Sample records for high-resolution computerized tomography

  1. Diagnostic Yield of Transbronchial Biopsy in Comparison to High Resolution Computerized Tomography in Sarcoidosis Cases

    PubMed

    Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan

    2018-04-25

    This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License

  2. Mid-Frequency Sonar Interactions with Beaked Whales

    DTIC Science & Technology

    2011-06-30

    Beaked Whale, was not completed. However, several other goals were achieved, including synthesis of a morphometric model of a beaked whale. This and work...induced acoustic fields inside beaked whales and other marine mammals. Another high-level goal was to acquire new high-resolution morphometric and...range 1-10 kHz; collecting high-resolution morphometric data through computerized tomography (CT) scans on marine mammal specimens, and constructing

  3. Cost-Effective and High-Resolution Subsurface Characterization Using Hydraulic Tomography

    DTIC Science & Technology

    2017-08-28

    implementation and compare costs associated with HT and conventional methods. TECHNOLOGY DESCRIPTION The HT concept is analogous to the Computerized...develop guidance for HT field implementation and compare costs associated with HT and conventional methods. 15. SUBJECT TERMS Subsurface...3  2.1  TECHNOLOGY DESCRIPTION

  4. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  5. Mid-Frequency Sonar Interactions With Beaked Whales

    DTIC Science & Technology

    2009-09-30

    to acquire new high-resolution morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such... morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such a system, together with high-quality... morphometric data through computerized tomography (CT) scans on marine mammal carcasses, and constructing finite-element models of the anatomy

  6. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  7. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less

  8. Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.

    PubMed

    Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F

    1980-01-01

    Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.

  9. [The clinical economic analysis of the methods of ischemic heart disease diagnostics].

    PubMed

    Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G

    2007-01-01

    The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.

  10. High Resolution Chest Computerized Tomography in the Diagnosis of Ocular Sarcoidosis in a High TB Endemic Population.

    PubMed

    Babu, Kalpana; Shukla, Sai Bhakti; Philips, Mariamma

    2017-04-01

    To review the role of high resolution chest computed tomography (HRCT) in ocular sarcoidosis in a high TB endemic population. This was a retrospective study. Out of 140 cases, 54 had ocular sarcoidosis, while 86 cases had ocular tuberculosis. Abnormal HRCT findings was noted in 52 cases (96.3%) of ocular sarcoidosis compared with 55 cases (64.7%) of ocular tuberculosis (p = 0.001). Mediastinal lymphadenopathy was the most common finding in both groups (p = 0.544). Hilar lymphadenopathy and fissural nodules were significantly seen in ocular sarcoidosis (p = 0.001). Necrosis was seen in three cases of ocular sarcoidosis. In nearly half of the cases, it was not possible to differentiate between sarcoidosis and tuberculosis on HRCT. HRCT is a useful diagnostic tool in ocular sarcoidosis. Bilateral hilar lymphadenopathy and fissural nodules are significant findings in ocular sarcoidosis. A confident diagnosis of ocular sarcoidosis is made by the amalgamation of results of clinical, radiologic, and other laboratory investigations.

  11. Computed Tomography Status

    DOE R&D Accomplishments Database

    Hansche, B. D.

    1983-01-01

    Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.

  12. An Application of Computerized Axial Tomography (CAT) Technology to Mass Raid Tracking

    DTIC Science & Technology

    1989-08-01

    ESD-TR-89-305 MTR-10542 An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking By John K. Barr August 1989...NO 11. TITLE (Include Security Classification) An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking 12...by block number) Computerized Axial Tomography ( CAT ) Scanner Electronic Support Measures (ESM) Fusion (continued) 19. ABSTRACT (Continue on

  13. MODERN BEAMS FOR ANCIENT MUMMIES COMPUTERIZED TOMOGRAPHY OF THE HOLOCENE MUMMIFIED REMAINS FROM WADI TAKARKORI (ACACUS, SOUTH-WESTERN LIBYA; MIDDLE PASTORAL).

    PubMed

    Di Vincenzo, Fabio; Carbone, Iacopo; Ottini, Laura; Profico, Antonio; Ricci, Francesca; Tafuri, Mary Anne; Fornaciari, Gino; Manzi, Giorgio

    2015-01-01

    The Middle Pastoral human remains from Wadi Takarkori in the Libyan Acacus mountains (Fezzan) are exceptionally preserved partial mummies ranging between 6100 and 5000 uncal years BP; this small sample represents the most ancient of its kind ever found. In this report, we present a survey of the skeletal anatomy of these mummifed corpses, based on high resolution CT-scan data, including a preliminary phenetic interpretation of their cranial morphology.

  14. Can computerized tomography accurately stage childhood renal tumors?

    PubMed

    Abdelhalim, Ahmed; Helmy, Tamer E; Harraz, Ahmed M; Abou-El-Ghar, Mohamed E; Dawaba, Mohamed E; Hafez, Ashraf T

    2014-07-01

    Staging of childhood renal tumors is crucial for treatment planning and outcome prediction. We sought to identify whether computerized tomography could accurately predict the local stage of childhood renal tumors. We retrospectively reviewed our database for patients diagnosed with childhood renal tumors and treated surgically between 1990 and 2013. Inability to retrieve preoperative computerized tomography, intraoperative tumor spillage and nonWilms childhood renal tumors were exclusion criteria. Local computerized tomography stage was assigned by a single experienced pediatric radiologist blinded to the pathological stage, using a consensus similar to the Children's Oncology Group Wilms tumor staging system. Tumors were stratified into up-front surgery and preoperative chemotherapy groups. The radiological stage of each tumor was compared to the pathological stage. A total of 189 tumors in 179 patients met inclusion criteria. Computerized tomography staging matched pathological staging in 68% of up-front surgery (70 of 103), 31.8% of pre-chemotherapy (21 of 66) and 48.8% of post-chemotherapy scans (42 of 86). Computerized tomography over staged 21.4%, 65.2% and 46.5% of tumors in the up-front surgery, pre-chemotherapy and post-chemotherapy scans, respectively, and under staged 10.7%, 3% and 4.7%. Computerized tomography staging was more accurate in tumors managed by up-front surgery (p <0.001) and those without extracapsular extension (p <0.001). The validity of computerized tomography staging of childhood renal tumors remains doubtful. This staging is more accurate for tumors treated with up-front surgery and those without extracapsular extension. Preoperative computerized tomography can help to exclude capsular breach. Treatment strategy should be based on surgical and pathological staging to avoid the hazards of inaccurate staging. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Is Routine Use of High Resolution Computerized Tomography of Temporal Bone in Patients of Atticoantral Chronic Suppurative Otitis Media without Intracranial Complications Justified?

    PubMed

    Bathla, Meeta; Doshi, Hiren; Kansara, Atul

    2018-03-01

    Role of high resolution computerized tomography (HRCT) of temporal bone is established in cases of atticoantral chronic suppurative otitis media (CSOM) with intracranial complications. Routine use of HRCT in management of patients of atticoantral CSOM without intracranial complications has been an issue of debate. The aim of this study was to evaluate the routine use of HRCT of temporal bone in such cases. This study was a prospective study done at LG hospital, AMC MET Medical College, Ahmedabad to evaluate and compare the temporal bone findings in HRCT and intraoperative findings in 100 patients with atticoantral CSOM. All patients underwent HRCT screening followed by surgical exploration of middle ear cleft. In extent of disease HRCT showed very high sensitivity and specificity for epitympanum (100, 94%) and mesotympanum (98, 98%) areas. It gave valuable information of disease extent in hidden areas like sinus tympani and facial recess of mesotympanum. HRCT satisfactorily delineated malleus and incus erosion but had 75% sensitivity for detecting erosion of stapes suprastructure, though specificity was of 97%. For bony anatomical landmarks HRCT showed very high sensitivity and specificity for detecting erosion of lateral semicircular canal, tegmen tympani and sinus plate. Detection of facial canal erosion on HRCT had moderate sensitivity of 75%. We concluded that routine use of HRCT is justified as a reliable preoperative tool in patients with atticoantral CSOM without intracranial complications and it helps to plan type of surgical intervention. HRCT has limited role to distinguish between granulations and cholesteatoma and also to delineate stapes supra structure and facial nerve canal.

