Science.gov

Sample records for high-resolution compton-suppressed czt

  1. A new design for a high resolution, high efficiency CZT gamma camera detector

    NASA Astrophysics Data System (ADS)

    Mestais, C.; Baffert, N.; Bonnefoy, J. P.; Chapuis, A.; Koenig, A.; Monnet, O.; Ouvrier Buffet, P.; Rostaing, J. P.; Sauvage, F.; Verger, L.

    2001-02-01

    We have designed a CZT gamma camera detector that provides an array of CZT pixels and associated front-end electronics - including an ASIC - and permits gamma camera measurements using the method patented by CEA-LETI and reported by Verger et al. [1]. Electron response in each CZT pixel is registered by correcting pulse height for position of interaction based on fast rise-time information. This method brings advantages of high scatter rejection while allowing high detection efficiency. These techniques and the systems approach have been developed at CEA-LETI in an exclusive joint development with BICRON and CRISMATEC who in turn are commercializing the technology. The initial system is implemented in an array framework with 1920 pixels, approximately 180×215 mm 2 in dimension, but the system architecture expands readily to 4096 pixels, and these arrays can be ganged into groups of up to 8 for pixel planes totaling over 32 000 pixels without architecture changes. The overall system design is described and brain phantom images are presented that were obtained by scanning with a small number of pixels.

  2. Performance evaluation of high-resolution square parallel-hole collimators with a CZT room temperature pixelated semiconductor SPECT system: a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Kang, W.

    2015-07-01

    The pixelated semiconductor based on cadmium zinc telluride (CZT) is a promising imaging device that provides many benefits compared with conventional scintillation detectors. By using a high-resolution square parallel-hole collimator with a pixelated semiconductor detector, we were able to improve both sensitivity and spatial resolution. Here, we present a simulation of a CZT pixleated semiconductor single-photon emission computed tomography (SPECT) system with a high-resolution square parallel-hole collimator using various geometric designs of 0.5, 1.0, 1.5, and 2.0 mm X-axis hole size. We performed a simulation study of the eValuator-2500 (eV Microelectronics Inc., Saxonburg, PA, U.S.A.) CZT pixelated semiconductor detector using a Geant4 Application for Tomographic Emission (GATE). To evaluate the performances of these systems, the sensitivity and spatial resolution was evaluated. Moreover, to evaluate the overall performance of the imaging system, a hot-rod phantom was designed. Our results showed that the average sensitivity of the 2.0 mm collimator X-axis hole size was 1.34, 1.95, and 3.92 times higher than that of the 1.5, 1.0, and 0.5 mm collimator X-axis hole size, respectively. Also, the average spatial resolution of the 0.5 mm collimator X-axis hole size was 28.69, 44.65, and 55.73% better than that of the 1.0, 1.5, and 2.0 mm collimator X-axis hole size, respectively. We discuss the high-resolution square parallel-hole collimator of various collimator geometric designs and our evaluations. In conclusion, we have successfully designed a high-resolution square parallel-hole collimator with a CZT pixelated semiconductor SPECT system.

  3. Modification of solid state CdZnTe (CZT) radiation detectors with high sensitivity or high resolution operation

    DOEpatents

    Washington, II, Aaron L; Duff, Martine C; Teague, Lucile C; Burger, Arnold; Groza, Michael

    2014-11-11

    An apparatus and process is provided to illustrate the manipulation of the internal electric field of CZT using multiple wavelength light illumination on the crystal surface at RT. The control of the internal electric field is shown through the polarization in the IR transmission image under illumination as a result of the Pockels effect.

  4. Development of Small-Pixel CZT Detectors for Future High-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Beilicke, Matthias

    Owing to recent breakthroughs in grazing incidence mirror technology, next-generation hard X-ray telescopes will achieve angular resolutions of between 5 and 10 arc seconds - about an order of magnitude better than that of the NuSTAR hard X-ray telescope. As a consequence, the next generation of hard X-ray telescopes will require pixelated hard X- ray detectors with pixels on a grid with a lattice constant of between 120 and 240 um. Additional detector requirements include a low energy threshold of less than 5 keV and an energy resolution of less than 1 keV. The science drivers for a high angular-resolution hard X-ray mission include studies and measurements of black hole spins, the cosmic evolution of super-massive black holes, AGN feedback, and the behavior of matter at very high densities. We propose a R&D research program to develop, optimize and study the performance of 100-200 um pixel pitch CdTe and Cadmium Zinc Telluride (CZT) detectors of 1-2 mm thickness. Our program aims at a comparison of the performance achieved with CdTe and CZT detectors, and the optimization of the pixel, steering grid, and guard ring anode patterns. Although these studies will use existing ASICs (Application Specific Integrated Circuits), our program also includes modest funds for the development of an ultra-low noise ASIC with a 2-D grid of readout pads that can be directly bonded to the 100-200 um pixel pitch CdTe and CZT detectors. The team includes the Washington University group (Prof. M. Beilicke and Co-I Prof. H.S.W. Krawczynski et al.), and co-investigator G. De Geronimo at Brookhaven National Laboratory (BNL). The Washington University group has a 10 year track record of innovative CZT detector R&D sponsored by the NASA Astronomy and Physics Research and Analysis (APRA) program. The accomplishments to date include the development of CZT detectors with pixel pitches between 350 um and 2.5 mm for the ProtoExist, EXIST, and X-Calibur hard X-ray missions with some of the best

  5. Measurement and simulation of a Compton suppression system for safeguards application

    NASA Astrophysics Data System (ADS)

    Lee, Seung Kyu; Seo, Hee; Won, Byung-Hee; Lee, Chaehun; Shin, Hee-Sung; Na, Sang-Ho; Song, Dae-Yong; Kim, Ho-Dong; Park, Geun-Il; Park, Se-Hwan

    2015-11-01

    Plutonium (Pu) contents in spent nuclear fuels, recovered uranium (U) or uranium/transuranium (U/TRU) products must be measured in order to secure the safeguardability of a pyroprocessing facility. Self-induced X-Ray fluorescence (XRF) and gamma-ray spectroscopy are useful techniques for determining Pu-to-U ratios and Pu isotope ratios of spent fuel. Photon measurements of spent nuclear fuel by using high-resolution spectrometers such as high-purity germanium (HPGe) detectors show a large continuum background in the low-energy region, which is due in large part to Compton scattering of energetic gamma rays. This paper proposes a Compton suppression system for reducing of the Compton continuum background. In the present study, the system was configured by using an HPGe main detector and a BGO (bismuth germanate: Bi4Ge3O12) guard detector. The system performances for gamma-ray measurement and XRF were evaluated by means of Monte Carlo simulations and measurements of the radiation source. The Monte Carlo N-Particle eXtended (MCNPX) simulations were performed using the same geometry as for the experiments, and considered, for exact results, the production of secondary electrons and photons. As a performance test of the Compton suppression system, the peak-to-Compton ratio, which is a figure of merit to evaluate the gamma-ray detection, was enhanced by a factor of three or more when the Compton suppression system was used.

  6. Gamma-spectrometry with Compton suppressed detectors arrays

    SciTech Connect

    Schueck, C.; Hannachi, F.; Chapman, R.; Lisle, J.C.; Mo, J.N.; Paul, E.; Love, D.J.G.; Nolan, P.J.; Nelson, A.H.; Walker, P.M.

    1985-01-01

    Recent results of experiments performed with two different Compton-suppressed detectors arrays in Daresbury and Berkeley (/sup 163,164/Yb and /sup 154/Er, respectively), are presented together with a brief description of the national French array presently under construction in Strasbourg. 25 refs., 15 figs.

  7. Testing of the BGO Compton-suppression detectors for gammasphere

    SciTech Connect

    Carpenter, M.P.; Ahmad, I.; Annan, G.A.

    1995-08-01

    Gammasphere, the national {gamma}-ray facility, when completed will consist of 110 Compton-suppressed Ge detectors. The bismuth germanate (BGO) Compton-suppression detector system for each Ge detector consists of one tapered hexagonal BGO side shield and one slotted BGO back plug. Due to the geometry of the array, three types of annular shields are required. These types are referred to as B, C and D, and the array consists of 60, 30 and 20 of these units, respectively. Shield types B, C and D have a hexagonal geometry. They are divided into six optically separate sections, each with its own pair of photomultiplier tubes. Argonne assumed responsibility for the procurement and testing of the BGO Compton-suppression units. We received all detectors from the two vendors. In the past year, twenty-four of the B-type detectors were delivered to Stony Brook for evaluation tests. Since the number of crystals to test is quite large (six per detector), we involved undergraduate students working at ANL under the Department of Educational Programs (DEP) in this effort. The quality of students was excellent, and they played a major role in the performance testing of these detectors. Ninety-nine of the hexagonal side shields and 112 backplug detectors were shipped to LBL for use in Gammasphere. The remaining detectors did not meet the performance criteria when they were first delivered and tested and are either at the vendor being repaired or were returned to us for retesting. We anticipate that the remaining detectors will be ready for use in Gammasphere within the next few months.

  8. Compton suppression gamma-counting: The effect of count rate

    USGS Publications Warehouse

    Millard, H.T.

    1984-01-01

    Past research has shown that anti-coincidence shielded Ge(Li) spectrometers enhanced the signal-to-background ratios for gamma-photopeaks, which are situated on high Compton backgrounds. Ordinarily, an anti- or non-coincidence spectrum (A) and a coincidence spectrum (C) are collected simultaneously with these systems. To be useful in neutron activation analysis (NAA), the fractions of the photopeak counts routed to the two spectra must be constant from sample to sample to variations must be corrected quantitatively. Most Compton suppression counting has been done at low count rate, but in NAA applications, count rates may be much higher. To operate over the wider dynamic range, the effect of count rate on the ratio of the photopeak counts in the two spectra (A/C) was studied. It was found that as the count rate increases, A/C decreases for gammas not coincident with other gammas from the same decay. For gammas coincident with other gammas, A/C increases to a maximum and then decreases. These results suggest that calibration curves are required to correct photopeak areas so quantitative data can be obtained at higher count rates. ?? 1984.

  9. Design and Modeling of a Compton-Suppressed Phoswich Detector for Radioxenon Monitoring

    DTIC Science & Technology

    2010-09-01

    modeled using MCNPX Version 2.5.0. The Compton suppression mechanism is integrated into the phoswich design to effectively reduce the Compton continuum...background radiation was modeled using MCNPX Version 2.5.0. The Compton suppression mechanism is integrated into the phoswich design to effectively reduce...be calculated through regions of interest corresponding to the four xenon radioisotopes in the 2D spectrum. An alternative solution to measure

  10. Compton suppressed LaBr3 detection system for use in nondestructive spent fuel assay

    NASA Astrophysics Data System (ADS)

    Bender, S.; Heidrich, B.; Ünlü, K.

    2015-06-01

    Current methods for safeguarding and accounting for spent nuclear fuel in reprocessing facilities are extremely resource and time intensive. The incorporation of autonomous passive gamma-ray detectors into the procedure could make the process significantly less burdensome. In measured gamma-ray spectra from spent nuclear fuel, the Compton continuum from dominant fission product photopeaks obscure the lower energy lines from other isotopes. The application of Compton suppression to gamma-ray measurements of spent fuel may reduce this effect and allow other less intense, lower energy peaks to be detected, potentially improving the accuracy of multivariate analysis algorithms. Compton suppressed spectroscopic measurements of spent nuclear fuel using HPGe, LaBr3, and NaI(Tl) primary detectors were performed. Irradiated fuel was measured in two configurations: as intact fuel elements viewed through a collimator and as feed solutions in a laboratory to simulate the measurement of a dissolved process stream. These two configurations allowed the direct assessment and quantification of the differences in measured gamma-ray spectra from the application of Compton suppression. In the first configuration, several irradiated fuel elements of varying cooling times from the Penn State Breazeale Reactor spent fuel inventory were measured using the three collimated Compton suppression systems. In the second geometry, Compton suppressed measurements of two samples of Approved Test Material commercial fuel elements were recorded inside the guard detector annulus to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Compton suppression was found to improve measured gamma-ray spectra of spent fuel for multivariate analysis by notably lowering the Compton continuum from dominant photopeaks such as 137Cs and 140La, due to scattered interactions in the detector, which allowed more spectral features to be resolved. There was a

  11. Study of Compton suppression for use in spent nuclear fuel assay

    NASA Astrophysics Data System (ADS)

    Bender, Sarah

    The focus of this study has been to assess Compton suppressed gamma-ray detection systems for the multivariate analysis of spent nuclear fuel. This objective has been achieved using direct measurement of samples of irradiated fuel elements in two geometrical configurations with Compton suppression systems. In order to address the objective to quantify the number of additionally resolvable photopeaks, direct Compton suppressed spectroscopic measurements of spent nuclear fuel in two configurations were performed: as intact fuel elements and as dissolved feed solutions. These measurements directly assessed and quantified the differences in measured gamma-ray spectrum from the application of Compton suppression. Several irradiated fuel elements of varying cooling time from the Penn State Breazeale Reactor spent fuel inventory were measured using three Compton suppression systems that utilized different primary detectors: HPGe, LaBr3, and NaI(Tl). The application of Compton suppression using a LaBr3 primary detector to the measurement of the current core fuel element, which presented the highest count rate, allowed four additional spectral features to be resolved. In comparison, the HPGe-CSS was able to resolve eight additional photopeaks as compared to the standalone HPGe measurement. Measurements with the NaI(Tl) primary detector were unable to resolve any additional peaks, due to its relatively low resolution. Samples of Approved Test Material (ATM) commercial fuel elements were obtained from Pacific Northwest National Laboratory. The samples had been processed using the beginning stages of the PUREX method and represented the unseparated feed solution from a reprocessing facility. Compton suppressed measurements of the ATM fuel samples were recorded inside the guard detector annulus, to simulate the siphoning of small quantities from the main process stream for long dwell measurement periods. Photopeak losses were observed in the measurements of the dissolved ATM

  12. CZT vs FFT: Flexibility vs Speed

    SciTech Connect

    S. Sirin

    2003-10-01

    Bluestein's Fast Fourier Transform (FFT), commonly called the Chirp-Z Transform (CZT), is a little-known algorithm that offers engineers a high-resolution FFT combined with the ability to specify bandwidth. In the field of digital signal processing, engineers are always challenged to detect tones, frequencies, signatures, or some telltale sign that signifies a condition that must be indicated, ignored, or controlled. One of these challenges is to detect specific frequencies, for instance when looking for tones from telephones or detecting 60-Hz noise on power lines. The Goertzel algorithm described in Embedded Systems Programming, September 2002, offered a powerful tool toward finding specific frequencies faster than the FFT.Another challenge involves analyzing a range of frequencies, such as recording frequency response measurements, matching voice patterns, or displaying spectrum information on the face of an amateur radio. To meet this challenge most engineers use the well-known FFT. The CZT gives the engineer the flexibility to specify bandwidth and outputs real and imaginary frequency components from which the magnitude and phase can be computed. A description of the CZT and a discussion of the advantages and disadvantages of CZT versus the FFT and Goertzel algorithms will be followed by situations in which the CZT would shine. The reader will find that the CZT is very useful but that flexibility has a price.

  13. Studies of Nuclear Structure using Radioactive Decay and a Large Array of Compton Suppressed Ge Detectors

    NASA Astrophysics Data System (ADS)

    Wood, John L.

    2000-11-01

    Radioactive decay has long played a role in contributing to the elucidation of nuclear structure. However compared to in-beam gamma-ray spectroscopy, which has been combined with the extraordinary power of multi-detector arrays, radioactive decay scheme studies have been carried out usually with rather modest detector set-ups (two detectors, no Compton suppression). An extensive program to rectify this situation has been initiated using the "8-PI spectrometer"[1]. This is an array of 20 Compton-suppressed Ge detectors with exceptional stability and peak-to-total ratio. Experiments performed[2] recently at Lawrence Berkeley Laboratory, to better characterize nuclear deformation properties and the onset of deformation in nuclei, will be described. Future plans for the study of nuclei far from beta stability at the TRIUMF/ISAC Facility using the 8-PI spectrometer will also be outlined. [1] J.P.Martin et al., Nucl.Instr.Meth. A 257, 301 (1987). [2] See, e.g., W.D.Kulp et al. Bull.Am.Phys.Soc. 44, 63 (1999); W.D.Kulp et al., ibid., Williamsburg Meeting, Oct 4-7 (2000).

  14. A Compton-suppression detection system for use in manganese bath measurements

    NASA Astrophysics Data System (ADS)

    Ghal-Eh, N.; Doostizadeh, H.; Hazami, Z.; Doust-Mohammadi, V.

    2015-07-01

    The manganese sulfate bath technique is a standard tool for neutron source strength measurement (Park et al., 2005). However, the dominate Compton continuum of most sodium iodide scintillators used in manganese bath systems (MBSs) does not allow the precise identification of induced gamma rays required for such measurements. In this research, to resolve this problem, a Compton-suppression system has been proposed which consists of a 2 in. by 2 in. NaI(Tl) right cylindrical scintillator as the main and a set of eight rectangular NE102 plastic scintillators of 12×12×15 cm3 dimensions as suppression detectors. Both detectors operate in anti-coincidence circuit to suppress the Compton continuum. The proposed system has been simulated with the MCNPX code with two different approaches and the corresponding measurements with 137Cs gamma-ray source and neutron-activated MnSO4 solution have been undertaken that give rise to a promising agreement.

  15. Handheld CZT radiation detector

    DOEpatents

    Murray, William S.; Butterfield, Kenneth B.; Baird, William

    2004-08-24

    A handheld CZT radiation detector having a CZT gamma-ray sensor, a multichannel analyzer, a fuzzy-logic component, and a display component is disclosed. The CZT gamma-ray sensor may be a coplanar grid CZT gamma-ray sensor, which provides high-quality gamma-ray analysis at a wide range of operating temperatures. The multichannel analyzer categorizes pulses produce by the CZT gamma-ray sensor into channels (discrete energy levels), resulting in pulse height data. The fuzzy-logic component analyzes the pulse height data and produces a ranked listing of radioisotopes. The fuzzy-logic component is flexible and well-suited to in-field analysis of radioisotopes. The display component may be a personal data assistant, which provides a user-friendly method of interacting with the detector. In addition, the radiation detector may be equipped with a neutron sensor to provide an enhanced mechanism of sensing radioactive materials.

  16. Geant4 Model Validation of Compton Suppressed System for Process monitoring of Spent Fuel

    SciTech Connect

    Bender, Sarah; Unlu, Kenan; Orton, Christopher R.; Schwantes, Jon M.

    2013-05-01

    Nuclear material accountancy is of continuous concern for the regulatory, safeguards, and verification communities. In particular, spent nuclear fuel reprocessing facilities pose one of the most difficult accountancy challenges: monitoring highly radioactive, fluid sample streams in near real-time. The Multi-Isotope Process monitor will allow for near-real-time indication of process alterations using passive gamma-ray detection coupled with multivariate analysis techniques to guard against potential material diversion or to enhance domestic process monitoring. The Compton continuum from the dominant 661.7 keV 137Cs fission product peak obscures lower energy lines which could be used for spectral and multivariate analysis. Compton suppression may be able to mitigate the challenges posed by the high continuum caused by scattering. A Monte Carlo simulation using the Geant4 toolkit is being developed to predict the expected suppressed spectrum from spent fuel samples to estimate the reduction in the Compton continuum. Despite the lack of timing information between decay events in the particle management of Geant4, encouraging results were recorded utilizing only the information within individual decays without accounting for accidental coincidences. The model has been validated with single and cascade decay emitters in two steps: as an unsuppressed system and with suppression activated. Results of the Geant4 model validation will be presented.

  17. Instruments of RT-2 experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload

    NASA Astrophysics Data System (ADS)

    Kotoch, Tilak B.; Nandi, Anuj; Debnath, D.; Malkar, J. P.; Rao, A. R.; Hingar, M. K.; Madhav, Vaibhav P.; Sreekumar, S.; Chakrabarti, Sandip K.

    2011-02-01

    Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high resolution devices for hard X-ray imaging and spectroscopic studies. The new series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of 20 to 150 keV, are used to image solar flares in hard X-rays. Since these modules are essentially manufactured for commercial applications, we have carried out a series of comprehensive tests on these modules so that they can be confidently used in space-borne systems. These tests lead us to select the best three pieces of the `Gold' modules for the RT-2/CZT payload. This paper presents the characterization of CZT modules and the criteria followed for selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries, along with three CZT modules, a high spatial resolution CMOS detector for high resolution imaging of transient X-ray events. Therefore, we discuss the characterization of the CMOS detector as well.

  18. Investigation of trace elements in ancient pottery from Jenini, Brong Ahafo region, Ghana by INAA and Compton suppression spectrometry

    NASA Astrophysics Data System (ADS)

    Nyarko, B. J. B.; Bredwa-Mensah, Y.; Serfor-Armah, Y.; Dampare, S. B.; Akaho, E. H. K.; Osae, S.; Perbi, A.; Chatt, A.

    2007-10-01

    Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated.

  19. Determination of bromine, chlorine and iodine in environmental aqueous samples by epithermal neutron activation analysis and Compton suppression

    USGS Publications Warehouse

    Landsberger, S.; O'Kelly, D. J.; Braisted, J.; Panno, S.

    2006-01-01

    Halides, particularly Br- and Cl-, have been used as indicators of potential sources of Na+ and Cl- in surface water and groundwater with limited success. Contamination of groundwater and surface water by Na+ and Cl- is a common occurrence in growing urban areas and adversely affects municipal and private water supplies in Illinois and other states, as well as vegetation in environmentally sensitive areas. Neutron activation analysis (NAA) can be effectively used to determine these halogens, but often the elevated concentrations of sodium and chlorine in water samples can give rise to very high detection limits for bromine and iodine due to elevated backgrounds from the activation process. We present a detailed analytical scheme to determine Cl, Br and I in aqueous samples with widely varying Na and Cl concentrations using epithermal NAA in conjunction with Compton suppression. ?? 2006 Akade??miai Kiado??.

  20. Compton suppression method and epithermal NAA in the determination of nutrients and heavy metals in Nigerian food and beverages.

    PubMed

    Ahmed, Y A; Landsberger, S; O'Kelly, D J; Braisted, J; Gabdo, H; Ewa, I O B; Umar, I M; Funtua, I I

    2010-10-01

    We used in this study Compton suppression method and epithermal neutron activation analysis to determine the concentration of nutrients and heavy metals in Nigerian food and beverages. The work was performed at the University of Texas TRIGA Reactor by short, medium, and long irradiation protocols, using thermal flux of 1.4x10(12)n cm(-2)s(-1) and epithermal flux of 1.4x10(11)n cm(-2)s(-1). Application of Compton suppression method has reduced interferences from Compton scattered photons thereby allowing easy evaluation of Na, Cl, Ca, Cu, Mn, Mg, Co, Cr, Rb, Fe, and Se. The epithermal NAA method has enabled determination of Cd, As, Ba, Sr, Br, I, and V with little turn-around time. Quality Control and Quality Assurance of the method was tested by analyzing four Standard Reference Materials (non-fat powdered milk, apple leaves, citrus leaves, and peach leaves) obtained from National Institute for Standards and Technology. Our results show that sorghum, millet, and maize have high values of Zn, Mn, Fe, low values of Cd, As, and Se. Powdered milks, rice, beans, and soybeans were found to have moderate amounts of all the elements. Tobacco recorded high content of Cd, Mn, and As, whereas tea, tsobo leaves, Baobab leaves, and okro seed have more As values than others. However, biscuits, macaroni, spaghetti, and noodles show lower concentrations of all the elements. The distribution of these nutrients and heavy metals in these food and beverages shows the need to fortify biscuits and pastas with micro and macro-nutrients and reduce the use of tobacco, tea, tsobo leaves, Baobab leaves, and Okro seed to avoid intake of heavy elements.

  1. Determination of airborne cadmium in environmental tobacco smoke by instrumental neutron activation analysis with a compton suppression system.

    PubMed

    Landsberger, S; Larson, S; Wu, D

    1993-06-01

    Concentrations of cadmium, a toxic trace element, were measured in the indoor air of several public places where environmental tobacco smoke was present. Particulate-phase cadmium concentrations were determined by analyzing air filter samples using epithermal instrumental neutron activation analysis in conjunction with a Compton suppression gamma-ray detection system, in which the detection limit for cadmium was reduced to a few nanograms per filter. A cascade impactor and a personal filter sampler were used to collect the indoor suspended particulate matter for size-fractionated mass as well as total mass, respectively. Results show that where environmental tobacco smoke is present, cadmium concentrations are significantly higher than background and that about 80% of the cadmium found in indoor airborne particulate matter is associated with particles with aerodynamic diameters less than 1.8 microns. In one instance, airborne cadmium concentrations in a music club were found to be 38 ng/m, which is at least 30 times higher than background.

  2. Improved CZT for Gamma Detection

    SciTech Connect

    JAMES, R.

    2015-03-16

    The goal of the project is to advance the state of the art for spectroscopic and imaging detectors for nonproliferation uses by developing a fundamental understanding of defects limiting the performance of large-volume CZT detectors and fixing them, and increasing the detector size and electron mobility-lifetime product while reducing the cost of detector-grade crystals. Interaction points can be precisely determined in 3D for CZT detectors.

  3. CZT sensors for Computed Tomography: from crystal growth to image quality

    NASA Astrophysics Data System (ADS)

    Iniewski, K.

    2016-12-01

    Recent advances in Traveling Heater Method (THM) growth and device fabrication that require additional processing steps have enabled to dramatically improve hole transport properties and reduce polarization effects in Cadmium Zinc Telluride (CZT) material. As a result high flux operation of CZT sensors at rates in excess of 200 Mcps/mm2 is now possible and has enabled multiple medical imaging companies to start building prototype Computed Tomography (CT) scanners. CZT sensors are also finding new commercial applications in non-destructive testing (NDT) and baggage scanning. In order to prepare for high volume commercial production we are moving from individual tile processing to whole wafer processing using silicon methodologies, such as waxless processing, cassette based/touchless wafer handling. We have been developing parametric level screening at the wafer stage to ensure high wafer quality before detector fabrication in order to maximize production yields. These process improvements enable us, and other CZT manufacturers who pursue similar developments, to provide high volume production for photon counting applications in an economically feasible manner. CZT sensors are capable of delivering both high count rates and high-resolution spectroscopic performance, although it is challenging to achieve both of these attributes simultaneously. The paper discusses material challenges, detector design trade-offs and ASIC architectures required to build cost-effective CZT based detection systems. Photon counting ASICs are essential part of the integrated module platforms as charge-sensitive electronics needs to deal with charge-sharing and pile-up effects.

  4. High Resolution Computed Tomography

    DTIC Science & Technology

    1992-07-31

    samples. 14. SUBJECTTERMS 15. NUMBER OF PAGES 38 High Resolution, Microfocus , Characterization, X - Ray , Micrography, Computed Tomography (CT), Failure...high resolutions (50 g.tm feature sensitivity) when a small field of view (50 mm) is used [11]. Specially designed detectors and a microfocus X - ray ...Wright Laboratories. Feldkamp [14] at Ford used a microfocus X - ray source and an X - ray image intensifier to develop a system capable of 20 g.m

  5. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  6. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  7. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  8. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  9. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  10. Design and Preliminary Monte Carlo Calculations of an Active Compton Suppressed LaBr3(Ce) Detector System for TRU Assay in Remote-Handled Wastes

    SciTech Connect

    J. Kulisek; J. K. Hartwell; M. E. McIlwain; R. P. Gardner

    2006-09-01

    Recent studies indicate LaBr3(Ce) scintillation detectors have desirable attributes, such as room temperature operability, which may make them viable alternatives as primary detectors (PD) in a Compton suppression spectrometer (CSS) used for remote-handled transuranic (RH-TRU) waste assay. A CSS with a LaBr3(Ce) PD has been designed and its expected performance evaluated using Monte Carlo analysis. The unique design of this unit minimizes the amount of "dead" material between the PD and the secondary guard detector. The analysis results indicate that this detector will have a relatively high Compton-suppression capability, with greater suppression ability for large angle-scattered photons in the PD. J. K. Hartwell1, M. E. McIlwain1, R. P. Gardner2, J. Kulisek3 1) Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415-2114 USA 2) North Carolina State University, Dept of Nuclear Eng., PO Box 7909, Raleigh, NC 27695 USA 3) Ohio State University, Columbus, Ohio 43210 The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes. The RH-TRU waste stream is composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The expected detector performance has been modeled using MCNP-X [1] and CEARCPG [2], and incorporates certain design features modeled as important to active Compton suppression systems in previously-published work [3]. The unique detector system is sketched in Fig. 1. The ~25 mm diameter by 75 mm long LaBr3(Ce

  11. High resolution hypernuclear spectroscopy

    SciTech Connect

    F. Garibaldi

    2005-02-01

    Hypernuclear spectroscopy provides fundamental information for understanding the effective ?-Nucleon interaction. Jefferson Laboratory experiment E94-107 was designed to perform high resolution hypernuclear spectroscopy by electroproduction of strangeness in four 1p-shell nuclei: 12C, 9Be, 16O, and 7Li. The first part of the experiment on 12C and 9Be has been performed in January and April-May 2004 in Hall A at Jefferson Lab. Significant modifications were made to the standard Hall A apparatus for this challenging experiment: two septum magnets and a RICH detector have been added to get reasonable counting rates and excellent particle identification, as required for the experiment. A description of the apparatus and the preliminary analysis results are presented here.

  12. High resolution ultrasonic densitometer

    SciTech Connect

    Dress, W.B.

    1983-01-01

    The velocity of torsional stress pulses in an ultrasonic waveguide of non-circular cross section is affected by the temperature and density of the surrounding medium. Measurement of the transit times of acoustic echoes from the ends of a sensor section are interpreted as level, density, and temperature of the fluid environment surrounding that section. This paper examines methods of making these measurements to obtain high resolution, temperature-corrected absolute and relative density and level determinations of the fluid. Possible applications include on-line process monitoring, a hand-held density probe for battery charge state indication, and precise inventory control for such diverse fluids as uranium salt solutions in accountability storage and gasoline in service station storage tanks.

  13. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  14. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  15. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  16. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  17. Multi-element CZT array for nuclear safeguards applications

    SciTech Connect

    Sung-Woo Kwak; Jung-Ki Shin; Seunghoon Park; Heejun Chung; Yongkwon Kim

    2015-07-01

    To address drawbacks of a CZT detector due to its limited size, a dual-CZT array, consisting of two CZT detectors and a DAS (Data Acquisition System), was constructed and algorithm to handle the spectra from the CZT array was discussed in this study. Spectra of 4.5% enriched UO{sub 2} powder were obtained using the dual-CZT array. The detection efficiency acquired by the CZT array was about twice higher than that of a single CZT spectra, while FWHMs are nearly identical (about 7.0 keV) for each spectrum. The results of this study show that a much better detection efficiency of CZT can be achieved without degrading its energy resolution. (authors)

  18. Cathode depth sensing in CZT detectors

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Bellm, Eric C.; Grindlay, Jonathan E.; Narita, Tomohiko

    2004-02-01

    Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of intereaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

  19. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  20. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  1. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  2. High Resolution Orientation Imaging Microscopy

    DTIC Science & Technology

    2012-05-02

    Functions, ICCES 2010, Las Vegas. 17. David Fullwood, Brent Adams, Mike Miles, Stuart Rogers, Ali Khosravani, Raj Mishra, Design for Ductility : Defect... Pseudo -Symmetries by High Resolution EBSD Methods, MS&T. 2009: Pittsburgh. 27. Oliver Johnson, Calvin Gardner, David Fullwood, Brent Adams, George...applied to strain measurements ................................... 6 2.3 Recovery of Lattice Tetragonality and Pseudo -Symmetry Resolution

  3. Multi-Element CZT Array for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.

    2016-12-01

    Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.

  4. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  5. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  6. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  7. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  8. High-resolution multiphoton cryomicroscopy.

    PubMed

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers.

  9. CZT nanoRAIDER_VFG Factsheet

    SciTech Connect

    James, R.; A. E. Bolotnikov; Cui, Yonggang

    2016-01-15

    Brookhaven National Laboratory (BNL) is working with FLIR System Inc., the manufacturer of the nanoRAIDER, to design a handheld device based on a position-sensitive virtual Frisch-grid (VFG) Cadmium-Zinc-Telluride (CdZnTe or CZT) detector array (with 1% or better energy resolution). The new device called nanoRAIDER VFG will be an improvement to the current nanoRAIDER, which is a compact gamma-ray detection instrument manufactured by FLIR Systems Inc. that employs relatively lower-performing CZT hemispheric detectors (i.e., 3%-FWHM CZT detectors). The nanoRAIDER will significantly improve the accuracy while maintaining similar efficiency, as compared to the nanoRAIDER, for in-field analysis of nuclear materials and detection of undeclared activities during inspections conducted by the International Atomic Energy Agency (IAEA). Since the nanoRAIDER is currently used by the IAEA as part of its Complementary Access toolkit, a relatively quick acceptance of the nanoRAIDER VFG for safeguards is anticipated. The nanoRAIDER VFG will help address several items listed in the IAEA’s Long-Term R&D Plan that could enhance the abilities to detect undeclared nuclear material and activities.

  10. High-resolution interferometric spectrophotopolarimetry

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1981-01-01

    Spectrophotopolarimetric capability can be added to a laboratory interferometer-spectrometer by use of a specially designed module described herein. With the instrument so augmented, high-resolution spectra can be obtained of the Stokes parameters of the reference beam and the beams diffusely reflected or transmitted by a sample medium of interest. For any such beam, the exponential Fourier transforms of the two interferograms obtained with a polarizer-analyzer oriented along the 0 deg and the 90 deg directions provide the spectra of I and Q, separately. Within experimental (and numerical) noise, this I spectrum should be the same as the one obtained with the polarizer removed. The remaining Stokes parameters U and V are obtained with a third interferogram recorded with the polarizer along the 45 deg direction. The complete theory of this instrument is described including the detailed analysis of the polarization-interferograms it provides.

  11. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  12. High-resolution land topography

    NASA Astrophysics Data System (ADS)

    Massonnet, Didier; Elachi, Charles

    2006-11-01

    After a description of the background, methods of production and some scientific uses of high-resolution land topography, we present the current status and the prospect of radar interferometry, regarded as one of the best techniques for obtaining the most global and the most accurate topographic maps. After introducing briefly the theoretical aspects of radar interferometry - principles, limits of operation and various capabilities -, we will focus on the topographic applications that resulted in an almost global topographic map of the earth: the SRTM map. After introducing the Interferometric Cartwheel system, we will build on its expected performances to discuss the scientific prospects of refining a global topographic map to sub-metric accuracy. We also show how other fields of sciences such as hydrology may benefit from the products generated by interferometric radar systems. To cite this article: D. Massonnet, C. Elachi, C. R. Geoscience 338 (2006).

  13. Enhanced High Resolution RBS System

    SciTech Connect

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 A ring TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron registered accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  14. High Resolution Thermometry for EXACT

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  15. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  16. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  17. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  18. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  19. High resolution time interval counter

    NASA Technical Reports Server (NTRS)

    Zhang, Victor S.; Davis, Dick D.; Lombardi, Michael A.

    1995-01-01

    In recent years, we have developed two types of high resolution, multi-channel time interval counters. In the NIST two-way time transfer MODEM application, the counter is designed for operating primarily in the interrupt-driven mode, with 3 start channels and 3 stop channels. The intended start and stop signals are 1 PPS, although other frequencies can also be applied to start and stop the count. The time interval counters used in the NIST Frequency Measurement and Analysis System are implemented with 7 start channels and 7 stop channels. Four of the 7 start channels are devoted to the frequencies of 1 MHz, 5 MHz or 10 MHz, while triggering signals to all other start and stop channels can range from 1 PPS to 100 kHz. Time interval interpolation plays a key role in achieving the high resolution time interval measurements for both counters. With a 10 MHz time base, both counters demonstrate a single-shot resolution of better than 40 ps, and a stability of better than 5 x 10(exp -12) (sigma(sub chi)(tau)) after self test of 1000 seconds). The maximum rate of time interval measurements (with no dead time) is 1.0 kHz for the counter used in the MODEM application and is 2.0 kHz for the counter used in the Frequency Measurement and Analysis System. The counters are implemented as plug-in units for an AT-compatible personal computer. This configuration provides an efficient way of using a computer not only to control and operate the counters, but also to store and process measured data.

  20. Novel Method for Growing Te-Inclusion-Free CZT

    SciTech Connect

    Bolotnikov,A.

    2008-06-17

    The authors propose a new method for growth of detector-grade CdZnTe (CZT) with reduced concentration and sizes of Te inclusions. The method is designed to impede the formation of Te-rich inclusions in crystals due to the use of new CZT growth method and a unique ampoule design.

  1. Line profile modelling for multi-pixel CZT detectors

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, T.; Vadawale, S. V.; Rao, A. R.; Bhattacharya, D.; Mithun, N. P. S.; Bhalerao, V.

    2016-07-01

    Cadmium Zinc Telluride (CZT) detectors have been the mainstay for hard X-ray astronomy for its high quantum efficiency, fine energy resolution, near room temperature operation, and radiation hardness. In order to fully utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix, which in turn requires precise modelling of the line profiles for the CZT detectors. We have developed a numerical model taking into account the mobility and lifetime of the charge carriers and intrpixel charge sharing for the CZT detectors. This paper describes the details of the modelling along with the experimental measurements of mobility, lifetime and charge sharing fractions for the CZT detector modules of thickness of 5 mm and 2.5 mm pixel size procured from Orbotech Medical Solutions (same modules used in AstroSat-CZTI).

  2. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  3. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  4. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  5. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  6. High-resolution infrared imaging

    NASA Astrophysics Data System (ADS)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  7. High resolution auditory perception system

    NASA Astrophysics Data System (ADS)

    Alam, Iftekhar; Ghatol, Ashok

    2005-04-01

    Blindness is a sensory disability which is difficult to treat but can to some extent be helped by artificial aids. The paper describes the design aspects of a high resolution auditory perception system, which is designed on the principle of air sonar with binaural perception. This system is a vision substitution aid for enabling blind persons. The blind person wears ultrasonic eyeglasses which has ultrasonic sensor array embedded on it. The system has been designed to operate in multiresolution modes. The ultrasonic sound from the transmitter array is reflected back by the objects, falling in the beam of the array and is received. The received signal is converted to a sound signal, which is presented stereophonically for auditory perception. A detailed study has been done as the background work required for the system implementation; the appropriate range analysis procedure, analysis of space-time signals, the acoustic sensors study, amplification methods and study of the removal of noise using filters. Finally the system implementation including both the hardware and the software part of it has been described. Experimental results on actual blind subjects and inferences obtained during the study have also been included.

  8. High-Resolution Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  9. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  10. An energy-optimized collimator design for a CZT-based SPECT camera

    PubMed Central

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2015-01-01

    such as low-energy high resolution (LEHR) and medium energy general purpose (MEGP) collimators. PMID:26640308

  11. An energy-optimized collimator design for a CZT-based SPECT camera

    NASA Astrophysics Data System (ADS)

    Weng, Fenghua; Bagchi, Srijeeta; Zan, Yunlong; Huang, Qiu; Seo, Youngho

    2016-01-01

    collimators such as low-energy high resolution (LEHR) and medium energy general purpose (MEGP) collimators.

