these countries on the carbon emission. By using the CO2 emission product, a new spatial pattern of terrestrial carbon sink was derived and the impact of sub-national disaggregation is discussed.

  6. Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map.

    PubMed

    Barba, Paola; Cadle-Davidson, Lance; Harriman, James; Glaubitz, Jeffrey C; Brooks, Siraprapa; Hyma, Katie; Reisch, Bruce

    2014-01-01

    Improved efficacy and durability of powdery mildew resistance can be enhanced via knowledge of the genetics of resistance and susceptibility coupled with the development of high-resolution maps to facilitate the stacking of multiple resistance genes and other desirable traits. We studied the inheritance of powdery mildew (Erysiphe necator) resistance and susceptibility of wild Vitis rupestris B38 and cultivated V. vinifera 'Chardonnay', finding evidence for quantitative variation. Molecular markers were identified using genotyping-by-sequencing, resulting in 16,833 single nucleotide polymorphisms (SNPs) based on alignment to the V. vinifera 'PN40024' reference genome sequence. With an average density of 36 SNPs/Mbp and uniform coverage of the genome, this 17K set was used to identify 11 SNPs on chromosome 7 associated with a resistance locus from V. rupestris B38 and ten SNPs on chromosome 9 associated with a locus for susceptibility from 'Chardonnay' using single marker association and linkage disequilibrium analysis. Linkage maps for V. rupestris B38 (1,146 SNPs) and 'Chardonnay' (1,215 SNPs) were constructed and used to corroborate the 'Chardonnay' locus named Sen1 (Susceptibility to Erysiphe necator 1), providing the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. The identification of markers associated with a susceptibility locus in a V. vinifera background can be used for negative selection among breeding progenies. This work improves our understanding of the nature of powdery mildew resistance in V. rupestris B38 and 'Chardonnay', while applying next-generation sequencing tools to advance grapevine genomics and breeding.

  7. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination

    PubMed Central

    Li, Gang; Hillier, LaDeana W.; Grahn, Robert A.; Zimin, Aleksey V.; David, Victor A.; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O’Brien, Stephen J.; Minx, Pat; Wilson, Richard K.; Lyons, Leslie A.; Warren, Wesley C.; Murphy, William J.

    2016-01-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location. PMID:27172201

  8. A High-Resolution SNP Array-Based Linkage Map Anchors a New Domestic Cat Draft Genome Assembly and Provides Detailed Patterns of Recombination.

    PubMed

    Li, Gang; Hillier, LaDeana W; Grahn, Robert A; Zimin, Aleksey V; David, Victor A; Menotti-Raymond, Marilyn; Middleton, Rondo; Hannah, Steven; Hendrickson, Sher; Makunin, Alex; O'Brien, Stephen J; Minx, Pat; Wilson, Richard K; Lyons, Leslie A; Warren, Wesley C; Murphy, William J

    2016-06-01

    High-resolution genetic and physical maps are invaluable tools for building accurate genome assemblies, and interpreting results of genome-wide association studies (GWAS). Previous genetic and physical maps anchored good quality draft assemblies of the domestic cat genome, enabling the discovery of numerous genes underlying hereditary disease and phenotypes of interest to the biomedical science and breeding communities. However, these maps lacked sufficient marker density to order thousands of shorter scaffolds in earlier assemblies, which instead relied heavily on comparative mapping with related species. A high-resolution map would aid in validating and ordering chromosome scaffolds from existing and new genome assemblies. Here, we describe a high-resolution genetic linkage map of the domestic cat genome based on genotyping 453 domestic cats from several multi-generational pedigrees on the Illumina 63K SNP array. The final maps include 58,055 SNP markers placed relative to 6637 markers with unique positions, distributed across all autosomes and the X chromosome. Our final sex-averaged maps span a total autosomal length of 4464 cM, the longest described linkage map for any mammal, confirming length estimates from a previous microsatellite-based map. The linkage map was used to order and orient the scaffolds from a substantially more contiguous domestic cat genome assembly (Felis catus v8.0), which incorporated ∼20 × coverage of Illumina fragment reads. The new genome assembly shows substantial improvements in contiguity, with a nearly fourfold increase in N50 scaffold size to 18 Mb. We use this map to report probable structural errors in previous maps and assemblies, and to describe features of the recombination landscape, including a massive (∼50 Mb) recombination desert (of virtually zero recombination) on the X chromosome that parallels a similar desert on the porcine X chromosome in both size and physical location.

  9. High-resolution mapping of combustion processes and implications for CO2 emissions

    NASA Astrophysics Data System (ADS)

    Wang, R.; Tao, S.; Ciais, P.; Shen, H. Z.; Huang, Y.; Chen, H.; Shen, G. F.; Wang, B.; Li, W.; Zhang, Y. Y.; Lu, Y.; Zhu, D.; Chen, Y. C.; Liu, X. P.; Wang, W. T.; Wang, X. L.; Liu, W. X.; Li, B. G.; Piao, S. L.

    2013-05-01

    High-resolution mapping of fuel combustion and CO2 emission provides valuable information for modeling pollutant transport, developing mitigation policy, and for inverse modeling of CO2 fluxes. Previous global emission maps included only few fuel types, and emissions were estimated on a grid by distributing national fuel data on an equal per capita basis, using population density maps. This process distorts the geographical distribution of emissions within countries. In this study, a sub-national disaggregation method (SDM) of fuel data is applied to establish a global 0.1° × 0.1° geo-referenced inventory of fuel combustion (PKU-FUEL) and corresponding CO2 emissions (PKU-CO2) based upon 64 fuel sub-types for the year 2007. Uncertainties of the emission maps are evaluated using a Monte Carlo method. It is estimated that CO2 emission from combustion sources including fossil fuel, biomass, and solid wastes in 2007 was 11.2 Pg C yr-1 (9.1 Pg C yr-1 and 13.3 Pg C yr-1 as 5th and 95th percentiles). Of this, emission from fossil fuel combustion is 7.83 Pg C yr-1, which is very close to the estimate of the International Energy Agency (7.87 Pg C yr-1). By replacing national data disaggregation with sub-national data in this study, the average 95th minus 5th percentile ranges of CO2 emission for all grid points can be reduced from 417 to 68.2 Mg km-2 yr-1. The spread is reduced because the uneven distribution of per capita fuel consumptions within countries is better taken into account by using sub-national fuel consumption data directly. Significant difference in per capita CO2 emissions between urban and rural areas was found in developing countries (2.08 vs. 0.598 Mg C/(cap. × yr)), but not in developed countries (3.55 vs. 3.41 Mg C/(cap. × yr)). This implies that rapid urbanization of developing countries is very likely to drive up their emissions in the future.

  10. Pan-Tropical Forest Mapping by Exploiting Textures of Multi-Temporal High Resolution SAR Data

    NASA Astrophysics Data System (ADS)

    Knuth, R.; Eckardt, R.; Richter, N.; Schmullius, C.

    2012-12-01

    radar images were processed using an operational processing chain that includes radiometric transformation, noise reduction, and georeferencing of the SAR data. In places with pronounced topography both satellites were used as single pass interferometer to derive a digital surface model in order to perform an orthorectification followed by a topographic normalization of the SAR backscatter values. As prescribed by the FAO, the final segment-based classification algorithm was fed by multi-temporal backscatter information, a set of textural features, and information on the degree of coherence between the multi-temporal acquisitions. Validation with available high resolution optical imagery suggests that the produced forest maps possess an overall accuracy of 75 percent or higher.

  11. Will it Blend? Visualization and Accuracy Evaluation of High-Resolution Fuzzy Vegetation Maps

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Kania, A.

    2016-06-01

    Instead of assigning every map pixel to a single class, fuzzy classification includes information on the class assigned to each pixel but also the certainty of this class and the alternative possible classes based on fuzzy set theory. The advantages of fuzzy classification for vegetation mapping are well recognized, but the accuracy and uncertainty of fuzzy maps cannot be directly quantified with indices developed for hard-boundary categorizations. The rich information in such a map is impossible to convey with a single map product or accuracy figure. Here we introduce a suite of evaluation indices and visualization products for fuzzy maps generated with ensemble classifiers. We also propose a way of evaluating classwise prediction certainty with "dominance profiles" visualizing the number of pixels in bins according to the probability of the dominant class, also showing the probability of all the other classes. Together, these data products allow a quantitative understanding of the rich information in a fuzzy raster map both for individual classes and in terms of variability in space, and also establish the connection between spatially explicit class certainty and traditional accuracy metrics. These map products are directly comparable to widely used hard boundary evaluation procedures, support active learning-based iterative classification and can be applied for operational use.

  12. Comparative visualization of protein conformations using large high resolution displays with gestures and body tracking

    NASA Astrophysics Data System (ADS)

    Marangoni, Matt; Wischgoll, Thomas

    2015-01-01

    Automatically identifying protein conformations can yield multiple candidate structures. Potential candidates are examined further to cull false positives. Individual conformations and the collection are compared when seeking flaws. Desktop displays are ineffective due to limited size and resolution. Thus a user must sacrifice large scale content by viewing the micro level with high detail or view the macro level while forfeiting small details. We address this ultimatum by utilizing multiple, high resolution displays. Using 27, 50", high resolution displays with active, stereoscopic 3D, and modified virtual environment software, each display presents a protein users can manipulate. Such an environment enables users to gain extensive insight both at the micro and macro levels when performing structural comparisons among the candidate structures. Integrating stereoscopic 3D improves the user's ability to judge conformations spatial relationships. In order to facilitate intuitive interaction, gesture recognition as well as body tracking are used. The user is able to look at the protein of interest, select a modality via gesture, and the user's motions provide intuitive navigation functions such as panning, rotating, and zooming. Using this approach, users are able to perform protein structure comparison through intuitive controls without sacrificing important visual details at any scale.

  13. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    NASA Astrophysics Data System (ADS)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (<1m). These metrics are essential for modeling the HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately

  14. aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data

    PubMed Central

    Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.

    2016-01-01

    The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127

  15. High-resolution AUV mapping and lava flow ages at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Paduan, J. B.; Dreyer, B. M.; Caress, D. W.; Martin, J.

    2011-12-01

    Mapping along mid-ocean ridges, as on land, requires identification of flow boundaries and sequence, and ages of some flows to understand eruption history. Multibeam sonars on autonomous underwater vehicles (AUV) now generate 1-m resolution maps that resolve lava pillars, internal flow structures and boundaries, and lava flow emplacement sequences using crosscutting relations and abundance of fissures. MBARI has now mapped the summit caldera floor and rims and the upper south rift zone on Axial Seamount on the Juan de Fuca Ridge. With the advent of the high-resolution bathymetry and the ability to observe flow contacts to determine superposition using ROVs and submersibles, the missing component has been determining absolute ages of the flows. We used the MBARI ROV Doc Ricketts to collect short push cores (<30 cm) of the thin sediment nestled between pillow lava lobes and sieve and then hand-pick planktic foraminifera from the base of the cores to date by AMS 14C. Ages of planktic foraminifera are marine-calibrated in years before present, and provide minimum ages for the underlying flows, as there is probably some basal sediment that is not recovered. 14C ages have been determined for 10 cores near the summit of Axial Seamount and for 6 from the lowermost south rift. Ages of nearby samples commonly yield statistically identical ages, and 2 cores near the center of the caldera had multiple layers dated. These ages systematically increase with depth, indicating that redistribution of sediment by bottom currents does not significantly affect the stratigraphy. We will expand these collections in summer 2011. The coring is accompanied by collection of flow samples for chemistry and video observations to confirm contact locations and flow superposition inferred from the mapping data. Six ages from the lowermost part of the south rift of Axial Seamount include samples on a cone with deep summit crater that is ~16,580 aBP and on 5 flows between 950 and 1510 aBP. Two

  16. High-resolution mapping of biomass burning emissions in tropical regions across three continents

    NASA Astrophysics Data System (ADS)

    Shi, Yusheng; Matsunaga, Tsuneo; Saito, Makoto

    2015-04-01

    Biomass burning emissions from open vegetation fires (forest fires, savanna fires, agricultural waste burning), human waste and biofuel combustion contain large amounts of trace gases (e.g., CO2, CH4, and N2O) and aerosols (BC and OC), which significantly impact ecosystem productivity, global atmospheric chemistry, and climate . With the help of recently released satellite products, biomass density based on satellite and ground-based observation data, and spatial variable combustion factors, this study developed a new high-resolution emissions inventory for biomass burning in tropical regions across three continents in 2010. Emissions of trace gases and aerosols from open vegetation burning are estimated from burned areas, fuel loads, combustion factors, and emission factors. Burned areas were derived from MODIS MCD64A1 burned area product, fuel loads were mapped from biomass density data sets for herbaceous and tree-covered land based on satellite and ground-based observation data. To account for spatial heterogeneity in combustion factors, global fractional tree cover (MOD44B) and vegetation cover maps (MCD12Q1) were introduced to estimate the combustion factors in different regions by using their relationship with tree cover under less than 40%, between 40-60% and above 60% conditions. For emission factors, the average values for each fuel type from field measurements are used. In addition to biomass burning from open vegetation fires, the emissions from human waste (residential and dump) burning and biofuel burning in 2010 were also estimated for 76 countries in tropical regions across the three continents and then allocated into each pixel with 1 km grid based on the population density (Gridded Population of the World v3). Our total estimates for the tropical regions across the three continents in 2010 were 17744.5 Tg CO2, 730.3 Tg CO, 32.0 Tg CH4, 31.6 Tg NOx, 119.2 Tg NMOC, 6.3 Tg SO2, 9.8 NH3 Tg, 81.8 Tg PM2.5, 48.0 Tg OC, and 5.7 Tg BC, respectively. Open

  17. Comparing XRF core scan data to conventional geochemical analyses for high resolution paleoenvironmental studies

    NASA Astrophysics Data System (ADS)

    Hennekam, Rick; De Lange, Gert J.

    2013-04-01

    X-ray fluorescence (XRF) core scanning is becoming an increasingly common method to rapidly obtain paleo-environmental data from untreated (marine) sediments. There is a large potential for this method, being cheap, rapid, and non-destructive. However, the sediment surface is not an ideal substrate for XRF-analysis, thus measurement artefacts may occur relating to water content, grain size, surface roughness, film formation, and sediment inhomogeneity. A high resolution analysis of an Eastern Mediterranean sediment core is used to compare such potential artefacts and signal-to-noise ratio of XRF core scan measurements to those of traditional analyses using XRF glass bead and ICP-AES on distinct samples. A suit of major elements (and elemental ratios), often used as paleo-proxies, have been examined in this way so as to compare the robustness of the more 'relative' XRF-scan method compared to these more 'absolute' measurements. XRF core scan data only reflect the chemical composition of a thin (5-500 µm) layer of the sediment surface. Any inhomogeneity in this surface can cause large deviations thus may result in large 'deduced' paleo-environmental variability. It is shown that (random) water-rich spots can form underneath the Ultralene covering foil, having a substantial effect on the lighter elements with shallow response depths. This can create non-existing peaks in the XRF core scan -produced paleo-environmental record. Such deviations especially occur for elemental ratios when various elements are measured in different runs (e.g. other tube-voltage settings). This study urges to verify high/low amplitudinal variability observed in XRF corescans by means of (destructive) conventional geochemical analyses prior to their interpretation.. Reference: Hennekam R. and G. de Lange. X-ray fluorescence core scanning of wet marine sediments: methods to improve quality and reproducibility of high-resolution paleoenvironmental records. Limnology and Oceanography: Methods

  18. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes.

    PubMed

    Chen, Chang-Hui; Meadows, Katherine E; Cuharuc, Anatolii; Lai, Stanley C S; Unwin, Patrick R

    2014-09-14

    The scanning droplet-based technique, scanning electrochemical cell microscopy (SECCM), combined with electron backscatter diffraction (EBSD), is demonstrated as a powerful approach for visualizing surface structure effects on the rate of the oxygen reduction reaction (ORR) at polycrystalline platinum electrodes. Elucidating the effect of electrode structure on the ORR is of major interest in connection to electrocatalysis for energy-related applications. The attributes of the approach herein stem from: (i) the ease with which the polycrystalline substrate electrode can be prepared; (ii) the wide range of surface character open to study; (iii) the possibility of mapping reactivity within a particular facet (or grain), in a pseudo-single-crystal approach, and acquiring a high volume of data as a consequence; (iv) the ready ability to measure the activity at grain boundaries; and (v) an experimental arrangement (SECCM) that mimics the three-phase boundary in low temperature fuel cells. The kinetics of the ORR was analyzed and a finite element method model was developed to explore the effect of the three-phase boundary, in particular to examine pH variations in the droplet and the differential transport rates of the reactants and products. We have found a significant variation of activity across the platinum substrate, inherently linked to the crystallographic orientation, but do not detect any enhanced activity at grain boundaries. Grains with (111) and (100) contributions exhibit considerably higher activity than those with (110) and (100) contributions. These results, which can be explained by reference to previous single-crystal measurements, enhance our understanding of ORR structure-activity relationships on complex high-index platinum surfaces, and further demonstrate the power of high resolution flux imaging techniques to visualize and understand complex electrocatalyst materials.

  19. A new Concept for High Resolution Benthic Mapping and Data Aquisition: MANSIO-VIATOR

    NASA Astrophysics Data System (ADS)

    Flögel, S.

    2015-12-01

    Environmental conditions within sensitive seafloor ecosystems such as cold-seep provinces or cold-water coral reef communities vary temporally and spatially over a wide range of scales. Some of these are regularly monitored via short periods of intense shipborne activity or low resolution, fixed location studies by benthic lander systems. Long term measurements of larger areas and volumes are ususally coupled to costly infrastructure investments such as cabled observatories. In space exploration, a combination of fixed and mobile systems working together are commonly used, e.g. lander systems coupled to rovers, to tackle observational needs that are very similar to deep-sea data aquisition. The analogies between space and deep-sea research motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration under extreme conditions). The program objectives are to identify, develop and verify technological synergies between the robotic exploration of e.g. the moon and the deep-sea. Within ROBEX, the mobility of robots is a vital element for research missions due to valuable scientifice return potential from different sites as opposed to static landers. Within this context, we developed a new mobile crawler system (VIATOR, latin for traveller) and a fixed lander component for energy and data transfer (MANSIO, latin for housing/shelter). This innovative MANSIO-VIATOR system has been developed during the past 2.5 years. The caterpillar driven component is developed to conduct high resolution opitcal mapping and repeated monitoring of physical and biogeochemical parameters along transects. The system operates fully autonomously including navigational components such as camera and laser scanners, as well as marker based near-field navigation used in space technology. This new concept of data aquisition by a submarine crawler in combination with a fixed lander further opens up marine exploration possibilities.

  20. Glaciotectonic structures mapped by GPR, geoelectrical, high-resolution seismic and airborne transient electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Høyer, Anne-Sophie; Møller, Ingelise; Jørgensen, Flemming

    2013-04-01

    Glaciotectonic structures have traditionally been recognized through observations in the landscape or exposures like cliffs. However, mapping of these structures can highly benefit from geophysical data, which can give information on buried glaciotectonic complexes. In the current study, we focus on the appearance of glaciotectonic structures in data from four commonly used geophysical methods: Ground penetrating radar (GPR), geoelectrical, high-resolution seismic and airborne transient electromagnetic (SkyTEM). The data are collected within a study area that covers 100 km2 and is located in the western part of Denmark. The study area is characterized by a highly heterogeneous geological setting, which has been influenced by multiple glacial deformation phases resulting in a buried glaciotectonic complex. The glaciotectonic structures appear as folds and faults and are recognizable at all scales. As a consequence of the different resolution capabilities of the methods, different degrees of detail are observed: Large-scale structures are recognized based on the seismic and airborne transient electromagnetic data, whereas small-scale structures are interpreted based on the GPR and geoelectrical data. At the same time, the nature of the methods results in different types of information from the data: The GPR and the seismic data generally provide detailed structural information, whereas the electric and electromagnetic data provide a more 'blurred' resistivity image of the subsurface. In order to recognize geological structures on the electric and electromagnetic data, the structures therefore need to influence sediments with contrasting resistivities to the surroundings. The structures are recognizable on all the different data sets, but the understanding and thus, the interpretation, of the geological environment strongly benefits from the combined observations from the different types of data.

  1. Fine-scale mapping of vector habitats using very high resolution satellite imagery: a liver fluke case-study.

    PubMed

    De Roeck, Els; Van Coillie, Frieke; De Wulf, Robert; Soenen, Karen; Charlier, Johannes; Vercruysse, Jozef; Hantson, Wouter; Ducheyne, Els; Hendrickx, Guy

    2014-12-01

    The visualization of vector occurrence in space and time is an important aspect of studying vector-borne diseases. Detailed maps of possible vector habitats provide valuable information for the prediction of infection risk zones but are currently lacking for most parts of the world. Nonetheless, monitoring vector habitats from the finest scales up to farm level is of key importance to refine currently existing broad-scale infection risk models. Using Fasciola hepatica, a parasite liver fluke, as a case in point, this study illustrates the potential of very high resolution (VHR) optical satellite imagery to efficiently and semi-automatically detect detailed vector habitats. A WorldView2 satellite image capable of <5m resolution was acquired in the spring of 2013 for the area around Bruges, Belgium, a region where dairy farms suffer from liver fluke infections transmitted by freshwater snails. The vector thrives in small water bodies (SWBs), such as ponds, ditches and other humid areas consisting of open water, aquatic vegetation and/or inundated grass. These water bodies can be as small as a few m2 and are most often not present on existing land cover maps because of their small size. We present a classification procedure based on object-based image analysis (OBIA) that proved valuable to detect SWBs at a fine scale in an operational and semi-automated way. The classification results were compared to field and other reference data such as existing broad-scale maps and expert knowledge. Overall, the SWB detection accuracy reached up to 87%. The resulting fine-scale SWB map can be used as input for spatial distribution modelling of the liver fluke snail vector to enable development of improved infection risk mapping and management advice adapted to specific, local farm situations.

  2. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

    NASA Astrophysics Data System (ADS)

    Aksoy, B.; Rehman, A.; Bayraktar, H.; Alaca, B. E.

    2017-04-01

    Micropatterns are generated on a vast selection of polymeric substrates for various applications ranging from stretchable electronics to cellular mechanobiological systems. When these patterned substrates are exposed to external loading, strain field is primarily affected by the presence of microfabricated structures and similarly by fabrication-related defects. The capturing of such nonhomogeneous strain fields is of utmost importance in cases where study of the mechanical behavior with a high spatial resolution is necessary. Image-based non-contact strain measurement techniques are favorable and have recently been extended to scanning tunneling microscope and scanning electron microscope images for the characterization of mechanical properties of metallic materials, e.g. steel and aluminum, at the microscale. A similar real-time analysis of strain heterogeneity in elastomers is yet to be achieved during the entire loading sequence. The available measurement methods for polymeric materials mostly depend on cross-head displacement or precalibrated strain values. Thus, they suffer either from the lack of any real-time analysis, spatiotemporal distribution or high resolution in addition to a combination of these factors. In this work, these challenges are addressed by integrating a tensile stretcher with an inverted optical microscope and developing a subpixel particle tracking algorithm. As a proof of concept, the patterns with a critical dimension of 200 µm are generated on polydimethylsiloxane substrates and strain distribution in the vicinity of the patterns is captured with a high spatiotemporal resolution. In the field of strain measurement, there is always a tradeoff between minimum measurable strain value and spatial resolution. Current noncontact techniques on elastomers can deliver a strain resolution of 0.001% over a minimum length of 5 cm. More importantly, inhomogeneities within this quite large region cannot be captured. The proposed technique can

  3. High-resolution linkage map in the proximity of the host resistance locus Cmv1

    SciTech Connect

    Depatie, C.; Muise, E.; Gros, P.

    1997-01-15

    The mouse chromosome 6 locus Cmv1 controls replication of mouse Cytomegalovirus (MCMV) in the spleen of the infected host. In our effort to clone Cmv1, we have constructed a high-resolution genetic linkage map in the proximity of the gene. For this, a total of 45 DNA markers corresponding to either cloned genes or microsatellites were mapped within a 7.9-cM interval overlapping the Cmv1 region. We have followed the cosegregation of these markers with respect to Cmv1 in a total of 2248 backcross mice from a preexisting interspecific backcross panel of 281 (Mus spretus X C57BL/6J)F1 X C57BL/6J and 2 novel panels of 989 (A/J X C57BL6)F1 X A/J and 978 (BALB/c X C57BL/6J)F1 X BALB/c segregating Cmv1. Combined pedigree analysis allowed us to determine the following gene order and intergene distances (in cM) on the distal region of mouse chromosome 6: D6Mit216-(1.9)-D6Mit336-(2.2)-D6Mit218-(1.0)-D6Mit52-(0.5)-D6Mit194-(0.2)-Nkrp1/D6Mit61/135/257/289/338-(0.4)-Cmv1/Ly49A/D6Mit370-(0.3)-Prp/Kap/D6Mit13/111/219-(0.3)-Tel/D6Mit374/290/220/196/195/110-(1.1)-D6Mit25. Therefore, the minimal genetic interval for Cmv1 of 0.7 cM is defined by 13 tightly linked markers including 2 markers, Ly49A and D6Mit370, that did not show recombination with Cmv1 in 1967 meioses analyzed; the proximal limit of the Cmv1 domain was defined by 8 crossovers between Nkrp1/D6Mit61/135/257/289/338 and Cmv1/Ly49A/D6Mit370, and the distal limit was defined by 5 crossovers between Cmv1/Ly49A/D6Mit370 and Prp/Kap/D6Mit13/111/219. This work demonstrates tight linkage between Cmv1 and genes from the natural killer complex (NKC), such as Nkrp1 and Ly49A suggesting that Cmv1 may represent an NK cell recognition structure encoded in the NKC region. 54 refs., 4 figs., 2 tabs.

  4. Modeling Foliar Uptake in Colocasia Esculenta Using High Resolution Maps of Leaf Water Isotopes

    NASA Astrophysics Data System (ADS)

    Sinkler, C. J.; Gerlein-Safdi, C.; Caylor, K. K.

    2014-12-01

    The uptake of carbon dioxide by vegetation is a major sink of CO2 and a factor that will determine future climate. Some studies predict a decrease in CO2 uptake from vegetation because of a general drying of the Amazon Basin. Because of the tight linkage between water availability and plant carbon uptake, a comprehensive model of plant water use at the individual scale is necessary to build a complete carbon budget at the global scale. Foliar uptake of non-meteoric water is a common process used by plants to alleviate water stress. However the occurrence of this process in tropical ecosystems, as well as its interaction with other physiological parameters, is not well understood. We present a model of leaf water balance that includes foliar uptake. The isotopic composition of the different sources as well as the leaf water are also included. The model is tested against a series of experiments on Colocasia esculenta, under two different water availability conditions: drought and artificial dew. The artificial dew is spiked with stable isotopes of water (δ18O = 8.56 permil, δ2H = 709.7 permil) that allow us to trace the partition of dew uptake within a leaf. We create high-resolution maps of the distribution of isotopes in one half of each leaf using a Picarro IM-CRDS. The maps show a clear enrichment due to foliar uptake for the artificial dew treatment. The water in the second half of the leaf is extracted by cryogenic extraction and analyzed using both IRIS and IRMS for quality control of the IM-CRDS data. Soil water is collected for isotope analysis and water content measurement. Finally, stomatal conductance data collected every two days shows no significant decrease due to either treatment over the course of the experiment. We conclude that foliar uptake of dew water is an important water acquisition mechanism for C. esculenta, even under high soil water content conditions, and we propose guidelines for further improvement of models of leaf-scale water

  5. Mapping temporal changes in connectivity using high-resolution aerial data and object based image analysis

    NASA Astrophysics Data System (ADS)

    Masselink, Rens; Anders, Niels; Keesstra, Saskia; Seeger, Manuel

    2014-05-01

    Within the field of geomorphology mapping has always been an important tool to interpret spatial and temporal distributions of phenomena and processes at the surface. In the field of connectivity however, although throughout the past decade many articles have been published, there are only very few that go into the mapping of connectivity. This study aimed at developing a new, automated method for mapping connectivity within agricultural catchments. The method, which is a combination of Object-Based Image Analysis (OBIA) and traditional geomorphological field mapping, was applied to two agricultural catchments in Navarre, Spain, both with an area of approximately 2 sq.km. An unmanned aerial vehicle (UAV) was used to take aerial photographs with a resolution of 6 cm, of which a DEM with a 12 cm resolution was created using structure-from-motion photogrammetry. Connectivity was mapped within the study areas using OBIA using a top down method, meaning that connectivity was mapped at different scale levels, starting at the largest scale. Firstly sub-catchments were automatically delineated, after which several characteristics and features that affect connectivity within the sub-catchments were classified, e.g. landuse, landslides, rills, gullies, riparian vegetation, changes in slope, ploughing direction etc. In two consecutive years (2013-2014) photographs were taken and connectivity of both catchments of both years will be compared. Future work will include a quantification of the mapped connectivity (highly connected years vs. low connected years), causes and consequences of these differences in connectivity, comparison to existing connectivity indices and comparison of mapped connectivity in sub-catchments and measured discharge.

  6. High resolution synoptic salinity mapping to identify groundwater--surface water discharges in lowland rivers.

    PubMed

    Pai, Henry; Villamizar, Sandra R; Harmon, Thomas C

    2015-04-21

    Quantifying distributed lateral groundwater contributions to surface water (GW-SW discharges) is a key aspect of tracking nonpoint-source pollution (NPSP) within a watershed. In this study, we characterized distributed GW-SW discharges and associated salt loading using elevated GW specific conductance (SC) as a tracer along a 38 km reach of the Lower Merced River in Central California. High resolution longitudinal surveys for multiple flows (1.3-150 m(3) s(-1)) revealed river SC gradients that mainly decreased with increasing flow, suggesting a dilution effect and/or reduced GW-SW discharges due to hydraulic gradient reductions. However, exceptions occurred (gradients increasing with increasing flow), pointing to complex spatiotemporal influences on GW-SW dynamics. The surveys revealed detailed variability in salinity gradients, from which we estimated distributed GW-SW discharge and salt loading using a simple mixing model. Modeled cumulative GW discharges for two surveys unaffected by ungauged SW discharges were comparable in magnitude to differential gauging-based discharge estimates and prior GW-SW studies along the same river reach. Ungauged lateral inlets and sparse GW data limited the study, and argue for enhancing monitoring efforts. Our approach provides a rapid and economical method for characterizing NPSP for gaining rivers in the context of integrated watershed modeling and management.

  7. Using high-resolution digital aerial imagery to map land cover

    USGS Publications Warehouse

    Dieck, J.J.; Robinson, Larry

    2014-01-01

    The Upper Midwest Environmental Sciences Center (UMESC) has used aerial photography to map land cover/land use on federally owned and managed lands for over 20 years. Until recently, that process used 23- by 23-centimeter (9- by 9-inch) analog aerial photos to classify vegetation along the Upper Mississippi River System, on National Wildlife Refuges, and in National Parks. With digital aerial cameras becoming more common and offering distinct advantages over analog film, UMESC transitioned to an entirely digital mapping process in 2009. Though not without challenges, this method has proven to be much more accurate and efficient when compared to the analog process.

  8. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2016-06-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  9. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.

    PubMed

    Du, Peng; O'Grady, G; Egbuji, J U; Lammers, W J; Budgett, D; Nielsen, P; Windsor, J A; Pullan, A J; Cheng, L K

    2009-04-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use.

  10. Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling.

    PubMed

    Bricher, Phillippa K; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M

    2013-01-01

    Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6-96.3%, κ = 0.849-0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments.

  11. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    SciTech Connect

    Weinhardt, L.; Fuchs, O.; Blum, M.; Bär, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  12. Using High Resolution Aeromagnetic Data to Map Pervasive Folding in the Lithologically Indistinct Franciscan Coastal Belt

    NASA Astrophysics Data System (ADS)

    Phelps, G. A.; McLaughlin, R. J.; Jachens, R. C.; Wentworth, C. M.

    2008-12-01

    We use high-resolution aeromagnetic data to map magnetic bodies of graywacke of limited exposure that are either interbedded or structurally emplaced within broader areas of non-magnetic graywacke within the Franciscan Complex Coastal belt in northern California, which is bounded by the San Andreas Fault on the west and the Franciscan Complex Central belt on the south and east. Previous work has not extensively subdivided the Coastal belt because of the poor exposure and the fact that the exposed lithology is primarily graywacke indistinguishable in outcrop and hand sample and is thus difficult to map in the field. A hand-held magnetic susceptibility meter, however, in combination with thin-section analysis, reveals that some Coastal belt graywackes are magnetic. The thin-section analysis shows that the magnetic samples have a significant component of andesitic grains, whereas the non-magnetic samples do not. Further, the locations of these magnetic rocks correspond to elongate regions of high magnetic intensity (magnetic anomalies) kilometers to tens of kilometers in length. Previous 2D modeling showed that the bodies of magnetic graywacke can be modeled as a folded sheet, with antiformal limbs near or exposed at the surface and synformal limbs reaching a depth of about 1 km. Locations of edges of magnetic source bodies can be extracted from their magnetic anomalies. Near surface, steeply dipping edges lie beneath local maxima in the horizontal gradient of the magnetic potential surface. The edges are demarcated by locating discrete points along the local maxima. We connected these points, using an algorithm with a specific set of parameters, to delineate the edges of the magnetic graywacke bodies. Together with the previous 2D modeling, the anomalies and their edges show that the Coastal belt contains antiformal structures 5 to 20 km in length and 1.5 km in width, with a wavelength approximately 1.5 km. The modal direction of elongation is oriented approximately

  13. Comparison of High Resolution Topographic Data Sources (SAR, IfSAR, and LiDAR) for Storm Surge Hazard Maps

    NASA Astrophysics Data System (ADS)

    Suarez, J. K. B.; Santiago, J. T.; Muldong, T. M. M.; Lagmay, A. M. A.; Caro, C. V.; Ramos, M.

    2014-12-01

    As an archipelagic country, the Philippines has experienced multiple storm surge threats. Moreover, the country's location, adjacent to the Pacific Ocean, results in an average of eight to nine typhoons that make landfall in a year. Storm surge hazard maps require high resolution topographic data to illustrate water inflow in the event of storm surges in vulnerable coastal areas and for accurate boundaries and coastline. Furthermore, potential hazard areas tend to be generalized in lower resolution data. The objective of this research is to compare three sources where accurate and quality storm surge hazard maps will draw bases from. For this purpose, the researcher used and compared SAR, IfSAR and LiDAR. The study involved comparing maps from different topographic data sources in Tacloban, in the province of Leyte. This area was one of the most heavily stricken areas during typhoon Haiyan where more than 6,000 people died and P34.37 billion worth of property was destroyed. In the comparison of the three sources, the following had be taken into consideration: cost of acquiring data, processing time, purpose, and the results. The research learned the following: Synthetic Aperture Radar or SAR produces data with a 30 meter resolution, while Interferometric Synthetic Aperture Radar (IfSAR) offers a resolution of 5 meters. Light Detection and Ranging (LiDAR) has the highest resolution of the three with 1 meter. In addition, higher costs are paid for more detailed topographic data. Also, processing time takes longer for finer details due to the memory of the computer units used for modelling. The sources were also evaluated on the necessity of the scale at which the maps are needed for specific purposes such as practicality and direct disaster response. Results from the maps have been validated through interviews with the locals on the experience of actual storm surges. Through this study, the researcher concluded that although LiDAR can offer a more detailed and

  14. High resolution mapping of Normalized Difference Vegetation Indices (NDVI) of biological soil crusts

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Veste, M.; Eisele, A.; Bens, O.; Spyra, W.; Hüttl, R. F.

    2012-04-01

    Normalized Difference Vegetation Indices (NDVI) are typically determined using satellite or airborne remote sensing, or field portable spectrometers, which give an averaged signal on centimetre to meter scale plots. Biological soil crust (BSC) patches may have smaller sizes, and ecophysiological, hydrological as well as pedological processes may be heterogeneously distributed within this level of resolution. A ground-based NDVI imaging procedure using low-cost equipment (Olympus Camedia 5000z digital camera equipped with a Hoya R72 infrared filter) was developed in this study to fill this gap at the level of field research, where carrying costly and bulky equipment to remote locations is often the limiting factor for data collection. A commercially available colour rendition chart (GretagMacbeth ColorChecker®) with known red (600-700 nm) and NIR (800-900 nm) reflectances was placed into each scene and used for calibration purposes on a per-image basis. Generation of NDVI images involved (i) determination of red and NIR reflectances from the pixel values of the red and NIR channels, respectively, and (ii) calculation and imaging of the NDVI, where NDVI values of -1 to +1 were mapped to grey values of 0 to 255. The correlation between NDVI values retrieved from these images and NDVI values determined using conventional field spectrometry (ASD FieldSpec 3 portable spectroradiometer) was close (r2 =0.91), the 95% confidence interval amounted to 0.10 NDVI units. The pixel resolution was 0.8 mm in the field and 0.2 mm in the laboratory, but can still be improved significantly with closer distance to the crust or with higher camera resolution. Geostatistical analysis revealed that both spatial variability as well as size of individual objects characterized by the NDVI increased with crust development. The latter never exceeded 4 mm in the investigated crusts, which points to the necessity of high resolution imaging for linking remote sensing with ecophysiology

  15. Carbonado revisited: Insights from neutron diffraction, high resolution orientation mapping and numerical simulations

    NASA Astrophysics Data System (ADS)

    Piazolo, Sandra; Kaminsky, Felix V.; Trimby, Patrick; Evans, Lynn; Luzin, V.

    2016-11-01

    One of the most controversial diamond types is carbonado, as its origin and geological history are still under debate. Here, we investigate selected carbonado samples using neutron diffraction and high resolution orientation mapping in combination with numerical simulations. Neutron diffraction analyses show that fine grained carbonado samples exhibit a distinct lack of crystallographic preferred orientation. Quantitative crystallographic orientation analyses performed on transmission electron microscope (TEM) sections reveal that the 2-10 μm grains exhibit locally significant internal deformation. Such features are consistent with crystal plastic deformation of a grain aggregate that initially formed by rapid nucleation, characterized by a high number of nucleation sites and no crystallographic preferred orientation. Crystal plastic deformation resulted in high stress heterogeneities close to grain boundaries, even at low bulk strains, inducing a high degree of lattice distortion without significant grain size reduction and the development of a crystallographic preferred orientation. Observed differences in the character of the grain boundary network and internal deformation structures can be explained by significant post-deformation annealing occurring to variable degrees in the carbonado samples. Differences in intensity of crystal bending and subgrain boundary sharpness can be explained by dislocation annihilation and rearrangement, respectively. During annealing grain energy is reduced resulting in distinct changes to the grain boundary geometry. Grain scale numerical modelling shows that anisotropic grain growth, where grain boundary energy is determined by the orientation of a boundary segment relative to the crystallographic orientation of adjacent grains results in straight boundary segments with abrupt changes in orientation even if the boundary is occurring between two triple junctions forming a ;zigzag; pattern. In addition, in diamond anisotropic

  16. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging.