  16. A method for volume determination of the orbit and its contents by high resolution axial tomography and quantitative digital image analysis.

    PubMed Central

    Cooper, W C

    1985-01-01

    The various congenital and acquired conditions which alter orbital volume are reviewed. Previous investigative work to determine orbital capacity is summarized. Since these studies were confined to postmortem evaluations, the need for a technique to measure orbital volume in the living state is presented. A method for volume determination of the orbit and its contents by high-resolution axial tomography and quantitative digital image analysis is reported. This procedure has proven to be accurate (the discrepancy between direct and computed measurements ranged from 0.2% to 4%) and reproducible (greater than 98%). The application of this method to representative clinical problems is presented and discussed. The establishment of a diagnostic system versatile enough to expand the usefulness of computerized axial tomography and polytomography should add a new dimension to ophthalmic investigation and treatment. Images FIGURE 8 FIGURE 9 FIGURE 10 A FIGURE 10 B FIGURE 11 A FIGURE 11 B FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 A FIGURE 26 B FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 PMID:3938582

  17. Classification and Current Management of Inner Ear Malformations.

    PubMed

    Sennaroğlu, Levent; Bajin, Münir Demir

    2017-09-29

    Morphologically congenital sensorineural hearing loss can be investigated under two categories. The majority of congenital hearing loss causes (80%) are membranous malformations. Here, the pathology involves inner ear hair cells. There is no gross bony abnormality and, therefore, in these cases high-resolution computerized tomography and magnetic resonance imaging of the temporal bone reveal normal findings. The remaining 20% have various malformations involving the bony labyrinth and, therefore, can be radiologically demonstrated by computerized tomography and magnetic resonance imaging. The latter group involves surgical challenges as well as problems in decision-making. Some cases may be managed by a hearing aid, others need cochlear implantation, and some cases are candidates for an auditory brainstem implantation (ABI). During cochlear implantation, there may be facial nerve abnormalities, cerebrospinal fluid leakage, electrode misplacement or difficulty in finding the cochlea itself. During surgery for inner ear malformations, the surgeon must be ready to modify the surgical approach or choose special electrodes for surgery. In the present review article, inner ear malformations are classified according to the differences observed in the cochlea. Hearing and language outcomes after various implantation methods are closely related to the status of the cochlear nerve, and a practical classification of the cochlear nerve deficiency is also provided.

  18. Combined single photon emission computerized tomography and conventional computerized tomography: Clinical value for the shoulder surgeons?

    PubMed Central

    Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger

    2011-01-01

    With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640

  19. Computerized tomography versus magnetic resonance imaging: a comparative study in hypothalamic-pituitary and parasellar pathology.

    PubMed

    Webb, S M; Ruscalleda, J; Schwarzstein, D; Calaf-Alsina, J; Rovira, A; Matos, G; Puig-Domingo, M; de Leiva, A

    1992-05-01

    We wished to analyse the relative value of computerized tomography and magnetic resonance in patients referred for evaluation of pituitary and parasellar lesions. We performed a separate evaluation by two independent neuroradiologists of computerized tomography and magnetic resonance images ordered numerically and anonymously, with no clinical data available. We studied 40 patients submitted for hypothalamic-pituitary study; 31 were carried out preoperatively, of which histological confirmation later became available in 14. The remaining nine patients were evaluated postoperatively. Over 40 parameters relating to the bony margins, cavernous sinuses, carotid arteries, optic chiasm, suprasellar cisterns, pituitary, pituitary stalk and extension of the lesion were evaluated. These reports were compared with the initial ones offered when the scans were ordered, and with the final diagnosis. Concordance between initial computerized tomography and magnetic resonance was observed in 27 cases (67.5%); among the discordant cases computerized tomography showed the lesion in two, magnetic resonance in 10, while in the remaining case reported to harbour a microadenoma on computerized tomography the differential diagnosis between a true TSH-secreting microadenoma and pituitary resistance to thyroid hormones is still unclear. Both neuroradiologists coincided in their reports in 32 patients (80%); when the initial report was compared with those of the neuroradiologists, concordance was observed with at least one of them in 34 instances (85%). Discordant results were observed principally in microadenomas secreting ACTH or PRL and in delayed puberty. In the eight patients with Cushing's disease (histologically confirmed in six) magnetic resonance was positive in five and computerized tomography in two; the abnormal image correctly identified the side of the lesion at surgery. In patients referred for evaluation of Cushing's syndrome or hyperprolactinaemia (due to microadenomas) or after surgery, magnetic resonance is clearly preferable to computerized tomography. In macroadenomas both scans are equally diagnostic but magnetic resonance offers more information on pituitary morphology and neighbouring structures. Nevertheless, there are cases in which the results of computerized tomography and magnetic resonance will complement each other, since different parameters are analysed with each examination and discordant results are encountered.

  20. Camera calibration for multidirectional flame chemiluminescence tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun

    2017-04-01

    Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.

  1. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  2. Accurately Diagnosing Uric Acid Stones from Conventional Computerized Tomography Imaging: Development and Preliminary Assessment of a Pixel Mapping Software.

    PubMed

    Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj

    2018-02-01

    Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  3. Acoustic beam control in biomimetic projector via velocity gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  4. Acoustic beam control in biomimetic projector via velocity gradient

    NASA Astrophysics Data System (ADS)

    Gao, Xiaowei; Zhang, Yu; Cao, Wenwu; Dong, Erqian; Song, Zhongchang; Li, Songhai; Tang, Liguo; Zhang, Sai

    2016-07-01

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  5. Effective radiation dose of ProMax 3D cone-beam computerized tomography scanner with different dental protocols.

    PubMed

    Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen

    2010-12-01

    The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.

  6. Radionuclide and Fluorescence Imaging of Clear Cell Renal Cell Carcinoma Using Dual Labeled Anti-Carbonic Anhydrase IX Antibody G250.

    PubMed

    Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C

    2015-08-01

    Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Dental status of three Egyptian mummies: radiological investigation by multislice computerized tomography.

    PubMed

    Gerloni, Alessandro; Cavalli, Fabio; Costantinides, Fulvio; Costantinides, Fulvia; Bonetti, Stefano; Paganelli, Corrado

    2009-06-01

    The aim of the study was to provide a paleopathologic and radiologic overview of the jaws and teeth of 3 Egyptian mummies preserved in the Civic Museum of History and Art in Trieste. Computerized tomography (CT) imaging and postprocessing techniques were used to examine the oral structures. A 16-slice CT scanner was used (Aquilion 16; Toshiba Medical Systems Europe, Zoetermeer, The Netherlands). Scans were obtained at high resolution. Orthogonal-plane and 3-dimensional (3D) reconstructions were created along with curved reconstructions of the lower and upper jaws. Determination of decayed/missing teeth (DMT) and decayed/missing/tooth surfaces (DMTs) were made with 3D images. Analyses revealed differences in the embalming techniques and state of preservation of the bodies. Marked wear of the occlusal surfaces was a characteristic finding in all of the mummies. The DMT and DMTs were low compared with values for contemporary populations. Two mummies had fully erupted third molars. All mummies exhibited bone changes consistent with periodontitis. The CT evaluations of the oral structures of the mummies provided insight into the dental status and oral diseases of these ancient Egyptians. The low DMT and DMTs values and indications of periodontitis may be associated with the lifestyle of these Egyptians. The fully erupted and well aligned third molars may represent a morphologic adaptation of the arches to the muscular activity associated with grinding tough foods.