  12. Design and testing of a unique active Compton-suppressed LaBr3(Ce) detector system for improved sensitivity assays of TRU in remote-handled TRU wastes

    SciTech Connect

    J. K. Hartwell; M. E. McIlwain; J. A. Kulisek

    2007-10-01

    The US Department of Energy’s transuranic (TRU) waste inventory includes about 4,500 m3 of remote-handled TRU (RH-TRU) wastes composed of a variety of containerized waste forms having a contact surface dose rate that exceeds 2 mSv/hr (200 mrem/hr) containing waste materials with a total TRU concentration greater than 3700 Bq/g (100 nCi/g). As part of a research project to investigate the use of active Compton-suppressed room-temperature gamma-ray detectors for direct non-destructive quantification of the TRU content of these RH-TRU wastes, we have designed and purchased a unique detector system using a LaBr3(Ce) primary detector and a NaI(Tl) suppression mantle. The LaBr3(Ce) primary detector is a cylindrical unit ~25 mm in diameter by 76 mm long viewed by a 38 mm diameter photomultiplier. The NaI(Tl) suppression mantle (secondary detector) is 175 mm by 175 mm with a center well that accommodates the primary detector. An important feature of this arrangement is the lack of any “can” between the primary and secondary detectors. These primary and secondary detectors are optically isolated by a thin layer (.003") of aluminized kapton, but the hermetic seal and thus the aluminum can surrounds the outer boundary of the detector system envelope. The hermetic seal at the primary detector PMT is at the PMT wall. This arrangement virtually eliminates the “dead” material between the primary and secondary detectors, a feature that preliminary modeling indicated would substantially improve the Compton suppression capability of this device. This paper presents both the expected performance of this unit determined from modeling with MCNPX, and the performance measured in our laboratory with radioactive sources.

  13. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  14. EFFECTS OF MATERIAL IMPROVEMENT ON CZT DETECTORS.

    SciTech Connect

    CHU, M.; CARINI, G.A.; ET AL.

    2006-08-13

    CZT material quality improvement has been achieved by optimizing the crystal growth process. N-type conductivity has been measured on as-grown, undoped, Cd{sub 0.9}Zn{sub 0.1}Te. Cd{sub 0.85}Zn{sub 0.15}Te crystals have been grown. for producing high resistivity CZT radiation detectors. The best FWHM of {sup 57}Co 122KeV spectrum was measured to be 3.7% and ({mu}{tau}){sub e} was 3 x 10{sup -3} cm{sup 2}V{sup -1}. The microscopic gamma ray response using a beam size of 10 {micro}m has been used to map the entire 4 mm x 4 mm detector. Several black spots indicating no signal responses were observed while all other areas showed an average of 65-70% collection efficiency. The black spots suggest that at those locations, the Te precipitates are larger than 10 {micro}m. Detailed microscopic infrared transmission measurement on the sample found that most Te precipitates have sizes of 4-6 {micro}m. Theoretical analysis of the results suggests that singly and doubly ionized Te{sub Cd}V{sub Cd}{sup 2} might be the shallow and deep donors previously assigned to Te{sub Cd} by us.

  15. Improved x-ray spectroscopy with room temperature CZT detectors.

    PubMed

    Fritz, Shannon G; Shikhaliev, Polad M; Matthews, Kenneth L

    2011-09-07

    Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120

  16. Development of large-area CZT detector systems

    NASA Astrophysics Data System (ADS)

    Kuvvetli, Irfan; Budtz-Joergensen, Carl C.; Westergaard, Niels J.; Jonasson, Per; van Pamelen, Mike A.; Reglero, Victor; Eyles, Christopher J.; Neubert, Torsten

    1999-10-01

    DSRI has initiated a development program of CZT x-ray and gamma ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as so-called drift detectors. For the electronic readout, modern ASIC chips were investigated. Modular design and the low power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed.

  17. Position-sensitive CZT detector module

    NASA Astrophysics Data System (ADS)

    Matteson, James L.; Duttweiler, Fred; Huszar, George L.; Leblanc, Philippe C.; Skelton, Robert E.; Stephan, Edwin A.; Hink, Paul L.; Dowkontt, Paul F.; Slavis, Kimberly R.; Tumer, Tumay O.; Kravis, Scott D.

    1998-07-01

    Coded mask imagers for future high energy x-ray astronomy missions will require detector planes with areas of hundreds to thousands of cm(superscript 2) and position resolutions < 1 mm. Such detectors will enable coded mask imagers to discover and study thousands of high energy x-ray sources. The UCSD/WU/UCR/NOVA collaboration has been developing CZT detector systems with crossed-strip readout to meet these requirements. We report progress on a compact detector module with 41 cm(superscript 2) area and 0.5 mm spatial resolution. The design includes the bias network and ASIC readout electronics, and allows modules to be combined in large area arrays with very high live-area factors. Results from laboratory and balloon flight tests are presented.

  18. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  19. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  20. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, Alfred, III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-05-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  1. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, A. B., III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-04-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  2. CZT detectors for high-energy flare spectroscopy: the Room Temperature Semiconductor Spectrometer (RTeSS) on the JAWSAT satellite

    NASA Astrophysics Data System (ADS)

    Vestrand, Thomas W.; Cutlip, H. H.; Forrest, D. J.; Levenson, Ken A.; Marci, J. R.; Ryan, James M.

    1998-07-01

    We report on the design and construction of a solar flare spectrometer that will employ four 15 X 15 X 15 mm CZT detectors with coplanar electrodes. The compact spectrometer, which will provide measurements in the 40 - 800 keV energy range, is being constructed for flight on the Joint Air Force Academy/Weber State University Satellite (JAWSAT). JAWSAT is scheduled for a Minuteman II launch into a 650 km sun-synchronous orbit early during the next solar maximum. The terminator orbit will allow our Room Temperature Semiconductor Spectrometer (RTeSS) to monitor solar hard x-ray and gamma-ray emission nearly continuously during the 23rd solar sunspot maximum. The primary scientific objective of the RTeSS is measurement of the broad line complex near 450 keV that is generated in solar flare spectra by the interaction of energetic alpha particles with helium in the solar atmosphere. The RTeSS spectral resolution of approximately 4% FWHM at 662 keV is well matched to the line splitting expected for likely alpha particle angular distributions and should allow us to place important constraints on the acceleration and the transport of flare ions. The primary technological objective of the RTeSS program is to test the feasibility of using CZT detectors for the construction of solar flare spectrometers that are capable of high resolution observations when operating at room temperature. If successful in low earth orbit, CZT solar flare spectrometers could lead to significant savings in mass, volume, and power consumption over conventional high-resolution spectrometers.

  3. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  4. The Protoexist2 Advanced CZT Coded Aperture Telescope

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Hong, J.; Grindlay, J.; Barthelmy, S.; Baker, R.

    2011-09-01

    The ProtoEXIST program was conceived for the development of a scalable detector plane architecture utilizing pixilated CdZnTe (CZT) detectors for eventual deployment in a large scale (1-4 m2 active area) coded aperture X-ray telescope for use as a wide field ( 90° × 70° FOV) all sky monitor and survey instrument for the 5 up to 600 keV energy band. The first phase of the program recently concluded with the successful 6 hour high altitude (39 km) flight of ProtoEXIST1, which utilized a closely tiled 8 × 8 array of 20 mm × 20 mm, 5 mm thick Redlen CZT crystals each bonded to a RadNET asic via an interposer board. Each individual CZT crystal utilized a 8 × 8 pixilated anode for the creation of a position sensitive detector with 2.5 mm spatial resolution. Development of ProtoEXIST2, the second advanced CZT detector plane in this series, is currently under way. ProtoEXIST2 will be composed of a closely tiled 8 × 8 array of 20 mm × 20 mm, 5 mm thick Redlen CZT crystals, similar to ProtoEXIST1, but will now utilize the Nu-ASIC which accommodates the direct bonding of CZT detectors with a 32 × 32 pixilated anode with a 604.8 μm pixel pitch. Characterization and performance of the ProtoEXIST2 detectors is discussed as well as current progress in the integration of the ProtoEXIST2 detector plane.

  5. A high-resolution tungstate membrane label

    SciTech Connect

    Hainfeld, J.F.; Quaite, F.E. ); Lipka, J.J. )

    1990-01-01

    A new class of membrane labels was synthesized which contain a tungstate cluster (having 11 tungsten atoms) and an aliphatic organo-tin moiety with various chain lengths (C{sub 4}, C{sub 8}, C{sub 12}, C{sub 18}, C{sub 22}). These molecules were found to insert into synthetic phospholipid vesicles and biological membranes (human red blood cell membranes). The tungstate clusters can be individually visualized in the high resolution STEM or seen en mass in thin-sectioned labeled membranes in the CTEM. These new labels should provide a means for direct high-resolution imaging of lipid-phase systems.

  6. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  7. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  8. Characterization of secondary phases in modified vertical bridgman growth czt

    SciTech Connect

    Duff, Martine

    2009-07-10

    CdZnTe or 'CZT' crystals are highly suitable for use as a room temperature based spectrometer for the detection and characterization of gamma radiation. Over the last decade, the methods for growing high quality CZT have improved the quality of the produced crystals however there are material features that can influence the performance of these materials as radiation detectors. For example, various structural heterogeneities within the CZT crystals, such as twinning, pipes, grain boundaries (polycrystallinity), and secondary phases (SP) can have a negative impact on the detector performance. In this study, a CZT material was grown by the modified vertical Bridgman growth (MVB) method with zone leveled growth without excess Te in the melt. Visual observations of material from the growth of this material revealed significant voids and SP. Three samples from this material was analyzed using various analytical techniques to evaluate its electrical properties, purity and detector performance as radiation spectrometers and to determine the morphology, dimension and elemental/structural composition of one of the SP in this material. This material was found to have a high resistivity but poor radiation spectrometer performance. It had SP that were rich in polycrystalline aluminum oxide (Al{sub 2}O{sub 3}), metallic Te and polycrystalline CdZnTe and 15 to 50 {micro}m in diameter. Bulk elemental analyses of sister material from elsewhere in the boule did not contain high levels of Al so there is considerable elemental impurity heterogeneity within the boule from this growth.

  9. Background measurements from balloon-born imaging CZT detectors

    NASA Astrophysics Data System (ADS)

    Jenkins, Jonathan A.; Narita, Tomohiko; Grindlay, Jonathan E.; Bloser, Peter F.; Stahle, Carl M.; Parker, Bradford H.; Barthelmy, Scott D.

    2003-03-01

    We report detector characteristics and background measurements from two prototype imaging CdZnTe (CZT) detectors flown on a scientific balloon payload in May 2001. The detectors are both platinum-contact 10 mm × 10 mm × 5 mm CZT crystals, each with a 4 × 4 array of pixels tiling the anode. One is made from IMARAD horizontal Bridgman CZT, the other from eV Products high-pressure Bridgman CZT. Both detectors were mounted side-by-side in a flip-chip configuration and read out by a 32-channel IDE VA/TA ASIC preamp/shaper. We enclosed the detectors in the same 40o field-of-view collimator used in our previously-reported September 2000 flight. I-V curves for the detectors are diode-like, and we find that the platinum contacts adhere significantly better to the CZT surfaces than gold to previosu detectors. The detectors and instrumentation performed well in a 20-hour balloon flight on 23/24 May 2001. Although we discovered a significant instrumental background component in flight, it was possible to measure and subtract this component from the spectra. The resulting IMARAD detector background spectrum reaches ~5×10-3 counts cm-2s-1keV-1 at 100 keV and has a power-law index of ~2 at hgih energies. The eV Products detector has a similar spectrum, although there is more uncertainty in the enregy scale because of calibration complications.

  10. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  11. A high-resolution anatomical rat atlas

    PubMed Central

    Bai, Xueling; Yu, Li; Liu, Qian; Zhang, Jie; Li, Anan; Han, Dao; Luo, Qingming; Gong, Hui

    2006-01-01

    This paper reports the availability of a high-resolution atlas of the adult rat. The atlas is composed of 9475 cryosectional images captured in 4600 × 2580 × 24-bit TIFF format, constructed using serial cryosection-milling techniques. Cryosection images were segmented, labelled and reconstructed into three-dimensional (3D) computerized models. These images, 3D models, technical details, relevant software and further information are available at our website, http://vchibp.vicp.net/vch/mice/. PMID:17062027

  12. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  13. Stellar Tools for High Resolution Population Synthesis

    NASA Astrophysics Data System (ADS)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  14. A High Resolution Ammunition Resupply Model.

    DTIC Science & Technology

    1982-03-01

    Transportation Assets .. . . . . . . . 111 b. Maximization of Shipping Space . . . . . 112 c. Adjustments Due to Priority Requisitions. 112 3. RESUPPLY...planned logistics module was expanded to a full stand-alone, high resolution model. Supplementary objectives were established in order to achieve the...each variable, and replication of the process described by these variables in order to achieve an expected value outcome. Using this technique, the

  15. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  16. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  17. Sparse and accurate high resolution SAR imaging

    NASA Astrophysics Data System (ADS)

    Vu, Duc; Zhao, Kexin; Rowe, William; Li, Jian

    2012-05-01

    We investigate the usage of an adaptive method, the Iterative Adaptive Approach (IAA), in combination with a maximum a posteriori (MAP) estimate to reconstruct high resolution SAR images that are both sparse and accurate. IAA is a nonparametric weighted least squares algorithm that is robust and user parameter-free. IAA has been shown to reconstruct SAR images with excellent side lobes suppression and high resolution enhancement. We first reconstruct the SAR images using IAA, and then we enforce sparsity by using MAP with a sparsity inducing prior. By coupling these two methods, we can produce a sparse and accurate high resolution image that are conducive for feature extractions and target classification applications. In addition, we show how IAA can be made computationally efficient without sacrificing accuracies, a desirable property for SAR applications where the size of the problems is quite large. We demonstrate the success of our approach using the Air Force Research Lab's "Gotcha Volumetric SAR Data Set Version 1.0" challenge dataset. Via the widely used FFT, individual vehicles contained in the scene are barely recognizable due to the poor resolution and high side lobe nature of FFT. However with our approach clear edges, boundaries, and textures of the vehicles are obtained.

  18. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    PubMed Central

    Peng, Hao; Levin, Craig S

    2013-01-01

    min imaging time. Furthermore, we observe that the degree of spatial resolution degradation along the direction orthogonal to the two panels that is typical of a limited angle tomography configuration is mitigated by having high-resolution DOI capabilities that enable more accurate positioning of oblique response lines. PMID:20400807

  19. Ultra-high resolution DNA structures.

    PubMed

    Wang, A H; Robinson, H; Gao, Y G

    1999-01-01

    This paper describes the progress in our efforts at producing ultra-high resolution (< 0.8 A) DNA structures using advanced cryo-crystallography and synchrotron. Our work is aimed at providing reliable geometric (bond length and bond angle), electronic and motional information of DNA molecules in different conformational contexts. These highly-reliable, new structures will be the basis for constructing better DNA force-field parameters, which will benefit the structural refinement of DNA, protein-DNA complexes, and ligand-DNA complexes.

  20. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  1. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  2. High resolution thermal denaturation of mammalian DNAs.

    PubMed Central

    Guttmann, T; Vítek, A; Pivec, L

    1977-01-01

    High resolution melting profiles of different mammalian DNAs are presented. Melting curves of various mammalian DNAs were compared with respect to the degree of asymmetry, first moment, transition breath and Tmi of individual subtransitions. Quantitative comparison of the shape of all melting curves was made. Correlation between phylogenetical relations among mammals and shape of the melting profiles of their DNAs was demonstrated. The difference between multi-component heterogeneity of mammalian DNAs found by optical melting analysis and sedimentation in CsCl-netropsin density gradient is also discussed. PMID:840642

  3. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  4. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  5. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  6. CZT detectors for a new generation of γ-ray telescopes

    NASA Astrophysics Data System (ADS)

    Quadrini, Egidio M.; Conti, Giancarlo; D'Angelo, Sergio; Fiorini, Mauro; Uslenghi, Michela; Natalucci, Lorenzo; Ubertini, Pietro

    2005-08-01

    The outstanding scientific performances of IBIS, Imager on Board INTEGRAL, has encouraged preliminary feasibility studies on new Gamma Ray instruments. We considered both a Wide Field Camera for transient event detection and fast automatic sky localisation and a high resolution imager. According to the basic scientific requirements, i.e. to operate with good sensitivity (1mCrab/day) and spatial resolution (from arcmin to arcsec) on a wide energy range (5 to 500 keV), these studies consider large detector area (from 1 to several m2) and a high number (~50000) of thick (≥ 5mm) pixels. Recent achievements already obtained by INTEGRAL, and initially showed by SWIFT, have validated the CdTe/CZT detector performances in terms of good spatial resolution, detection efficiency, energy resolution and low noise at room temperature. We have started a study to solve peculiar problems affecting this kind of detectors (e.g. response dependent on the interaction depth and multiple hit events) using a digital approach to photon reconstruction. This also facilitates operations like pixel to pixel equalisation and background rejection. The detector electronic chain thus includes a minimal analog stage for charge pre-amplification, coupled to a flash ADC for waveform digitalisation at a high time resolution sampling, and a powerful, FPGA based digital processing unit, devoted to waveform elaboration. Such a design should also help in optimising the telemetry flux and allow polarimetry evaluation on multiple events.

  7. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  8. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  9. High resolution guided wave pipe inspection

    NASA Astrophysics Data System (ADS)

    Velichko, Alexander; Wilcox, Paul D.

    2009-03-01

    Commercial guided wave inspection systems provide rapid screening of pipes, but limited sizing capability for small defects. However, accurate detection and sizing of small defects is essential for assessing the integrity of inaccessible pipe regions where guided waves provide the only possible inspection mechanism. In this paper an array-based approach is presented that allows guided waves to be focused on both transmission and reception to produce a high resolution image of a length of pipe. In the image, it is shown that a signal to coherent noise ratio of over 40 dB with respect to the reflected signal from a free end of pipe can be obtained, even taking into account typical levels of experimental uncertainty in terms of transducer positioning, wave velocity etc. The combination of an image with high resolution and a 40 dB dynamic range enables the detection of very small defects. It also allows the in-plane shape of defects over a certain size to be observed directly. Simulations are used to estimate the detection and sizing capability of the system for crack-like defects. Results are presented from a prototype system that uses EMATs to fully focus pipe guided wave modes on both transmission and reception in a 12 inch diameter stainless steel pipe. The 40 dB signal to coherent noise ratio is obtained experimentally and a 2 mm diameter (0.08 wavelengths) half-thickness hole is shown to be detectable.

  10. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon-and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  11. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Benner, D. Chris; Venkataraman, Malathy Devi

    2000-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as carbon dioxide, water vapor, ozone, methane, and carbon monoxide, to name a few. Measurements were made using the NASA Langley Tunable Diode Laser Spectrometer System (TDL) and several Fourier Transform Spectrometer Systems (FTS) around the globe. The results from these studies made remarkable improvements in the line positions and intensities for several molecules, particularly ozone and carbon dioxide in the 2 to 17-micrometer spectral region. Measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced line shift coefficients for infrared transitions of ozone, methane, and water vapor were also performed. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields.

  12. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  13. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  14. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  15. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  16. CZT Virtual Frisch-grid Detector: Principles and Applications

    SciTech Connect

    Cui,Y.; Bolotnikov, A.; Camarda, G.; Hossain, A.; James, R. B.

    2009-03-24

    Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for using as room-temperature semiconductor detectors, because it has a wide bandgap and a high atomic number. However, due to the material's poor hole mobility, several special techniques were developed to ensure its suitability for radiation detection. Among them, the virtual Frisch-grid CZT detector is an attractive option, having a simple configuration, yet delivering an outstanding spectral performance. The goal of our group in Brookhaven National Laboratory (BNL) is to improve the performance of Frisch-ring CZT detectors; most recently, that effort focused on the non-contacting Frisch-ring detector, allowing us to build an inexpensive, large-volume detector array with high energy-resolution and a large effective area. In this paper, the principles of virtual Frisch-grid detectors are described, especially BNL's innovative improvements. The potential applications of virtual Frisch-grid detectors are discussed, and as an example, a hand-held gamma-ray spectrometer using a CZT virtual Frischgrid detector array is introduced, which is a self-contained device with a radiation detector, readout circuit, communication circuit, and high-voltage supply. It has good energy resolution of 1.4% (FWHM of 662-keV peak) with a total detection volume of {approx}20 cm{sup 3}. Such a portable inexpensive device can be used widely in nonproliferation applications, non-destructive detection, radiation imaging, and for homeland security. Extended systems based on the same technology have potential applications in industrial- and nuclear-medical-imaging.

  17. The CZT X-ray Imager on AXO

    NASA Astrophysics Data System (ADS)

    Budtz-Jørgensen, C.; Kuvvetli, I.; Westergaard, N. J.; Jonasson, P.; Reglero, V.; Eyles, C.; Neubert, T.

    2001-03-01

    DSRI has initiated a development program of CZT X-ray and gamma ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as so-called drift detectors. For the electronic readout, modern ASIC chips were investigated. Modular design and the low power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: The X-Ray Imager (XRI) on the Atmospheric X-ray Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active thunderstorm system. Additional objective is a detailed mapping of the auroral X-ray and optical emission. XRI comprises a coded mask and a 20 cm × 40 cm CZT detector array covering an energy range from 5 to 200 keV.

  18. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  19. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  20. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  1. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  2. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  3. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  4. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  5. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  6. High-resolution electrohydrodynamic jet printing.

    PubMed

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S; Alleyne, Andrew G; Georgiadis, John G; Ferreira, Placid M; Rogers, John A

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1 mum demonstrate potential applications in printed electronics.

  7. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  8. Venus gravity - A high-resolution map

    NASA Technical Reports Server (NTRS)

    Reasenberg, R. D.; Goldberg, Z. M.; Macneil, P. E.; Shapiro, I. I.

    1981-01-01

    The Doppler data from the radio tracking of the Pioneer Venus Orbiter (PVO) have been used in a two-stage analysis to develop a high-resolution map of the gravitational potential of Venus, represented by a central mass and a surface mass density. The two-stage procedure invokes a Kalman filter-smoother to determine the orbit of the spacecraft, and a stabilized linear inverter to estimate the surface mass density. The resultant gravity map is highly correlated with the topographic map derived from the PVO radar altimeter data. However, the magnitudes of the gravity variations are smaller than would be expected if the topography were uncompensated, indicating that at least partial compensation has taken place.

  9. The High Resolution Infrared Spectrum of HCl().

    PubMed

    Doménech, J L; Drouin, B J; Cernicharo, J; Herrero, V J; Tanarro, I

    2016-12-20

    The chloroniumyl cation, HCl(+), has been recently identified in space from Herschel's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

  10. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  11. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  12. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  13. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  14. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  15. High-resolution electrohydrodynamic jet printing

    NASA Astrophysics Data System (ADS)

    Park, Jang-Ung; Hardy, Matt; Kang, Seong Jun; Barton, Kira; Adair, Kurt; Mukhopadhyay, Deep Kishore; Lee, Chang Young; Strano, Michael S.; Alleyne, Andrew G.; Georgiadis, John G.; Ferreira, Placid M.; Rogers, John A.

    2007-10-01

    Efforts to adapt and extend graphic arts printing techniques for demanding device applications in electronics, biotechnology and microelectromechanical systems have grown rapidly in recent years. Here, we describe the use of electrohydrodynamically induced fluid flows through fine microcapillary nozzles for jet printing of patterns and functional devices with submicrometre resolution. Key aspects of the physics of this approach, which has some features in common with related but comparatively low-resolution techniques for graphic arts, are revealed through direct high-speed imaging of the droplet formation processes. Printing of complex patterns of inks, ranging from insulating and conducting polymers, to solution suspensions of silicon nanoparticles and rods, to single-walled carbon nanotubes, using integrated computer-controlled printer systems illustrates some of the capabilities. High-resolution printed metal interconnects, electrodes and probing pads for representative circuit patterns and functional transistors with critical dimensions as small as 1μm demonstrate potential applications in printed electronics.

  16. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  17. The High Resolution Infrared Spectrum of HCl+

    PubMed Central

    Drouin, B. J.; Cernicharo, J.; Herrero, V. J.; Tanarro, I.

    2017-01-01

    The chloroniumyl cation, HCl+, has been recently identified in space from Herschel’s spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimiter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, infrared observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers as well as a new and improved global fit of vis-UV, IR and millimiter-wave spectroscopy laboratory data, that will aid in future studies of this molecule. PMID:28261442

  18. High resolution CT of Meckel's cave.

    PubMed

    Chui, M; Tucker, W; Hudson, A; Bayer, N

    1985-01-01

    High resolution CT of the parasellar region was carried out in 50 patients studied for suspected pituitary microadenoma, but who showed normal pituitary gland or microadenoma on CT. This control group of patients all showed an ellipsoid low-density area in the posterior parasellar region. Knowledge of the gross anatomy and correlation with metrizamide cisternography suggest that the low density region represents Meckel's cave, rather than just the trigeminal ganglion alone. Though there is considerable variation in the size of Meckel's cave in different patients as well as the two sides of the same patient, the rather constant ellipsoid configuration of the cave in normal subjects will aid in diagnosing small pathological lesions, thereby obviating more invasive cisternography via the transovale or lumbar route. Patients with "idiopathic" tic douloureux do not show a Meckel's cave significantly different from the control group.

  19. High-Resolution Mapping in Manus Basin

    NASA Astrophysics Data System (ADS)

    Roman, C. N.; Ferrini, V. L.

    2006-12-01

    Near-bottom seafloor mapping with precisely navigated deep submergence vehicles has become increasingly common in a range of oceanographic settings. Recent mapping efforts at deep-water hydrothermal vent sites have resulted in high-resolution (sub-meter) bathymetry datasets that can be used to identify morphological features associated with volcanic, tectonic, and hydrothermal processes. The resolution of these maps, and our ability to accurately quantify the complex morphologic details of hydrothermal structures has been limited by a number of variables including navigational accuracy, sonar settings (e.g. acoustic wavelength, sonar orientation, ping rate), survey parameters (e.g. altitude, speed), data density, and data processing techniques (e.g. gridding algorithms). We present the results of two near-bottom surveys conducted in August 2006 at the PACMANUS (Papua New Guinea-Australia-Canada Manus) hydrothermal field in the eastern Manus Basin of the Bismarck Sea, south of New Ireland, Papua New Guinea. Data were simultaneously acquired with two high-resolution multibeam sonar systems mounted on the Remote Operated Vehicle (ROV) Jason 2. A Simrad SM2000 (200 kHz) multibeam system was mounted in down-looking mode, and an Imagenex DeltaT (675 kHz) multibeam system was mounted on the brow of the vehicle in a forward-looking orientation. Surveys were conducted in parallel survey lines at 15 m altitude (15 m line spacing), and the can be used to generate sub-meter resolution maps of the seafloor. The maps were assembled using a terrain registration algorithm designed to minimize the affects of navigation error. Together, these sonars provide a complementary dataset that allows us to better quantify the 3-dimensional morphological characteristics of complex hydrothermal vent structures. This information can be used to more accurately estimate the volume of hydrothermal deposits, and render a more complete environmental picture that is less hindered by occlusions and

  20. High resolution films for bone regeneration evaluation.

    PubMed

    Jammal, María V; Territoriale, Erika B; Abate, Carlos M; Missana, Liliana R

    2010-01-01

    Diagnostic imaging techniques (DIxT) seem to be a useful tool for evaluating bone formation in both human and animal models. There is little evidence on the use of Soft X-Rays (sXR) with high-resolution films for studying the healing process in critical bone size defects (CSD). The aim of this study was to evaluate the ability of soft X-Ray - High Resolution Films (sXR) to distinguish bone regeneration in CSDs. A CSD was created in each of 16 Wistar rat calvariae. The animals were euthanized at 1, 3 and 6 weeks after surgery. The samples were submitted to cXR (conventional X-rays), sXR techniques and histological procedures (HP). Bone formation was observed at CSD edges at all periods of time. At 6 week there was also new bone in the central area. The CSD was not fully regenerated after any period of time. Histometric results were 0.16%; 0.75% and 0.89% new bone formed at weeks 1, 3 and 6 respectively; radiometric results at cXR were 0% in all samples. Evaluation of sXR shows 0.4%; 0.50% and 3.64% bone at weeks 1, 3 and 6. Mean and Standard Deviation were calculated. The data were submitted to statistical analysis using the Pearson product-moment correlation coefficient test. The r value was 0.581. Under these experimental conditions, sXR was found to be a suitable method for detecting new bone formation, based on the positive correlation between sXR and HP during the bone healing process of CSDs in rat calvaria. Furthermore, the sXR technique allowed us to obtain samples with appropriate spatial orientation.

  1. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  2. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  3. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  4. Efficient Compression of High Resolution Climate Data

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schuchardt, K. L.

    2011-12-01

    resolution climate data can be massive. Those data can consume a huge amount of disk space for storage, incur significant overhead for outputting data during simulation, introduce high latency for visualization and analysis, and may even make interactive visualization and analysis impossible given the limit of the data that a conventional cluster can handle. These problems can be alleviated by with effective and efficient data compression techniques. Even though HDF5 format supports compression, previous work has mainly focused on employ traditional general purpose compression schemes such as dictionary coder and block sorting based compression scheme. Those compression schemes mainly focus on encoding repeated byte sequences efficiently and are not well suitable for compressing climate data consist mainly of distinguished float point numbers. We plan to select and customize our compression schemes according to the characteristics of high-resolution climate data. One observation on high resolution climate data is that as the resolution become higher, values of various climate variables such as temperature and pressure, become closer in nearby cells. This provides excellent opportunities for predication-based compression schemes. We have performed a preliminary estimation of compression ratios of a very simple minded predication-based compression ratio in which we compute the difference between current float point number with previous float point number and then encoding the exponent and significance part of the float point number with entropy-based compression scheme. Our results show that we can achieve higher compression ratios between 2 and 3 in lossless compression, which is significantly higher than traditional compression algorithms. We have also developed lossy compression with our techniques. We can achive orders of magnitude data reduction while ensure error bounds. Moreover, our compression scheme is much more efficient and introduces much less overhead

  5. High Resolution Gamma Ray Analysis of Medical Isotopes

    NASA Astrophysics Data System (ADS)

    Chillery, Thomas

    2015-10-01

    Compton-suppressed high-purity Germanium detectors at the University of Massachusetts Lowell have been used to study medical radioisotopes produced at Brookhaven Linac Isotope Producer (BLIP), in particular isotopes such as Pt-191 used for cancer therapy in patients. The ability to precisely analyze the concentrations of such radio-isotopes is essential for both production facilities such as Brookhaven and consumer hospitals across the U.S. Without accurate knowledge of the quantities and strengths of these isotopes, it is possible for doctors to administer incorrect dosages to patients, thus leading to undesired results. Samples have been produced at Brookhaven and shipped to UML, and the advanced electronics and data acquisition capabilities at UML have been used to extract peak areas in the gamma decay spectra. Levels of Pt isotopes in diluted samples have been quantified, and reaction cross-sections deduced from the irradiation parameters. These provide both cross checks with published work, as well as a rigorous quantitative framework with high quality state-of-the-art detection apparatus in use in the experimental nuclear physics community.

  6. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  7. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  8. High Resolution BPM for Linear Colliders

    SciTech Connect

    Simon, C.; Chel, S.; Luong, M.; Napoly, O.; Novo, J.; Roudier, D.; Rouviere, N.

    2006-11-20

    A high resolution Beam Position Monitor (BPM) is necessary for the beam-based alignment systems of high energy and low emittance electron linacs. Such a monitor is developed in the framework of the European CARE/SRF programme, in a close collaboration between DESY and CEA/DSM/DAPNIA. This monitor is a radiofrequency re-entrant cavity, which can be used either at room or cryogenic temperature, in an environment where dust particle contamination has to be avoided, such as superconducting cavities in a cryomodule. A first prototype of a re-entrant BPM has already delivered measurements at 2K. inside the first cryomodule (ACC1) on the TESLA Test Facility 2 (TTF2). The performances of this BPM are analyzed both experimentally and theoretically, and the limitations of this existing system clearly identified. A new cavity and new electronics have been designed in order to improve the position resolution down to 1 {mu}m and the damping time down to 10 ns.

  9. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  10. High Resolution Science with High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Windhorst, R.

    I will first review high resolution science that has been done with the Hubble Space Telescope on high redshift galaxies Next I will review the capabilities of the 6 5 meter James Webb Space Telescope JWST which is an optimized infrared telescope that can deploy automatically in space slated for launch to a halo L2 orbit in 2013 I will outline how the JWST can go about measuring First Light Reionization and Galaxy Assembly building on lessons learned from the Hubble Space Telescope I will show what more nearby galaxies observed in their restframe UV--optical light may look like to JWST at high redshifts Last I will summarize the Generation-X mission concept for an X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current facilities Gen-X will study the first generations of stars and black holes in the epoch z 10-20 the evolution of black holes and galaxies from high z to the present the chemical evolution of the universe and the properties of matter under extreme conditions This requires an effective area of 100 m 2 at 1 keV an angular resolution of 0 1 HPD over 0 1-10 keV

  11. Titania High-Resolution Color Composite

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This high-resolution color composite of Titania was made from Voyager 2 images taken Jan. 24, 1986, as the spacecraft neared its closest approach to Uranus. Voyager's narrow-angle camera acquired this image of Titania, one of the large moons of Uranus, through the violet and clear filters. The spacecraft was about 500,000 kilometers (300,000 miles) away; the picture shows details about 9 km (6 mi) in size. Titania has a diameter of about 1,600 km (1,000 mi). In addition to many scars due to impacts, Titania displays evidence of other geologic activity at some point in its history. The large, trenchlike feature near the terminator (day-night boundary) at middle right suggests at least one episode of tectonic activity. Another, basinlike structure near the upper right is evidence of an ancient period of heavy impact activity. The neutral gray color of Titania is characteristic of the Uranian satellites as a whole. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.

  12. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, Jim; Sovilla, Betty; Vriend, Nathalie; Brennan, Paul; Ash, Matt; Keylock, Chris

    2013-04-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallee de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  13. High Resolution Radar Measurements of Snow Avalanches

    NASA Astrophysics Data System (ADS)

    McElwaine, J. N.; Vriend, N. M.; Sovilla, B.; Keylock, C. J.; Brennan, P.; Ash, M.

    2012-12-01

    Geophysical mass flows, such as snow avalanches, are a major hazard in mountainous areas and have a significant impact on the infrastructure, economy and tourism of such regions. Obtaining a thorough understanding of the dynamics of snow avalanches is crucial for risk assessment and the design of defensive structures. However, because the underlying physics is poorly understood there are significant uncertainties concerning current models, which are poorly validated due to a lack of high resolution data. Direct observations of the denser core of a large avalanche are particularly difficult, since it is frequently obscured by the dilute powder cloud. We have developed and installed a phased array FMCW radar system that penetrates the powder cloud and directly images the dense core with a resolution of around 1 m at 50 Hz over the entire slope. We present data from recent avalanches at Vallée de la Sionne that show a wealth of internal structure and allow the tracking of individual fronts, roll waves and surges down the slope for the first time. We also show good agreement between the radar results and existing measurement systems that record data at particular points on the avalanche track.

  14. High Resolution Measurement of the Glycolytic Rate

    PubMed Central

    Bittner, Carla X.; Loaiza, Anitsi; Ruminot, Iván; Larenas, Valeria; Sotelo-Hitschfeld, Tamara; Gutiérrez, Robin; Córdova, Alex; Valdebenito, Rocío; Frommer, Wolf B.; Barros, L. Felipe

    2010-01-01

    The glycolytic rate is sensitive to physiological activity, hormones, stress, aging, and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts, and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis. PMID:20890447

  15. High resolution beamforming for small aperture arrays

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Null, Tom; Wagstaff, Ronald A.

    2003-04-01

    Achieving fine resolution bearing estimates for multiple sources using acoustic arrays with small apertures, in number of wavelengths, is a difficult challenge. It requires both large signal-to-noise ratio (SNR) gains and very narrow beam responses. High resolution beamforming for small aperture arrays is accomplished by exploiting acoustical fluctuations. Acoustical fluctuations in the atmosphere are caused by wind turbulence along the propagation path, air turbulence at the sensor, source/receiver motion, unsteady source level, and fine scale temperature variations. Similar environmental and source dependent phenomena cause fluctuations in other propagation media, e.g., undersea, optics, infrared. Amplitude fluctuations are exploited to deconvolve the beam response functions from the beamformed data of small arrays to achieve high spatial resolution, i.e., fine bearing resolution, and substantial SNR gain. Results are presented for a six microphone low-frequency array with an aperture of less than three wavelengths. [Work supported by U.S. Army Armament Research Development and Engineering Center.

  16. CrIS High Resolution Hyperspectral Radiances

    NASA Astrophysics Data System (ADS)

    Hepplewhite, C. L.; Strow, L. L.; Motteler, H.; Desouza-Machado, S. G.; Tobin, D. C.; Martin, G.; Gumley, L.

    2014-12-01

    The CrIS hyperspectral sounder flying on Suomi-NPPpresently has reduced spectral resolution in the mid-wave andshort-wave spectral bands due to truncation of the interferograms inorbit. CrIS has occasionally downlinked full interferograms for thesebands (0.8 cm max path, or 0.625 cm-1 point spacing) for a feworbits up to a full day. Starting Oct.1, 2014 CrIS will be commandedto download full interferograms continuously for the remainder of themission, although NOAA will not immediately produce high-spectralresolution Sensor Data Records (SDRs). Although the originalmotivation for operating in high-resolution mode was improved spectralcalibration, these new data will also improve (1) vertical sensitivityto water vapor, and (2) greatly increase the CrIS sensitivity tocarbon monoxide. This should improve (1) NWP data assimilation ofwater vapor and (2) provide long-term continuity of carbon monoxideretrievals begun with MOPITT on EOS-TERRA and AIRS on EOS-AQUA. Wehave developed a SDR algorithm to produce calibrated high-spectralresolution radiances which includes several improvements to theexisting CrIS SDR algorithm, and will present validation of thesehigh-spectral resolution radiances using a variety of techniques,including bias evaluation versus NWP model data and inter-comparisonsto AIRS and IASI using simultaneous nadir overpasses (SNOs). Theauthors are presently working to implement this algorithm for NASASuomi NPP Program production of Earth System Data Records.

  17. Characterisation of a CZT detector for dosimetry of molecular radiotherapy

    NASA Astrophysics Data System (ADS)

    McAreavey, L. H.; Harkness-Brennan, L. J.; Colosimo, S. J.; Judson, D. S.; Boston, A. J.; Boston, H. C.; Nolan, P. J.; Flux, G. D.; Denis-Bacelar, A. M.; Harris, B.; Radley, I.; Carroll, M.

    2017-03-01

    A pixelated cadmium zinc telluride (CZT) detector has been characterised for the purpose of developing a quantitative single photon emission computed tomography (SPECT) system for dosimetry of molecular radiotherapy (MRT). This is the aim of the Dosimetric Imaging with CZT (DEPICT) project, which is a collaboration between the University of Liverpool, The Royal Marsden Hospital, The Royal Liverpool and Broadgreen University Hospital, and the commercial partner Kromek. CZT is a direct band gap semiconductor with superior energy resolution and stopping power compared to scintillator detectors used in current SPECT systems. The inherent detector properties have been investigated and operational parameters such as bias voltage and peaking time have been selected to optimise the performance of the system. Good energy resolution is required to discriminate γ-rays that are scattered as they are emitted from the body and within the collimator, and high photon throughput is essential due to the high activities of isotopes administered in MRT. The system has an average measured electronic noise of 3.31 keV full width at half maximum (FWHM), determined through the use of an internal pulser. The energy response of the system was measured across the energy region of interest 59.5 keV to 364.5 keV and found to be linear. The reverse bias voltage and peaking time producing the optimum FWHM and maximum photon throughput were 600 V and 0.5 μs respectively. The average dead time of the system was measured as 4.84 μs and charge sharing was quantified to be 0.71 % at 59.5 keV . A pixel sensitivity calibration map was created and planar images of the medical imaging isotopes 99mTc and 123I were acquired by coupling the device to a prototype collimator, thereby demonstrating the suitability of the detector for the DEPICT project.