    PubMed

    Rooney, William D; Li, Xin; Sammi, Manoj K; Bourdette, Dennis N; Neuwelt, Edward A; Springer, Charles S

    2015-06-01

    Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 μL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na

  17. Application of high resolution aeromagnetic data for basement topography mapping of Siluko and environs, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Osinowo, Olawale O.; Akanji, Adesoji O.; Olayinka, Abel I.

    2014-11-01

    The discovery of hydrocarbon in commercial quantity in the Niger Delta, southern Nigeria, has since the early fifties shifted the attention of exploration/active geological studies from the Dahomey basin and the adjacent basement terrain in south-western Nigeria towards the south and this has left some gaps in information required for the discovery and exploitation of the economic potential of the region. This study mapped the Siluko transition zone in south-western Nigeria in terms of structures, geometry and basement topography with the object of providing requisite geological information that will engender interest in the exploration and exploitation of the numerous economic potentials of south-western part of Nigeria. Acquired high resolution aeromagnetic data were filtered, processed and enhanced, the resultant data were subjected to qualitative and quantitative magnetic interpretation, depth weighting analyses and modelling to generate the subsurface basement topography across the study area. The obtained results indicate regions of high and low magnetic anomalies with residual magnetic intensity values ranging from -100.8 nT to 100.9 nT. Euler Deconvolution indicates generally undulating basement topography with depth range of 125-1812 m. The basement relief is generally gentle and flat lying within the basement terrain with depth ranging from 125 to 500 m. However the sedimentary terrain is undulating and generally steeps south, down the basin with depth range of 300-1812 m. A basement topography model of the magnetic data constrained by Euler solutions correlate positively with the geology of the study area and indicates a generally increasing sedimentary deposits' thickness southward toward the western part of Dahomey basin. The revealed basement topography and structures as well as the delineated direction of continuous increase in thickness of sedimentary deposit provide insight to the controlling factor responsible for tar sand deposit and bitumen

  18. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    PubMed

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  19. Dynamics of the MAP IOP 15 severe Mistral event: Observations and high-resolution numerical simulations

    NASA Astrophysics Data System (ADS)

    Guénard, V.; Drobinski, P.; Caccia, J. L.; Tedeschi, G.; Currier, P.

    2006-04-01

    This paper investigates the fundamental processes involved in a severe Mistral event that occurred during the Mesoscale Alpine Program (from 6 to 9 November 1999). The Mistral refers to a violent north/north-westerly wind blowing in south-eastern France from the Rhône valley to the French Riviera. The study is based on measurements from radiosoundings launched from Lyon and Nîmes and from two UHF wind profilers located near Marseille and Toulon allowing a good description of the flow in the complex terrain formed by the south-western Alps. Observational results are compared with RAMS non-hydrostatic numerical simulations performed with 27 km, 9 km and 3 km nested grids. The numerical simulations capture the flow complexity both upstream of the Alps and in the coastal area affected by the Mistral. They correctly reproduce horizontal wind speeds and directions, vertical velocities, virtual potential temperature and relative humidity documented by the observational network. The simulations are used to point out the main dynamical processes generating the Mistral. It is found that flow splitting around the Alps and around the isolated peaks bordering the south-eastern part of the Rhône valley (Mont Ventoux 1909 m, Massif du Lubéron 1425 m) induces the low-level jet observed near Marseille that lasts for 36 hours. The high-resolution simulation indicates that the transient low-level jet lasting for only 9 hours observed at Toulon is due to a gravity wave breaking over local topography (the Sainte Baume 1147 m) where hydraulic jumps are involved. A mountain wake with two opposite-sign potential-vorticity banners is generated. The mesoscale wake explains the westward progression of the large-scale Alpine wake.

  20. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping

    PubMed Central

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-01-01

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  1. Three very high resolution optical images for land use mapping of a suburban catchment: input to distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Jacqueminet, Christine; Kermadi, Saïda; Michel, Kristell; Jankowfsky, Sonja; Braud, Isabelle; Branger, Flora; Beal, David; Gagnage, Matthieu

    2010-05-01

    resampled in the same low resolution of 2.5 m and compared in order to evaluate the accuracy of different image processing methods and to determine for each cover type, the more appropriate image and/or method. This comparison provides hydrologists with a synthetic land cover map. Four parameters affect the accuracy of land cover mapping: firstly the addition of the NIR band improves vegetation classification such as the distinction between coniferous forest and broad-leaved forest. Moreover the intensity of chlorophyllian activity allows us to characterize the use of agricultural fields. Secondly, the images were taken at three dates in the agricultural calendar. This multi-date data allows the discrimination between permanently vegetalized pastures, and temporarily bare crops, a useful information for hydrologists who study surfaces hydraulic properties. Thirdly, the high resolution of the BD Ortho IGN image emphasizes the heterogeneity inside the spatial entities. Thus, in urbanised areas, high-resolution imagery allows the precise identification of objects > 5 m2 and consequently the quantification of impervious and pervious surfaces. However, the continuity of forest areas is not maintained because of the presence of small entities with sparser tree cover that were classified as herbaceous areas. Finally, image characteristics are more crucial than classification methods for the accuracy of land cover mapping. However, object based approach improves the classification of mixed pixels on the edge between different objects. It's particularly true for buildings and roads.

  2. Global High Resolution Mapping and Assimilation of Soil Moisture Observations for the SMAP Radar and Radiometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil Moisture Active and Passive (SMAP) mission is being developed by NASA for launch in 2015. The primary science objectives of SMAP are to enhance understanding of land surface controls on the water, energy and carbon cycles, and to determine their linkages. Moreover, SMAP high-resolution so...

  3. Mapping evapotranspiration with high resolution aircraft imagery over vineyards using one and two source modeling schemes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (= 10 m) and plant canopy (= 1 m) scale evapotranspiration (ET) monitoring. In this study, high resolution aircraft sub-meter scale thermal infrared and multispectral...

  4. Expert system designed to assist in the interpretation and evaluation of thoracic surface maps produced by high-resolution electrocardiography

    SciTech Connect

    Johnson, J.K.

    1988-01-01

    An expert system is an artificial intelligence program that relies on a knowledge base composed of information derived from an expert and is designed to perform a difficult task. The system is usually domain specific and provides an interactive consultation with the user in problem solving. High-resolution electrocardiography is a technique for acquiring information about the heart's electrical activity with the use of multilead electrodes. Thoracic surface maps are presented at precise intervals during the depolarization/repolarization stages of a heartbeat. Cardiologists have determined methods for relating the thoracic maps to the actual tissue condition of the heart giving a basis for diagnoses. This work shows the anatomy of the heart, techniques for measuring that activity, and in detail, the techniques used with High Resolution Electrocardiography. The field of artificial intelligence is explored with an emphasis on expert systems. An expert system developed to diagnose the HRE record is presented.

  5. Gaussian Multiple Instance Learning Approach for Mapping the Slums of the World Using Very High Resolution Imagery

    SciTech Connect

    Vatsavai, Raju

    2013-01-01

    In this paper, we present a computationally efficient algo- rithm based on multiple instance learning for mapping infor- mal settlements (slums) using very high-resolution remote sensing imagery. From remote sensing perspective, infor- mal settlements share unique spatial characteristics that dis- tinguish them from other urban structures like industrial, commercial, and formal residential settlements. However, regular pattern recognition and machine learning methods, which are predominantly single-instance or per-pixel classi- fiers, often fail to accurately map the informal settlements as they do not capture the complex spatial patterns. To overcome these limitations we employed a multiple instance based machine learning approach, where groups of contigu- ous pixels (image patches) are modeled as generated by a Gaussian distribution. We have conducted several experi- ments on very high-resolution satellite imagery, represent- ing four unique geographic regions across the world. Our method showed consistent improvement in accurately iden- tifying informal settlements.

  6. High resolution population distribution maps for Southeast Asia in 2010 and 2015.

    PubMed

    Gaughan, Andrea E; Stevens, Forrest R; Linard, Catherine; Jia, Peng; Tatem, Andrew J

    2013-01-01

    Spatially accurate, contemporary data on human population distributions are vitally important to many applied and theoretical researchers. The Southeast Asia region has undergone rapid urbanization and population growth over the past decade, yet existing spatial population distribution datasets covering the region are based principally on population count data from censuses circa 2000, with often insufficient spatial resolution or input data to map settlements precisely. Here we outline approaches to construct a database of GIS-linked circa 2010 census data and methods used to construct fine-scale (∼100 meters spatial resolution) population distribution datasets for each country in the Southeast Asia region. Landsat-derived settlement maps and land cover information were combined with ancillary datasets on infrastructure to model population distributions for 2010 and 2015. These products were compared with those from two other methods used to construct commonly used global population datasets. Results indicate mapping accuracies are consistently higher when incorporating land cover and settlement information into the AsiaPop modelling process. Using existing data, it is possible to produce detailed, contemporary and easily updatable population distribution datasets for Southeast Asia. The 2010 and 2015 datasets produced are freely available as a product of the AsiaPop Project and can be downloaded from: www.asiapop.org.

  7. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images

    PubMed Central

    Hapala, Prokop; Švec, Martin; Stetsovych, Oleksandr; van der Heijden, Nadine J.; Ondráček, Martin; van der Lit, Joost; Mutombo, Pingo; Swart, Ingmar; Jelínek, Pavel

    2016-01-01

    How electronic charge is distributed over a molecule determines to a large extent its chemical properties. Here, we demonstrate how the electrostatic force field, originating from the inhomogeneous charge distribution in a molecule, can be measured with submolecular resolution. We exploit the fact that distortions typically observed in high-resolution atomic force microscopy images are for a significant part caused by the electrostatic force acting between charges of the tip and the molecule of interest. By finding a geometrical transformation between two high-resolution AFM images acquired with two different tips, the electrostatic force field or potential over individual molecules and self-assemblies thereof can be reconstructed with submolecular resolution. PMID:27230940

  8. High-resolution NO2 maps of Rotterdam and Zürich retrieved from the APEX imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Gerrit; Hueni, Andreas; Brunner, Dominik

    2016-04-01

    In urban areas, nitrogen dioxide (NO_2) concentrations have high spatial and temporal variability making high-resolution NO2 maps an important tool for air pollution assessment and epidemiological studies. We retrieved high-resolution NO2 maps from the Airborne Prism Experiment (APEX) imaging spectrometer measured over Zürich on 30. August 2013 (11:24--12:05 UTC) and Rotterdam on 17. September 2014 (8:53--10:18 UTC). Our updated retrieval fits NO_2, O_3, O_4, H_2O and the Ring effect between 440 and 510 nm using Differential Optical Absorption Spectroscopy (DOAS). The radiance spectra were spectrally calibrated using a high-resolution solar reference spectrum to correct spectral shifts in across- and along-track direction. Air mass factors were computed using the SCIATRAN radiative transfer model. The retrieved NO2 maps have 50×50m2 resolution and cover an area of 10×26 km2 for Zürich and 10×50 km2 for Rotterdam. The maps show enhanced NO2 values in populated areas and at least three strong plumes from oil refineries in Rotterdam. A comparison with ground measurements in Rotterdam shows only weak correlation, because most of the NO2 is found in elevated plumes. In conclusion, airborne observations allow mapping of the NO2 distribution in urban areas providing a different perspective on urban air quality which cannot be acquired by ground-based observations. The obtained maps will be used for further analysis such as estimating NOX emissions from oil refineries and comparison with urban-scale chemistry transport modelling.

  9. High-resolution seismic reflection profiling for mapping shallow aquifers in Lee County, Florida

    USGS Publications Warehouse

    Missimer, T.M.; Gardner, Richard Alfred

    1976-01-01

    High-resolution continuous seismic reflection profiling equipment was utilized to define the configuration of sedimentary layers underlying part of Lee County, Florida. About 45 miles (72 kilometers) of profile were made on the Caloosahatchee River Estuary and San Carlos Bay. Two different acoustic energy sources, a high resolution boomer and a 45-electrode high resolution sparker, both having a power input of 300 joules, were used to obtain both adequate penetration and good resolution. The seismic profiles show that much of the strata of middle Miocene to Holocene age apparently are extensively folded but not faulted. Initial interpretations indicate that: (1) the top of the Hawthorn Formation (which contains the upper Hawthorn aquifer) has much relief due chiefly to apparent folding; (2) the limestone, sandstone, and unconsolidated sand and phosphorite, which together compose the sandstone aquifer, appear to be discontinuous; (3) the green clay unit of the Tamiami Formation contains large scale angular beds dipping eastward; and (4) numerous deeply cut alluvium-filled paleochannels underlie the Caloosahatchee River. (Woodard-USGS)

  10. Mapping trees outside forests using high-resolution aerial imagery: a comparison of pixel- and object-based classification approaches.

    PubMed

    Meneguzzo, Dacia M; Liknes, Greg C; Nelson, Mark D

    2013-08-01

    Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics. Despite the significance of ToF, forest and other natural resource inventory programs and geospatial land cover datasets that are available at a national scale do not include comprehensive information regarding ToF in the United States. Additional ground-based data collection and acquisition of specialized imagery to inventory these resources are expensive alternatives. As a potential solution, we identified two remote sensing-based approaches that use free high-resolution aerial imagery from the National Agriculture Imagery Program (NAIP) to map all tree cover in an agriculturally dominant landscape. We compared the results obtained using an unsupervised per-pixel classifier (independent component analysis-[ICA]) and an object-based image analysis (OBIA) procedure in Steele County, Minnesota, USA. Three types of accuracy assessments were used to evaluate how each method performed in terms of: (1) producing a county-level estimate of total tree-covered area, (2) correctly locating tree cover on the ground, and (3) how tree cover patch metrics computed from the classified outputs compared to those delineated by a human photo interpreter. Both approaches were found to be viable for mapping tree cover over a broad spatial extent and could serve to supplement ground-based inventory data. The ICA approach produced an estimate of total tree cover more similar to the photo-interpreted result, but the output from the OBIA method was more realistic in terms of describing the actual observed spatial pattern of tree cover.

  11. Comparing Magnetic Resonance Imaging and High-Resolution Dynamic Ultrasonography for Diagnosis of Plantar Plate Pathology: A Case Series.

    PubMed

    Donegan, Ryan J; Stauffer, Anthony; Heaslet, Michael; Poliskie, Michael

    Plantar plate pathology has gained noticeable attention in recent years as an etiology of lesser metatarsophalangeal joint pain. The heightened clinical awareness has led to the need for more effective diagnostic imaging accuracy. Numerous reports have established the accuracy of both magnetic resonance imaging and ultrasonography for the diagnosis of plantar plate pathology. However, no conclusions have been made regarding which is the superior imaging modality. The present study reports a case series directly comparing high-resolution dynamic ultrasonography and magnetic resonance imaging. A multicenter retrospective comparison of magnetic resonance imaging versus high-resolution dynamic ultrasonography to evaluate plantar plate pathology with surgical confirmation was conducted. The sensitivity, specificity, and positive and negative predictive values for magnetic resonance imaging were 60%, 100%, 100%, and 33%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 66%. The sensitivity, specificity, and positive and negative predictive values for high-resolution dynamic ultrasound imaging were 100%, 100%, 100%, and 100%, respectively. The overall diagnostic accuracy compared with the intraoperative findings was 100%. The p value using Fisher's exact test for magnetic resonance imaging and high-resolution dynamic ultrasonography was p = .45, a difference that was not statistically significant. High-resolution dynamic ultrasonography had greater accuracy than magnetic resonance imaging in diagnosing lesser metatarsophalangeal joint plantar plate pathology, although the difference was not statistically significant. The present case series suggests that high-resolution dynamic ultrasonography can be considered an equally accurate imaging modality for plantar plate pathology at a potential cost savings compared with magnetic resonance imaging. Therefore, high-resolution dynamic ultrasonography warrants further investigation in

  12. Object-based locust habitat mapping using high-resolution multispectral satellite data in the southern Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Navratil, Peter; Wilps, Hans

    2013-01-01

    Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.

  13. High resolution mapping of development in the wildland-urban interface using object based image extraction

    USGS Publications Warehouse

    Caggiano, Michael D.; Tinkham, Wade T.; Hoffman, Chad; Cheng, Antony S.; Hawbaker, Todd J.

    2016-01-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA

  14. High resolution mapping of development in the wildland-urban interface using object based image extraction.

    PubMed

    Caggiano, Michael D; Tinkham, Wade T; Hoffman, Chad; Cheng, Antony S; Hawbaker, Todd J

    2016-10-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m(2)) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA

  15. High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates

    PubMed Central

    Förstner, Konrad U.; Heidrich, Nadja; Reinhardt, Richard; Nieselt, Kay; Sharma, Cynthia M.

    2013-01-01

    Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA–seq (dRNA–seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA–seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA–seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA–seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into

  16. High Resolution Mapping of Modafinil Induced Changes in Glutamate Level in Rat Brain

    PubMed Central

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A.; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST) imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19±4.4%) was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction. PMID:25068408

  17. High resolution mapping of modafinil induced changes in glutamate level in rat brain.

    PubMed

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Verma, Gaurav; Nanga, Ravi Prakash Reddy; Hariharan, Hari; Detre, John A; Epperson, Neill; Reddy, Ravinder

    2014-01-01

    Modafinil is marketed in the United States for the treatment of narcolepsy and daytime somnolence due to shift-work or sleep apnea. Investigations of this drug in the treatment of cocaine and nicotine dependence in addition to disorders of executive function are also underway. Modafinil has been known to increase glutamate levels in rat brain models. Proton magnetic resonance spectroscopy (1HMRS) has been commonly used to detect the glutamate (Glu) changes in vivo. In this study, we used a recently described glutamate chemical exchange saturation transfer (GluCEST) imaging technique to measure Modafinil induced regional Glu changes in rat brain and compared the results with Glu concentration measured by single voxel 1HMRS. No increases in either GluCEST maps or 1HMRS were observed after Modafinil injection over a period of 5 hours. However, a significant increase in GluCEST (19 ± 4.4%) was observed 24 hours post Modafinil administration, which is consistent with results from previous biochemical studies. This change was not consistently seen with 1HMRS. GluCEST mapping allows regional cerebral Glu changes to be measured and may provide a useful clinical biomarker of Modafinil effects for the management of patients with sleep disorders and addiction.

  18. High resolution mapping and classification of oyster habitats in nearshore Louisiana using sidescan sonar

    USGS Publications Warehouse

    Allen, Y.C.; Wilson, C.A.; Roberts, H.H.; Supan, J.

    2005-01-01

    Sidescan sonar holds great promise as a tool to quantitatively depict the distribution and extent of benthic habitats in Louisiana's turbid estuaries. In this study, we describe an effective protocol for acoustic sampling in this environment. We also compared three methods of classification in detail: mean-based thresholding, supervised, and unsupervised techniques to classify sidescan imagery into categories of mud and shell. Classification results were compared to ground truth results using quadrat and dredge sampling. Supervised classification gave the best overall result (kappa = 75%) when compared to quadrat results. Classification accuracy was less robust when compared to all dredge samples (kappa = 21-56%), but increased greatly (90-100%) when only dredge samples taken from acoustically homogeneous areas were considered. Sidescan sonar when combined with ground truth sampling at an appropriate scale can be effectively used to establish an accurate substrate base map for both research applications and shellfish management. The sidescan imagery presented here also provides, for the first time, a detailed presentation of oyster habitat patchiness and scale in a productive oyster growing area.

  19. High resolution coherence domain depth-resolved nailfold capillaroscopy based on correlation mapping optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin

    2014-03-01

    In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.

  20. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping.

    PubMed

    Raudsepp, Terje; Lee, Eun-Joon; Kata, Srinivas R; Brinkmeyer, Candice; Mickelson, James R; Skow, Loren C; Womack, James E; Chowdhary, Bhanu P

    2004-02-24

    Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.

  1. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis

    NASA Astrophysics Data System (ADS)

    MacFaden, Sean W.; O'Neil-Dunne, Jarlath P. M.; Royar, Anna R.; Lu, Jacqueline W. T.; Rundle, Andrew G.

    2012-01-01

    Urban tree canopy is widely believed to have myriad environmental, social, and human-health benefits, but a lack of precise canopy estimates has hindered quantification of these benefits in many municipalities. This problem was addressed for New York City using object-based image analysis (OBIA) to develop a comprehensive land-cover map, including tree canopy to the scale of individual trees. Mapping was performed using a rule-based expert system that relied primarily on high-resolution LIDAR, specifically its capacity for evaluating the height and texture of aboveground features. Multispectral imagery was also used, but shadowing and varying temporal conditions limited its utility. Contextual analysis was a key part of classification, distinguishing trees according to their physical and spectral properties as well as their relationships to adjacent, nonvegetated features. The automated product was extensively reviewed and edited via manual interpretation, and overall per-pixel accuracy of the final map was 96%. Although manual editing had only a marginal effect on accuracy despite requiring a majority of project effort, it maximized aesthetic quality and ensured the capture of small, isolated trees. Converting high-resolution LIDAR and imagery into usable information is a nontrivial exercise, requiring significant processing time and labor, but an expert system-based combination of OBIA and manual review was an effective method for fine-scale canopy mapping in a complex urban environment.

  2. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1.

    PubMed

    Xu, K; Xu, X; Ronald, P C; Mackill, D J

    2000-05-01

    Resistance to submergence stress is an important breeding objective in areas where rice cultivars are subjected to complete inundation for a week or more. The present study was conducted to develop a high-resolution map of the region surrounding the submergence tolerance gene Sub1 in rice, which derives from the Indian cultivar FR13A. Submergence screening of 8-day-old plants of F3 families kept for 14 days submerged in 60 cm of water allowed an accurate classification of Sub1 phenotypes. Bulked segregant analysis was used to identify AFLP markers linked to Sub1. A population of 2950 F2 plants segregating for Sub1 was screened with two RFLP markers flanking the Sub1 locus, 2.4 and 4.9 cM away. Submergence tolerance was measured in the recombinant plants, and AFLP markers closely linked to Sub1 were mapped. Two AFLP markers cosegregated with Sub1 in this large population, and other markers were localized within 0.2 cM of Sub1. The high-resolution map should serve as the basis for map-based cloning of this important locus, as it will permit the identification of BAC clones spanning the region.

  3. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    PubMed Central

    Savelyev, Alexander; Sugumaran, Ramanathan

    2008-01-01

    The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixel- to-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds. PMID:27873800

  4. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    NASA Astrophysics Data System (ADS)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree

  5. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery

    PubMed Central

    Belgiu, Mariana; Drǎguţ, Lucian

    2014-01-01

    Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea

  6. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery

    NASA Astrophysics Data System (ADS)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr

    2014-10-01

    Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea

  7. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery.

    PubMed

    Belgiu, Mariana; Dr Guţ, Lucian

    2014-10-01

    Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea

  8. High-Resolution Mapping of Lunar Crustal Magnetic Fields: Correlations with Albedo Markings of the Reiner Gamma Class

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Yingst, A.; Mitchell, D. L.; Lin, R. P.; Acuna, M.; Binder, A.

    1999-01-01

    During the last eight months of the Lunar Prospector mission (December 1999-July 1999), the spacecraft was placed in a relatively low-altitude (15-30-km perapsis), near-polar orbit that allowed high-resolution mapping of crustal magnetic fields. We report here initial studies of the correlation of locally strong magnetic anomalies with unusual, swirl-like albedo markings of the Reiner Gamma class. Based on this correlation, which is known from earlier studies of Apollo subsatellite magnetometer data, it has been proposed that the swirls represent regions whose higher albedos have been preserved via deflection of the solar-wind ion bombardment by strong crustal fields. This model in turn depends on the hypothesis that solar-wind implanted H is at least one component of the process that optically matures exposed silicate surfaces in the inner solar system . Specifically, it is hypothesized that implanted H acts as an effective reducing agent to enhance the rate of production of nanophase metallic Fe particles from preexisting silicates during micrometeoroid impacts. According to the model, the curvilinear shapes of these albedo markings are caused, at least in part, by the geometry of ion deflections in a magnetic field. The improved resolution and coverage of the Prospector data allow more detailed mapping of the fields, especially on the lunar farside. This permits a more quantitative test of whether all albedo markings of this class are associated with strong local magnetic fields.Only if the latter condition is met can the solar-wind deflection hypothesis he valid. The basic procedure for mapping crustal magnetic fields using Lunar Prospector magnetometer data follows that developed for analysis of Apollo subsatellite magnetometer data. The specific mapping steps are (1) selection of mission time intervals suitable for mapping crustal fields; these are limited essentially either to times when the Moon is in a lobe of the geomagnetic tail or to times when the Moon

  9. TRMM Precipitation Radar Reflectivity Profiles Compared to High-Resolution Airborne and Ground-Based Radar Measurements

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Geerts, B.; Tian, L.

    1999-01-01

    In this paper, TRMM (Tropical Rainfall Measuring Mission Satellite) Precipitation Radar (PR) products are evaluated by means of simultaneous comparisons with data from the high-altitude ER-2 Doppler Radar (EDOP), as well as ground-based radars. The comparison is aimed primarily at the vertical reflectivity structure, which is of key importance in TRMM rain type classification and latent heating estimation. The radars used in this study have considerably different viewing geometries and resolutions, demanding non-trivial mapping procedures in common earth-relative coordinates. Mapped vertical cross sections and mean profiles of reflectivity from the PR, EDOP, and ground-based radars are compared for six cases. These cases cover a stratiform frontal rainband, convective cells of various sizes and stages, and a hurricane. For precipitating systems that are large relative to the PR footprint size, PR reflectivity profiles compare very well to high-resolution measurements thresholded to the PR minimum reflectivity, and derived variables such as bright band height and rain types are accurate, even at high PR incidence angles. It was found that for, the PR reflectivity of convective cells small relative to the PR footprint is weaker than in reality. Some of these differences can be explained by non-uniform beam filling. For other cases where strong reflectivity gradients occur within a PR footprint, the reflectivity distribution is spread out due to filtering by the PR antenna illumination pattern. In these cases, rain type classification may err and be biased towards the stratiform type, and the average reflectivity tends to be underestimated. The limited sensitivity of the PR implies that the upper regions of precipitation systems remain undetected and that the PR storm top height estimate is unreliable, usually underestimating the actual storm top height. This applies to all cases but the discrepancy is larger for smaller cells where limited sensitivity is compounded

  10. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification

    PubMed Central

    Fulop, Daniel; Ranjan, Aashish; Ofner, Itai; Covington, Michael F.; Chitwood, Daniel H.; West, Donelly; Ichihashi, Yasunori; Headland, Lauren; Zamir, Daniel; Maloof, Julin N.; Sinha, Neelima R.

    2016-01-01

    Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii. This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping. PMID:27510891

  11. High-resolution three-dimensional quantitative map of the macromolecular proton fraction distribution in the normal rat brain.

    PubMed

    Naumova, Anna V; Akulov, Andrey E; Khodanovich, Marina Yu; Yarnykh, Vasily L

    2017-02-01

    The presented dataset provides a normative high-resolution three-dimensional (3D) macromolecular proton fraction (MPF) map of the healthy rat brain in vivo and source images used for its reconstruction. The images were acquired using the protocol described elsewhere (Naumova, et al. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage (2016) doi: 10.1016/j.neuroimage.2016.09.036). The map was reconstructed from three source images with different contrast weightings (proton density, T1, and magnetization transfer) using the single-point algorithm with a synthetic reference image. Source images were acquired from a living animal on an 11.7 T small animal MRI scanner with isotropic spatial resolution of 170 µm(3) and total acquisition time about 1.5 h. The 3D dataset can be used for multiple purposes including interactive viewing of rat brain anatomy, measurements of reference MPF values in various brain structures, and development of image processing techniques for the rodent brain segmentation. It also can serve as a gold standard image for implementation and optimization of rodent brain MRI protocols.

  12. 3-Dimentional Mapping Coastal Zone using High Resolution Satellite Stereo Imageries

    NASA Astrophysics Data System (ADS)

    Hong, Zhonghua; Liu, Fengling; Zhang, Yun

    2014-03-01

    The metropolitan coastal zone mapping is critical for coastal resource management, coastal environmental protection, and coastal sustainable development and planning. The results of geometric processing of a Shanghai coastal zone from 0.7-m-resolution QuickBird Geo stereo images are presented firstly. The geo-positioning accuracy of ground point determination with vendor-provided rigorous physical model (RPM) parameters is evaluated and systematic errors are found when compared with ground control points surveyed by GPS real-time kinematic (GPS-RTK) with 5cm accuracy. A bias-compensation process in image space that applies a RPM bundle adjustment to the RPM-calculated 3D ground points to correct the systematic errors is used to improve the geo-positioning accuracy. And then, a area-based matching (ABM) method is used to generated the densely corresponding points of left and right QuickBird images. With the densely matching points, the 3-dimentinal coordinates of ground points can be calculated by using the refined geometric relationship between image and ground points. At last step, digital surface model (DSM) can be achieved automatically using interpolation method. Accuracies of the DSM as assessed from independent checkpoints (ICPs) are approximately 1.2 m in height.

  13. High-Resolution Cytogenetic Map for the African Malaria Vector Anopheles gambiae

    PubMed Central

    George, Phillip; Sharakhova, Maria V.; Sharakhov, Igor V.

    2010-01-01

    Cytogenetic and physical maps are indispensible for precise assembly of genome sequences, functional characterization of chromosomal regions, and population genetic and taxonomic studies. We have created a new cytogenetic map for Anopheles gambiae by using a high-pressure squash technique that increases overall band clarity. To link chromosomal regions to the genome sequence, we attached genome coordinates, based on 302 markers of BAC, cDNA clones, and PCR-amplified gene fragments, to the chromosomal bands and interbands at approximately a 0.5-1 Mb interval. In addition, we placed the breakpoints of seven common polymorphic inversions on the map and described the chromosomal landmarks for the arm and inversion identification. The map's improved resolution can be used to further enhance physical mapping, improve genome assembly, and stimulate epigenomic studies of malaria vectors. PMID:20609021

  14. High-resolution mapping of nonuniform carrier transport at contacts to polycrystalline CdTe/CdS solar cells

    NASA Astrophysics Data System (ADS)

    Sutter, P.; Sutter, E.; Ohno, T. R.

    2004-03-01

    We demonstrate a spectroscopic technique based on scanning tunneling microscopy that provides high-resolution maps of local carrier transport across contacts to polycrystalline thin-film solar cells. Using this technique, preferential transport channels across a p+-ZnTe/p-CdTe back contact of a p-CdTe/n-CdS solar cell are imaged with 20 nm spatial resolution. Transport across this contact is highly nonuniform. Large areas of high resistance coexist with nanoscale low-resistance regions that are strongly correlated with grain boundaries in the CdTe absorber. These results suggest an important role of grain boundaries as near-contact conducting channels.

  15. High-resolution mapping of quantum efficiency of silicon photodiode via optical-feedback laser microthermography

    SciTech Connect

    Cemine, Vernon Julius; Blanca, Carlo Mar; Saloma, Caesar

    2006-09-20

    We map the external quantum efficiency (QE) distribution of a silicon photodiode (PD) sample via a thermographic imaging technique based on optical-feedback laser confocal microscopy. An image pair consisting of the confocal reflectance image and the 2D photocurrent map is simultaneously acquired to delineate the following regions of interest on the sample: the substrate, the n-type region, the pn overlay, and the bonding pad. The 2D QE distribution is derived from the photocurrent map to quantify the optical performance of these sites. The thermal integrity of the sample is then evaluated by deriving the rate of change of QE with temperature T at each point on the silicon PD. These gradient maps function not only as stringent measures of local thermal QE activity but they also expose probable defect locations on the sample at high spatial resolution - a capability that is not feasible with existing bulk measurement techniques.

  16. High-resolution maps of forest-urban watersheds present an opportunity for ecologists and managers

    EPA Science Inventory

    Dense populations of people and abundant impervious surfaces contribute to poor water quality and increased flooding in forest-urban watersheds. Green infrastructure mitigates these effects, but precisely quantifying benefits is difficult because most land cover maps rely on coar...

  17. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  18. The 1998 eruption of Axial Seamount: New insights on submarine lava flow emplacement from high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Chadwick, W. W.; Clague, D. A.; Embley, R. W.; Perfit, M. R.; Butterfield, D. A.; Caress, D. W.; Paduan, J. B.; Martin, J. F.; Sasnett, P.; Merle, S. G.; Bobbitt, A. M.

    2013-10-01

    Axial Seamount, an active submarine volcano on the Juan de Fuca Ridge at 46°N, 130°W, erupted in January 1998 along 11 km of its upper south rift zone. We use ship-based multibeam sonar, high-resolution (1 m) bathymetry, sidescan sonar imagery, and submersible dive observations to map four separate 1998 lava flows that were fed from 11 eruptive fissures. These new mapping results give an eruption volume of 31 × 106 m3, 70% of which was in the northern-most flow, 23% in the southern-most flow, and 7% in two smaller flows in between. We introduce the concept of map-scale submarine lava flow morphology (observed at a scale of hundreds of meters, as revealed by the high-resolution bathymetry), and an interpretive model in which two map-scale morphologies are produced by high effusion-rate eruptions: "inflated lobate flows" are formed near eruptive vents, and where they drain downslope more than 0.5-1.0 km, they transition to "inflated pillow flows." These two morphologies are observed on the 1998 lava flows at Axial. A third map-scale flow morphology that was not produced during this eruption, "pillow mounds," is formed by low effusion-rate eruptions in which pillow lava piles up directly over the eruptive vents. Axial Seamount erupted again in April 2011 and there are remarkable similarities between the 1998 and 2011 eruptions, particularly the locations of eruptive vents and lava flow morphologies. Because the 2011 eruption reused most of the same eruptive fissures, 58% of the area of the 1998 lava flows is now covered by 2011 lava.

  19. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping.

    PubMed

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E W; Guo, Jiandong

    2015-08-01

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi2Sr2CaCu2O(8+δ). The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  20. High resolution electron energy loss spectroscopy with two-dimensional energy and momentum mapping

    SciTech Connect

    Zhu, Xuetao; Cao, Yanwei; Zhang, Shuyuan; Jia, Xun; Guo, Qinlin; Yang, Fang; Zhu, Linfan; Zhang, Jiandi; Plummer, E. W.; Guo, Jiandong

    2015-08-15

    High resolution electron energy loss spectroscopy (HREELS) is a powerful technique to probe vibrational and electronic excitations at surfaces. The dispersion relation of surface excitations, i.e., energy as a function of momentum, has in the past, been obtained by measuring the energy loss at a fixed angle (momentum) and then rotating sample, monochromator, or analyzer. Here, we introduce a new strategy for HREELS, utilizing a specially designed lens system with a double-cylindrical Ibach-type monochromator combined with a commercial VG Scienta hemispherical electron energy analyzer, which can simultaneously measure the energy and momentum of the scattered electrons. The new system possesses high angular resolution (<0.1°), detecting efficiency and sampling density. The capabilities of this system are demonstrated using Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ}. The time required to obtain a complete dispersion spectrum is at least one order of magnitude shorter than conventional spectrometers, with improved momentum resolution and no loss in energy resolution.

  1. Genome-scale high-resolution mapping of activating and repressive nucleotides in regulatory regions

    PubMed Central

    Ernst, Jason; Melnikov, Alexandre; Zhang, Xiaolan; Wang, Li; Rogov, Peter; Mikkelsen, Tarjei S.; Kellis, Manolis

    2016-01-01

    Massively parallel reporter assays (MPRA) enable nucleotide-resolution dissection of transcriptional regulatory regions, such as enhancers, but only few regions at a time. Here, we present a combined experimental and computational approach, Sharpr-MPRA, that allows high-resolution analysis of thousands of regions simultaneously. Sharpr-MPRA combines dense tiling of overlapping MPRA constructs with a probabilistic graphical model to recognize functional regulatory nucleotides, and to distinguish activating and repressive nucleotides, using their inferred contribution to reporter gene expression. We use Sharpr-MPRA to test 4.6 million nucleotides spanning 15,000 putative regulatory regions tiled at 5-nucleotide resolution in two human cell types. Our results recover known cell type-specific regulatory motifs and evolutionarily-conserved nucleotides, and distinguish known activating and repressive motifs. Our results also show that endogenous chromatin state and DNA accessibility are both predictive of regulatory function in reporter assays, identify retroviral elements with activating roles, and uncover ‘attenuator’ motifs with repressive roles in active chromatin. PMID:27701403

  2. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster

    SciTech Connect

    Long, A.D. |; Mullaney, S.L.; Langley, C.H.; Reid, L.A.; Fry, J.D.; Mackay, T.F.C.

    1995-03-01

    Factors responsible for selection response for abdominal bristle number and correlated responses in sternopleural bristle number were mapped to the X and third chromosome of Drosophila melanogaster. Lines divergent for high and low abdominal bristle number were created by 25 generations of artificial selection from a large base population, with an intensity of 25 individuals of each sex selected from 100 individuals of each sex scored per generation. Isogenic chromosome substitution lines in which the high (H) X or third chromosome were placed in an isogenic low (L) background were derived from the selection lines and from the 93 recombinant isogenic (RI) HL X and 67 RI chromosome 3 lines constructed from them. Highly polymorphic neutral roo transposable elements were hybridized in situ to the polytene chromosomes of the RI lines to create a set of cytogenetic markers. These techniques yielded a dense map with an average spacing of 4 cM between informative markers. Two factors with large effects on abdominal bristle number were mapped on the X chromosome and five factors on the third chromosome. One factor with a large effect on sternopleural bristle number was mapped to the X and two were mapped to the third chromosome; all factors with sternopleural effects corresponded to those with effects on abdominal bristle number. Two of the chromosome 3 factors with large effects on abdominal bristle number were also associated with reduced viability. Significant sex-specific effects and epistatic interactions between mapped factors of the same order of magnitude as the additive effects were observed. All factors mapped to the approximate positions of likely candidate loci previously characterized by mutations with large effects on bristle number. 55 refs., 4 figs., 7 tabs.

  3. High-resolution whole-organ mapping with SNPs and its significance to early events of carcinogenesis.

    PubMed

    Tuziak, Tomasz; Jeong, Joon; Majewski, Tadeusz; Kim, Mi-Sook; Steinberg, Jordan; Wang, Zhi; Yoon, Dong-Sup; Kuang, Tang C; Baggerly, Keith; Johnston, Dennis; Czerniak, Bogdan

    2005-05-01

    We attempted to identify deleted segments in two model tumor suppressor gene loci on chromosomes 13q14 and 17p13 that were associated with clonal expansion of in situ bladder preneoplasia using single nucleotide polymorphisms (SNPs)-based whole-organ histologic and genetic mapping. For mapping with SNPs, the sequence-based maps spanning approximately 27 and 5 Mb centered around RB1 and p53, respectively, were assembled. The integrated gene and SNP maps of the regions were used to select 661 and 960 SNPs, which were genotyped by pyrosequencing. Genotyping of SNPs was performed on DNA samples corresponding to histologic maps of the entire bladder mucosa in human cystectomy specimens with invasive urothelial carcinoma. By using this approach, we have identified deleted regions associated with clonal expansion of intraurothelial neoplasia; which ranged from 0.001 to 4.3 Mb (average 0.67 Mb) and formed clusters of discontinuous deleted segments. The high resolution of such maps is a prerequisite for future positional targeting of genes involved in early phases of bladder neoplasia. This approach also permits analysis of the overall genomic landscape of the involved region and discloses that a unique composition of noncoding DNA characterized by a high concentration of repetitive sequences may predispose to deletions.