  8. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  9. Anthropometric and computerized tomographic measurements of lower extremity lean body mass.

    PubMed

    Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M

    1987-02-01

    The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.

  10. Computerized tomography in neuro-ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, I.F.; Sanders, M.D.

    This highly specialized text is organized into sections that cover anatomy, diseases of the orbit, visual loss, optic nerve disease, disorders of eye movement, and heredofamilial, developmental, and metabolic disorders.

  11. Initial clinical experience with computerized tomography of the body.

    PubMed

    Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W

    1976-04-01

    Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body.

  12. Subdural abscess secondary to covert dental sepsis

    PubMed Central

    Sprott, Mae S.; Hall, K.; Newman, P. K.; Welbury, R. R.; Ingham, H. R.

    1981-01-01

    The bacterial flora of a subdural abscess in a 17-year-old male, with radiological evidence of unilateral infection of the maxillary and frontal air sinuses, was typical of that encountered in the dental sulcus. Extensive examination revealed no primary focus of infection other than apical infection in the 2 upper first molar teeth, which were extracted. Treatment with ampicillin, gentamicin and metronidazole rapidly controlled the subdural infection, and resolution, as evidenced by computerized tomography, was complete at 10 months. PMID:7335566

  13. Lymphatic Drainage from Renal Tumors In Vivo: A Prospective Sentinel Node Study Using SPECT/CT Imaging.

    PubMed

    Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel

    2018-06-01

    Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. ECAT: A New Computerized Tomographic Imaging System for Position-Emitting Radiopharmaceuticals

    DOE R&D Accomplishments Database

    Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Kuhl, D. E.

    1977-01-01

    The ECAT was designed and developed as a complete computerized positron radionuclide imaging system capable of providing high contrast, high resolution, quantitative images in 2 dimensional and tomographic formats. Flexibility, in its various image mode options, allows it to be used for a wide variety of imaging problems.

  15. A Dedicated Micro-Tomography Beamline For The Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2010-07-23

    A dedicated micro-tomography beamline is proposed for the Australian Synchrotron. It will enable high-resolution micro-tomography with resolution below a micron and supporting phase-contrast imaging modes. A key feature of the beamline will be high-throughput/high-speed operation enabling near real-time micro-tomography.

  16. [The importance of neurological examinations in the age of the technological revolution].

    PubMed

    Berbel-García, A; González-Spínola, J; Martínez-Salio, A; Porta-Etessam, J; Pérez-Martínez, D A; de Toledo, M; Sáiz-Díaz, R A

    Neurologic practice and care have been modified in many important ways during the past ten years, to adapt to the explosion of new information and new technology. Students, residents and practicing physicians have been continuing programs to a model that focuses almost exclusively on the applications to neurologic disorders of the new knowledge obtained from biomedical research. On the other hand high demand for outpatient neurologic care prevents adequate patient's evaluation. Case 1: 65 years old female. Occipital headache diagnosed of tensional origin (normal computerized tomography). Two months later is re-evaluated due to intractable pain and hypoglossal lesion. An amplified computerized tomography revealed a occipital condyle metastasis. Case 2: 21 years old female. Clinical suspicion of demyelinating disease due to repeated facial paresis and sensitive disorder. General exploration and computerized tomography revealed temporo-mandibular joint. Case 3: 60 years old female. Valuation of anticoagulant therapy due to repeated transient ischemic attacks. She suffered from peripheral facial palsy related to auditory cholesteatoma. Neurologic education is nowadays orientated to new technologies. On the other hand, excessive demand prevents adequate valuation and a minute exploration is substituted by complementary evaluations. These situations generate diagnostic mistakes or iatrogenic. It would be important a consideration of the neurologic education profiles and fulfillment of consultations time recommendations for outpatients care.

  17. The use of microtomography in bone tissue and biomaterial three-dimensional analysis.

    PubMed

    Bedini, Rossella; Meleo, Deborah; Pecci, Raffaella; Pacifici, Luciano

    2009-01-01

    X-ray computed microtomography (micro-CT, microComputerised Tomography) is a miniaturized form of conventional computerized axial tomography (CAT ). This sophisticated technology enables 3D riconstruction of the internal structure of small X-ray opaque objects without sample destruction or preparation. The aim of this study is to show the possible applications of micro-CT in the analysis of bone graft materials of different origins (i.e. homologous, heterologous, alloplastic) in order to define their morphometric properties by means of SkyScan 1072 3D microtomography system. Since there is a close relationship between the properties of the materials and their microstructure, it is necessary to examine them using the highest levels of resolution before being able to improve existing materials or create new products.

  18. Improved algorithm for computerized detection and quantification of pulmonary emphysema at high-resolution computed tomography (HRCT)

    NASA Astrophysics Data System (ADS)

    Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik

    2001-05-01

    Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.

  19. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis.

    PubMed

    O'Neill, Marisol; Huang, Gene O; Lamb, Dolores J

    2017-12-01

    The murine penis model has enriched our understanding of anomalous penile development. The morphologic characterization of the murine penis using conventional serial sectioning methods is labor intensive and prone to errors. To develop a novel application of micro-computerized tomography (micro-CT) with iodine staining for rapid, non-destructive morphologic study of murine penis structure. Penises were dissected from 10 adult wild-type mice and imaged using micro-CT with iodine staining. Images were acquired at 5-μm spatial resolution on a Bruker SkyScan 1272 micro-CT system. After images were acquired, the specimens were washed of any remaining iodine and embedded in paraffin for conventional histologic examination. Histologic and micro-CT measurements for all specimens were made by 2 independent observers. Measurements of penile structures were made on virtual micro-CT sections and histologic slides. The Lin concordance correlation coefficient demonstrated almost perfect strength of agreement for interobserver variability for histologic section (0.9995, 95% CI = 0.9990-0.9997) and micro-CT section (0.9982, 95% CI = 0.9963-0.9991) measurements. Bland-Altman analysis for agreement between the 2 modalities of measurement demonstrated mean differences of -0.029, 0.022, and -0.068 mm for male urogenital mating protuberance, baculum, and penile glans length, respectively. There did not appear to be a bias for overestimation or underestimation of measured lengths and limits of agreement were narrow. The enhanced ability offered by micro-CT to phenotype the murine penis has the potential to improve translational studies examining the molecular pathways contributing to anomalous penile development. The present study describes the first reported use of micro-CT with iodine staining for imaging the murine penis. Producing repeated histologic sections of identical orientation was limited by inherent imperfections in mounting and tissue sectioning, but this was compensated for by using micro-CT reconstructions to identify matching virtual sections. This study demonstrates the successful use of micro-CT with iodine staining, which has the potential for submicron spatial resolution, as a non-destructive method of characterizing murine penile morphology. O'Neill M, Huang GO, Lamb DJ. Novel Application of Micro-Computerized Tomography for Morphologic Characterization of the Murine Penis. J Sex Med 2017;14:1533-1539. Copyright © 2017. Published by Elsevier Inc.

  20. Computerized tomography as a diagnostic aid in acute hemorrhagic leukoencephalitis.

    PubMed

    Rothstein, T L; Shaw, C M

    1983-03-01

    Computerized tomography (CT) in a pathologically proven case of acute hemorrhagic leukoencephalitis (AHL) showed a mass effect and increased absorption coefficient in the right hemisphere within 18 hours of the onset of neurological symptoms. The changes corresponded to the site of white matter edema, necrosis, and petechial hemorrhages demonstrated postmortem. The early changes of CT reflect the hyperacute nature of AHL and differ from those of herpes simplex encephalitis.