  18. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  19. Recent advances in CZT strip detectors and coded mask imagers

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Gruber, D. E.; Heindl, W. A.; Pelling, M. R.; Peterson, L. E.; Rothschild, R. E.; Skelton, R. T.; Hink, P. L.; Slavis, K. R.; Binns, W. R.; Tumer, T.; Visser, G.

    1999-09-01

    The UCSD, WU, UCR and Nova collaboration has made significant progress on the necessary techniques for coded mask imaging of gamma-ray bursts: position sensitive CZT detectors with good energy resolution, ASIC readout, coded mask imaging, and background properties at balloon altitudes. Results on coded mask imaging techniques appropriate for wide field imaging and localization of gamma-ray bursts are presented, including a shadowgram and deconvolved image taken with a prototype detector/ASIC and MURA mask. This research was supported by NASA Grants NAG5-5111, NAG5-5114, and NGT5-50170.

  20. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  1. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  2. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  3. Wavefront metrology for high resolution optical systems

    NASA Astrophysics Data System (ADS)

    Miyakawa, Ryan H.

    Next generation extreme ultraviolet (EUV) optical systems are moving to higher resolution optics to accommodate smaller length scales targeted by the semiconductor industry. As the numerical apertures (NA) of the optics become larger, it becomes increasingly difficult to characterize aberrations due to experimental challenges associated with high-resolution spatial filters and geometrical effects caused by large incident angles of the test wavefront. This dissertation focuses on two methods of wavefront metrology for high resolution optical systems. The first method, lateral shearing interferometry (LSI), is a self-referencing interferometry where the test wavefront is incident on a low spatial frequency grating, and the resulting interference between the diffracted orders is used to reconstruct the wavefront aberrations. LSI has many advantages over other interferometric tests such as phase-shifting point diffraction interferometry (PS/PDI) due to its experimental simplicity, stability, relaxed coherence requirements, and its ability to scale to high numerical apertures. While LSI has historically been a qualitative test, this dissertation presents a novel quantitative investigation of the LSI interferogram. The analysis reveals the existence of systematic aberrations due to the nonlinear angular response from the diffraction grating that compromises the accuracy of LSI at medium to high NAs. In the medium NA regime (0.15 < NA < 0.35), a holographic model is presented that derives the systematic aberrations in closed form, which demonstrates an astigmatism term that scales as the square of the grating defocus. In the high NA regime (0.35 < NA), a geometrical model is introduced that describes the aberrations as a system of transcendental equations that can be solved numerically. The characterization and removal of these systematic errors is a necessary step that unlocks LSI as a viable candidate for high NA EUV optical testing. The second method is a novel image

  4. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  5. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  6. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  7. High Resolution Velocity Structure in Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Pasyanos, M. E.; Gok, R.; Zor, E.; Walter, W. R.

    2004-12-01

    We investigate the crust and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet, forming a complex tectonic regime. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provide a unique opportunity for studying the high resolution velocity structure of the region. Zor et al. (2003) found an average 46 km thick crust in the Anatolian plateau using a six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver functions alone, however, may result in an apparent depth-velocity trade-off [Ammon et al., 1990]. In order to improve upon this velocity model, we have combined the receiver functions with surface wave data using the joint inversion method of Julia et al. (2000). In this technique, the two sets of observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. The receiver functions are calculated using an iterative time-domain deconvolution technique. We also consider azimuthal changes in the receiver functions and have stacked them into different groups accordingly. We are improving our surface wave model by making Love and Rayleigh dispersion measurements at the ETSE stations and incorporating them into a regional group velocity model for periods between 10 and 100 seconds. Preliminary results indicate a strong trend in the long period group velocities toward the northeast, indicating slow upper mantle velocities in the area consistent with Pn, Sn and receiver function results. Starting models used for the joint inversions include both a 1-D model from a 12-ton dam shot recorded by ETSE [Gurbuz et al., 2004] and

  8. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  9. Simultaneous CT and SPECT tomography using CZT detectors

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Simpson, Michael L.; Britton, Jr., Charles L.

    2002-01-01

    A method for simultaneous transmission x-ray computed tomography (CT) and single photon emission tomography (SPECT) comprises the steps of: injecting a subject with a tracer compound tagged with a .gamma.-ray emitting nuclide; directing an x-ray source toward the subject; rotating the x-ray source around the subject; emitting x-rays during the rotating step; rotating a cadmium zinc telluride (CZT) two-sided detector on an opposite side of the subject from the source; simultaneously detecting the position and energy of each pulsed x-ray and each emitted .gamma.-ray captured by the CZT detector; recording data for each position and each energy of each the captured x-ray and .gamma.-ray; and, creating CT and SPECT images from the recorded data. The transmitted energy levels of the x-rays lower are biased lower than energy levels of the .gamma.-rays. The x-ray source is operated in a continuous mode. The method can be implemented at ambient temperatures.

  10. Experimental measurements of charge carrier mobility: lifetime products for large sample of pixilated CZT detectors

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Shanmugam, M.; Purohit, Shishir; Acharya, Y. B.; Sudhakar, Manju

    2012-07-01

    Cadmium-Zinc-Telluride (CZT) is thought to be a primary work horse for hard X-ray astronomy in future. Due to the relatively large band-gap, it offers near room temperature operation while maintaining much better energy resolution then scintillator detectors operating in similar energy range. Further, CZT detectors are available in the form of pixilated detectors with area up to few cm2 and hence it is possible to realize very large detector area by having an array of such pixilated CZT detectors. However, it is well known that the energy spectrum of mono-energetic X-ray measured by CZT detectors does not have a Gaussian shape but has significant low-energy tail. This is mainly due to relatively poor mobility and small life time of the charge carriers, particularly of holes, in the CZT crystals. Thus, in order to understand spectral response for a large array of CZT detectors consisting of multiple elements / pixels, it is essential to characterize the mobility-lifetime products of charge carriers for each individual elements / pixels. Here we present experimental measurements of charge carrier mobility-lifetime products for large sample of multi-pixel CZT detectors. The mobility-lifetime products are measured by simultaneously fitting a ‘CZT line’ model to pixel wise spectra of 122 keV X-rays from 57Co at three different bias voltages. These were carried out as a part of selection of CZT detector modules for the “High Energy X-ray spectrometer (HEX)” onboard Indian moon mission - Chandrayaan-1.

  11. Balloon flight background measurement with actively-shielded planar and imaging CZT detectors

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Narita, Tomohiko; Jenkins, Jonathan A.; Perrin, Marshall; Murray, Ruth; Grindlay, Jonathan E.

    2002-01-01

    We present results from the flight of two prototype CZT detectors on a scientific balloon payload in September 2000. The first detector, referred to as CZT1, consisted of a 10 mm x 10 mm x 2 mm CZT crystal with a single gold planar electrode readout. This detector was shielded by a combination of a passive collimator in the front, giving a 40 degree field of view and surrounded by plastic scintillator, and a thick BGO crystal in the rear. The second detector, CZT2, comprised two 10 mm x 10 mm x 5 mm CZT crystals, one made of eV Products high pressure Bridgman material and the other of IMARAD horizontal Bridgman material, each fashioned with a 4 x 4 array of gold pixels on a 2.5 mm pitch. The pixellated detectors were flip-chip-mounted side by side and read out by a 32-channel ASIC. This detector was also shielded by a passive/plastic collimator in the front, but used only additional passive/plastic shielding in the rear. Both experiments were flown from Ft. Sumner, NM on September 19, 2000 on a 24 hour balloon flight. Both instruments performed well. CZT1 recorded a non-vetoed background level at 100 keV of approximately 1 x 10-3 cm-2s-1keV-1. Raising the BGO threshold from 50 keV to approximately 1 MeV produced only an 18% increase in this level. CZT2 recorded a background at 100 keV of approximately 4 times 10-3 cts cm-2s-1keV-1 in the eV Products detector and approximately 6 x 10-3 cts cm-2s-1keV-1 in the IMARAD detector, a difference possibly due to our internal background subtracting procedure. Both CZT1 and CZT2 spectra were in basic agreement with Monte Carlo simulations, though both recorded systematically higher count rates at high energy than predicted. No lines were observed, indicating that neutron capture reactions, at least those producing decay lines at a few 100 keV, are not significant components of the CZT background. Comparison of the CZT1 and CZT2 spectra indicates that passive/plastic shielding may provide adequately low background levels for

  12. ALMA Debuts High-Resolution Results

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-07-01

    through space as it orbits the Sun. The resolution of these images — enough to study the shape and even some surface features of the asteroid! — are unprecedented for this wavelength. HL Tau is a young star surrounded by a protoplanetary disk. ALMA's detailed observations of this region revealed remarkable structure within the disk: a series of light and dark concentric rings indicative of planets caught in the act of forming. Studying this system will help us understand how multi-planet solar systems like our own form and evolve. The star-forming galaxy SDP.81 — located so far away that the light we see was emitted when the Universe was only 15% of its current age — is gravitationally-lensed into a cosmic arc, due to the convenient placement of a nearby foreground galaxy. The combination of the lucky alignment and ALMA's high resolution grant us a spectacularly detailed view of this distant galaxy, allowing us to study its actual shape and the motion within it. The observations from ALMA's first test of its long baseline demonstrate that ALMA is capable of doing the transformational science it promised. As we gear up for the next cycle of observations, it's clear that exciting times are ahead! Citation: ALMA ship et al. 2015 ApJ 808 L1, L2, L3 and L4. Focus on the ALMA Long Baseline Campaign

  13. High-resolution noncontact atomic force microscopy.

    PubMed

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  14. Using high-resolution displays for high-resolution cardiac data.

    PubMed

    Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken

    2009-07-13

    The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.

  15. Annealing as grown large volume CZT single crystals increased spectral resolution

    SciTech Connect

    Dr. Longxia Li

    2008-03-19

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size < 1 {micro}m) CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT would became

  16. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  17. AstroSat CZT Imager Observations of GRB 151006A: Timing, Spectroscopy, and Polarization Study

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Chand, Vikas; Hingar, M. K.; Iyyani, S.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Paul, D.; Bhalerao, V. B.; Bhattacharya, D.; Dewangan, G. C.; Pawar, Pramod; Vibhute, A. M.; Chattopadhyay, T.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Basak, R.; Pradeep, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Navalgund, K. H.; Pandiyan, R.; Sarma, K. S.; Seetha, S.; Subbarao, K.

    2016-12-01

    AstroSat is a multi-wavelength satellite launched on 2015 September 28. The CZT Imager of AstroSat on its very first day of operation detected a long duration gamma-ray burst (GRB), namely GRB 151006A. Using the off-axis imaging and spectral response of the instrument, we demonstrate that the CZT Imager can localize this GRB correctly to about a few degrees, and it can provide, in conjunction with Swift, spectral parameters similar to those obtained from Fermi/GBM. Hence, the CZT Imager would be a useful addition to the currently operating GRB instruments (Swift and Fermi). Specifically, we argue that the CZT Imager will be most useful for the short hard GRBs by providing localization for those detected by Fermi and spectral information for those detected only by Swift. We also provide preliminary results on a new exciting capability of this instrument: the CZT Imager is able to identify Compton scattered events thereby providing polarization information for bright GRBs. GRB 151006A, in spite of being relatively faint, shows hints of a polarization signal at 100-300 keV (though at a low significance level). We point out that the CZT Imager should provide significant time resolved polarization measurements for GRBs that have fluence three times higher than that of GRB 151006A. We estimate that the number of such bright GRBs detectable by the CZT Imager is five to six per year. The CZT Imager can also act as a good hard X-ray monitoring device for possible electromagnetic counterparts of gravitational wave events.

  18. Epitaxial growth of CZT(S,Se) on silicon

    DOEpatents

    Bojarczuk, Nestor A.; Gershon, Talia S.; Guha, Supratik; Shin, Byungha; Zhu, Yu

    2016-03-15

    Techniques for epitaxial growth of CZT(S,Se) materials on Si are provided. In one aspect, a method of forming an epitaxial kesterite material is provided which includes the steps of: selecting a Si substrate based on a crystallographic orientation of the Si substrate; forming an epitaxial oxide interlayer on the Si substrate to enhance wettability of the epitaxial kesterite material on the Si substrate, wherein the epitaxial oxide interlayer is formed from a material that is lattice-matched to Si; and forming the epitaxial kesterite material on a side of the epitaxial oxide interlayer opposite the Si substrate, wherein the epitaxial kesterite material includes Cu, Zn, Sn, and at least one of S and Se, and wherein a crystallographic orientation of the epitaxial kesterite material is based on the crystallographic orientation of the Si substrate. A method of forming an epitaxial kesterite-based photovoltaic device and an epitaxial kesterite-based device are also provided.

  19. Design and development of the RT-2/CZT payload

    NASA Astrophysics Data System (ADS)

    Malkar, J. P.; Tawde, Amit; Sreekumar, S.; Hingar, M. K.; Chakrabarti, S. K.; Nandi, Anuj

    The RT-2/CZT spectrometer is one of the satellite payloads to be flown onboard the Coronas-Photon satellite in 2008. It is a collaborative experiment between TIFR, CSP, ISRO (India) and MEPhI (Russia). It is designed to study the solar hard X-ray flare phenomena in the energy range 20 keV - 120 keV using pixilated (2.5 mm times 2.5 mm) cadmium zinc telluride detector array. These detectors along with an image coding device like coded aperture mask (CAM) or fresnel zone plate (FZP) helps in to snap images (in medium X-ray energy ranges) of the solar flares. The design characteristics of this payload are discussed.

  20. HEXITEC ASIC—a pixellated readout chip for CZT detectors

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence; Seller, Paul; Wilson, Matthew; Hardie, Alec

    2009-06-01

    HEXITEC is a collaborative project with the aim of developing a new range of detectors for high-energy X-ray imaging. High-energy X-ray imaging has major advantages over current lower energy imaging for the life and physical sciences, including improved phase-contrast images on larger, higher density samples and with lower accumulated doses. However, at these energies conventional silicon-based devices cannot be used, hence, the requirement for a new range of high Z-detector materials. Underpinning the HEXITEC programme are the development of a pixellated Cadmium Zinc Telluride (CZT) detectors and a pixellated readout ASIC which will be bump-bonded to the detector. The HEXITEC ASIC is required to have low noise (20 electrons rms) and tolerate detector leakage currents. A prototype 20×20 pixel ASIC has been developed and manufactured on a standard 0.35 μm CMOS process.

  1. High-Resolution Array with Prony, MUSIC, and ESPRIT Algorithms

    DTIC Science & Technology

    1992-08-25

    N avalI Research La bora tory AD-A255 514 Washington, DC 20375-5320 NRL/FR/5324-92-9397 High-resolution Array with Prony, music , and ESPRIT...unlimited t"orm n pprovoiREPORT DOCUMENTATION PAGE OMB. o 0 104 0188 4. TITLE AND SUBTITLE S. FUNDING NUMBERS High-resolution Array with Prony. MUSIC . and...the array high-resolution properties of three algorithms: the Prony algo- rithm, the MUSIC algorithm, and the ESPRIT algorithm. MUSIC has been much

  2. Distributed MIMO Radar for Imaging and High Resolution Target Localization

    DTIC Science & Technology

    2012-02-02

    28-2012 Final Report 04/15/2009 - 11/30/2011 Distributed MIMO Radar for Imaging and High Resolution Target Localization FA9550-09-1-0303 Alexander M...randomly placed sensors. MIMO radar, High-Resolution radar 19 Distributed MIMO Radar for Imaging and High Resolution Target Localization Air Force Office...configured with its antennas collocated [6] or distributed over an area [7, 8]. We refer to radio elements of a MIMO radar as nodes. Nodes may be equipped

  3. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  4. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  5. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  6. SPARTAN: An Instructional High Resolution Land Combat Model

    DTIC Science & Technology

    1992-03-01

    AD-A248 1681111 1 1 1 11 1 I’Ii’ I! ! DTICELECTIED m APR,0 11992.S Oct-D SPARTAN: An Instructional High Rezolution Land Combat Model THESIS David...SPARTAN: An Instructional Accesion For - High Resolution Land Combat Model NTIS CRA&IDTIC TAB ., THESIS U. a,1:!ot%,ced U 1stilcatonl...developed an instructional high resolution land combat simulation model . The purpose of this model is to demonstrate common techniques of modeling used

  7. Cadium-Zinc-Telluride (CZT) Gamma Ray Spectrometry

    SciTech Connect

    William Quam

    2001-09-01

    This report describes CZT crystals and their use in large arrays for generation of gamma ray spectra. Laboratory spectra will be shown together with spectra accumulated by various battery powered portable instruments (see Appendix A). One of these portable instruments was specifically constructed to minimize power consumption and yet provide reasonable isotope identification capability. Detailed data will be presented covering gamma energy resolution, gamma peak shapes, system background, and detector efficiency. Nearly all data were taken with very small crystals of CZT; cubes 5 mm on a side. A few spectra will be presented from cylindrical crystals of about the same size (see Appendix A). The small crystal size leads to low counting rates and extended counting times for reliable isotope identification. We have addressed this problem by using arrays of CZT crystals, initially two crystals and, at present, arrays of eight crystals. Data will be shown relating spectral parameters for these two arrays. System MDA is one way of combining resolution, efficiency, and background that will enable direct comparison of various detector types for individual isotope identification. We have calculated the MDA for an early dual crystal array and the current eight crystal array. Data derived from each array will be presented. In addition, it is possible to extrapolate the MDA methodology to much larger arrays. A 32-crystal array is under construction and extrapolations to 256 and 1024 crystals are considered possible. Estimated MDA values for these larger arrays are also presented. Several 8-crystal arrays have been constructed and versions have been incorporated into portable instruments. Descriptions of these small instruments are given covering physical size, weight, and general configuration. These instruments have been tested for shock and temperature effects and data will be presented on the results of these tests. The MDA concept will also allow extrapolation to large

  8. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging.

    PubMed

    Shikhaliev, Polad M

    2006-09-07

    X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR

  9. Development of a CZT drift ring detector for X and γ ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Boothman, V.; Veeramani, P.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2015-04-01

    CdTe and CZT detectors are considered better choices for high energy γ and X-ray spectroscopy in comparison to Si and HPGe detectors due to their good quantum efficiency and room temperature operation. The performance limitations in CdTe and CZT detectors are mainly associated with poor hole transport and trapping phenomena. Among many techniques that can be used to eliminate the effect of the poor charge transport properties of holes in CdTe and CZT material, the drift ring technique shows promising results. In this work, the performance of a 2.3 mm thick CZT drift ring detector is investigated. Spatially resolved measurements were carried out with an X-ray microbeam (25 and 75 keV) at the Diamond Light Source synchrotron to study the response uniformity and extent of the active area. Higher energy photon irradiation was also carried out at up to 662 keV using different radioisotopes to complement the microbeam data. Different biasing schemes were investigated in terms of biasing the cathode rear electrode (bulk field) and the ring electrodes (lateral fields). The results show that increasing the bulk field with fixed-ratio ring biases and lateral fields with fixed bulk fields increase the active area of the device significantly, which contrasts with previous studies in CdTe, where only an increasing lateral field resulted in an improvement of device performance. This difference is attributed to the larger thickness of the CZT device reported here.

  10. Development of CZT detectors for x-ray and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Lee, Kuen; Martin, J. W.; Garson, A., III; Guo, Q.; Matteson, J.; Groza, M.; Beilicke, M.; Burger, A.; de Geronimo, G.; Krawczynski, H.

    2011-09-01

    Cadmium Zinc Telluride (CZT) is the detector material of choice for the detection of X-rays in the 10 keV-1MeV energy band with excellent spatial and energy resolutions and without cryogenic cooling. In this contribution, we report on recent results of the CZT detector development program and several astrophysical experiments which make use of CZT detectors. In the first part of the paper, we discuss the performance of pixel and cross-strip CZT detectors read out with an ASIC developed at the Brookhaven National Laboratory. Our pixel detectors achieve some of the best energy resolutions reported in the literature. Cross-strip detectors are found to give an inferior performance and we investigate the reason for this performance difference. We also present results from a precision measurement of the effect of a steering grid on multi-pixel events obtained with a 200 micrometer collimator. In the second part of the paper, we describe the design and performance of the hard X-ray polarimeter X-Calibur. The polarimeter uses a 14 cm long scintillator scatterer, surrounded by an assembly of 32 2-5 mm thick CZT detectors. We discuss the sensitivity of the polarimeter to measure the linear polarization of 10 keV-80 keV X-rays on short and long balloon flights and results from testing the polarimeter in the laboratory.

  11. Spatially adaptive regularized iterative high-resolution image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lim, Won Bae; Park, Min K.; Kang, Moon Gi

    2000-12-01

    High resolution images are often required in applications such as remote sensing, frame freeze in video, military and medical imaging. Digital image sensor arrays, which are used for image acquisition in many imaging systems, are not dense enough to prevent aliasing, so the acquired images will be degraded by aliasing effects. To prevent aliasing without loss of resolution, a dense detector array is required. But it may be very costly or unavailable, thus, many imaging systems are designed to allow some level of aliasing during image acquisition. The purpose of our work is to reconstruct an unaliased high resolution image from the acquired aliased image sequence. In this paper, we propose a spatially adaptive regularized iterative high resolution image reconstruction algorithm for blurred, noisy and down-sampled image sequences. The proposed approach is based on a Constrained Least Squares (CLS) high resolution reconstruction algorithm, with spatially adaptive regularization operators and parameters. These regularization terms are shown to improve the reconstructed image quality by forcing smoothness, while preserving edges in the reconstructed high resolution image. Accurate sub-pixel motion registration is the key of the success of the high resolution image reconstruction algorithm. However, sub-pixel motion registration may have some level of registration error. Therefore, a reconstruction algorithm which is robust against the registration error is required. The registration algorithm uses a gradient based sub-pixel motion estimator which provides shift information for each of the recorded frames. The proposed algorithm is based on a technique of high resolution image reconstruction, and it solves spatially adaptive regularized constrained least square minimization functionals. In this paper, we show that the reconstruction algorithm gives dramatic improvements in the resolution of the reconstructed image and is effective in handling the aliased information. The

  12. Design and implementation of spaceborne high resolution infrared touch screen

    NASA Astrophysics Data System (ADS)

    Li, Tai-guo; Li, Wen-xin; Dong, Yi-peng; Ma, Wen; Xia, Jia-gao

    2015-10-01

    For the consideration of the special application environment of the electronic products used in aerospace and to further more improve the human-computer interaction of the manned aerospace area. The research is based on the design and implementation way of the high resolution spaceborne infrared touch screen on the basis of FPGA and DSP frame structure. Beside the introduction of the whole structure for the high resolution spaceborne infrared touch screen system, this essay also gives the detail information about design of hardware for the high resolution spaceborne infrared touch screen system, FPGA design, GUI design and DSP algorithm design based on Lagrange interpolation. What is more, the easy makes a comprehensive research of the reliability design for the high resolution spaceborne infrared touch screen for the special purpose of it. Besides, the system test is done after installation of spaceborne infrared touch screen. The test result shows that the system is simple and reliable enough, which has a stable running environment and high resolution, which certainly can meet the special requirement of the manned aerospace instrument products.

  13. Performance Characteristics of Pixelated CZT Crystals used on the GammaTracker Project

    SciTech Connect

    Becker, Eric M.; Seifert, Carolyn E.; Myjak, Mitchell J.; Erikson, Luke E.; Morris, Scott J.; Balvage, Duane R.; Lundy, Richard P.

    2011-08-21

    GammaTracker is a handheld radioisotope identification device in development at Pacific Northwest National Laboratory that uses eighteen pixelated Cadmium-Zinc Telluride (CZT) crystals to provide energy resolution approaching that of high-purity germanium without the need for cryogenic cooling. Additionally, these crystals can be used to provide directional and imaging capabilities that cannot be found in other handheld detectors. A significant number of CZT crystals have been procured during the development of the GammaTracker system; the majority of these were procured with the same set of specifications. Each of these detectors has been characterized in terms of key parameters, including current-voltage response and pixel-by-pixel energy resolution. The results of this testing indicate that the overall quality of CZT crystals is improving over time.

  14. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  15. High-resolution, high-pressure NMR studies of proteins.

    PubMed Central

    Jonas, J; Ballard, L; Nash, D

    1998-01-01

    Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed. PMID:9649405

  16. A high-resolution vehicle emission inventory for China

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Zhang, Q.; He, K.; Huo, H.; Yao, Z.; Wang, X.

    2012-12-01

    Developing high resolution emission inventory is an essential task for air quality modeling and management. However, current vehicle emission inventories in China are usually developed at provincial level and then allocated to grids based on various spatial surrogates, which is difficult to get high spatial resolution. In this work, we developed a new approach to construct a high-resolution vehicle emission inventory for China. First, vehicle population at county level were estimated by using the relationship between per-capita GDP and vehicle ownership. Then the Weather Research and Forecasting (WRF) model were used to drive the International Vehicle Emission (IVE) model to get monthly emission factors for each county. Finally, vehicle emissions by county were allocated to grids with 5-km horizon resolution by using high-resolution road network data. This work provides a better understanding of spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.

  17. Compact and high-resolution optical orbital angular momentum sorter

    NASA Astrophysics Data System (ADS)

    Wan, Chenhao; Chen, Jian; Zhan, Qiwen

    2017-03-01

    A compact and high-resolution optical orbital angular momentum (OAM) sorter is proposed and demonstrated. The sorter comprises a quadratic fan-out mapper and a dual-phase corrector positioned in the pupil plane and the Fourier plane, respectively. The optical system is greatly simplified compared to previous demonstrations of OAM sorting, and the performance in resolution and efficiency is maintained. A folded configuration is set up using a single reflective spatial light modulator (SLM) to demonstrate the validity of the scheme. The two phase elements are implemented on the left and right halves of the SLM and connected by a right-angle prism. Experimental results demonstrate the high resolution of the compact OAM sorter, and the current limit in efficiency can be overcome by replacing with transmissive SLMs and removing the beam splitters. This novel scheme paves the way for the miniaturization and integration of high-resolution OAM sorters.

  18. High-resolution Urban Image Classification Using Extended Features

    SciTech Connect

    Vatsavai, Raju

    2011-01-01

    High-resolution image classification poses several challenges because the typical object size is much larger than the pixel resolution. Any given pixel (spectral features at that location) by itself is not a good indicator of the object it belongs to without looking at the broader spatial footprint. Therefore most modern machine learning approaches that are based on per-pixel spectral features are not very effective in high- resolution urban image classification. One way to overcome this problem is to extract features that exploit spatial contextual information. In this study, we evaluated several features in- cluding edge density, texture, and morphology. Several machine learning schemes were tested on the features extracted from a very high-resolution remote sensing image and results were presented.

  19. In-Phase Ultra High-Resolution In Vivo NMR.

    PubMed

    Fugariu, Ioana; Bermel, Wolfgang; Lane, Daniel; Soong, Ronald; Simpson, Andre J

    2017-04-05

    Although current NMR techniques allow organisms to be studied in vivo, magnetic susceptibility distortions, which arise from inhomogeneous distributions of chemical moieties, prevent the acquisition of high-resolution NMR spectra. Intermolecular single quantum coherence (iSQC) is a technique that breaks the sample's spatial isotropy to form long range dipolar couplings, which can be exploited to extract chemical shift information free of perturbations. While this approach holds vast potential, present practical limitations include radiation damping, relaxation losses, and non-phase sensitive data. Herein, these drawbacks are addressed, and a new technique termed in-phase iSQC (IP-iSQC) is introduced. When applied to a living system, high-resolution NMR spectra, nearly identical to a buffer extract, are obtained. The ability to look inside an organism and extract a high-resolution metabolic profile is profound and should find applications in fields in which metabolism or in vivo processes are of interest.

  20. Modified Noise Power Ratio testing of high resolution digitizers

    SciTech Connect

    McDonald, T.S.

    1994-05-01

    A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

  1. Theoretical Problems in High Resolution Solar Physics, 2

    NASA Technical Reports Server (NTRS)

    Athay, G. (Editor); Spicer, D. S. (Editor)

    1987-01-01

    The Science Working Group for the High Resolution Solar Observatory (HRSO) laid plans beginning in 1984 for a series of workshops designed to stimulate a broadbased input from the scientific community to the HRSO mission. These workshops have the dual objectives of encouraging an early start on the difficult theoretical problems in radiative transfer, magnetohydrodynamics, and plasma physics that will be posed by the HRSO data, and maintaining current discussions of results in high resolution solar studies. This workshop was the second in the series. The workshop format presented invited review papers during the formal sessions and contributed poster papers for discussions during open periods. Both are presented.

  2. Wide swath and high resolution optical imaging satellite of Japan

    NASA Astrophysics Data System (ADS)

    Katayama, Haruyoshi; Kato, Eri; Imai, Hiroko; Sagisaka, Masakazu

    2016-05-01

    The "Advanced optical satellite" (tentative name) is a follow-on mission from ALOS. Mission objectives of the advanced optical satellite is to build upon the existing advanced techniques for global land observation using optical sensors, as well as to promote data utilization for social needs. Wide swath and high resolution optical imager onboard the advanced optical satellite will extend the capabilities of earlier ALOS missions. The optical imager will be able to collect high-resolution (< 1 m) and wide-swath (70 km) images with high geo-location accuracy. This paper introduces a conceptual design of the advanced optical satellite.

  3. High-resolution seismic studies applied to injected geothermal fluids

    SciTech Connect

    Smith, A.T.; Kasameyer, P.

    1985-01-01

    The application of high-resolution microseismicity studies to the problem of monitoring injected fluids is one component of the Geothermal Injection Monitoring Project at LLNL. The evaluation of microseismicity includes the development of field techniques, and the acquisition and processing of events during the initial development of a geothermal field. To achieve a specific detection threshold and location precision, design criteria are presented for seismic networks. An analysis of a small swarm near Mammoth Lakes, California, demonstrates these relationships and the usefulness of high-resolution seismic studies. A small network is currently monitoring the Mammoth-Pacific geothermal power plant at Casa Diablo as it begins production.

  4. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  5. On the application and extension of Harten's high resolution scheme

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1982-01-01

    Extensions of a second order high resolution explicit method for the numerical computation of weak solutions of one dimensonal hyperbolic conservation laws are discussed. The main objectives were (1) to examine the shock resoluton of Harten's method for a two dimensional shock reflection problem, (2) to study the use of a high resolution scheme as a post-processor to an approximate steady state solution, and (3) to construct an implicit in the delta-form using Harten's scheme for the explicit operator and a simplified iteration matrix for the implicit operator.

  6. Practical Applications Using A High Resolution Infrared Imaging System

    NASA Astrophysics Data System (ADS)

    Baraniak, David W.

    1981-01-01

    Infrared imaging systems can be classified into three general categories, low resolution, medium resolution and high resolution. It is the purpose of this paper to highlight specific applications best suited to high resolution, television capatable, infrared data acquisition techniques. The data was collected from both ground loped andoaerial based mobile positions where the temperature differentials varied from 15 C to 25 C. Specific applications include scanning building complexes from the exterior using a ground based moving vehicle, scanning buildings, concrete bridge decks and terrain from the air using a helicopter and scanning building interiors using a mobile hand truck.

  7. High-resolution low-dose scanning transmission electron microscopy.

    PubMed

    Buban, James P; Ramasse, Quentin; Gipson, Bryant; Browning, Nigel D; Stahlberg, Henning

    2010-01-01

    During the past two decades instrumentation in scanning transmission electron microscopy (STEM) has pushed toward higher intensity electron probes to increase the signal-to-noise ratio of recorded images. While this is suitable for robust specimens, biological specimens require a much reduced electron dose for high-resolution imaging. We describe here protocols for low-dose STEM image recording with a conventional field-emission gun STEM, while maintaining the high-resolution capability of the instrument. Our findings show that a combination of reduced pixel dwell time and reduced gun current can achieve radiation doses comparable to low-dose TEM.

  8. Evaluation of quantitative accuracy in CZT-based pre-clinical SPECT for various isotopes

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Yu, A. R.; Kim, Y.-s.; Kang, W.-S.; Jin, S. S.; Kim, J.-S.; Son, T. J.; Kim, H.-J.

    2015-05-01

    In vivo pre-clinical single-photon emission computed tomography (SPECT) is a valuable tool for functional small animal imaging, but several physical factors, such as scatter radiation, limit the quantitative accuracy of conventional scintillation crystal-based SPECT. Semiconductor detectors such as CZT overcome these deficiencies through superior energy resolution. To our knowledge, little scientific information exists regarding the accuracy of quantitative analysis in CZT-based pre-clinical SPECT systems for different isotopes. The aim of this study was to assess the quantitative accuracy of CZT-based pre-clinical SPECT for four isotopes: 201Tl, 99mTc, 123I, and 111In. The quantitative accuracy of the CZT-based Triumph X-SPECT (Gamma-Medica Ideas, Northridge, CA, U.S.A.) was compared with that of a conventional SPECT using GATE simulation. Quantitative errors due to the attenuation and scatter effects were evaluated for all four isotopes with energy windows of 5%, 10%, and 20%. A spherical source containing the isotope was placed at the center of the air-or-water-filled mouse-sized cylinder phantom. The CZT-based pre-clinical SPECT was more accurate than the conventional SPECT. For example, in the conventional SPECT with an energy window of 10%, scatter effects degraded quantitative accuracy by up to 11.52%, 5.10%, 2.88%, and 1.84% for 201Tl, 99mTc, 123I, and 111In, respectively. However, with the CZT-based pre-clinical SPECT, the degradations were only 9.67%, 5.45%, 2.36%, and 1.24% for 201Tl, 99mTc, 123I, and 111In, respectively. As the energy window was increased, the quantitative errors increased in both SPECT systems. Additionally, the isotopes with lower energy of photon emissions had greater quantitative error. Our results demonstrated that the CZT-based pre-clinical SPECT had lower overall quantitative errors due to reduced scatter and high detection efficiency. Furthermore, the results of this systematic assessment quantifying the accuracy of these SPECT

  9. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  10. Workshop on high-resolution, large-acceptance spectrometers

    SciTech Connect

    Zeidman, B.

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  11. Ultrastable reference pulser for high-resolution spectrometers

    NASA Technical Reports Server (NTRS)

    Brenner, R.; Lenkszus, F. R.; Sifter, L. L.; Strauss, M. G.

    1970-01-01

    Solid-state double-pulse generator for a high resolution semiconductor detector meets specific requirements for resolution /0.05 percent/, amplitude range /0.1-13 MeV/, and repetition rate /0.1-1000 pulses per second/. A tag pulse is generated in coincidence with each reference pulse.

  12. A DVD Spectroscope: A Simple, High-Resolution Classroom Spectroscope

    ERIC Educational Resources Information Center

    Wakabayashi, Fumitaka; Hamada, Kiyohito

    2006-01-01

    Digital versatile disks (DVDs) have successfully made up an inexpensive but high-resolution spectroscope suitable for classroom experiments that can easily be made with common material and gives clear and fine spectra of various light sources and colored material. The observed spectra can be photographed with a digital camera, and such images can…

  13. Persistence Diagrams of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Fernández Méndez, F.; Carsteanu, A. A.

    2015-12-01

    This study applies Topological Data Analysis (TDA), by generating persistence diagrams to uncover patterns in the data of high-resolution temporal rainfall intensities from Iowa City (IIHR, U of Iowa). Persistence diagrams are a way to identify essential cycles in state-space representations of the data.

  14. Application of Classification Models to Pharyngeal High-Resolution Manometry

    ERIC Educational Resources Information Center

    Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.

    2012-01-01

    Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…

  15. Laser direct writing of rotationally symmetric high-resolution structures.

    PubMed

    Haefner, Matthias; Pruss, Christof; Osten, Wolfgang

    2011-11-01

    We present a laser direct writing system for the efficient fabrication of high-resolution axicon structures. The setup makes use of scanning beam interference lithography incorporated with a fringe locking scheme for tight fringe phase control and allows us to fabricate large area structures with a period down to 450 nm.

  16. High-resolution airway morphometry from polyurethane casts

    NASA Astrophysics Data System (ADS)

    Neufeld, Gordon R.; Vargas, John; Hoford, John D.; Craft, Jeanne; Shroff, Sunil; McRae, Karen M.

    1995-05-01

    An airway cast was made and imbedded in a solid polyurethane block of a contrasting color. The block was sequentially milled and photographed. The sequential photographs were scanned to create an image database which was analyzed on VIDA; a multidimensional image analysis software package. The technique shows promise as a semi-automated process for generating a high resolution morphometric database from airway casts.

  17. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  18. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  19. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  20. Evacuee Compliance Behavior Analysis using High Resolution Demographic Information

    SciTech Connect

    Lu, Wei; Han, Lee; Liu, Cheng; Tuttle, Mark A; Bhaduri, Budhendra L

    2014-01-01

    The purpose of this study is to examine whether evacuee compliance behavior with route assignments from different resolutions of demographic data would impact the evacuation performance. Most existing evacuation strategies assume that travelers will follow evacuation instructions, while in reality a certain percent of evacuees do not comply with prescribed instructions. In this paper, a comparison study of evacuation assignment based on Traffic Analysis Zones (TAZ) and high resolution LandScan USA Population Cells (LPC) were conducted for the detailed road network representing Alexandria, Virginia. A revised platform for evacuation modeling built on high resolution demographic data and activity-based microscopic traffic simulation is proposed. The results indicate that evacuee compliance behavior affects evacuation efficiency with traditional TAZ assignment, but it does not significantly compromise the efficiency with high resolution LPC assignment. The TAZ assignment also underestimates the real travel time during evacuation, especially for high compliance simulations. This suggests that conventional evacuation studies based on TAZ assignment might not be effective at providing efficient guidance to evacuees. From the high resolution data perspective, traveler compliance behavior is an important factor but it does not impact the system performance significantly. The highlight of evacuee compliance behavior analysis should be emphasized on individual evacuee level route/shelter assignments, rather than the whole system performance.

  1. Texture analysis of high-resolution FLAIR images for TLE

    NASA Astrophysics Data System (ADS)

    Jafari-Khouzani, Kourosh; Soltanian-Zadeh, Hamid; Elisevich, Kost

    2005-04-01

    This paper presents a study of the texture information of high-resolution FLAIR images of the brain with the aim of determining the abnormality and consequently the candidacy of the hippocampus for temporal lobe epilepsy (TLE) surgery. Intensity and volume features of the hippocampus from FLAIR images of the brain have been previously shown to be useful in detecting the abnormal hippocampus in TLE. However, the small size of the hippocampus may limit the texture information. High-resolution FLAIR images show more details of the abnormal intensity variations of the hippocampi and therefore are more suitable for texture analysis. We study and compare the low and high-resolution FLAIR images of six epileptic patients. The hippocampi are segmented manually by an expert from T1-weighted MR images. Then the segmented regions are mapped on the corresponding FLAIR images for texture analysis. The 2-D wavelet transforms of the hippocampi are employed for feature extraction. We compare the ability of the texture features from regular and high-resolution FLAIR images to distinguish normal and abnormal hippocampi. Intracranial EEG results as well as surgery outcome are used as gold standard. The results show that the intensity variations of the hippocampus are related to the abnormalities in the TLE.

  2. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  3. High resolution data base for use with MAP

    SciTech Connect

    Tapley, W.C.; Harris, D.B.

    1987-05-05

    A high resolution cartographic data base of thw World is available from the CIA. We obtained this data, extracted portions of the data, and produced cartographic files of varying resolutions. The resulting data files are of the proper format for use with MAP (2), our in-house cartographic plotting program.