  4. High-resolution ammonia mapping of the very young protostellar core Chamaeleon-MMS1

    NASA Astrophysics Data System (ADS)

    Väisälä, M. S.; Harju, J.; Mantere, M. J.; Miettinen, O.; Sault, R. S.; Walmsley, C. M.; Whiteoak, J. B.

    2014-04-01

    Aims: The aim of this study is to investigate the structure and kinematics of the nearby candidate first hydrostatic core Cha-MMS1. Methods: Cha-MMS1 was mapped in the NH3(1,1) line and the 1.2 cm continuum using the Australia Telescope Compact Array (ATCA). The angular resolution of the ATCA observations is 7″ (~1000 AU), and the velocity resolution is 50 m s-1. The core was also mapped with the 64 m Parkes Telescope in the NH3(1,1) and (2,2) lines. Observations from Herschel Space Observatory and Spitzer Space Telescope were used to help interpretation. The ammonia spectra were analysed using Gaussian fits to the hyperfine structure. A two-layer model was applied in the central parts of the core where the ATCA spectra show signs of self-absorption. Results: A compact high column density core with a steep velocity gradient (~20 km s-1 pc-1) is detected in ammonia. We derive a high gas density (~106 cm-3) in this region, and a fractional ammonia abundance compatible with determinations towards other dense cores (~10-8). This suggests that the age of the high density core is comparable to the freeze-out timescale of ammonia in these conditions, on the order of 104 years. The direction of the velocity gradient agrees with previous single-dish observations, and the overall velocity distribution can be interpreted as rotation. The rotation axis goes through the position of a compact far-infrared source detected by Spitzer and Herschel. The specific angular momentum of the core, ~10-3km s-1 pc, is typical for protostellar envelopes. A string of 1.2 cm continuum sources is tentatively detected near the rotation axis. The ammonia spectra suggest the presence of warm embedded gas in its vicinity. An hourglass-shaped structure is seen in ammonia at the cloud's average LSR velocity, also aligned with the rotation axis. Although this structure resembles a pair of outflow lobes the ammonia spectra show no indications of shocked gas. Conclusions: The observed ammonia

  5. Evaluation of eelgrass beds mapping using a high-resolution airborne multispectral scanner

    USGS Publications Warehouse

    Su, H.; Karna, D.; Fraim, E.; Fitzgerald, M.; Dominguez, R.; Myers, J.S.; Coffland, B.; Handley, L.R.; Mace, T.

    2006-01-01

    Eelgrass (Zostera marina) can provide vital ecological functions in stabilizing sediments, influencing current dynamics, and contributing significant amounts of biomass to numerous food webs in coastal ecosystems. Mapping eelgrass beds is important for coastal water and nearshore estuarine monitoring, management, and planning. This study demonstrated the possible use of high spatial (approximately 5 m) and temporal (maximum low tide) resolution airborne multispectral scanner on mapping eelgrass beds in Northern Puget Sound, Washington. A combination of supervised and unsupervised classification approaches were performed on the multispectral scanner imagery. A normalized difference vegetation index (NDVI) derived from the red and near-infrared bands and ancillary spatial information, were used to extract and mask eelgrass beds and other submerged aquatic vegetation (SAV) in the study area. We evaluated the resulting thematic map (geocoded, classified image) against a conventional aerial photograph interpretation using 260 point locations randomly stratified over five defined classes from the thematic map. We achieved an overall accuracy of 92 percent with 0.92 Kappa Coefficient in the study area. This study demonstrates that the airborne multispectral scanner can be useful for mapping eelgrass beds in a local or regional scale, especially in regions for which optical remote sensing from space is constrained by climatic and tidal conditions. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  6. Mapping of odor-related neuronal activity in the olfactory bulb by high-resolution 2-deoxyglucose autoradiography

    SciTech Connect

    Lancet, D.; Greer, C.A.; Kauer, J.S.; Shepherd, G.M.

    1982-01-01

    The spatial distribution of odor-induced neuronal activity in the olfactory bulb, the first relay station of the olfactory pathway, is believed to reflect important aspects of chemosensory coding. We report here the application of high-resolution 2-deoxyglucose autoradiography to the mapping of spatial patterns of metabolic activity at the level of single neurons in the olfactory bulb. It was found that glomeruli, which are synaptic complexes containing the first synaptic relay, tend to be uniformly active or inactive during odor exposure. Differential 2-deoxyglucose uptake was also observed in the somata of projection neurons (mitral cells) and interneurons (periglomerular and granule cells). This confirms and extends our previous studies in which odor-specific laminar and focal uptake patterns were revealed by the conventional x-ray film 2-deoxyglucose method due to Sokoloff and colleagues (Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O. and Shinohara, M. (1977) J. Neurochem. 28, 897-916). Based on results obtained by the two methods, it is suggested that the glomerulus as a whole serves as a functional unit of activity. The high-resolution results are interpreted in terms of the well-characterized synaptic organization of the olfactory bulb and also serve to illustrate the capability of the 2-deoxyglucose autoradiographic technique to map metabolic activity in single neurons of the vertebrate central nervous system.

  7. Cold climate mapping using satellite high resolution thermal imagery. [weather forecasting improvement

    NASA Technical Reports Server (NTRS)

    Bartholic, J. F.; Sutherland, R. A.

    1977-01-01

    In an attempt to improve cold climate mapping and freeze forecasting techniques, thermal imagery from the NOAA-2 and -3 satellites and the Synchronous Meteorological Satellite (SMS) were obtained and analyzed. Enhanced image transparencies showed detailed temperature patterns over the peninsula of Florida. The analysis was superior to hand-drawn isotherms drawn from the 300 to 500 thermograph stations presently in use. Satellite data on several cold nights with similar synoptic conditions showed that similar cold patterns existed. Thus, cold climate mapping is possible.

  8. High-Resolution Mapping of the Drosophila Fourth Chromosome Using Site-Directed Terminal Deficiencies

    PubMed Central

    Sousa-Neves, Rui; Lukacsovich, Tamas; Mizutani, Claudia Mieko; Locke, John; Podemski, Lynn; Marsh, J. Lawrence

    2005-01-01

    For more than 80 years, the euchromatic right arm of the Drosophila fourth chromosome (101F-102F) has been one of the least genetically accessible regions of the fly genome despite the fact that many important genes reside there. To improve the mapping of genes on the fourth chromosome, we describe a strategy to generate targeted deficiencies and we describe 13 deficiencies that subdivide the 300 kb between the cytological coordinates 102A6 and 102C1 into five discrete regions plus a 200-kb region from 102C1 to 102D6. Together these deficiencies substantially improve the mapping capabilities for mutant loci on the fourth chromosome. PMID:15466427

  9. High-resolution mapping of global surface water and its long-term changes.

    PubMed

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S

    2016-12-15

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  10. High-resolution mapping of global surface water and its long-term changes

    NASA Astrophysics Data System (ADS)

    Pekel, Jean-François; Cottam, Andrew; Gorelick, Noel; Belward, Alan S.

    2016-12-01

    The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water

  11. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; Li, J.-Y.; Pieters, C. M.; Gaffey, M.; Mittlefehldt, D.; Buratti, B.; Hicks, M.; McCord, T.; Combe, J.-P.; DeSantis, M. C.; Russell, C. T.; Raymond, C. A.; Marques, P. Gutierrez; Maue, T.; Hall, I.

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  12. High resolution mapping of modified DNA nucleobases using excision repair enzymes

    PubMed Central

    Bryan, D. Suzi; Ransom, Monica; Adane, Biniam; York, Kerri

    2014-01-01

    The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes. PMID:25015380

  13. Validating a high-resolution digital soil map for precision agriculture across multiple fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA is based on its ability to provide useful spatial soil information for o...

  14. Regional validation of a high-resolution digital soil map using soil profile attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Digital soil mapping (DSM) for precision agriculture (PA) management is aimed at developing models that predict soil properties or classes using legacy soil data, sensors, and environmental covariates. The utility of DSM for PA centers on its ability to provide soil information to optimize crop yiel...

  15. A HYBRID HIGH RESOLUTION IMAGE CLASSIFICATION METHOD FOR MAPPING EELGRASS DISTRIBUTIONS IN YAQUINA BAY ESTUARY, OREGON

    EPA Science Inventory

    False-color infrared aerial photography of the Yaquina Bay Estuary, Oregon was acquired at extreme low tides and digitally orthorectified with a ground pixel resolution of 20 cm to provide data for intertidal vegetation mapping. Submerged, semi-exposed and exposed eelgrass mead...

  16. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  17. High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    NASA Technical Reports Server (NTRS)

    Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa

    1990-01-01

    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.

  18. High Resolution Mapping of Soils and Landforms for the Desert Renewable Energy Conservation Plan (DRECP)

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.; Li, Shuang

    2014-01-01

    The Desert Renewable Energy Conservation Plan (DRECP), a major component of California's renewable energy planning efforts, is intended to provide effective protection and conservation of desert ecosystems, while allowing for the sensible development of renewable energy projects. This NASA mapping report was developed to support the DRECP and the Bureau of Land Management (BLM). We outline in this document remote sensing image processing methods to deliver new maps of biological soils crusts, sand dune movements, desert pavements, and sub-surface water sources across the DRECP area. We focused data processing first on the largely unmapped areas most likely to be used for energy developments, such as those within Renewable Energy Study Areas (RESA) and Solar Energy Zones (SEZs). We used imagery (multispectral and radar) mainly from the years 2009-2011.

  19. A high-resolution genetic map of mouse chromosome 5 encompassing the reeler (rl) locus

    SciTech Connect

    Beckers, M.C.; Bar, I.; Huynh-Thu, T.

    1994-10-01

    Using interspecific crosses between BALB/c and Mus spretus (SEG) mice, the murine reeler (rl) gene was mapped to the proximal region of chromosome 5 between the hepatocyte growth factor gene (Hgf) and the D5Mit66 microsatellite. The following order was defined: (centromere) - Cch12a/Hgf-D5Mit1-D5Nam1/D5-Nam2-rl/D5Mit61-D5Mit72-Xmv45-Htr5a-Peplb-D5Nam3-D5Mit66. Estimated distances between reeler and the nearest flanking markers D5Nam1 and D5Mit72 are 1.5 and 1.0 cM, respectively (95% confidence level), suggesting that the region could be physically mapped using a manageable number of YAC clones.

  20. High resolution Moho topography map beneath Iberia and Northern Morocco from RF analysis

    NASA Astrophysics Data System (ADS)

    de Lis Mancilla, Flor; Diaz, Jordi

    2013-04-01

    The Topoiberia-Iberarray broad-band seismic network has covered in three successive legs the Iberian Peninsula and the Northern part of Morocco, allowing to acquire new seismological data with unprecedented resolution and coverage. One of the classical approaches used to infer information on the structure of the crust using passive seismic data is the inspection of the P-to-S conversions at the main discontinuities. In particular, the application of the H-K technique allows to evaluate the thickness and the mean Vp/Vs ratio for the crust beneath each available station. In this contribution, we benefit from the dense Topoiberia-Iberarray seismic network, with stations distributed on a regular 60 x 60 km grid, to obtain a detailed map of the Moho topography and the Vp/Vs variations beneath Iberia and Northern Morocco. This region show a great geodynamical diversity, including, North to South, crustal imbrication in the Pyrenean range, a large and relatively undisturbed Variscan Massif in the center of Iberia and areas of complex and still not completely understood geodynamics in the Alboran domain and the Atlas range. Beneath Northern Morocco, strong lateral variations of the crustal thickness are observed, depicting three domains: a previously unidentified thick crust (reaching at least 45 km) beneath the Rif, a thinned crust region beneath NE Morocco, with depths ranging from 22 to 30 km, and a region of 27-34 km thick crust in the Atlas domain and its foreland regions. Vp/Vs ratios show normal values close to 1.75 for most stations except for the Atlas domain, where several stations give low Vp/Vs ratios of around 1.71. Beneath Southern Iberia, the Moho show also significant variations. The highest values of crustal thickness in this region, reaching 46 km, are found under the External zones of the Betic range, near the contact with the Alboran Domain. Southeastern Iberia is affected by significant crustal thinning (from 19 km to 30 km) occurring over a short

  1. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23.

    PubMed

    Wang, Chunlian; Fan, Yinglun; Zheng, Chongke; Qin, Tengfei; Zhang, Xiaoping; Zhao, Kaijun

    2014-10-01

    Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world's population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7 cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4 cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8 kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene.

  2. Time-Evolution and Thermal Mapping of Io's Loki Patera at High Resolution

    NASA Astrophysics Data System (ADS)

    de Kleer, Katherine R.; Skrutskie, Michael F.; Leisenring, Jarron; de Pater, Imke; Davies, Ashley; Conrad, Al; Caleb Resnick, Aaron; Hinz, Philip; Defrère, Denis; Veillet, Christian

    2016-10-01

    Observations of Loki Patera with Keck, Gemini N, and the Large Binocular Telescope have yielded a wealth of information in the past several years. Observations with adaptive optics at the Keck and Gemini N telescopes have captured multiple brightening events since 2009. High-cadence observations of the three most recent events place constraints on the thermal properties of the magma and indicate a dependency of the observed intensity on either viewing geometry or mean anomaly. Large Binocular Telescope Interferometer (LBTI) observations during a Europa mutual event have yielded the first-ever temperature map of the entire patera floor at high spatial resolution. M-band (4.7-micron) images were recorded during the event at a cadence of 123 milliseconds, corresponding to a spatial resolution of 10 km across the entire ~200-km patera. This represents a factor of 40 improvement over the spatial resolution achieved by standard adaptive optics imaging with a 10-m telescope at this wavelength. A map of the lava age distribution within the patera is derived from the temperature map using models for cooling basaltic lavas, and the resurfacing rate is calculated. This age distribution, as well as the locations of emission derived from the Keck and Gemini N observations, suggests that resurfacing proceeds in a clockwise direction, contrary to previous findings. All data are consistent with resurfacing by an overturn front on a magma sea, but other resurfacing mechanisms are not ruled out.

  3. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  4. Mapping high-resolution soil moisture and properties using distributed temperature sensing data and an adaptive particle batch smoother

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan C.; Ochsner, Tyson E.; Hatch, Christine E.; Sayde, Chadi; Selker, John; Tyler, Scott; Cosh, Michael H.; van de Giesen, Nick

    2016-10-01

    This study demonstrated a new method for mapping high-resolution (spatial: 1 m, and temporal: 1 h) soil moisture by assimilating distributed temperature sensing (DTS) observed soil temperatures at intermediate scales. In order to provide robust soil moisture and property estimates, we first proposed an adaptive particle batch smoother algorithm (APBS). In the APBS, a tuning factor, which can avoid severe particle weight degeneration, is automatically determined by maximizing the reliability of the soil temperature estimates of each batch window. A multiple truth synthetic test was used to demonstrate the APBS can robustly estimate soil moisture and properties using observed soil temperatures at two shallow depths. The APBS algorithm was then applied to DTS data along a 71 m transect, yielding an hourly soil moisture map with meter resolution. Results show the APBS can draw the prior guessed soil hydraulic and thermal properties significantly closer to the field measured reference values. The improved soil properties in turn remove the soil moisture biases between the prior guessed and reference soil moisture, which was particularly noticeable at depth above 20 cm. This high-resolution soil moisture map demonstrates the potential of characterizing soil moisture temporal and spatial variability and reflects patterns consistent with previous studies conducted using intensive point scale soil moisture samples. The intermediate scale high spatial resolution soil moisture information derived from the DTS may facilitate remote sensing soil moisture product calibration and validation. In addition, the APBS algorithm proposed in this study would also be applicable to general hydrological data assimilation problems for robust model state and parameter estimation.

  5. High-Resolution AUV Mapping Reveals Structural Details of Submarine Inflated Lava Flows

    NASA Astrophysics Data System (ADS)

    Paduan, J.; Clague, D. A.; Caress, D. W.; Thomas, H.; Thompson, D.; Conlin, D.

    2009-12-01

    The MBARI mapping AUV D. Allan B. has now been used to map volcanic terrain at mid-ocean ridges, back-arc spreading centers, and seamounts. These include the summit caldera and upper south rift zone at Axial Volcano, the summit of Davidson Seamount, the Endeavour hydrothermal fields, the Northeast Lau Spreading Center and West Mata Volcano, and, most recently, the CoAxial, North Cleft and North Gorda historic eruption sites on the Juan de Fuca and Gorda Ridges. ROV and submersible dives at most of these sites have provided groundtruth for the textures and features revealed in the roughly 1-m resolution maps. A prominent feature in the maps from four of the sites are inflated flows that did not deflate or drain. These resemble subaerial tumuli but differ in being located on level terrain, apparently atop or very near eruptive vents instead of being in the distal portions of flows. The largest inflated flow at Axial Volcano is on the caldera floor. The main part is 500 by 300 m, and up to 30 m high, with a lobe that extends another 750 m in a sinuous path. It and two nearby, medium-sized inflated flows were first described from sidescan imagery and a submersible dive by Appelgate and Embley (Bull. Volcanol., 54, 447-458, 1992). The AUV maps show clearly the smooth, gently domed relief of the large inflated flow and its sinuous shape on the seafloor, the medium-sized nearby inflated flows, and several additional smaller ones. Particularly striking is a network of 4 to 10 m deep cracks along the crest of each inflation. The cracks occur 30 to 50 m from the margins on all sides of the wider parts of the inflated flows, and become medial cracks along the entire length of the narrow parts, which are nearly triangular in cross-section. An inflation pit 35 m in diameter has a depth equal to the surrounding lava fields. ROV Doc Ricketts dove on these flows in August 2009 and photographed the deeply cracked, uplifted, once flat-lying lineated and ropy sheet flows that form

  6. Nationwide high-resolution mapping of hazards in the Philippines (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Lagmay, Alfredo Mahar Francisco A.

    2015-04-01

    The Philippines being a locus of typhoons, tsunamis, earthquakes, and volcanic eruptions, is a hotbed of disasters. Situated in a region where severe weather and geophysical unrest is common, the Philippines will inevitably suffer from calamities similar to those experienced recently. With continued development and population growth in hazard prone areas, it is expected that damage to infrastructure and human losses would persist and even rise unless appropriate measures are immediately implemented by government. Recently, the Philippines put in place a responsive program called the Nationwide Operational Assessment of Hazards (NOAH) for disaster prevention and mitigation. The efforts of Project NOAH are an offshoot of lessons learned from previous disasters that have inflicted massive loss of lives and costly damage to property. Several components of the NOAH program focus on mapping of landslide, riverine flood and storm surge inundation hazards. By simulating hazards phenomena over IFSAR- and LiDAR-derived digital terrain models (DTMs) using high-performance computers, multi-hazards maps of 1:10,000 scale, have been produced and disseminated to local government units through a variety of platforms. These detailed village-level (barangay-level) maps are useful to identify safe evacuation sites, planning emergency access routes and prepositioning of search and rescue and relief supplies during times of crises. They are also essential for long-term development planning of communities. In the past two years, NOAH was instrumental in providing timely, site-specific, and understandable hazards information to the public, considered as best practice in disaster risk reduction management (DRR). The use of advanced science and technology in the country's disaster prevention efforts is imperative to successfully mitigate the adverse impacts of natural hazards and should be a continuous quest - to find the best products, put forth in the forefront of battle against

  7. The Value of High Resolution Forest Canopy Maps for Implementing Carbon Sequestration Programs in Maryland

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Abbott, P. C.; Hittich, R.; Dubayah, R.

    2015-12-01

    As part of the NASA Carbon Monitoring System (CMS) Program, the University of Maryland has produced 1m resolution forest canopy cover and height maps that have been provided to the State of Maryland. The project used existing, wall-to-wall airborne lidar coverage combined with other remote sensing and field datasets to produce countywide maps of carbon stocks and their uncertainties at 30 m resolution as well as the 1m canopy maps. In this paper, we examine what purposes we identified for the data for decision making in climate mitigation, what use it has already seen, and what potential there is in the future for using the data. The State of Maryland has three programs focused on maintaining or increasing forest cover as part of its Greenhouse Gas Emissions Reduction Program (GHGRP) program enacted in 2012, including Woodland Incentive Program (WIP), the Lawn to Woodland Initiative (L2W), and the Environmental Quality Incentives Program (EQIP). Forest canopy data from CMS were examined the prospects for both adoption and carbon sequestration of these three initiatives, and their effects on the overall success of the GHGRP. We found that it was difficult it is to pin down "value" that is directly attributable to the data, although we found the data to be important in recognizing the nature and extent of the carbon problem, and in identifying potential solutions to addressing the problem. As in many decision-making contexts, having high quality, accurate data on forest cover is necessary but not sufficient for effective, affordable programs that lead to carbon sequestration in the state.

  8. Comparing landslide inventory maps

    NASA Astrophysics Data System (ADS)

    Galli, Mirco; Ardizzone, Francesca; Cardinali, Mauro; Guzzetti, Fausto; Reichenbach, Paola

    Landslide inventory maps are effective and easily understandable products for both experts, such as geomorphologists, and for non experts, including decision-makers, planners, and civil defense managers. Landslide inventories are essential to understand the evolution of landscapes, and to ascertain landslide susceptibility and hazard. Despite landslide maps being compiled every year in the word at different scales, limited efforts are made to critically compare landslide maps prepared using different techniques or by different investigators. Based on the experience gained in 20 years of landslide mapping in Italy, and on the limited literature on landslide inventory assessment, we propose a general framework for the quantitative comparison of landslide inventory maps. To test the proposed framework we exploit three inventory maps. The first map is a reconnaissance landslide inventory prepared for the Umbria region, in central Italy. The second map is a detailed geomorphological landslide map, also prepared for the Umbria region. The third map is a multi-temporal landslide inventory compiled for the Collazzone area, in central Umbria. Results of the experiment allow for establishing how well the individual inventories describe the location, type and abundance of landslides, to what extent the landslide maps can be used to determine the frequency-area statistics of the slope failures, and the significance of the inventory maps as predictors of landslide susceptibility. We further use the results obtained in the Collazzone area to estimate the quality and completeness of the two regional landslide inventory maps, and to outline general advantages and limitations of the techniques used to complete the inventories.

  9. High-resolution linkage-disequilibrium mapping of the cartilage-hair hypoplasia gene

    SciTech Connect

    Sulisalo, T.; Klockars, J.; Chapelle, A. de la; Kaitila, I. |; Maekitie, O.; Sistonen, P.; Francomano, C.A.

    1994-11-01

    We recently assigned the gene for an autosomal recessive skeletal dysplasia, cartilage-hair hypoplasia (CHH), to 9p21-p13 in Finnish and Amish families. An association was observed between CHH and alleles at D9S163 in both family series, suggesting that these loci are in linkage disequilibrium and close to each other. Here we extended these studies by exploiting the linkage-disequilibrium information that can be obtained from families with a single affected child, and we studied 66 Finnish CHH families with seven microsatellite markers. The analysis based on the Luria and Delbrueck (1943) method and adapted to the study of human founder populations suggests that the distance between CHH and D9S163 is {approximately}0.3 cM. An eight-point linkage analysis modified to take advantage of all possible information in 15 Finnish and 17 Amish families was capable of narrowing the likely location of CHH to within an interval of 1.7 cM on a male map. The peak lod score of 54.92 was attained 0.03 and 0.1 cM proximal to D9S163 on the male and female maps, respectively. These results confirm the power of genetic resolution, that lies in the study of linkage disequilibrium in well-defined founder populations with one major ancestral disease mutation. 21 refs., 4 figs., 3 tabs.

  10. High Resolution of Quantitative Traits into Multiple Loci via Interval Mapping

    PubMed Central

    Jansen, R. C.; Stam, P.

    1994-01-01

    A very general method is described for multiple linear regression of a quantitative phenotype on genotype [putative quantitative trait loci (QTLs) and markers] in segregating generations obtained from line crosses. The method exploits two features, (a) the use of additional parental and F(1) data, which fixes the joint QTL effects and the environmental error, and (b) the use of markers as cofactors, which reduces the genetic background noise. As a result, a significant increase of QTL detection power is achieved in comparison with conventional QTL mapping. The core of the method is the completion of any missing genotypic (QTL and marker) observations, which is embedded in a general and simple expectation maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. The method is described in detail for the analysis of an F(2) generation. Because of the generality of the approach, it is easily applicable to other generations, such as backcross progenies and recombinant inbred lines. An example is presented in which multiple QTLs for plant height in tomato are mapped in an F(2) progeny, using additional data from the parents and their F(1) progeny. PMID:8013917

  11. A high-resolution map of the chromosomal region surrounding the nude gene

    SciTech Connect

    Blackburn, C.C.; Griffith, J.; Morahan, G.

    1995-03-20

    The nude mutation produces the apparently disparate phenotypes of hairlessness and congenital thymic aplasia. These pleiotropic defects are the result of a single, autosomal recessive mutation that was previously mapped to a 9-cM region of murine chromosome 11 bounded by loci encoding the acetylcholine receptor P subunit and myeloperoxidase. In this study, exclusion mapping of a panel of congenic nude strains was used to place the nude locus between the microsatellite loci D11Nds1 and D11Mit8. The relative distance from nude to each of these loci was determined by analyzing a large segregating cross. Thus, nude lies 1.4 cM distal to D11Nds1 and is 0.5 cM proximal to D11Mit8. Mice that carried recombinational breakpoints between D11Nds1 and D11Mit8 were further analyzed at the loci Evi-2 and D11Mit34, which placed nu 0.2 cM proximal to these markers. D11Nds1 and Evi-2/D11Mit34 thus define the new proximal and distal boundaries, respectively, for the nu interval. We also report the typing of the above microsatellite markers in the AKXD, AKXL, BXD, CXB, and BXH recombinant inbred strains, which confirmed the relative order and separation of loci in this region. 47 refs., 3 figs., 1 tab.

  12. High-resolution spectral mapping of a lensed high power laser bar

    NASA Astrophysics Data System (ADS)

    Gannon, Caleb D.; Koenning, Tobias; Patterson, Steve G.; Leisher, Paul O.

    2014-03-01

    Alkali gas lasers based on rubidium vapor have an extremely narrow absorption band (<0.01 nm at STP) at 780 nm. Diode-pumped alkali lasers (DPALs) require high-power diode arrays having emission spectra which are closely matched to this absorption peak. There are several methods which can be used for narrowing and stabilizing the output spectrum of a diode laser bar including external locking via a volumetric holographic grating (VHG). While this approach offers several advantages over internal stabilization techniques, the effect of pointing error arising from bar smile can be detrimental to the locked performance of the lensed array. In order to investigate the effect of smile on wavelength locking, a system capable of mapping the emission spectrum of the lensed diode laser bar was developed. The approach utilizes an imaging system and spatial filter to couple light from individual emitters of the lensed array into a commercial optical spectrum analyzer. This approach offers a larger dynamic range than traditional spectral mapping techniques, with a resolved signal to noise ratio in excess of 60 dB. Results from the characterization of a VHG-locked 780 nm laser bar array will be presented.

  13. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields.

    PubMed

    Naumova, Anna V; Akulov, Andrey E; Khodanovich, Marina Yu; Yarnykh, Vasily L

    2017-02-15

    A well-known problem in ultra-high-field MRI is generation of high-resolution three-dimensional images for detailed characterization of white and gray matter anatomical structures. T1-weighted imaging traditionally used for this purpose suffers from the loss of contrast between white and gray matter with an increase of magnetic field strength. Macromolecular proton fraction (MPF) mapping is a new method potentially capable to mitigate this problem due to strong myelin-based contrast and independence of this parameter of field strength. MPF is a key parameter determining the magnetization transfer effect in tissues and defined within the two-pool model as a relative amount of macromolecular protons involved into magnetization exchange with water protons. The objectives of this study were to characterize the two-pool model parameters in brain tissues in ultra-high magnetic fields and introduce fast high-field 3D MPF mapping as both anatomical and quantitative neuroimaging modality for small animal applications. In vivo imaging data were obtained from four adult male rats using an 11.7T animal MRI scanner. Comprehensive comparison of brain tissue contrast was performed for standard R1 and T2 maps and reconstructed from Z-spectroscopic images two-pool model parameter maps including MPF, cross-relaxation rate constant, and T2 of pools. Additionally, high-resolution whole-brain 3D MPF maps were obtained with isotropic 170µm voxel size using the single-point synthetic-reference method. MPF maps showed 3-6-fold increase in contrast between white and gray matter compared to other parameters. MPF measurements by the single-point synthetic reference method were in excellent agreement with the Z-spectroscopic method. MPF values in rat brain structures at 11.7T were similar to those at lower field strengths, thus confirming field independence of MPF. 3D MPF mapping provides a useful tool for neuroimaging in ultra-high magnetic fields enabling both quantitative tissue

  14. A high-resolution cat radiation hybrid and integrated FISH mapping resource for phylogenomic studies across Felidae.

    PubMed

    Davis, Brian W; Raudsepp, Terje; Pearks Wilkerson, Alison J; Agarwala, Richa; Schäffer, Alejandro A; Houck, Marlys; Chowdhary, Bhanu P; Murphy, William J

    2009-04-01

    We describe the construction of a high-resolution radiation hybrid (RH) map of the domestic cat genome, which includes 2662 markers, translating to an estimated average intermarker distance of 939 kilobases (kb). Targeted marker selection utilized the recent feline 1.9x genome assembly, concentrating on regions of low marker density on feline autosomes and the X chromosome, in addition to regions flanking interspecies chromosomal breakpoints. Average gap (breakpoint) size between cat-human ordered conserved segments is less than 900 kb. The map was used for a fine-scale comparison of conserved syntenic blocks with the human and canine genomes. Corroborative fluorescence in situ hybridization (FISH) data were generated using 129 domestic cat BAC clones as probes, providing independent confirmation of the long-range correctness of the map. Cross-species hybridization of BAC probes on divergent felids from the genera Profelis (serval) and Panthera (snow leopard) provides further evidence for karyotypic conservation within felids, and demonstrates the utility of such probes for future studies of chromosome evolution within the cat family and in related carnivores. The integrated map constitutes a comprehensive framework for identifying genes controlling feline phenotypes of interest, and to aid in assembly of a higher coverage feline genome sequence.

  15. High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging.

    PubMed

    Kober, Frank; Iltis, Isabelle; Izquierdo, Marguerite; Desrois, Martine; Ibarrola, Danielle; Cozzone, Patrick J; Bernard, Monique

    2004-01-01

    An ECG and respiration-gated spin-labeling gradient-echo imaging technique is proposed for the quantitative and completely noninvasive measurement and mapping of myocardial perfusion in small animals in vivo. In contrast to snapshot FLASH imaging, the spatial resolution of the perfusion maps is not limited by the heart rate. A significant improvement in image quality is achieved by synchronizing the inversion pulse to the respiration movements of the animals, thereby allowing for spontaneous respiration. High-resolution myocardial perfusion maps (in-plane resolution=234 x 468 microm2) demonstrating the quality of the perfusion measurement were obtained at 4.7 T in a group of seven freely breathing Wistar-Kyoto rats under isoflurane anesthesia. The mean perfusion value (group average +/- SD) was 5.5 +/- 0.7 ml g(-1)min(-1). In four animals, myocardial perfusion was mapped and measured under cardiac dobutamine stress. Perfusion increased to 11.1 +/- 1.9 ml g(-1)min(-1). The proposed method is particularly useful for the study of small rodents at high fields.

  16. Methionine synthase: high-resolution mapping of the human gene and evaluation as a candidate locus for neural tube defects.

    PubMed

    Brody, L C; Baker, P J; Chines, P S; Musick, A; Molloy, A M; Swanson, D A; Kirke, P N; Ghosh, S; Scott, J M; Mills, J L

    1999-08-01

    Periconceptual folate supplementation has been found to prevent the occurrence of many neural tube defects (NTDs). Consequently, genetic variation in folate metabolism genes is expected to contribute to the risk for neural tube defects. Methionine synthase catalyzes the vitamin B(12)-dependent conversion of homocysteine and 5-methyltetrahydrofolate to methionine and tetrahydrofolate. The observation that homocysteine and vitamin B(12) levels are independent predictors of NTD risk suggested that methionine synthase could be a candidate gene for NTDs. To assess the role of the MS gene in NTDs, we performed high-resolution physical mapping of the MS locus, isolated highly polymorphic markers linked to the MS gene, and tested for an association between specific MS alleles and NTDs. We mapped the MS gene to a position between 909 and 913 cR(10000) on chromosome 1 by radiation hybrid mapping. Polymorphic markers D1S1567 and D1S1568 map to locations no more than 900 and 194 kb from the MS gene, respectively. The segregation of these polymorphic markers was measured in 85 Irish NTD families. No allele of either marker showed a significant association with NTDs using the transmission disequilibrium test. A lack of association was also observed for the D1919G missense mutation within the gene. Our results suggest that inherited variation in the MS gene does not contribute to NTD risk in this population.

  17. High-resolution aeromagnetic data, a new tool for mapping intrabasinal faults: Example from the Albuquerque basin, New Mexico

    USGS Publications Warehouse

    Grauch, V.J.S.

    2001-01-01

    High-resolution aeromagnetic surveys flown over the Albuquerque basin, New Mexico, demonstrate that aeromagnetic methods can successfully map concealed and poorly exposed faults in sediment-filled basins. This is the first known use of aeromagnetic data as an aid to surficial mapping and hydrogeologic studies in a basin. Aeromagnetic maps show detailed fault patterns within the basin fill that revise the structural view of the basin. Concealed faults are more numerous and more closely spaced than expected. The Hubbell Springs fault is the central splay of three generally north-striking fault splays that can be traced for nearly 50 km. The splays converge on the north and may represent the southern extension of the Tijeras fault, contradicting the proposed southwest extension of the Tijeras fault across the basin. In profile view, the linear aeromagnetic anomalies associated with faults show a variety of signatures. One signature has potential for mapping fault-controlled sedimentation in the subsurface because it identifies increases in magnetic, likely coarse-grained, material in the hanging walls of faults.

  18. History of the clay-rich unit at Mawrth Vallis, Mars: High-resolution mapping of a candidate landing site

    NASA Astrophysics Data System (ADS)

    Loizeau, D.; Mangold, N.; Poulet, F.; Bibring, J.-P.; Bishop, J. L.; Michalski, J.; Quantin, C.

    2015-11-01

    The Mawrth Vallis region is covered by some of the largest phyllosilicate-rich outcrops on Mars, making it a unique window into the past history of Mars in terms of water alteration, potential habitability, and the search for past life. A landing ellipse had been proposed for the Curiosity rover. This area has been extensively observed by the High Resolution Imaging Science Experiment and the Compact Reconnaissance Imaging Spectrometer for Mars, offering the possibility to produce geologic, structural, and topographic maps at very high resolution. These observations provide an unprecedented detailed context of the rocks at Mawrth Vallis, in terms of deposition, alteration, erosion, and mechanical constraints. Our analyses demonstrate the presence of a variety of alteration environments on the surface and readily accessible to a rover, the presence of flowing water at the surface postdating the formation of the clay-rich units, and evidence for probable circulation of fluids in the rocks at different depths. These rocks undergo continuous erosion, creating fresh outcrops where potential biomarkers may have been preserved. The diversity of aqueous environments over geological time coupled to excellent preservation properties make the area a very strong candidate for future robotic investigation on Mars, like the NASA Mars 2020 mission.

  19. High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis.

    PubMed

    Akiyama, Yukio; Conner, Joann A; Goel, Shailendra; Morishige, Daryl T; Mullet, John E; Hanna, Wayne W; Ozias-Akins, Peggy

    2004-04-01

    Gametophytic apomixis is asexual reproduction as a consequence of parthenogenetic development of a chromosomally unreduced egg. The trait leads to the production of embryos with a maternal genotype, i.e. progeny are clones of the maternal plant. The application of the trait in agriculture could be a tremendous tool for crop improvement through conventional and nonconventional breeding methods. Unfortunately, there are no major crops that reproduce by apomixis, and interspecific hybridization with wild relatives has not yet resulted in commercially viable germplasm. Pennisetum squamulatum is an aposporous apomict from which the gene(s) for apomixis has been transferred to sexual pearl millet by backcrossing. Twelve molecular markers that are linked with apomixis coexist in a tight linkage block called the apospory-specific genomic region (ASGR), and several of these markers have been shown to be hemizygous in the polyploid genome of P. squamulatum. High resolution genetic mapping of these markers has not been possible because of low recombination in this region of the genome. We now show the physical arrangement of bacterial artificial chromosomes containing apomixis-linked molecular markers by high resolution fluorescence in situ hybridization on pachytene chromosomes. The size of the ASGR, currently defined as the entire hemizygous region that hybridizes with apomixis-linked bacterial artificial chromosomes, was estimated on pachytene and mitotic chromosomes to be approximately 50 Mbp (a quarter of the chromosome). The ASGR includes highly repetitive sequences from an Opie-2-like retrotransposon family that are particularly abundant in this region of the genome.

  20. Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer's disease from healthy aging: statistical parametric mapping with high resolution MRI.

    PubMed

    Long, Xiaojing; Zhang, Lijuan; Liao, Weiqi; Jiang, Chunxiang; Qiu, Bensheng

    2013-12-01

    Laterality of human brain varies under healthy aging and diseased conditions. The alterations in hemispheric asymmetry may embed distinct biomarkers linked to the disease dynamics. Statistical parametric mapping based on high-resolution magnetic resonance imaging (MRI) and image processing techniques have allowed automated characterization of morphological features across the entire brain. In this study, 149 subjects grouped in healthy young, healthy elderly, mild cognitive impairment (MCI), and Alzheimer's disease (AD) were investigated using multivariate analysis for regional cerebral laterality indexed by surface area, curvature index, cortical thickness, and subjacent white matter volume measured on high-resolution MR images. Asymmetry alteration of MCI and AD were characterized by marked region-specific reduction, while healthy elderly featured a distinct laterality shift in the limbic system in addition to regional asymmetry loss. Lack of the laterality shift in limbic system and early loss of asymmetry in entorhinal cortex may be biomarkers to identify preclinical AD among other dementia. Multivariate analysis of hemispheric asymmetry may provide information helpful for monitoring the disease progress and improving the management of MCI and AD.

  1. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell.

    PubMed

    Paul, James M; Templeton, Shaina D; Baharani, Akanksha; Freywald, Andrew; Vizeacoumar, Franco J

    2014-12-01

    The most commonly used therapies for cancer involve delivering high doses of radiation or toxic chemicals to the patient that also cause substantial damage to normal tissue. To overcome this, researchers have recently resorted to a basic biological concept called 'synthetic lethality' (SL) that takes advantage of interactions between gene pairs. The identification of SL interactions is of considerable therapeutic interest because if a particular gene is SL with a tumor-causing mutation, then the targeting that gene carries therapeutic advantages. Mapping these interactions in the context of human cancer cells could hold the key to effective, targeted cancer treatments. In this review, we cover the recent advances that aim to identify these SL interactions using unbiased genetic screens.