  1. Properties of an ideal PET perfusion tracer: new PET tracer cases and data.

    PubMed

    Maddahi, Jamshid

    2012-02-01

    An ideal positron emission tomography (PET) tracer should be highly extractable by the myocardium and able to provide high-resolution images, should enable quantification of absolute myocardial blood flow (MBF), should be compatible with both pharmacologically induced and exercise-induced stress imaging, and should not require an on-site cyclotron. The PET radionuclides nitrogen-13 ammonia and oxygen-15 water require an on-site cyclotron. Rubidium-82 may be available locally due to the generator source, but greater utilization is limited because of its relatively low myocardial extraction fraction, long positron range, and generator cost. Flurpiridaz F 18, a novel PET tracer in development, has a high-extraction fraction, short positron range, and relatively long half-life (as compared to currently available tracers), and may be produced at regional cyclotrons. Results of early clinical trials suggest that both pharmacologically and exercise-induced stress PET imaging protocols can be completed more rapidly and with lower patient radiation exposure than with single-photon emission computerized tomography (SPECT) tracers. As compared to SPECT images in the same patients, flurpiridaz F 18 PET images showed better defect contrast. Flurpiridaz F 18 is a potentially promising tracer for assessment of myocardial perfusion, measurement of absolute MBF, calculation of coronary flow reserves, and assessment of cardiac function at the peak of the stress response.

  2. Comprehensive Digital Imaging Network Project At Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert

    1987-10-01

    The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.

  3. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  4. The mobile hospital technology industry: focus on the computerized tomography scanner.

    PubMed

    Hartley, D; Moscovice, I

    1996-01-01

    This study of firms offering mobile hospital technology to rural hospitals in eight northwestern states found that several permanently parked computerized tomography (CT) units were found where mobile routes had atrophied due to the purchase of fixed units by former mobile CT hospital clients. Based on a criterion of 140 scans per month per unit as a threshold of profitable production, units owned by larger firms (those that operate five or more units) were more likely to be profitable than units owned by smaller firms (71% versus 20%, P = 0.03). A substantial number of rural hospitals lose money on mobile CT due to low Medicare reimbursement. In some areas, mobile hospital technology is a highly competitive industry. Evidence was found that several firms compete in some geographic areas and that some firms have lost hospital clients to competing vendors.

  5. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  6. Otolaryngology and ophthalmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanafee, W.N.

    A literature review with 227 references of the diagnostic use of computerized tomography for head and neck problems is presented. The anatomy, congenital malformations, infectious diseases, and nioplasms of the auditory organs, paranasal sinuses, pharynx, larynx and salivary glands are examined in detail. A major impetus to the use of computerized tomography has been the realization by the health care industry that CT scanning offers details of tumors in the head and neck area that are not available by other modalities. (KRM)

  7. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yunyun; Li Zhenhua; Song Yang

    2009-05-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  8. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  9. Technology in the Assessment of Learning Disability.

    ERIC Educational Resources Information Center

    Bigler, Erin D.; Lajiness-O'Neill, Renee; Howes, Nancy-Louise

    1998-01-01

    Reviews recent neuroradiologic and brain imaging techniques in the assessment of learning disability. Technologies reviewed include computerized tomography; magnetic resonance imaging; electrophysiological and metabolic imaging; computerized electroencepholographic studies of evoked potentials, event-related potentials, spectral analysis, and…

  10. Detection and classification of interstitial lung diseases and emphysema using a joint morphological-fuzzy approach

    NASA Astrophysics Data System (ADS)

    Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng

    2009-02-01

    Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.

  11. Computerized tomography platform using beta rays

    NASA Astrophysics Data System (ADS)

    Paetkau, Owen; Parsons, Zachary; Paetkau, Mark

    2017-12-01

    A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.

  12. Computerized tomography magnified bone windows are superior to standard soft tissue windows for accurate measurement of stone size: an in vitro and clinical study.

    PubMed

    Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V

    2009-04-01

    We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate calculi was significantly different from the gold standard for all methods except bone window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x magnified bone windows was superior to 4.0x magnified soft tissue windows in measurement accuracy. Magnified bone window measurements were not statistically different from digital caliper measurements (mean underestimation vs digital caliper 0.3 mm, p = 0.4), while magnified soft tissue windows were statistically distinct (mean underestimation 1.4 mm, p = 0.001). In this study magnified bone windows were the most accurate method of stone measurements in vitro and in vivo. Therefore, we recommend the routine use of magnified bone windows for computerized tomography measurement of stones. In vitro the measurement error in calcium oxalate stones was greater than that in uric acid stones, suggesting that stone composition may be responsible for measurement inaccuracies.

  13. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  14. Clinical presentation of asbestosis with intractable pleural pain in the adult child of a taconite miner and radiographic demonstration of the probable pathology causing the pain.

    PubMed

    Harbut, Michael R; Endress, Carmen; Graff, John J; Weis, Christopher; Pass, Harvey

    2009-01-01

    Taconite, although not classified by the United States Government as asbestos or asbestiform material, has been associated with asbestos-related diseases. The mineral is used in the production of steel and as a road-patch material and is mined in Michigan and Minnesota. This report describes the case of a middle-aged Caucasian woman with exposure to taconite mining dust from her miner father's clothing in childhood with a resultant presentation consistent with asbestosis and intractable pleural pain. Intractable pleural pain has been described in asbestos-exposed patients with theorized etiologies. However, no in vivo reported mechanism has demonstrated a plausible, anatomically apparent mechanism for the pain. We utilize an application of the Vitrea software for enhancement of high-resolution computerized tomography which demonstrates at least one likely mechanism for intractable pleural pain.

  15. Development and Translation of Hybrid Optoacoustic/Ultrasonic Tomography for Early Breast Cancer Detection

    DTIC Science & Technology

    2015-09-01

    OAT) and laser-induced ultrasound tomography (LUT) to obtain coregistered maps of tissue optical absorption and speed of sound , displayed within the...computed tomography (UST) can provide high-resolution anatomical images of breast lesions based on three complementary acoustic properties (speed-of- sound ...tomography (UST) can provide high-resolution anatomical images of breast lesions based on three complementary acoustic properties (speed-of- sound

  16. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  17. Patterned thin metal film for the lateral resolution measurement of photoacoustic tomography

    PubMed Central

    2012-01-01

    Background Image quality assessment method of photoacoustic tomography has not been completely standardized yet. Due to the combined nature of photonic signal generation and ultrasonic signal transmission in biological tissue, neither optical nor ultrasonic traditional methods can be used without modification. An optical resolution measurement technique was investigated for its feasibility for resolution measurement of photoacoustic tomography. Methods A patterned thin metal film deposited on silica glass provides high contrast in optical imaging due to high reflectivity from the metal film and high transmission from the glass. It provides high contrast when it is used for photoacoustic tomography because thin metal film can absorb pulsed laser energy. An US Air Force 1951 resolution target was used to generate patterned photoacoustic signal to measure the lateral resolution. Transducer with 2.25 MHz bandwidth and a sample submerged in water and gelatinous block were tested for lateral resolution measurement. Results Photoacoustic signal generated from a thin metal film deposited on a glass can propagate along the surface or through the surrounding medium. First, a series of experiments with tilted sample confirmed that the measured photoacoustic signal is what is propagating through the medium. Lateral resolution of the photoacoustic tomography system was successfully measured for water and gelatinous block as media: 0.33 mm and 0.35 mm in water and gelatinous material, respectively, when 2.25 MHz transducer was used. Chicken embryo was tested for biomedical applications. Conclusions A patterned thin metal film sample was tested for its feasibility of measuring lateral resolution of a photoacoustic tomography system. Lateral resolutions in water and gelatinous material were successfully measured using the proposed method. Measured resolutions agreed well with theoretical values. PMID:22794510

  18. Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance

    Science.gov Websites

    Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some

  19. Research on ionospheric tomography based on variable pixel height

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  20. High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography

    DOEpatents

    Olivier, Scot S.; Werner, John S.; Zawadzki, Robert J.; Laut, Sophie P.; Jones, Steven M.