  4. High-Resolution Land Use and Land Cover Mapping

    USGS Publications Warehouse

    ,

    1999-01-01

    As the Nation?s population grows, quantifying, monitoring, and managing land use becomes increasingly important. The U.S. Geological Survey (USGS) has a long heritage of leadership and innovation in land use and land cover (LULC) mapping that has been the model both nationally and internationally for over 20 years. At present, the USGS is producing high-resolution LULC data for several watershed and urban areas within the United States. This high-resolution LULC mapping is part of an ongoing USGS Land Cover Characterization Program (LCCP). The four components of the LCCP are global (1:2,000,000-scale), national (1:100,000-scale), urban (1:24,000-scale), and special projects (various scales and time periods). Within the urban and special project components, the USGS Rocky Mountain Mapping Center (RMMC) is collecting historical as well as contemporary high-resolution LULC data. RMMC?s high-resolution LULC mapping builds on the heritage and success of previous USGS LULC programs and provides LULC information to meet user requirements.

  5. HIGH RESOLUTION RESISTIVITY LEAK DETECTION DATA PROCESSING & EVALUATION MEHTODS & REQUIREMENTS

    SciTech Connect

    SCHOFIELD JS

    2007-10-04

    This document has two purposes: {sm_bullet} Describe how data generated by High Resolution REsistivity (HRR) leak detection (LD) systems deployed during single-shell tank (SST) waste retrieval operations are processed and evaluated. {sm_bullet} Provide the basic review requirements for HRR data when Hrr is deployed as a leak detection method during SST waste retrievals.

  6. Vehicle Detection and Classification from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Abraham, L.; Sasikumar, M.

    2014-11-01

    In the past decades satellite imagery has been used successfully for weather forecasting, geographical and geological applications. Low resolution satellite images are sufficient for these sorts of applications. But the technological developments in the field of satellite imaging provide high resolution sensors which expands its field of application. Thus the High Resolution Satellite Imagery (HRSI) proved to be a suitable alternative to aerial photogrammetric data to provide a new data source for object detection. Since the traffic rates in developing countries are enormously increasing, vehicle detection from satellite data will be a better choice for automating such systems. In this work, a novel technique for vehicle detection from the images obtained from high resolution sensors is proposed. Though we are using high resolution images, vehicles are seen only as tiny spots, difficult to distinguish from the background. But we are able to obtain a detection rate not less than 0.9. Thereafter we classify the detected vehicles into cars and trucks and find the count of them.

  7. High Resolution Mass Spectra Analysis with a Programmable Calculator.

    ERIC Educational Resources Information Center

    Holdsworth, David K.

    1980-01-01

    Highlighted are characteristics of programs written for a pocket-sized programmable calculator to analyze mass spectra data (such as displaying high resolution masses for formulas, predicting whether formulas are stable molecules or molecular ions, determining formulas by isotopic abundance measurement) in a laboratory or classroom. (CS)

  8. High Resolution Rapid Revisits Insar Monitoring of Surface Deformation

    NASA Astrophysics Data System (ADS)

    Singhroy, V.; Li, J.; Charbonneau, F.

    2014-12-01

    Monitoring surface deformation on strategic energy and transportation corridors requires high resolution spatial and temporal InSAR images for mitigation and safety purposes. High resolution air photos, lidar and other satellite images are very useful in areas where the landslides can be fatal. Recently, radar interferometry (InSAR) techniques using more rapid revisit images from several radar satellites are increasingly being used in active deformation monitoring. The Canadian RADARSAT Constellation (RCM) is a three-satellite mission that will provide rapid revisits of four days interferometric (InSAR) capabilities that will be very useful for complex deformation monitoring. For instance, the monitoring of surface deformation due to permafrost activity, complex rock slide motion and steam assisted oil extraction will benefit from this new rapid revisit capability. This paper provide examples of how the high resolution (1-3 m) rapid revisit InSAR capabilities will improve our monitoring of surface deformation and provide insights in understanding triggering mechanisms. We analysed over a hundred high resolution InSAR images over a two year period on three geologically different sites with various configurations of topography, geomorphology, and geology conditions. We show from our analysis that the more frequent InSAR acquisitions are providing more information in understanding the rates of movement and failure process of permafrost triggered retrogressive thaw flows; the complex motion of an asymmetrical wedge failure of an active rock slide and the identification of over pressure zones related to oil extraction using steam injection. Keywords: High resolution, InSAR, rapid revisits, triggering mechanisms, oil extraction.

  9. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography.

    PubMed

    Habte, F; Foudray, A M K; Olcott, P D; Levin, C S

    2007-07-07

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (CZT) and good coincidence time resolutions (2 ns FWHM for LSO-PSAPD and 8 ns for CZT). The goal is to incorporate the detectors into systems that will achieve 1 mm(3) spatial resolution ( approximately 1 mm(3), uniform throughout the field of view (FOV)), with excellent contrast resolution as well. In order to realize 1 mm(3) spatial resolution with high signal-to-noise ratio (SNR), it is necessary to significantly boost coincidence photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented 'edge-on' with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source

  10. Effects of system geometry and other physical factors on photon sensitivity of high-resolution positron emission tomography

    PubMed Central

    Foudray, A M K; Olcott, P D

    2013-01-01

    We are studying two new detector technologies that directly measure the three-dimensional coordinates of 511 keV photon interactions for high-resolution positron emission tomography (PET) systems designed for small animal and breast imaging. These detectors are based on (1) lutetium oxyorthosilicate (LSO) scintillation crystal arrays coupled to position-sensitive avalanche photodiodes (PSAPD) and (2) cadmium zinc telluride (CZT). The detectors have excellent measured 511 keV photon energy resolutions (≤12% FWHM for LSO-PSAPD and ≤3% for CZT) and good coincidence time resolutions (2 ns FWHM for LSO-PSAPD and 8 ns for CZT). The goal is to incorporate the detectors into systems that will achieve 1 mm3 spatial resolution (~1 mm3, uniform throughout the field of view (FOV)), with excellent contrast resolution as well. In order to realize 1 mm3 spatial resolution with high signal-to-noise ratio (SNR), it is necessary to significantly boost coincidence photon detection efficiency (referred to as photon sensitivity). To facilitate high photon sensitivity in the proposed PET system designs, the detector arrays are oriented ‘edge-on’ with respect to incoming 511 keV annihilation photons and arranged to form a compact FOV with detectors very close to, or in contact with, the subject tissues. In this paper, we used Monte Carlo simulation to study various factors that limit the photon sensitivity of a high-resolution PET system dedicated to small animal imaging. To optimize the photon sensitivity, we studied several possible system geometries for a fixed 8 cm transaxial and 8 cm axial FOV. We found that using rectangular-shaped detectors arranged into a cylindrical geometry does not yield the best photon sensitivity. This is due to the fact that forming rectangular-shaped detectors into a ring produces significant wedge-shaped inter-module gaps, through which Compton-scattered photons in the detector can escape. This effect limits the center point source photon

  11. CZT detector for dual-energy x-ray absorptiometry (DEXA)

    NASA Astrophysics Data System (ADS)

    Wear, James; Buchholz, Michael; Payne, Randall K.; Gorsuch, Darrell; Bisek, Joseph; Ergun, David L.; Grosholz, Joe; Falk, Ron

    2000-12-01

    A cadmium-zinc-telluride (CZT) detector has been developed for a bone densitometer that uses dual-energy x-ray absorptiometry (DEXA) to determine bone mineral density in vivo. A linear array of 16 discrete CZT detectors is used with a narrow fan-shaped x-ray beam to scan the patient. Each detector is 3 mm thick and 7 mm by 3 mm in area and has simple planar contacts. The x-ray beam has two broad energy lobes with effective energies of approximately 38 keV and approximately 65 keV. The energy sensitivity of the CZT detectors allows discrimination between low and high energy x-rays. Using DEXA, the relative difference in these two count rates permits a quantitative measurement of the real densities of bone mineral and soft tissue. The detectors demonstrate good performance characteristics and stable operation in a clinical environment. This paper discusses the suitability of CZT for use in DEXA applications and describes its successful implementation and performance in this bone densitometer.

  12. High-resolution structure of the native histone octamer

    SciTech Connect

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-06-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R{sub work} value of 18.7% and an R{sub free} of 22.2%. The crystal space group is P6{sub 5}, the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle.

  13. High resolution reservoir geological modelling using outcrop information

    SciTech Connect

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  14. Protein-DNA binding in high-resolution

    PubMed Central

    Mahony, Shaun; Pugh, B. Franklin

    2015-01-01

    Recent advances in experimental and computational methodologies are enabling ultra-high resolution genome-wide profiles of protein-DNA binding events. For example, the ChIP-exo protocol precisely characterizes protein-DNA crosslinking patterns by combining chromatin immunoprecipitation (ChIP) with 5′ → 3′ exonuclease digestion. Similarly, deeply sequenced chromatin accessibility assays (e.g. DNase-seq and ATACseq) enable the detection of protected footprints at protein-DNA binding sites. With these techniques and others, we have the potential to characterize the individual nucleotides that interact with transcription factors, nucleosomes, RNA polymerases, and other regulatory proteins in a particular cellular context. In this review, we explain the experimental assays and computational analysis methods that enable high-resolution profiling of protein-DNA binding events. We discuss the challenges and opportunities associated with such approaches. PMID:26038153

  15. High resolution seismic reflection test at the DOE Hanford Site

    SciTech Connect

    Narbutovskih, S.M.; Michelsen, F.B.; Clark, J.C.; Christensen, E.W.

    1995-04-01

    A recent test was conducted to ascertain the benefits of swept source technology for use at the DOE Hanford Site. Previous high resolution seismic surveys suffered from coherent noise interference, poor signal transmission and lack of borehole velocity control. P-wave data were collected with the T-2500 Minivib produced by IVI, Inc. and Oyo Geospace`s DAS-1 acquisition system. Results showed a significant increase m signal-to-noise ratio, increased resolving power and better depth penetration of the signal. It is concluded that swept source technology as part of a total systems approach, significantly expands the capabilities of the shallow high resolution seismic reflection method for use at the DOE Hanford Site.

  16. Effective Area of the AXAF High Resolution Camera (HRC)

    NASA Technical Reports Server (NTRS)

    Patnaude, Daniel; Pease, Deron; Donnelly, Hank; Juda, Mike; Jones, Christine; Murray, Steve; Zombeck, Martin; Kraft, Ralph; Kenter, Almus; Meehan, Gary; Meehan, Gary; Swartz, Doug; Elsner, Ron

    1998-01-01

    The AXAF High-Resolution Camera (HRC) was calibrated at NASA MSFC's X-Ray Calibration Facility (XRCF) during 1997 March and April. We have undertaken an analysis of the HRC effective area using all data presently available from the XRCF. We discuss our spectral fitting of the beam-normalization detectors (BNDs), our method of removing higher order contamination lines present in the spectra, and corrections for beam non-uniformities. We apply a model of photon absorption depth in order to fit a smooth curve to the quantum efficiency of the detector. This is then combined with the most recent model of the AXAF High-Resolution Mirror Assembly (HRMA) to determine the ensemble effective area versus energy for the HRC. We also address future goals and concerns.

  17. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  18. Strategies for Interpreting High Resolution Coherent Multidimensional Spectra

    NASA Astrophysics Data System (ADS)

    Wells, Thresa A.; House, Zuri R.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The electronic spectra of certain molecules can be very complex and consist of a high density of peaks. The high density of peaks results in severe spectral congestion, making conventional data analysis techniques extremely difficult to use. One solution to this problem is to use high resolution coherent 2D spectroscopy (HRC2DS), which can improve resolution and sort peaks into recognizable clusters. This technique requires new data analysis techniques to accurately assign peaks. Even though HRC2DS can improve spectral resolution, some regions of the spectra may still remain congested. The ability to solve this problem using even higher dimensional techniques (e.g., high resolution coherent 3D spectroscopy) with 3D pattern recognition and data analysis techniques will be discussed.

  19. High Resolution Coherent Three-Dimensional Spectroscopy of Iodine

    NASA Astrophysics Data System (ADS)

    House, Zuri R.; Wells, Thresa A.; Chen, Peter C.; Strangfeld, Benjamin R.

    2013-06-01

    The heavy congestion found in many one-dimensional spectra can make it difficult to study many transitions. A new coherent three-dimensional spectroscopic technique has been developed to eliminate the kind of congestion commonly seen in high resolution electronic spectra. The molecule used for this test was Iodine. A well-characterized transition (X to B) was used to determine which four wave mixing process or processes were responsible for the peaks in the resulting multidimensional spectrum. The resolution of several peaks that overlap in a coherent 2D spectrum can be accomplished by using a higher dimensional (3D) spectroscopic method. This talk will discuss strategies for finding spectroscopic constants using this high resolution coherent 3D spectroscopic method.

  20. An Introduction to High Resolution Coherent Multidimensional Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Wells, Thresa A.; House, Zuri R.; Strangfeld, Benjamin R.

    2013-06-01

    High resolution coherent multidimensional spectroscopy is a technique that can be used to analyze and assign peaks for molecules that have resisted spectral analysis. Molecules that yield heavily congested and seemingly patternless spectra using conventional methods can yield 2D spectra that have recognizable patterns. The off-diagonal region of the coherent 2D plot shows only cross-peaks that are related by rotational selection rules. The resulting patterns facilitate peak assignment if they are sufficiently resolved. For systems that are not well-resolved, coherent 3D spectra may be generated to further improve resolution and provide selectivity. This presentation will provide an introduction to high resolution coherent 2D and 3D spectroscopies.

  1. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  2. High resolution computed tomography of advanced composite and ceramic materials

    NASA Technical Reports Server (NTRS)

    Yancey, R. N.; Klima, S. J.

    1991-01-01

    Advanced composite and ceramic materials are being developed for use in many new defense and commercial applications. In order to achieve the desired mechanical properties of these materials, the structural elements must be carefully analyzed and engineered. A study was conducted to evaluate the use of high resolution computed tomography (CT) as a macrostructural analysis tool for advanced composite and ceramic materials. Several samples were scanned using a laboratory high resolution CT scanner. Samples were also destructively analyzed at the locations of the scans and the nondestructive and destructive results were compared. The study provides useful information outlining the strengths and limitations of this technique and the prospects for further research in this area.

  3. High resolution map of light pollution over Poland

    NASA Astrophysics Data System (ADS)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  4. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  5. Turbine component casting core with high resolution region

    DOEpatents

    Kamel, Ahmed; Merrill, Gary B.

    2014-08-26

    A hollow turbine engine component with complex internal features can include a first region and a second, high resolution region. The first region can be defined by a first ceramic core piece formed by any conventional process, such as by injection molding or transfer molding. The second region can be defined by a second ceramic core piece formed separately by a method effective to produce high resolution features, such as tomo lithographic molding. The first core piece and the second core piece can be joined by interlocking engagement that once subjected to an intermediate thermal heat treatment process thermally deform to form a three dimensional interlocking joint between the first and second core pieces by allowing thermal creep to irreversibly interlock the first and second core pieces together such that the joint becomes physically locked together providing joint stability through thermal processing.

  6. A procedure for high resolution satellite imagery quality assessment.

    PubMed

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites.

  7. Application of spectral phase shaping to high resolution CARS spectroscopy.

    PubMed

    Postma, S; van Rhijn, A C W; Korterik, J P; Gross, P; Herek, J L; Offerhaus, H L

    2008-05-26

    By spectral phase shaping of both the pump and probe pulses in coherent anti-Stokes Raman scattering (CARS) spectroscopy we demonstrate the extraction of the frequencies, bandwidths and relative cross sections of vibrational lines. We employ a tunable broadband Ti:Sapphire laser synchronized to a ps-Nd:YVO mode locked laser. A high resolution spectral phase shaper allows for spectroscopy with a precision better than 1 cm(-1) in the high frequency region around 3000 cm(-1). We also demonstrate how new spectral phase shaping strategies can amplify the resonant features of isolated vibrations to such an extent that spectroscopy and microscopy can be done at high resolution, on the integrated spectral response without the need for a spectrograph.

  8. High-resolution observation by double-biprism electron holography

    SciTech Connect

    Harada, Ken; Tonomura, Akira; Matsuda, Tsuyoshi; Akashi, Tetsuya; Togawa, Yoshihiko

    2004-12-01

    High-resolution electron holography has been achieved by using a double-biprism interferometer implemented on a 1 MV field emission electron microscope. The interferometer was installed behind the first magnifying lens to narrow carrier fringes and thus enabled complete separation of sideband Fourier spectrum from center band in reconstruction process. Holograms of Au fine particles and single-crystalline thin films with the finest fringe spacing of 4.2 pm were recorded and reconstructed. The overall holography system including the reconstruction process performed well for holograms in which carrier fringes had a spacing of around 10 pm. High-resolution lattice images of the amplitude and phase were clearly reconstructed without mixing of the center band and sideband information. Additionally, entire holograms were recorded without Fresnel fringes normally generated by the filament electrode of the biprism, and the holograms were thus reconstructed without the artifacts caused by Fresnel fringes.

  9. A Procedure for High Resolution Satellite Imagery Quality Assessment

    PubMed Central

    Crespi, Mattia; De Vendictis, Laura

    2009-01-01

    Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312

  10. High resolution irradiance tailoring using multiple freeform surfaces.

    PubMed

    Bruneton, Adrien; Bäuerle, Axel; Wester, Rolf; Stollenwerk, Jochen; Loosen, Peter

    2013-05-06

    More and more lighting applications require the design of dedicated optics to achieve a given radiant intensity or irradiance distribution. Freeform optics has the advantage of providing such a functionality with a compact design. It was previously demonstrated in [Bäuerle et al., Opt. Exp. 20, 14477-14485 (2012)] that the up-front computation of the light path through the optical system (ray mapping) provides a satisfactory approximation to the problem, and allows the design of multiple freeform surfaces in transmission or in reflection. This article presents one natural extension of this work by introducing an efficient optimization procedure based on the physics of the system. The procedure allows the design of multiple freeform surfaces and can render high resolution irradiance patterns, as demonstrated by several examples, in particular by a lens made of two freeform surfaces projecting a high resolution logo (530 × 160 pixels).

  11. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  12. High-resolution solid-state NMR of quadrupolar nuclei

    PubMed Central

    Meadows, Michael D.; Smith, Karen A.; Kinsey, Robert A.; Rothgeb, T. Michael; Skarjune, Robert P.; Oldfield, Eric

    1982-01-01

    We report the observation of high-resolution solid-state NMR spectra of 23Na (I = [unk]), 27Al (I = [unk]) and 51V (I = [unk]) in various inorganic systems. We show that, contrary to popular belief, relatively high-resolution (≈10 ppm linewidth) spectra may be obtained from quadrupolar systems, in which electric quadrupole coupling constants (e2qQ/h) are in the range ≈1-5 MHz, by means of observation of the (½, -½) spin transition. The (½, -½) transition for all nonintegral spin quadrupolar nuclei (I = [unk], [unk], [unk], or [unk]) is only normally broadened by dipolar, chemical shift (or Knight shift) anisotropy or second-order quadrupolar effects, all of which are to a greater or lesser extent averaged under fast magic-angle sample rotation. In the case of 23Na and 27Al, high-resolution spectra of 23NaNO3 (e2qQ/h ≈300 kHz) and α-27Al2O3 (e2qQ/h ≈2-3 MHz) are presented; in the case of 51V2O5 (e2qQ/h ≈800 kHz), rotational echo decays are observed due to the presence of a ≈103-ppm chemical shift anisotropy. The observation of high-resolution solid-state spectra of systems having spins I = [unk], [unk], and [unk] in asymmetric environments opens up the possibility of examining about two out of three nuclei by solid-state NMR that were previously thought of as “inaccessible” due to the presence of large (a few megahertz) quadrupole coupling constants. Preliminary results for an I = [unk] system, 93Nb, having e2qQ/h ≈19.5 MHz, are also reported. PMID:16593165

  13. High resolution studies of atoms and small molecules

    SciTech Connect

    Bushaw, B.A.; Tonkyn, R.G.; Miller, R.J.

    1992-10-01

    High resolution, continuous wave lasers have been utilized successfully in studies of small molecules. Examples of two-photon excitation schemes and of multiple resonance excitation sequences will be discussed within the framework of the spectroscopy and dynamics of selected Rydberg states of nitric oxide. Initial results on the circular dichroism of angular distributions in photoelectron spectra of individual hyperfine states of cesium will also be discussed, but no data given.

  14. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  15. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  16. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) preliminary program plans; (2) contract end item (CEI) specification; and (3) the instrument interface description document. Under the preliminary program plans section, plans dealing with the following subject areas are discussed: spares, performance assurance, configuration management, software implementation, contamination, calibration management, and verification.

  17. High-resolution, cryogenic, side-entry type specimen stage

    DOEpatents

    King, Wayne E.; Merkle, Karl L.

    1979-01-01

    A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.

  18. High-Resolution Optoelectronic Shaft-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1994-01-01

    Improved optoelectronic encoder measures absolute angle to which shaft has been rotated. Costs little more than older, less capable encoders do, yet measures absolute angles at high resolution and does not lose absolute-angle data because generates those data anew with each reading at up to 1,000 times per second. It accumulates increments to measure total angular interval through which shaft has been turned (including unlimited number of complete turns), as long as power remains on.

  19. Fusion Experiments of HSI and High Resolution Panchromatic Imagery

    DTIC Science & Technology

    2007-11-02

    map derived from the unsharpened HSI. The classification is performed with an unsupervised feature extraction using principal component analysis (PCA... Classification of Hyperspectral Data in Urban Area", P. 169-172, SPIE Vol.3502 8. R. C. Gonzalez, P. Wintz, Digital Image Processing, Addison-Wesley...MA 02420-9185 Abstract In this paper, the fusion of hyperspectral imaging (HSI) sensor data and high-resolution panchromatic imagery (HPI) is

  20. High-resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1982-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.

  1. High resolution, large area, high energy x-ray tomography

    SciTech Connect

    Trebes, J.E.; Dolan, K.W.; Haddad, W.S.; Haskins, J.J.; Lerche, R.A.; Logan, C.M.; Perkins, D.E.; Schneberk, D.J.; Rikard, R.D.

    1997-08-01

    An x-ray tomography system is being developed for high resolution inspection of large objects. The goal is to achieve 25 micron resolution over object sizes that are tens of centimeters in extent. Typical objects will be metal in composition and therefore high energy, few MeV x-rays will be required. A proof-of-principle system with a limited field of view has been developed. Preliminary results are presented.

  2. High-resolution adaptive optics findings in talc retinopathy.

    PubMed

    Soliman, Mohamed K; Sarwar, Salman; Hanout, Mostafa; Sadiq, Mohammad A; Agarwal, Aniruddha; Gulati, Vikas; Nguyen, Quan Dong; Sepah, Yasir J

    2015-01-01

    Talc retinopathy is a recognized ocular condition characterized by the presence of small, yellow, glistening crystals found inside small retinal vessels and within different retinal layers. These crystals can be associated with retinal vascular occlusion and ischemia. Different diagnostic modalities have been used previously to characterize the retinal lesions in talc retinopathy. Adaptive optics, a high resolution imaging technique, is used to evaluate the location, appearance and distribution of talc crystals in a case of talc retinopathy.

  3. High resolution microwave spectrometer sounder (HIMSS), volume 1, book 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The following topics are presented with respect to the high resolution microwave spectrometer sounder (HIMSS) that is to be used as an instrument for NASA's Earth Observing System (EOS): (1) an instrument overview; (2) an instrument description; (3) the instrument's conceptual design; (4) technical risks and offsets; (5) instrument reliability; (6) commands and telemetry; (7) mass and power budgets; (8) integration and test program; (9) program implementation; and (10) phase CD schedule.

  4. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  5. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  6. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  7. Environmental inversion using high-resolution matched-field processing.

    PubMed

    Soares, Cristiano; Jesus, Sérgio M; Coelho, Emanuel

    2007-12-01

    This paper considers the inversion of experimental field data collected with light receiving systems designed to meet operational requirements. Such operational requirements include system deployment in free drifting configurations and a limited number of acoustic receivers. A well-known consequence of a reduced spatial coverage is a poor sampling of the vertical structure of the acoustic field, leading to a severe ill-conditioning of the inverse problem and data to model cost function with a massive sidelobe structure having many local extrema. This causes difficulties to meta-heuristic global search methods, such as genetic algorithms, to converge to the true model parameters. In order to cope with this difficulty, broadband high-resolution processors are proposed for their ability to significantly attenuate sidelobes, as a contribution for improving convergence. A comparative study on simulated data shows that high-resolution methods did not outperform the conventional Bartlett processor for pinpointing the true environmental parameter when using exhaustive search. However, when a meta-heuristic technique is applied for exploring a large multidimensional search space, high-resolution methods clearly improved convergence, therefore reducing the inherent uncertainty on the final estimate. These findings are supported by the results obtained on experimental field data obtained during the Maritime Rapid Environmental Assessment 2003 sea trial.

  8. A high-resolution study of isotopic compositions of precipitation

    NASA Astrophysics Data System (ADS)

    Lee, Jeonghoon; Kim, Songyi; Han, Yeongcheol; Oh, Yoon Seok; Kim, Young-Hee; Kim, Hyerin; Ham, Ji-Young; Choi, Hye-Bin; Na, Un-Sung; Koh, Dong-Chan

    2015-04-01

    Isotopic compositions of precipitation have been used to understand moisture transport in the atmosphere and interactions between precipitation and groundwater. Isotopic compositions of speleothems and ice cores, so called, "paleoarchives", can be utilized to interpret climate of the past and global circulation models (GCMs), which are able to explain the paleoarchives, can be validated by the precipitation isotopes. The developments of stable isotope analyzers make high-resolution isotopic studies feasible and a high-resolution study of precipitation isotopes is needed. For this study, precipitation samples were collected for every 5 to 15 minutes, depending on precipitation rates, using an auto-sampler for precipitation isotopes near coastal area. The isotopic compositions of precipitation range from -5.7‰ (-40.1‰)) to -10.8‰ (-74.3‰)) for oxygen (hydrogen). The slope of δ18O-δD diagram for the whole period is 6.8, but that of each storm is 5.1, 4.2, 7.9 and 7.7, respectively. It indicates that evaporation occurred during the first two storms, while the latter two storms did not experience any evaporation. The isotopic fractionations of precipitation has significant implications for the water cycle and high-resolution data of precipitation isotopes will be needed for the future studies related to the precipitation isotopes.

  9. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  10. High resolution digital holography based on the point source scanning

    NASA Astrophysics Data System (ADS)

    Wang, Minchao; Wang, Dayong; Rong, Lu; Wang, Yunxin; Wang, Fengpeng; Lin, Qiaowen

    2016-10-01

    Digital holographic microscopy has been widely used for the imaging of micro-objects and biological samples. Lensless in-line digital holographic microscopy is capable of wide field-of-view imaging. However the spatial resolution of the reconstructed images is limited by the pixel size of the detector. The relative position shift between the sample and the detector can effectively improve the resolution in the traditional sub-pixel shifting method, but it requires a high precision of translation stage. To overcome this problem, we propose a method based on the point source scanning to realize sub-pixel shifting. High precision sub-pixel shifting is achieved easily by using the geometric between point source and detector. Through moving the point source, multiple holograms with sub-pixel shifts are captured. These holograms are merged together to obtained a high resolution hologram by a synthesizing algorithm. Then, the high resolution reconstructed image of the object can be obtained by the angular spectrum algorithm. The feasibility of the proposed method is demonstrated by simulation and experiments. A USAF resolution test target was used as the object. Compared with the traditional digital holography, a higher resolution reconstructed image is obtained by our method. The proposed method has the advantages of simple recording setup and lower precision requirement of the translation stage. It can achieve the wide field-of-view and high resolution imaging.

  11. High-resolution 3D digital models of artworks

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto

    2003-10-01

    The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).

  12. Adaptive optics with pupil tracking for high resolution retinal imaging

    PubMed Central

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-01-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics. PMID:22312577

  13. High Resolution Modeling of Tropical Cyclones Using Rare Event Simulation

    NASA Astrophysics Data System (ADS)

    Plotkin, D. A.; Abbot, D. S.; Weare, J.

    2014-12-01

    Tropical cyclones (TCs) present a challenge to modeling using general circulation models (GCMs) because they involve processes and structures that are too fine for GCMs to resolve. TCs have fine structures - e.g. the eye, eyewall, and rain bands - with length scales on the order of 10 km, while GCMs have typical resolutions on the order of 50-100 km. High resolution GCM runs that are sufficiently long to exhibit multiple TCs can be prohibitively computationally expensive. Thus, while GCMs exhibit TC-like vortices with similar spatial and temporal frequencies to observed TCs, the ability of GCMs to reproduce fine TC structures remains largely untested. In this study, we use recently developed rare event analysis and simulation methods to selectively simulate TCs under GCMs at very high resolution. These rare event simulation methods have been developed mostly in the context of computational chemistry, but are broadly applicable. They allow (either by careful manipulation of the model or by selection of trajectories) direct and detailed interrogation of the event of interest without introducing error and without the need to simulated for long periods of time to see the event. By creating targeted, high resolution GCM simulations with many TCs, we hope to determine whether or not GCMs can capture fine TC structures such as eyewalls and individual rain bands.

  14. Machine Learning Based Road Detection from High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Lv, Ye; Wang, Guofeng; Hu, Xiangyun

    2016-06-01

    At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads' ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads' pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads' area and to detect the centerline of roads.

  15. Stars and their Environments at High-Resolution with IGRINS

    NASA Astrophysics Data System (ADS)

    Mace, Gregory; Jaffe, Daniel; Kaplan, Kyle; Kidder, Benjamin; Oh, Heeyoung; Sneden, Christopher; Afşar, Melike

    2016-06-01

    TheImmersion Grating Infrared Spectrometer (IGRINS) is a revolutionary instrument that exploits broad spectral coverage at high-resolution in the near-infrared. There are no moving parts in IGRINS and its high-throughput white-pupil design maximizes sensitivity. IGRINS on the 2.7 meter Harlan J. Smith Telescope at McDonald Observatory is nearly as sensitive as CRIRES at the 8 meter Very Large Telescope. However, IGRINS at R=45,000 has more than 30 times the spectral grasp of CRIRES. The use of an immersion grating facilitates a compact cryostat while providing simultaneous H and K band observations with complete wavelength coverage from 1.45 - 2.45 microns. Here we discuss details of instrument performance and summarize the application of IGRINS to stellar characterization, star formation in regions like Taurus and Ophiuchus, the interstellar medium, and photodissociation regions. IGRINS has the largest spectral grasp of any high-resolution, near-infrared spectrograph, allowing us to study star formation and evolution in unprecedented detail. With its fixed format and high sensitivity, IGRINS is a great survey instrument for star clusters, high signal-to-noise (SNR>300) studies of field stars, and for mapping the interstellar medium. As a prototype for GMTNIRS on the Giant Magellan Telescope, IGRINS represents the future of high-resolution spectroscopy. In the future IGRINS will be deployed to numerous facilities and will remain a versatile instrument for the community while producing a rich archive of uniform spectra.

  16. Adaptive optics high resolution spectroscopy: present status and future direction

    SciTech Connect

    Alcock, C; Angel, R; Ciarlo, D; Fugate, R O; Ge, J; Kuzmenko, P; Lloyd-Hart, M; Macintosh, B; Najita, J; Woolf, N

    1999-07-27

    High resolution spectroscopy experiments with visible adaptive optics (AO) telescopes at Starfire Optical Range and Mt. Wilson have demonstrated that spectral resolution can be routinely improved by a factor of - 10 over the seeing-limited case with no extra light losses at visible wavelengths. With large CCDs now available, a very wide wavelength range can be covered in a single exposure. In the near future, most large ground-based telescopes will be equipped with powerful A0 systems. Most of these systems are aimed primarily at diffraction-limited operation in the near IR. An exciting new opportunity will thus open up for high resolution IR spectroscopy. Immersion echelle gratings with much coarser grooves being developed by us at LLNL will play a critical role in achieving high spectral resolution with a compact and low cost IR cryogenically cooled spectrograph and simultaneous large wavelength coverage on relatively small IR detectors. We have constructed a new A0 optimized spectrograph at Steward Observatory to provide R = 200,000 in the optical, which is being commissioned at the Starfire Optical Range 3.5m telescope. We have completed the optical design of the LLNL IR Immersion Spectrograph (LISPEC) to take advantage of improved silicon etching technology. Key words: adaptive optics, spectroscopy, high resolution, immersion gratings

  17. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  18. Multi-Material Decomposition using Low-Current X-Ray and a Photon-Counting CZT Detector

    PubMed Central

    Kim, Sangtaek; Hernandez, Andrew; Alhassen, Fares; Pivovaroff, Michael; Cho, Hyo-Min; Gould, Robert G.; Seo, Youngho

    2013-01-01

    We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system. PMID:23503709

  19. Multi-Material Decomposition using Low-Current X-Ray and a Photon-Counting CZT Detector.

    PubMed

    Kim, Sangtaek; Hernandez, Andrew; Alhassen, Fares; Pivovaroff, Michael; Cho, Hyo-Min; Gould, Robert G; Seo, Youngho

    2011-01-01

    We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system.

  20. High resolution solar observations from first principles to applications

    NASA Astrophysics Data System (ADS)

    Verdoni, Angelo P.

    2009-10-01

    The expression "high-resolution observations" in Solar Physics refers to the spatial, temporal and spectral domains in their entirety. High-resolution observations of solar fine structure are a necessity to answer many of the intriguing questions related to solar activity. However, a researcher building instruments for high-resolution observations has to cope with the fact that these three domains often have diametrically opposed boundary conditions. Many factors have to be considered in the design of a successful instrument. Modern post-focus instruments are more closely linked with the solar telescopes that they serve than in past. In principle, the quest for high-resolution observations already starts with the selection of the observatory site. The site survey of the Advanced Technology Solar Telescope (ATST) under the stewardship of the National Solar Observatory (NSO) has identified Big Bear Solar Observatory (BBSO) as one of the best sites for solar observations. In a first step, the seeing characteristics at BBSO based on the data collected for the ATST site survey are described. The analysis will aid in the scheduling of high-resolution observations at BBSO as well as provide useful information concerning the design and implementation of a thermal control system for the New Solar Telescope (NST). NST is an off-axis open-structure Gregorian-style telescope with a 1.6 m aperture. NST will be housed in a newly constructed 5/8-sphere ventilated dome. With optics exposed to the surrounding air, NST's open-structure design makes it particularly vulnerable to the effects of enclosure-related seeing. In an effort to mitigate these effects, the initial design of a thermal control system for the NST dome is presented. The goal is to remediate thermal related seeing effects present within the dome interior. The THermal Control System (THCS) is an essential component for the open-telescope design of NST to work. Following these tasks, a calibration routine for the

  1. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Martin, Sara F.

    2012-09-01

    Movies with fields-of-view larger than normal for high-resolution telescopes will give a better understanding of processes on the Sun, such as filament and active region developments and their possible interactions. New active regions can influence, by their emergence, their environment to the extent of possibly serving as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly one after another using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch Open Telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The observer can draw with the computer mouse the desired total field in the guider-telescope image of the whole Sun. The guider telescope is equipped with an H-alpha filter and electronic enhancement of contrast in the image for good visibility of filaments and prominences. The number and positions of the subfields are calculated automatically and represented by an array of bright points indicating the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. When the exposures start the telescope repeats automatically the sequence of subfields. Automatic production of flats is also programmed including defocusing and fast motion over the solar disk of the image field. For the first time mosaic movies were programmed from stored information on automated telescope motions from one field to the next. The mosaic movies fill the gap between whole-sun images with limited resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  2. Proceedings of the workshop on high resolution computed microtomography (CMT)

    SciTech Connect

    1997-02-01

    The purpose of the workshop was to determine the status of the field, to define instrumental and computational requirements, and to establish minimum specifications required by possible users. The most important message sent by implementers was the remainder that CMT is a tool. It solves a wide spectrum of scientific problems and is complementary to other microscopy techniques, with certain important advantages that the other methods do not have. High-resolution CMT can be used non-invasively and non-destructively to study a variety of hierarchical three-dimensional microstructures, which in turn control body function. X-ray computed microtomography can also be used at the frontiers of physics, in the study of granular systems, for example. With high-resolution CMT, for example, three-dimensional pore geometries and topologies of soils and rocks can be obtained readily and implemented directly in transport models. In turn, these geometries can be used to calculate fundamental physical properties, such as permeability and electrical conductivity, from first principles. Clearly, use of the high-resolution CMT technique will contribute tremendously to the advancement of current R and D technologies in the production, transport, storage, and utilization of oil and natural gas. It can also be applied to problems related to environmental pollution, particularly to spilling and seepage of hazardous chemicals into the Earth's subsurface. Applications to energy and environmental problems will be far-ranging and may soon extend to disciplines such as materials science--where the method can be used in the manufacture of porous ceramics, filament-resin composites, and microelectronics components--and to biomedicine, where it could be used to design biocompatible materials such as artificial bones, contact lenses, or medication-releasing implants. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  4. Theoretical performance analysis for CMOS based high resolution detectors.

    PubMed

    Jain, Amit; Bednarek, Daniel R; Rudin, Stephen

    2013-03-06

    High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.

  5. Multispectral high-resolution hologram generation using orthographic projection images

    NASA Astrophysics Data System (ADS)

    Muniraj, I.; Guo, C.; Sheridan, J. T.

    2016-08-01

    We present a new method of synthesizing a digital hologram of three-dimensional (3D) real-world objects from multiple orthographic projection images (OPI). A high-resolution multiple perspectives of 3D objects (i.e., two dimensional elemental image array) are captured under incoherent white light using synthetic aperture integral imaging (SAII) technique and their OPIs are obtained respectively. The reference beam is then multiplied with the corresponding OPI and integrated to form a Fourier hologram. Eventually, a modified phase retrieval algorithm (GS/HIO) is applied to reconstruct the hologram. The principle is validated experimentally and the results support the feasibility of the proposed method.

  6. High-resolution AMLCD for the electronic library system

    NASA Astrophysics Data System (ADS)

    Martin, Russel A.; Middo, Kathy; Turner, William D.; Lewis, Alan; Thompson, Malcolm J.; Silverstein, Louis D.

    1994-06-01

    The Electronic Library System (ELS), is a proposed data resource for the cockpit which can provide the aircrew with a vast array of technical information on their aircraft and flight plan. This information includes, but is not limited to, approach plates, Jeppeson Charts, and aircraft technical manuals. Most of these data are appropriate for digitization at high resolution (300 spi). Xerox Corporation has developed a flat panel active matrix liquid crystal display, AMLCD, that is an excellent match to the ELS, due to its innovative and aggressive design.

  7. Arterial diameter measurement using high resolution ultrasonography: in vitro validation.

    PubMed

    Brum, Javier; Bia, Daniel; Benech, Nicolas; Balay, Guillermo; Armentano, Ricardo L; Negreira, Carlos

    2011-01-01

    Simultaneous measurement of pressure and diameter in blood vessels or vascular prosthesis is of great importance in cardiovascular research. Knowledge of diameter changes as response to intravascular pressure is the basis to estimate the biomechanical properties of blood vessel. In this work a new method to quantify arterial diameter based in high resolution ultrasonography is proposed. Measurements on an arterial phantom placed on a cardiovascular simulator were performed. The results were compared to sonomicrometry measurements considered as gold standard technique. The obtained results indicate that the new method ensure an optimal diameter quantification. This method presents two main advantages respect to sonomicrometry: is noninvasive and the vessel wall strain can be measured directly.

  8. High-resolution satellite imagery for mesoscale meteorological studies

    NASA Technical Reports Server (NTRS)

    Johnson, David B.; Flament, Pierre; Bernstein, Robert L.