  2. High resolution genome-wide mapping of the primary structure of chromatin

    PubMed Central

    Zhang, Zhenhai; Pugh, B. Franklin

    2011-01-01

    The genomic organization of chromatin is increasingly recognized as a key regulator of cell behavior, but deciphering its regulation mechanisms requires detailed knowledge of chromatin’s primary structure - the assembly of nucleosomes throughout the genome. This Primer explains the principles for mapping and analyzing the primary organization of chromatin on a genomic scale. After introducing chromatin organization and its impact on gene regulation and human health, we then describe methods that detect nucleosome positioning and occupancy levels using chromatin-immunoprecipitation in combination with deep sequencing (ChIP-Seq), a strategy that is now straightforward and cost-efficient. We then explore current strategies for converting the sequence information into knowledge about chromatin, an exciting challenge for biologists and bioinformaticians. PMID:21241889

  3. High-resolution global maps of 21st-century forest cover change

    USGS Publications Warehouse

    Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; Kommareddy, A.; Egorov, A.; Chini, L.; Justice, C.O.; Townshend, J.R.G.

    2013-01-01

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil’s well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  4. High-resolution reflecting time-of-flight momentum and energy mapping system

    SciTech Connect

    Wang Chao; Kang Yifan; Weaver, Larry; Chang Zenghu

    2009-07-15

    A new system to map electron momentum and energy is proposed. A reflecting electrode is introduced into a time-of-flight (TOF) system whose decelerating electric field sends all the electrons back to a position-sensitive detector close to but behind the source of the electrons. The longer flying distance that results makes it possible to significantly improve the energy-resolved performance, especially in the higher energy region. The dependence of the new TOF system on its characteristic parameters is analyzed, along with its application to attosecond streak cameras. Experimental results verified a relative energy resolution better than 0.2 eV for 22 eV electrons and also revealed the availability of the improved relative energy resolution smaller than 1.0% for electron energy ranging from 30 to 40 eV.

  5. A Flat Universe from High-Resolution Maps of the Cosmic MicrowaveBackground Radiation

    SciTech Connect

    de Bernardis, P.; Ade, P.A.R.; Bock, J.J.; Bond, J.R.; Borrill,J.; Boscaleri, A.; Coble, K.; Crill, B.P.; De Gasperis, G.; Farese, P.C.; Ferreira, P.G.; Ganga, K.; Giacometti, M.; Hivon, E.; Hristov, V.V.; Iacoangeli, A.; Jaffe, A.H.; Lange, A.E.; Martinis, L.; Masi, S.; Mason,P.; Mauskopf, P.D.; Melchiorri, A.; Miglio, L.; Montroy, T.; Netterfield,C.B.; Pascale, E.; Piacentini, F.; Pogosyan, D.; Prunet, S.; Rao, S.; Romeo, G.; Ruhl, J.E.; Scaramuzzi, F.; Sforna, D.; Vittorio, N.

    2000-04-28

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K Cosmic Microwave Background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole {ell}{sub peak} = (197 {+-} 6), with an amplitude DT{sub 200} = (69 {+-} 8){mu}K. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favored by standard inflationary scenarios.

  6. Mapping Coral-Algal Dynamics in a Seasonal Upwelling Area Using Spaceborne High Resolution Sensors

    NASA Astrophysics Data System (ADS)

    Pauly, Klaas; Goossens, Rudi; De Clerck, Olivier

    2010-12-01

    PROBA/CHRIS is one of the first satellite sensors to offer both high spatial and spectral resolutions. We explored the potential of this sensor to map the dynamics of seaweed and coral cover in an area influenced by seasonal upwelling in the Arabian Sea. Quantitative field assessments coincided with image acquisitions. After removal of sensor noise and atmospheric effects, maximum likelihood supervised classification yielded a tau accuracy of 64.09 for the summer monsoon dataset. Clearer waters and a lower spatial heterogeneity in the winter monsoon dataset resulted in a tau accuracy of 71.45. Post-classification comparison and vegetation indices illustrated the conspicuous turnover from dense macroalgal stands covering nearly all coral communities during summer to bare rock or turf communities during winter, with coral becoming the predominant bottom type. These results were further analysed using a novel maximum entropy sub-pixel approach and were shown to consistently outperform results from Landsat 7 ETM+ imagery.

  7. A high-resolution land-use map; Nogales, Sonora, Mexico

    USGS Publications Warehouse

    Norman, Laura M.; Villarreal, Miguel L.; Wallace, Cynthia S.A.; Gil Anaya, Claudia Z.; Diaz Arcos, Israel; Gray, Floyd

    2010-01-01

    The cities of Nogales, Sonora, and Nogales, Arizona, are located in the Ambos Nogales Watershed, a topographically irregular bowl-shaped area with a northward gradient. Throughout history, residents in both cities have been affected by flooding. Currently, the primary method for regulating this runoff is to build a series of detention basins in Nogales, Sonora. Additionally, the municipality also is considering land-use planning to help mitigate flooding. This paper describes the production of a 10-meter resolution land-use map, derived from 2008 aerial photos of the Nogales, Sonora Watershed for modeling impacts of the detention basin construction and in support of an ?Early Warning Hazard System? for the region.

  8. A flat Universe from high-resolution maps of the cosmic microwave background radiation

    PubMed

    de Bernardis P; Ade; Bock; Bond; Borrill; Boscaleri; Coble; Crill; De Gasperis G; Farese; Ferreira; Ganga; Giacometti; Hivon; Hristov; Iacoangeli; Jaffe; Lange; Martinis; Masi; Mason; Mauskopf; Melchiorri; Miglio; Montroy; Netterfield

    2000-04-27

    The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole Ipeak = (197 +/- 6), with an amplitude delta T200 = (69 +/- 8) microK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

  9. High-resolution global maps of 21st-century forest cover change.

    PubMed

    Hansen, M C; Potapov, P V; Moore, R; Hancher, M; Turubanova, S A; Tyukavina, A; Thau, D; Stehman, S V; Goetz, S J; Loveland, T R; Kommareddy, A; Egorov, A; Chini, L; Justice, C O; Townshend, J R G

    2013-11-15

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  10. High-resolution mapping and genetic characterization of the Lazy-2 gravitropic mutant of tomato

    NASA Technical Reports Server (NTRS)

    Behringer, F. J.; Lomax, T. L.

    1999-01-01

    Mutation of the Lazy-2 (Lz-2) gene in tomato (Lycopersicon esculentum mill.) produces a phytochrome-dependent reversal of shoot gravitropism, providing a unique genetic resource for investigating how signals from light modulate gravitropism. We mapped the Lz-2 gene using RFLPs and a PCR-based technique to assess the feasibility of positional cloning. Analysis of a 1338 plant backcross population between L. esculentum and L. pennellii placed Lz-2 within a 1.2 cM interval on chromosome 5, 0.4 cM from TG504-CT201A interval. The inabililty to resolve these markers indicates that Lz-2 resides in a centromeric region in which recombination is highly suppressed. Lazy-2 is tightly linked to but does not encode the gene for ACC4, an enzyme involved in ethylene biosynthesis. We also observed that Lz-2 is partially dominant under certain conditions and stages of development.

  11. High-resolution mapping of the spatial organization of a bacterial chromosome.

    PubMed

    Le, Tung B K; Imakaev, Maxim V; Mirny, Leonid A; Laub, Michael T

    2013-11-08

    Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo.

  12. High-resolution genetic mapping of mammalian motor activity levels in mice.

    PubMed

    Kas, M J H; de Mooij-van Malsen, J G; de Krom, M; van Gassen, K L I; van Lith, H A; Olivier, B; Oppelaar, H; Hendriks, J; de Wit, M; Groot Koerkamp, M J A; Holstege, F C P; van Oost, B A; de Graan, P N E

    2009-02-01

    The generation of motor activity levels is under tight neural control to execute essential behaviors, such as movement toward food or for social interaction. To identify novel neurobiological mechanisms underlying motor activity levels, we studied a panel of chromosome substitution (CS) strains derived from mice with high (C57BL/6J strain) or low motor activity levels (A/J strain) using automated home cage behavioral registration. In this study, we genetically mapped the expression of baseline motor activity levels (horizontal distance moved) to mouse chromosome 1. Further genetic mapping of this trait revealed an 8.3-Mb quantitative trait locus (QTL) interval. This locus is distinct from the QTL interval for open-field anxiety-related motor behavior on this chromosome. By data mining, an existing phenotypic and genotypic data set of 2445 genetically heterogeneous mice (http://gscan.well.ox.ac.uk/), we confirmed linkage to the peak marker at 79 970 253 bp and refined the QTL to a 312-kb interval containing a single gene (A830043J08Rik). Sequence analysis showed a nucleotide deletion in the 3' untranslated region of the Riken gene. Genome-wide microarray gene expression profiling in brains of discordant F(2) individuals from CS strain 1 showed a significant upregulation of Epha4 in low-active F(2) individuals. Inclusion of a genetic marker for Epha4 confirmed that this gene is located outside of the QTL interval. Both Epha4 and A830043J08Rik are expressed in brain motor circuits, and similar to Epha4 mutants, we found linkage between reduced motor neurons number and A/J chromosome 1. Our findings provide a novel QTL and a potential downstream target underlying motor circuitry development and the expression of physical activity levels.

  13. High Resolution Mapping of Bactericidal Monoclonal Antibody Binding Epitopes on Staphylococcus aureus Antigen MntC

    PubMed Central

    Gribenko, Alexey V.; Parris, Kevin; Mosyak, Lidia; Li, Sheng; Handke, Luke; Hawkins, Julio C.; Severina, Elena; Matsuka, Yury V.; Anderson, Annaliesa S.

    2016-01-01

    The Staphylococcus aureus manganese transporter protein MntC is under investigation as a component of a prophylactic S.aureus vaccine. Passive immunization with monoclonal antibodies mAB 305-78-7 and mAB 305-101-8 produced using MntC was shown to significantly reduce S. aureus burden in an infant rat model of infection. Earlier interference mapping suggested that a total of 23 monoclonal antibodies generated against MntC could be subdivided into three interference groups, representing three independent immunogenic regions. In the current work binding epitopes for selected representatives of each of these interference groups (mAB 305-72-5 – group 1, mAB 305-78-7 – group 2, and mAB 305-101-8 – group 3) were mapped using Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS). All of the identified epitopes are discontinuous, with binding surface formed by structural elements that are separated within the primary sequence of the protein but adjacent in the context of the three-dimensional structure. The approach was validated by co-crystallizing the Fab fragment of one of the antibodies (mAB 305-78-7) with MntC and solving the three-dimensional structure of the complex. X-ray results themselves and localization of the mAB 305-78-7 epitope were further validated using antibody binding experiments with MntC variants containing substitutions of key amino acid residues. These results provided insight into the antigenic properties of MntC and how these properties may play a role in protecting the hostagainst S. aureus infection by preventing the capture and transport of Mn2+, a key element that the pathogen uses to evade host immunity. PMID:27689696

  14. Mapping of Genetic Abnormalities of Primary Tumours from Metastatic CRC by High-Resolution SNP Arrays

    PubMed Central

    Sayagués, José María; Fontanillo, Celia; Abad, María del Mar; González-González, María; Sarasquete, María Eugenia; del Carmen Chillon, Maria; Garcia, Eva; Bengoechea, Oscar; Fonseca, Emilio; Gonzalez-Diaz, Marcos; De Las Rivas, Javier

    2010-01-01

    Background For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them. Methodology/Principal Findings Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (<1.3 Mb) and extensive/large (>1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations. Conclusions/Significance In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process. PMID:21060790

  15. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine

    PubMed Central

    Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to

  16. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine.

    PubMed

    Hyma, Katie E; Barba, Paola; Wang, Minghui; Londo, Jason P; Acharya, Charlotte B; Mitchell, Sharon E; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to

  17. High-resolution dynamic and morphological G-bandings (GBG and GTG): a comparative study.

    PubMed

    Lemieux, N; Drouin, R; Richer, C L

    1990-08-01

    A high-resolution replication banding technique, dynamic GBG banding (G-bands after 5'-bromodeoxyuridine [BrdUrd] and Giemsa), showed that, at a resolution of 850 bands/genome, GBG banding and GTG banding (G-bands after trypsin and Giemsa) produce almost identical patterns. RBG band (R-bands after BrdUrd and Giemsa) and RHG band (R-bands after heat denaturation and Giemsa) patterns were previously shown to be only 75%-85% coincident; thus GTG banding more accurately reflects replication patterns than does RHG banding. BrdUrd synchronization uses high concentrations of BrdUrd both to substitute early replicating DNA and to arrest cells before the late bands replicate. Release from the block is via a low thymidine concentration. The banding is revealed by the fluorochrome-photolysis-Giemsa (FPG) technique and produces the GBG banding that includes concomitant staining of constitutive heterochromatin. As opposed to other replication G-banding procedures, BrdUrd synchronization and GBG banding produces a reproducible replication band pattern. The discordance between homologs after GBG banding is similar to that after GTG banding and no lateral asymmetry of the constitutive heterochromatin has been observed. Also, BrdUrd synchronization neither significantly depresses the mitotic index, nor induces chromosome breaks. Thus, GBG banding seems as clinically useful as GTG banding and provides important information regarding replication time.

  18. Reducing Uncertainties in Satellite-derived Forest Aboveground Biomass Estimates using a High Resolution Forest Cover Map

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Ganguly, S.; Nemani, R. R.; Milesi, C.; Basu, S.; Kumar, U.

    2014-12-01

    Several studies to date have provided an extensive knowledge base for estimating forest aboveground biomass (AGB) and recent advances in space-based modeling of the 3-D canopy structure, combined with canopy reflectance measured by passive optical sensors and radar backscatter, are providing improved satellite-derived AGB density mapping for large scale carbon monitoring applications. A key limitation in forest AGB estimation from remote sensing, however, is the large uncertainty in forest cover estimates from the coarse-to-medium resolution satellite-derived land cover maps (present resolution is limited to 30-m of the USGS NLCD Program). The uncertainties in forest cover estimates at the Landsat scale result in high uncertainties for AGB estimation, predominantly in heterogeneous forest and urban landscapes. We have successfully developed an approach using a machine learning algorithm and High-Performance-Computing with NAIP air-borne imagery data for mapping tree cover at 1-m over California and Maryland. In a comparison with high resolution LiDAR data available over selected regions in the two states, we found our results to be promising both in terms of accuracy as well as our ability to scale nationally. The generated 1-m forest cover map will be aggregated to the Landsat spatial grid to demonstrate differences in AGB estimates (pixel-level AGB density, total AGB at aggregated scales like ecoregions and counties) when using a native 30-m forest cover map versus a 30-m map derived from a higher resolution dataset. The process will also be complemented with a LiDAR derived AGB estimate at the 30-m scale to aid in true validation.

  19. Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing.

    PubMed

    Adachi, Kei; Enoki, Tatsuji; Kawano, Yasuhiro; Veraz, Michael; Nakai, Hiroyuki

    2014-01-01

    Adeno-associated virus (AAV) capsid engineering is an emerging approach to advance gene therapy. However, a systematic analysis on how each capsid amino acid contributes to multiple functions remains challenging. Here we show proof-of-principle and successful application of a novel approach, termed AAV Barcode-Seq, that allows us to characterize phenotypes of hundreds of different AAV strains in a high-throughput manner and therefore overcomes technical difficulties in the systematic analysis. In this approach, we generate DNA barcode-tagged AAV libraries and determine a spectrum of phenotypes of each AAV strain by Illumina barcode sequencing. By applying this method to AAV capsid mutant libraries tagged with DNA barcodes, we can draw a high-resolution map of AAV capsid amino acids important for the structural integrity and functions including receptor binding, tropism, neutralization and blood clearance. Thus, Barcode-Seq provides a new tool to generate a valuable resource for virus and gene therapy research.

  20. High-resolution mapping of architectural DNA binding protein facilitation of a DNA repression loop in Escherichia coli.

    PubMed

    Becker, Nicole A; Maher, L James

    2015-06-09

    Double-stranded DNA is a locally inflexible polymer that resists bending and twisting over hundreds of base pairs. Despite this, tight DNA bending is biologically important for DNA packaging in eukaryotic chromatin and tight DNA looping is important for gene repression in prokaryotes. We and others have previously shown that sequence nonspecific DNA kinking proteins, such as Escherichia coli heat unstable and Saccharomyces cerevisiae non-histone chromosomal protein 6A (Nhp6A), facilitate lac repressor (LacI) repression loops in E. coli. It has been unknown if this facilitation involves direct protein binding to the tightly bent DNA loop or an indirect effect promoting global negative supercoiling of DNA. Here we adapt two high-resolution in vivo protein-mapping techniques to demonstrate direct binding of the heterologous Nhp6A protein at a LacI repression loop in living E. coli cells.

  1. Estimating High-Resolution Directional Clutter Maps in Forested Terrain Using Airborne Lidar Data

    DTIC Science & Technology

    2008-12-01

    SNR ) levels for each SV and position solution statistics at each site were then analyzed and compared with the base station data. These SNR values...spatial neighborhood in which lidar returns are from objects likely to affect the SNR of the GPS signal. We compute the number of ALSM points...lidar returns. The ALSM point densities in the Fresnel zone were then compared to the SNR levels of each SV. Fig. 2 A diagram of Fresnel

  2. Quantitative high-resolution mapping of phenanthrene sorption to black carbon particles.

    PubMed

    Obst, Martin; Grathwohl, Peter; Kappler, Andreas; Eibl, Oliver; Peranio, Nicola; Gocht, Tilman

    2011-09-01

    Sorption of hydrophobic organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) to black carbon (BC) particles has been the focus of numerous studies. Conclusions on sorption mechanisms of PAH on BC were mostly derived from studies of sorption isotherms and sorption kinetics, which are based on batch experiments. However, mechanistic modeling approaches consider processes at the subparticle scale, some including transport within the pore-space or different spatial pore-domains. Direct evidence based on analytical techniques operating at the submicrometer scale for the location of sorption sites and the adsorbed species is lacking. In this work, we identified, quantified, and mapped the sorption of PAHs on different BC particles (activated carbon, charcoal and diesel soot) on a 25-100 nm scale using scanning transmission X-ray microscopy (STXM). In addition, we visualized the pore structure of the particles by transmission electron microscopy (TEM) on the 1-10 nm-scale. The combination of the chemical information from STXM with the physical information from TEM revealed that phenanthrene accumulates in the interconnected pore-system along primary "cracks" in the particles, confirming an adsorption mechanism.

  3. Mapping of photoreceptor dysfunction using high resolution three-dimensional spectral optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.

    2008-02-01

    The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.

  4. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  5. High-resolution radiation mapping to investigate FDNPP derived contaminant migration.

    PubMed

    Martin, P G; Payton, O D; Yamashiki, Y; Richards, D A; Scott, T B

    2016-11-01

    As of March 2016, five years will have passed since the earthquake and ensuing tsunami that crippled the Fukushima Daiichi Nuclear Power Plant on Japan's eastern coast, resulting in the explosive release of significant quantities of radioactive material. Over this period, significant time and resource has been expended on both the study of the contamination as well as its remediation from the affected environments. Presented in this work is a high-spatial resolution foot-based radiation mapping study using gamma-spectrometry at a site in the contaminated Iitate Village; conducted at different times, seventeen months apart. The specific site selected for this work was one in which consistent uniform agriculture was observed across its entire extent. From these surveys, obtained from along the main northwest trending line of the fallout plume, it was possible to determine the rate of reduction in the levels of contamination around the site attributable to the natural decay of the radiocesium, remediation efforts or material transport. Results from the work suggest that neither the natural decay of radiocesium nor its downward migration through the soil horizons were responsible for the decline in measured activity levels across the site, with the mobilisation of contaminant species likely adhered to soil particulate and the subsequent fluvial transport responsible for the measurable reduction in activity. This transport of contaminant via fluvial methods has already well studied implications for the input of contaminant material entering the neighbouring Pacific Ocean, as well as the deposition of material along rivers within previously decontaminated areas.

  6. High-resolution mapping of the gene for cystinosis, using combined biochemical and linkage analysis

    SciTech Connect

    Jean, G.; Fuchshuber, A.; Gribouval, O.

    1996-03-01

    Infantile nephropathic cystinosis is an autosomal recessive disorder characterized biochemically by an abnormally high intracellular content of free cystine in different organs and tissues due to a transport defect of cystine through the lysosomal membrane. Affected children present with the Fanconi syndrome and usually develop progressive renal failure within the 1st decade of life. Measurement of free cystine in purified polymorphonuclear leukocytes provides an accurate method for diagnosis and detection of heterozygous carriers previously determined by their leukocyte cystine content in the linkage analysis. This approach allowed us to obtain highly significant results, confirming the localization of the cystinosis gene locus recently mapped to the short arm of chromosome 17 by the Cystinosis Collaborative Research Group. Crucial recombination events allowed us to refine the interval of the cystinosis gene to a genetic distance of 1 cM. No evidence of genetic heterogeneity was found. Our results demonstrate that the use of the previously determined phenotypes of heterozygous carriers in linkage analysis provides a reliable method for the investigation of simplex families in autosomal recessive traits. 25 refs., 4 figs., 1 tab.

  7. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

    SciTech Connect

    Muchero, Wellington; Guo, Jianjun; Difazio, Stephen P.; Chen, Jay; Ranjan, Priya; Slavov, Gancho; Gunter, Lee E.; Jawdy, Sara; Bryan, Anthony C.; Sykes, Robert; Ziebell, Angela L.; Klapste, Jaroslav; Porth, Ilga; Skyba, Oleksandr; Unda, Faride; El-Kassaby, Yousry; Douglas, Carl; Mansfield, Shawn; Martin, Joel; Schackwitz, Wendy; Evans, Luke M.; Czarnecki, Olaf; Tuskan, Gerald A.

    2015-01-23

    We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcription factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.

  8. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

    DOE PAGES

    Muchero, Wellington; Guo, Jianjun; Difazio, Stephen P.; ...

    2015-01-23

    We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcriptionmore » factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.« less

  9. OnEarth: An Open Source Solution for Efficiently Serving High-Resolution Mapped Image Products

    NASA Astrophysics Data System (ADS)

    Thompson, C. K.; Plesea, L.; Hall, J. R.; Roberts, J. T.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; Huang, T.; McGann, J. M.; Chang, G.; Boller, R. A.; Ilavajhala, S.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    This presentation introduces OnEarth, a server side software package originally developed at the Jet Propulsion Laboratory (JPL), that facilitates network-based, minimum-latency geolocated image access independent of image size or spatial resolution. The key component in this package is the Meta Raster Format (MRF), a specialized raster file extension to the Geospatial Data Abstraction Library (GDAL) consisting of an internal indexed pyramid of image tiles. Imagery to be served is converted to the MRF format and made accessible online via an expandable set of server modules handling requests in several common protocols, including the Open Geospatial Consortium (OGC) compliant Web Map Tile Service (WMTS) as well as Tiled WMS and Keyhole Markup Language (KML). OnEarth has recently transitioned to open source status and is maintained and actively developed as part of GIBS (Global Imagery Browse Services), a collaborative project between JPL and Goddard Space Flight Center (GSFC). The primary function of GIBS is to enhance and streamline the data discovery process and to support near real-time (NRT) applications via the expeditious ingestion and serving of full-resolution imagery representing science products from across the NASA Earth Science spectrum. Open source software solutions are leveraged where possible in order to utilize existing available technologies, reduce development time, and enlist wider community participation. We will discuss some of the factors and decision points in transitioning OnEarth to a suitable open source paradigm, including repository and licensing agreement decision points, institutional hurdles, and perceived benefits. We will also provide examples illustrating how OnEarth is integrated within GIBS and other applications.

  10. Cold-seep habitat mapping: High-resolution spatial characterization of the Blake Ridge Diapir seep field

    NASA Astrophysics Data System (ADS)

    Wagner, Jamie K. S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-08-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25-70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  11. Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field

    USGS Publications Warehouse

    Wagner, Jamie K.S.; McEntee, Molly H.; Brothers, Laura L.; German, Christopher R.; Kaiser, Carl L.; Yoerger, Dana R.; Van Dover, Cindy Lee

    2013-01-01

    Relationships among seep community biomass, diversity, and physiographic controls such as underlying geology are not well understood. Previous efforts to constrain these relationships at the Blake Ridge Diapir were limited to observations from piloted deep-submergence vehicles. In August 2012, the autonomous underwater vehicle (AUV) Sentry collected geophysical and photographic data over a 0.131 km2 area at the Blake Ridge Diapir seeps. A nested survey approach was used that began with a regional or reconnaissance-style survey using sub-bottom mapping systems to locate and identify seeps and underlying conduits. This survey was followed by AUV-mounted sidescan sonar and multibeam echosounder systems mapping on a mesoscale to characterize the seabed physiography. At the most detailed survey level, digital photographic imaging was used to resolve sub-meter characteristics of the biology. Four pockmarks (25–70 m diameter) were documented, each supporting chemosynthetic communities. Concentric zonation of mussels and clams suggests the influence of chemical gradients on megafaunal distribution. Data collection and analytical techniques used here yield high-resolution habitat maps that can serve as baselines to constrain temporal evolution of seafloor seeps, and to inform ecological niche modeling and resource management.

  12. A high-resolution linkage map of the achondroplasia critical region on human chromosome 4q16.3

    SciTech Connect

    Tiller, G.E.; Polumbo, P.A.

    1994-09-01

    Achondroplasia is the most common nonlethal skeletal dysplasia, with an incidence of greater than 1/40,000 births. Recently, a random search of the genome using highly polymorphic autosomal markers has localized the gene for achondroplasia to the distal portion of human chromosome 4p. We report here the construction of a high-resolution linkage map of the critical region including the achondroplasia locus. The CEPH panel of pedigrees was genotyped at several loci using highly polymorphic markers, including the Huntington locus (IT15), D4S43, D4S115, and the gene for the {beta}-subunit of rod cGMP phosphodiesterase (PDEB). These data were incorporated into the CEPH v.6.6 database and a multipoint map was generated using the LINKAGE programs v.5.1. Based on reported recombination events in achondroplasia pedigrees, the gene for achondroplasia lies distal to the anonymous marker D4S43, in the 8 cM region defined as follows: cen-IT15-D4S43-D4S98-[D4S115-D4S111]-D4S90-PDEB. The disparity between the genetic distance and the physical distance (2 mB) among these markers likely reflects the high rate of recombination within the region. Extension of this linkage map further toward the telomere and identification of distal recombinant markers should expedite efforts directed toward isolation of the gene for achondroplasia.

  13. HIGH RESOLUTION NEAR-INFRARED SURVEY OF THE PIPE NEBULA. I. A DEEP INFRARED EXTINCTION MAP OF BARNARD 59

    SciTech Connect

    Roman-Zuniga, Carlos G.; Alves, Joao F.; Lada, Charles J.

    2009-10-10

    We present our analysis of a fully sampled, high resolution dust extinction map of the Barnard 59 complex in the Pipe Nebula. The map was constructed with the infrared color excess technique applied to a photometric catalog that combines data from both ground and space based observations. The map resolves for the first time the high density center of the main core in the complex, which is associated with the formation of a small cluster of stars. We found that the central core in Barnard 59 shows an unexpected lack of significant substructure consisting of only two significant fragments. Overall, the material appears to be consistent with being a single, large core with a density profile that can be well fit by a King model. A series of NH{sub 3} pointed observations toward the high column density center of the core appear to show that the core is still thermally dominated, with subsonic non-thermal motions. The stars in the cluster could be providing feedback to support the core against collapse, but the relatively narrow radio lines suggest that an additional source of support, for example, a magnetic field, may be required to stabilize the core. Outside the central core our observations reveal the structure of peripheral cores and resolve an extended filament into a handful of significant substructures whose spacing and masses appear to be consistent with Jeans fragmentation.

  14. Mars MOURA magnetometer demonstration for high-resolution mapping on terrestrial analogues

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, Marina; Kilian, Rolf; Sanz, Ruy; Rios, Francisco; Baeza, Oscar

    2016-05-01

    Satellite-based magnetic measurements of Mars indicate complex and very strong magnetic anomalies, which led to an intensive and long-lasting discussion about their possible origin. To make some progress in the investigation of the origin of these anomalies the MOURA vector magnetometer was developed for in situ measurements on Mars. In this work we propose the utilisation of such an instrument for future planetary on-ground surveys. The proof of its suitability is seen through testing it on various terrestrial analogues characterised by the distinct magnetic anomalies of their basement rocks: (1) a magnetite body of EL Laco (up to +110 000 nT) and its transition to surrounding andesites ( < +2000 nT) in the northern Andes of Chile showing the highest local magnetic anomalies. The magnetite-bearing ore body has highly variable local anomalies due to its complex formation history where a significant dispersion in palaeo-orientations has been previously reported, while our vector data show relatively uniform and probably induced declinations. (2) A basaltic spatter cone of the Pali Aike volcanic field, in southern Chile, was characterised by very strong magnetic anomalies along the crater rim (up to +12 000 nT), controlled by the amount of single domain magnetites in the ground mass of the basalts. Due to their strong remanent signature, palaeo-declinations of the lavas and reorientations of collapsed blocks could be constrained by the vector data. (3) The Monturaqui meteorite crater (350 m diameter), in northern Chile, shows significant variations of its anomalies (from -2000 to > +6000 nT) in restricted areas of several square metres along its crater rim related to unexposed iron-bearing fragments of the impactor while its granitic and ignimbritic target rocks exhibit only very weak anomalies. (4) An area with several amphibolitic dykes, which cross-cut a Cretaceous granitoid in the southernmost Andes, where a decimetre-scale mapping was performed. In this case

  15. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.

    PubMed

    Levy, Emmanuel D; Kowarzyk, Jacqueline; Michnick, Stephen W

    2014-05-22

    A single yeast cell contains a hundred million protein molecules. How these proteins are organized to orchestrate living processes is a central question in biology. To probe this organization in vivo, we measured the local concentration of proteins based on the strength of their nonspecific interactions with a neutral reporter protein. We first used a cytosolic reporter and measured local concentrations for ~2,000 proteins in S. cerevisiae, with accuracy comparable to that of mass spectrometry. Localizing the reporter to membranes specifically increased the local concentration measured for membrane proteins. Comparing the concentrations measured by both reporters revealed that encounter frequencies between proteins are primarily dictated by their abundances. However, to change these encounter frequencies and restructure the proteome, as in adaptation, we find that changes in localization have more impact than changes in abundance. These results highlight how protein abundance and localization contribute to proteome organization and reorganization.

  16. Using high resolution multispectral imaging to map Pacific coral reefs in support of UNESCO's World Heritage Central Pacific project

    NASA Astrophysics Data System (ADS)

    Siciliano, Daria; Olsen, Richard C.

    2007-10-01

    Concerns over worldwide declines in marine resources have prompted the search for innovative solutions for their conservation and management, particularly for coral reef ecosystems. Rapid advances in sensor resolution, coupled with image analysis techniques tailored to the unique optical problems of marine environments have enabled the derivation of detailed benthic habitat maps of coral reef habitats from multispectral satellite imagery. Such maps delineate coral reefs' main ecological communities, and are essential for management of these resources as baseline assessments. UNESCO's World Heritage Central Pacific Project plans to afford protection through World Heritage recognition to a number of islands and atolls in the central Pacific Ocean, including the Phoenix Archipelago in the Republic of Kiribati. Most of these islands however lack natural resource maps needed for the identification of priority areas for inclusion in a marine reserve system. Our project provides assistance to UNESCO's World Heritage Centre and the Kiribati Government by developing benthic and terrestrial habitat maps of the Phoenix Islands from high-resolution multispectral imagery. The approach involves: (i) the analysis of new Quickbird multispectral imagery; and (ii) the use of MARXAN, a simulated annealing algorithm that uses a GIS interface. Analysis of satellite imagery was performed with ENVI®, and includes removal of atmospheric effects using ATCOR (a MODTRAN4 radiative transfer model); de-glinting and water column correction algorithms; and a number of unsupervised and supervised classifiers. Previously collected ground-truth data was used to train classifications. The resulting habitat maps are then used as input to MARXAN. This algorithm ultimately identifies a proportion of each habitat to be set aside for protection, and prioritizes conservation areas. The outputs of this research are being delivered to the UNESCO World Heritage Centre office and the Kiribati Government as

  17. Ecosystem services - from assessements of estimations to quantitative, validated, high-resolution, continental-scale mapping via airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Pfeifer, Norbert

    2016-04-01

    service potential" which is the ability of the local ecosystem to deliver various functions (water retention, carbon storage etc.), but can't quantify how much of these are actually used by humans or what the estimated monetary value is. Due to its ability to measure both terrain relief and vegetation structure in high resolution, airborne LIDAR supports direct quantification of the properties of an ecosystem that lead to it delivering a given service (such as biomass, water retention, micro-climate regulation or habitat diversity). In addition, its high resolution allows direct calibration with field measurements: routine harvesting-based ecological measurements, local biodiversity indicator surveys or microclimate recordings all take place at the human scale and can be directly linked to the local value of LIDAR-based indicators at meter resolution. Therefore, if some field measurements with standard ecological methods are performed on site, the accuracy of LIDAR-based ecosystem service indicators can be rigorously validated. With this conceptual and technical approach high resolution ecosystem service assessments can be made with well established credibility. These would consolidate the concept of ecosystem services and support both scientific research and evidence-based environmental policy at local and - as data coverage is continually increasing - continental scale.

  18. High-resolution genetic map for understanding the effect of genome-wide recombination rate, selection sweep and linkage disequilibrium on nucleotide diversity in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...

  19. High-resolution metabolic mapping of cell types in plant roots.

    PubMed

    Moussaieff, Arieh; Rogachev, Ilana; Brodsky, Leonid; Malitsky, Sergey; Toal, Ted W; Belcher, Heather; Yativ, Merav; Brady, Siobhan M; Benfey, Philip N; Aharoni, Asaph

    2013-03-26

    Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations.

  20. A contiguous high-resolution radiation hybrid map of 44 loci from the distal portion of the long arm of human chromosome 5.

    PubMed

    Warrington, J A; Wasmuth, J J

    1996-07-01

    A contiguous high-resolution map of 44 loci from a 35-Mb portion of the distal region of the long arm of human chromosome 5, q21-q35, was produced using radiation hybrid (RH) mapping in conjunction with a natural deletion mapping panel. The map includes 30 genes, four sequence-tagged site (STS) loci, and 10 DNA markers. Newly mapped markers fill two gap regions that were present in previous maps, between markers FER-IL4 and IL3-IL9. Identifying the position of genes on the physical map aids in positional cloning efforts and contributes to our understanding of the overall organization of the human genome.

  1. High Resolution Urban Land Cover Mapping Using NAIP Aerial Photography and Image Processing for the USEPA National Atlas of Sustainability and Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Pilant, A. N.; Baynes, J.; Dannenberg, M.

    2012-12-01

    The US EPA National Atlas for Sustainability is a web-based, easy-to-use, mapping application that allows users to view and analyze multiple ecosystem services in a specific region. The Atlas provides users with a visual method for interpreting ecosystem services and understanding how they can be conserved and enhanced for a sustainable future. The Urban Atlas component of the National Atlas will provide fine-scale information linking human health and well-being to environmental conditions such as urban heat islands, near-road pollution, resource use, access to recreation, drinking water quality and other quality of life indicators. The National Land Cover Data (NLCD) derived from 30 m scale 2006 Landsat imagery provides the land cover base for the Atlas. However, urban features and phenomena occur at finer spatial scales, so higher spatial resolution and more current LC maps are required. We used 4 band USDA NAIP imagery (1 m pixel size) and various classification approaches to produce urban land cover maps with these classes: impervious surface, grass and herbaceous, trees and forest, soil and barren, and water. Here we present the remote sensing methods used and results from four pilot cities in this effort, highlighting the pros and cons of the approach, and the benefits to sustainability and ecosystem services analysis. Example of high resolution land cover map derived from USDA NAIP aerial photo. Compare 30 m and 1 m resolution land cover maps of downtown Durham, NC.

  2. Rapid simultaneous high-resolution mapping of myelin water fraction and relaxation times in human brain using BMC-mcDESPOT.

    PubMed

    Bouhrara, Mustapha; Spencer, Richard G

    2017-02-15

    A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T1, and transverse, T2, relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T1 and T2, with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T2 fraction, T2,l, and the longitudinal relaxation time of the short T1 fraction, T1,s, clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC

  3. High-resolution area-wide sea-floor mapping: The paleo Elbe valley (S North Sea) revisited

    NASA Astrophysics Data System (ADS)

    Papenmeier, Svenja; Hass, H. Christian

    2014-05-01

    The North Sea Basin is shaped by multiple glacial advances and retreats that left complex sequences of glacio-fluvial and sub-glacial deposits, cut by sub-glacial tunnel valleys. Today, the submerged valley of the Elbe forms one of the most prominent structures of the southern North Sea. Flanked by huge moraine deposits of older glacials, the valley developed to its present form during the Weichselian sea-level lowstand (-130 m below present). Melt waters that discharged in north-westerly directions along the Scandinavian Ice Sheet fed the paleo Elbe at that time. During the Holocene the valley drowned in the rising sea. Here we present an area-wide high-resolution map of the seafloor and high-resolution shallow seismic data covering 1,600 km2 of the paleo Elbe valley (PEV) including its eastern levee. The data allow to shed new light on the PEV development including the historical process of sedimentary infill with the successive Holocene sea level rise in detail. Shallow seismic data with transect distances of 400 m and several cross sections allow 3-D visualization. The eastern flank of the valley is characterized by a relatively steep slope with one or more terraces. At its levee a significant sediment change is present on the modern sea floor, representing moraine and marine deposits. High resolution sidescan sonar data of this area show a much higher heterogeneity and complexity in sediment and habitat distribution as assumed before. Holocene marine sediments form a patchy and thin drape east of the valley floor. The western slip-off slope of the valley slope is much smoother than the eastern undercut slope. As yet, significant sedimentological changes at the present seafloor are not known for the western side of the PEV. Shallow seismic data show the base of the PEV. There are conspicuous internal seismic reflectors above the base, inclined in northeastern direction. They indicate a sedimentary infill of the valley from the southwest when the southern part

  4. Mapping Soil Organic Carbon Resources Across Agricultural Land Uses in Highland Lesotho Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Knight, J.; Adam, E.

    2015-12-01

    Mapping spatial patterns of soil organic carbon (SOC) using high resolution satellite imagery is especially important in inaccessible or upland areas that have limited field measurements, where land use and land cover (LULC) are changing rapidly, or where the land surface is sensitive to overgrazing and high rates of soil erosion and thus sediment, nutrient and carbon export. Here we outline the methods and results of mapping soil organic carbon in highland areas (~2400 m) of eastern Lesotho, southern Africa, across different land uses. Bedrock summit areas with very thin soils are dominated by xeric alpine grassland; terrace agriculture with strip fields and thicker soils is found within river valleys. Multispectral Worldview 2 imagery was used to map LULC across the region. An overall accuracy of 88% and kappa value of 0.83 were achieved using a support vector machine model. Soils were examined in the field from different LULC areas for properties such as soil depth, maturity and structure. In situ soils in the field were also evaluated using a portable analytical spectral device (ASD) in order to ground truth spectral signatures from Worldview. Soil samples were examined in the lab for chemical properties including organic carbon. Regression modeling was used in order to establish a relationship between soil characteristics and soil spectral reflectance. We were thus able to map SOC across this diverse landscape. Results show that there are notable differences in SOC between upland and agricultural areas which reflect both soil thickness and maturity, and land use practices such as manuring of fields by cattle. Soil erosion and thus carbon (nutrient) export is significant issue in this region, which this project will now be examining.