    2010-09-07

    This invention permits retinal images to be acquired at high speed and with unprecedented resolution in three dimensions (4.times.4.times.6 .mu.m). The instrument achieves high lateral resolution by using adaptive optics to correct optical aberrations of the human eye in real time. High axial resolution and high speed are made possible by the use of Fourier-domain optical coherence tomography. Using this system, we have demonstrated the ability to image microscopic blood vessels and the cone photoreceptor mosaic.

  1. Correlation between Preoperative High Resolution Computed Tomography (CT) Findings with Surgical Findings in Chronic Otitis Media (COM) Squamosal Type.

    PubMed

    Karki, S; Pokharel, M; Suwal, S; Poudel, R

    Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.

  2. Imaging lung perfusion

    PubMed Central

    Wielpütz, Mark O.; Kauczor, Hans-Ulrich

    2012-01-01

    From the first measurements of the distribution of pulmonary blood flow using radioactive tracers by West and colleagues (J Clin Invest 40: 1–12, 1961) allowing gravitational differences in pulmonary blood flow to be described, the imaging of pulmonary blood flow has made considerable progress. The researcher employing modern imaging techniques now has the choice of several techniques, including magnetic resonance imaging (MRI), computerized tomography (CT), positron emission tomography (PET), and single photon emission computed tomography (SPECT). These techniques differ in several important ways: the resolution of the measurement, the type of contrast or tag used to image flow, and the amount of ionizing radiation associated with each measurement. In addition, the techniques vary in what is actually measured, whether it is capillary perfusion such as with PET and SPECT, or larger vessel information in addition to capillary perfusion such as with MRI and CT. Combined, these issues affect quantification and interpretation of data as well as the type of experiments possible using different techniques. The goal of this review is to give an overview of the techniques most commonly in use for physiological experiments along with the issues unique to each technique. PMID:22604884

  3. Computerized tomography calibrator

    NASA Technical Reports Server (NTRS)

    Engel, Herbert P. (Inventor)

    1991-01-01

    A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.

  4. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  5. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    NASA Astrophysics Data System (ADS)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  6. The poppy seed test for colovesical fistula: big bang, little bucks!

    PubMed

    Kwon, Eric O; Armenakas, Noel A; Scharf, Stephen C; Panagopoulos, Georgia; Fracchia, John A

    2008-04-01

    Diagnosis of a colovesical fistula is often challenging, and usually involves numerous invasive and expensive tests and procedures. The poppy seed test stands out as an exception to this rule. We evaluated the accuracy and cost-effectiveness of various established diagnostic tests used to evaluate a suspected colovesical fistula. We identified 20 prospectively entered patients with surgically confirmed colovesical fistulas between 2000 and 2006. Each patient was evaluated preoperatively with a (51)chromium nuclear study, computerized tomography of the abdomen and pelvis with oral and intravenous contrast medium, and the poppy seed test. Costs were calculated using institutional charges, 2006 Medicare limiting approved charges and the market price, respectively. The z test was used to compare the proportion of patients who tested positive for a fistula with each of these modalities. The chromium study was positive in 16 of 20 patients (80%) at a cost of $490.83 per study. Computerized tomography was positive in 14 of 20 patients (70%) at a cost of $652.92 per study. The poppy seed test was positive in 20 of 20 patients (100%) at a cost of $5.37 per study. The difference in the proportion of patients who tested positive for a fistula on computerized tomography and the poppy seed test was statistically significant (p = 0.03). There was no difference between the chromium group and the computerized tomography or poppy seed group (p = 0.72 and 0.12, respectively). The poppy seed test is an accurate, convenient and inexpensive diagnostic test. It is an ideal initial consideration for evaluating a suspected colovesical fistula.

  7. Utilization of high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature

    USDA-ARS?s Scientific Manuscript database

    High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...

  8. Positron emission tomography/computerized tomography in lung cancer

    PubMed Central

    Vural, Gulin Ucmak

    2014-01-01

    Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer. PMID:24914421

  9. The role of preoperative CT scan in patients with tracheoesophageal fistula: a review.

    PubMed

    Garge, Saurabh; Rao, K L N; Bawa, Monika

    2013-09-01

    The morbidity and mortality associated with esophageal atresia with or without a fistula make it a challenging congenital abnormality for the pediatric surgeon. Anatomic factors like inter-pouch gap and origin of fistula are not taken into consideration in various prognostic classifications. The preoperative evaluation of these cases with computerized tomography (CT) has been used by various investigators to delineate these factors. We reviewed these studies to evaluate the usefulness of this investigation in the intra operative and post operative period. A literature search was done on all peer-reviewed articles published on preoperative computed tomography (CT) in cases of tracheoesophageal fistula using the PUBMED and MEDLINE search engines. Key words included tracheoesophageal fistula, computerized tomography, virtual bronchoscopy, and 3D computerized tomography reconstruction. Further, additional articles were selected from the list of references obtained from the retrieved publications. A total of 8 articles were selected for analysis. In most of the studies, comprising 96 patients, observations noted in preoperative CT were confirmed during surgery. In a study by Mahalik et al [Mahalik SK, Sodhi KS, Narasimhan KL, Rao KL. Role of preoperative 3D CT reconstruction for evaluation of patients with esophageal atresia and tracheoesophageal fistula. Pediatr Surg Int. 2012 Jun 22. [Epub ahead of print

  10. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  11. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    DOE PAGES

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; ...

    2016-12-13

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-powermore » small-spot liquid-metal-jet electron-impact source. Lastly, the tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.« less

  12. The potential of positron emission tomography/computerized tomography (PET/CT) scanning as a detector of high-risk patients with oral infection during preoperative staging.

    PubMed

    Yamashiro, Keisuke; Nakano, Makoto; Sawaki, Koichi; Okazaki, Fumihiko; Hirata, Yasuhisa; Takashiba, Shogo

    2016-08-01

    It is sometimes difficult to determine during the preoperative period whether patients have oral infections; these patients need treatment to prevent oral infection-related complications from arising during medical therapies, such as cancer therapy and surgery. One of the reasons for this difficulty is that basic medical tests do not identify oral infections, including periodontitis and periapical periodontitis. In this report, we investigated the potential of positron emission tomography/computerized tomography (PET/CT) as a diagnostic tool in these patients. We evaluated eight patients during the preoperative period. All patients underwent PET/CT scanning and were identified as having the signs of oral infection, as evidenced by (18)F-fludeoxyglucose (FDG) localization in the oral regions. Periodontal examination and orthopantomogram evaluation showed severe infection or bone resorption in the oral regions. (18)F-FDG was localized in oral lesions, such as severe periodontitis, apical periodontitis, and pericoronitis of the third molar. The densities of (18)F-FDG were proportional to the degree of inflammation. PET/CT is a potential diagnostic tool for oral infections. It may be particularly useful in patients during preoperative staging, as they frequently undergo scanning at this time, and those identified as having oral infections at this time require treatment before cancer therapy or surgery. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [The role of multidetector computer tomography in diagnosis of acute pancreatitis].