    1994-01-01

    In this article high-resolution satellite imagery from a variety of meteorological and environmental satellites is compared. Digital datasets from Geostationary Operational Environmental Satellite (GOES), National Oceanic and Atmospheric Administration (NOAA), Defense Meteorological Satellite Program (DMSP), Landsat, and Satellite Pour l'Observation de la Terre (SPOT) satellites were archived as part of the 1990 Hawaiian Rainband Project (HaRP) and form the basis of the comparisons. During HaRP, GOES geostationary satellite coverage was marginal, so the main emphasis is on the polar-orbiting satellites.

  9. Applied high resolution geophysical methods: Offshore geoengineering hazards

    SciTech Connect

    Trabant, P.K.

    1984-01-01

    This book is an examination of the purpose, methodology, equipment, and data interpretation of high-resolution geophysical methods, which are used to assess geological and manmade engineering hazards at offshore construction locations. It is a state-of-the-art review. Contents: 1. Introduction. 2. Maring geophysics, an overview. 3. Marine geotechnique, an overview. 4. Echo sounders. 5. Side scan sonar. 6. Subbottom profilers. 7. Seismic sources. 8. Single-channel seismic reflection systems. 9. Multifold acquisition and digital processing. 10. Marine magnetometers. 11. Marine geoengineering hazards. 12. Survey organization, navigation, and future developments. Appendix. Glossary. References. Index.

  10. High resolution electron microscopy study of amorphous calcium phosphate

    NASA Astrophysics Data System (ADS)

    Brès, E. F.; Moebus, G.; Kleebe, H.-J.; Pourroy, G.; Werkmann, J.; Ehret, G.

    1993-03-01

    "Amorphous" calcium phosphate (ACP) from human tooth enamel and different synthetic materials has been analysed by high resolution electron microscopy (HREM). All the materials studied showed, in addition to a "truly" amorphous phase, other calcium phosphate phases such as poorly crystalline hydroxyapatite (OHAP), well crystallized OHAP and poorly crystalline CaO type phase. Such structural heterogeneities have not been observed before in ACP, and are only possible to be detected by HREM as this is the only technique able to analyse nanometre size materials in the real space.

  11. High-resolution threshold photoelectron spectroscopy by electron attachment

    NASA Technical Reports Server (NTRS)

    Ajello, J. M.; Chutjian, A.

    1976-01-01

    A new technique for measuring high-resolution threshold photoelectron spectra of atoms, molecules, and radicals is described. It involves photoionization of a gaseous species, attachment of the threshold, or nearly zero electron to some trapping molecule (here SF6 or CFCl3), and mass detection of the attachment product (SF6/-/ or Cl/-/ respectively). This technique of threshold photoelectron spectroscopy by electron attachment was used to measure the spectra of argon and xenon at 11 meV (FWHM) resolution, and was also applied to CFCl3.

  12. High resolution projection micro stereolithography system and method

    SciTech Connect

    Spadaccini, Christopher M.; Farquar, George; Weisgraber, Todd; Gemberling, Steven; Fang, Nicholas; Xu, Jun; Alonso, Matthew; Lee, Howon

    2016-11-15

    A high-resolution P.mu.SL system and method incorporating one or more of the following features with a standard P.mu.SL system using a SLM projected digital image to form components in a stereolithographic bath: a far-field superlens for producing sub-diffraction-limited features, multiple spatial light modulators (SLM) to generate spatially-controlled three-dimensional interference holograms with nanoscale features, and the integration of microfluidic components into the resin bath of a P.mu.SL system to fabricate microstructures of different materials.

  13. High-resolution imaging of globular cluster cores

    NASA Technical Reports Server (NTRS)

    Weir, N.; Piotto, G.; Djorgovski, S.

    1990-01-01

    An approach based on the maximum entropy method aimed at increasing angular resolution to study globular cluster cores is presented. To perform the image restoration the Gull-Skilling (1989) MEMSYS-3 code for maximum entropy reconstruction of arbitrary data sets was used. This software was recently applied to restoration of ESO images of the R136 object in the core of the 30 Doradus nebula. It was demonstrated that the software made it possible to restore an image at subpixel spatial scales which facilitates the detection of very high-resolution structure in the restored image.

  14. Homology Groups of High-Resolution Temporal Rainfall

    NASA Astrophysics Data System (ADS)

    Vásquez Aguilar, R.; Carsteanu, A. A.

    2015-12-01

    Using high-resolution temporal rainfall intensities from Iowa City, IA (IIHR, U of Iowa), we perform an analysis of the homology groups generated by data connectivity in state space, and attempt a qualitative interpretation of the first and second homology groups. Let us note that homology groups are generated, in the context of topological data analysis (TDA), by representing the data in n-dimensional state space and building a connectivity diagram according to the respective distances between the data points. Subsequently, the topological invariants of the resulting connected structures are being analyzed.

  15. Saturn - high-resolution filtered image of Enceladus

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This high-resolution filtered image of Enceladus was made from several images obtained Aug. 25 by Voyager 2 from a range of 119,000 kilometers (74,000 miles). It shows further surface detail on this Saturnian moon (also viewed in the accompanying release P-23955C/BW, S-2-50, imaged about the same time). Enceladus is seen to resemble Jupiter's Galilean satellite Ganymede, which is, however, about 10 times larger. Faintly visible here in 'Saturnshine' is the hemisphere turned away from the sun. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  16. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  17. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  18. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  19. High resolution polar Kerr magnetometer for nanomagnetism and nanospintronics.

    PubMed

    Cormier, M; Ferré, J; Mougin, A; Cromières, J-P; Klein, V

    2008-03-01

    A new high resolution polar magneto-optical (MO) Kerr magnetometer, devoted to the study of nanometer sized elements with perpendicular magnetic anisotropy, is described. The unique performances of this setup in terms of sensitivity (1.2x10(-15) emu), stability (lateral drift +/-35 nm over 3 h), and resolution (laser spot full width at half maximum down to 470 nm) are demonstrated, and illustrated by Kerr hysteresis loop measurements on a unique ultrathin magnetic nanodot, and over small segments of ultranarrow magnetic tracks. Large scanning MO Kerr microscopy images were also obtained with the same performances.

  20. Microcoil high-resolution magic angle spinning NMR spectroscopy.

    PubMed

    Janssen, Hans; Brinkmann, Andreas; van Eck, Ernst R H; van Bentum, P Jan M; Kentgens, Arno P M

    2006-07-12

    We report the construction of a dual-channel microcoil nuclear magnetic resonance probehead allowing magic-angle spinning for mass-limited samples. With coils down to 235 mum inner diameter, this allows high-resolution solid-state NMR spectra to be obtained for amounts of materials of a few nanoliters. This is demonstrated by the carbon-13 spectrum of a tripeptide and a single silk rod, prepared from the silk gland of the Bombyx mori silkworm. Furthermore, the microcoil allows for radio frequency field strengths well beyond current probe technology, aiding in getting the highest possible resolution by efficiently decoupling the observed nuclei from the abundantly present proton nuclei.

  1. Color enhancement of nimbus high resolution infrared radiometer data.

    PubMed

    Kreins, E R; Allison, L J

    1970-03-01

    Two examples of Nimbus high resolution infrared radiometer (HRIR) data processed by a color display enhancement system demonstrate possible meteorological, oceanographic, and geomorphological applications of this technique for geophysical research. A commonly used means of displaying radiation temperatures mapped by the HRIR has been a black and white photofacsimile film strip. However, the human eye can distinguish many more colors than shades of gray, and this characteristic permits an analyst to evaluate quantitatively radiation values mapped in color more readily than in black and white.

  2. Reconfigurable Pointing Control for High Resolution Space Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kia, Tooraj; Van Cleve, Jeffrey

    1997-01-01

    In this paper, a pointing control performance criteria is established to suppport high resolution space spectroscopy. Results indicate that these pointing control requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bankof detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra-Red Telescope Facility (SIRTF) pointing system, in support of the InfraRed Spectrograph (IRS) payload.

  3. Reconfigurable Pointing Control for High Resolution Space Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Kia, Tooraj; vanCleve, Jeffrey

    1997-01-01

    In this paper, a pointing control performance criteria is established to support high resolution space spectroscopy. Results indicate that these pointing requirements are very stringent, and would typically be difficult to meet using standard 3-axis spacecraft control. To resolve this difficulty, it is shown that performance can be significantly improved using a reconfigurable control architecture that switches among a small bank of detuned Kalman filters. The effectiveness of the control reconfiguration approach is demonstrated by example on the Space Infra, Red Telescope Facility (SIRTF) pointing system, in support of the Infrared Spectrograph (IRS) payload.

  4. High-resolution second harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiang, Yi; Tomov, Ivan V.; Wang, Yimin; Chen, Zhongping

    2005-04-01

    A high-resolution Second Harmonic Optical Coherence Tomography (SH-OCT) system is demonstrated using a spectrum broadened femtosecond Ti:sapphire laser. An axial resolution of 4.2 μm at the second harmonic wave center wavelength of 400 nm has been achieved. Because the SH-OCT system uses the second harmonic generation signals that strongly depend on the orientation, polarization and local symmetry properties of chiral molecules, this technique provides unique contrast enhancement to conventional optical coherence tomography. The system is applied to image biological tissues like the rat-tail tendon. Images of highly organized collagen fibrils in the rat-tail tendon have been demonstrated.

  5. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs

  6. Clickstream data yields high-resolution maps of science

    SciTech Connect

    Bollen, Johan; Van De Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  7. A high resolution spectrum reconstruction algorithm using compressive sensing theory

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoyu; Liang, Dakai; Liu, Shulin; Feng, Shuqing

    2015-07-01

    This paper proposes a quick spectrum scanning and reconstruction method using compressive sensing in composite structure. The strain field of corrugated structure is simulated by finite element analysis. Then the reflect spectrum is calculated using an improved transfer matrix algorithm. The K-means singular value decomposition sparse dictionary is trained . In the test the spectrum with limited sample points can be obtained and the high resolution spectrum is reconstructed by solving sparse representation equation. Compared with the other conventional basis, the effect of this method is better. The match rate of the recovered spectrum and the original spectrum is over 95%.

  8. High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

    PubMed Central

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J.; Barends, Thomas R. M.; Aquila, Andrew; Doak, R. Bruce; Weierstall, Uwe; DePonte, Daniel P.; Steinbrener, Jan; Shoeman, Robert L.; Messerschmidt, Marc; Barty, Anton; White, Thomas A.; Kassemeyer, Stephan; Kirian, Richard A.; Seibert, M. Marvin; Montanez, Paul A.; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M.; Philipp, Hugh T.; Tate, Mark W.; Hromalik, Marianne; Koerner, Lucas J.; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J.; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y.; Hunter, Mark S.; Johansson, Linda C.; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V.; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A.; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C. H.; Chapman, Henry N.; Schlichting, Ilme

    2013-01-01

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules. PMID:22653729

  9. High-resolution protein structure determination by serial femtosecond crystallography.

    PubMed

    Boutet, Sébastien; Lomb, Lukas; Williams, Garth J; Barends, Thomas R M; Aquila, Andrew; Doak, R Bruce; Weierstall, Uwe; DePonte, Daniel P; Steinbrener, Jan; Shoeman, Robert L; Messerschmidt, Marc; Barty, Anton; White, Thomas A; Kassemeyer, Stephan; Kirian, Richard A; Seibert, M Marvin; Montanez, Paul A; Kenney, Chris; Herbst, Ryan; Hart, Philip; Pines, Jack; Haller, Gunther; Gruner, Sol M; Philipp, Hugh T; Tate, Mark W; Hromalik, Marianne; Koerner, Lucas J; van Bakel, Niels; Morse, John; Ghonsalves, Wilfred; Arnlund, David; Bogan, Michael J; Caleman, Carl; Fromme, Raimund; Hampton, Christina Y; Hunter, Mark S; Johansson, Linda C; Katona, Gergely; Kupitz, Christopher; Liang, Mengning; Martin, Andrew V; Nass, Karol; Redecke, Lars; Stellato, Francesco; Timneanu, Nicusor; Wang, Dingjie; Zatsepin, Nadia A; Schafer, Donald; Defever, James; Neutze, Richard; Fromme, Petra; Spence, John C H; Chapman, Henry N; Schlichting, Ilme

    2012-07-20

    Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.

  10. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  11. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  12. High-Resolution Melt Curve Analysis in Cancer Mutation Screen.

    PubMed

    Mehrotra, Meenakshi; Patel, Keyur P

    2016-01-01

    High-resolution melt (HRM) curve analysis is a PCR-based assay that identifies sequence alterations based on subtle variations in the melting curves of mutated versus wild-type DNA sequences. HRM analysis is a high-throughput, sensitive, and efficient alternative to Sanger sequencing and is used to assess for mutations in clinically important genes involved in cancer diagnosis. The technique involves PCR amplification of a target sequence in the presence of a fluorescent double-stranded DNA (dsDNA) binding dye, melting of the fluorescent amplicons, and subsequent interpretation of melt curve profiles.

  13. High resolution study of magnetic ordering at absolute zero.

    PubMed

    Lee, M; Husmann, A; Rosenbaum, T F; Aeppli, G

    2004-05-07

    High resolution pressure measurements in the zero-temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the precision that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.

  14. Quantum electrodynamics, high-resolution spectroscopy and fundamental constants

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.; Ivanov, Vladimir G.

    2017-01-01

    Recent progress in high-resolution spectroscopy has delivered us a variety of accurate optical results, which can be used for the determination of the atomic fundamental constants and for constraining their possible time variation. We present a brief overview of the results discussing in particular, the determination of the Rydberg constant, the relative atomic weight of the electron and proton, their mass ratio and the fine structure constant. Many individual results on those constants are obtained with use of quantum electrodynamics, and we discuss which sectors of QED are involved. We derive constraints on a possible time variation of the fine structure constants and me/mp.

  15. High-resolution continuum observations of the Sun

    NASA Technical Reports Server (NTRS)

    Zirin, Harold

    1987-01-01

    The aim of the PFI or photometric filtergraph instrument is to observe the Sun in the continuum with as high resolution as possible and utilizing the widest range of wavelengths. Because of financial and political problems the CCD was eliminated so that the highest photometric accuracy is only obtainable by comparison with the CFS images. Presently there is a limitation to wavelengths above 2200 A due to the lack of sensitivity of untreated film below 2200 A. Therefore the experiment at present consists of a film camera with 1000 feet of film and 12 filters. The PFI experiments are outlined using only two cameras. Some further problems of the experiment are addressed.

  16. Coincidence corrected efficiency calibration of Compton-suppressed HPGe detectors

    SciTech Connect

    Aucott, Timothy; Brand, Alexander; DiPrete, David

    2015-04-20

    The authors present a reliable method to calibrate the full-energy efficiency and the coincidence correction factors using a commonly-available mixed source gamma standard. This is accomplished by measuring the peak areas from both summing and non-summing decay schemes and simultaneously fitting both the full-energy efficiency, as well as the total efficiency, as functions of energy. By using known decay schemes, these functions can then be used to provide correction factors for other nuclides not included in the calibration standard.

  17. Application of high-resolution depositional modeling to reservoir characterisation

    SciTech Connect

    Keyu, L.; Paterson, L.

    1995-08-01

    As hydrocarbon producing basins and fields become more intensely developed, conventional stratigraphic analysis methods can sometimes no longer meet the resolution required by petroleum geologists and engineers. High-resolution depositional modeling provides a quantitative alternative to the conventional approach of sequence stratigraphic analysis. A computer program, SEDPAK, which was designed primarily according to the basic premise of the sequence stratigraphic concept, was here used to conduct high-resolution simulations for two sedimentary sequences. One is a Pliocene to Recent shelf margin sediment sequence of the offshore Sydney Basin continental shelf, Australia; the other is the Early Cretaceous (Aptian) Windalia Sand reservoir of the Barrow Island Field, North West Shelf, Australia. In both instances, the simulations have well mimicked the variations of the sedimentary facies temporally and spatially in fine detail with each time step representing 10 ka and a vertical resolution of one meter. The reservoir heterogeneities and the observed cyclicity in the Windalia Sand were particularly well documented by the SEDPAK simulation using a locally derived sealevel curve. The simulation result suggested that high-frequency sealevel variations ?associated with Milankovitch cyclicity were probably the primary cause that controlled the reservoir heterogeneities of the Windalia Sand. This finding provides a working model for the Cretaceous coeval reservoirs in the North West Shelf, Australia.

  18. Limiting liability via high-resolution image processing

    NASA Astrophysics Data System (ADS)

    Greenwade, L. E.; Overlin, Trudy K.

    1997-01-01

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as 'evidence ready,' even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  19. High-resolution diffraction grating interferometric transducer of linear displacements

    NASA Astrophysics Data System (ADS)

    Shang, Ping; Xia, Haojie; Fei, Yetai

    2016-01-01

    A high-resolution transducer of linear displacements is presented. The system is based on semiconductor laser illumination and a diffraction grating applied as a length master. The theory of the optical method is formulated using Doppler description. The relationship model among the interference strips, measurement errors, grating deflection around the X, Y and Z axes and translation along the Z axis is built. The grating interference strips' direction and space is not changed with movement along the X (direction of grating movement), Y (direction of grating line), Z axis, and the direction and space has a great effect when rotating around the X axis. Moreover the space is little affected by deflection around the Z axis however the direction is changed dramatically. In addition, the strips' position shifted rightward or downwards respectively for deflection around the X or Y axis. Because the emitted beams are separated on the grating plane, the tilt around the X axis error of the stage during motion will lead to the optical path difference of the two beams resulting in phase shift. This study investigates the influence of the tilt around the X axis error. Experiments show that after yaw error compensation, the high-resolution diffraction grating interferometric transducer readings can be significantly improved. The error can be reduced from +/-80 nm to +/-30 nm in maximum.

  20. Lidar determination of mixing layer height with high resolution

    NASA Astrophysics Data System (ADS)

    Martucci, Giovanni; Matthey, Renaud; Mitev, Valentin; Richner, Hans

    2005-10-01

    Ecological monitoring and analysis of the planetary boundary layer (PBL) dynamics require determination of the mixing layer height (MLH) on a continuous basis. In a number of cases it is necessary to determine the MLH with sufficiently high resolution - both altitude and temporal. The backscatter lidar provides a convenient tool for such determination, using the aerosol as tracer and determining its vertical profile and its time-evolution, with the capability for continuous measurements. Although methods already exist, based on the altitude derivative of the backscatter lidar signal (altitude Gradient method) and its time-variance (Variance method), the application of these methods with high resolution is limited by the background noise presence. We report here a further development of backscatter lidar gradient and variance methods for MLH determination, allowing higher resolutions. In it, the MLH determination from the gradient and the variance of the lidar signal is supported by a convenient filter technique. Time scale of increased temporal resolution allows the investigation of the fine atmospheric dynamic structures like convective motion. A number of examples in MLH retrieval are presented. The examples are based on backscatter lidar measurements performed in the PBL above Neuchatel, Switzerland (47.00°N, 6.95°S, 485m asl). The examples show the applicability and the usefulness of the reported technique in measurements of the daily cycle of the MLH dynamics.

  1. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  2. Live CLEM imaging to analyze nuclear structures at high resolution.

    PubMed

    Haraguchi, Tokuko; Osakada, Hiroko; Koujin, Takako

    2015-01-01

    Fluorescence microscopy (FM) and electron microscopy (EM) are powerful tools for observing molecular components in cells. FM can provide temporal information about cellular proteins and structures in living cells. EM provides nanometer resolution images of cellular structures in fixed cells. We have combined FM and EM to develop a new method of correlative light and electron microscopy (CLEM), called "Live CLEM." In this method, the dynamic behavior of specific molecules of interest is first observed in living cells using fluorescence microscopy (FM) and then cellular structures in the same cell are observed using electron microscopy (EM). Following image acquisition, FM and EM images are compared to enable the fluorescent images to be correlated with the high-resolution images of cellular structures obtained using EM. As this method enables analysis of dynamic events involving specific molecules of interest in the context of specific cellular structures at high resolution, it is useful for the study of nuclear structures including nuclear bodies. Here we describe Live CLEM that can be applied to the study of nuclear structures in mammalian cells.

  3. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  4. High resolution multiplexed functional imaging in live embyros (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging. Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume. Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.

  5. Multifractal analysis of high resolution solar wind proton density measurements

    NASA Astrophysics Data System (ADS)

    Sorriso-Valvo, Luca; Carbone, Francesco; Leonardis, Ersilia; Chen, Christopher H. K.; Šafránková, Jana; Němeček, Zdenek

    2017-03-01

    The solar wind is a highly turbulent medium, with a high level of field fluctuations throughout a broad range of scales. These include an inertial range where a turbulent cascade is assumed to be active. The solar wind cascade shows intermittency, which however may depend on the wind conditions. Recent observations have shown that ion-scale magnetic turbulence is almost self-similar, rather than intermittent. A similar result was observed for the high resolution measurements of proton density provided by the spacecraft Spektr-R. Intermittency may be interpreted as the result of the multifractal properties of the turbulent cascade. In this perspective, this paper is devoted to the description of the multifractal properties of the high resolution density measurements. In particular, we have used the standard coarse-graining technique to evaluate the generalized dimensions Dq , and from these the multifractal spectrum f (α) , in two ranges of scale. A fit with the p-model for intermittency provided a quantitative measure of multifractality. Such indicator was then compared with alternative measures: the width of the multifractal spectrum, the peak of the kurtosis, and its scaling exponent. The results indicate that the small-scale fluctuations are multifractal, and suggest that different measures of intermittency are required to fully understand the small scale cascade.

  6. Mapping Crop Yield and Sow Date Using High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Royal, K.

    2015-12-01

    Keitasha Royal, Meha Jain, Ph.D., David Lobell, Ph.D Mapping Crop Yield and Sow Date Using High Resolution ImageryThe use of satellite imagery in agriculture is becoming increasingly more significant and valuable. Due to the emergence of new satellites, such as Skybox, these satellites provide higher resolution imagery (e.g 1m) therefore improving the ability to map smallholder agriculture. For the smallholder farm dominated area of northern India, Skybox high-resolution satellite imagery can aid in understanding how to improve farm yields. In particular, we are interested in mapping winter wheat in India, as this region produces approximately 80% of the country's wheat crop, which is important given that wheat is a staple crop that provides approximately 20% of household calories. In northeast India, the combination of increased heat stress, limited irrigation access, and the difficulty for farmers to access advanced farming technologies results in farmers only producing about 50% of their potential crop yield. The use of satellite imagery can aid in understanding wheat yields through time and help identify ways to increase crop yields in the wheat belt of India. To translate Skybox satellite data into meaningful information about wheat fields, we examine vegetation indices, such as the normalized difference vegetation index (NDVI), to measure the "greenness" of plants to help determine the health of the crops. We test our ability to predict crop characteristics, like sow date and yield, using vegetation indices of 59 fields for which we have field data in Bihar, India.

  7. Towards Ultra-High Resolution Models of Climate and Weather

    SciTech Connect

    Wehner, Michael; Oliker, Leonid; Shalf, John

    2007-01-01

    We present a speculative extrapolation of the performance aspects of an atmospheric general circulation model to ultra-high resolution and describe alternative technological paths to realize integration of such a model in the relatively near future. Due to a superlinear scaling of the computational burden dictated by stability criterion, the solution of the equations of motion dominate the calculation at ultra-high resolutions. From this extrapolation, it is estimated that a credible kilometer scale atmospheric model would require at least a sustained ten petaflop computer to provide scientifically useful climate simulations. Our design study portends an alternate strategy for practical power-efficient implementations of petaflop scale systems. Embedded processor technology could be exploited to tailor a custom machine designed to ultra-high climate model specifications at relatively affordable cost and power considerations. The major conceptual changes required by a kilometer scale climate model are certain to be difficult to implement. Although the hardware, software, and algorithms are all equally critical in conducting ultra-high climate resolution studies, it is likely that the necessary petaflop computing technology will be available in advance of a credible kilometer scale climate model.

  8. Very High Resolution Simulations of Compressible, Turbulent Flows

    SciTech Connect

    Woodward, P R; Porter, D H; Sytine, I; Anderson, S E; Mirin, A A; Curtis, B C; Cohen, R H; Dannevik, W P; Dimits, A M; Eliason, D E; Winkler, K-H; Hodson, S W

    2001-04-26

    The steadily increasing power of supercomputing systems is enabling very high resolution simulations of compressible, turbulent flows in the high Reynolds number limit, which is of interest in astrophysics as well as in several other fluid dynamical applications. This paper discusses two such simulations, using grids of up to 8 billion cells. In each type of flow, convergence in a statistical sense is observed as the mesh is refined. The behavior of the convergent sequences indicates how a subgrid-scale model of turbulence could improve the treatment of these flows by high-resolution Euler schemes like PPM. The best resolved case, a simulation of a Richtmyer-Meshkov mixing layer in a shock tube experiment, also points the way toward such a subgrid-scale model. Analysis of the results of that simulation indicates a proportionality relationship between the energy transfer rate from large to small motions and the determinant of the deviatoric symmetric strain as well as the divergence of the velocity for the large-scale field.

  9. Differentiation of Staphylococcus spp. by high-resolution melting analysis.

    PubMed

    Slany, Michal; Vanerkova, Martina; Nemcova, Eva; Zaloudikova, Barbora; Ruzicka, Filip; Freiberger, Tomas

    2010-12-01

    High-resolution melting analysis (HRMA) is a fast (post-PCR) high-throughput method to scan for sequence variations in a target gene. The aim of this study was to test the potential of HRMA to distinguish particular bacterial species of the Staphylococcus genus even when using a broad-range PCR within the 16S rRNA gene where sequence differences are minimal. Genomic DNA samples isolated from 12 reference staphylococcal strains (Staphylococcus aureus, Staphylococcus capitis, Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus hominis, Staphylococcus intermedius, Staphylococcus saprophyticus, Staphylococcus sciuri, Staphylococcus simulans, Staphylococcus warneri, and Staphylococcus xylosus) were subjected to a real-time PCR amplification of the 16S rRNA gene in the presence of fluorescent dye EvaGreen™, followed by HRMA. Melting profiles were used as molecular fingerprints for bacterial species differentiation. HRMA of S. saprophyticus and S. xylosus resulted in undistinguishable profiles because of their identical sequences in the analyzed 16S rRNA region. The remaining reference strains were fully differentiated either directly or via high-resolution plots obtained by heteroduplex formation between coamplified PCR products of the tested staphylococcal strain and phylogenetically unrelated strain.

  10. Wide-field, high-resolution Fourier ptychographic microscopy

    PubMed Central

    Zheng, Guoan; Horstmeyer, Roarke; Yang, Changhuei

    2014-01-01

    In this article, we report an imaging method, termed Fourier ptychographic microscopy (FPM), which iteratively stitches together a number of variably illuminated, low-resolution intensity images in Fourier space to produce a wide-field, high-resolution complex sample image. By adopting a wavefront correction strategy, the FPM method can also correct for aberrations and digitally extend a microscope’s depth-of-focus beyond the physical limitations of its optics. As a demonstration, we built a microscope prototype with a resolution of 0.78 μm, a field-of-view of ~120 mm2, and a resolution-invariant depth-of-focus of 0.3 mm (characterized at 632 nm). Gigapixel colour images of histology slides verify FPM’s successful operation. The reported imaging procedure transforms the general challenge of high-throughput, high-resolution microscopy from one that is coupled to the physical limitations of the system’s optics to one that is solvable through computation. PMID:25243016

  11. High-Resolution Infrared Spectroscopy of Ge_2C_3

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lutter, V.; Schlemmer, S.; Giesen, T. F.; Gauss, J.

    2013-06-01

    Carbon-rich systems are of great importance in diverse areas of research like material science as well as astro- and structural chemistry. Despite this relevance, our knowledge of smaller cluster units is still fragmentary, particularly with respect to investigations at high-spectral resolution in the gas phase. Unequivocal assignment of spectral features to their molecular carriers is critically dependent on predictions from high-level quantum-chemical calculations. In turn, high-resolution studies provide useful information to assess the predictive power of quantum-chemical methods. This is particularly interesting for cluster systems harboring heavy elements for which so far relatively little is known from experiment. With this contribution, we would like to present a recent gas-phase study of a polyatomic germanium-carbon cluster, linear Ge_2C_3 (Ge=C=C=C=Ge), which was previously studied in an Ar matrix. The cluster was produced through laser ablation of germanium-graphite sample rods and observed in a free jet at wavelengths around 5μm. Additionally, quantum-chemical calculations of Ge_2C_3 were performed at the CCSD(T) level of theory. The production and observation of Ge_2C_3 suggests that many more binary clusters should be amenable to high-resolution spectroscopic techniques not only in the infrared but also in the microwave region. D. L. Robbins, C. M. L. Rittby, and W. R. M. Graham, J. Chem. Phys. 114, 3570 (2001).

  12. Automated frame selection process for high-resolution microendoscopy

    PubMed Central

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-01-01

    Abstract. We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis. PMID:25919426

  13. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  14. Ensemble 3D PTV for high resolution turbulent statistics

    NASA Astrophysics Data System (ADS)

    Agüera, Nereida; Cafiero, Gioacchino; Astarita, Tommaso; Discetti, Stefano

    2016-12-01

    A method to extract turbulent statistics from three-dimensional (3D) PIV measurements via ensemble averaging is presented. The proposed technique is a 3D extension of the ensemble particle tracking velocimetry methods, which consist in summing distributions of velocity vectors calculated on low image density samples and then extract the statistical moments from the velocity vectors within sub-volumes, with the size of the sub-volume depending on the desired number of particles and on the available number of snapshots. The extension to 3D measurements poses the additional difficulty of sparse velocity vectors distributions, thus requiring a large number of snapshots to achieve high resolution measurements with a sufficient degree of accuracy. At the current state, this hinders the achievement of single-voxel measurements, unless millions of samples are available. Consequently, one has to give up spatial resolution and live with still relatively large (if compared to the voxel) sub-volumes. This leads to the further problem of the possible occurrence of a residual mean velocity gradient within the sub-volumes, which significantly contaminates the computation of second order moments. In this work, we propose a method to reduce the residual gradient effect, allowing to reach high resolution even with relatively large interrogation spots, therefore still retrieving a large number of particles on which it is possible to calculate turbulent statistics. The method consists in applying a polynomial fit to the velocity distributions within each sub-volume trying to mimic the residual mean velocity gradient.

  15. Design of wide field and high resolution video lens

    NASA Astrophysics Data System (ADS)

    Xiao, Ze-xin; Zhan, Binzhou; Han, Haimei

    2009-11-01

    Online detecting is increasingly used in industrial process for the requirement of product quality improving. It is a trend that the "machine detecting" with "machine version + computer intelligence" as new method replaces traditional manual "eye observation". The essential of "machine detecting" is that image of object being collected with high resolution video lens on sensor panel of photoelectric (CCD ,CMOS) and detecting result being automatically gained by computer after the image saved and processed. "Machine detecting" is developing rapidly with the universal reception by enterprises because of its fine accurateness, high efficiency and the real time. Video lens is one of the important components of machine version system. Requirements of wide field and high resolution enlarged the complexity of video lens design. In this paper a design case used in visible light with field diameter Φ32mm, β=-0.25× and NA'=0.15. We give design parameters of the video lens which obtained with theoretically calculating and Oslo software optimization: MTF>0.3 in full field and 215lp/mm, distortion <0.05%.This lens has an excellent optic performance to match with 1.3 million pixels 1/2"CCD, and a high performance price ratio for being consist of only 7 single lens in the way of 5 units.

  16. Motion compensation requirements for a high resolution spotlight SAR

    NASA Astrophysics Data System (ADS)

    Hepburn, J. S. A.; Haslam, G. E.; Liang, D. F.; Widnall, W. S.

    1986-07-01

    The Canadian Department of National Defence is developing a high resolution airborne spotlight synthetic aperture radar (SAR). To attain the high contrast, high resolution and low geometric distortion objectives of the project, it is essential that very accurate motion compensation be applied to the radar returns to minimize the effects on SAR image quality of spurious antenna phase center motion. The motion compensation system being developed for the project includes a gimballed master inertial navigation system (INS) located near the center of gravity of the host aircraft, a strapdown inertial measurement unit (IMU) comprising gyroscope and accelerometer triads mounted on the radar antenna, as well as Doppler velocity and barometric altitude sensors for damping the inertial systems. The role of the master INS is to enable high accuracy alignment of the strapdown IMU. The raw sensor data are integrated using a U-D factorized Kalman filter to obtain optimal estimates of the motion of the radar antenna phase center while the SAR window is open. The data are used to adjust both the radar pulse repetition frequency and the phase and displacement of the radar returns. An analysis of the motion compensation requirements was carried out, leading to the specification of the motion compensation sensor configuration and accuracy. The performance of the motion compensation system has been evaluated by detailed computer simulation. This evaluation accounted for all major system error sources, including errors associated with sensors, transfer alignment and computation, with the system operating in a moderately turbulent environment.

  17. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  18. Gemini high-resolution optical spectrograph conceptual design

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; McConnachie, Alan; Anthony, André; Bohlender, David; Crampton, David; Desaulniers, Pierre; Dunn, Jennifer; Hardy, Tim; Hill, Alexis; Monin, Dmitry; Pazder, John; Schwab, Christian; Spano, Paola; Starkenburg, Else; Thibault, Simon; Walker, Gordon; Venn, Kim; Zhang, Hu

    2012-09-01

    A multiplexed moderate resolution (R = 34,000) and a single object high resolution (R = 90,000) spectroscopic facility for the entire 340 - 950nm wavelength region has been designed for Gemini. The result is a high throughput, versatile instrument that will enable precision spectroscopy for decades to come. The extended wavelength coverage for these relatively high spectral resolutions is achieved by use of an Echelle grating with VPH cross-dispersers and for the R = 90,000 mode utilization of an image slicer. The design incorporates a fast, efficient, reliable system for acquiring targets over the7 arcmin field of Gemini. This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study instrument group of the Herzberg Institute of Astrophysics has been commissioned by the Gemini Observatory as one of the three competing organizations to conduct a conceptual design study for a new Gemini High-Resolution Optical Spectrograph (GHOS). This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study.

  19. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  20. Evaluation of a high resolution silicon PET insert module

    NASA Astrophysics Data System (ADS)

    Grkovski, Milan; Brzezinski, Karol; Cindro, Vladimir; Clinthorne, Neal H.; Kagan, Harris; Lacasta, Carlos; Mikuž, Marko; Solaz, Carles; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2015-07-01

    Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm2 pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2-4.8 mm) filled with 18F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).

  1. High-resolution three-dimensional imaging with compress sensing

    NASA Astrophysics Data System (ADS)

    Wang, Jingyi; Ke, Jun

    2016-10-01

    LIDAR three-dimensional imaging technology have been used in many fields, such as military detection. However, LIDAR require extremely fast data acquisition speed. This makes the manufacture of detector array for LIDAR system is very difficult. To solve this problem, we consider using compress sensing which can greatly decrease the data acquisition and relax the requirement of a detection device. To use the compressive sensing idea, a spatial light modulator will be used to modulate the pulsed light source. Then a photodetector is used to receive the reflected light. A convex optimization problem is solved to reconstruct the 2D depth map of the object. To improve the resolution in transversal direction, we use multiframe image restoration technology. For each 2D piecewise-planar scene, we move the SLM half-pixel each time. Then the position where the modulated light illuminates will changed accordingly. We repeat moving the SLM to four different directions. Then we can get four low-resolution depth maps with different details of the same plane scene. If we use all of the measurements obtained by the subpixel movements, we can reconstruct a high-resolution depth map of the sense. A linear minimum-mean-square error algorithm is used for the reconstruction. By combining compress sensing and multiframe image restoration technology, we reduce the burden on data analyze and improve the efficiency of detection. More importantly, we obtain high-resolution depth maps of a 3D scene.

  2. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  3. High resolution x-ray scattering and diffraction

    SciTech Connect

    Moncton, D.

    1983-01-01

    In the general class of high resolution x-ray scattering studies experiments one analyzes the distribution of photon energies and wave vectors resulting from illumination of a sample with collimated monochromatic radiation. Applications abound in the field of structural physics, which may be described as the study of structures for their intrinsic physical interest. This includes studies of novel states of matter, phase transitions, and dynamics. As both the wave vector and the energy of scattered photons are of interest, one may conceptually divide high resolution experimental setups for this work into two classes: those with high Q-resolution (momemtum transfer analysis) and those with high E-resolution (energy transfer analysis). The former class is exemplified by the existing experimental station on SSRL wiggler experimental station VII-2 and the proposed high Q-resolution wiggler station for NSLS Phase II. The latter class is dependent on extremely high flux, as discussed more fully below, and the possibility of constructing a high E-resolution scattering station fed by an x-ray undulator is one of the exciting opportunities presented by the proposed construction of a 6 GeV storage ring.

  4. High-resolution ionization detector and array of such detectors

    DOEpatents

    McGregor, Douglas S.; Rojeski, Ronald A.

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  5. Providing Internet Access to High-Resolution Lunar Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMoon server is a computer program that provides Internet access to high-resolution Lunar images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of the Moon. The OnMoon server implements the Open Geospatial Consortium (OGC) Web Map Service (WMS) server protocol and supports Moon-specific extensions. Unlike other Internet map servers that provide Lunar data using an Earth coordinate system, the OnMoon server supports encoding of data in Moon-specific coordinate systems. The OnMoon server offers access to most of the available high-resolution Lunar image and elevation data. This server can generate image and map files in the tagged image file format (TIFF) or the Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. Full-precision spectral arithmetic processing is also available, by use of a custom SLD extension. This server can dynamically add shaded relief based on the Lunar elevation to any image layer. This server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  6. Providing Internet Access to High-Resolution Mars Images

    NASA Technical Reports Server (NTRS)

    Plesea, Lucian

    2008-01-01

    The OnMars server is a computer program that provides Internet access to high-resolution Mars images, maps, and elevation data, all suitable for use in geographical information system (GIS) software for generating images, maps, and computational models of Mars. The OnMars server is an implementation of the Open Geospatial Consortium (OGC) Web Map Service (WMS) server. Unlike other Mars Internet map servers that provide Martian data using an Earth coordinate system, the OnMars WMS server supports encoding of data in Mars-specific coordinate systems. The OnMars server offers access to most of the available high-resolution Martian image and elevation data, including an 8-meter-per-pixel uncontrolled mosaic of most of the Mars Global Surveyor (MGS) Mars Observer Camera Narrow Angle (MOCNA) image collection, which is not available elsewhere. This server can generate image and map files in the tagged image file format (TIFF), Joint Photographic Experts Group (JPEG), 8- or 16-bit Portable Network Graphics (PNG), or Keyhole Markup Language (KML) format. Image control is provided by use of the OGC Style Layer Descriptor (SLD) protocol. The OnMars server also implements tiled WMS protocol and super-overlay KML for high-performance client application programs.

  7. High resolution coherence analysis between planetary and climate oscillations

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola

    2016-05-01

    This study investigates the existence of a multi-frequency spectral coherence between planetary and global surface temperature oscillations by using advanced techniques of coherence analysis and statistical significance tests. The performance of the standard Matlab mscohere algorithms is compared versus high resolution coherence analysis methodologies such as the canonical correlation analysis. The Matlab mscohere function highlights large coherence peaks at 20 and 60-year periods although, due to the shortness of the global surface temperature record (1850-2014), the statistical significance of the result depends on the specific window function adopted for pre-processing the data. In fact, window functions disrupt the low frequency component of the spectrum. On the contrary, using the canonical correlation analysis at least five coherent frequencies at the 95% significance level are found at the following periods: 6.6, 7.4, 14, 20 and 60 years. Thus, high resolution coherence analysis confirms that the climate system can be partially modulated by astronomical forces of gravitational, electromagnetic and solar origin. A possible chain of the physical causes explaining this coherence is briefly discussed.