  5. High-resolution linkage map of mouse chromosome 13 in the vicinity of the host resistance locus Lgn1

    SciTech Connect

    Beckers, M.C.; Ernst, E.; Diez, E.

    1997-02-01

    Natural resistance of inbred mouse strains to infection with Legionella pneumophila is controlled by the expression of a single dominant gene on chromosome 13, designated Lgn1. The genetic difference at Lgn1 is phenotypically expressed as the presence or absence of intracellular replication of L. pneumophila in host macrophages. In our effort to identify the Lgn1 gene by positional cloning, we have generated a high-resolution linkage map of the Lgn1 chromosomal region. For this, we have carried out extensive segregation analysis in a total of 1270 (A/J x C57BL/6J) X A/J informative backcross mice segregating the resistance allele of C57BL/6J and the susceptibility allele of A/J. Additional segregation analyses were carried out in three preexisting panels of C57BL/6J X Mus spretus interspecific backcross mice. A total of 39 DNA markers were mapped within an interval of approximately 30 cM overlapping the Lgn1 region. Combined pedigree analyses for the 5.4-cM segment overlapping Lgn1 indicated the locus order and the interlocus distances (in cM): D13Mit128-(1.4)-D13Mit194-(0.1)-D13Mit147-(0.9)-Dl3Mit36-(0.9)-D13Mit146-(0.2)-Lgn1/D 13Mit37-(1.0)-D13Mit70. Additional genetic linkage studies of markers not informative in the A/J X C57BL/6J cross positioned D13Mit30, -72, -195, and -203, D13Gor4, D13Hun35, and Mtap5 in the immediate vicinity of the Lgn1 locus. The marker density and resolution of this genetic linkage map should allow the construction of a physical map of the region and the isolation of YAC clones overlapping the gene. 60 refs., 2 figs., 2 tabs.

  6. Evaluation of Surface Energy Balance models for mapping evapotranspiration using very high resolution airborne remote sensing data

    NASA Astrophysics Data System (ADS)

    Paul, George

    Agriculture is the largest (90%) consumer of all fresh water in the world. The consumptive use of water by vegetation represented by the process evapotranspiration (ET) has a vital role in the dynamics of water, carbon and energy fluxes of the biosphere. Consequently, mapping ET is essential for making water a sustainable resource and also for monitoring ecosystem response to water stress and changing climate. Over the past three decades, numerous thermal remote sensing based ET mapping algorithms were developed and these have brought a significant theoretical and technical advancement in the spatial modeling of ET. Though these algorithms provided a robust, economical, and efficient tool for ET estimations at field and regional scales, yet the uncertainties in flux estimations were large, making evaluation a difficult task. The main objective of this study was to evaluate and improve the performance of widely used remote sensing based energy balance models, namely: the Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration at high Resolution and with Internalized Calibration (METRIC), and Surface Energy Balance System (SEBS). Data used in this study was collected as part of a multi-disciplinary and multi-institutional field campaign BEAREX (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment) that was conducted during 2007 and 2008 summer cropping seasons at the USDA-ARS Conservation and Production Research Laboratory (CPRL) in Bushland, Texas. Seventeen high resolution remote sensing images taken from multispectral sensors onboard aircraft and field measurements of the agro-meteorological variables from the campaign were used for model evaluation and improvement. Overall relative error measured in terms of mean absolute percent difference (MAPD) for instantaneous ET (mm h -1) were 22.7%, 23.2%, and 12.6% for SEBAL, METRIC, and SEBS, respectively. SEBAL and METRIC performances for irrigated fields representing higher ET

  7. High-resolution Digital Mapping of Historical Lava Flows as a Test-bed for Lava Flow Models

    NASA Astrophysics Data System (ADS)

    Pyle, D. M.; Parks, M.; Nomikou, P.; Mather, T. A.; Simou, E.; Kalnins, L. M.; Paulatto, M.; Watts, A. B.

    2013-12-01

    Quantitative analysis of high-resolution lava flow morphology can improve our understanding of past effusive eruptions by providing insight into eruptive processes and the rheological properties of erupted magmas. We report the results of an ongoing investigation into the young dacite lava flows of the Kameni islands, Santorini volcano, Greece, which were emplaced during both subaerial and shallow submarine eruptions over the past 3000 years. Historical eruptions of the Kameni islands since 1866 have been very carefully documented in contemporaneous scientific reports. Eruptions since 1573 appear to be time-predictable, with a close relationship between eruption length, the size of extruded lava domes, and the time elapsed since the previous eruption. A new NERC - Airborne Survey and Research Facility LiDAR survey of the Kameni islands was completed in May 2012, using a Leica ALS50 Airborne Laser Scanner mounted on a Dornier 228 aircraft. The topographic surface was mapped at an average point density of 2.1 points per square metre, and covers the entire extent of the youngest subaerial lava flow fields on Santorini. A 2-m DEM derived from the 2012 LiDAR dataset was merged with a 5-m resolution bathymetric grid, based on multibeam surveys carried out by the Hellenic Centre for Marine Research, during cruises in 2001 and 2006, using a SEABEAM 2120 hull-mounted swath system. The resultant grid provides the first high resolution map of both subaerial and submarine historic lava flows emplaced in the centre of the Santorini caldera, and includes several previously unidentified submarine flows and cones. Attribute maps were used to delineate and identify discrete lava flows both onshore and offshore; and morphometric profiles were used to compute accurate volumetric estimates for each of the historic flows, and to determine bulk rheological properties of the lavas, assuming a Bingham rheology. This ongoing work will improve our analysis of the relationship between

  8. Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes

    NASA Astrophysics Data System (ADS)

    Xia, Ting; Kustas, William P.; Anderson, Martha C.; Alfieri, Joseph G.; Gao, Feng; McKee, Lynn; Prueger, John H.; Geli, Hatim M. E.; Neale, Christopher M. U.; Sanchez, Luis; Mar Alsina, Maria; Wang, Zhongjing

    2016-04-01

    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field (≤ 10 m) and plant canopy (≤ 1 m) scale evapotranspiration (ET) monitoring. In this study, high-resolution (sub-meter-scale) thermal infrared and multispectral shortwave data from aircraft are used to map ET over vineyards in central California with the two-source energy balance (TSEB) model and with a simple model having operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature). The latter uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from 5 days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based measurements of sensible (H) and latent heat (LE) flux or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EF = LE/(H + LE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on 2 of the 5 days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models

  9. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    NASA Astrophysics Data System (ADS)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  10. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2016-02-01

    Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT). This functional imaging method is based on spectral analysis of the OCT speckle variations produced by the beat of cilia in the oviduct, which does not require exogenous contrast agents. Animal procedures similar to the ones used for production of transgenic mice are utilized to expose the reproductive organs for imaging in anesthetized females. In this paper, we first present in vivo structural imaging of the mouse oviduct capturing the oocyte and the preimplantation embryo and then show the result of depth-resolved high-resolution CBF mapping in the ampulla of the live mouse. These data indicate that this structural and functional OCT imaging approach can be a useful tool for a variety of live investigations of mammalian reproduction and infertility.

  11. A High-Resolution Whole-Genome Map of Key Chromatin Modifications in the Adult Drosophila melanogaster

    PubMed Central

    Yin, Hang; Sweeney, Sarah; Raha, Debasish; Snyder, Michael; Lin, Haifan

    2011-01-01

    Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP–Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications. PMID:22194694

  12. High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H.

    PubMed

    Shahinnia, Fahimeh; Druka, Arnis; Franckowiak, Jerome; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2012-02-01

    Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC(7)F(3) nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.

  13. A high-resolution whole-genome map of key chromatin modifications in the adult Drosophila melanogaster.

    PubMed

    Yin, Hang; Sweeney, Sarah; Raha, Debasish; Snyder, Michael; Lin, Haifan

    2011-12-01

    Epigenetic research has been focused on cell-type-specific regulation; less is known about common features of epigenetic programming shared by diverse cell types within an organism. Here, we report a modified method for chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and its use to construct a high-resolution map of the Drosophila melanogaster key histone marks, heterochromatin protein 1a (HP1a) and RNA polymerase II (polII). These factors are mapped at 50-bp resolution genome-wide and at 5-bp resolution for regulatory sequences of genes, which reveals fundamental features of chromatin modification landscape shared by major adult Drosophila cell types: the enrichment of both heterochromatic and euchromatic marks in transposons and repetitive sequences, the accumulation of HP1a at transcription start sites with stalled polII, the signatures of histone code and polII level/position around the transcriptional start sites that predict both the mRNA level and functionality of genes, and the enrichment of elongating polII within exons at splicing junctions. These features, likely conserved among diverse epigenomes, reveal general strategies for chromatin modifications.

  14. High-resolution 3-D T1*-mapping and quantitative image analysis of GRAY ZONE in chronic fibrosis.

    PubMed

    Pop, Mihaela; Ramanan, Venkat; Yang, Franklin; Zhang, Li; Newbigging, Susan; Ghugre, Nilesh R; Wright, Graham A

    2014-12-01

    The substrate of potentially lethal cardiac arrhythmias often resides in the gray zone (GZ), a mixture of viable myocytes and collagen strands found between healthy myocardium and infarct core (IC). The specific aims of this paper are to demonstrate correspondence between regions delineated in T1* (apparent T1) maps and tissue characteristics seen in histopathology and to determine the MR imaging resolution needed to adequately identify GZ-associated substrate in chronic infarct. For this, a novel 3-D multicontrast late enhancement (MCLE) MR method was used to image ex vivo swine hearts with chronic infarction, at high resolution ( 0.6×0.6×1.25 mm). Pixel-wise classified tissue maps were calculated using steady-state and T1* images as input to a fuzzy-clustering algorithm. Quantitative histology based on collagen stains was performed in n = 10 selected slabs and showed very good correlations between histologically-determined areas of heterogeneous and dense fibrosis, and the corresponding GZ ( R2 = 0.96) and IC ( R2 = 0.97 ) in tissue classified maps. Furthermore, in n = 24 slabs, we performed volumetric measurements of GZ and IC, at the original and decreased image resolutions. Our results demonstrated that the IC volume remained relatively unchanged across all resolutions, whereas the GZ volume progressively increased with diminished image resolution, with changes reaching significance at 1×1×5 mm resolution (p < 0.05 ) but not at 1×1×2.5 mm, suggesting that this resolution may be sufficient to adequately identify the GZ from MCLE images, enabling an effective MR probing of remodeled myocardium in late infarct. Future work will focus on translating these findings to optimizing the current in vivo MCLE imaging of the GZ.

  15. High resolution magnetic field mapping of complex magmatic rock suites and associated tectonic structures in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Díaz-Michelena, Marina; Kilian, Rolf

    2013-04-01

    Magmatic and metamorphic rocks of the southernmost Andes (50 to 55°S) document a complex magmatic and tectonic history of an active continental margin during the past >140 Ma [1]. However, the regional distribution of the multiple magmatic intrusive rock suites and younger systems of basaltic dykes as well as the tectonic control of associated hydrothermal systems are widely unexplored. Since the rocks are often bare exposed they represent an ideal test site for a magnetic field investigation with significant implication for future aeromagnetic mapping. Thus we performed a high resolution near-surface grid of measurements with a scalar and vector magnetometer at selected sites which include different intrusive rocks, tectonic lineaments and hydrothermal alteration with an associated mineralization. The magnetic signature corresponding to the Natural Remanent Magnetisation (NRM) was measured on Mesozoic and Cenozoic gabbroid to granitic plutons with large range chemical and mineralogical variations [1], on distinct basaltic dykes, as well as on mylonites, gneisses and hornfels rocks. The whole-rock chemistry of the selected rock types was determined by Atomic Absorption Spectroscopy and X-ray Fluorescence. The analysed and mapped rocks include the SiO2 range from 45 to 76 wt.%, FeO (tot) contents from 2 to 18 wt.% and Ti2O contents from 0.2 to 2.5 wt.%. The mineral assemblages were analysed by polarization microscopy, with an electron microprobe and X-ray diffraction. In the plutonic rocks the whole rock chemistry often is related to the amount of magnetite and NRM intensities [2]. However, measured magnetic intensities let us estimate the degree of chloritization and associated demagnetisation by magnetite alteration and transformation to maghemite and/or iron-hydroxides. For Miocene basaltic dyke systems of decimetre to several meters extension within granitic plutons, a high resolution magnetic mapping has been also performed. We expected a relationship of

  16. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California (Mw 7.1) from airborne laser swath mapping

    USGS Publications Warehouse

    Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.

    2002-01-01

    In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.

  17. Performance of magnetic resonance imaging in pulmonary fungal disease compared to high-resolution computed tomography.

    PubMed

    Sartori, Ana; Souza, Arthur; Zanon, Matheus; Irion, Klaus; Marchiori, Edson; Watte, Guilherme; Hochhegger, Bruno

    2017-04-01

    To evaluate the performance of magnetic resonance imaging (MRI) compared to computed tomography (CT) in patients diagnosed with pulmonary mycosis. We prospectively included 21 patients diagnosed with pulmonary mycosis between January 2013 and October 2014. Inclusion criteria were presence of respiratory symptoms, histopathological diagnosis of mycosis and absence of mycosis treatment. Reviewers identified one predominant imaging pattern per patient: nodular, reticular or airspace pattern. Afterwards, all CT findings were analysed separately per lobe and compared to MRI. Nodular pattern was the most common found (CT: 76.20%; MRI: 80.96%), followed by airspace pattern (CT and MRI: 9.52%) and reticular (CT: 9.52%; MRI: 4.76%). Compared to CT, MRI performance varied according to radiological finding and pulmonary region. For nodules, MRI presented high sensitivity (100% [95% CI: 93.52-100]) and specificity (100% [95% CI: 92.00-100]). For bronchiectasis and septal thickening, there were poorer positive predictive values (33.33% [95% CI: 1.77-87.47]; and 83.33% [95% CI: 50.88-97.06] respectively). As specificity and negative predictive value had superior results than sensitivity and positive predictive value, rather than for diagnosis of this condition, MRI might be more considered for the follow-up of patients with pulmonary mycosis, an alternative to multiple radiation exposures with CT follow-up.

  18. High-resolution EEG analysis of power spectral density maps and coherence networks in a proportional reasoning task.

    PubMed

    Vecchiato, Giovanni; Susac, Ana; Margeti, Stavroula; De Vico Fallani, Fabrizio; Maglione, Anton Giulio; Supek, Selma; Planinic, Maja; Babiloni, Fabio

    2013-04-01

    Proportional reasoning is very important logical skill required in mathematics and science problem solving as well as in everyday life decisions. However, there is a lack of studies on neurophysiological correlates of proportional reasoning. To explore the brain activity of healthy adults while performing a balance scale task, we used high-resolution EEG techniques and graph-theory based connectivity analysis. After unskilled subjects learned how to properly solve the task, their cortical power spectral density (PSD) maps revealed an increased parietal activity in the beta band. This indicated that subjects started to perform calculations. In addition, the number of inter-hemispheric connections decreased after learning, implying a rearrangement of the brain activity. Repeated performance of the task led to the PSD decrease in the beta and gamma bands among parietal and frontal regions along with a synchronization of lower frequencies. These findings suggest that repetition led to a more automatic task performance. Subjects were also divided in two groups according to their scores on the test of logical thinking (TOLT). Although no group differences in the accuracy and reaction times were found, EEG data showed higher activity in the beta and gamma bands for the group that scored better on TOLT. Learning and repetition induced changes in the pattern of functional connectivity were evident for all frequency bands. Overall, the results indicated that higher frequency oscillations in frontal and parietal regions are particularly important for proportional reasoning.

  19. Object-oriented feature extraction approach for mapping supraglacial debris in Schirmacher Oasis using very high-resolution satellite data

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Jadhav, Ajay; Luis, Alvarinho J.

    2016-05-01

    Supraglacial debris was mapped in the Schirmacher Oasis, east Antarctica, by using WorldView-2 (WV-2) high resolution optical remote sensing data consisting of 8-band calibrated Gram Schmidt (GS)-sharpened and atmospherically corrected WV-2 imagery. This study is a preliminary attempt to develop an object-oriented rule set to extract supraglacial debris for Antarctic region using 8-spectral band imagery. Supraglacial debris was manually digitized from the satellite imagery to generate the ground reference data. Several trials were performed using few existing traditional pixel-based classification techniques and color-texture based object-oriented classification methods to extract supraglacial debris over a small domain of the study area. Multi-level segmentation and attributes such as scale, shape, size, compactness along with spectral information from the data were used for developing the rule set. The quantitative analysis of error was carried out against the manually digitized reference data to test the practicability of our approach over the traditional pixel-based methods. Our results indicate that OBIA-based approach (overall accuracy: 93%) for extracting supraglacial debris performed better than all the traditional pixel-based methods (overall accuracy: 80-85%). The present attempt provides a comprehensive improved method for semiautomatic feature extraction in supraglacial environment and a new direction in the cryospheric research.

  20. Geospatial mapping of Antarctic coastal oasis using geographic object-based image analysis and high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-04-01

    An accurate spatial mapping and characterization of land cover features in cryospheric regions is an essential procedure for many geoscientific studies. A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (OBIA) to extract cryospheric geospatial information from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for OBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, east Antarctica. Multilevel segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features with respect to scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify land mass, man-made features, snow/ice, and water bodies. We focus on water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and OBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≍97%. In conclusion, our results suggest that OBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geospatial information.

  1. Separating strain from composition in unit cell parameter maps obtained from aberration corrected high resolution transmission electron microscopy imaging

    SciTech Connect

    Schulz, T.; Remmele, T.; Korytov, M.; Markurt, T.; Albrecht, M.; Duff, A.; Lymperakis, L.; Neugebauer, J.; Chèze, C.

    2014-01-21

    Based on the evaluation of lattice parameter maps in aberration corrected high resolution transmission electron microscopy images, we propose a simple method that allows quantifying the composition and disorder of a semiconductor alloy at the unit cell scale with high accuracy. This is realized by considering, next to the out-of-plane, also the in-plane lattice parameter component allowing to separate the chemical composition from the strain field. Considering only the out-of-plane lattice parameter component not only yields large deviations from the true local alloy content but also carries the risk of identifying false ordering phenomena like formations of chains or platelets. Our method is demonstrated on image simulations of relaxed supercells, as well as on experimental images of an In{sub 0.20}Ga{sub 0.80}N quantum well. Principally, our approach is applicable to all epitaxially strained compounds in the form of quantum wells, free standing islands, quantum dots, or wires.

  2. A High-Resolution InDel (Insertion–Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea

    PubMed Central

    Srivastava, Rishi; Singh, Mohar; Bajaj, Deepak; Parida, Swarup K.

    2016-01-01

    Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58–87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major

  3. Using high-resolution aeromagnetic survey to map tectonic elements of plate boundaries: An example from the Dead Sea Fault

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, A. S.; ten Brink, U. S.; Rybakov, M.; Rotstein, Y.

    2004-12-01

    The Dead Sea Fault (DSF) is a transform plate boundary between the African and the Arabian plates. The 200-km-long DSF segment between the Gulf of Aqaba/Elat and the Dead Sea, which has the morphology of a rift valley, shows little seismic activity, and its surface trace is only intermittently visible. High-resolution magnetic data were collected in October 2003 aboard a Jordanian military helicopter flying at an altitude of 100 m over the southern 120-km-long section of this fault segment. The survey was part of a US-AID Middle Eastern Regional Cooperation project between Jordanian, Israeli, Palestinian, and American scientists. Data were collected along rift-perpendicular lines spaced 300 m apart, requiring frequent crossings between Israeli and Jordanian air spaces. The data were gridded at 75 m interval following resolution tests, reduced to pole, and incorporated into a GIS together with elevation, geology, and gravity maps to facilitate interpretation. The main findings of the magnetic survey are the absence of magnetic anomalies crossing the rift valley, and the presence of a rift-parallel regional lineament corresponding to the active trace of the DSF. The lineament extends NNE as an almost continuous trace from Elat, Israel, to the eastern side of the valley 5 km north of Rahmeh. Jordan. Another fault trace located 2-3 km to the west may overlap and continue NNE through Gebel A-Risha, and into the central Arava/Araba valley, where it is visible on the surface. Alternatively, the two traces may be connected. If an offset between the two traces exists, it may be small enough to allow an earthquake rupture to propagate across the offset, and generate an earthquake with a moment magnitude of up to 7.5. Traces of buried faults in the central Arava/Araba valley that were previously active in the DSF system, are visible as abrupt terminations of an area of short wavelength magnetic anomalies. These anomalies probably represent shallow subsurface magmatic

  4. Quaternary layer anomalies around the Carlsberg Fault zone mapped with high-resolution shear-wave seismics south of Copenhagen

    NASA Astrophysics Data System (ADS)

    Kammann, Janina; Hübscher, Christian; Nielsen, Lars; Boldreel, Lars Ole

    2015-04-01

    The Carlsberg Fault zone is located in the N-S striking Höllviken Graben and traverses the city of Copenhagen. The fault zone is a NNW-SSE striking structure in direct vicinity to the transition zone of the Danish Basin and the Baltic Shield. Recent small earthquakes indicate activity in the area, although none of the mapped earthquakes appear to have occurred on the Carlsberg Fault. We examined the fault evolution by a combination of very high resolution onshore shear-wave seismic data, one conventional onshore seismic profile and marine reflection seismic profiles. The chalk stratigraphy and the localization of the fault zone at depth was inferred from previous studies by other authors. We extrapolated the Jurassic and Triassic stratigraphy from the Pomeranian Bay to the area of investigation. The fault zone shows a flower structure in the Triassic as well as in Cretaceous sediments. The faulting geometry indicates strong influence of Triassic processes when subsidence and rifting prevailed in the Central European Basin System. Growth strata within the surrounding Höllviken Graben reveal syntectonic sedimentation in the lower Triassic, indicating the opening to be a result of Triassic rifting. In the Upper Cretaceous growth faulting documents continued rifting. This finding contrasts the Late Cretaceous to Paleogene inversion tectonics in neighbouring structures, as the Tornquist Zone. The high-resolution shear-wave seismic method was used to image structures in Quaternary layers in the Carlsberg Fault zone. The portable compact vibrator source ElViS III S8 was used to acquire a 1150 m long seismic section on the island Amager, south of Copenhagen. The shallow subsurface in the investigation area is dominated by Quaternary glacial till deposits in the upper 5-11 m and Danian limestone below. In the shear-wave profile, we imaged the 30 m of the upward continuation of the Carlsberg Fault zone. In our area of investigation, the fault zone appears to comprise

  5. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber.

    PubMed

    Lou, Qunfeng; He, Yuhua; Cheng, Chunyan; Zhang, Zhonghua; Li, Ji; Huang, Sanwen; Chen, Jinfeng

    2013-01-01

    Cucumber is an important model crop and the first species sequenced in Cucurbitaceae family. Compared to the fast increasing genetic and genomics resources, the molecular cytogenetic researches in cucumber are still very limited, which results in directly the shortage of relation between plenty of physical sequences or genetic data and chromosome structure. We mapped twenty-three fosmids anchored by SSR markers from LG-3, the longest linkage group, and LG-4, the shortest linkage group on pachytene chromosomes 3 and 4, using uorescence in situ hybridization (FISH). Integrated molecular cytogenetic maps of chromosomes 3 and 4 were constructed. Except for three SSR markers located on heterochromatin region, the cytological order of markers was concordant with those on the linkage maps. Distinct structural differences between chromosomes 3 and 4 were revealed by the high resolution pachytene chromosomes. The extreme difference of genetic length between LG-3 and LG-4 was mainly attributed to the difference of overall recombination frequency. The significant differentiation of heterochromatin contents in chromosomes 3 and 4 might have a direct correlation with recombination frequency. Meanwhile, the uneven distribution of recombination frequency along chromosome 4 was observed, and recombination frequency of the long arm was nearly 3.5 times higher than that of the short arm. The severe suppression of recombination was exhibited in centromeric and heterochromatin domains of chromosome 4. Whereas a close correlation between the gene density and recombination frequency was observed in chromosome 4, no significant correlation was observed between them along chromosome 3. The comparison between cytogenetic and sequence maps revealed a large gap on the pericentromeric heterochromatin region of sequence map of chromosome 4. These results showed that integrated molecular cytogenetic maps can provide important information for the study of genetic and genomics in cucumber.

  6. High resolution adhesion mapping of the odd-even effect on a layer-by-layer coated biomaterial by Atomic-Force-Microscopy.

    PubMed

    Casdorff, Kirstin; Keplinger, Tobias; Bellanger, Herve; Michen, Benjamin; Sch N, Silke; Burgert, Ingo

    2017-03-27

    The adhesion behavior of polyelectrolyte multilayers consisting of poly-(diallyldimethylammonium chloride), PDDA, and poly(styrene sulfonate), PSS, towards a silicon AFM tip was studied during their build-up on wood, a chemically heterogeneous, micrometer rough biomaterial and compared with a nanometer rough substrate, namely quartz. The Atomic Force Microscopy based force mapping approach generated high resolution topography-, and adhesion maps within the first bilayers, which point toward a homogeneous layer-by-layer build-up on the biomaterial surface, and therefore indicate an even charge distribution. By analyzing the force-distance curves in every pixel of the mapping, new insights into the specific interactions of the polyelectrolyte multilayers at the surface were achieved. The characteristic odd-even effect of polyelectrolyte multilayers can not only be determined on quartz, but also on the biomaterial wood, however, only after an offset of two bilayers. This is potentially due to the specific roughness and charge of wood in comparison to commonly used quartz.

  7. Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.).

    PubMed

    Kamel, Katarzyna A; Kroc, Magdalena; Święcicki, Wojciech

    2015-01-01

    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome.

  8. Low-Altitude Coastal Aerial Photogrammetry for High-Resolution Seabed Imaging and Habitat Mapping of Shallow Areas

    NASA Astrophysics Data System (ADS)

    Alevizos, E.

    2012-04-01

    . Furthermore, this study appoints the suitability of the KAP method for mapping shallow water habitats such as soft/hard substrates, coastal reefs and sea grass meadows. Consequently, the application of low altitude digital photogrammetry is proposed for shallow water surveying as an alternative or supplementary to the side scan sonar and backscatter recorder until a maximum depth of 10 meters. It is suggested that very dense DEMs produced by LiDAR bathymetry may be utilized for ortho-rectification of high-resolution aerial imagery acquired by UAVs or remotely controlled platforms.

  9. High-resolution mapping of Martian water ice clouds using Mars Express OMEGA observations - Derivation of the diurnal cloud life cycle

    NASA Astrophysics Data System (ADS)

    Szantai, Andre; Audouard, Joachim; Madeleine, Jean-Baptiste; Forget, Francois; Pottier, Alizée; Millour, Ehouarn; Gondet, Brigitte; Langevin, Yves; Bibring, Jean-Pierre

    2016-10-01

    The mapping in space and time of water ice clouds can help to explain the Martian water cycle and atmospheric circulation. For this purpose, an ice cloud index (ICI) corresponding to the depth of a water ice absorption band at 3.4 microns is derived from a series of OMEGA images (spectels) covering 5 Martian years. The ICI values for the corresponding pixels are then binned on a high-resolution regular grid (1° longitude x 1° latitude x 5° Ls x 1 h local time) and averaged. Inside each bin, the cloud cover is calculated by dividing the number of pixels considered as cloudy (after comparison to a threshold) to the number of all (valid) pixelsWe compare the maps of clouds obtained around local time 14:00 with collocated TES cloud observations (which were only obtained around this time of the day). A good agreement is found.Averaged ICI compared to the water ice column variable from the Martian Climate Database (MCD) show a correct correlation (~0.5) , which increases when values limited to the tropics only are compared.The number of gridpoints containing ICI values is small ( ~1%), but by taking several neighbor gridpoints and over longer periods, we can observe a cloud life cycle during daytime. An example in the the tropics, around the northern summer solstice, shows a decrease of cloudiness in the morning followed by an increase in the afternoon.

  10. Evaluation of a moderate resolution, satellite-based impervious surface map using an independent, high-resolution validation data set

    USGS Publications Warehouse

    Jones, J.W.; Jarnagin, T.

    2009-01-01

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data products high quality, independently derived validation data are needed. High-resolution data were collected across a gradient of development within the Mid-Atlantic region to assess the accuracy of National Land Cover Data (NLCD) Landsat-based ISA estimates. Absolute error (satellite predicted area - "reference area") and relative error [satellite (predicted area - "reference area")/ "reference area"] were calculated for each of 240 sample regions that are each more than 15 Landsat pixels on a side. The ability to compile and examine ancillary data in a geographic information system environment provided for evaluation of both validation and NLCD data and afforded efficient exploration of observed errors. In a minority of cases, errors could be explained by temporal discontinuities between the date of satellite image capture and validation source data in rapidly changing places. In others, errors were created by vegetation cover over impervious surfaces and by other factors that bias the satellite processing algorithms. On average in the Mid-Atlantic region, the NLCD product underestimates ISA by approximately 5%. While the error range varies between 2 and 8%, this underestimation occurs regardless of development intensity. Through such analyses the errors, strengths, and weaknesses of particular satellite products can be explored to suggest appropriate uses for regional, satellite-based data in rapidly developing areas of environmental significance. ?? 2009 ASCE.

  11. Development and Validation of a Comparative Genomic Fingerprinting Method for High-Resolution Genotyping of Campylobacter jejuni

    PubMed Central

    Ross, Susan L.; Mutschall, Steven K.; MacKinnon, Joanne M.; Roberts, Michael J.; Buchanan, Cody J.; Kruczkiewicz, Peter; Jokinen, Cassandra C.; Thomas, James E.; Nash, John H. E.; Gannon, Victor P. J.; Marshall, Barbara; Pollari, Frank; Clark, Clifford G.

    2012-01-01

    Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp. is critical to our understanding of sources and routes of transmission and the development of mitigation strategies to reduce the incidence of campylobacteriosis. We describe the development and validation of a rapid and high-resolution comparative genomic fingerprinting (CGF) method for C. jejuni. A total of 412 isolates from agricultural, environmental, retail, and human clinical sources obtained from the Canadian national integrated enteric pathogen surveillance program (C-EnterNet) were analyzed using a 40-gene assay (CGF40) and multilocus sequence typing (MLST). The significantly higher Simpson's index of diversity (ID) obtained with CGF40 (ID = 0.994) suggests that it has a higher discriminatory power than MLST at both the level of clonal complex (ID = 0.873) and sequence type (ID = 0.935). High Wallace coefficients obtained when CGF40 was used as the primary typing method suggest that CGF and MLST are highly concordant, and we show that isolates with identical MLST profiles are comprised of isolates with distinct but highly similar CGF profiles. The high concordance with MLST coupled with the ability to discriminate between closely related isolates suggests that CFG40 is useful in differentiating highly prevalent sequence types, such as ST21 and ST45. CGF40 is a high-resolution comparative genomics-based method for C. jejuni subtyping with high discriminatory power that is also rapid, low cost, and easily deployable for routine epidemiologic surveillance and outbreak investigations. PMID:22170908

  12. Development and validation of a comparative genomic fingerprinting method for high-resolution genotyping of Campylobacter jejuni.

    PubMed

    Taboada, Eduardo N; Ross, Susan L; Mutschall, Steven K; Mackinnon, Joanne M; Roberts, Michael J; Buchanan, Cody J; Kruczkiewicz, Peter; Jokinen, Cassandra C; Thomas, James E; Nash, John H E; Gannon, Victor P J; Marshall, Barbara; Pollari, Frank; Clark, Clifford G

    2012-03-01

    Campylobacter spp. are a leading cause of bacterial gastroenteritis worldwide. The need for molecular subtyping methods with enhanced discrimination in the context of surveillance- and outbreak-based epidemiologic investigations of Campylobacter spp. is critical to our understanding of sources and routes of transmission and the development of mitigation strategies to reduce the incidence of campylobacteriosis. We describe the development and validation of a rapid and high-resolution comparative genomic fingerprinting (CGF) method for C. jejuni. A total of 412 isolates from agricultural, environmental, retail, and human clinical sources obtained from the Canadian national integrated enteric pathogen surveillance program (C-EnterNet) were analyzed using a 40-gene assay (CGF40) and multilocus sequence typing (MLST). The significantly higher Simpson's index of diversity (ID) obtained with CGF40 (ID = 0.994) suggests that it has a higher discriminatory power than MLST at both the level of clonal complex (ID = 0.873) and sequence type (ID = 0.935). High Wallace coefficients obtained when CGF40 was used as the primary typing method suggest that CGF and MLST are highly concordant, and we show that isolates with identical MLST profiles are comprised of isolates with distinct but highly similar CGF profiles. The high concordance with MLST coupled with the ability to discriminate between closely related isolates suggests that CFG40 is useful in differentiating highly prevalent sequence types, such as ST21 and ST45. CGF40 is a high-resolution comparative genomics-based method for C. jejuni subtyping with high discriminatory power that is also rapid, low cost, and easily deployable for routine epidemiologic surveillance and outbreak investigations.

  13. Full hierarchic versus non-hierarchic classification approaches for mapping sealed surfaces at the rural-urban fringe using high-resolution satellite data.

    PubMed

    De Roeck, Tim; Van de Voorde, Tim; Canters, Frank

    2009-01-01

    Since 2008 more than half of the world population is living in cities and urban sprawl is continuing. Because of these developments, the mapping and monitoring of urban environments and their surroundings is becoming increasingly important. In this study two object-oriented approaches for high-resolution mapping of sealed surfaces are compared: a standard non-hierarchic approach and a full hierarchic approach using both multi-layer perceptrons and decision trees as learning algorithms. Both methods outperform the standard nearest neighbour classifier, which is used as a benchmark scenario. For the multi-layer perceptron approach, applying a hierarchic classification strategy substantially increases the accuracy of the classification. For the decision tree approach a one-against-all hierarchic classification strategy does not lead to an improvement of classification accuracy compared to the standard all-against-all approach. Best results are obtained with the hierarchic multi-layer perceptron classification strategy, producing a kappa value of 0.77. A simple shadow reclassification procedure based on characteristics of neighbouring objects further increases the kappa value to 0.84.

  14. Continuous, high-resolution spatial mapping of water isotopes: improving tools for quantifying local evaporation and residence times

    NASA Astrophysics Data System (ADS)

    Dennis, Kate J.; Carter, Jeffrey A.; Winkler, Renato; Downing, Brian; Kendall, Carol; Bergamaschi, Brian

    2015-04-01

    Stable isotopes of water (d2H, d18O) are unique tracers of many hydrological processes including evaporation, precipitation, reservoir mixing and residence time. Historically, discrete water samples have been collected and analyzed via either Isotope Ratio Mass Spectrometry, or more recently laser-based spectroscopic methods, such as Cavity Ring-Down Spectroscopy (CRDS). However, the analysis of discrete samples precludes the ability to construct high resolution water isotope data sets through time and space. By coupling a recently developed front-end peripheral device (Continuous Water Sampler or CWS) to a CRDS analyzer (Picarro L2130-i), we continuously measured and spatially mapped water isotopes on a transect of the Sacramento River Delta following an extended period of drought. More than two-thousand five-second average d18O and d2H measurements were made aboard the R/V King (USGS) over a six-hour period. In addition to water isotopes, nitrate, chlorophyll, dissolved organic matter (DOM) fluorescence, and other water quality parameters were also measured continuously. As you travel northeast up the delta, surface waters become progressively more enriched in 18O and 2H, while nitrate decreased in concentration and chlorophyll and DOM increased. We utilize the spatially-mapped isotope data within a single transect to understand local evaporation and residence time by (i) utilizing the secondary parameter, d-excess, and (ii) using a simple mass balance model of water moving through the system (inflow, outflow and evaporation). Additional transects, to be conducted during the rainy season, should highlight how the Delta system evolves seasonally. In concert with other data previously collected from the Sacramento River Delta, we suggest the lower region represents a mixture of river waters derived from the Sierra Nevada Mountains and the more marine waters from the mouth of the San Francisco Bay. Moving NE up the Delta into shallow sloughs through flooded wetlands

  15. High resolution mapping of the tropospheric NO2 distribution in three Belgian cities based on airborne APEX remote sensing

    NASA Astrophysics Data System (ADS)

    Tack, Frederik; Merlaud, Alexis; Fayt, Caroline; Danckaert, Thomas; Iordache, Daniel; Meuleman, Koen; Deutsch, Felix; Adriaenssens, Sandy; Fierens, Frans; Van Roozendael, Michel

    2015-04-01

    An approach is presented to retrieve tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) and to map the NO2 two dimensional distribution at high resolution, based on Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager with a high spatial (approximately 3 m at 5000 m ASL), spectral (413 to 2421 nm in 533 narrow, contiguous spectral bands) and radiometric (14-bit) resolution. VCDs are derived, following a similar approach as described in the pioneering work of Popp et al. (2012), based on (1) spectral calibration and spatial binning of the observed radiance spectra in order to improve the spectral resolution and signal-to-noise ratio, (2) Differential Optical Absorption Spectroscopy (DOAS) analysis of the pre-processed spectra in the visible wavelength region, with a reference spectrum containing low NO2 absorption, in order to quantify the abundance of NO2 along the light path, based on its molecular absorption structures and (3) radiative transfer modeling for air mass factor calculation in order to convert slant to vertical columns. This study will be done in the framework of the BUMBA (Belgian Urban NO2 Monitoring Based on APEX hyperspectral data) project. Dedicated flights with APEX mounted in a Dornier DO-228 airplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR), are planned to be performed in Spring 2015 above the three largest and most heavily polluted Belgian cities, i.e. Brussels, Antwerp and Liège. The retrieved VCDs will be validated by comparison with correlative ground-based and car-based DOAS observations. Main objectives are (1) to assess the operational capabilities of APEX to map the NO2 field over an urban area at high spatial and spectral resolution in a relatively short time and cost-effective way, and to characterise all aspects of the retrieval approach; (2) to use the APEX NO2 measurements

  16. The Arabidopsis TAC Position Viewer: a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome.

    PubMed

    Hirose, Yoshitsugu; Suda, Kunihiro; Liu, Yao-Guang; Sato, Shusei; Nakamura, Yukino; Yokoyama, Koji; Yamamoto, Naoki; Hanano, Shigeru; Takita, Eiji; Sakurai, Nozomu; Suzuki, Hideyuki; Nakamura, Yasukazu; Kaneko, Takakazu; Yano, Kentaro; Tabata, Satoshi; Shibata, Daisuke

    2015-09-01

    We present a high-resolution map of genomic transformation-competent artificial chromosome (TAC) clones extending over all Arabidopsis thaliana (Arabidopsis) chromosomes. The Arabidopsis genomic TAC clones have been valuable genetic tools. Previously, we constructed an Arabidopsis genomic TAC library consisting of more than 10,000 TAC clones harboring large genomic DNA fragments extending over the whole Arabidopsis genome. Here, we determined 13,577 end sequences from 6987 Arabidopsis TAC clones and mapped 5937 TAC clones to precise locations, covering approximately 90% of the Arabidopsis chromosomes. We present the large-scale data set of TAC clones with high-resolution mapping information as a Java application tool, the Arabidopsis TAC Position Viewer, which provides ready-to-go transformable genomic DNA clones corresponding to certain loci on Arabidopsis chromosomes. The TAC clone resources will accelerate genomic DNA cloning, positional walking, complementation of mutants and DNA transformation for heterologous gene expression.