    PubMed

    Lohanikhina, K Iu; Hordiienko, K P; Kozarenko, T M

    2014-10-01

    With the objective to improve the diagnostic semiotics of an acute pancreatitis (AP) 35 patients were examined, using 64-cut computeric tomograph Lightspeed VCT (GE, USA) with intravenous augmentation in arterial and portal phases. Basing on analysis of the investigations conducted, using multidetector computeric tomography (MDCT), the AP semiotics was systematized, which is characteristic for oedematous and destructive forms, diagnosed in 19 (44.2%) and 16 (45.8%) patients, accordingly. The procedure for estimation of preservation of the organ functional capacity in pancreonecrosis pres- ence was elaborated, promoting rising of the method diagnostic efficacy by 5.3 - 9.4%.

  14. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. An Analysis of the Need for a Whole-Body CT Scanner at US Darnall Army Community Hospital

    DTIC Science & Technology

    1980-05-01

    TASK IWORK UNIT ELEMENT NO. I NO.JC NO. rSSION NO. Ij6T’,WAM ’"Aa1W% A WHOLE BODY CT SCANNER AT DARNALL ARMY COMUNITY HOSPITAL 16PTR3OAL tUTHOR(S)* a...computerized axial tomography or CT. Computerized tomography experiments "were conducted by Godfrey Hounsfield at Central Research Laboratories, EMI, Ltd. in...remained the same, with clinical and nursing unit facilities to support a one division post. Presently, Fort Hood is the home of the III US Army Corps, the

  16. Study on beam geometry and image reconstruction algorithm in fast neutron computerized tomography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.

    2011-09-01

    Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.

  17. High-resolution radiography by means of a hodoscope

    DOEpatents

    De Volpi, Alexander

    1978-01-01

    The fast neutron hodoscope, a device that produces neutron radiographs with coarse space resolution in a short time, is modified to produce neutron or gamma radiographs of relatively thick samples and with high space resolution. The modification comprises motorizing a neutron and gamma collimator to permit a controlled scanning pattern, simultaneous collection of data in a number of hodoscope channels over a period of time, and computerized image reconstruction of the data thus gathered.

  18. Instant wireless transmission of radiological images using a personal digital assistant phone for emergency teleconsultation.

    PubMed

    Kim, Dong-Keun; Yoo, Sun K; Kim, Sun H

    2005-01-01

    The instant transmission of radiological images may be important for making rapid clinical decisions about emergency patients. We have examined an instant image transfer system based on a personal digital assistant (PDA) phone with a built-in camera. Images displayed on a picture archiving and communication systems (PACS) monitor can be captured by the camera in the PDA phone directly. Images can then be transmitted from an emergency centre to a remote physician via a wireless high-bandwidth network (CDMA 1 x EVDO). We reviewed the radiological lesions in 10 normal and 10 abnormal cases produced by modalities such as computerized tomography (CT), magnetic resonance (MR) and digital angiography. The images were of 24-bit depth and 1,144 x 880, 1,120 x 840, 1,024 x 768, 800 x 600, 640 x 480 and 320 x 240 pixels. Three neurosurgeons found that for satisfactory remote consultation a minimum size of 640 x 480 pixels was required for CT and MR images and 1,024 x 768 pixels for angiography images. Although higher resolution produced higher clinical satisfaction, it also required more transmission time. At the limited bandwidth employed, higher resolutions could not be justified.

  19. Severe Pleuropulmonary Paragonimiasis Caused by Paragonimus mexicanus Treated as Tuberculosis in Ecuador.

    PubMed

    Calvopina, Manuel; Romero-Alvarez, Daniel; Macias, Rubén; Sugiyama, Hiromu

    2017-01-11

    A 30-year-old male, from a subtropical region of Ecuador, was hospitalized with a 5-year history of persistent cough with rusty brown sputum, chest pain, and progressive dyspnea. The patient underwent thoracic surgery 3 years ago for pleural effusion and subsequently received a 9-month regimen treatment of tuberculosis. However, there was no clinical resolution and symptoms became progressively worse. A chest radiograph and computerized tomography scan showed several small nodules in both lungs. Eggs of Paragonimus spp. were observed in sputum smears, but the smears were negative for acid-fast bacilli. Molecular characterization of eggs by the internal transcribed spacer-2 regions identified them as Paragonimus mexicanus The patient was treated with praziquantel and tested negative parasitologically for 12 months. There was clinical resolution of the cough and expectoration, but dyspnea and chest pain persisted. © The American Society of Tropical Medicine and Hygiene.

  20. Severe Pleuropulmonary Paragonimiasis Caused by Paragonimus mexicanus Treated as Tuberculosis in Ecuador

    PubMed Central

    Calvopina, Manuel; Romero-Alvarez, Daniel; Macias, Rubén; Sugiyama, Hiromu

    2017-01-01

    A 30-year-old male, from a subtropical region of Ecuador, was hospitalized with a 5-year history of persistent cough with rusty brown sputum, chest pain, and progressive dyspnea. The patient underwent thoracic surgery 3 years ago for pleural effusion and subsequently received a 9-month regimen treatment of tuberculosis. However, there was no clinical resolution and symptoms became progressively worse. A chest radiograph and computerized tomography scan showed several small nodules in both lungs. Eggs of Paragonimus spp. were observed in sputum smears, but the smears were negative for acid-fast bacilli. Molecular characterization of eggs by the internal transcribed spacer-2 regions identified them as Paragonimus mexicanus. The patient was treated with praziquantel and tested negative parasitologically for 12 months. There was clinical resolution of the cough and expectoration, but dyspnea and chest pain persisted. PMID:27879464

  1. Accurate determination of high-risk coronary lesion type by multidetector cardiac computed tomography.

    PubMed

    Alasnag, Mirvat; Umakanthan, Branavan; Foster, Gary P

    2008-07-01

    Coronary arteriography (CA) is the standard method to image coronary lesions. Multidetector cardiac computerized tomography (MDCT) provides high-resolution images of coronary arteries, allowing a noninvasive alternative to determine lesion type. To date, no studies have assessed the ability of MDCT to categorize coronary lesion types. The objective of this study was to determine the accuracy of lesion type categorization by MDCT using CA as a reference standard. Patients who underwent both MDCT and CA within 2 months of each other were enrolled. MDCT and CA images were reviewed in a blinded fashion. Lesions were categorized according to the SCAI classification system (Types I-IV). The origin, proximal and middle segments of the major arteries were analyzed. Each segment comprised a data point for comparison. Analysis was performed using the Spearman Correlation Test. Four hundred eleven segments were studied, of which 110 had lesions. The lesion distribution was as follows: 35 left anterior descending (LAD), 29 circumflex (Cx), 31 right coronary artery (RCA), 2 ramus intermedius, 8 diagonal, 4 obtuse marginal and 2 left internal mammary arteries. Correlations between MDCT and CA were significant in all major vessels (LAD, Cx, RCA) (p < 0.001). The overall correlation coefficient was 0.67. Concordance was strong for lesion Types II-IV (97%) and poor for Type I (30%). High-risk coronary lesion types can be accurately categorized by MDCT. This ability may allow MDCT to play an important noninvasive role in the planning of coronary interventions.

  2. High energy near- and far-field ptychographic tomography at the ESRF

    NASA Astrophysics Data System (ADS)

    da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter

    2017-09-01

    In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.

  3. [Utility of methoxy isobutyl isonitrile (MIBI) scintigraphy, ultrasound and computerized axial tomography in preoperative topographic diagnosis of hiperparathyroidism].