  8. High resolution telescopes at the National Solar Observatory

    NASA Astrophysics Data System (ADS)

    Dunn, R. B.; Smartt, R. N.

    The principal high-resolution telescopes of the National Solar Observatory are its two evacuated telescopes of 61-cm aperture (Kitt Peak) and 75-cm aperture (Sac Peak). The 61-cm telescope is used for making full-disk magnetograms, spectromagnetograms and 10830-wave length maps that show coronal holes, and is dedicated to synoptic programs. The 75-cm telescope at Sac Peak is described. Upgrades that are under way include an adaptive mirror and fast mirror system that will feed several focal-plane instruments, including the Universal Spectrograph (a new spectrograph whose detectors are CCD cameras), and the Universal Birefringent Filter, (a Fabry-Perot Interferometer); an Advanced Stokes Polarimeter is being constructed at the High Altitude Observatory. Additional equipment planned for this telescope includes an improved temperature control subsystem for the entrance window, an instrument that continually measures Fried's parameter, and integrating more advanced data collection systems into a computer network. The observatory is also pursuing a mirror coronagraph, which should have high resolution and which could be built in apertures larger than a meter.

  9. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  10. High-resolution optical fiber heterodyne interferometer for measuring displacement

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Wang, Jia; Cao, Mang; Li, Dacheng

    1990-07-01

    Many Methods have been developed to .easure displace.ent with high accuracy, for exap1e, with a dual frequency laser interferometer (AC interferometer) and an classic interferoseter (DC interferoeter) which use a stabilized laser and fringe counter, and an AC interfero.eter has ore advantage over the DC one. An AC interfero.eter with a Zee.an laser can get a high resolution, in the order of nanoMeters, but its resolution extension liRited by nonlinear relation between phase and displace.ent which caused by the two-frequency coRponents in interferoaeter[1]. Because the fundaaental length scale of the interferometer is the wavelength of the light source in the air. The accuracy of an interferoeter is li.ited by the operating envireaent, teRperature, husidity, pressure, etc. because the aiRs of interferoseters expose in the air. A high resolution optical fiber heterodyne interfermeter is described in the paper.

  11. Thin polymer etalon arrays for high-resolution photoacoustic imaging

    PubMed Central

    Hou, Yang; Huang, Sheng-Wen; Ashkenazi, Shai; Witte, Russell; O’Donnell, Matthew

    2009-01-01

    Thin polymer etalons are demonstrated as high-frequency ultrasound sensors for three-dimensional (3-D) high-resolution photoacoustic imaging. The etalon, a Fabry-Perot optical resonator, consists of a thin polymer slab sandwiched between two gold layers. It is probed with a scanning continuous-wave (CW) laser for ultrasound array detection. Detection bandwidth of a 20-μm-diam array element exceeds 50 MHz, and the ultrasound sensitivity is comparable to polyvinylidene fluoride (PVDF) equivalents of similar size. In a typical photoacoustic imaging setup, a pulsed laser beam illuminates the imaging target, where optical energy is absorbed and acoustic waves are generated through the thermoelastic effect. An ultrasound detection array is formed by scanning the probing laser beam on the etalon surface in either a 1-D or a 2-D configuration, which produces 2-D or 3-D images, respectively. Axial and lateral resolutions have been demonstrated to be better than 20 μm. Detailed characterizations of the optical and acoustical properties of the etalon, as well as photoacoustic imaging results, suggest that thin polymer etalon arrays can be used as ultrasound detectors for 3-D high-resolution photoacoustic imaging applications. PMID:19123679

  12. THE EFFECT OF VARIOUS DETECTOR GEOMETRIES ON THE PERFORMANCE OF CZT USING ONE CRYSTAL

    SciTech Connect

    Washington, A.; Duff, M.; Teague, L.

    2011-06-21

    CdZnTe (CZT) continues to be a major thrust interest mainly due to its potential application as a room temperature radiation detector. The performance of CZT detectors is directly related to the charge collection ability which can be affected by the configuration of the electrical contact. The charge collection efficiency is determined in part by the specific geometry of the anode contact which serves as the readout electrode. In this report, contact geometries including single pixel, planar, coplanar, and dual anode will be systematically explored by comparing the performance efficiencies of the detector using both low and high energy gamma rays. To help eliminate the effect of crystal quality variations, the contact geometries were fabricated on the same crystal detector with minimal polishing between contact placements.

  13. Te Inclusions in CZT Detectors: New Method for Correcting Their Adverse Effects

    SciTech Connect

    Bolotnikov, A.E.; Babalola, S.; Camarda, G.S.; Cui, Y.; Egarievwe, S.U.; Hawrami, R.; Hossain, A.; Yang, G.; James, R.B.

    2009-10-25

    Both Te inclusions and point defects can trap the charge carriers generated by ionizing particles in CdZnTe (CZT) detectors. The amount of charge trapped by point defects is proportional to the carriers’ drift time and can be corrected electronically. In the case of Te inclusions, the charge loss depends upon their random locations with respect to the electron cloud. Consequently, inclusions introduce fluctuations in the charge signals, which cannot be easily corrected. In this paper, we describe direct measurements of the cumulative effect of Te inclusions and its influence on the response of CZT detectors of different thicknesses and different sizes and concentrations of Te inclusions. We also discuss a means of partially correcting their adverse effects.

  14. Characterization of Single-Sided Charge-Sharing CZT Strip Detectors for Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Donmez, Burcin; Macri, John R.; Ryan, James M.; Legere, Jason S.; McConnell, Mark L.; Widholm, Mark; Narita, Tomohiko; Hamel, Louis-Andre

    2006-01-01

    We report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform spectroscopy and 3-D imaging of gamma-rays. We report laboratory measurements including spectroscopy, efficiency and 3-D imaging capability of prototype detectors (15 15 7.5 cu mm) with 11x11 unit cells. We also report on Monte Carlo simulations (GEANT4 v7.1) to investigate the effect of multihits on detector performance in both spectroscopy and imaging. We compare simulation results with data obtained from laboratory measurements and discuss the implications for future strip detector designs. Keywords: CZT, strip detectors, gamma-ray

  15. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    PubMed

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm.

  16. Annual Report: Property Improvement in CZT via Modeling and Processing Innovations

    SciTech Connect

    Henager, Charles H.; Setyawan, Wahyu; Gao, Fei; Hu, Shenyang Y.; Bliss, Mary; Riley, Brian J.; Alvine, Kyle J.; Stave, Jean A.

    2013-09-01

    The objective of this project is to develop growth models of CZT crystals from the melt using vertical gradient freeze (VGF) or vertical Bridgman growth as a typical process. Further, the project will perform critical experiments including single crystal growth to validate the growth models and to provide detailed data for modeling and simulation. Ideally, the project will develop growth models that will provide, for the first time, choices for optimal CZT single crystal growth from the melt based on model input. The overarching goal that guides this research proposal is to produce large, single crystals of CZT with good yield and reproducible properties. In our view this depends on 1) understanding crystal growth processes, including annealing and cool-down processing, and 2) understanding the role of defects on detector response since it is not possible, yet, to produce defect-free materials. Models of defect structure and formation are addressed. Validated models and experiments on reducing defects in melt-grown crystals are used to guide our understanding of growth processes and in-furnace annealing plus cool-down.

  17. Universal multifractal analysis of high-resolution snowfall data

    NASA Astrophysics Data System (ADS)

    Raupach, Timothy; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Berne, Alexis

    2016-04-01

    Universal multifractal analysis offers useful insights into the scaling properties of precipitation data. While much work has been done on the scaling properties of rainfall fields, less is known about the scaling properties of solid precipitation such as snowfall, especially at high resolution. We present results of a universal multifractal (UM) analysis of high-resolution solid precipitation data. The data were recorded using a 2D-video-disdrometer (2DVD) situated in the Swiss Alps. Analysis was performed on a one-hour period of snowfall, during which time the mean wind speed was zero, temperatures were low, and no hail was detected. The 2DVD recorded information on individual particles, from which we calculated snow mass. Three "cuts" of the spatio-temporal snowfall process were analysed using the UM framework. First, high-resolution timeseries of precipitation intensity at 100 ms temporal resolution were analysed. These results show two scaling regimes with a transition area between them. Second, we analysed reconstructed vertical columns of particle concentration and snow mass, assuming no horizontal wind and constant vertical velocity (equal to the one recorded on the ground). Strong scaling was observed in the particle concentration fields, with the influence of large (and therefore rare) snowflakes degrading the quality of the scaling observed for higher moments of the particle distribution. There was a clear difference between the measured fields and fields in which the vertical distribution of particles was made homogeneous, indicating that the measured snowfall fields contained non-homogeneous fields. Scaling behaviour was observed down to vertical scales of about 0.5 m, which is similar to published results using rain data. Finally, we used the UM framework to investigate the scaling properties of 2D maps of snow accumulation over a subset of the instrument collection area of 5.12 x 5.12 cm^2. As expected from the vertical column analysis, given that

  18. a High-Resolution Study of the SILICON-29

    NASA Astrophysics Data System (ADS)

    Wallace, Paul Matthew

    The gamma-decays of 25 resonances in the ^{29}Si(p, gamma) reaction have been measured in the energy range E_{p} = 1.74 -2.50 MeV. This work was performed at the High Resolution Laboratory at Triangle Universities Nuclear Laboratory and represents a major step toward the goal of the determination of the complete level scheme of ^{30 }P from the ground state to 8820 keV. Previous and concurrent experiments have measured the ^ {29}Si(p.p) cross section as well as gamma-ray yields from the ^{29}Si(p,gamma), ^{29}Si(p,p_1 gamma) and ^{29} Si(p,p_2gamma) reactions in the range E_{p} = 1.04 -3.33 MeV. Future angular distribution experiments are planned. Spectral fluctuation properties are believed to give insight into the dynamics of quantum systems. This work was motivated by results from the study of the fluctuation properties of the nuclide ^{26} Al which indicates dynamics that fall between regular and chaotic. A high-resolution (~220 eV) proton beam is produced by the 4 MeV KN Van de Graaff accelerator housed in the High Resolution Laboratory. This beam is directed onto thin films of ^{29 }Si of thickness 1.5-3.0mug/cm ^2. Two high-purity germanium detectors are used to collect detailed gamma -ray spectra; one detector is surrounded by a bismuth germanate anti-Compton shield. These spectra have been analyzed and branching ratios for the resonances have been deduced. Once the branching ratios were determined, Jpi selection rules and recommended upper limits for reduced transition rates were used to reduce the range of possible quantum number (Jpi ; T ) assignments. Of the 25 resonances, sixteen had previous assignments which were confirmed by this work. The allowed ranges were reduced for seven resonances and two resonances had assignments which were changed outright. In addition, a level at E_{x} = 6006.1 keV was discovered; its branching ratios were determined and Jpi ;T assignment restricted.

  19. High resolution temporal rainfall data generation for climate change studies

    NASA Astrophysics Data System (ADS)

    Rehan Anis, Muhammad; Rode, Michael

    2010-05-01

    The lack of temporal high-resolution rainfall data is one of the most prominent limiting factors in hydrological and water quality simulations. Most climate change models predict that precipitation patterns will change and that extreme meteorological events are likely to occur more frequently. For climate change studies future climate scenarios are needed which are generally available on daily or six hourly time step. Fine timescale rainfall data of at least 30 minute is required for soil erosion and sediment transport calculations. However, such data are not available for future climate conditions. Therefore it is necessary to develop a disaggregation procedure which is applicable for a wide range of daily and hourly rainfall data. This study evaluates the generation of high-resolution rainfall data at a point location. We use the coupling of the Hyetos and Cascade approach to disaggregate the daily rainfall data up to 10 minute rainfall intensities. In this study we developed a criteria by dividing the daily rainfall data into four different categories according to their magnitude, i.e. 1-10 mm, 11-25 mm, 26-50 mm and 51-above mm and disaggregate each category according to the following three steps: (1) calculating the Bartlett-Lewis Rectangular Pulse Parameter (BLRP) from historical data, (2) disaggregate the future statistically downscaled data (WETTREG Model) using historical BLRP parameters and Hyetos disaggregation model (disaggregate from daily to hourly); and (3) further disaggregation of hourly data into sub-hourly up to 10 minute rainfall intensity using random multiplicative cascade approach. The combination of two models, Hyetos and Cascade approach are successfully applied on the complete range of precipitation. We tested this technique on summer and winter precipitation on different amounts for selected stations with varying elevations to cover a range of rainfall pattern. Dividing the rainfall amount into magnitude categories gives us good result

  20. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  1. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  2. High resolution urban morphology data for urban wind flow modeling

    NASA Astrophysics Data System (ADS)

    Cionco, Ronald M.; Ellefsen, Richard

    The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with

  3. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high

  4. Analysis of CZT crystals and detectors grown in Russia and the Ukraine by high-pressure Bridgman methods

    SciTech Connect

    H. Hermon; M. Schieber; R. B. James; E. Y. Lee; N. Yang; A. J. Antolak; D. H. Morse; C. Hackett; E. Tarver; N. N. P. Kolesnikov; Yu N. Ivanov; V. Komar; M. S. Goorsky; H. Yoon

    2000-01-10

    Sandia National Laboratories (SNL) is leading an effort to evaluate vertical high pressure Bridgman (VHPB) Cd{sub 1-x}Zn{sub x}Te (CZT) crystals grown in the former Soviet Union (FSU) (Ukraine and Russia), in order to study the parameters limiting the crystal quality and the radiation detector performance. The stoichiometry of the CZT crystals, with 0.04 < x < 0.25, has been determined by methods such as proton-induced X-ray emission (PIXE), X-ray diffraction (XRD), microprobe analysis and laser ablation ICP mass spectroscopy (LA-ICP/MS). Other methods such as triaxial double crystal x-ray diffraction (TADXRD), infrared transmission spectroscopy (IR), atomic force microscopy (AFM), thermoelectric emission spectroscopy (TEES) and laser induced transient charge technique (TCT) were also used to evaluate the material properties. The authors have measured the zinc distribution in a CZT ingot along the axial direction and also its homogeneity. The (Cd+Zn)/Te average ratio measured on the Ukraine crystals was 1.2, compared to the ratio of 0.9-1.06 on the Russian ingots. The IR transmission showed highly decorated grain boundaries with precipitates and hollow bubbles. Microprobe elemental analysis and LA-ICP/MS showed carbon precipitates in the CZT bulk and carbon deposits along grain boundaries. The higher concentration of impurities and the imperfect crystallinity lead to shorter electron and hole lifetimes in the range of 0.5--2 {micro}s and 0.1 {micro}s respectively, compared to 3--20 {micro}s and 1--7 {micro}s measured on US spectrometer grade CZT detectors. These results are consistent with the lower resistivity and worse crystalline perfection of these crystals, compared to US grown CZT. However, recently grown CZT from FSU exhibited better detector performance and good response to alpha particles.

  5. Two simple image slicers for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tala, M.; Vanzi, L.; Avila, G.; Guirao, C.; Pecchioli, E.; Zapata, A.; Pieralli, F.

    2017-01-01

    We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.

  6. High resolution modeling of direct ocean carbon sequestration

    SciTech Connect

    Michael Follows; John Marshall

    2004-04-22

    This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

  7. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  8. Optical diffraction tomography for high resolution live cell imaging.

    PubMed

    Sung, Yongjin; Choi, Wonshik; Fang-Yen, Christopher; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S

    2009-01-05

    We report the experimental implementation of optical diffraction tomography for quantitative 3D mapping of refractive index in live biological cells. Using a heterodyne Mach-Zehnder interferometer, we record complex field images of light transmitted through a sample with varying directions of illumination. To quantitatively reconstruct the 3D map of complex refractive index in live cells, we apply optical diffraction tomography based on the Rytov approximation. In this way, the effect of diffraction is taken into account in the reconstruction process and diffraction-free high resolution 3D images are obtained throughout the entire sample volume. The quantitative refractive index map can potentially serve as an intrinsic assay to provide the molecular concentrations without the addition of exogenous agents and also to provide a method for studying the light scattering properties of single cells.

  9. THz holography in reflection using a high resolution microbolometer array.

    PubMed

    Zolliker, Peter; Hack, Erwin

    2015-05-04

    We demonstrate a digital holographic setup for Terahertz imaging of surfaces in reflection. The set-up is based on a high-power continuous wave (CW) THz laser and a high-resolution (640 × 480 pixel) bolometer detector array. Wave propagation to non-parallel planes is used to reconstruct the object surface that is rotated relative to the detector plane. In addition we implement synthetic aperture methods for resolution enhancement and compare Fourier transform phase retrieval to phase stepping methods. A lateral resolution of 200 μm and a relative phase sensitivity of about 0.4 rad corresponding to a depth resolution of 6 μm are estimated from reconstructed images of two specially prepared test targets, respectively. We highlight the use of digital THz holography for surface profilometry as well as its potential for video-rate imaging.

  10. High-resolution computed tomography of the normal larynx

    SciTech Connect

    Silverman, P.M.; Korobkin, M.

    1983-05-01

    Computed tomography (CT) provides a unique method of evaluating abnormalities of the larynx by virture of its cross-sectional images. Several reports have demonstrated its utility in staging laryngeal carcinoma and defining the extent of injury in cases of laryngeal trauma. In order to appreciate subtle abnormalities of the larynx, a thorough understanding of the normal structures in this small anatomic area is crucial. Although previous studies have defined the normal CT anatomy of the larynx, many of the CT-anatomic correlations of the normal larynx used earlier-generation CT scanners with relatively poor resolution or were limited to transaxial images. High-resolution transaxial, coronal, and sagittal CT in vivo images are correlated with line drawings displaying normal laryngeal anatomy. The exquisite anatomic detail apparent in these images provides a sound basis for understanding subtle abnormalities in pathologic cases. (JMT)

  11. High resolution beam profile monitors in the SLC

    SciTech Connect

    Ross, M.C.; Seeman, J.T.; Jobe, R.K.; Sheppard, J.C.; Stiening, R.F.

    1985-04-01

    In the SLC linac, low emittance beams with typical transverse dimensions less than 0.2 mm must be accelerated without effective emittance growth. In order to monitor this we have installed a high resolution beam profile monitor system which consists of an aluminum target covered with a fine-grained phosphor, a magnifying optical system, a television camera and video signal recording electronics. The image formed when the beam strikes the phosphor screen is viewed on a CRT monitor at the console and selected horizontal and vertical slices of the beam spot intensity are recorded. A 20 MHz transient waveform recorder is used to sample and digitize the raw video signal along the selected slice. The beam width is determined by fitting the background subtracted data to a Gaussian. Beam spots less than 6 x 3 mm can be viewed. Beam spot sizes sigma/sub x,y/ < 80 ..mu..m have been measured. 9 refs., 4 figs.

  12. Two simple image slicers for high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Tala, M.; Vanzi, L.; Avila, G.; Guirao, C.; Pecchioli, E.; Zapata, A.; Pieralli, F.

    2017-04-01

    We present the design, manufacturing, test and performance of two image slicers for high resolution spectroscopy. Based on the classical Bowen-Walraven concept, our slicers allow to make two slices of the image of the input fibre. We introduce the idea of a second fibre that can be cropped in half to reach the same width of the science target fibre and that can be used for simultaneous wavelength reference. The slicers presented are mirror and prism based, respectively. Both devices work within expectation, showing differences mainly in their efficiency. The prism based slicer is the solution that was adopted for the FIDEOS spectrograph, an instrument built by the AIUC for the ESO 1m telescope of La Silla. Test spectra obtained with this instrument are included as examples of a real application of the device.

  13. III-Nitride full-scale high-resolution microdisplays

    NASA Astrophysics Data System (ADS)

    Day, Jacob; Li, J.; Lie, D. Y. C.; Bradford, Charles; Lin, J. Y.; Jiang, H. X.

    2011-07-01

    We report the realization and properties of a high-resolution solid-state self-emissive microdisplay based on III-nitride semiconductor micro-size light emitting diodes (µLEDs) capable of delivering video graphics images. The luminance level of III-nitride microdisplays is several orders of magnitude higher than those of liquid crystal and organic-LED displays. The pixel emission intensity was almost constant over an operational temperature range from 100 to -100 °C. The outstanding performance is a direct attribute of III-nitride semiconductors. An energy efficient active drive scheme is accomplished by hybrid integration between µLED arrays and Si CMOS (complementary metal-oxide-semiconductor) active matrix integrated circuits. These integrated devices could play important roles in emerging fields such as biophotonics and optogenetics, as well as ultra-portable products such as next generation pico-projectors.

  14. Galileo at Io: Results from High-Resolution Imaging

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Belton, M. J. S.; Breneman, H. H.; Fagents, S. A.; Geissler, P.; Greeley, R.; Head, J. W.; Hoppa, G.; Jaeger, W. L.; Johnson, T. V.; Keszthelyi, L.; Klaasen, K. P.; Lopes-Gautier, R.; Magee, K. P.; Milazzo, M. P.; Moore, J. M.; Pappalardo, R. T.; Phillips, C. B.; Radebaugh, J.; Schubert, G.; Schuster, P.; Simonelli, D. P.; Sullivan, R.; Thomas, P. C.; Turtle, E. P.; Williams, D. A.

    2000-05-01

    During late 1999/early 2000, the solid state imaging experiment on the Galileo spacecraft returned more than 100 high-resolution (5 to 500 meters per pixel) images of volcanically active Io. We observed an active lava lake, an active curtain of lava, active lava flows, calderas, mountains, plateaus, and plains. Several of the sulfur dioxide-rich plumes are erupting from distal flows, rather than from the source of silicate lava (caldera or fissure, often with red pyroclastic deposits). Most of the active flows in equatorial regions are being emplaced slowly beneath insulated crust, but rapidly emplaced channelized flows are also found at all latitudes. There is no evidence for high-viscosity lava, but some bright flows may consist of sulfur rather than mafic silicates. The mountains, plateaus, and calderas are strongly influenced by tectonics and gravitational collapse. Sapping channels and scarps suggest that many portions of the upper ~1 kilometer are rich in volatiles.

  15. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  16. High resolution Broadband CARS of laser shocked materials

    NASA Astrophysics Data System (ADS)

    Baer, Bruce; Maddox, Brian

    2013-06-01

    We will present preliminary data and methods detailing experiments scheduled later this year using Janus at the Jupiter Laser Facility at LLNL to obtain Coherent Anti-stokes Raman Spectra (CARS) of materials under shock conditions. High resolution (~1 cm-1) CARS of the pre-shocked materials will demonstrate the feasibility and high precision of the methods involved. Pressures as high as 200 GPa have been previously achieved. Initially, our experiments will focus on quartz and diamond and should subsequently lead to hydrogen, deuterium and other constituents of the giant gas planets. This work has been supported under the auspices of the U.S. Department of Energy under Contract DE-AC52-07NA27344.

  17. Systematic high-resolution assessment of global hydropower potential.

    PubMed

    Hoes, Olivier A C; Meijer, Lourens J J; van der Ent, Ruud J; van de Giesen, Nick C

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution estimates of hydropower potential have been local, and have yet to be applied on a global scale. This study is the first to formally present a detailed evaluation of the hydropower potential of each location, based on slope and discharge of each river in the world. The gross theoretical hydropower potential is approximately 52 PWh/year divided over 11.8 million locations. This 52 PWh/year is equal to 33% of the annually required energy, while the present energy production by hydropower plants is just 3% of the annually required energy. The results of this study: all potentially interesting locations for hydroelectric power plants, are available online.

  18. High-resolution friction force microscopy under electrochemical control

    NASA Astrophysics Data System (ADS)

    Labuda, Aleksander; Paul, William; Pietrobon, Brendan; Lennox, R. Bruce; Grütter, Peter H.; Bennewitz, Roland

    2010-08-01

    We report the design and development of a friction force microscope for high-resolution studies in electrochemical environments. The design choices are motivated by the experimental requirements of atomic-scale friction measurements in liquids. The noise of the system is analyzed based on a methodology for the quantification of all the noise sources. The quantitative contribution of each noise source is analyzed in a series of lateral force measurements. Normal force detection is demonstrated in a study of the solvation potential in a confined liquid, octamethylcyclotetrasiloxane. The limitations of the timing resolution of the instrument are discussed in the context of an atomic stick-slip measurement. The instrument is capable of studying the atomic friction contrast between a bare Au(111) surface and a copper monolayer deposited at underpotential conditions in perchloric acid.

  19. High resolution ultrasound and photoacoustic imaging of single cells.

    PubMed

    Strohm, Eric M; Moore, Michael J; Kolios, Michael C

    2016-03-01

    High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  20. High resolution imaging of tunnels by magnetic resonance neurography

    PubMed Central

    Wang, Kenneth C.; Thawait, Shrey K.; Williams, Eric H.; Hashemi, Shahreyar Shar; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh

    2011-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. PMID:21479520

  1. High resolution spectroscopy from low altitude satellites. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Nakano, G. H.; Imhof, W. L.

    1978-01-01

    The P 78 1 satellite to be placed in a synchronous polar orbit at an altitude of 550-660 km will carry two identical high resolution spectrometers each consisting of a single (approximately 85 cc) intrinsic germanium IGE detector. The payload also includes a pair of phoswitch scintillators, an array of CdTe detectors and several particle detectors, all of which are mounted on the wheel of the satellite. The intrinsic high purity IGE detectors receive cooling from two Stirling cycle refrigerators and facilitate the assembly of large and complex detector arrays planned for the next generation of high sensitivity instruments such as those planned for the gamma ray observatory. The major subsystems of the spectrometer are discussed as well as its capabilities.

  2. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  3. High-resolution mapping of bifurcations in nonlinear biochemical circuits

    NASA Astrophysics Data System (ADS)

    Genot, A. J.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J. F.; Taly, V.; Fujii, T.; Rondelez, Y.

    2016-08-01

    Analog molecular circuits can exploit the nonlinear nature of biochemical reaction networks to compute low-precision outputs with fewer resources than digital circuits. This analog computation is similar to that employed by gene-regulation networks. Although digital systems have a tractable link between structure and function, the nonlinear and continuous nature of analog circuits yields an intricate functional landscape, which makes their design counter-intuitive, their characterization laborious and their analysis delicate. Here, using droplet-based microfluidics, we map with high resolution and dimensionality the bifurcation diagrams of two synthetic, out-of-equilibrium and nonlinear programs: a bistable DNA switch and a predator-prey DNA oscillator. The diagrams delineate where function is optimal, dynamics bifurcates and models fail. Inverse problem solving on these large-scale data sets indicates interference from enzymatic coupling. Additionally, data mining exposes the presence of rare, stochastically bursting oscillators near deterministic bifurcations.

  4. High resolution X-ray CT for advanced electronics packaging

    NASA Astrophysics Data System (ADS)

    Oppermann, M.; Zerna, T.

    2017-02-01

    Advanced electronics packaging is a challenge for non-destructive Testing (NDT). More, smaller and mostly hidden interconnects dominate modern electronics components and systems. To solve the demands of customers to get products with a high functionality by low volume, weight and price (e.g. mobile phones, personal medical monitoring systems) often the designers use System-in-Package solutions (SiP). The non-destructive testing of such devices is a big challenge. So our paper will impart fundamentals and applications for non-destructive evaluation of inner structures of electronics packaging for quality assurance and reliability investigations with a focus on X-ray methods, especially on high resolution X-ray computed tomography (CT).

  5. Very High Resolution Climate Modelling in Northern Russia

    NASA Astrophysics Data System (ADS)

    Stendel, M.; Christensen, J. H.

    2009-04-01

    Simulations with global climate models (GCMs) clearly indicate that major climate changes for the Arctic can be expected during the 21st century. Already now, there are substantial changes in sea-ice extent and thickness and a considerable increase in air temperature in several regions. Contemporary GCMs are unable to give a realistic representation of the climate and climate change in regions with steep orography, due to their coarse resolution. But even relatively high resolution regional climate models (RCMs) fail in this respect. We have therefore conducted a transient simulation with the newest version of the HIRHAM RCM, covering the period 1958-2001 over a region in northeast European Russia, including the Ural Mountains, with the unprecedented horizontal resolution of 4 km. For this simulation, a double downscaling procedure was applied. Average and extreme values will be discussed, and a comparison of subsurface temperatures to a set of observations from the region will be presented.

  6. HIGH-RESOLUTION ATMOSPHERIC ENSEMBLE MODELING AT SRNL

    SciTech Connect

    Buckley, R.; Werth, D.; Chiswell, S.; Etherton, B.

    2011-05-10

    The High-Resolution Mid-Atlantic Forecasting Ensemble (HME) is a federated effort to improve operational forecasts related to precipitation, convection and boundary layer evolution, and fire weather utilizing data and computing resources from a diverse group of cooperating institutions in order to create a mesoscale ensemble from independent members. Collaborating organizations involved in the project include universities, National Weather Service offices, and national laboratories, including the Savannah River National Laboratory (SRNL). The ensemble system is produced from an overlapping numerical weather prediction model domain and parameter subsets provided by each contributing member. The coordination, synthesis, and dissemination of the ensemble information are performed by the Renaissance Computing Institute (RENCI) at the University of North Carolina-Chapel Hill. This paper discusses background related to the HME effort, SRNL participation, and example results available from the RENCI website.

  7. High-Resolution Data for a Low-Resolution World

    SciTech Connect

    Brady, Brendan Williams

    2016-05-10

    In the past 15 years, the upper section of Cañon de Valle has been severely altered by wildfires and subsequent runoff events. Loss of root structures on high-angle slopes results in debris flow and sediment accumulation in the narrow canyon bottom. The original intent of the study described here was to better understand the changes occurring in watershed soil elevations over the course of several post-fire years. An elevation dataset from 5 years post-Cerro Grande fire was compared to high-resolution LiDAR data from 14 years post-Cerro Grande fire (also 3 years post-Las Conchas fire). The following analysis was motivated by a problematic comparison of these datasets of unlike resolution, and therefore focuses on what the data reveals of itself. The objective of this study is to highlight the effects vegetation can have on remote sensing data that intends to read ground surface elevation.

  8. Galileo at Io: results from high-resolution imaging.

    PubMed

    McEwen, A S; Belton, M J; Breneman, H H; Fagents, S A; Geissler, P; Greeley, R; Head, J W; Hoppa, G; Jaeger, W L; Johnson, T V; Keszthelyi, L; Klaasen, K P; Lopes-Gautier, R; Magee, K P; Milazzo, M P; Moore, J M; Pappalardo, R T; Phillips, C B; Radebaugh, J; Schubert, G; Schuster, P; Simonelli, D P; Sullivan, R; Thomas, P C; Turtle, E P; Williams, D A

    2000-05-19

    During late 1999/early 2000, the solid state imaging experiment on the Galileo spacecraft returned more than 100 high-resolution (5 to 500 meters per pixel) images of volcanically active Io. We observed an active lava lake, an active curtain of lava, active lava flows, calderas, mountains, plateaus, and plains. Several of the sulfur dioxide-rich plumes are erupting from distal flows, rather than from the source of silicate lava (caldera or fissure, often with red pyroclastic deposits). Most of the active flows in equatorial regions are being emplaced slowly beneath insulated crust, but rapidly emplaced channelized flows are also found at all latitudes. There is no evidence for high-viscosity lava, but some bright flows may consist of sulfur rather than mafic silicates. The mountains, plateaus, and calderas are strongly influenced by tectonics and gravitational collapse. Sapping channels and scarps suggest that many portions of the upper approximately 1 kilometer are rich in volatiles.

  9. High-Resolution Radio Imaging of the "Cosmic Hand"

    NASA Astrophysics Data System (ADS)

    Ng, Chi-Yung; Gaensler, Bryan; Slane, Patrick; Harvey-Smith, Lisa

    2012-10-01

    The 'Cosmic Hand' is an extremely complex pulsar wind nebula system powered by the energetic pulsar B1509-58 in supernova remnant G320.4-1.2 (MSH 15-52). Our recent ATCA observations revealed an intriguing jet-like linear feature of 1'-scale surrounding the pulsar. This could be the first known radio jet from a young pulsar, or a synchrotron wisp extending to high latitude. We propose here high-resolution observations to resolve its detailed morphology and to detect any time variability, with the aim to identify its physical nature. Confirming the jet nature could help reveal its launching mechanism and the particle acceleration process, while a wisp can indicate the flow structure beyond the equatorial plane. In either case, this will set an important example to refine our understanding of pulsar wind physics.

  10. High-resolution real-time ultrasonic scanner.

    PubMed

    Berson, M; Vaillant, L; Patat, F; Pourcelot, L

    1992-01-01

    High spatial resolution is required for echographic exploration of the skin, microvessels or small laboratory animals. With the scanner described here, high resolution is obtained by means of a strongly focused, wide-band 17 MHz center frequency transducer (-6 dB bandwidth: 22 MHz). The movement of this transducer above the skin provides a 6 mm wide and 5 mm deep echographic cross-section with an image rate of 15 images/s. The resolution is about 0.08 mm in axial and 0.2 to 0.3 mm in lateral directions. The device was tested on phantoms in water and in vivo on normal and pathological skin in the Department of Dermatology. With the easy-to-handle probe, explorations were made on psoriasis, basocellular carcinoma, malignant melanoma and sarcoidosis.

  11. The High Resolution Imaging Instrument for HEAO-B

    NASA Technical Reports Server (NTRS)

    Kubierschky, K.; Austin, G. K.; Harrison, D. C.; Roy, A. G.

    1978-01-01

    The High Resolution Imaging Instrument for the HEAO-B X-ray Telescope satellite is designed to reproduce images of celestial X-ray sources in the range of 0.2 to 4.0 keV. It provides both imaging and temporal data. The basic detector is a two-stage microchannel plate with a crossed-grid charge detector. Preamplifiers, detector bias supplies, and some processing circuits are colocated with the detector. The remaining electronic circuits are located in a remote central electronic assembly. The processing system is designed for single-photon processing. The imaging data rate is limited to 100 data points per second. Non-imaging total-field count rate is acquired with a maximum dead time of 14 microseconds per event.

  12. The High-resolution Infrared Spectrum of HCl+

    NASA Astrophysics Data System (ADS)

    Doménech, J. L.; Drouin, B. J.; Cernicharo, J.; Herrero, V. J.; Tanarro, I.

    2016-12-01

    The chloroniumyl cation, HCl+, has been recently identified in space from Herschel's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimeter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration-rotation data. Furthermore, with the end of the Herschel mission, IR observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers, as well as a new and improved global fit of vis-UV, IR, and millimeter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

  13. High-Resolution Mammography Detector Employing Optical Switching Readout

    NASA Astrophysics Data System (ADS)

    Irisawa, Kaku; Kaneko, Yasuhisa; Yamane, Katsutoshi; Sendai, Tomonari; Hosoi, Yuichi

    Conceiving a new detector structure, FUJIFILM Corporation has successfully put its invention of an X-ray detector employing "Optical Switching" into practical use. Since Optical Switching Technology allows an electrode structure to be easily designed, both high resolution of pixel pitch and low electrical noise readout have been achieved, which have consequently realized the world's smallest pixel size of 50×50 μm2 from a Direct-conversion FPD system as well as high DQE. The digital mammography system equipped with this detector enables to acquire high definition images while maintaining granularity. Its outstanding feature is to be able to acquire high-precision images of microcalcifications which is an important index in breast examination.

  14. Wind measurements with the High Resolution Doppler Imager (HRDI)

    NASA Technical Reports Server (NTRS)

    Skinner, W. R.; Hays, P. B.; Abreu, V. J.

    1985-01-01

    The Upper Atmosphere Research Satellite (UARS), to be launched in 1989, is to provide a global data set required to understand the mechanisms controlling upper atmosphere structure and processes, as well as the response of the upper atmosphere to natural and human perturbations. The High Resolution Doppler Imager (HRDI) is the primary instrument for measuring the dynamics of the stratosphere and mesosphere. The goal of HRDI is to measure wind velocities in the stratosphere and mesosphere during the day and the mesosphere and thermosphere at night with an accuracy of 5 m/sec. HRDI will determine winds by measuring Doppler shifts of atmosphere absorption and emission features. Line of sight winds will be taken in two directions, thus allowing the wind vector to be formed. The HRDI instrument is overviewed. The basis of the measurement is explained, as is an outline of the instrument. Since neither instrument nor observational techniques is fully mature, only a brief sketch is presented.

  15. Results from the High Resolution Fly's Eye Experiment

    SciTech Connect

    Jui, C. C. H.

    2011-09-22

    The High Resolution Fly's Eye (HiRes) Experiment operated two fluorescence detector sites in the western Utah desert between 1997 and 2006. The HiRes results on the cosmic ray spectrum are consistent with the GZK Suppression predicted at 10{sup 19.8} eV and observe an ankle structure at 10{sup 18.5} eV. These spectral features are consistent with a proton-dominated composition for cosmic rays at the highest energies. The HiRes composition studies of both the mean and the variance of the shower maximum depth (X{sub max}) also give results that are completely consistent with a predominately protonic composition, and inconsistent with heavy nuclei such as iron. We also report on the result of anisotropy studies.

  16. Next generation high resolution adaptive optics fundus imager

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Erry, G. R. G.; Otten, L. J.; Larichev, A.; Irochnikov, N.

    2005-12-01

    The spatial resolution of retinal images is limited by the presence of static and time-varying aberrations present within the eye. An updated High Resolution Adaptive Optics Fundus Imager (HRAOFI) has been built based on the development from the first prototype unit. This entirely new unit was designed and fabricated to increase opto-mechanical integration and ease-of-use through a new user interface. Improved camera systems for the Shack-Hartmann sensor and for the scene image were implemented to enhance the image quality and the frequency of the Adaptive Optics (AO) control loop. An optimized illumination system that uses specific wavelength bands was applied to increase the specificity of the images. Sample images of clinical trials of retinas, taken with and without the system, are shown. Data on the performance of this system will be presented, demonstrating the ability to calculate near diffraction-limited images.

  17. High-resolution submillimeter-wave radiometry of supersonic flow

    NASA Technical Reports Server (NTRS)

    Dionne, G. F.; Weiss, J. A.; Fitzgerald, J. F.; Fetterman, H. R.; Litvak, M. M.

    1983-01-01

    The recent development of a high-resolution submillimeter-wave heterodyne radiometer has made possible the first measurements of H2O molecule rotational line excitation temperatures and detailed profiles in supersonic flow. Absorption signals were measured across the flow for the 2/11/ from 2//02/ (752 GHz) para-H2O rotational transition against a hot background. These signals decrease downstream owing to the volume expansion of the gas away from the sonic nozle exit in the high-vacuum chamber. Radiative transfer calculations based on the large-velocity-gradient approximation and multilevel statistical equilibrium agree with these results and with the measured spectral line shapes. The data reveal nearly isentropic gas expansion and cooling. These studies have shown that submillimeter-wave heterodyne radiometry can be useful for remote sensing of supersonic flow with low mass flux, provided the signal transmission is through a dry or thin atmosphere.

  18. High-resolution imaging of solar system objects

    NASA Technical Reports Server (NTRS)

    Goldberg, Bruce A.

    1988-01-01

    The strategy of this investigation has been to develop new high-resolution imaging capabilities and to apply them to extended observing programs. These programs have included Io's neutral sodium cloud and comets. The Io observing program was carried out at Table Mountain Observatory (1976 to 1981), providing a framework interpreting Voyager measurements of the Io torus, and serving as an important reference for studying asymmetries and time variabilities in the Jovian magnetosphere. Comet observations made with the 3.6 m Canada-France-Hawaii Telescope and 1.6 m AMOS telescope (1984 to 1987) provide basis for studying early coma development in Halley, the kinematics of its nucleus, and the internal and external structure of the nucleus. Images of GZ from the ICE encounter period form the basis for unique comparisons with in situ magnetic field and dust impact measurements to determine the ion tail and dust coma structure, respectively.