  17. High-Resolution fMRI of Auditory Cortical Map Changes in Unilateral Hearing Loss and Tinnitus.

    PubMed

    Ghazaleh, Naghmeh; Zwaag, Wietske van der; Clarke, Stephanie; Ville, Dimitri Van De; Maire, Raphael; Saenz, Melissa

    2017-02-06

    Animal models of hearing loss and tinnitus observe pathological neural activity in the tonotopic frequency maps of the primary auditory cortex. Here, we applied ultra high-field fMRI at 7 T to test whether human patients with unilateral hearing loss and tinnitus also show altered functional activity in the primary auditory cortex. The high spatial resolution afforded by 7 T imaging allowed tonotopic mapping of primary auditory cortex on an individual subject basis. Eleven patients with unilateral hearing loss and tinnitus were compared to normal-hearing controls. Patients showed an over-representation and hyperactivity in a region of the cortical map corresponding to low frequencies sounds, irrespective of the hearing loss and tinnitus range, which in most cases affected higher frequencies. This finding of hyperactivity in low frequency map regions, irrespective of hearing loss range, is consistent with some previous studies in animal models and corroborates a previous study of human tinnitus. Thus these findings contribute to accumulating evidence that gross cortical tonotopic map reorganization is not a causal factor of tinnitus.

  18. Comparison Effectiveness of Pixel Based Classification and Object Based Classification Using High Resolution Image In Floristic Composition Mapping (Study Case: Gunung Tidar Magelang City)

    NASA Astrophysics Data System (ADS)

    Ardha Aryaguna, Prama; Danoedoro, Projo

    2016-11-01

    Developments of analysis remote sensing have same way with development of technology especially in sensor and plane. Now, a lot of image have high spatial and radiometric resolution, that's why a lot information. Vegetation object analysis such floristic composition got a lot advantage of that development. Floristic composition can be interpreted using a lot of method such pixel based classification and object based classification. The problems for pixel based method on high spatial resolution image are salt and paper who appear in result of classification. The purpose of this research are compare effectiveness between pixel based classification and object based classification for composition vegetation mapping on high resolution image Worldview-2. The results show that pixel based classification using majority 5×5 kernel windows give the highest accuracy between another classifications. The highest accuracy is 73.32% from image Worldview-2 are being radiometric corrected level surface reflectance, but for overall accuracy in every class, object based are the best between another methods. Reviewed from effectiveness aspect, pixel based are more effective then object based for vegetation composition mapping in Tidar forest.

  19. Ultra-high Resolution Mapping of the Inner Crater of the Active Kick'em Jenny Volcano

    NASA Astrophysics Data System (ADS)

    Hart, L.; Scott, C.; Tominaga, M.; Smart, C.; Vaughn, I.; Roman, C.; Carey, S.; German, C. R.; Participants, T.

    2015-12-01

    We conducted high-resolution geological characterization of a 0.015km^2 region of the inner crater of the most active submarine volcano in the Caribbean, Kick'em Jenny, located 8 km off Grenada in the Lesser Antilles Island Arc. We obtained digital still images and microbathymetery at an altitude of 3 m from the seafloor by using stereo cameras and a BlueView system mounted on Remotely Operated Vehicle (ROV) Hercules during the NA054 cruise on E/V Nautilus (Sept. - Oct. 2014). The seafloor images were processed to construct 2-D photo mosaics of the survey area using Standard Hercules Imaging Suite. We systematically classified the photographed seafloor geology based on the distribution of seafloor morphology and the observable rock fragment and outcrop sizes. The center of the crater floor shows a smooth, coherent texture with little variation in sea floor morphology. From immediately outside this area toward the crater rim, we observe an extensive area covered with outcrops, small rocks, and sediment: and within this area, (1) the north section is partially covered by uneven outcrops with elongated lineaments and a course, rugged seafloor with individual rock fragments observable; (2) the middle section contains high variability and heterogeneity in seafloor morphology in a non-systematic manner; and (3) overall, the southern most section displays subdued seafloor features both in space and variability compared to the other areas. The distributions of rock fragments were classified into four distinct sizes. We observe: (i) little variation in size distribution near the center of the crater floor; and (ii) rock fragment size increasing toward the rim of the crater. To obtain a better understanding of the link between variation in seafloor morphology, rock size distribution, and other in situ processes, we compare our observations on the digital photo mosaic to bathymetry data and ROV visuals (e.g. vents and bacterial mats).

  20. High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres.

    PubMed

    Fransz, P F; Alonso-Blanco, C; Liharska, T B; Peeters, A J; Zabel, P; de Jong, J H

    1996-03-01

    A technique to detect DNA sequences on extended DNA fibres (EDF) prepared from interphase nuclei from tomato (Lycopersicon esculentum) and Arabidopsis thaliana leaves by fluorescence in situ hybridization (FISH) is described. Three nuclear lysis procedures have been tested for their ability to decondense chromatin and to generate highly extended intact DNA fibres on microscopic slides. DNA probes of various sizes have been used in FISH experiments to EDFs to establish the resolution and sensitivity of the technique. The fluorescent signals of a 5S rDNA probe hybridized to tomato EDFs revealed continuous strings of about 200 microns, that corresponded to a molecular size of about 660 kb. In A. thaliana, a contig of three cosmids spanning a genomic region with a total length of about 89 kb was analysed. By means of multicolour hybridization the physical positions of the cosmids were visualized as red and green fluorescence strings with overlapping regions in yellow. Comparison of the length of the fluorescent signals with the molecular data revealed a stretching degree of the DNA fibres at 3.27 kb microns-1, which is close to the Watson-Crick DNA length estimate of 2.9 kb microns-1. Other experiments on small size molecular probes with both lambda clones (13.5-17 kb insert sizes) and plasmids (4.2 and 5 kb) in a contig of A. thaliana, and the 5S rDNA region in tomato showed close agreement with molecular data. The lower limit of the detection, which was established in a hybridization experiment with two DNA probes from the 45S ribosomal gene on extended fibres of tomato, was about 0.7 kb. Consistent patterns of alternating fluorescent red and green spots were obtained reflecting the tandemly repeated arrangement of the 18S and 25S ribosomal sequences. On the basis of the microscopic distance between these hybridization spots the size of the ribosomal unit was estimated at 8.2 kb. This implies a drastic improvement of high-resolution physical mapping of DNA sequences

  1. High resolution mapping of offshore and onshore glaciogenic features in metamorphic bedrock terrain, Melville Bay, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Freire, Francis; Gyllencreutz, Richard; Greenwood, Sarah L.; Mayer, Larry; Egilsson, Arnar; Thorsteinsson, Tómas; Jakobsson, Martin

    2015-12-01

    Geomorphological studies of previously glaciated landscapes are important to understand how ice sheets and glaciers respond to rapidly changing climate. Melville Bay, in northwestern Greenland, contains some of the most sensitive but least studied ice sheet sectors in the northern hemisphere, where the bathymetric knowledge previously was restricted to a few sparsely distributed single beam echo soundings. We present here the results of high-resolution, geomorphological mapping of the offshore and onshore landscapes in Melville Bay using multibeam sonar and satellite data, at 5- and 10-m resolutions respectively. The results show a similar areally-scoured bedrock-dominated landscape with a glacially modified cnoc-and-lochan morphology on the inner shelf (150-500 m depth) and on the nearby exposed coast. This is manifested by the presence of U-shaped troughs, moutonée-type elongated landforms, stoss-and-lee forms, and streamlined features. The submarine landscape shows features that are characteristic of bedrock in folded, faulted, and weathered metamorphic terrain, and, to a lesser extent, glacially molded bedforms; while coastal landforms exhibit higher relief, irregular-shaped basins, and more subdued fracture valleys. Although generally similar, the onshore and offshore landscapes contain examples of distinctly different landform patterns, which are interpreted to reflect a longer exposure to long-term deep weathering as well as to more recent periglacial weathering processes on land. The spatial variability in the distribution of landforms across the landscape in both study areas is mostly attributed to differences in lithological properties of the bedrock. The lack of sediment cover on the inner shelf is likely a result of a capacity for sediment erosion and removal by the West Greenland Current flowing northward over the area in combination with limited sediment supply from long sea ice-cover seasons. The distribution and orientation of the landforms in the

  2. High resolution physical mapping of the spinal muscular atrophy (SMA) region utilizing YAC, PAC, and cosmid clones

    SciTech Connect

    Roy, N.; Yaraghi, Z.; Besner, A.

    1994-09-01

    The childhood SMAs are a group of autosomal recessive disorders characterized by anterior horn cells degeneration resulting in muscular wasting and weakness. All three types have been mapped to a 1.4 Mb region of 5q13.1 flanked centromerically by D5S435 and telomerically by D5S557. Several groups including our own have generated YAC contigs of the region documenting deletion, duplications and repetitive sequences. We have generated a higher resolution contiguous array of cosmid clones encompassing the region containing the microsatellites (MSRs) CATT-1 and CMS-1. These MSRs exist in multiple copies, termed subloci, which are present in a variable number among chromosomes. We have mapped four of the CATT-1 subloci, two of that we have shown to be in linkage disequilibrium with SMA, to a 100 kb interval within our cosmid array. The lack of a representation of all the CMS-1 subloci in our YAC and cosmid clones, in addition to the instability of these MSRs within the YAC clones, has rendered mapping problematic. Due to the reported stability of P1 artificial chromosomes (PAC), we have also constructed a contiguous array of 11 PAC clones spanning this critical interval. The unequivocal orientation of the contig along 5q13 has been confirmed by analysis with 4 genetic markers, 4 single copy probes and 3 STSs. Preliminary analysis has shown greater retention of MSR alleles in the PACs, suggesting their greater stability when compared to YACs. Mapping of cosmid and PAC clones derived from different individuals has allowed us to map the multiple CMS-1 and CATT-1 subloci along 5q13. We have identified a recombination event indicating that the SMA gene lies telomeric to one CMS sublocus. Placement of this sublocus in our physical map has enabled further refinement of the critical SMA region from previous estimates of 700 kb to an approximate 300 kb interval flanked by the markers CMS and D5S557.

  3. Automatic Generation of Building Mapping Using Digital, Vertical and Aerial High Resolution Photographs and LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Barragán, W.; Campos, A.; Sanchez, G.

    2016-06-01

    The objective of this research is automatic generation of buildings in the interest areas. This research was developed by using high resolution vertical aerial photographs and the LIDAR point cloud through radiometric and geometric digital processes. The research methodology usesknown building heights and various segmentation algorithms and spectral band combination. The overall effectiveness of the algorithm is 97.2% with the test data.

  4. A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease.

    PubMed

    La Cognata, Valentina; Morello, Giovanna; Gentile, Giulia; D'Agata, Velia; Criscuolo, Chiara; Cavalcanti, Francesca; Cavallaro, Sebastiano

    2016-10-01

    Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.

  5. Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds

    SciTech Connect

    Daulton, T.L. |; Eisenhour, D.D.; Buseck, P.R.

    1996-12-01

    Nano-diamonds isolated from acid dissolution residues of primitive carbonaceous meteorites (Allende and Murchison) were studied using high-resolution transmission electron microscopy. To discriminate among their most likely formation mechanisms, high-pressure shock-induced metamorphism or low-pressure vapor condensation. the microstructures of presolar diamond crystallites were compared to those of (terrestrial) synthesized nano-diamonds. The synthesized diamonds used for comparison in this study were produced by high-pressure shock waves generated in controlled detonations and by direct nucleation and homoepitaxial growth from the vapor phase in low-pressure chemical vapor deposition (CVD)-type processes. Microstructural features were identified that appear unique to shock metamorphism and to nucleation from the vapor phase, respectively. A comparison of these features to the microstructures found in presolar diamonds indicates that the predominant mechanism for presolar diamond formation is a vapor deposition process, suggesting a circumstellar condensation origin. A new presolar grain component has also been identified in the meteoritic residues, the (2H) hexagonal polytype of diamond (lonsdaleite). 93 refs., 17 figs., 1 tab.

  6. Comprehensive genome characterization of solitary fibrous tumors using high-resolution array-based comparative genomic hybridization.

    PubMed

    Bertucci, François; Bouvier-Labit, Corinne; Finetti, Pascal; Adélaïde, José; Metellus, Philippe; Mokhtari, Karima; Decouvelaere, Anne-Valérie; Miquel, Catherine; Jouvet, Anne; Figarella-Branger, Dominique; Pedeutour, Florence; Chaffanet, Max; Birnbaum, Daniel

    2013-02-01

    Solitary fibrous tumors (SFTs) are rare spindle cell tumors with limited therapeutic options. Their molecular basis is poorly known. No consistent cytogenetic abnormality has been reported. We used high-resolution whole-genome array-based comparative genomic hybridization (Agilent 244K oligonucleotide chips) to profile 47 samples, meningeal in >75% of cases. Few copy number aberrations (CNAs) were observed. Sixty-eight percent of samples did not show any gene CNA after exclusion of probes located in regions with referenced copy number variation (CNV). Only low-level CNAs were observed. The genomic profiles were very homogeneous among samples. No molecular class was revealed by clustering of DNA copy numbers. All cases displayed a "simplex" profile. No recurrent CNA was identified. Imbalances occurring in >20%, such as the gain of 8p11.23-11.22 region, contained known CNVs. The 13q14.11-13q31.1 region (lost in 4% of cases) was the largest altered region and contained the lowest percentage of genes with referenced CNVs. A total of 425 genes without CNV showed copy number transition in at least one sample, but only but only 1 in at least 10% of samples. The genomic profiles of meningeal and extra-meningeal cases did not show any differences.

  7. Continuous, high-resolution spatial mapping of water isotopes in oceanic environment using a CRDS analyzer combined with a continuous water sampler.

    NASA Astrophysics Data System (ADS)

    Kim-Hak, David; Huang, Kuan; Winkler, Renato

    2016-04-01

    The recent advancements of the laser-based technology -in particular Cavity Ring Down Spectroscopy, CRDS- gave birth to a new generation of water stable isotope analyzers that are user-friendly, compact and field deployable providing in-situ measurements. Furthermore, with last year's launch of the Continuous Water Sampler front-end, CWS, the analyzer system added two additional dimensions to liquid water measurements: real-time and continuous. These features enable the user to construct high resolution water isotope data sets through time and space. Campaigns on the Sacramento-San Joaquin River Delta with the US Geological Survey where the CWS-CRDS system was deployed onto a boat to spatially map sections of the delta, validated the CWS performance and demonstrated its durability on brackish water. The next step for the CWS is to explore oceanic applications with seawater. Early in-house laboratory experiments showed stable performance with brine waters (3% concentration). For the field experiment, we have collaborated with the China State Oceanic Administration to deploy the CWS-CRDS in oceanic environments on cruises along the costal China and Antarctic. Here, we present the results of the analysis collected onboard and compared them with discrete sampling measurements. The long-term test has also allowed us to assess the durability and expected lifetime of the CWS membrane and to recommend the proper maintenance procedure for optimum performance under oceanic conditions.

  8. High-resolution Rainfall Mapping in Dallas-Fort Worth (DFW) Urban Network of Radars at Multiple Frequencies

    NASA Astrophysics Data System (ADS)

    Chandra, Chandrasekar V.; Chen*, Haonan

    2015-04-01

    Urban flash flood is one of the most commonly encountered hazardous weather phenomena. Unfortunately, the rapid urbanization has made the densely populated areas even more vulnerable to flood risks. Hence, accurate and timely monitoring of rainfall at high spatiotemporal resolution is critical to severe weather warning and civil defense, especially in urban areas. However, it is still challenging to produce high-resolution products based on the large S-band National Weather Service (NWS) Next-Generation Weather Radar (NEXRAD), due to the sampling limitations and Earth curvature effect. Since 2012, the U.S. National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) has initiated the development of Dallas-Fort Worth (DFW) radar remote sensing network for urban weather hazards mitigation. The DFW urban radar network consists of a combination of high-resolution X-band radars and a standard NWS NEXRAD radar operating at S-band frequency. High-resolution quantitative precipitation estimation (QPE) is one of the major research goals in the deployment of this urban radar network. It has been shown in the literature that the dual-polarization radar techniques can improve the QPE accuracy over traditional single-polarization radars by rendering more measurements to enhance the data quality, providing more information about rain drop size distribution (DSD), and implying more characteristics of different hydrometeor types. This paper will present the real-time dual-polarization CASA DFW QPE system, which is developed via fusion of observations from both the high-resolution X band radar network and the S-band NWS radar. The specific dual-polarization rainfall algorithms at different frequencies (i.e., S- and X-band) will be described in details. In addition, the fusion methodology combining observations at different temporal resolution will be presented. In order to demonstrate the capability of rainfall

  9. High-resolution cytogenetic mapping of 342 new cosmid markers including 43 RFLP markers on human chromosome 17 by fluorescence in situ hybridization

    SciTech Connect

    Inazawa, Johji; Ariyama, Takeshi; Abe, Tatsuo ); Saito, Hiroko; Nakamura, Yusuke )

    1993-07-01

    The authors have constructed a high-resolution cytogenetic map of human chromosome 17 with 342 cosmid markers, each newly isolated from a cosmid library constructed from a human-mouse hybrid cell line containing a single human chromosome 17. Direct mapping on R- and/or G-banded (pro)metaphase chromosomes by fluorescence in situ hybridization localized these markers throughout the chromosome, although density was highest in the R-band-dominant regions of 17p13, 17p11.2, 17q11.2-q12, 17q21.3, 17q23, and 17q25. By screening some of the cosmid clones, they identified 71 polymorphic systems with 43 markers; 11 of these are VNTRs. As the high-resolution cytogenetic map contains a large number of markers, it can provide useful landmarks for a contig map of chromosome 17. Furthermore, the map will contribute to positional cloning of aberrant genes responsible for inherited diseases such as Miller-Dieker syndrome (MDS), Smith-Magenis syndrome (SMS), and familial early-onset breast cancer, as well as putative tumor suppressor genes on this chromosome. 47 refs., 2 figs., 2 tabs.

  10. Pulmonary fibrosis: tissue characterization using late-enhanced MRI compared with unenhanced anatomic high-resolution CT

    PubMed Central

    Lavelle, Lisa P.; Brady, Darragh; McEvoy, Sinead; Murphy, David; Gibney, Brian; Gallagher, Annika; Butler, Marcus; Shortt, Fionnula; McMullen, Marie; Fabre, Aurelie; Lynch, David A.; Keane, Michael P.; Dodd, Jonathan D.

    2017-01-01

    PURPOSE We aimed to prospectively evaluate anatomic chest computed tomography (CT) with tissue characterization late gadolinium-enhanced magnetic resonance imaging (MRI) in the evaluation of pulmonary fibrosis (PF). METHODS Twenty patients with idiopathic pulmonary fibrosis (IPF) and twelve control patients underwent late-enhanced MRI and high-resolution CT. Tissue characterization of PF was depicted using a segmented inversion-recovery turbo low-angle shot MRI sequence. Pulmonary arterial blood pool nulling was achieved by nulling main pulmonary artery signal. Images were read in random order by a blinded reader for presence and extent of overall PF (reticulation and honeycombing) at five anatomic levels. Overall extent of IPF was estimated to the nearest 5% as well as an evaluation of the ratios of IPF made up of reticulation and honeycombing. Overall grade of severity was dependent on the extent of reticulation and honeycombing. RESULTS No control patient exhibited contrast enhancement on lung late-enhanced MRI. All IPF patients were identified with late-enhanced MRI. Mean signal intensity of the late-enhanced fibrotic lung was 31.8±10.6 vs. 10.5±1.6 for normal lung regions, P < 0.001, resulting in a percent elevation in signal intensity from PF of 204.8%±90.6 compared with the signal intensity of normal lung. The mean contrast-to-noise ratio was 22.8±10.7. Late-enhanced MRI correlated significantly with chest CT for the extent of PF (R=0.78, P = 0.001) but not for reticulation, honeycombing, or coarseness of reticulation or honeycombing. CONCLUSION Tissue characterization of IPF is possible using inversion recovery sequence thoracic MRI. PMID:28067202

  11. A Study of The Eastern Mediterranean Hydrology and Circulation By Comparing Observation and High Resolution Numerical Model Results.

    NASA Astrophysics Data System (ADS)

    Alhammoud, B.; Béranger, K.; Mortier, L.; Crépon, M.

    The Eastern Mediterranean hydrology and circulation are studied by comparing the results of a high resolution primitive equation model (described in dedicated session: Béranger et al.) with observations. The model has a horizontal grid mesh of 1/16o and 43 z-levels in the vertical. The model was initialized with the MODB5 climatology and has been forced during 11 years by the daily sea surface fluxes provided by the European Centre for Medium-range Weather Forecasts analysis in a perpetual year mode corresponding to the year March 1998-February 1999. At the end of the run, the numerical model is able to accurately reproduce the major water masses of the Eastern Mediterranean Basin (Levantine Surface Water, modi- fied Atlantic Water, Levantine Intermediate Water, and Eastern Mediterranean Deep Water). Comparisons with the POEM observations reveal good agreement. While the initial conditions of the model are somewhat different from POEM observations, dur- ing the last year of the simulation, we found that the water mass stratification matches that of the observations quite well in the seasonal mean. During the 11 years of simulation, the model drifts slightly in the layers below the thermocline. Nevertheless, many important physical processes were reproduced. One example is that the dispersal of Adriatic Deep Water into the Levantine Basin is rep- resented. In addition, convective activity located in the northern part of the Levantine Basin occurs in Spring as expected. The surface circulation is in agreement with in-situ and satellite observations. Some well known mesoscale features of the upper thermocline circulation are shown. Sea- sonal variability of transports through Sicily, Otranto and Cretan straits are inves- tigated as well. This work was supported by the french MERCATOR project and SHOM.

  12. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters

    SciTech Connect

    León, Iker; Yang, Zheng; Liu, Hong-Tao; Wang, Lai-Sheng

    2014-08-15

    A new velocity-map imaging apparatus equipped with a laser-vaporization supersonic cluster source and a time-of-flight mass spectrometer is described for high-resolution photoelectron spectroscopy studies of size-selected cluster anions. Vibrationally cold anion clusters are produced using a laser-vaporization supersonic cluster source, size-selected by a time-of-flight mass spectrometer, and then focused co-linearly into the interaction zone of the high-resolution velocity-map imaging (VMI) system. The multilens VMI system is optimized via systematic simulations and can reach a resolution of 1.2 cm{sup −1} (FWHM) for near threshold electrons while maintaining photoelectron kinetic energy resolutions (ΔKE/KE) of ∼0.53% for higher energy electrons. The new VMI lens has superior focusing power over a large energy range, yielding highly circular images with distortions no larger than 1.0025 between the long and short radii. The detailed design, simulation, construction, testing, and performance of the high-resolution VMI apparatus are presented.

  13. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    NASA Astrophysics Data System (ADS)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  14. Toward a high-resolution Plasmodium falciparum linkage map: Polymorphic markers from hundreds of simple sequence repeats

    SciTech Connect

    Su, Xin-Zhuan; Wellems, T.E.

    1996-05-01

    A total of 5.7 simple sequence repeats (SSRs or {open_quotes}microsatellites{close_quotes}) were identified from Plasmodium falciparum sequences in GenBank and from inserts in a genomic DNA library. Oligonucleotide primers from sequences that flank 224 of these SSRs were synthesized and used in PCR assays to test for simple sequence length polymorphisms (SSLPs). Of the 224 SSRs, 188 showed SSLPs were assigned to chromosome linkage groups by physical mapping and by comparing their inheritance patterns against those of restriction fragment length polymorphism markers in a genetic cross (HB3XDd2). The predominant SSLPs in P. falciparum were found to contain [TA]{sub n}, and [TAA]{sub n}, a feature that is reminiscent of plant genomes and is consistent with the proposed algal-like origin of malaria parasites. Since such SSLPs are abundant and readily isolated, they are a powerful resource for genetic analysis of P. falciparum. 38 refs., 2 figs., 2 tabs.

  15. High-resolution multibeam mapping and submersible surveys of topographic features in the northwestern Gulf of Mexico

    USGS Publications Warehouse

    Hickerson, E.L.; Schmahl, G.P.; Weaver, D.C.; Gardner, J.V.

    2003-01-01

    The Flower Garden Banks National Marine Sanctuary (FGBNMS) and the USGS Pacific Seafloor Mapping Project mapped about 2000 km2 of the northwestern Gulf of Mexico continental shelf during June 2002, using a Kongsberg Simrad EM1000 multibeam echosounder. Mapping focused on select topographic highs thave hae been idetnnfied as biological features warranting protection from oil and gas activities by the Minerals Management Service (MMS). The base maps will be used for all future ROV and submersible missions.

  16. High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling.

    PubMed

    Arms, Erin M; Bloom, Arnold J; St Clair, Dina A

    2015-09-01

    QTL stm9 controlling rapid-onset water stress tolerance in S. habrochaites was high-resolution mapped to a chromosome 9 region that contains genes associated with abiotic stress tolerances. Wild tomato (Solanum habrochaites) exhibits tolerance to abiotic stresses, including drought and chilling. Root chilling (6 °C) induces rapid-onset water stress by impeding water movement from roots to shoots. S. habrochaites responds to such changes by closing stomata and maintaining shoot turgor, while cultivated tomato (S. lycopersicum) fails to close stomata and wilts. This response (shoot turgor maintenance under root chilling) is controlled by a major QTL (designated stm9) on chromosome 9, which was previously fine-mapped to a 2.7-cM region. Recombinant sub-near-isogenic lines for chromosome 9 were marker-selected, phenotyped for shoot turgor maintenance under root chilling in two sets of replicated experiments (Fall and Spring), and the data were used to high-resolution map QTL stm9 to a 0.32-cM region. QTL mapping revealed a single QTL that was coincident for both the Spring and Fall datasets, suggesting that the gene or genes contributing to shoot turgor maintenance under root chilling reside within the marker interval H9-T1673. In the S. lycopersicum reference genome sequence, this chromosome 9 region is gene-rich and contains representatives of gene families that have been associated with abiotic stress tolerance.

  17. High-resolution genetic linkage mapping, high-temperature tolerance and growth-related quantitative trait locus (QTL) identification in Marsupenaeus japonicus.

    PubMed

    Lu, Xia; Luan, Sheng; Hu, Long Yang; Mao, Yong; Tao, Ye; Zhong, Sheng Ping; Kong, Jie

    2016-06-01

    The Kuruma prawn, Marsupenaeus japonicus, is one of the most promising marine invertebrates in the industry in Asia, Europe and Australia. However, the increasing global temperatures result in considerable economic losses in M. japonicus farming. In the present study, to select genetically improved animals for the sustainable development of the Kuruma prawn industry, a high-resolution genetic linkage map and quantitative trait locus (QTL) identification were performed using the RAD technology. The maternal map contained 5849 SNP markers and spanned 3127.23 cM, with an average marker interval of 0.535 cM. Instead, the paternal map contained 3927 SNP markers and spanned 3326.19 cM, with an average marker interval of 0.847 cM. The consensus map contained 9289 SNP markers and spanned 3610.90 cM, with an average marker interval of 0.388 cM and coverage of 99.06 % of the genome. The markers were grouped into 41 linkage groups in the maps. Significantly, negative correlation was detected between high-temperature tolerance (UTT) and body weight (BW). The QTL mapping revealed 129 significant QTL loci for UTT and four significant QTL loci for BW at the genome-wide significance threshold. Among these QTLs, 129 overlapped with linked SNPs, and the remaining four were located in regions between contiguous SNPs. They explained the total phenotypic variance ranging from 8.9 to 12.4 %. Because of a significantly negative correlation between growth and high-temperature tolerance, we demonstrate that this high-resolution linkage map and QTLs would be useful for further marker-assisted selection in the genetic improvement of M. japonicus.

  18. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    SciTech Connect

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; Xu, Donghua

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly, this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.

  19. Modeling defect cluster evolution in irradiated structural materials: Focus on comparing to high-resolution experimental characterization studies

    DOE PAGES

    Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...

    2015-03-02

    Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less

  20. Diagnosis of asbestosis by a time expanded wave form analysis, auscultation and high resolution computed tomography: a comparative study.

    PubMed Central

    al Jarad, N; Strickland, B; Bothamley, G; Lock, S; Logan-Sinclair, R; Rudd, R M

    1993-01-01

    BACKGROUND--Crackles are a prominent clinical feature of asbestosis and may be an early sign of the condition. Auscultation, however, is subjective and interexaminer disagreement is a problem. Computerised lung sound analysis can visualise, store, and analyse lung sounds and disagreement on the presence of crackles is minimal. High resolution computed tomography (HRCT) is superior to chest radiography in detecting early signs of asbestosis. The aim of this study was to compare clinical auscultation, time expanded wave form analysis (TEW), chest radiography, and HRCT in detecting signs of asbestosis in asbestos workers. METHODS--Fifty three asbestos workers (51 men and two women) were investigated. Chest radiography and HRCT were assessed by two independent readers for detection of interstitial opacities. HRCT was performed in the supine position with additional sections at the bases in the prone position. Auscultation for persistent fine inspiratory crackles was performed by two independent examiners unacquainted with the diagnosis. TEW analysis was obtained from a 33 second recording of lung sounds over the lung bases. TEW and auscultation were performed in a control group of 13 subjects who had a normal chest radiograph. There were 10 current smokers and three previous smokers. In asbestos workers the extent of pulmonary opacities on the chest radiograph was scored according to the International Labour Office (ILO) scale. Patients were divided into two groups: 21 patients in whom the chest radiograph was > 1/0 (group 1) and 32 patients in whom the chest radiograph was scored < or = 1/0 (group 2) on the ILO scale. RESULTS--In patients with an ILO score of < or = 1/0 repetitive mid to late inspiratory crackles were detected by auscultation in seven (22%) patients and by TEW in 14 (44%). HRCT detected definite interstitial opacities in 11 (34%) and gravity dependent subpleural lines in two (6%) patients. All but two patients with evidence of interstitial disease or

  1. Comparing the skill of precipitation forecasts from high resolution simulations and statistically downscaled products in the Australian Snowy Mountains

    NASA Astrophysics Data System (ADS)

    Dai, J.; Chubb, T.; Manton, M.; Siems, S. T.

    2013-12-01

    Statistically significant improvements to a 'Poor Man's Ensemble' (PME) of coarse-resolution numeral precipitation forecast for the Australian Snowy Mountains can be achieved using a clustering algorithm. Daily upwind soundings are classified according to one of four clusters, which are employed to adjust the precipitation forecasts using a linear regression. This approach is a type of 'statistical downscaling', in that it relies on a historical relationship between observed and forecast precipitation amounts, and is a computationally cheap and fast way to improve forecast skill. For the 'wettest' class, the root-mean-square error for the one-day forecast was reduced from 26.98 to 17.08 mm, and for the second 'wet' class the improvement was from 8.43 to 5.57 mm. Regressions performed for the two 'dry' classes were not shown to significantly improve the forecast. Statistical measures of the probability of precipitation and the quantitative precipitation forecast were evaluated for the whole of the 2011 winter (May-September). With a 'hit rate' (fraction of correctly-forecast rain days) of 0.9, and a 'false alarm rate' (fraction of forecast rain days which did not occur) of 0.16 the PME forecast performs well in identifying rain days. The precipitation amount is, however systematically under-predicted, with a mean bias of -5.76 mm and RMSE of 12.86 mm for rain days during the 2011 winter. To compare the statistically downscaled results with the capabilities of a state of the art numerical prediction system, the WRF model was run at 4 km resolution over the Australian Alpine region for the same period, and precipitation forecasts analysed in a similar manner. It had a hit rate of 0.955 and RMSE of 5.16 mm for rain days. The main reason for the improved performance relative to the PME is that the high resolution of the simulations better captures the orographic forcing due to the terrain, and consequently resolves the precipitation processes more realistically, but

  2. Comparative study of IDH1 mutations in gliomas by high resolution melting analysis, immunohistochemistry and direct DNA sequencing.

    PubMed

    Li, Juan; Zhang, Haiyan; Wang, Li; Yang, Chuanhong; Lai, Huangwen; Zhang, Wei; Chen, Xiaodong; Wang, Jie

    2015-09-01

    Patients with glioblastomas with a specific mutation in the isocitrate dehydrogenase 1 (IDH1) gene have a better prognosis than those with gliomas with wild‑type IDH1. IDH1 analysis has become part of the standard diagnostic procedure and a promising tool used for stratification in clinical trials. The present study aimed to compare high resolution melting (HRM) analysis, immunohistochemistry (IHC) and direct DNA sequencing for the detection of IDH mutations in gliomas. Fifty‑one formalin‑fixed paraffin‑embedded tumor samples were selected. For the HRM analysis and direct DNA sequencing, DNA was extracted from the tissues. For IHC, sections were stained with an anti‑IDH1‑R132H specific antibody. The HRM analysis method identified 33 cases of IDH1 gene mutations, and all mutations occurred at the R132H site. There were 33 cases of IDH1 gene mutations found by IHC, which was consistent with that identified using the HRM analysis method. However, only 30 IDH1 samples were confirmed by sequencing, in which mutations occurred at the IDH1 exon 4 R132H site. No mutation was detected in the other three of these 33 cases (two grade II oligodendroglioma and one grade II diffuse astrocytoma) by sequencing, while IHC was positive for IDH1‑R132H. The results showed that the mutation detection rate was not identified to be significantly different (P=0.250) when determined by the HRM analysis method or by direct DNA sequencing, as the concordant rate between the two methods was high (κ=0.866). The HRM analysis method in glioma IDH1 gene mutation detection has advantages of high sensitivity, good repeatability, simple operation and accurate results. It provides a novel method for detecting mutations of the IDH1 gene in paraffin embedded tissue samples of clinical glioma. Related to a small amount of sample, there was no evidence showing that HRM analysis method is superior to IHC. Direct DNA sequencing, HRM analysis and IHC results were consistent; however, HRM and

  3. Bio-oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components

    SciTech Connect

    Smith, Erica A.; Park, Soojin; Klein, Adam T.; Lee, Young Jin

    2012-05-16

    We have previously demonstrated that a petroleomic analysis could be performed for bio-oils and revealed the complex nature of bio-oils for the nonvolatile phenolic compounds (Smith, E.; Lee, Y. J. Energy Fuels 2010, 24, 5190−5198). As a subsequent study, we have adapted electrospray ionization in negative-ion mode to characterize a wide variety of bio-oil compounds. A comparative study of three common high-resolution mass spectrometers was performed to validate the methodology and to investigate the differences in mass discrimination and resolution. The mass spectrum is dominated by low mass compounds with m/z of 100–250, with some compounds being analyzable by gas chromatography–mass spectrometry (GC–MS). We could characterize over 800 chemical compositions, with only about 40 of them being previously known in GC–MS. This unveiled a much more complex nature of bio-oils than typically shown by GC–MS. The pyrolysis products of cellulose and hemicellulose, particularly polyhydroxy cyclic hydrocarbons (or what we call “sugaric” compounds), such as levoglucosan, could be effectively characterized with this approach. Phenolic compounds from lignin pyrolysis could be clearly distinguished in a contour map of double bond equivalent (DBE) versus the number of carbons from these sugaric compounds.

  4. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    PubMed

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality.

  5. High-resolution mapping by YAC fragmentation of a 2.5-Mb Xp22 region containing the human RS, KFSD and CLS disease genes.

    PubMed

    Van de Vosse, E; Van der Bent, P; Heus, J J; Van Ommen, G J; Den Dunnen, J T

    1997-07-01

    The disease loci for X-linked Retinoschisis (RS), Keratosis follicularis spinulosa decalvans (KFSD), and Coffin-Lowry syndrome (CLS) have been localized to the same, small region in Xp22 on the human X Chromosome (Chr). To generate a high-resolution map of the available contig in this area, we have used the YAC fragmentation vectors pBP108/ADE2 and pBP109/ADE2 and generated fragmented YACs from a 2.5-Mb YAC (y939H7) spanning the mentioned disease gene candidate regions. Forty-seven fragmented YACs were generated and analyzed, ranging in size from 170 kb to over 2400 kb. The resulting YAC fragmentation panel was used to construct a detailed restriction map of the region and has been used to bin clones and markers. As a deletion panel, it will present a valuable resource for further mapping.

  6. High-resolution fine mapping of ps-2, a mutated gene conferring functional male sterility in tomato due to non-dehiscent anthers.

    PubMed

    Gorguet, Benoit; Schipper, Danny; van Heusden, Adriaan W; Lindhout, Pim

    2006-11-01

    Functional male sterility is an important trait for the production of hybrid seeds. Among the genes coding for functional male sterility in tomato is the positional sterility gene ps-2. ps-2 is monogenic recessive, confers non-dehiscent anthers and is the most suitable for practical uses. In order to have tools for molecular-assisted selection (MAS) we fine mapped the ps-2 locus. This was done in an F(2) segregating population derived from the interspecific cross between a functionally male sterile line (ps-2/ps-2; Solanum lycopersicum) and a functionally male fertile line (S. pimpinellifolium). Here we report the procedure that has led to the high-resolution fine mapping of the ps-2 locus in a 1.65 cM interval delimited by markers T0958 and T0635 on the short arm of Chromosome 4. The presence of many COS markers in the local high-resolution map allowed us to study the synteny between tomato and Arabidopsis at the ps-2 locus region. No obvious candidate gene for ps-2 was identified among the known functional male sterility genes in Arabidopsis.

  7. High Resolution Mapping of the Impermeable Surfaces of Barnstable County, Cape Cod and their Relationship to Water Quality

    NASA Astrophysics Data System (ADS)

    Stone, T.; Fiske, G.; Schlesinger, P.

    2003-12-01

    We have developed several impermeable surface maps for all Cape Cod (Barnstable County) to help assess the contribution of paved and other impermeable surfaces to declines in local and regional water quality. These maps have been assembled with the cooperation of many town planning departments, the Cape Cod National Seashore, Mass Military Reservation, the Cape Cod Commission, the Association to Preserve Cape Cod (APCC) and from IKONOS data. The map are being used to predict where new impermeable surface will occur, define current and future hotspots of non-point pollution, and to map the relationships of impermeable surfaces to the zones of contribution (ZOC) of municipal wells. The maps are also used to define the percentage of impermeable surfaces in buffer zones around ponds and estuaries. Combining these data with census data on housing and population density allows us to define the importance of impervious surface as minor or major factors in water pollution.