    PubMed

    Gómez Palacios, Angel; Gómez Zábala, Jesús; Gutiérrez, María Teresa; Expósito, Amaya; Barrios, Borja; Zorraquino, Angel; Taibo, Miguel Angel; Iturburu, Ignacio

    2006-12-01

    1. To assess the sensitivity of scintigraphy using methoxy isobutyl isonitrile (MIBI). 2. To compare its resolution with that of ultrasound (US) and computerized axial tomography (CAT). 3. To use its diagnostic reliability to determine whether selective approaches can be used to treat hyperparathyroidism (HPT). A study of 76 patients who underwent surgery for HPT between 1996 and 2005 was performed. MIBI scintigraphy and cervical US were used for whole-body scanning in all patients; CAT was used in 47 patients. Intraoperative and postoperative biopsies were used for final evaluation of the tests, after visualization and surgical extirpation. The results of scintigraphy were positive in 65 patients (85.52%). The diagnosis was correct in all of the single images. Multiple images were due to hyperplasia and parathyroid adenomas with thyroid disease (5.2%). Three images, incorrectly classified as negative (3.94%), were positive. The sensitivity of US was 63% and allowed detection of three MIBI-negative adenomas (4%). CAT was less sensitive (55%), but detected a further three MIBI-negative adenomas (4%). 1. The sensitivity of MIBI reached 89.46%. In the absence of thyroid nodules, MIBI diagnosed 100% of single lesions. Pathological thyroid processes produced false-positive results (5.2%) and there were diagnostic errors (4%). 2. MIBI scintigraphy was more sensitive than US and CAT. 3. Positive, single image scintigraphy allows a selective cervical approach. US and CAT may help to save a further 8% of patients (with negative scintigraphy).

  4. Pathophysiologic study of chronic infarcts with I-123 isopropyl iodo-amphetamine (IMP): the importance of periinfarct area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynaud, C.; Rancurel, G.; Samson, Y.

    1987-01-01

    Seventeen chronic cerebral infarcts were investigated by a highly sensitive, dedicated brain single photon emission computerized tomography system using /sup 123/I-isopropyl iodoamphetamine (IMP) and /sup 133/Xe. IMP uptake was measured 10 minutes, 2 hours, and 5 hours after injection, and regional cerebral blood flow was measured with 133Xe. In 4 cases a positron emission tomography system was used to measure the rCBF and the regional metabolic rate of oxygen with C15O2 and 15O2. The results obtained allowed us to identify 2 abnormal zones. One, the central area, was characterized by a severe decrease in IMP uptake and rCBF averaging 34%more » and 46% respectively and by a hypodense image on the x-ray computerized tomography scan. The second, the periinfarct or ''peripheral area'' was characterized by a moderate decrease in IMP uptake and regional cerebral blood flow averaging 13 and 19% respectively; this area extended around the central area and had a normal density on computerized tomography scan. The IMP hypofixation of the peripheral area observed at the 10th minute tended to disappear at the 5th hour. The volume of this area was often found to be quite large, covering more than 30% of a hemisphere whereas the central area did not exceed 25%. Volume appeared to be correlated with the neurological status of the patient. The nature of the peripheral area is not established with certainty. It may be caused by deafferentation of areas not directly affected by the ischemic insult and/or selective ischemic neuronal loss. The results stress the important role played by the peripheral area, which may be useful in establishing the prognosis and evaluating the efficacy of therapy in individual stroke cases.« less

  5. A high time and spatial resolution MRPC designed for muon tomography

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  6. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications.

    PubMed

    Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John

    2005-10-01

    Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.

  7. Ionospheric tomography using ADS-B signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.; Noël, J.-M.

    2014-07-01

    Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.

  8. Technological Advances in the Study of Reading: An Introduction.

    ERIC Educational Resources Information Center

    Henk, William A.

    1991-01-01

    Describes the purpose and functional operation of new computer-driven technologies such as computerized axial tomography, positron emissions transaxial tomography, regional cerebral blood flow monitoring, magnetic resonance imaging, and brain electrical activity mapping. Outlines their current contribution to the knowledge base. Speculates on the…

  9. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients.

    PubMed

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X; McMahon, Donald J; Shane, Elizabeth; Nickolas, Thomas L

    2017-04-03

    Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid-withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (-0.45%±0.15%), separation (-0.40%±0.15%), and network heterogeneity (-0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P <0.05). Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. Copyright © 2017 by the American Society of Nephrology.

  10. Spine Trabecular Bone Score as an Indicator of Bone Microarchitecture at the Peripheral Skeleton in Kidney Transplant Recipients

    PubMed Central

    Luckman, Matthew; Hans, Didier; Cortez, Natalia; Nishiyama, Kyle K.; Agarawal, Sanchita; Zhang, Chengchen; Nikkel, Lucas; Iyer, Sapna; Fusaro, Maria; Guo, Edward X.; McMahon, Donald J.; Shane, Elizabeth

    2017-01-01

    Background and objectives Studies using high-resolution peripheral quantitative computed tomography showed progressive abnormalities in cortical and trabecular microarchitecture and biomechanical competence over the first year after kidney transplantation. However, high-resolution peripheral computed tomography is a research tool lacking wide availability. In contrast, the trabecular bone score is a novel and widely available tool that uses gray-scale variograms of the spine image from dual-energy x-ray absorptiometry to assess trabecular quality. There are no studies assessing whether trabecular bone score characterizes bone quality in kidney transplant recipients. Design, settings, participants, & measurements Between 2009 and 2010, we conducted a study to assess changes in peripheral skeletal microarchitecture, measured by high-resolution peripheral computed tomography, during the first year after transplantation in 47 patients managed with early corticosteroid–withdrawal immunosuppression. All adult first-time transplant candidates were eligible. Patients underwent imaging with high-resolution peripheral computed tomography and dual-energy x-ray absorptiometry pretransplantation and 3, 6, and 12 months post-transplantation. We now test if, during the first year after transplantation, trabecular bone score assesses the evolution of bone microarchitecture and biomechanical competence as determined by high-resolution peripheral computed tomography. Results At baseline and follow-up, among the 72% and 78%, respectively, of patients having normal bone mineral density by dual-energy x-ray absorptiometry, 53% and 50%, respectively, were classified by trabecular bone score as having high fracture risk. At baseline, trabecular bone score correlated with spine, hip, and ultradistal radius bone mineral density by dual-energy x-ray absorptiometry and cortical area, density, thickness, and porosity; trabecular density, thickness, separation, and heterogeneity; and stiffness and failure load by high-resolution peripheral computed tomography. Longitudinally, each percentage increase in trabecular bone score was associated with increases in trabecular number (0.35%±1.4%); decreases in trabecular thickness (−0.45%±0.15%), separation (−0.40%±0.15%), and network heterogeneity (−0.48%±0.20%); and increases in failure load (0.22%±0.09%) by high-resolution peripheral computed tomography (all P<0.05). Conclusions Trabecular bone score may be a useful method to assess and monitor bone quality and strength and classify fracture risk in kidney transplant recipients. PMID:28348031

  11. Repeatability of Computerized Tomography-Based Anthropomorphic Measurements of Frailty in Patients With Pulmonary Fibrosis Undergoing Lung Transplantation.