  19. Insights into Physics of Fluid Turbulence Using High Resolution Simulation

    NASA Astrophysics Data System (ADS)

    Chen, S.-Y.

    2001-06-01

    Turbulence is of universal importance in fluid flows. Its correct description thereby impacts such diverse fields as atmospheric pollutant dispersion, weather, commercial chemical processes, aircraft design, ship design, and ocean dynamics. The challenge of understanding turbulence, ``the last unsolved problem in classical statistical mechanics'' (according to Feynman), has been with us over 100 years. The difficulties in the physical understanding and modeling of fluid turbulence arise from the fundamental dynamical properties: strong nonlinearity; the simultaneous presence and interaction of a huge number of degrees of freedom, comprising a wide range of spatial scales; marked departure from statistical equilibrium. With emerging multi-teraflop computers, direct numerical simulation of fluid turbulence at high Reynolds numbers is becoming possible. In this talk, I will give an overview about the latest development of understanding fundamental physics of fluid turbulence, including two-D and three-D Navier-Stokes turbulence and passive scalar advection diffusion system, using high resolution numerical simulation.

  20. Detection of high-resolution Raman spectra in short oligonucleotides

    NASA Astrophysics Data System (ADS)

    Bairamov, F. B.; Poloskin, E. D.; Chernev, A. L.; Toporov, V. V.; Dubina, M. V.; Lahderanta, E.; Lipsanen, H.; Bairamov, B. Kh.

    2014-06-01

    High-resolution spectra of single-chain short oligonucleotides d(20G, 20T), where d is a deoxyribonucleoside, G is guanine, and T is thymine, have been obtained by the highly sensitive nonresonant Raman scattering method of biomacromolecules. In addition to their own multifunctional significance, short oligonucleotides attract interest as ideal model objects for revealing poorly studied peculiarities of tertiary and quaternary structures of DNA. The detection of narrow spectral lines has allowed determining the characteristic time scale and makes it possible to study the dynamics of fast relaxation processes of vibrational motions of atoms in biomacromolecules. It has been found that the FWHM of the narrowest 1355.4 cm-1 spectral line attributed to the vibrations of the dT methyl group is 14.6 cm-1. The corresponding lifetime is 0.38 ps.

  1. CARMENES science preparation. High-resolution spectroscopy of M dwarfs

    NASA Astrophysics Data System (ADS)

    Montes, D.; Caballero, J. A.; Jeffers, S.; Alonso-Floriano, F. J.; Mundt, R.; CARMENES Consortium

    2015-05-01

    To ensure an efficient use of CARMENES observing time, and the highest chances of success, it is necessary first to select the most promising targets. To achieve this, we are observing 500 M dwarfs at high-resolution (R = 30,000-48,000), from which we determine the projected rotational velocity vsin{i} with an accuracy better than 0.5-0.2 km/s and radial-velocity stability better than 0.2-0.1 km/s. Our aim is to have at least two spectra at different epochs of the final 300 CARMENES targets. Our observations with FEROS at ESO/MPG 2.2 m La Silla, CAFE at 2.2 m Calar Alto and HRS at Hobby Eberly Telescope allow us to identify single- and double-line spectroscopic binaries and, especially, fast rotators, which should be discarded from the target list for exoplanet searches. Here we present preliminary results.

  2. Systematic high-resolution assessment of global hydropower potential

    PubMed Central

    van de Giesen, Nick C.

    2017-01-01

    Population growth, increasing energy demand and the depletion of fossil fuel reserves necessitate a search for sustainable alternatives for electricity generation. Hydropower could replace a large part of the contribution of gas and oil to the present energy mix. However, previous high-resolution estimates of hydropower potential have been local, and have yet to be applied on a global scale. This study is the first to formally present a detailed evaluation of the hydropower potential of each location, based on slope and discharge of each river in the world. The gross theoretical hydropower potential is approximately 52 PWh/year divided over 11.8 million locations. This 52 PWh/year is equal to 33% of the annually required energy, while the present energy production by hydropower plants is just 3% of the annually required energy. The results of this study: all potentially interesting locations for hydroelectric power plants, are available online. PMID:28178329

  3. Using High Resolution Force Spectroscopy to Study Haemocompatibility

    NASA Astrophysics Data System (ADS)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    A critical determinant of the biocompatibility of implanted blood-contacting devices is the initial noncovalent adsorption of blood plasma proteins onto the biomaterial surface. Using high resolution force spectroscopy, we have measured the intermolecular interaction forces between a probe tip covalently bound with human serum albumin (HSA), the most abundant blood plasma protein in the human body, and various chemically modified surfaces that either already are, or may potentially be, used as biomaterial surface coatings. Statistical analysis and theoretical modeling enable us to interpret our experimental results in terms of electrostatic interactions, hydrogen bonding, and steric forces. We have expanded our initial studies on surfaces of poly(ethylene oxide) to explore a variety of experimental conditions, and then utilized our results in identifying and studying various oligosaccharides, which we hope may be useful in the discovery of novel materials for future biomaterial applications.

  4. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  5. Polystyrene negative resist for high-resolution electron beam lithography

    PubMed Central

    2011-01-01

    We studied the exposure behavior of low molecular weight polystyrene as a negative tone electron beam lithography (EBL) resist, with the goal of finding the ultimate achievable resolution. It demonstrated fairly well-defined patterning of a 20-nm period line array and a 15-nm period dot array, which are the densest patterns ever achieved using organic EBL resists. Such dense patterns can be achieved both at 20 and 5 keV beam energies using different developers. In addition to its ultra-high resolution capability, polystyrene is a simple and low-cost resist with easy process control and practically unlimited shelf life. It is also considerably more resistant to dry etching than PMMA. With a low sensitivity, it would find applications where negative resist is desired and throughput is not a major concern. PMID:21749679

  6. High resolution absorption spectrum of dianilino in the vapor phase.

    PubMed

    Bayrakçeken, Fuat

    2009-01-01

    Photophysical and photochemical properties of diradical in the first excited state is recorded for the very first time with the IR, band structure for dianilino molecule at room temperature, in the vapor phase. In this experiment high resolution absorption spectra of anilino free radical, dianilino, aniline in the vapor phase and silicon dioxide in the solid state were recorded by flash photolysis technique photographically. Silicon dioxide absorption band between 250 and 255 nm were also observed for the reaction cell, because the cell and windows of the cell material were spectrosilica grade fused quartz. And this absorption band also used as wavelength calibration for all the photoproducts formed in the reaction cell during optical pumping.

  7. High Resolution Absorption Spectroscopy using Externally Dispersed Interferometry

    SciTech Connect

    Edelstein, J; Erskine, D J

    2005-07-06

    We describe the use of Externally Dispersed Interferometry (EDI) for high-resolution absorption spectroscopy. By adding a small fixed-delay interferometer to a dispersive spectrograph, a precise fiducial grid in wavelength is created over the entire spectrograph bandwidth. The fiducial grid interacts with narrow spectral features in the input spectrum to create a moire pattern. EDI uses the moire pattern to obtain new information about the spectra that is otherwise unavailable, thereby improving spectrograph performance. We describe the theory and practice of EDI instruments and demonstrate improvements in the spectral resolution of conventional spectrographs by a factor of 2 to 6. The improvement of spectral resolution offered by EDI can benefit space instruments by reducing spectrograph size or increasing instantaneous bandwidth.

  8. Design, fabrication and characterization of miniaturized high resolution camera modules

    NASA Astrophysics Data System (ADS)

    Kuehn, M.; Goetz, M.; Mueller, C.; Reinecke, H.

    2014-05-01

    Camera systems become more and more important in everyday life. Some of those systems place special requirements concerning the environmental conditions they are exposed to especially in harsh environment. High temperature and humidity difficult to access areas require individual packaging and joining technologies for the setup of a camera module. Environmental conditions have an influence on optical design and tolerance calculation. In case of high temperatures the different thermal expansion coefficients of the used materials lead to stress in joints, lenses and their fittings. This, in turn, can lead to a loss of adjustment of the mechanical and optical components that have a direct influence on the optical performance of the camera module. The recent work shows the development of miniaturized high resolution camera modules designed for use in harsh environment applications.

  9. High resolution SPECT, small deep infarcts and diaschisis.

    PubMed Central

    Bowler, J V; Costa, D C; Jones, B E; Steiner, T J; Wade, J P

    1992-01-01

    Eighteen cases of lacunar infarction are presented. Six of these cases had a purely motor clinical deficit. All the cases were studied by serial high resolution SPECT (single photon emission computerized tomography) using 99Tcm HMPAO. The degree and extent of the changes in cerebral perfusion consistent with diaschisis were noted and these compared with the severity of the clinical deficit at presentation and over time. No significant correlation between diaschisis and the clinical state was found at any stage. The nature, aetiology and importance of diaschisis are discussed and it is suggested that caution should be exercised in attributing clinical features to diaschisis simply because it may be present. Images Figure 1. Figure 2. PMID:1556715

  10. High Resolution Melting (HRM) applied to wine authenticity.

    PubMed

    Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula

    2017-02-01

    Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes.

  11. Detection of Barchan Dunes in High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Azzaoui, M. A.; Adnani, M.; El Belrhiti, H.; Chaouki, I. E.; Masmoudi, C.

    2016-06-01

    Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden's J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  12. Precision Viticulture from Multitemporal, Multispectral Very High Resolution Satellite Data

    NASA Astrophysics Data System (ADS)

    Kandylakis, Z.; Karantzalos, K.

    2016-06-01

    In order to exploit efficiently very high resolution satellite multispectral data for precision agriculture applications, validated methodologies should be established which link the observed reflectance spectra with certain crop/plant/fruit biophysical and biochemical quality parameters. To this end, based on concurrent satellite and field campaigns during the veraison period, satellite and in-situ data were collected, along with several grape samples, at specific locations during the harvesting period. These data were collected for a period of three years in two viticultural areas in Northern Greece. After the required data pre-processing, canopy reflectance observations, through the combination of several vegetation indices were correlated with the quantitative results from the grape/must analysis of grape sampling. Results appear quite promising, indicating that certain key quality parameters (like brix levels, total phenolic content, brix to total acidity, anthocyanin levels) which describe the oenological potential, phenolic composition and chromatic characteristics can be efficiently estimated from the satellite data.

  13. Tuning and scanning control system for high resolution alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Schwemmer, Geary K.

    1988-01-01

    An alexandrite laser is spectrally narrowed and tuned by the use of three optical elements. Each element provides a successively higher degree of spectral resolution. The digitally controlled tuning and scanning control servo system simultaneously positions all three optical elements to provide continuous high resolution laser spectral tuning. The user may select manual, single, or continuous modes of automated scanning of ranges up to 3.00/cm and at scan rates up to 3.85/cm/min. Scanning over an extended range of up to 9.999/cm may be achieved if the highest resolution optic is removed from the system. The control system is also capable of being remotely operated by another computer or controller via standard RS-232 serial data link.

  14. High resolution surface wave dispersion studies in China

    SciTech Connect

    Jones, L.E.; Patton, H.J.

    1997-11-01

    The Los Alamos National Laboratory regional calibration project is actively assembling a database of surface-wave dispersion information for China and surrounding areas. As part of the effort to characterize surface wave dispersion in China, we integrate prior long period results from the University of Colorado with our shorter period dispersion measurements in a high resolution survey of key monitoring areas. Focusing on western China initially, we employ broadband data recorded on CDSN stations, and regional events (m{sub b} 4 and above). Our approach is twofold, employing path specific calibration of key stations and well-recorded reference events, and tomographic inference to provide group velocity curves for regions with sparse station distribution and little seismic activity. Initial dispersion studies at Chinese stations WMQ and LZH show substantial azimuthal variation in dispersion, reinforcing the need for careful determination of source regions for path-specific calibration.

  15. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  16. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  17. High-resolution microendoscope for the detection of cervical neoplasia.

    PubMed

    Grant, Benjamin D; Schwarz, Richard A; Quang, Timothy; Schmeler, Kathleen M; Richards-Kortum, Rebecca

    2015-01-01

    Cervical cancer causes 275,000 deaths each year with 85 % of these deaths occurring in the developing world. One of the primary reasons for the concentration of deaths in developing countries is a lack of effective screening methods suited for the infrastructure of these countries. In order to address this need, we have developed a high-resolution microendoscope (HRME). The HRME is a fiber-based fluorescence microscope with subcellular resolution. Using the vital stain proflavine, we are able to image cell nuclei in vivo and evaluate metrics such as nuclear-to-cytoplasmic ratio, critical to identifying precancerous epithelial regions. In this chapter, we detail the materials and methods necessary to build this system from commercially available parts.

  18. High-Resolution Polarimetry of Supernova Remnant Kesteven 69

    NASA Astrophysics Data System (ADS)

    Wood, C. A.; Mufson, S. L.; Dickel, J. R.

    2008-06-01

    Reported here are high-resolution 6 cm measurements of the adolescent supernova remnant (SNR) Kesteven 69 made with the hybrid BnC configuration of the Very Large Array. Several three-field mosaics of the polarized and total intensity have been used to study this SNR. These investigations lead to a coherent picture of this region. The expanding shock defines an outer rim of high total intensity, suggesting the front is running into large dense clouds with random magnetic field directions. The SNR consists of predominantly of two types of regions, those with high total and relatively weak polarized emission and those with relatively weak total and strong polarized emission. This morphology can be generally explained by the number of clouds with organized magnetic field along the line of sight. Within this SNR there are regions where the field is varying from radial to tangential. As the SN shock encounters clouds, magnetic fields within clouds will strongly affect cloud dynamics.

  19. Achieving High Resolution Timer Events in Virtualized Environment

    PubMed Central

    Adamczyk, Blazej; Chydzinski, Andrzej

    2015-01-01

    Virtual Machine Monitors (VMM) have become popular in different application areas. Some applications may require to generate the timer events with high resolution and precision. This however may be challenging due to the complexity of VMMs. In this paper we focus on the timer functionality provided by five different VMMs—Xen, KVM, Qemu, VirtualBox and VMWare. Firstly, we evaluate resolutions and precisions of their timer events. Apparently, provided resolutions and precisions are far too low for some applications (e.g. networking applications with the quality of service). Then, using Xen virtualization we demonstrate the improved timer design that greatly enhances both the resolution and precision of achieved timer events. PMID:26177366

  20. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  1. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  2. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  3. Spontaneous Raman scattering as a high resolution XUV radiation source

    NASA Technical Reports Server (NTRS)

    Rothenberg, J. E.; Young, J. F.; Harris, S. E.

    1983-01-01

    A type of high resolution XUV radiation source is described which is based upon spontaneous anti-Stokes scattering of tunable incident laser radiation from atoms excited to metastable levels. The theory of the source is summarized and two sets of experiments using He (1s2s)(1)S atoms, produced in a cw hollow cathode and in a pulsed high power microwave discharge, are discussed. The radiation source is used to examine transitions originating from the 3p(6) shell of potassium. The observed features include four previously unreported absorption lines and several sharp interferences of closely spaced autoionizing lines. A source linewidth of about 1.9 cm(-1) at 185,000 cm(-1) is demonstrated.

  4. Measuring Large-Scale Social Networks with High Resolution

    PubMed Central

    Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune

    2014-01-01

    This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359

  5. High-resolution optical telescope for ultraviolet /UV/ radiation field

    NASA Technical Reports Server (NTRS)

    Karayan, W. W.

    1979-01-01

    Design techniques are discussed for all-reflecting optics from first-order system considerations and applications currently utilized in the field of astronomical optics. The solution of the Dall-Karkham design problem is described, showing the advantage of inexpensive construction as compared with higher order surfaces. The design process reported here is a F/5 collecting system which quickly mates directly with the spectrometer; it is capable of achieving desired high resolution and sensitivity requirements. The theoretical limit of aberration tolerances is achieved with less than 1/8 of a wavelength at final focus (OPD). The design of spectrometer for ultra-violet (UV) radiation and its mechanism is included in this study.

  6. Portable electro-mechanically cooled high-resolution germanium detector

    SciTech Connect

    Neufeld, K.W.; Ruhter, W.D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. the detector is a 500 mm{sup 2} by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  7. Quantitative high-resolution transmission electron microscopy of single atoms.

    PubMed

    Gamm, Björn; Blank, Holger; Popescu, Radian; Schneider, Reinhard; Beyer, André; Gölzhäuser, Armin; Gerthsen, Dagmar

    2012-02-01

    Single atoms can be considered as the most basic objects for electron microscopy to test the microscope performance and basic concepts for modeling image contrast. In this work high-resolution transmission electron microscopy was applied to image single platinum, molybdenum, and titanium atoms in an aberration-corrected transmission electron microscope. The atoms are deposited on a self-assembled monolayer substrate that induces only negligible contrast. Single-atom contrast simulations were performed on the basis of Weickenmeier-Kohl and Doyle-Turner form factors. Experimental and simulated image intensities are in quantitative agreement on an absolute intensity scale, which is provided by the vacuum image intensity. This demonstrates that direct testing of basic properties such as form factors becomes feasible.

  8. Automated electrostatic probe device of high resolution and accuracy

    SciTech Connect

    Aleiferis, S.

    2014-12-15

    In this work, an automated apparatus for driving single electrostatic probes and acquiring the plasma-related data has been designed and fabricated. The voltage range of the present system is ±110 V with an adjustable voltage step as low as 3 mV. Voltage and current measurements are carried out with high resolution and high accuracy circuits, both based on 16 bit analog-to-digital converters. The code embedded in a micro-controller, schedules the operation of the device and transfers the experimental data to a personal computer. The modular design of the system makes possible its modification and thus increases its adaptability to different plasma setups. Finally, the reliable operation of the entire device is confirmed by tests in Electron Cyclotron Resonance plasma.

  9. High-resolution spectroscopy of a giant solar filament

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  10. High Resolution Seismic Reflection Survey for Coal Mine: fault detection

    NASA Astrophysics Data System (ADS)

    Khukhuudei, M.; Khukhuudei, U.

    2014-12-01

    High Resolution Seismic Reflection (HRSR) methods will become a more important tool to help unravel structures hosting mineral deposits at great depth for mine planning and exploration. Modern coal mining requires certainly about geological faults and structural features. This paper focuses on 2D Seismic section mapping results from an "Zeegt" lignite coal mine in the "Mongol Altai" coal basin, which required the establishment of major structure for faults and basement. HRSR method was able to detect subsurface faults associated with the major fault system. We have used numerical modeling in an ideal, noise free environment with homogenous layering to detect of faults. In a coal mining setting where the seismic velocity of the high ranges from 3000m/s to 3600m/s and the dominant seismic frequency is 100Hz, available to locate faults with a throw of 4-5m. Faults with displacements as seam thickness detected down to several hundred meter beneath the surface.

  11. Wide and high resolution tension measurement using FRET in embryo

    PubMed Central

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  12. Quadrature phase interferometer for high resolution force spectroscopy

    SciTech Connect

    Paolino, Pierdomenico; Aguilar Sandoval, Felipe A.; Bellon, Ludovic

    2013-09-15

    In this article, we present a deflection measurement setup for Atomic Force Microscopy (AFM). It is based on a quadrature phase differential interferometer: we measure the optical path difference between a laser beam reflecting above the cantilever tip and a reference beam reflecting on the static base of the sensor. A design with very low environmental susceptibility and another allowing calibrated measurements on a wide spectral range are described. Both enable a very high resolution (down to 2.5×10{sup −15} m/√(Hz)), illustrated by thermal noise measurements on AFM cantilevers. They present an excellent long-term stability and a constant sensitivity independent of the optical phase of the interferometer. A quick review shows that our precision is equaling or out-performing the best results reported in the literature, but for a much larger deflection range, up to a few μm.

  13. High resolution heterodyne interferometer without detectable periodic nonlinearity.

    PubMed

    Joo, Ki-Nam; Ellis, Jonathan D; Buice, Eric S; Spronck, Jo W; Schmidt, Robert H Munnig

    2010-01-18

    A high resolution heterodyne laser interferometer without periodic nonlinearity for linear displacement measurements is described. It uses two spatially separated beams with an offset frequency and an interferometer configuration which has no mixed states to prevent polarization mixing. In this research, a simple interferometer configuration for both retroreflector and plane mirror targets which are both applicable to industrial applications was developed. Experimental results show there is no detectable periodic nonlinearity for both of the retro-reflector interferometer and plane mirror interferometer to the noise level of 20 pm. Additionally, the optical configuration has the benefit of doubling the measurement resolution when compared to its respective traditional counterparts. Because of non-symmetry in the plane mirror interferometer, a differential plane mirror interferometer to reduce the thermal error is also discussed.

  14. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  15. Multifeature-based high-resolution palmprint recognition.

    PubMed

    Dai, Jifeng; Zhou, Jie

    2011-05-01

    Palmprint is a promising biometric feature for use in access control and forensic applications. Previous research on palmprint recognition mainly concentrates on low-resolution (about 100 ppi) palmprints. But for high-security applications (e.g., forensic usage), high-resolution palmprints (500 ppi or higher) are required from which more useful information can be extracted. In this paper, we propose a novel recognition algorithm for high-resolution palmprint. The main contributions of the proposed algorithm include the following: 1) use of multiple features, namely, minutiae, density, orientation, and principal lines, for palmprint recognition to significantly improve the matching performance of the conventional algorithm. 2) Design of a quality-based and adaptive orientation field estimation algorithm which performs better than the existing algorithm in case of regions with a large number of creases. 3) Use of a novel fusion scheme for an identification application which performs better than conventional fusion methods, e.g., weighted sum rule, SVMs, or Neyman-Pearson rule. Besides, we analyze the discriminative power of different feature combinations and find that density is very useful for palmprint recognition. Experimental results on the database containing 14,576 full palmprints show that the proposed algorithm has achieved a good performance. In the case of verification, the recognition system's False Rejection Rate (FRR) is 16 percent, which is 17 percent lower than the best existing algorithm at a False Acceptance Rate (FAR) of 10(-5), while in the identification experiment, the rank-1 live-scan partial palmprint recognition rate is improved from 82.0 to 91.7 percent.

  16. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study, we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3' variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly, we explore the use of data-dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules.

  17. A high-resolution multimode digital microscope system.

    PubMed

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae.

  18. High resolution reversible color images on photonic crystal substrates.

    PubMed

    Kang, Pilgyu; Ogunbo, Samuel O; Erickson, David

    2011-08-16

    When light is incident on a crystalline structure with appropriate periodicity, some colors will be preferentially reflected (Joannopoulos, J. D.; Meade, R. D.; Winn, J. N. Photonic crystals: molding the flow of light; Princeton University Press: Princeton, NJ, 1995; p ix, 137 pp). These photonic crystals and the structural color they generate represent an interesting method for creating reflective displays and drawing devices, since they can achieve a continuous color response and do not require back lighting (Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. H. Photonic crystals: Putting a new twist on light. Nature 1997, 386, 143-149; Graham-Rowe, D. Tunable structural colour. Nat. Photonics 2009, 3, 551-553.; Arsenault, A. C.; Puzzo, D. P.; Manners, I.; Ozin, G. A. Photonic-crystal full-colour displays. Nat. Photonics 2007, 1, 468-472; Walish, J. J.; Kang, Y.; Mickiewicz, R. A.; Thomas, E. L. Bioinspired Electrochemically Tunable Block Copolymer Full Color Pixels. Adv. Mater.2009, 21, 3078). Here we demonstrate a technique for creating erasable, high-resolution, color images using otherwise transparent inks on self-assembled photonic crystal substrates (Fudouzi, H.; Xia, Y. N. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19, 9653-9660). Using inkjet printing, we show the ability to infuse fine droplets of silicone oils into the crystal, locally swelling it and changing the reflected color (Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123-2126). Multicolor images with resolutions as high as 200 μm are obtained from oils of different molecular weights with the lighter oils being able to penetrate deeper, yielding larger red shifts. Erasing of images is done simply by adding a low vapor pressure oil which dissolves the image, returning the substrate to its original state.

  19. High resolution micro ultrasonic machining for trimming 3D microstructures

    NASA Astrophysics Data System (ADS)

    Viswanath, Anupam; Li, Tao; Gianchandani, Yogesh

    2014-06-01

    This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-µUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-µUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed distance from the workpiece and vibrating it at a small amplitude. The surface roughness is improved by an appropriate selection of abrasive particles. Fluidic modeling is performed to study interaction among the vibrating micro-tool tip, workpiece, and the slurry. Using 304 stainless steel (SS304) tool tips of 50 µm diameter, the machining performance of the HR-µUSM process is characterized on flat fused silica substrates. The depths and surface finish of machined features are evaluated as functions of slurry concentrations, separation between the micro-tool and workpiece, and machining time. Under the selected conditions, the HR-µUSM process achieves machining rates as low as 10 nm s-1 averaged over the first minute of machining of a flat virgin sample. This corresponds to a mass removal rate of ≈20 ng min-1. The average surface roughness, Sa, achieved is as low as 30 nm. Analytical and numerical modeling are used to explain the typical profile of the machined features as well as machining rates. The process is used to demonstrate trimming of hemispherical 3D shells made of fused silica.

  20. Theme issue "High Resolution Earth Imaging for Geospatial Information"

    NASA Astrophysics Data System (ADS)

    Heipke, Christian; Soergel, Uwe; Rottensteiner, Franz; Jutzi, Boris

    2015-02-01

    Earth imaging from air and space has undergone major changes over the last decade. Examples of new and significant developments comprise the development and constant improvement of digital aerial cameras, multiple-echo and full-waveform laser scanners and the appearance of geosensor networks and unconventional platforms, most notably unmanned aircraft systems (UAS), sometimes called unmanned aerial vehicles (UAV) or remotely piloted aircraft systems (RPAS), and the ever increasing number of high-resolution and hyperspectral optical and SAR satellite sensors, small satellites and satellite constellations, which allow for both, a continued availability of satellite data over long periods of time, and a very short revisit time for any location on the globe. To give few examples: the latest Landsat satellite, appropriately called the Landsat data continuity mission or LDCM was launched on February 2013, continuing the Landsat mission which began back in 1972; during 2013 and 2014 France has put the SPOT 6 and 7 twin satellites into orbit, extending the history of high resolution space images, which started in 1986; and in April 2014 the European Space Agency (ESA) successfully launched the Sentinel 1A satellite with a synthetic aperture radar (SAR) sensor, the first of a fleet of different sensors that will be sent into space in the coming years. Sentinel 1A together with its twin system Sentinel 1B, to be launched in 2016, will continue the tremendous success story of ESA's C band SAR satellite activities dating back to 1991. Like the predecessors ERS 1, ERS 2, and Envisat ASAR, the Sentinel 1 systems are designed to cover the entire land mass with medium resolution, the repeat cycle is 12 days for Sentinel 1A alone and will even drop to six days as soon as both satellites are operational.

  1. Exploring for subtle traps with high-resolution paleogeographic maps

    SciTech Connect

    Bulling, T.B.; Breyer, J.A.

    1988-01-01

    High-resolution paleogeographic maps depicting the depositional history of the Reklaw 1 interval provide a basis for prospecting for subtle traps in the updip Reklaw trend in south Texas. The Reklaw 1 interval began with sand being carried southwest by longshore currents to form the barrier bar that forms the reservoir in Atkinson field. The hydrocarbons are trapped by the updip pinch-out of barrier-bar sand into lagoonal mud. Stratigraphic traps similar to Atkinson field could be present along depositional strike if the sand in the field were part of a more extensive-bar system. After the barrier bar formed, distributary-mouth bars prograded seaward depositing the bar-finger sands that are the reservoirs in Hysaw and Flax fields. Subtle structural traps could be present where small down-to-the-north faults associated with the Sample fault system cut the bar-finger sands downdip from the established production. Farther down paleoslope, the distributary channels began to bifurcate and the distributary-mouth bar coalesced to form a broad delt-front sheet sand. Burnell, Hondo Creek, and Runge West fields produce from this sheet sand near the unstable shelf margin. A rapid rise in relative sea level terminated deposition of the Reklaw 1 interval. Many of the oil and gas fields remaining to be discovered in the United States are in mature petroleum provinces where much of the remaining oil and gas probably resides in subtle traps. High-resolution paleogeographic maps may be a key to finding these subtle traps.

  2. Comparative Assessment of Very High Resolution Satellite and Aerial Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Georgopoulos, A.

    2015-03-01

    This paper aims to assess the accuracy and radiometric quality of orthorectified high resolution satellite imagery from Pleiades-1B satellites through a comparative evaluation of their quantitative and qualitative properties. A Pleiades-B1 stereopair of high resolution images taken in 2013, two adjacent GeoEye-1 stereopairs from 2011 and aerial orthomosaic (LSO) provided by NCMA S.A (Hellenic Cadastre) from 2007 have been used for the comparison tests. As control dataset orthomosaic from aerial imagery provided also by NCMA S.A (0.25m GSD) from 2012 was selected. The process for DSM and orthoimage production was performed using commercial digital photogrammetric workstations. The two resulting orthoimages and the aerial orthomosaic (LSO) were relatively and absolutely evaluated for their quantitative and qualitative properties. Test measurements were performed using the same check points in order to establish their accuracy both as far as the single point coordinates as well as their distances are concerned. Check points were distributed according to JRC Guidelines for Best Practice and Quality Checking of Ortho Imagery and NSSDA standards while areas with different terrain relief and land cover were also included. The tests performed were based also on JRC and NSSDA accuracy standards. Finally, tests were carried out in order to assess the radiometric quality of the orthoimagery. The results are presented with a statistical analysis and they are evaluated in order to present the merits and demerits of the imaging sensors involved for orthoimage production. The results also serve for a critical approach for the usability and cost efficiency of satellite imagery for the production of Large Scale Orthophotos.

  3. High Resolution Microendoscopy for Quantitative Diagnosis of Esophageal Neoplasia

    NASA Astrophysics Data System (ADS)

    Shin, Dongsuk

    Esophageal cancer is the eighth most common cancer in the world. Cancers of the esophagus account for 3.8% of all cases of cancers, with approximately 482,300 new cases reported in 2008 worldwide. In the United States alone, it is estimated that approximately 18,000 new cases will be diagnosed in 2013, and 15,210 deaths are expected. Despite advances in surgery and chemoradiation therapy, these advances have not led to a significant increase in survival rates, primarily because diagnosis often at an advanced and incurable stage when treatment is more difficult and less successful. Accurate, objective methods for early detection of esophageal neoplasia are needed. Here, quantitative classification algorithms for high resolution miscroendoscopic images were developed to distinguish between esophageal neoplastic and non-neoplastic tissue. A clinical study in 177 patients with esophageal squamous cell carcinoma (ESCC) was performed to evaluate the diagnostic performance of the classification algorithm in collaboration with the Mount Sinai Medical Center in the United States, the First Hospital of Jilin University in China, and the Cancer Institute and Hospital, the Chinese Academy of Medical Science in China. The study reported a sensitivity and specificity of 93% and 92%, respectively, in the training set, 87% and 97%, respectively, in the test set, and 84% and 95%, respectively, in an independent validation set. Another clinical study in 31 patients with Barrett's esophagus resulted in a sensitivity of 84% and a specificity of 85%. Finally, a compact, portable version of the high resolution microendoscopy (HRME) device using a consumer-grade camera was developed and a series of biomedical experimental studies were carried out to assess the capability of the device.

  4. Intact MicroRNA Analysis Using High Resolution Mass Spectrometry

    PubMed Central

    Kullolli, Majlinda; Knouf, Emily; Arampatzidou, Maria; Tewari, Muneesh; Pitteri, Sharon J.

    2014-01-01

    MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that post-transcriptionally regulate gene expression, and play key roles in the regulation of a variety of cellular processes and in disease. New tools to analyze miRNAs will add understanding of the physiological origins and biological functions of this class of molecules. In this study we investigate the utility of high resolution mass spectrometry for the analysis of miRNAs through proof-of-concept experiments. We demonstrate the ability of mass spectrometry to resolve and separate miRNAs and corresponding 3′ variants in mixtures. The mass accuracy of the monoisotopic deprotonated peaks from various miRNAs is in the low ppm range. We compare fragmentation of miRNA by collision-induced dissociation (CID) and by higher-energy collisional dissociation (HCD) which yields similar sequence coverage from both methods but additional fragmentation by HCD versus CID. We measure the linear dynamic range, limit of detection, and limit of quantitation of miRNA loaded onto a C18 column. Lastly we explore the use of data dependent acquisition of MS/MS spectra of miRNA during online LC-MS and demonstrate that multiple charge states can be fragmented, yielding nearly full sequence coverage of miRNA on a chromatographic time scale. We conclude that high resolution mass spectrometry allows the separation and measurement of miRNAs in mixtures and a standard LC-MS setup can be adapted for online analysis of these molecules. PMID:24174127

  5. Fabricating High Resolution Mirrors for Hand X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Speegle, Chet O.; Ramsey, Brian D.; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2001-01-01

    We describe the fabrication process for producing high-resolution conical mirrors for hard x-ray astronomy. When flown aboard stratospheric balloons, these high-resolution reflective mirrors focus hard x-rays (10-70 keV) emitted from cosmic sources such as supernovae, neutron stars, and quasars onto imaging focal plane detectors. Focused hard x-ray images allow scientists to determine the elemental compositions, temperatures, magnetic fields, velocities, and gravitational fields of these celestial bodies. The fabrication process involves generating super-polished mandrels, mandrel metrology, mirror shell nickel electroforming, and mirror testing. Each mandrel is a cylinder consisting of two conical segments; each segment is approximately 305-mm long. Through precision grinding these mandrels before super polishing, we have achieved 30 arc seconds, half power diameter replicated mirrors. During a May 2001 high atmosphere balloon flight, these mirrors focused high energy x-rays from three different celestial sources. However, we seek to improve the angular resolutions of future mirror shells by a factor of two. To achieve this goal, we have begun single point diamond turning the mandrels before super polishing. This has allowed greater precision tolerances on mandrel surface roughness and axial figure errors before super polishing. Surface roughnesses before polishing have been reduced from approximately 60 nm to approximately 15 nm. The peak to valley axial figure profile errors have been reduced from approximately 1.0 micrometers to approximately 0.4 micrometers. We are currently in Phase 2 of the HERO (high energy replicated optics) program which entails the production of sixteen 6-m-focal-length mirror modules, each containing a nested array of 15 mirror shells of diameters ranging from 50-mm to 94-mm. This flight is slated for the fall of 2003.

  6. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  7. Optimal energy window selection of a CZT-based small-animal SPECT for quantitative accuracy

    NASA Astrophysics Data System (ADS)

    Park, Su-Jin; Yu, A. Ram; Choi, Yun Young; Kim, Kyeong Min; Kim, Hee-Joung

    2015-05-01

    Cadmium zinc telluride (CZT)-based small-animal single-photon emission computed tomography (SPECT) has desirable characteristics such as superior energy resolution, but data acquisition for SPECT imaging has been widely performed with a conventional energy window. The aim of this study was to determine the optimal energy window settings for technetium-99 m (99mTc) and thallium-201 (201Tl), the most commonly used isotopes in SPECT imaging, using CZT-based small-animal SPECT for quantitative accuracy. We experimentally investigated quantitative measurements with respect to primary count rate, contrast-to-noise ratio (CNR), and scatter fraction (SF) within various energy window settings using Triumph X-SPECT. The two ways of energy window settings were considered: an on-peak window and an off-peak window. In the on-peak window setting, energy centers were set on the photopeaks. In the off-peak window setting, the ratios of energy differences between the photopeak from the lower- and higher-threshold varied from 4:6 to 3:7. In addition, the energy-window width for 99mTc varied from 5% to 20%, and that for 201Tl varied from 10% to 30%. The results of this study enabled us to determine the optimal energy windows for each isotope in terms of primary count rate, CNR, and SF. We selected the optimal energy window that increases the primary count rate and CNR while decreasing SF. For 99mTc SPECT imaging, the energy window of 138-145 keV with a 5% width and off-peak ratio of 3:7 was determined to be the optimal energy window. For 201Tl SPECT imaging, the energy window of 64-85 keV with a 30% width and off-peak ratio of 3:7 was selected as the optimal energy window. Our results demonstrated that the proper energy window should be carefully chosen based on quantitative measurements in order to take advantage of desirable characteristics of CZT-based small-animal SPECT. These results provided valuable reference information for the establishment of new protocol for CZT

  8. The high resolution X-ray imaging detector planes for the MIRAX mission

    NASA Astrophysics Data System (ADS)

    Rodrigues, B. H. G.; Grindlay, J. E.; Allen, B.; Hong, J.; Barthelmy, S.; Braga, J.; D'Amico, F.; Rothschild, R. E.

    2013-09-01

    The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-masks telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm2, a large field of view (60° × 60° FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution ( ~ 2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~ 2.1 keV @ 60 keV and 2.3 @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

  9. High resolution multi-scalar drought indices for Iberia

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Gouveia, Célia; Trigo, Ricardo; Jerez, Sonia

    2014-05-01

    The Iberian Peninsula has been recurrently affected by drought episodes and by adverse associated effects (Gouveia et al., 2009), ranging from severe water shortages to losses of hydroelectricity production, increasing risk of forest fires, forest decline and triggering processes of land degradation and desertification. Moreover, Iberia corresponds to one of the most sensitive areas to current and future climate change and is nowadays considered a hot spot of climate change with high probability for the increase of extreme events (Giorgi and Lionello, 2008). The spatial and temporal behavior of climatic droughts at different time scales was analyzed using spatially distributed time series of multi-scalar drought indicators, such as the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010). This new climatic drought index is based on the simultaneous use of precipitation and temperature fields with the advantage of combining a multi-scalar character with the capacity to include the effects of temperature variability on drought assessment. Moreover, reanalysis data and the higher resolution hindcasted databases obtained from them are valuable surrogates of the sparse observations and widely used for in-depth characterizations of the present-day climate. Accordingly, this work aims to enhance the knowledge on high resolution drought patterns in Iberian Peninsula, taking advantage of high-resolution (10km) regional MM5 simulations of the recent past (1959-2007) over Iberia. It should be stressed that these high resolution meteorological fields (e.g. temperature, precipitation) have been validated for various purposes (Jerez et al., 2013). A detailed characterization of droughts since the 1960s using the 10 km resolution hidncasted simulation was performed with the aim to explore the conditions favoring drought onset, duration and ending, as well as the subsequent short, medium and long-term impacts affecting the environment and the

  10. Segmentation Based Fuzzy Classification of High Resolution Images

    NASA Astrophysics Data System (ADS)

    Rao, Mukund; Rao, Suryaprakash; Masser, Ian; Kasturirangan, K.

    images, we build a much needed bridge between the methodology domains of GIS and Image Analysis. The idea of having an integrated 'geographical information processing' environment is becoming much more realistic now that 'GIS' objects can be used for analysing an image and vice versa, new 'GIS' objects can be directly generated without ignoring the rich information environment of geographical concepts, relations and scales. In the above scenario, the main aim of this project is to assess whether object-oriented classification techniques would be more suitable for remote sensing images - specifically in the context of high resolution images. The paper basically examines potentials of classification techniques - especially segmentation based methods that is based on an object-semantics and that uses not only the spectral information but also the spatial characteristics; studies the integration of segmentation and fuzzy-classification to derive user-oriented information from the high resolution images and evaluates how such segmentation based classification compares with the more common pixel- based statistical technique. Segmentation based fuzzy classification is applied to high resolution images from IRS and for 1m images from satellites - especially to extract urban information.