  8. Comparative mapping in the Pinaceae.

    PubMed

    Krutovsky, Konstantin V; Troggio, Michela; Brown, Garth R; Jermstad, Kathleen D; Neale, David B

    2004-09-01

    A comparative genetic map was constructed between two important genera of the family Pinaceae. Ten homologous linkage groups in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) were identified using orthologous expressed sequence tag polymorphism (ESTP) and restriction fragment length polymorphism (RFLP) markers. The comparative mapping revealed extensive synteny and colinearity between genomes of the Pinaceae, consistent with the hypothesis of conservative chromosomal evolution in this important plant family. This study reports the first comparative map in forest trees at the family taxonomic level and establishes a framework for comparative genomics in Pinaceae.

  9. Comparative Mapping in the Pinaceae

    PubMed Central

    Krutovsky, Konstantin V.; Troggio, Michela; Brown, Garth R.; Jermstad, Kathleen D.; Neale, David B.

    2004-01-01

    A comparative genetic map was constructed between two important genera of the family Pinaceae. Ten homologous linkage groups in loblolly pine (Pinus taeda L.) and Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) were identified using orthologous expressed sequence tag polymorphism (ESTP) and restriction fragment length polymorphism (RFLP) markers. The comparative mapping revealed extensive synteny and colinearity between genomes of the Pinaceae, consistent with the hypothesis of conservative chromosomal evolution in this important plant family. This study reports the first comparative map in forest trees at the family taxonomic level and establishes a framework for comparative genomics in Pinaceae. PMID:15454556

  10. NORMA: a tool for flexible fitting of high-resolution protein structures into low-resolution electron-microscopy-derived density maps.

    PubMed

    Suhre, Karsten; Navaza, Jorge; Sanejouand, Yves Henri

    2006-09-01

    This paper describes a freely available software suite that allows the modelling of large conformational changes of high-resolution three-dimensional protein structures under the constraint of a low-resolution electron-density map. Typical applications are the interpretation of electron-microscopy data using atomic scale X-ray structural models. The software package provided should enable the interested user to perform flexible fitting on new cases without encountering major technical difficulties. The NORMA software suite including three fully executable reference cases and extensive user instructions are available at http://www.elnemo.org/NORMA/.

  11. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  12. High-resolution threshold photoelectron study of the propargyl radical by the vacuum ultraviolet laser velocity-map imaging method.

    PubMed

    Gao, Hong; Xu, Yuntao; Yang, Lei; Lam, Chow-Shing; Wang, Hailing; Zhou, Jingang; Ng, C Y

    2011-12-14

    By employing the vacuum ultraviolet (VUV) laser velocity-map imaging (VMI) photoelectron scheme to discriminate energetic photoelectrons, we have measured the VUV-VMI-threshold photoelectrons (VUV-VMI-TPE) spectra of propargyl radical [C(3)H(3)(X̃(2)B(1))] near its ionization threshold at photoelectron energy bandwidths of 3 and 7 cm(-1) (full-width at half-maximum, FWHM). The simulation of the VUV-VMI-TPE spectra thus obtained, along with the Stark shift correction, has allowed the determination of a precise value 70 156 ± 4 cm(-1) (8.6982 ± 0.0005 eV) for the ionization energy (IE) of C(3)H(3). In the present VMI-TPE experiment, the Stark shift correction is determined by comparing the VUV-VMI-TPE and VUV laser pulsed field ionization-photoelectron (VUV-PFI-PE) spectra for the origin band of the photoelectron spectrum of the X̃(+)-X̃ transition of chlorobenzene. The fact that the FWHMs for this origin band observed using the VUV-VMI-TPE and VUV-PFI-PE methods are nearly the same indicates that the energy resolutions achieved in the VUV-VMI-TPE and VUV-PFI-PE measurements are comparable. The IE(C(3)H(3)) value obtained based on the VUV-VMI-TPE measurement is consistent with the value determined by the VUV laser PIE spectrum of supersonically cooled C(3)H(3)(X̃(2)B(1)) radicals, which is also reported in this article.

  13. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  14. High-resolution mapping of biogenic carbon fluxes to improve urban CO2 monitoring, reporting, and verification

    NASA Astrophysics Data System (ADS)

    Hardiman, B. S.; Hutyra, L.; Gately, C.; Raciti, S. M.

    2014-12-01

    Urban areas are home to 80% of the US population and 70% of energy related fossil fuel emissions originate from urban areas. Efforts to accurately monitor, report, and verify anthropogenic CO2 missions using atmospheric measurements require reliable partitioning of anthropogenic and biogenic sources. Anthropogenic emissions peak during the daytime, coincident with biogenic drawdown of CO2. In contrast, biogenic respiration emissions peak at night when anthropogenic emissions are lower. This temporal aliasing of fluxes requires careful modeling of both biogenic and anthropogenic fluxes for accurate source attribution through inverse modeling. Biogenic fluxes in urban regions can be a significant component of the urban carbon cycle. However, vegetation in urban areas is subject to longer growing seasons, reduced competition, higher rates of nitrogen deposition, and altered patterns of biomass inputs, all interacting to elevate C turnover rates relative to analogous non-urban ecosystems. These conditions suggest that models that ignore urban vegetation or base biogenic flux estimates on non-urban forests are likely to produce inaccurate estimates of anthropogenic CO2 emissions. Biosphere models often omit biogenic fluxes in urban areas despite potentially extensive vegetation coverage. For example, in Massachusetts, models mask out as much as 40% of land area, effectively assuming they have no biological flux. This results in a ~32% underestimate of aboveground biomass (AGB) across the state as compared to higher resolution vegetation maps. Our analysis suggests that some common biomass maps may underestimate forest biomass by ~520 Tg C within the state of Massachusetts. Moreover, omitted portions of the state have the highest population density, indicating that we know least about regions where most people live. We combine remote sensing imagery of urban vegetation cover with ground surveys of tree growth and mortality to improve estimates of aboveground biomass and

  15. High-resolution mapping of genes involved in plant stage-specific partial resistance of barley to leaf rust.

    PubMed

    Yeo, F K S; Bouchon, R; Kuijken, R; Loriaux, A; Boyd, C; Niks, R E; Marcel, T C

    2017-01-01

    Partial resistance quantitative trait loci (QTLs) Rphq11 and rphq16 against Puccinia hordei isolate 1.2.1 were previously mapped in seedlings of the mapping populations Steptoe/Morex and Oregon Wolfe Barleys, respectively. In this study, QTL mapping was performed at adult plant stage for the two mapping populations challenged with the same rust isolate. The results suggest that Rphq11 and rphq16 are effective only at seedling stage, and not at adult plant stage. The cloning of several genes responsible for partial resistance of barley to P. hordei will allow elucidation of the molecular basis of this type of plant defence. A map-based cloning approach requires to fine-map the QTL in a narrow genetic window. In this study, Rphq11 and rphq16 were fine-mapped using an approach aiming at speeding up the development of plant material and simplifying its evaluation. The plant materials for fine-mapping were identified from early plant materials developed to produce QTL-NILs. The material was first selected to carry the targeted QTL in heterozygous condition and susceptibility alleles at other resistance QTLs in homozygous condition. This strategy took four to five generations to obtain fixed QTL recombinants (i.e., homozygous resistant at the Rphq11 or rphq16 QTL alleles, homozygous susceptible at the non-targeted QTL alleles). In less than 2 years, Rphq11 was fine-mapped into a 0.2-cM genetic interval and a 1.4-cM genetic interval for rphq16. The strongest candidate gene for Rphq11 is a phospholipid hydroperoxide glutathione peroxidase. Thus far, no candidate gene was identified for rphq16.

  16. Three tumor-suppressor regions on chromosome 11p identified by high-resolution deletion mapping in human non-small-cell lung cancer

    SciTech Connect

    Bepler, G.; Garcia-Blanco, A. )

    1994-06-07

    Non-small-cell lung cancer is the leading cause of cancer death for men and women in the industrialized nations. Identification of regions for genes involved in its pathogenesis has been difficult. Data presented here show three distinct regions identified on chromosome 11p. Two regions on 11p13 distal to the Wilms tumor gene WT1 and on 11p15.5 between the markers HBB and D11S860 are described. The third region on the telomere of 11p15.5 has been previously described and is further delineated in this communication. By high-resolution mapping the size of each of these regions was estimated to be 2-3 megabases. The frequency of somatic loss of genetic information in these regions (57%, 71%, and 45%, respectively) was comparable to that seen in heritable tumors such as Wilms tumor (55%) and retinoblastoma (70%) and suggests their involvement in pathogenesis of non-small-cell lung cancer. Gene dosage analyses revealed duplication of the remaining allele in the majority of cases in the 11p13 and the proximal 11p15.5 region but rarely in the distal 11p15.5 region. In tumors with loss of heterozygosity in all three regions any combination of duplication or simple deletion was observed, suggesting that loss of heterozygosity occurs independently and perhaps at different points in time. These results provide a basis for studies directed at cloning potential tumor-suppressor genes in these regions and for assessing their biological and clinical significance in non-small-cell lung cancer.

  17. The Panchromatic Hubble Andromeda Treasury. VIII. A Wide-area, High-resolution Map of Dust Extinction in M31

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Hogg, David W.; Lang, Dustin; Leroy, Adam K.; Gordon, Karl D.; Sandstrom, Karin; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dong, Hui; Gilbert, Karoline M.; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Lauer, Tod R.; Schruba, Andreas; Seth, Anil C.; Skillman, Evan D.

    2015-11-01

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color-magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine & Li dust models overpredict the observed extinction by a factor of ˜2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ˜2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine & Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  18. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    SciTech Connect

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.; Williams, Benjamin F.; Hogg, David W.; Lang, Dustin; Leroy, Adam K.; Gordon, Karl D.; Gilbert, Karoline M.; Sandstrom, Karin; Bell, Eric F.; Dong, Hui; Lauer, Tod R.; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Schruba, Andreas; Seth, Anil C.; Skillman, Evan D.

    2015-11-20

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  19. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C.

    PubMed

    Mifsud, Borbala; Tavares-Cadete, Filipe; Young, Alice N; Sugar, Robert; Schoenfelder, Stefan; Ferreira, Lauren; Wingett, Steven W; Andrews, Simon; Grey, William; Ewels, Philip A; Herman, Bram; Happe, Scott; Higgs, Andy; LeProust, Emily; Follows, George A; Fraser, Peter; Luscombe, Nicholas M; Osborne, Cameron S

    2015-06-01

    Transcriptional control in large genomes often requires looping interactions between distal DNA elements, such as enhancers and target promoters. Current chromosome conformation capture techniques do not offer sufficiently high resolution to interrogate these regulatory interactions on a genomic scale. Here we use Capture Hi-C (CHi-C), an adapted genome conformation assay, to examine the long-range interactions of almost 22,000 promoters in 2 human blood cell types. We identify over 1.6 million shared and cell type-restricted interactions spanning hundreds of kilobases between promoters and distal loci. Transcriptionally active genes contact enhancer-like elements, whereas transcriptionally inactive genes interact with previously uncharacterized elements marked by repressive features that may act as long-range silencers. Finally, we show that interacting loci are enriched for disease-associated SNPs, suggesting how distal mutations may disrupt the regulation of relevant genes. This study provides new insights and accessible tools to dissect the regulatory interactions that underlie normal and aberrant gene regulation.

  20. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning.

    PubMed

    Valouev, Anton; Ichikawa, Jeffrey; Tonthat, Thaisan; Stuart, Jeremy; Ranade, Swati; Peckham, Heather; Zeng, Kathy; Malek, Joel A; Costa, Gina; McKernan, Kevin; Sidow, Arend; Fire, Andrew; Johnson, Steven M

    2008-07-01

    Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome.

  1. Geographic Object-based Image Analysis for Developing Cryospheric Surface Mapping Application using Remotely Sensed High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Jawak, S. D.; Luis, A. J.

    2015-12-01

    A novel semi-automated method was devised by coupling spectral index ratios (SIRs) and geographic object-based image analysis (GEOBIA) to extract cryospheric geoinformation from very high resolution WorldView 2 (WV-2) satellite imagery. The present study addresses development of multiple rule sets for GEOBIA-based classification of WV-2 imagery to accurately extract land cover features in the Larsemann Hills, Antarctica. Multi-level segmentation process was applied to WV-2 image to generate different sizes of geographic image objects corresponding to various land cover features w.r.t scale parameter. Several SIRs were applied to geographic objects at different segmentation levels to classify landmass, man-made features, snow/ice, and water bodies. A specific attention was paid to water body class to identify water areas at the image level, considering their uneven appearance on landmass and ice. The results illustrated that synergetic usage of SIRs and GEOBIA can provide accurate means to identify land cover classes with an overall classification accuracy of ≈97%. In conclusion, the results suggest that GEOBIA is a powerful tool for carrying out automatic and semiautomatic analysis for most cryospheric remote-sensing applications, and the synergetic coupling with pixel-based SIRs is found to be a superior method for mining geoinformation.

  2. Paleo Tibetan Lake Extent Mapping from High-Resolution Satellite Imagery and Digital Elevation Models: A Case Study of Dagze Lake

    NASA Astrophysics Data System (ADS)

    Sheng, Y.; Shah, C. A.; Smith, L. C.; Kroll, C. N.; Li, X.; Wu, Y.; Yao, T.

    2006-12-01

    With a pronounced temperature rise of 0.16oC per decade, the Tibetan Plateau is one of the world's most vulnerable areas to global change. Tibetan lakes serve as a sensitive indicator of global climate and water cycle variability. Recent 14C dating of Tibetan lake deposits showed that the Greatest Lake Period (GLP) appeared in between ~40 and 25 ka BP. Tibetan lakes have shrunk greatly since then. A key science question for the region is "How much have the Tibetan lakes shrunk since the late Pleistocene?" However, mapping the paleo lake extent is challenging due to the inaccessibility and inhospitable environment of this remote plateau. In this research, we address the problem using high-resolution satellite imagery and digital elevation models (DEMs). As the lakes shrank, abandoned paleo shorelines were left as evidenced by lake-formed cliffs, shore clays, and sand bars. Such paleo-shorelines commonly surround many contemporary lake basins, indicating past lake extent during various periods since the GLP. The GLP shorelines at the highest elevations are normally preserved, provided water levels have not subsequently risen, and therefore represent the maximum GLP lake extent. These relict paleo-shorelines are commonly visible in high-resolution satellite imagery. Therefore, through data fusion of high-resolution satellite imagery with DEMs, both paleo lake areas and corresponding bench elevations can be obtained. The highest paleo shorelines or coastal features can be identified in high-resolution imagery, and its corresponding elevations of paleo lake water level can be determined from the DEM data. Paleo lake extent can thus be recovered from the DEM data as the contour line at the identified paleo shoreline elevation. In addition to paleo-lake mapping, the amount of volumetric water loss since the GLP can be estimated. We developed a user-friendly interactive mapping environment that allows paleo-lake mapping in an efficient manner. A case study was performed on

  3. The characterization of soil properties in in-situ conditions to develop "soil management/mapping units" using high-resolution remotely sensed data sets

    NASA Astrophysics Data System (ADS)

    Morris, D. Keith

    The intent of this research was to assess the possible use of high resolution remotely sensed hyperspectral and multispectral data to characterize soil types, specifically focusing on organic matter content, in an associative manner with the results obtained from traditional Order 1 and Order 2 soil surveys. A chi-square analysis indicated a strong association between soil type and organic matter content. A Cramer's V analysis (of a supervised classification) indicated a stronger relationship between the Order 1 and organic matter. However, when an unsupervised classification scheme was applied to the aerial imagery, again using Cramer's analysis, the Order 2 out-performed the Order 1. This superior performance was due in part to the grouping of multi-band spectral response patterns into statistically separable clusters. A One-Way ANOVA analysis indicated that all soils were significantly different in the Order 2 survey for both the hyperspectral and the multispectral data sets. However, the Order 1 results show the ITD sensor more successfully grouping the darker soils than did the ATLAS which grouped the lighter soils. A linear discriminate analysis (LDA) demonstrates that the computer classification of images more successfully assessed the Order 2 survey than the Order 1. Again it is worth noting that the LDA also grouped the soils in a similar manner as did the ANOVA in that the ITD sensor grouped the darker soils and the ATLAS sensor grouped the lighter soils. This sensor preference is another significant secondary finding of this study. Despite the subjective nature of the soil mapping exercise and the use of un-calibrated data sets, high resolution imagery was able to differentiate different soil mapping scales. Even though associations were relatively low statistically, this study supports the hypothesis that high resolution imagery, although limited by its two-dimensional capabilities, can be effectively used as a predictive tool, although with the current

  4. Fast and High-Resolution Quantitative Mapping of Tissue Water Content with Full Brain Coverage for Clinically-Driven Studies

    PubMed Central

    Sabati, Mohammad; Maudsley, Andrew A.

    2013-01-01

    An efficient method for obtaining longitudinal relaxation time (T1) maps is based on acquiring two spoiled gradient recalled echo (SPGR) images in steady states with different flip angles, which has also been extended, with additional acquisitions, to obtain a tissue water content (M0) map. Several factors, including inhomogeneities of the radio-frequency (RF) fields and low signal-to-noise ratios may negatively affect the accuracy of this method and produce systematic errors in T1 and M0 estimations. Thus far, these limitations have been addressed by using additional measurements and applying suitable corrections; however, the concomitant increase in scan time is undesirable for clinical studies. In this note, a modified dual-acquisition SPGR method based on an optimization of the sequence formulism is presented for good and reliable M0 mapping with an isotropic spatial resolution of 1×1×1 mm3 that covers the entire human brain in 6:30 min. A combined RF transmit/receive map is estimated from one of the SPGR scans and the optimal flip angles for M0 map are found analytically. The method was successfully evaluated in eight healthy subjects producing mean M0 values of 69.8% (in white matter) and 80.1% (in gray matter) that are in good agreement with those found in the literature and with high reproducibility. The mean value of the resultant voxel-based coefficients-of-variation was 3.6%. PMID:24050900

  5. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by

  6. Soil depth map definition on a terraced slope for a following distributed, high resolution, numerical modelling analysis

    NASA Astrophysics Data System (ADS)

    Camera, C.; Apuani, T.; Mele, M.; Kuriakose, S. L.; Giudici, M.

    2012-04-01

    The soil thickness represents a key data for every environmental analysis involving soil, but its determination is not always simple. In this particular case, the study area is represented by a small terraced slope (0.6 km2) of Valtellina (Northern Italy), and the soil depth map is necessary for a coupled hydrogeological-stability analysis in a raster environment. During this work geometrical/morphological and geostatistical interpolation techniques were tested to obtain a satisfying soil depth map. At the end, the final product has been validated with geo-electrical resistivity inverse models. In this particular context, the presence of dry-stone retaining walls is of primary importance, since they have an influence on the morphology of the entire area as well as on the physical processes of water infiltration and slope stability. In order to consider the dry-stone walls in the analysis, it is necessary to have base maps with an adequate resolution (cells 1 m x 1 m). Assuming that the walls might be founded on bedrock or in its proximity, it was decided to use the heights of walls and the distribution of rock outcrops as soil depth input data. It was impossible to obtain direct measures with the knocking pole method, being pebbles frequently presents in the backfill soil . Except zero depth values, 682 measures were performed. The initial data set was divided into two subsets in order to use one as training points (76 % of the total) and the second as test points (24 %). Various techniques were tested, from linear multiple regressions with environmental predictors, to ordinary kriging, regression kriging with the same environmental variables, and Gaussian stochastic simulations. At the end, the best result was obtained with co-kriging, using a soil depth class map drawn from the field measures as co-variable. The result is a little bit guided but it was the only solution to obtain a map that partially takes into account the morphology of the slope. To verify the

  7. High Resolution Crop Mapping Along The Growing Season: Methodological Developments Towards An Operational Exploitation Of Sentinel-1, 2 And 3

    NASA Astrophysics Data System (ADS)

    Waldner, Francois; d'Andrimont, Raphael; Defourny, Pierre

    2013-12-01

    Agricultural remote sensing can be used operationally to tackle the issues of food security and speculation on food commodities. Timely and reliable crop specific maps are essential to production forecasting because it supports the estimation of its two components: yield and planted area. This study proposes some developments towards an operational exploitation of Sentinel-1,2 and 3 for crop classification along the season. Using proxy data, the method is demonstrated over a large site in Russia. Three maps are produced along the season with an increasing accuracy and an increasing number of class: cropland in September, crop group in March and crop species from April to August.

  8. Functional heart diagnosis by the visualization of time-dependent potential deviation and topologic map-based shape analysis from high-resolution ECG

    NASA Astrophysics Data System (ADS)

    Schulz-Bruenken, Barbara; Pelikan, Erich

    1996-04-01

    Our work focuses on functional heart analysis during acute myocardial infarction based on time-sequence data derived with a high-resolution ECG technique. This data stream can be interpreted as a sequence of potential deviation images. The analysis is performed by both visualizing the potential deviation onto the thorax as well as by shape analysis of the underlying ECG signals using a topologic map. The algorithm deals with the measurement of similarity between different pathological signal types. In contrast to other techniques, the whole ECG signal, coded as a feature vector, is used as input for the self-organizing map. The results show that this approach is suitable for handling unsharp class transitions common to the medical domain.

  9. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3.

    PubMed

    Lim, G T T; Wang, G-P; Hemming, M N; McGrath, D J; Jones, D A

    2008-12-01

    The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 x IL7-2 F2 and (IL7-2 x IL7-4) x M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 x IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 x IL7-4) x M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50-60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome.

  10. Vegetation Fraction Mapping with Artificial Neural Network and High Resolution Multispectral Aerial Imagery Acquired During BEAREX07

    NASA Astrophysics Data System (ADS)

    Kersh, K. L.; Gowda, P. H.; Basu, S.; Howell, T. A.; O'Shaughnessy, S.; Rajan, N.; Akasheh, O. Z.

    2009-12-01

    Land surface models use vegetation fraction to more accurately partition latent, sensible and soil heat fluxes for a partial vegetated surface as it affects energy and moisture exchanges between the earth’s surface and atmosphere. In recent years, there is interest to integrate vegetation fraction data into intelligent irrigation scheduling systems to avoid false positive signals to irrigate. Remote sensing can facilitate the rapid collection of vegetation fraction information on individual fields over large areas in a timely and cost-effective manner. In this study, we developed a set of vegetation fraction models using least square regression and artificial neural network (ANN) techniques and evaluated using the data collected during Bushland Evapotranspiration and Agricultural Remote sensing Experiment 2007 (BEAREX07). During the BEAREX07, six aircraft campaigns were made covering bare soil to full crop cover conditions. High resolution multispectral data include 0.5-m visible (green and red) and near infrared images and 1.8-m thermal infrared images over the USDA-ARS-Conservation and Production Research Laboratory in Bushland, Texas [350 11' N, 1020 06' W; 1,170 m elevation MSL]. Atmospheric corrections were applied on these images before extracting spectral signatures for 40 ground truth locations. Field data collection in ground truth locations during the aircraft campaigns included digital pictures of crop cover using a Red/Infrared camera. Vegetation fraction information was derived from digital photos using a supervised classification. Comparison of performance statistics indicate that ANN performed slightly better than least square regression models. Newly developed fraction vegetation models will be used in the evaluation of land surface energy balance based evapotranspiration models.

  11. The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ

    PubMed Central

    2013-01-01

    Background Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into the precise motor behavior of the complex vocal organ (syrinx) to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology. Results To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography) and invasive techniques (histology and micro-dissection) to construct the annotated high-resolution three-dimensional dataset, or morphome, of the zebra finch (Taeniopygia guttata) syrinx. We identified and annotated syringeal cartilage, bone and musculature in situ in unprecedented detail. We provide interactive three-dimensional models that greatly improve the communication of complex morphological data and our understanding of syringeal function in general. Conclusions Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation of the evolutionary success of songbirds. PMID:23294804

  12. Evaluation of a Moderate Resolution, Satellite-Based Impervious Surface Map Using an Independent, High-Resolution Validation Dataset

    EPA Science Inventory

    Given the relatively high cost of mapping impervious surfaces at regional scales, substantial effort is being expended in the development of moderate-resolution, satellite-based methods for estimating impervious surface area (ISA). To rigorously assess the accuracy of these data ...

  13. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A landmark in soybean research, Glyma1.01, the first whole genome sequence of variety Williams 82 (Glycine max L. Merr.) was completed in 2010 and is widely used. However, because the assembly was primarily built based on the linkage maps constructed with a limited number of markers and recombinant...

  14. A high-resolution whole-genome map of the distinctive epigenomic landscape induced by butyrate in bovine cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report presents a study utilizing next-generation sequencing technology, combined with chromatin immunoprecipitation (ChIP-seq) technology to analyze histone modification induced by butyrate and to construct a high-definition map of the epigenomic landscape with normal histone H3, H4, and their...

  15. High-Resolution Basemaps for Localization, Mission Planning, and Geologic Mapping at Meridiani Planum and Gale Crater

    NASA Astrophysics Data System (ADS)

    Parker, T. J.; Golombek, M. P.; Calef, F. J.; Hare, T. M.

    2012-03-01

    We recently updated the Opportunity location map to include Endeavour Crater, using CTX and HiRISE images at 25 cm/pixel (http://goo.gl/pSuFZ, http://goo.gl/ydjT2). A similar base mosaic is nearing completion for the Gale Crater landing site.

  16. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    DOE PAGES

    Lyons, Jessica

    2014-12-11

    Cassava Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculent Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480more » meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. Here, we used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.« less

  17. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    PubMed

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop.

  18. High-resolution AUV mapping and sampling of a deep hydrocarbon plume in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ryan, J. P.; Zhang, Y.; Thomas, H.; Rienecker, E.; Nelson, R.; Cummings, S.

    2010-12-01

    During NOAA cruise GU-10-02 on the Ship Gordon Gunter, the Monterey Bay Aquarium Research Institute (MBARI) autonomous underwater vehicle (AUV) Dorado was deployed to map and sample a deep (900-1200 m) volume centered approximately seven nautical miles southwest of the Deepwater Horizon wellhead. Dorado was equipped to detect optical and chemical signals of hydrocarbons and to acquire targeted samples. The primary sensor reading used for hydrocarbon detection was colored dissolved organic matter (CDOM) fluorescence (CF). On June 2 and 3, ship cast and subsequent AUV surveys detected elevated CF in a layer between 1100 and 1200 m depth. While the deep volume was mapped in a series of parallel vertical sections, the AUV ran a peak-capture algorithm to target sample acquisition at layer signal peaks. Samples returned by ship CTD/CF rosette sampling and by AUV were preliminarily examined at sea, and they exhibited odor and fluorometric signal consistent with oil. More definitive and detailed results on these samples are forthcoming from shore-based laboratory analyses. During post-cruise analysis, all of the CF data were analyzed to objectively define and map the deep plume feature. Specifically, the maximum expected background CF over the depth range 1000-1200 m was extrapolated from a linear relationship between depth and maximum CF over the depth range 200 to 1000 m. Values exceeding the maximum expected background in the depth range 1000-1200 m were interpreted as signal from a hydrocarbon-enriched plume. Using this definition we examine relationships between CF and other AUV measurements within the plume, illustrate the three-dimensional structure of the plume boundary region that was mapped, describe small-scale layering on isopycnals, and examine short-term variations in plume depth, intensity and hydrographic relationships. Three-dimensional representation of part of a deep hydrocarbon plume mapped and sampled by AUV on June 2-3, 2010.

  19. Advances in Shallow-Water, High-Resolution Seafloor Mapping: Integrating an Autonomous Surface Vessel (ASV) Into Nearshore Geophysical Studies

    NASA Astrophysics Data System (ADS)

    Denny, J. F.; O'Brien, T. F.; Bergeron, E.; Twichell, D.; Worley, C. R.; Danforth, W. W.; Andrews, B. A.; Irwin, B.

    2006-12-01

    The U.S. Geological Survey (USGS) has been heavily involved in geological mapping of the seafloor since the 1970s. Early mapping efforts such as GLORIA provided broad-scale imagery of deep waters (depths > 400 meters) within the Exclusive Economic Zone (EEZ). In the early 1990's, the USGS research emphasis shifted from deep- to shallow-water environments (inner continental shelf, nearshore, estuaries) to address pertinent coastal issues such as erosion, sediment availability, sediment transport, vulnerability of coastal areas to natural and anthropogenic hazards, and resource management. Geologic framework mapping in these shallow- water environments has provided valuable data used to 1) define modern sediment distribution and thickness, 2) determine underlying stratigraphic and structural controls on shoreline behavior, and 3) enable onshore-to- offshore geologic mapping within the coastal zone when coupled with subaerial techniques such as GPR and topographic LIDAR. Research in nearshore areas presents technological challenges due to the dynamics of the environment, high volume of data collected, and the geophysical limitations of operating in very shallow water. In 2004, the USGS, in collaboration with NOAA's Coastal Services Center, began a multi-year seafloor mapping effort to better define oyster habitats within Apalachicola Bay, Florida, a shallow water estuary along the northern Gulf of Mexico. The bay poses a technological challenge due to its shallow depths (< 4-m) and high turbidity that prohibits the use of bathymetric LIDAR. To address this extreme shallow water setting, the USGS incorporated an Autonomous Surface Vessel (ASV) into seafloor mapping operations, in June 2006. The ASV is configured with a chirp sub-bottom profiler (4 24 kHz), dual-frequency chirp sidescan-sonar (100/500 kHz), single-beam echosounder (235 kHz), and forward-looking digital camera, and will be used to delineate the distribution and thickness of surficial sediment, presence

  20. High-resolution endocardial and epicardial optical mapping in a sheep model of stretch-induced atrial fibrillation.

    PubMed

    Filgueiras-Rama, David; Martins, Raphael Pedro; Ennis, Steven R; Mironov, Sergey; Jiang, Jiang; Yamazaki, Masatoshi; Kalifa, Jérôme; Jalife, Josè; Berenfeld, Omer

    2011-07-29

    Atrial fibrillation (AF) is a complex cardiac arrhythmia with high morbidity and mortality.(1,2) It is the most common sustained cardiac rhythm disturbance seen in clinical practice and its prevalence is expected to increase in the coming years.(3) Increased intra-atrial pressure and dilatation have been long recognized to lead to AF,(1,4) which highlights the relevance of using animal models and stretch to study AF dynamics. Understanding the mechanisms underlying AF requires visualization of the cardiac electrical waves with high spatial and temporal resolution. While high-temporal resolution can be achieved by conventional electrical mapping traditionally used in human electrophysiological studies, the small number of intra-atrial electrodes that can be used simultaneously limits the spatial resolution and precludes any detailed tracking of the electrical waves during the arrhythmia. The introduction of optical mapping in the early 90's enabled wide-field characterization of fibrillatory activity together with sub-millimeter spatial resolution in animal models(5,6) and led to the identification of rapidly spinning electrical wave patterns (rotors) as the sources of the fibrillatory activity that may occur in the ventricles or the atria.(7-9) Using combined time- and frequency-domain analyses of optical mapping it is possible to demonstrate discrete sites of high frequency periodic activity during AF, along with frequency gradients between left and right atrium. The region with fastest rotors activates at the highest frequency and drives the overall arrhythmia.(10,11) The waves emanating from such rotor interact with either functional or anatomic obstacles in their path, resulting in the phenomenon of fibrillatory conduction.(12) Mapping the endocardial surface of the posterior left atrium (PLA) allows the tracking of AF wave dynamics in the region with the highest rotor frequency. Importantly, the PLA is the region where intracavitary catheter-based ablative

  1. Underwater Landscape Evolution in the Peconic Bays (Long Island, NY) as revealed by High-Resolution Multibeam Mapping

    NASA Astrophysics Data System (ADS)

    Flood, R. D.; Kinney, J.; Weaver, M.

    2006-12-01

    The Peconic Bays, an estuary of the National Estuary Program, is about 50 km long and 10 km wide, ranges in depth to 20-30 m and is located between the North Fork and South Fork at the east end of Long Island. There is much interest in the nature and distribution of benthic habitats within this estuary, and we have been conducting high-resolution side-scan sonar and multibeam bathymetry and backscatter studies to understand sediment distribution patterns and physical processes and to guide benthic sampling. Our initial results indicate that the seabed morphology in this area has been shaped by a range of biological and physical processes that have been occurring since glacial times. Morphological elements of the seafloor include apparent glacial-aged topography, eroded glacial deposits, early post-glacial canyons and channels, widespread relict oyster reefs, modern migrating sand banks, restricted areas of modern mud accumulation, and active sand waves. The wide range of morphological elements representing a relatively long time span is apparently due to the fact that the area has been protected from large, erosive ocean waves during the post- glacial sea-level rise and thus there was apparently little wave-induced erosion at the shoreline. Also, there is not a very large modern sediment supply. The largest river on Long Island (the Peconic River) drains into the area. The Peconic River is about 25 km long with a drainage area of 200 km2 and drains a low-relief terrain. That river drains into Great Peconic Bay which may have trapped most of the sediment load. Additional modern sediment is derived from the erosion of glacial cliffs, but a low sediment supply plus strong currents results in insufficient sediment deposition to cover the relict topography in many areas. In addition to underscoring the importance of older environments in controlling more recent sedimentation patterns, observations suggest that important post-glacial and early interglacial climate

  2. Mapping the Structure of the Lithosphere-Asthenosphere System Under the Alpine Orogen with High-Resolution Teleseismic Tomography

    NASA Astrophysics Data System (ADS)

    Lippitsch, R.; Kissling, E.; Ansorge, J.

    2001-12-01

    Understanding the evolution of the Alpine orogen and the interaction between different lithospheric blocks requires precise knowledge of the structure of the lithosphere-asthenosphere system. To assess the gross features of the uppermost mantel we perform high-resolution teleseismic tomography. The data base encompasses 5000 manually picked first P-arrivals from 220 teleseismic events with even azimuthal distribution recorded at permanent and temporary seismic networks in the greater Alpine area. The tomographic study consists of these components: (1) Corrections for the contribution of the Alpine crust to travel-times of incoming wave fields that may account for up to 50% of the observed travel-time residuals. The 3-D crustal model established from controlled-source seismology data represents the large-scale Alpine crustal structure which clearly reflects the effects of the African-European plate collision. (2) Tests with synthetic data document that the combination of non-linear inversions, high-quality teleseismic data, and usage of an a priori 3-D crustal model allows reliable resolution of cells at 50km*50km*30km with a velocity variation in the order of +/- 3% in the upper mantle. (3) Our tomographic images illuminate the structure of the uppermost mantle to depth of 400 km reflecting the complex processes that formed the Alpine orogen when three different plates were amalgamated (European, Adriatic, and Ligurian plates). In the western Alps, the inversion results show a steep W-E dipping high-velocity anomaly which we interpret as the subducting European plate. In the eastern Alps we find high-velocity anomalies in a depth range of 150 km to 300 km beneath the axis of the orogen. At present, the relation of this material with European or Adriatic lithosphere remains unclear. Our results are in general agreement with earlier lithospheric studies. However, the increase in resolution illuminates significantly more complex lithospheric slab geometries, which

  3. Precision Thickness Variation Mapping via One-Transducer Ultrasonic High Resolution Profilometry for Sample with Irregular or Rough Surface

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1997-01-01

    An apparatus and method for determination of sample thickness and surface depression utilizing ultrasonic pulses. The sample is held in a predetermined position by a support member having a reference surface. Ultrasonic pulses travel through a medium of known velocity propagation and reflect off the reference surface and a sample surface. Time of flight data of surface echoes are converted to distances between sample surfaces to obtain computer-generated thickness profiles and surface mappings.

  4. High-resolution maps of the 1.5 GHz emission from Jupiter's disk and radiation belt

    NASA Technical Reports Server (NTRS)

    Roberts, J. A.; Berge, G. L.; Bignell, R. C.

    1984-01-01

    VLA maps of four different faces of Jupiter made with a resolution of about 0.3 Jovian radius show new features of the radiation belt emission. A synchrotron model which reproduces these features serves to define the major characteristics of the relativistic electrons in the radiation belt. The observations provide the best determination to date of the atmospheric emission at 1.5 GHz and yield a disk brightness temperature of 425 + or - 100 K.

  5. Precision Thickness Variation Mapping Via One-Transducer Ultrasonic High Resolution Profilometry for Sample With Irregular or Rough Surface

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1996-01-01

    An apparatus and method for determination of sample thickness and surface depression utilizing ultrasonic pulses is discussed. The sample is held in a predetermined position by a support member having a reference surface. Ultrasonic pulses travel through a medium of known velocity propagation and reflect off the reference surface and a sample surface. Time of flight data of surface echoes are converted to distances between sample surfaces to obtain computer-generated thickness profiles and surface mappings.

  6. High-resolution genetic mapping of Xa27(t), a new bacterial blight resistance gene in rice, Oryza sativa L.

    PubMed

    Gu, K; Tian, D; Yang, F; Wu, L; Sreekala, C; Wang, D; Wang, G-L; Yin, Z

    2004-03-01

    Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae ( Xoo) (Ishyama) Dye, is one of the serious diseases prevalent throughout Asia. In a previous study, a resistance ( R) locus was transferred from the tetraploid wild rice Oryza minuta to the cultivated rice species, Oryza sativa L. Here, we report the fine genetic mapping of the R locus, tentatively designated as Xa27(t). We performed disease evaluation with an Xa27(t) near-isogenic line, IRBB27, testing 35 Xoo strains collected from 11 countries. The Xa27(t) locus conferred a high level of resistance to 27 strains and moderate resistance to three strains. Resistance of the Xa27(t) gene was developmentally regulated in IRBB27 and showed semi-dominant or a dosage effect in the cv. CO39 genetic background. As a prelude to cloning Xa27(t), a molecular mapping strategy was employed with a large mapping population consisting of 3,875 gametes. Three molecular markers, M336, M1081, and M1059, closely linked to Xa27(t), were identified to facilitate the mapping of Xa27(t) to the long arm of chromosome 6. The Xa27(t) locus was confirmed by chromosome landing of M1081 and M1095 markers on the rice genome. Markers derived from the genomic sequence of O. sativa cv. Nipponbare were used to further saturate the Xa27(t) genomic region. Xa27(t) was finally located within a genetic interval of 0.052 cM, flanked by markers M964 and M1197, and co-segregated with markers M631, M1230, and M449.

  7. Improvement of high-resolution fluorescence in situ hybridisation mapping on chromosomes of Brassica oleracea var. capitata.

    PubMed

    Yang, K; Zhang, Y; Converse, R; Lv, J; Shi, M; Zhang, H; Zhu, L

    2016-03-01

    The low resolution of chromosome-based Fluorescence in situ hybridisation (FISH) mapping is primarily due to the structure of the plant cell wall and cytoplasm and the compactness of regular chromosomes, which represent a significant obstacle to FISH. In order to improve spatial resolution and signal detection sensitivity, we provide a reproducible method to generate high-quality extended chromosomes that are ~13 times as long as their pachytene counterparts. We demonstrate that proteinase K used in this procedure is crucial for stretching pachytene chromosomes of Brassica oleracea in the context of a modified Carnoy's II fixative (6:1:3, ethanol:chloroform:acetic acid). The quality of super-stretched chromosomes was assessed in several FISH experiments. FISH signals from both repetitive 5S rDNA and single-copy ARC1 on super-stretched chromosomes are brighter than those on other different types of chromosome due to enhanced accessibility to targets on stretched pachytene chromosomes. In conclusion, the resulting extended chromosomes are suitable for FISH mapping for repetitive DNA sequences and the localisation of a single-copy locus, and FISH performed on super-stretched chromosomes can achieve significantly higher sensitivity and spatial resolution than other chromosome-based FISH mapping techniques.

  8. A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock

    PubMed Central

    Johannesson, Martina; Lopez-Aumatell, Regina; Stridh, Pernilla; Diez, Margarita; Tuncel, Jonatan; Blázquez, Gloria; Martinez-Membrives, Esther; Cañete, Toni; Vicens-Costa, Elia; Graham, Delyth; Copley, Richard R.; Hernandez-Pliego, Polinka; Beyeen, Amennai D.; Öckinger, Johan; Fernández-Santamaría, Cristina; Gulko, Percio S.; Brenner, Max; Tobeña, Adolf; Guitart-Masip, Marc; Giménez-Llort, Lydia; Dominiczak, Anna; Holmdahl, Rikard; Gauguier, Dominique; Olsson, Tomas; Mott, Richard; Valdar, William; Redei, Eva E.; Fernández-Teruel, Alberto; Flint, Jonathan

    2009-01-01

    The laboratory rat (Rattus norvegicus) is a key tool for the study of medicine and pharmacology for human health. A large database of phenotypes for integrated fields such as cardiovascular, neuroscience, and exercise physiology exists in the literature. However, the molecular characterization of the genetic loci that give rise to variation in these traits has proven to be difficult. Here we show how one obstacle to progress, the fine-mapping of quantitative trait loci (QTL), can be overcome by using an outbred population of rats. By use of a genetically heterogeneous stock of rats, we map a locus contributing to variation in a fear-related measure (two-way active avoidance in the shuttle box) to a region on chromosome 5 containing nine genes. By establishing a protocol measuring multiple phenotypes including immunology, neuroinflammation, and hematology, as well as cardiovascular, metabolic, and behavioral traits, we establish the rat HS as a new resource for the fine-mapping of QTLs contributing to variation in complex traits of biomedical relevance. PMID:18971309

  9. Comparing high-resolution daily gridded Precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran

    NASA Astrophysics Data System (ADS)

    Javanmard, S.; Yatagai, A.; Kawamoto, H.; Nodzu, M. I.; Jamali, J. B.

    2009-04-01

    Information on spatial and temporal distribution of precipitation is important for drought monitoring, water resource management in agriculture, power generation and etc. In this respect, high-resolution gridded rainfall datasets are useful for regional studies on the hydrological cycle, climate variability, evaluation of regional models as well as satellite rainfall data. Iran receives rainfall from three major air masses throughout the year and the precipitation regime is complicated due to existence of two main mountain chains of the Zagros and the Alborz. High-resolution gridded precipitation can reproduce the precipitation distribution along the complicated topography and they could improve our understanding of precipitation regime as well a weather systems. Here, firstly we will present precipitation analysis over Iran (20°-45° N, 40°-65° E) based on high-resolution gridded rainfall datasets (0.25° × 0.25° lat./long.) from 1998 to 2006 utilizing synoptic observation data network of Islamic Republic of Iran Meteorological Organization (IRIMO). The number of synoptic stations used in this study are 256 and these data have passed quality control operations such as checking location (latitude, longitude and elevation), consistency to other meteorological parameters, test for homogeneity of data, filling data gaps and etc. by IRIMO. The algorithm of interpolation method of gridded precipitation data is based on the Shepard (1968). Secondly, the comparison of the above mentioned interpolated gridded precipitation data and daily rainfall estimates of TRMM(3B42_V6) which is TRMM Merged High Quality (HQ)/Infrared Precipitation without using raingauge data with spatial resolution 0.25 ° × 0.25° will be presented. From the above analysis results we have shown that spatial distribution of average of precipitation over Iran has two main precipitation pattern with maxima about 4 mm/day along Caspian sea and Zagros mountain chains. Moreover, comparison of spatial

  10. Terrane daylight mapping on large dip-slope terrain based on high-resolution DTM and semi-automatic geoprocessing processes

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Hsiang; Lin, Ming-Lang; Chan, Yu-Chang; Chang, Kuo-Jen; Hsieh, Yu-Chung

    2015-04-01

    "Daylight" in slope engineering means a lineament appearing on the ground surface casued by a internal weak plane of a rock slope. The morphology of the daylight implies the free surface condition of the rock mass upper the weak plane, directly affecting the slope stability and safety. Traditionally, the reconnaissance of daylight employs field investigation and drillings in local dip slope area, but when mapping in large area, it would be subjected to vegetation cover and budget limitation to get a simply result not used for engineering applications. Therefore, the purpose of this study is to develop a rapid and reliable mapping program based on high-resolution DTM, and to generate a large-scale daylight map for large dip slope area. The methodology can be divided into two phases: the first is re-mapping terrane boundary lineaments using LiDAR data and 3D GIS mapping technology; the second is automatically mapping daylight tracks by trend surface analysis and python scripts based on above terrane boundary lineaments. This study takes the area of Keelung River north bank, which is mainly cuesta topography, for an example. Recently, in the area, the frequency of dip slope landslide occurrence becomes more higher because of human development. One major reason to cause the daylight appearing on downslope is the slope toe cutting or river incision. Hereby, according to the final results of the daylight map, we can assess where the potential landsides dip slops are, and further differentiate three different risks of dip slope from the daylight's morphology, expecting to provide more detail engineering and geological information for furture engineering site selection and the design and application of disaster prevention.

  11. Detailed geomorphological mapping from high resolution DEM data (LiDAR, TanDEM-X): two case studies from Germany and SE Tibet

    NASA Astrophysics Data System (ADS)

    Loibl, D.

    2012-04-01

    Two major obstacles are hampering the production of high resolution geomorphological maps: the complexity of the subject that should be depicted and the enormous efforts necessary to obtain data by field work. The first factor prevented the establishment of a generally accepted map legend; the second hampered efforts to collect comprehensive sets of geomorphological data. This left geomorphologists to produce applied maps, focusing on very few layers of information and often not sticking to any of the numerous standards proposed in the second half of the 20th century. Technological progress of the recent years, especially in the fields of digital elevation models, GIS environments, and computational hardware, today offers promising opportunities to overcome the obstacles and to produce detailed geomorphological maps even for remote or inhospitable regions. The feasibility of detailed geomorphological mapping from two new sets of digital elevation data, the 1 m LiDAR DTM provided by Germany's State Surveying Authority and the upcoming TanDEM-X DEM, has been evaluated in two case studies from a low mountain range in Germany and a high mountain range in SE Tibet. The results indicate that most layers of information of classical geomorphological maps (e.g. the German GMK) can be extracted from this data at appropriate scales but that significant differences occur concerning the quality and the grades of certainty of key contents. Generally, an enhancement of the geomorphographical, especially the geomorphometrical, and a weakening of geomorphogenetical contents was observed. From these findings, theoretical, methodological, and cartographical remarks on detailed geomorphological mapping from DEM data in GIS environments were educed. As GIS environments decouple data and design and enable the geomorphologist to choose information layer combinations freely to fit research topics, a general purpose legend becomes obsolete. Yet, a unified data structure is demanded to

  12. High-resolution genetic mapping of the sucrose octaacetate taste aversion (Soa) locus on mouse Chromosome 6.

    PubMed

    Bachmanov, A A; Li, X; Li, S; Neira, M; Beauchamp, G K; Azen, E A

    2001-09-01

    An acetylated sugar, sucrose octaacetate (SOA), tastes bitter to humans and has an aversive taste to at least some mice and other animals. In mice, taste aversion to SOA depends on allelic variation of a single locus, Soa. Three Soa alleles determine 'taster' (Soa(a)), 'nontaster' (Soa(b)), and 'demitaster' (Soa(c)) phenotypes of taste sensitivity to SOA. Although Soa has been mapped to distal Chromosome (Chr) 6, the limits of the Soa region have not been defined. In this study, mice from congenic strains SW.B6-Soa(b), B6.SW-Soa(a), and C3.SW-Soa(a/c) and from an outbred CFW strain were genotyped with polymorphic markers on Chr 6. In the congenic strains, the limits of introgressed donor fragments were determined. In the outbred mice, linkage disequilibrium and haplotype analyses were conducted. Positions of the markers were further resolved by using radiation hybrid mapping. The results show that the Soa locus is contained in an approximately 1-cM (3.3-4.9 Mb) region including the Prp locus.

  13. High-Resolution Sex-Specific Linkage Maps of the Mouse Reveal Polarized Distribution of Crossovers in Male Germline

    PubMed Central

    Liu, Eric Yi; Morgan, Andrew P.; Chesler, Elissa J.; Wang, Wei; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2014-01-01

    Since the publication of the first comprehensive linkage map for the laboratory mouse, the architecture of recombination as a basic biological process has become amenable to investigation in mammalian model organisms. Here we take advantage of high-density genotyping and the unique pedigree structure of the incipient Collaborative Cross to investigate the roles of sex and genetic background in mammalian recombination. Our results confirm the observation that map length is longer when measured through female meiosis than through male meiosis, but we find that this difference is modified by genotype at loci on both the X chromosome and the autosomes. In addition, we report a striking concentration of crossovers in the distal ends of autosomes in male meiosis that is absent in female meiosis. The presence of this pattern in both single- and double-recombinant chromosomes, combined with the absence of a corresponding asymmetry in the distribution of double-strand breaks, indicates a regulated sequence of events specific to male meiosis that is anchored by chromosome ends. This pattern is consistent with the timing of chromosome pairing and evolutionary constraints on male recombination. Finally, we identify large regions of reduced crossover frequency that together encompass 5% of the genome. Many of these “cold regions” are enriched for segmental duplications, suggesting an inverse local correlation between recombination rate and mutation rate for large copy number variants. PMID:24578350

  14. High-resolution sex-specific linkage maps of the mouse reveal polarized distribution of crossovers in male germline.

    PubMed

    Liu, Eric Yi; Morgan, Andrew P; Chesler, Elissa J; Wang, Wei; Churchill, Gary A; Pardo-Manuel de Villena, Fernando

    2014-05-01

    Since the publication of the first comprehensive linkage map for the laboratory mouse, the architecture of recombination as a basic biological process has become amenable to investigation in mammalian model organisms. Here we take advantage of high-density genotyping and the unique pedigree structure of the incipient Collaborative Cross to investigate the roles of sex and genetic background in mammalian recombination. Our results confirm the observation that map length is longer when measured through female meiosis than through male meiosis, but we find that this difference is modified by genotype at loci on both the X chromosome and the autosomes. In addition, we report a striking concentration of crossovers in the distal ends of autosomes in male meiosis that is absent in female meiosis. The presence of this pattern in both single- and double-recombinant chromosomes, combined with the absence of a corresponding asymmetry in the distribution of double-strand breaks, indicates a regulated sequence of events specific to male meiosis that is anchored by chromosome ends. This pattern is consistent with the timing of chromosome pairing and evolutionary constraints on male recombination. Finally, we identify large regions of reduced crossover frequency that together encompass 5% of the genome. Many of these "cold regions" are enriched for segmental duplications, suggesting an inverse local correlation between recombination rate and mutation rate for large copy number variants.

  15. Glue-Free Stacked Luminescent Nanosheets Enable High-Resolution Ratiometric Temperature Mapping in Living Small Animals.

    PubMed

    Miyagawa, Takuya; Fujie, Toshinori; Ferdinandus; Vo Doan, Tat Thang; Sato, Hirotaka; Takeoka, Shinji

    2016-12-14

    In this paper, a microthermograph, temperature mapping with high spatial resolution, was established using luminescent molecules embedded ultrathin polymeric films (nanosheets), and demonstrated in a living small animal to map out and visualize temperature shift due to animal's muscular activity. Herein, we report super flexible and self-adhesive (no need of glue) nanothermosensor consisting of stacked two different polymeric nanosheets with thermosensitive (Eu-tris (dinaphthoylmethane)-bis-trioctylphosphine oxide: EuDT) and insensitive (Rhodamine 800) dyes being embedded. Such stacked nanosheets allow for the ratiometric thermometry, with which the undesired luminescence intensity shift due to focal drift or animal's z-axis displacement is eliminated and the desired intensity shift solely due to the temperature shift of the sample (living muscle) can be acquired. With the stacked luminescent nanosheets, we achieved the first-ever demonstration of video filming of chronologically changing temperature-shift distribution from the rest state to the active state of the muscles in the living animal. The polymer nanosheet engineering and in vivo microthermography presented in the paper are promising technologies to microscopically explore the heat production and heat transfer in living cells, tissues, and organisms with high spatial resolution beyond what existing thermometric technologies such as infrared thermography have ever achieved.

  16. Experiment LEND of the NASA Lunar Reconnaissance Orbiter for high-resolution mapping of neutron emission of the Moon.

    PubMed

    Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L

    2008-08-01

    The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.

  17. Urban land use/land cover mapping with high-resolution SAR imagery by integrating support vector machines into object-based analysis

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Ban, Yifang

    2008-10-01

    This paper investigates the capability of high-resolution SAR data for urban landuse/land-cover mapping by integrating support vector machines (SVMs) into object-based analysis. Five-date RADARSAT fine-beam C-HH SAR images with a pixel spacing of 6.25 meter were acquired over the rural-urban fringe of the Great Toronto Area (GTA) during May to August in 2002. First, the SAR images were segmented using multi-resolution segmentation algorithm and two segmentation levels were created. Next, a range of spectral, shape and texture features were selected and calculated for all image objects on both levels. The objects on the lower level then inherited features of their super objects. In this way, the objects on the lower level received detailed descriptions about their neighbours and contexts. Finally, SVM classifiers were used to classify the image objects on the lower level based on the selected features. For training the SVM, sample image objects on the lower level were used. One-against-one approach was chosen to apply SVM to multiclass classification of SAR images in this research. The results show that the proposed method can achieve a high accuracy for the classification of high-resolution SAR images over urban areas.

  18. Simultaneous mapping of H 2O and H 2O 2 on Mars from infrared high-resolution imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Greathouse, T. K.; Richter, M. J.; Bézard, B.; Fouchet, T.; Lefèvre, F.; Montmessin, F.; Forget, F.; Lebonnois, S.; Atreya, S. K.

    2008-06-01

    New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude L was 332° (end of southern summer). Data have been obtained at 1235-1243 cm -1, with a spectral resolution of 0.016 cm -1 ( R=8×10). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H 2O 2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H 2O 2 abundance remains to be understood and modeled.

  19. High resolution digital mapping and geomorphological analysis of the 2010 Mount Meager rock-debris avalanche (BC, Canada).

    NASA Astrophysics Data System (ADS)

    Roberti, Gioachino; van Wyk de vries, Benjamin; Ward, Brent; Clague, John; Friele, Pierre; Perotti, Luigi; Giardino, Marco

    2016-04-01

    This study examines the large landslide that occurred at Mt. Meager, 200 km NNW of Vancouver, British Columbia, Canada, on August 6, 2010. We studied the source area and deposits to reconstruct the failure of the south flank of Mt. Meager from slow deformation to catastrophic collapse, the subsequent transformation into a debris avalanche, and the 11 km run-out. We use a Structure from Motion (SfM) photogrammetric approach and processed both historical British Columbia Provincial airphotos (1948, 1962, 1964-1965, 1973, 1981, 1990, and 2006) and digital images taken with a commercial camera during low-level helicopter traverses. The SfM products have been used to calculate volumes and the geometry of the south flank of Mt. Meager before and after the catastrophic failure, and to produce an orthophoto that we have used to map and describe the deposit. Oblique helicopter photos provide information on the scar geometry and rock units exposed by the failure. The SfM-derived orthophoto and ground observations allowed us to map deposit facies, lithologies, and structures, including thrust, normal, and strike-slip faults. We identified five sub-areas in the accumulation zone based on the association of facies and deformation structures. Based on our interpretation of the remotely sensed data and ground observations, we propose that the landslide had two main rheological phases: one richer in water and highly mobile, and another massive and water-poor. The water-rich phase spread quickly and superelevated high on valley walls as it moved down valley. It left a discontinuous veneer of debris, typically <1 m thick. The main, unsaturated mass moved more slowly and left a thicker (up to about 20 m) deposit with hummocks and brittle-ductile faults and shear zone in the distal part of the run-out zone.

  20. High-resolution mapping of soil moisture at the field scale using ground-penetrating radar for improving remote sensing data products

    NASA Astrophysics Data System (ADS)

    Lambot, Sébastien; Mahmoudzadeh, Mohammad Reza; Phuong Tran, Anh; Nottebaere, Martijn; Leonard, Aline; Defourny, Pierre; Neyt, Xavier

    2014-05-01

    Characterizing the spatiotemporal distribution of soil moisture at various scales is essential in agricultural, hydrological, meteorological, and climatological research and applications. Soil moisture determines the boundary condition between the soil and the atmosphere and governs key processes of the hydrological cycle such as infiltration, runoff, root water uptake, evaporation, as well as energy exchanges between the Earth's surface and the atmosphere. In that respect, ground-penetrating radar (GPR) is of particular interest for field-scale soil moisture mapping as soil moisture is highly correlated to its permittivity, which controls radar wave propagation in the soil. Yet, accurate determination of the electrical properties of a medium using GPR requires full-wave inverse modeling, which has remained a major challenge in applied geophysics for many years. We present a new near-field radar modeling approach for wave propagation in layered media. Radar antennas are modeled using an equivalent set of infinitesimal electric dipoles and characteristic, frequency-dependent, global reflection and transmission coefficients. These coefficients determine wave propagation between the radar reference plane, point sources, and field points. The interactions between the antenna and the soil are inherently accounted for. The fields are calculated using three-dimensional Green's functions. We validated the model using both time and frequency domain radars. The radars were mounted on a quad and controlled by a computer for real-time radar and dGPS data acquisition. Several fields were investigated and time-lapse measurements were performed on some of them to analyze temporal stability in soil moisture patterns and the repeatability of the measurements. The results were compared to ground-truths. The proposed technique is presently being applied to improve space-borne remote sensing data products for soil moisture by providing high-resolution observational information that

  1. High-resolution mapping of the physical conditions in two nearby active galaxies based on 12CO(1-0), (2-1), and (3-2) lines

    NASA Astrophysics Data System (ADS)

    Boone, F.; García-Burillo, S.; Combes, F.; Lim, J.; Ho, P.; Baker, A. J.; Matsushita, S.; Krips, M.; Dinh, V. T.; Schinnerer, E.

    2011-01-01

    We present a detailed analysis of high resolution observations of the three lowest CO transitions in two nearby active galaxies, NGC 4569 and NGC 4826. The CO(1-0) and (2-1) lines were observed with the Plateau de Bure Interferometer and the CO(3-2) line with the Submillimeter Array. Combining these data allows us to compare the emission in the three lines and to map the line ratios, R21 = ICO(2-1)/ICO(1-0) and R32 = ICO(3-2)/ICO(1-0) at a resolution of ~2”, i.e., a linear resolution of 160 pc for NGC 4569 and 40 pc for NGC 4826. In both galaxies the emission in the three lines is similarly distributed spatially and in velocity, and CO is less excited (R32 < 0.6) than in the Galactic Center or the centers of other active galaxies studied so far. According to a pseudo-LTE model the molecular gas in NGC 4569 is cold and mainly optically thick in the CO(1-0) and (2-1) lines; less than 50% of the gas is optically thin in the CO(3-2) line. LVG modeling suggests the presence of an elongated ring of cold and dense gas coinciding with the inner Lindblad resonance (ILR) of the stellar bar in agreement with a previous analysis of the kinematics. More excited gas is resolved in the circumnuclear disk of NGC 4826. According to our pseudo-LTE model this corresponds to warmer gas with a ~20% of the CO(3-2) emission being optically thin. LVG modeling indicates the presence of a semicircular arc of dense and cold gas centered on the dynamical center and ~70 pc in radius. The gas temperature increases and its density decreases toward the center. A near side/far side asymmetry noticeable in the CO, R32 and Paα maps suggests that opacity effects play a role. Examining published CO maps of nearby active galaxies we find similar asymmetries suggesting that this could be a common phenomenon in active galaxies. These mainly qualitative results open new perspectives for the study of active galaxies with the future Atacama Large Millimeter/submillimeter Array. Based on observations

  2. Genome-Wide Analysis of Nucleosome Positions, Occupancy, and Accessibility in Yeast: Nucleosome Mapping, High-Resolution Histone ChIP, and NCAM.

    PubMed

    Rodriguez, Jairo; McKnight, Jeffrey N; Tsukiyama, Toshio

    2014-10-01

    Because histones bind DNA very tightly, the location on DNA and the level of occupancy of a given DNA sequence by nucleosomes can profoundly affect accessibility of non-histone proteins to chromatin, affecting virtually all DNA-dependent processes, such as transcription, DNA repair, DNA replication and recombination. Therefore, it is often necessary to determine positions and occupancy of nucleosomes to understand how DNA-dependent processes are regulated. Recent technological advances made such analyses feasible on a genome-wide scale at high resolution. In addition, we have recently developed a method to measure nuclease accessibility of nucleosomes on a global scale. This unit describes methods to map nucleosome positions, to determine nucleosome density, and to determine nuclease accessibility of nucleosomes using deep sequencing.

  3. High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast.

    PubMed

    Andersen, Sabrina L; Zhang, Aimee; Dominska, Margaret; Moriel-Carretero, María; Herrera-Moyano, Emilia; Aguilera, Andrés; Petes, Thomas D

    2016-03-01

    The Saccharomyces cerevisae RAD3 gene is the homolog of human XPD, an essential gene encoding a DNA helicase of the TFIIH complex involved in both nucleotide excision repair (NER) and transcription. Some mutant alleles of RAD3 (rad3-101 and rad3-102) have partial defects in DNA repair and a strong hyper-recombination (hyper-Rec) phenotype. Previous studies showed that the hyper-Rec phenotype associated with rad3-101 and rad3-102 can be explained as a consequence of persistent single-stranded DNA gaps that are converted to recombinogenic double-strand breaks (DSBs) by replication. The systems previously used to characterize the hyper-Rec phenotype of rad3 strains do not detect the reciprocal products of mitotic recombination. We have further characterized these events using a system in which the reciprocal products of mitotic recombination are recovered. Both rad3-101 and rad3-102 elevate the frequency of reciprocal crossovers about 100-fold. Mapping of these events shows that three-quarters of these crossovers reflect DSBs formed at the same positions in both sister chromatids (double sister-chromatid breaks, DSCBs). The remainder reflects DSBs formed in single chromatids (single chromatid breaks, SCBs). The ratio of DSCBs to SCBs is similar to that observed for spontaneous recombination events in wild-type cells. We mapped 216 unselected genomic alterations throughout the genome including crossovers, gene conversions, deletions, and duplications. We found a significant association between the location of these recombination events and regions with elevated gamma-H2AX. In addition, there was a hotspot for deletions and duplications at the IMA2 and HXT11 genes near the left end of chromosome XV. A comparison of these data with our previous analysis of spontaneous mitotic recombination events suggests that a sub-set of spontaneous events in wild-type cells may be initiated by incomplete NER reactions, and that DSCBs, which cannot be repaired by sister

  4. High-Resolution Mapping of Homologous Recombination Events in rad3 Hyper-Recombination Mutants in Yeast

    PubMed Central

    Dominska, Margaret; Moriel-Carretero, María; Herrera-Moyano, Emilia; Aguilera, Andrés; Petes, Thomas D.

    2016-01-01

    The Saccharomyces cerevisae RAD3 gene is the homolog of human XPD, an essential gene encoding a DNA helicase of the TFIIH complex involved in both nucleotide excision repair (NER) and transcription. Some mutant alleles of RAD3 (rad3-101 and rad3-102) have partial defects in DNA repair and a strong hyper-recombination (hyper-Rec) phenotype. Previous studies showed that the hyper-Rec phenotype associated with rad3-101 and rad3-102 can be explained as a consequence of persistent single-stranded DNA gaps that are converted to recombinogenic double-strand breaks (DSBs) by replication. The systems previously used to characterize the hyper-Rec phenotype of rad3 strains do not detect the reciprocal products of mitotic recombination. We have further characterized these events using a system in which the reciprocal products of mitotic recombination are recovered. Both rad3-101 and rad3-102 elevate the frequency of reciprocal crossovers about 100-fold. Mapping of these events shows that three-quarters of these crossovers reflect DSBs formed at the same positions in both sister chromatids (double sister-chromatid breaks, DSCBs). The remainder reflects DSBs formed in single chromatids (single chromatid breaks, SCBs). The ratio of DSCBs to SCBs is similar to that observed for spontaneous recombination events in wild-type cells. We mapped 216 unselected genomic alterations throughout the genome including crossovers, gene conversions, deletions, and duplications. We found a significant association between the location of these recombination events and regions with elevated gamma-H2AX. In addition, there was a hotspot for deletions and duplications at the IMA2 and HXT11 genes near the left end of chromosome XV. A comparison of these data with our previous analysis of spontaneous mitotic recombination events suggests that a sub-set of spontaneous events in wild-type cells may be initiated by incomplete NER reactions, and that DSCBs, which cannot be repaired by sister

  5. Comparing targeted and non-targeted high-resolution mass spectrometric approaches for assessing advanced oxidation reactor performance.

    PubMed

    Parry, Emily; Young, Thomas M

    2016-11-01

    High resolution mass spectrometry (HR-MS) offers the opportunity to track large numbers of non-target analytes through water treatment processes, providing a more comprehensive view of reactor performance than targeted evaluation. Both approaches were used to evaluate the performance of a pilot scale advanced oxidation process (AOP) employing ultraviolet light and hydrogen peroxide (UV/H2O2) to treat municipal wastewater effluent. Twelve pharmaceuticals and personal care products were selected as target compounds and added to reactor influent. Target compound removal over a range of flow rates and hydrogen peroxide addition levels was assessed using a liquid chromatograph combined with a quadrupole time-of-flight mass spectrometer (LC-qTOF-MS). Target compound removals were used to determine hydroxyl radical concentrations and UV fluence under pilot scale conditions. The experiments were also analyzed using a nontarget approach, which identified "molecular features" in either reactor influent or effluent. Strong correlation (r = 0.94) was observed between target compound removals calculated using the targeted and non-targeted approaches across the range of reactor conditions tested. The two approaches also produced consistent rankings of the performance of the various reactor operating conditions, although the distribution of compound removal efficiencies was usually less favorable with the broader, nontarget approach. For example, in the UV only treatment 8.3% of target compounds and 2.2% of non-target compounds exhibited removals above 50%, while 100% of target compounds and 74% of non-target compounds exhibited removals above 50% in the best condition tested. These results suggest that HR-MS methods can provide more holistic evaluation of reactor performance, and may reduce biases caused by selection of a limited number of target compounds. HR-MS methods also offer insights into the composition of poorly removed compounds and the formation of transformation

  6. High-resolution mapping of the energy conversion efficiency of solar cells and silicon photodiodes in photovoltaic mode

    NASA Astrophysics Data System (ADS)

    Cemine, Vernon Julius; Sarmiento, Raymund; Blanca, Carlo Mar

    2008-11-01

    We demonstrate an optical technique to derive the two-dimensional energy conversion efficiency ( ηCE), fill factor (FF) and external quantum efficiency ( ηQE) distributions across the surface of photovoltaic devices. A compact, inexpensive optical-feedback laser diode microscope is constructed to acquire the confocal reflectance and efficiency maps enabling the observation of the local parametric behavior in silicon photodiodes in photovoltaic mode and single-junction solar cells. The ηCE and ηQE distributions are greatly influenced by local parasitic resistances that depend on laser irradiance. These parasitic resistances decrease the ηCE and ηQE values with distance from the contact electrode at high laser irradiance. The optical technique enables microscopic comparison of ηCE and ηQE within the pn-overlay region of the photodiode sample, revealing its optimization for photodetection rather than power generation. The technique also elucidates the decreasing local ηCE of the solar cell under intense irradiation.

  7. A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking

    NASA Astrophysics Data System (ADS)

    Ashpole, Ian; Washington, Richard

    2013-07-01

    In this paper, we outline a new objective dust source detection method for the central and western Sahara (CWS), based on the automated tracking of individual dust plumes in data from the Spinning Enhanced Visible and Infrared Imager, available every 15 mins. at ~0.03° spatial resolution. The method is used to map the origin of summertime dust storms in the CWS for June - August 2004 - 2010. It reveals the sources of these events in unprecedented detail, allowing for the identification of specific, highly active source areas. The study of collocated surface features reveals that many of the dominant sources are likely associated with paleolakes and outwash plains, many in close proximity to the Saharan mountains. Extensive nonsource areas are associated with low albedo and elevated terrain, pointing to the mountainous regions of the Sahara. Additionally, sand seas are not identified as important source areas, but their margins sometimes are. The automated tracking method also facilitates analysis of the transport direction of dust plumes from key source regions and the inference of emission mechanisms. It is found that there are two broad domains within the CWS: one in southwest Algeria and northwest Mali, characterized primarily by transport toward the southwest and very likely dominated by low-level jets embedded in the northeasterly Harmattan winds; and a second in southern Algeria, northwest Niger, and northeast Mali where there is no preferred transport direction and a strong potential association between dust events and deep convection, pointing toward cold pool outflows as the likely deflation mechanism.

  8. High-resolution genetic mapping of the cartilage-hair hypoplasia (CHH) gene in Amish and Finnish families

    SciTech Connect

    Sulisalo, T.; De La Chapelle, A. ); Francomano, C.A.; Maher, J.F.; McKusick, V.A. ); Sistonen, P. ); Kaitila, I. )

    1994-04-01

    The authors recently assigned the gene for cartilage-hair hypoplasia (CHH) to chromosome 9 in Finnish families. Here they have extended and refined their previous linkage analyses by studying 22 Amish and 15 Finnish CHH families and by testing additional markers. The CHH gene maps to 9p in both series and shows no evidence of heterogeneity either within or between the populations. CHH is very closely linked to marker locus D9S163, with no recombinations observed and a combined maximum multipoint lod score of 26.30 for a location at D9S163. Although the odds against a location of the CHH gene between two more distal marker loci, D9S52 and D9S165, are only 48:1, the evidence provided by an observed recombination between the CHH locus and D9S165 and haplotype data at D9S165 and D9S163 in the Amish families allow this interval to be excluded as the location of CHH. They observed strong allelic association between CHH and D9S163 in both Amish and Finnish families, confirming the likely location of the CHH gene very close to this marker. Haplotype analysis of D9S163 and D9S165 in the Amish families suggests that only one mutation accounts for most CHH cases among them, as was expected and as is the case in Finland. The data do not support the previously suggested hypothesis of a reduced penetrance as an explanation for the deficiency of affected children in the Amish families. The authors conclude that CHH is a single disease entity in the Amish and Finnish families and that the CHH gene is very close to D9S163 in 9p21-p13. 23 refs., 2 figs., 4 tabs.

  9. Surface circulation in the Iroise Sea (western Brittany) derived from high resolution current mapping by HF radars

    NASA Astrophysics Data System (ADS)

    Sentchev, Alexei; Forget, Philippe; Barbin, Yves; Marié, Louis; Ardhuin, Fabrice

    2010-05-01

    The use of high frequency radar (HFR) systems for near-real-time coastal ocean monitoring necessities that short time scale motions of the radar-derived velocities are better understood. While the ocean radar systems are able to describe coastal flow patterns with unprecedented details, the data they produce are often too sparse or gappy for applications such as the identification of coherent structures and fronts or understanding transport and mixing processes. In this study, we address two challenges. First, we report results from the HF radar system (WERA) which is routinely operating since 2006 on the western Brittany coast to monitor surface circulation in the Iroise Sea, over an area extending up to 100 km offshore. To obtain more reliable records of vector current fields at high space and time resolution, the Multiple Signal Classification (MUSIC) direction finding algorithm is employed in conjunction with the variational interpolation (2dVar) of radar-derived velocities. This provides surface current maps at 1 km spacing and time resolution of 20 min. Removing the influence of the sea state on radar-derived current measurements is discussed and performed on some data sequences. Second, we examine in deep continuous 2d velocity records for a number of periods, exploring the different modes of variability of surface currents in the region. Given the extent, duration, and resolution of surface current velocity measurements, new quantitative insights from various time series and spatial analysis on higher frequency kinematics will be discussed. By better characterizing the full spectrum of flow regimes that contribute to the surface currents and their shears, a more complete picture of the circulation in the Iroise Sea can be obtained.

  10. High-resolution Rayleigh-wave velocity maps of central Europe from a dense ambient-noise data set

    NASA Astrophysics Data System (ADS)

    Verbeke, J.; Boschi, L.; Stehly, L.; Kissling, E.; Michelini, A.

    2012-03-01

    We present a new database of surface wave group and phase-velocity dispersion curves derived from seismic ambient noise, cross-correlating continuous seismic recordings from the Swiss Network, the German Regional Seismological Network (GRSN), the Italian national broad-band network operated by the Istituto Nazionale di Geosica e Vulcanologia (INGV). To increase the aperture of the station array, additional measurements from the Mediterranean Very Broad-band Seismographic Network (MedNet), the Austrian Central Institute for Meteorology and Geodynamics (ZAMG), the French, Bulgarian, Hungarian, Romanian and Greek stations obtained through Orfeus are also included. The ambient noise, we are using to assemble our database, was recorded at the above-mentioned stations between 2006 January and 2006 December. Correlating continuous signal recorded at pairs of stations, allows to extract coherent surface wave signal travelling between the two stations. Usually the ambient-noise cross-correlation technique allows to have informations at periods of 30 s or shorter. By expanding the database of noise correlations, we seek to increase the resolution of the central Europe crustal model. We invert the resulting data sets of group and phase velocities associated with 8-35 s Rayleigh waves, to determine 2-D group and phase-velocity maps of the European region. Inversions are conducted by means of a 2-D linearized tomographic inversion algorithm. The generally good agreement of our models with previous studies and good correlation of well-resolved velocity anomalies with geological features, such as sedimentary basins, crustal roots and mountain ranges, documents the effectiveness of our approach.

  11. A high-resolution map of the regulator of the complement activation gene cluster on 1q32 that integrates new genes and markers.

    PubMed

    Heine-Suñer, D; Díaz-Guillén, M A; de Villena, F P; Robledo, M; Benítez, J; Rodríguez de Córdoba, S

    1997-01-01

    Sixteen microsatellite markers, including two described here, were used to construct a high-resolution map of the 1q32 region encompassing the regulator of the complement activation (RCA) gene cluster. The RCA genes are a group of related genes coding for plasma and membrane associated proteins that collectively control activation of the complement component C3. We provide here the location of two new genes within the RCA gene cluster. These genes are PFKFB2 that maps 15 kilobases (kb) upstream of the C4BPB gene, and a gene located 4 kb downstream of C4BPA, which seems to code for the 72 000 Mr component of the signal recognition particle (SRP72). Neither of these two genes is related structurally or functionally to the RCA genes. In addition, our map shows the centromere-telomere orientation of the C4BPB/MCP linkage group, which is: centromere-PFKFB2-C4BPB-C4BPA-SRP72-C4BPAL1++ +-C4BPAL2-telomere, and outlines an interval with a significant female-male recombination difference which suggests the presence of a female-specific hotspot(s) of recombination.

  12. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

    NASA Astrophysics Data System (ADS)

    Casadio, Francesca; Rose, Volker

    2013-04-01

    Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists' paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists' tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists' paints. Nanoprobe XRF mapping also demonstrated that artists' tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity.

  13. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L.; de Pablo, Pedro J.; Raman, Arvind

    2013-05-01

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the

  14. Evaluation of single-band snow-patch mapping using high-resolution microwave remote sensing: an application in the maritime Antarctic

    NASA Astrophysics Data System (ADS)

    Mora, Carla; Jiménez, Juan Javier; Pina, Pedro; Catalão, João; Vieira, Gonçalo

    2017-01-01

    The mountainous and ice-free terrains of the maritime Antarctic generate complex mosaics of snow patches, ranging from tens to hundreds of metres. These can only be accurately mapped using high-resolution remote sensing. In this paper we evaluate the application of radar scenes from TerraSAR-X in High Resolution SpotLight mode for mapping snow patches at a test area on Fildes Peninsula (King George Island, South Shetlands). Snow-patch mapping and characterization of snow stratigraphy were conducted at the time of image acquisition on 12 and 13 January 2012. Snow was wet in all studied snow patches, with coarse-grain and rounded crystals showing advanced melting and with frequent ice layers in the snow pack. Two TerraSAR-X scenes in HH and VV polarization modes were analysed, with the former showing the best results when discriminating between wet snow, lake water and bare soil. However, significant overlap in the backscattering signal was found. Average wet-snow backscattering was -18.0 dB in HH mode, with water showing -21.1 dB and bare soil showing -11.9 dB. Single-band pixel-based and object-oriented image classification methods were used to assess the classification potential of TerraSAR-X SpotLight imagery. The best results were obtained with an object-oriented approach using a watershed segmentation with a support vector machine (SVM) classifier, with an overall accuracy of 92 % and Kappa of 0.88. The main limitation was the west to north-west facing snow patches, which showed significant error, an issue related to artefacts from the geometry of satellite imagery acquisition. The results show that TerraSAR-X in SpotLight mode provides high-quality imagery for mapping wet snow and snowmelt in the maritime Antarctic. The classification procedure that we propose is a simple method and a first step to an implementation in operational mode if a good digital elevation model is available.

  15. High Resolution Mapping of an Alleged Chemical Weapons Dump Site in the Santa Cruz Basin, offshore California

    NASA Astrophysics Data System (ADS)

    Brewer, P. G.; Peltzer, E. T.; Walz, P. M.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    Nautical charts record seven locations off the coast of California labeled as 'Chemical Munitions Dumping Area, Disused' that together cover some 12,000 km2 of sea floor. However only one such chemical munitions site is officially documented and no record exists of any chemical munitions disposed of at other locations, thus creating confusion. We have executed a one day AUV mapping survey of a corner of one such site in the Santa Cruz Basin, south of Port Hueneme, to examine and investigate the debris field. The region is covered with soft sediment and the overlying water is very low in oxygen at ~10 μmol/kg. The processed 110 kHz sidescan data revealed some 754 targets in 25.6 km2 for an average of 29 targets per km2. This was followed by two ROV dives to investigate the targets identified. We found but one false positives among the over 40 targets visited, and found items ranging from two distinct lines of unmarked or labeled and now empty barrels, two target drones, and much miscellaneous debris including 4-packs of cat food cans and a large ships mast over 30m in length. There was zero evidence of chemical weapons materiel as expected given the lack of official records. Almost all of the targets were covered in dense and colorful assemblages of invertebrates: sponges, anemones, and crabs. Where barrels were sufficiently open for full visual inspection, the interior sea floor appeared to have become fully anoxic and was covered in white and yellow bacterial mat. The area chosen for our survey (centered at 33.76 deg N 119.56 deg W) was across the north western boundary of the marked site, and represents only ~ 10% percent of the designated area. Our expectation, that human nature would drive the disposal activities to the nearest corner of the chosen area rather than the center of the field appears to have been confirmed. Objects were found both within and outside of the boundary of the dump site. We have not surveyed the full marked area but there appears to be

  16. The DYNAMO Orbiter Project: High Resolution Mapping of Gravity