  11. Seismic investigations for high resolution exploration ahead and around boreholes

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Ruediger; Kopf, Matthias

    2013-04-01

    Deep reservoirs usually will be explored with a surface seismic survey often in combination with borehole seismic measurements like VSP or SWD which can improve the velocity model of the underground. Reservoirs especially in geothermal fields are often characterized by small-scale structures. Additionally, with depth the need for exploration methods with a high resolution increases because standard methods like borehole seismic measurements cannot improve their resolution with depth. To localize structures with more accuracy methods with higher resolution in the range of meters are necessary. Within the project SPWD - Seismic Prediction While Drilling a new exploration method will be developed. With an implementation of seismic sources and receivers in one device an exploration method ahead and around the borehole will be enabled. Also, a high resolution independent from the depth will be achieved. Therefore active and powerful seismic sources are necessary to reach an acceptable penetration depth. Step by step seismic borehole devices were developed, which can be used under different conditions. Every borehole device contains four seismic sources and several three-component geophones. A small distance between actuators and geophones allows detecting also the high frequency content of the wave field reflected at geological structures. Also, exploration with a high resolution is possible. A first borehole device was developed for basic conditions in horizontal boreholes without special terms to temperature or pressure. In a mine first methodical measurements for the initiated wave field were performed. Therefor an existing seismic test area at the research and education mine of the TU Bergakademie Freiberg was extended with boreholes. In the seismic test area, consisting of a dense geophone array with three-component geophone anchors, two horizontal and one vertical borehole was drilled. To achieve a radiation pattern in predefined directions by constructive

  12. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  13. A new high-resolution electromagnetic method for subsurface imaging

    NASA Astrophysics Data System (ADS)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  14. High resolution atomic force microscopy of double-stranded RNA

    NASA Astrophysics Data System (ADS)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  15. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  16. Systematic Characterization of Cyclogenesis in High Resolution Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rao, P.; Kashinath, K.; Prabhat, M.; O'Brien, T. A.

    2015-12-01

    In this study we develop a systematic methodology to analyze cyclogenesis in high resolution climate model simulations. The motivation for this study is to understand how cyclones develop in simulations with the objective of improving the theoretical foundations of cyclogenesis. We use the toolkit for extreme climate analysis (TECA) [Prabhat et al., ICCS 2012] to detect and track cyclones (TCs) in recent high resolution simulations (25km) of current day and climate change scenarios [Wehner et al, J Climate 2015], as well as reanalyses. We systematically adjust the tracking criteria to identify developing and non-developing TCs. The detection and tracking criteria are based on (i) the local relative vorticity maximum being above a certain value, (ii) the colocation of vorticity maximum, surface pressure minimum and warm core temperature maximum, (iii) surface pressure gradient around the storm center to be above a certain value, and (iv) temperature gradient around the warm core center to be above a certain value. To identify non-developing TCs, we systematically characterize the sensitivity of cyclone detection to these criteria using a principal component analysis on the criteria. First, we composite vorticity, pressure and temperature fields around the start of each cyclone's trajectory. Second, we find the covariance of pairs of thresholded variables, for example, vorticity and pressure gradient. Finally, we construct a cross-correlation matrix with these covariances and find the eigenvectors. The eigenvector corresponding to the largest eigenvalue describes the direction of maximum sensitivity.We simultaneously lower thresholds along the direction of maximum sensitivity, which results in an increase in the number of TC-like systems and trajectory lengths compared to the baseline case. We contrast the behavior of developing and non-developing TCs by constructing multivariate joint PDFs of various environmental conditions along their trajectories. We also compute

  17. High-resolution defect metrology for silicon BARC analysis

    NASA Astrophysics Data System (ADS)

    Smith, Brian; McGarvey, Steve; Zhu, Zhimin; Wang, Yubao; Sullivan, Dan

    2010-03-01

    Measuring coating defects on two or more blanket film layers is difficult and can be misleading due to reflectivity changes from the bottom layer, and surface roughness not present when the substrate is only polished silicon. To improve signal-to-noise ratio and establish a lower limit for particle size detection, polystyrene latex (PSL) spheres are deposited on the film stack. Particles as small as 54 nm were detectable on a stack 330-nm thick using a Hitachi LS Series Surface Scanning Inspection System (SSIS) and RS5500 Defect Review Scanning Electron Microscope (DRSEM). These systems have advanced capabilities enabling automated detection, classification, and characterization of defects down to 30 nm or smaller on some substrates and films. Haze wafer maps are related to surface roughness and reflectivity and show unusual asymmetries possibly caused by dispense problems or exhaust flow patterns during baking. These maps can be helpful to find problems in the coating system, even if film thickness is on target. Preliminary testing results are presented for a typical trilayer pattern stack for high-resolution 193-nm patterning consisting of a silicon spinon hardmask (HM) layer on top of a spin-on carbon (SOC) layer. The majority of the defects were caused by bubble formation within the HM that was modulated by process conditions used for these tests. A higher spin speed for the HM coating produced lower defects, most likely due to a thinner film with less trapped solvent during baking, but this effect will require more study, as it could also be due to a faster evaporation rate caused by higher airflow. Pre-wet, spin time, and bake temperature did not produce significant effects within these tests, but showed trends requiring further study. These advanced spin-on HM materials can be applied as thin as 15 to 20 nm due to their high etch selectivity. With the use of such high-resolution defect metrology, very subtle chemical interactions and process effects can be

  18. Bias correction of high resolution regional climate model data

    NASA Astrophysics Data System (ADS)

    Berg, P.; Feldmann, H.; Panitz, H.-J.

    2012-07-01

    SummaryBias correction of varying complexity - from simple scaling and additive corrections to more advanced histogram equalisation (HE) corrections - is applied to high resolution (7 km) regional climate model (RCM) simulations. The aim of the study is to compare different methods that are easily implemented and applied to the data, and to assess the applicability and impact of the bias correction depending on the type of bias. The model bias is determined by comparison to a new gridded high resolution (1 km) data set of temperature and precipitation, which is also used as reference for the corrections. The performance of the different methods depends on the type of bias of the model, and on the investigated statistic. Whereas simpler methods correct the first moment of the distributions, they can have adverse effects on higher moments. The HE method corrects also higher moments, but approximations of the transfer function are necessary when applying the method to other data than the calibration data. Here, an empirical transfer function with linear fits to the tails is compared to a version where the complete function is approximated by a linear fit. The latter is thus limited to corrections of the first and second moments of the distribution. While making the transfer function more generally applicable, these approximations also limit the performance of the HE method. For the current model biases, the linear approximation is found suitable for precipitation, but for temperature it is not able to correct the whole distribution. The lower performance of the linear correction is most pronounced in summer, and is likely due to a difference in skewness between the model and observational data. Further limitations of the HE method are due to the need for long time series in order to have robust distributions for calculating the transfer function. Theoretical approximations of the required length of the calibration period were performed by using different sampling

  19. High-resolution radio emission from RCW 49/Westerlund 2

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Koribalski, B.; Peri, C. S.; Martí, J.; Sánchez-Sutil, J. R.; Dougherty, S. M.; Noriega-Crespo, A.

    2013-11-01

    Aims: The HII region RCW 49 and its ionizing cluster form an extensive, complex region that has been widely studied at infrared (IR) and optical wavelengths. The Molonglo 843 MHz and Australia Telescope Compact Array data at 1.4 and 2.4 GHz showed two shells. Recent high-resolution IR imaging revealed a complex dust structure and ongoing star formation. New high-bandwidth and high-resolution data of the RCW 49 field have been obtained to survey the radio emission at arcsec scale and investigate the small-scale features and nature of the HII region. Methods: Radio observations were collected with the new 2-GHz bandwidth receivers and the CABB correlator of the Australia Telescope Compact Array [ATCA], at 5.5 and 9.0 GHz. In addition, archival observations at 1.4 and 2.4 GHz have been re-reduced and re-analyzed in conjunction with observations in the optical, IR, X-ray, and gamma-ray regimes. Results: The new 2-GHz bandwidth data result in the most detailed radio continuum images of RCW 49 to date. The radio emission closely mimics the near-IR emission observed by Spitzer, showing pillars and filaments. The brightest continuum emission comes from the region known as the bridge. The overall flattish spectral index is typically consistent with a free-free emission mechanism. However, hints of nonthermal components are also present in the bridge. An interesting jet-like structure surrounded by a bubble feature whose nature is still unclear has been discovered close to the Westerlund 2 core. Two apparent bow shocks and a number of discrete sources have been detected as well in the surroundings of RCW 49. In addition, we also report on and discuss the possible detection of a hydrogen recombination line. Conclusions: The radio results support an association between the cm continuum and molecular emission. The detection of the radio recombination line kinematically favors a RCW 49 distance of 6-7 kpc. If the negative spectral indices measured at the bridge should be

  20. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  1. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  2. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  3. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  4. High Resolution Digital Elevation Models of Pristine Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  5. High-resolution simulations of structure formation in the universe

    NASA Astrophysics Data System (ADS)

    Kravtsov, Andrey V.

    During the last decade, there has been ever increasing interest in the problem of galaxy formation in a cosmological context. Detailed studies of this phenomenon require three-dimensional numerical simulations of very high dynamic range. We have developed the Adaptive Refinement Tree (ART) numerical algorithm for high- resolution dissipationless and gasdynamical cosmological simulations. The algorithm follows particle trajectories and solves the equations of gasdynamics on both a cubic, uniform grid covering the entire computational volume and on finer meshes, introduced recursively in a fully adaptive manner in regions of interest. The refinement meshes are generated to effectively match an arbitrary geometry of the interesting regions, a property particularly important for cosmological simulations. In this thesis, I present a description of the method and its implementation, tests of the numerical code, and two applications which effectively demonstrate the high- resolution capabilities of the code. The first study concerns the abundances of galactic satellites in hierarchical models of structure formation. We find that the theoretical models predict much larger numbers of satellites around Milky Way-type galaxies than are actually observed. We then discuss several possible explanations for the differences in predicted and observed velocity functions, including the identification of some satellites with High-Velocity Clouds observed in the Local Group, and the existence of dark satellites which failed to accrete gas and form stars, due either to the expulsion of gas in the supernovae-driven winds or to gas heating by the intergalactic ionizing background. The second study concerns the problem of the galaxy clustering bias, the difference between the galaxy distribution and the overall distribution of matter, and its evolution with time. We use several statistics to study the bias evolution and find that in general, the bias is nonlinear and time- and scale

  6. Precision cosmology with time delay lenses: High resolution imaging requirements

    SciTech Connect

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Liao, Kai; Marshall, Philip J.

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  7. Precision cosmology with time delay lenses: high resolution imaging requirements

    SciTech Connect

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso; Agnello, Adriano; Auger, Matthew W.; Marshall, Philip J. E-mail: tt@astro.ucla.edu E-mail: mauger@ast.cam.ac.uk E-mail: dr.phil.marshall@gmail.com

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will

  8. High-resolution metabolomics of occupational exposure to trichloroethylene

    PubMed Central

    Walker, Douglas I; Uppal, Karan; Zhang, Luoping; Vermeulen, Roel; Smith, Martyn; Hu, Wei; Purdue, Mark P; Tang, Xiaojiang; Reiss, Boris; Kim, Sungkyoon; Li, Laiyu; Huang, Hanlin; Pennell, Kurt D; Jones, Dean P; Rothman, Nathaniel; Lan, Qing

    2016-01-01

    Background: Occupational exposure to trichloroethylene (TCE) has been linked to adverse health outcomes including non-Hodgkin’s lymphoma and kidney and liver cancer; however, TCE’s mode of action for development of these diseases in humans is not well understood. Methods: Non-targeted metabolomics analysis of plasma obtained from 80 TCE-exposed workers [full shift exposure range of 0.4 to 230 parts-per-million of air (ppma)] and 95 matched controls were completed by ultra-high resolution mass spectrometry. Biological response to TCE exposure was determined using a metabolome-wide association study (MWAS) framework, with metabolic changes and plasma TCE metabolites evaluated by dose-response and pathway enrichment. Biological perturbations were then linked to immunological, renal and exposure molecular markers measured in the same population. Results: Metabolic features associated with TCE exposure included known TCE metabolites, unidentifiable chlorinated compounds and endogenous metabolites. Exposure resulted in a systemic response in endogenous metabolism, including disruption in purine catabolism and decreases in sulphur amino acid and bile acid biosynthesis pathways. Metabolite associations with TCE exposure included uric acid (β = 0.13, P-value = 3.6 × 10−5), glutamine (β = 0.08, P-value = 0.0013), cystine (β = 0.75, P-value = 0.0022), methylthioadenosine (β = −1.6, P-value = 0.0043), taurine (β = −2.4, P-value = 0.0011) and chenodeoxycholic acid (β = −1.3, P-value = 0.0039), which are consistent with known toxic effects of TCE, including immunosuppression, hepatotoxicity and nephrotoxicity. Correlation with additional exposure markers and physiological endpoints supported known disease associations. Conclusions: High-resolution metabolomics correlates measured occupational exposure to internal dose and metabolic response, providing insight into molecular mechanisms of exposure

  9. High Resolution Reconstruction of the Ionosphere for SAR Applications

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  10. Spin resolved bandstructure imaging with a high resolution momentum microscope.

    PubMed

    Tusche, Christian; Krasyuk, Alexander; Kirschner, Jürgen

    2015-12-01

    We present a spin resolving "momentum microscope" for the high resolution imaging of the momentum distribution of photoelectrons. Measurements of the band structure of a Au(111) single crystal surface demonstrate an energy resolution of ΔE=12 meV and a momentum resolution of Δk∥=0.0049 Å(-1), measured at the line-width of the spin-orbit split Shockley surface state. The relative accuracy of the k∥ measurement in the order of 10(-4) Å(-1) reveals a deviation from the ideal two-dimensional free electron gas model of the Shockley surface state, manifested in a threefold radial symmetry. Spin resolution in the full momentum image is obtained by an imaging spin-filter based on low-energy electron diffraction at a Au passivated Ir(100) single crystal. Using working points at 10.5 eV and 11.5 eV scattering energy with a completely reversed asymmetry of ±60% we demonstrate the efficient mapping of the spin texture of the Au(111) surface state.

  11. High-Resolution Studies of the Solar Polar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Varsik, J. R.; Wilson, P. R.; Li, Y.

    1999-02-01

    We present high-resolution studies of the solar polar magnetic fields near sunspot maximum in 1989 and towards sunspot minimum in 1995. We show that, in 1989, the polar latitudes were covered by several unipolar regions of both polarities. In 1995, however, after the polar field reversal was complete, each pole exhibited only one dominant polarity region. Each unipolar region contains magnetic knots of both polarities but the number count of the knots of the dominant polarity exceeds that of the opposite polarity by a ratio of order 4:1, and it is rare to find opposite polarity pairs, i.e., magnetic bipoles. These knots have lifetimes greater than 7hours but less than 24hours. We interpret the longitudinal displacement of the knots over a 7-hour period as a measure of the local rotation rate. This rotation rate is found to be generally consistent with Snodgrass' (1983) magnetic rotation law. In an attempt to obtain some insight into the operation of the solar dynamo, sketches of postulated subsurface field configurations corresponding to the observed surface fields at these two epochs of the solar cycle are presented.

  12. High-resolution gamma-ray spectrometry in uranium exploration

    USGS Publications Warehouse

    Moxham, Robert M.; Tanner, Allan B.

    1977-01-01

    Sedimentary-type uranium deposits accumulate at favorable sites along a migration path which may be kilometers in length. Their source is a large volume of rock from which the uranium has been leached. The geochemical mobilities and half lives of uranium and its daughter products vary widely so that they are transported from the source rocks, at different rates, along the migration path to their ultimate site. The radioactive disequilibrium resulting from this process has been well documented in the immediate vicinity of ore deposits, and disequilibrium is commonly recorded on gamma-ray logs up the hydraulic gradient from uranium ore. Little is known about the state of secular equilibrium in the leached host rocks, which often represent the only part of the migration path that is at or near the surface and is thus most accessible to the exploration geophysicist. High-resolution gamma-ray spectrometry provides a means of investigating the disequilibrium associated with uranium leaching and migration. Direct measurement of uranium can be made by this method, and the equivalent weight percents can be determined for six of the seven daughter-product decay groups that characterize the state of radioactive equilibrium. The technique has been used quantitatively in laboratory studies, where the results compare favorably with radiochemical analyses; field experiments suggest that semi-quantitative data may be obtained at the outcrop.

  13. High-resolution radon monitoring and hydrodynamics at Mount Vesuvius

    NASA Astrophysics Data System (ADS)

    Cigolini, Corrado; Salierno, Francesco; Gervino, Gianpiero; Bergese, Paolo; Marino, Ciro; Russo, Massimo; Prati, Paolo; Ariola, Vincenzo; Bonetti, Roberto; Begnini, Stefania

    A yearlong high-resolution radon survey has been carried on at Mount Vesuvius, starting in May 1998. Radon activities were acquired by exposing charcoal canisters and track-etch detectors. Sampling stations were deployed along two major summit faults and around the caldera bottom. Volcanically-related earthquakes, with MD ≥ 2.5, may be discriminated from regional seismic events since their cumulative radon anomalies are recorded from stations located along all the above structural features. On the contrary, radon anomalies correlated to regional earthquakes, with MD ≥ 4, are essentially recorded by the sampling sites located along the two summit faults (whose roots extend deeper into the Tertiary basement rocks that underlay the volcano). Radon migration to the surface is ruled by convection within a porous medium of relatively low porosity (ϕ ≈ 10-5), suggesting that fluid motion is strongly localised along fractures. It is suggested that fluid pressure build up, followed by fluid release and migration during incipient fracturing of the porous medium, precede the onset of volcanically-induced earthquakes.

  14. The Astro-E High Resolution X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Audley, Michael D.; Boyce, Kevin R.; Breon, Susan R.; Fujimoto, Ryuichi; Gendreau, Keith C.; Holt, Stephen S.; Ishisaki, Yoshitaka; McCammon, Dan; Mihara, Tatehiro

    1999-01-01

    The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronautical Science in Japan. The instrument is based on a new approach to spectroscopy, the X-ray microcalorimeter. This device senses the energies of individual X-ray photons as heat with extreme precision. A 32 channel array of microcalorimeters is being employed, each with an energy resolution of about 12 eV at 6 keV (the Fe-K region). This will provide spectral resolving power 10 times higher than any other non-dispersive X-ray spectrometer. The instrument incorporates a three stage cooling system capable of operating the array at 60 mK for about two years in orbit. The array sits at the focus of a grazing incidence conical mirror. The quantum efficiency of the microcalorimeters and the reflectivity of the X-ray mirror system combine to give high throughput over the 0.3-12 keV energy band. This new capability will enable the study of a wide range of high-energy astrophysical sources with unprecedented spectral sensitivity. This paper presents the basic design requirements and implementation of the XRS, and also describes the instrument parameters and performance.

  15. Understanding reconstructed Dante spectra using high resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    May, M. J.; Weaver, J.; Widmann, K.; Kemp, G. E.; Thorn, D.; Colvin, J. D.; Schneider, M. B.; Moore, A.; Blue, B. E.

    2016-11-01

    The Dante is an 18 channel filtered diode array used at the National Ignition Facility (NIF) to measure the spectrally and temporally resolved radiation flux between 50 eV and 20 keV from various targets. The absolute flux is determined from the radiometric calibration of the x-ray diodes, filters, and mirrors and a reconstruction algorithm applied to the recorded voltages from each channel. The reconstructed spectra are very low resolution with features consistent with the instrument response and are not necessarily consistent with the spectral emission features from the plasma. Errors may exist between the reconstructed spectra and the actual emission features due to assumptions in the algorithm. Recently, a high resolution convex crystal spectrometer, VIRGIL, has been installed at NIF with the same line of sight as the Dante. Spectra from L-shell Ag and Xe have been recorded by both VIRGIL and Dante. Comparisons of these two spectroscopic measurements yield insights into the accuracy of the Dante reconstructions.

  16. High resolution spectroscopy from ground and space: Introduction

    NASA Astrophysics Data System (ADS)

    Ward, William E.

    In contrast to the broad brush approach often used for the sounding of atmospheric constituents, high resolution spectroscopy is a refined, efficient and often elegant tool which uses small spectral regions to probe specific phenomena. Application areas range from wind and temperature measurements in terrestrial and planetary atmospheres, to magnetic field measurements on the sun. In most cases, subtle changes in line shape or line position are used with a priori information to generate the geophysical information of interest. Use of this technique for space applications started in the 1960's and was a natural extension of the spectroscopic heritage which was started by Fabry and Perot and Michelson over 100 year ago. This field has evolved over the past 50 years in response to refinements in detector technologies, manufacturing techniques and the development of active techniques using lasers. This session will trace the evolution of these techniques over the past half-century and showcase the state-of-the-art today. Within Canada, Gordon Shepherd has played a hand in many of the developments in this technique. This introduction will briefly summarize this field and provide a short historical sketch of Shepherd's contributions as a lead into his keynote review of this topic.

  17. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  18. High resolution deuterium NMR studies of bacterial metabolism

    SciTech Connect

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  19. Accelerated High-Resolution Differential Ion Mobility Separations Using Hydrogen

    PubMed Central

    Shvartsburg, Alexandre A.; Smith, Richard D.

    2011-01-01

    The resolving power of differential ion mobility spectrometry (FAIMS) was dramatically increased recently by carrier gases comprising up to 75% He or various vapors, enabling many new applications. However, the need for resolution of complex mixtures is virtually open-ended and many topical analyses demand yet finer separations. Also, the resolving power gains are often at the expense of speed, in particular making high-resolution FAIMS incompatible with online liquid-phase separations. Here, we report FAIMS employing hydrogen, specifically in mixtures with N2 containing up to 90% H2. Such compositions raise the mobilities of all ions and thus the resolving power beyond that previously feasible, while avoiding the electrical breakdown inevitable in He-rich mixtures. The increases in resolving power and ensuing peak resolution are especially significant at H2 fractions above ~50%. Higher resolution can be exchanged for acceleration of the analyses by up to ~4 times, at least. For more mobile species such as multiply-charged peptides, this exchange is presently forced by the constraints of existing FAIMS devices, but future designs optimized for H2 should consistently improve resolution for all analytes. PMID:22074292

  20. A New, Adaptable, Optical High-Resolution 3-Axis Sensor

    PubMed Central

    Buchhold, Niels; Baumgartner, Christian

    2017-01-01

    This article presents a new optical, multi-functional, high-resolution 3-axis sensor which serves to navigate and can, for example, replace standard joysticks in medical devices such as electric wheelchairs, surgical robots or medical diagnosis devices. A light source, e.g., a laser diode, is affixed to a movable axis and projects a random geometric shape on an image sensor (CMOS or CCD). The downstream microcontroller’s software identifies the geometric shape’s center, distortion and size, and then calculates x, y, and z coordinates, which can be processed in attached devices. Depending on the image sensor in use (e.g., 6.41 megapixels), the 3-axis sensor features a resolution of 1544 digits from right to left and 1038 digits up and down. Through interpolation, these values rise by a factor of 100. A unique feature is the exact reproducibility (deflection to coordinates) and its precise ability to return to its neutral position. Moreover, optical signal processing provides a high level of protection against electromagnetic and radio frequency interference. The sensor is adaptive and adjustable to fit a user’s range of motion (stroke and force). This recommendation aims to optimize sensor systems such as joysticks in medical devices in terms of safety, ease of use, and adaptability. PMID:28134824

  1. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  2. Small UAV-Acquired, High-resolution, Georeferenced Still Imagery

    SciTech Connect

    Ryan Hruska

    2005-09-01

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical to use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.

  3. Optimized generation of high resolution breast anthropomorphic software phantoms

    PubMed Central

    Pokrajac, David D.; Maidment, Andrew D. A.; Bakic, Predrag R.

    2012-01-01

    Purpose: The authors present an efficient method for generating anthropomorphic software breast phantoms with high spatial resolution. Employing the same region growing principles as in their previous algorithm for breast anatomy simulation, the present method has been optimized for computational complexity to allow for fast generation of the large number of phantoms required in virtual clinical trials of breast imaging. Methods: The new breast anatomy simulation method performs a direct calculation of the Cooper’s ligaments (i.e., the borders between simulated adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a posteriori classifier. The method is multiscale due to the use of octree-based recursive partitioning of the phantom volume. The method also provides user-control of the thickness of the simulated Cooper’s ligaments and skin. Results: Using the proposed method, the authors have generated phantoms with voxel size in the range of (25–1000 μm)3/voxel. The power regression of the simulation time as a function of the reciprocal voxel size yielded a log-log slope of 1.95 (compared to a slope of 4.53 of our previous region growing algorithm). Conclusions: A new algorithm for computer simulation of breast anatomy has been proposed that allows for fast generation of high resolution anthropomorphic software phantoms. PMID:22482649

  4. A System for High-Resolution Topology Optimization.

    PubMed

    Wu, Jun; Dick, Christian; Westermann, Rudiger

    2016-03-01

    A key requirement in 3D fabrication is to generate objects with individual exterior shapes and their interior being optimized to application-specific force constraints and low material consumption. Accomplishing this task is challenging on desktop computers, due to the extreme model resolutions that are required to accurately predict the physical shape properties, requiring memory and computational capacities going beyond what is currently available. Moreover, fabrication-specific constraints need to be considered to enable printability. To address these challenges, we present a scalable system for generating 3D objects using topology optimization, which allows to efficiently evolve the topology of high-resolution solids towards printable and light-weight-high-resistance structures. To achieve this, the system is equipped with a high-performance GPU solver which can efficiently handle models comprising several millions of elements. A minimum thickness constraint is built into the optimization process to automatically enforce printability of the resulting shapes. We further shed light on the question how to incorporate geometric shape constraints, such as symmetry and pattern repetition, in the optimization process. We analyze the performance of the system and demonstrate its potential by a variety of different shapes such as interior structures within closed surfaces, exposed support structures, and surface models.

  5. High-Resolution Underwater Mapping Using Side-Scan Sonar.

    PubMed

    Burguera, Antoni; Oliver, Gabriel

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region.

  6. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect

    Li, Tingwen; Gel, Aytekin; Syamlal, M; Guenther, Chris; Pannala, Sreekanth

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  7. Evaluation of a High-Resolution Regional Climate Ensemble

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Keellings, D.; Jaye, A.

    2014-12-01

    A high-resolution Regional Climate Ensemble is used to investigate the limits of predictability of climate simulations, with a focus on high-impact weather. A diverse set of approaches are being applied to examine the impact of the different physics parameterizations on the simulated climate and high-impact weather statistics and to determine the physics combinations that result in realistic scenarios. In this paper we focus on the ensemble members' ability to correctly simulate current climate variability in terms of: 1) extreme temperature and precipitation over different regions, and 2) tropical cyclone statistics. A twenty-four member physics ensemble of climate simulations has been generated using the state-of-the-art Weather Research and Forecasting Model (Skamarock et al. 2008). The ensemble model has been run over an extended North American domain of approximately 25° S to 70° N and from the African coast to the East Pacific, and at sufficient resolution to capture high-impact weather events. Skamarock, W., J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, X. Huang, and W. Wang, 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. Boulder, CO.

  8. High resolution imaging of objects located within a wall

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.; Showman, Gregory A.; Trostel, John M.; Sylvester, Vincent

    2006-05-01

    Researchers at Georgia Tech Research Institute have developed a high resolution imaging radar technique that allows large sections of a test wall to be scanned in X and Y dimensions. The resulting images that can be obtained provide information on what is inside the wall, if anything. The scanning homodyne radar operates at a frequency of 24.1 GHz at with an output power level of approximately 10 milliwatts. An imaging technique that has been developed is currently being used to study the detection of toxic mold on the back surface of wallboard using radar as a sensor. The moisture that is associated with the mold can easily be detected. In addition to mold, the technique will image objects as small as a 4 millimeter sphere on the front or rear of the wallboard and will penetrate both sides of a wall made of studs and wallboard. Signal processing is performed on the resulting data to further sharpen the image. Photos of the scanner and images produced by the scanner are presented. A discussion of the signal processing and technical challenges are also discussed.

  9. High Resolution γ-Ray Spectroscopy: the First 85 Years

    PubMed Central

    Deslattes, Richard D.

    2000-01-01

    This opening review attempts to follow the main trends in crystal diffraction spectrometry of nuclear γ rays from its 1914 beginning in Rutherford’s laboratory to the ultra-high resolution instrumentation realized in the current generation of spectrometers at the Institute Laue Langeven (ILL). My perspective is that of an instrumentalist hoping to convey a sense of our intellectual debt to a number of predecessors, each of whom realized a certain elegance in making the tools that have enabled much good science, including that to which the remainder of this workshop is dedicated. This overview follows some of the main ideas along a trajectory toward higher resolution at higher energies, thereby enabling not only the disentangling of dense spectra, but also allowing detailed study of aspects of spectral profiles sensitive to excited state lifetimes and inter-atomic potentials. The parallel evolution toward increasing efficiency while preserving needed resolution is also an interesting story of artful compromise that should not be neglected. Finally, it is the robustness of the measurement chain connecting γ-ray wavelengths with optical wavelengths associated with the Rydberg constant that only recently has allowed γ-ray data to contribute to determination of particle masses and fundamental constants, as will be described in more detail in other papers from this workshop. PMID:27551582

  10. High Resolution Imaging of Kepler Objects of Interest (KOI)

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Adams, E.; Ciardi, D. R.; Gautier, T. N., III; Howell, S.; Kulesa, C.; McCarthy, D.; Kepler Science Team

    2011-05-01

    The spatial resolution of the Kepler telescope is designed to be 4 arcsec ( 1 pixel) which could allow background stars to contribute to the light of a Kepler target. Thus an observed transit might be a false positive due to a background eclipsing binary. In addition, dilution of the transit signal by a background star can severely compromise the parameters derived for a planet candidate. The Kepler Follow on Program (KFOP) includes high resolution images of the KOI targets, obtained principally at the following facilities: speckle imaging in V and R with the two-color speckle camera on the 3.5m WIYN telescope; Adaptive Optics imaging in J band and Ks with the PHARO near-infrared camera on the 200-in Hale Telescope; Adaptive Optics imaging in J and Ks band with the ARIES camera on the 6.5m MMT Telescope; AO imaging in J band and Ks with IRCAL on the 3-m telescope at Lick Observatory. Results from the follow up observations will be shown as well as the implications for the derivation of planetary characteristics. High spatial resolution images are a key part of the follow-up program for high-confidence level acceptance for Earth and super Earth-size planets.

  11. WFC3 UVIS High-resolution Imaging Performance

    NASA Astrophysics Data System (ADS)

    Gilliland, R. L.; Rajan, A.

    2011-01-01

    The sharp and stable point spread function of HST and WFC3 allows for the detection of stellar companions at small offsets from target stars. Deep images obtained through six UVIS filters are used to assess this ability to detect faint companions of brighter targets. Analogous capabilities from the ground make use of Adaptive Optics and Speckle imaging. We contrast the capabilities of HST/WFC3 with several existing AO systems for imaging of V 12 stars for which detection of faint companions as close as possible is desired, and to a delta-magnitude of 10. The observations under comparison are motivated by high-resolution imaging applications for the Kepler Mission to constrain the existence of fainter background stars which, if eclipsing binaries, could mimic transits. The HST/WFC3 observations are found to be superior in the comparisons made to Keck, MMT and Palomar AO and WIYN Speckle systems in terms of delta-magnitude limits outside of about 0.3 arcseconds. In a metric of fraction of phase space that can be probed for delta-magnitude to 10 companions out to 2 arcsecs the UVIS imaging out performs all other approaches by a factor > 5.

  12. High-resolution transmission electron microscopy: the ultimate nanoanalytical technique.

    PubMed

    Thomas, John Meurig; Midgley, Paul A

    2004-06-07

    To be able to determine the elemental composition and morphology of individual nanoparticles consisting of no more than a dozen or so atoms that weigh a few zeptograms (10(-21) g) is but one of the attainments of modern electron microscopy. With slightly larger specimens (embracing a few unit cells of the structure) their symmetry, crystallographic phase, unit-cell dimension, chemical composition and often the valence state (from parallel electron spectroscopic measurements) of the constituent atoms may also be determined using a scanning beam of electrons of ca. 0.5 nm diameter. Nowadays electron crystallography, which treats the digital data of electron diffraction (ED) and high-resolution transmission electron microscope (HRTEM) images of minute (ca. 10(-18)g) specimens in a quantitatively rigorous manner, solves hitherto unknown structures just as X-ray diffraction does with bulk single crystals. In addition, electron tomography (see cover photograph and its animation) enables a three-dimensional picture of the internal structure of minute objects, such as nanocatalysts in a single pore, as well as structural faults such as micro-fissures, to be constructed with a resolution of 1 nm from an angular series of two-dimensional (projected) images. Very recently (since this article was first written) a new meaning has been given to electron crystallography as a result of the spatio-temporal resolution of surface phenomena achieved on a femtosecond timescale.

  13. High-resolution anatomy from in situ human brain.

    PubMed

    Toga, A W; Ambach, K L; Schluender, S

    1994-11-01

    We have generated a spatially accurate, high-resolution three-dimensional (3D) volume of brain anatomy from cryosectioned whole human head. The head of a female cadaver was cryosectioned on a heavy duty cryomacrotome (PMV, Stockholm Sweden) modified for quantitative digital image capture. Serial images (1024(2), 24-bit) were captured directly from the cryoplaned specimen blockface in 500-micron intervals and reconstructed to a 3D data volume. Data were placed into the Talairach coordinate system to create a volume of brain anatomy for atlas reference. We resampled the volume at 500 microns along the sagittal, coronal, and horizontal planes and enhanced the images by digitally editing the background. The spatial resolution of the original digitized images provided sufficient anatomic detail to clearly delineate gray and white matter and neural structures, including major fiber pathways, subthalamic nuclei, and laminae. We developed a compact disk and controlling software program to enable the viewer to select planes of orientation, display, and copy individual to sections at higher resolution. Animation proved useful in the conveyance of system anatomy as structures are shown traversing through the neuroaxis. Postmortem cryosectioning paired with this computerized presentation allowed the complete 3D volume data to be distributed and shared as an educational, clinical, and research resource.

  14. Secure distribution for high resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Sun, Jing; Xu, Zheng Q.

    2010-09-01

    The use of remote sensing images collected by space platforms is becoming more and more widespread. The increasing value of space data and its use in critical scenarios call for adoption of proper security measures to protect these data against unauthorized access and fraudulent use. In this paper, based on the characteristics of remote sensing image data and application requirements on secure distribution, a secure distribution method is proposed, including users and regions classification, hierarchical control and keys generation, and multi-level encryption based on regions. The combination of the three parts can make that the same remote sensing images after multi-level encryption processing are distributed to different permission users through multicast, but different permission users can obtain different degree information after decryption through their own decryption keys. It well meets user access control and security needs in the process of high resolution remote sensing image distribution. The experimental results prove the effectiveness of the proposed method which is suitable for practical use in the secure transmission of remote sensing images including confidential information over internet.

  15. HIGH-RESOLUTION ELECTRON MICROSCOPIC ANALYSIS OF THE AMYLOID FIBRIL

    PubMed Central

    Shirahama, Tsuranobu; Cohen, Alan S.

    1967-01-01

    The ultrastructural organization of the fibrous component of amyloid has been analyzed by means of high resolution electron microscopy of negatively stained isolated amyloid fibrils and of positively stained amyloid fibrils in thin tissue sections. It was found that a number of subunits could be resolved according to their dimensions. The following structural organization is proposed. The amyloid fibril, the fibrous component of amyloid as seen in electron microscopy of thin tissue sections, consists of a number of filaments aggregated side-by-side. These amyloid filaments are approximately 75–80 A in diameter and consist of five (or less likely six) subunits (amyloid protofibrils) which are arranged parallel to each other, longitudinal or slightly oblique to the long axis of the filament. The filament has often seemed to disperse into several longitudinal rows. The amyloid protofibril is about 25–35 A wide and appears to consist of two or three subunit strands helically arranged with a 35–50-A repeat (or, less likely, is composed of globular subunits aggregated end-to-end). These amyloid subprotofibrillar strands measure approximately 10–15 A in diameter. PMID:6036530

  16. High-resolution computed tomography reconstructions of invertebrate burrow systems.

    PubMed

    Hale, Rachel; Boardman, Richard; Mavrogordato, Mark N; Sinclair, Ian; Tolhurst, Trevor J; Solan, Martin

    2015-01-01

    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤ 2,000 raw image slices aquarium(-1), isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture.

  17. High-Resolution Underwater Mapping Using Side-Scan Sonar

    PubMed Central

    2016-01-01

    The goal of this study is to generate high-resolution sea floor maps using a Side-Scan Sonar(SSS). This is achieved by explicitly taking into account the SSS operation as follows. First, the raw sensor data is corrected by means of a physics-based SSS model. Second, the data is projected to the sea-floor. The errors involved in this projection are thoroughfully analysed. Third, a probabilistic SSS model is defined and used to estimate the probability of each sea-floor region to be observed. This probabilistic information is then used to weight the contribution of each SSS measurement to the map. Because of these models, arbitrary map resolutions can be achieved, even beyond the sensor resolution. Finally, a geometric map building method is presented and combined with the probabilistic approach. The resulting map is composed of two layers. The echo intensity layer holds the most likely echo intensities at each point in the sea-floor. The probabilistic layer contains information about how confident can the user or the higher control layers be about the echo intensity layer data. Experimental results have been conducted in a large subsea region. PMID:26821379

  18. Study of multispectral convolution scatter correction in high resolution PET

    SciTech Connect

    Yao, R.; Lecomte, R.; Bentourkia, M.

    1996-12-31

    PET images acquired with a high resolution scanner based on arrays of small discrete detectors are obtained at the cost of low sensitivity and increased detector scatter. It has been postulated that these limitations can be overcome by using enlarged discrimination windows to include more low energy events and by developing more efficient energy-dependent methods to correct for scatter. In this work, we investigate one such method based on the frame-by-frame scatter correction of multispectral data. Images acquired in the conventional, broad and multispectral window modes were processed by the stationary and nonstationary consecutive convolution scatter correction methods. Broad and multispectral window acquisition with a low energy threshold of 129 keV improved system sensitivity by up to 75% relative to conventional window with a {approximately}350 keV threshold. The degradation of image quality due to the added scatter events can almost be fully recovered by the subtraction-restoration scatter correction. The multispectral method was found to be more sensitive to the nonstationarity of scatter and its performance was not as good as that of the broad window. It is concluded that new scatter degradation models and correction methods need to be established to fully take advantage of multispectral data.

  19. High Resolution Studies of Mass Loss from Massive Binary Stars

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert

    2017-01-01

    Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.

  20. Shallow subsurface applications of high-resolution seismic reflection

    NASA Astrophysics Data System (ADS)

    Steeples, Don

    2002-11-01

    Shallow seismic reflection surveys have been applied to a wide variety of problems. For example, in many geologic settings, variations and discontinuities on the surface of bedrock can influence the transport and eventual fate of contaminants introduced at or near the ground surface. Using seismic methods to determine the nature and location of anomalous bedrock can be an essential component of hydrologic characterization. Shallow seismic surveys can also be used to detect earthquake faults and to image underground voids. During the early 1980s, the advent of digital engineering seismographs designed for shallow, high-resolution surveying spurred significant improvements in engineering and environmental reflection seismology. Commonly, shallow seismic reflection methods are used in conjunction with other geophysical and geological methods, supported by a well-planned drilling-verification effort. To the extent that seismic reflection, refraction, and surface-wave methods can constrain shallow stratigraphy, geologic structure, engineering properties, and relative permeability, these methods are useful in civil-engineering applications and in characterizing environmental sites. Case histories from Kansas, California, and Texas illustrate how seismic reflection can be used to map bedrock beneath alluvium at hazardous waste sites, detect abandoned coal mines, follow the top of the saturated zone during an alluvial aquifer pumping test, and map shallow faults that serve as contaminant flowpaths.