    PubMed

    McClellan, Taylor; Allen, Brian C; Kappus, Matthew; Bhatti, Lubna; Dafalla, Randa A; Snyder, Laurie D; Bashir, Mustafa R

    To determine interreader and intrareader repeatability and correlations among measurements of computerized tomography-based anthropomorphic measurements in patients with pulmonary fibrosis undergoing lung transplantation. This was an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study of 23 randomly selected subjects (19 male and 4 female; median age = 69 years; range: 66-77 years) with idiopathic pulmonary fibrosis undergoing pulmonary transplantation, who had also undergone preoperative thoracoabdominal computerized tomography. Five readers of varying imaging experience independently performed the following cross-sectional area measurements at the inferior endplate of the L3 vertebral body: right and left psoas muscles, right and left paraspinal muscles, total abdominal musculature, and visceral and subcutaneous fat. The following measurements were obtained at the inferior endplate of T6: right and left paraspinal muscles with and without including the trapezius muscles and subcutaneous fat. Three readers repeated all measurements to assess intrareader repeatability. Intrareader repeatability was nearly perfect (interclass correlation coefficients = 0.99, P < 0.001). Interreader agreement was excellent across all 5 readers (interclass correlation coefficients: 0.71-0.99, P < 0.001). Coefficients of variance between measures ranged from 3.2%-6.8% for abdominal measurements, but were higher for thoracic measurements, up to 23.9%. Correlation between total paraspinal and total psoas muscle area was strong (r 2 = 0.67, P < 0.001). Thoracic and abdominal musculature had a weaker correlation (r 2 = 0.35-0.38, P < 0.001). Measures of thoracic and abdominal muscle and fat area are highly repeatable in patients with pulmonary fibrosis undergoing lung transplantation. Measures of muscle area are strongly correlated among abdominal locations, but inversely correlated between abdominal and thoracic locations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. High-resolution 3D imaging of polymerized photonic crystals by lab-based x-ray nanotomography with 50-nm resolution

    NASA Astrophysics Data System (ADS)

    Yin, Leilei; Chen, Ying-Chieh; Gelb, Jeff; Stevenson, Darren M.; Braun, Paul A.

    2010-09-01

    High resolution x-ray computed tomography is a powerful non-destructive 3-D imaging method. It can offer superior resolution on objects that are opaque or low contrast for optical microscopy. Synchrotron based x-ray computed tomography systems have been available for scientific research, but remain difficult to access for broader users. This work introduces a lab-based high-resolution x-ray nanotomography system with 50nm resolution in absorption and Zernike phase contrast modes. Using this system, we have demonstrated high quality 3-D images of polymerized photonic crystals which have been analyzed for band gap structures. The isotropic volumetric data shows excellent consistency with other characterization results.

  13. High-resolution computed tomography of the middle ear and mastoid. Part III. Surgically altered anatomy and pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, J.D.; Goodman, R.S.; Russell, K.B.

    1983-08-01

    High-resolution computed tomography (CT) provides an excellent method for examination of the surgically altered middle ear and mastoid. Closed-cavity and open-cavity types of mastoidectomy are illustrated. Recurrent cholesteatoma in the mastoid bowl is easily diagnosed. Different types of tympanoplasty are discussed and illustrated, as are tympanostomy tubes and various ossicular reconstructive procedures. Baseline high-resolution CT of the postoperative middle ear and mastoid is recommended at approximately 3 months following the surgical procedure.

  14. High-Resolution Computed Tomography and Pulmonary Function Findings of Occupational Arsenic Exposure in Workers.

    PubMed

    Ergün, Recai; Evcik, Ender; Ergün, Dilek; Ergan, Begüm; Özkan, Esin; Gündüz, Özge

    2017-05-05

    The number of studies where non-malignant pulmonary diseases are evaluated after occupational arsenic exposure is very few. To investigate the effects of occupational arsenic exposure on the lung by high-resolution computed tomography and pulmonary function tests. Retrospective cross-sectional study. In this study, 256 workers with suspected respiratory occupational arsenic exposure were included, with an average age of 32.9±7.8 years and an average of 3.5±2.7 working years. Hair and urinary arsenic levels were analysed. High-resolution computed tomography and pulmonary function tests were done. In workers with occupational arsenic exposure, high-resolution computed tomography showed 18.8% pulmonary involvement. In pulmonary involvement, pulmonary nodule was the most frequently seen lesion (64.5%). The other findings of pulmonary involvement were 18.8% diffuse interstitial lung disease, 12.5% bronchiectasis, and 27.1% bullae-emphysema. The mean age of patients with pulmonary involvement was higher and as they smoked more. The pulmonary involvement was 5.2 times higher in patients with skin lesions because of arsenic. Diffusing capacity of lung for carbon monoxide was significantly lower in patients with pulmonary involvement. Besides lung cancer, chronic occupational inhalation of arsenic exposure may cause non-malignant pulmonary findings such as bronchiectasis, pulmonary nodules and diffuse interstitial lung disease. So, in order to detect pulmonary involvement in the early stages, workers who experience occupational arsenic exposure should be followed by diffusion test and high-resolution computed tomography.

  15. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  16. High-resolution coded-aperture design for compressive X-ray tomography using low resolution detectors

    NASA Astrophysics Data System (ADS)

    Mojica, Edson; Pertuz, Said; Arguello, Henry

    2017-12-01

    One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.

  17. A Computerized Microelectrode Recording to Magnetic Resonance Imaging Mapping System for Subthalamic Nucleus Deep Brain Stimulation Surgery.

    PubMed

    Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G

    2018-06-01

    Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.

  18. Linear-array based full-view high-resolution photoacoustic computed tomography of whole mouse brain functions in vivo

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Pengfei; Wang, Lihong V.

    2018-02-01

    Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.

  19. [Assessment of complications in patients with lung transplantation with high resolution computerized tomography].

    PubMed

    Macori, F; Iacari, V; Falchetto Osti, M; Potente, G; Anaveri, G

    1998-01-01

    High Resolution Computed Tomography (HRCT) has been used by many authors to study the early complications of lung transplantation. Bronchoscopy, transbronchial biopsy and the clinical parameters are the tools of choice to diagnose such complications; HRCT showed excellent sensitivity (100%) and good specificity (93%) especially in detecting bronchial stenoses. We report the preliminary results of HRCT in detecting early/late complications in lung transplant recipients. Sixteen lung transplant recipients (5 single and 11 double transplants) were examined with HRCT at the Servizio Speciale Diagnostica V of "La Sapienza" University (Rome, Italy). The CT findings were compared with the results of bronchoscopy and respiratory function tests. The patients (8 men and 8 women; age range: 18-57 years, mean: 37.5) had cystic fibrosis (9), emphysema (3), alpha-1-antitrypsin deficiency (1), idiopathic pulmonary fibrosis (2), and bronchiectasis (1). During the follow-up, one patient died of pulmonary edema. CT findings were normal in 3 patients and mild pleural effusion was seen in 2. The other HRCT findings were: bronchial stenosis in 5 cases (which was bilateral in 1) and bronchial dehiscence in 1 patient; four cases of infection (1 CMV, 1 aspecific bacterial pneumonia, 1 Chlamydia psittacea and 1 Aspergillosis) and one of brochiolitis obliterans. A patient was treated for acute and one for chronic rejection. A CMV infection involved only the native lung in a patient. CT is easy to perform and a repeatable and well-tolerated tool with high sensitivity (100%) and good specificity (93%) in the early diagnosis of complications, particularly bronchial stenoses, which complications are often missed at bronchoscopy or clinically silent. CT should be always performed before bronchoscopy because it can provide valuable information for bronchoscopy targeting. In agreement with other authors we consider HRCT a very useful tool in the early diagnosis of the complications following lung transplantation.

  20. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial frequencies to improve the depth resolution. In NSRL, we performed soft X-ray holographic tomography experiments. The specimen was the spider filaments and PM M A as recording medium. By 3D CT reconstruction of the projection data, three dimensional density distribution of the specimen was obtained. Also, we developed a new X-ray holographic tomography m ethod called pre-amplified holographic tomography. The method permits a digital real-time 3D reconstruction with high-resolution and a simple and compact experimental setup as well.

  1. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  2. Primary Malignant Lymphoma in a Spinal Cord Presenting as an Epidural Mass with Myelopathy: A Case Report

    PubMed Central

    Cho, Jae-Hoon; Cho, Dae-Chul; Sung, Joo-Kyung

    2012-01-01

    We report the case of a 47-year-old man who presented with progressive paraparesis and sphincter changes over 2 weeks. Magnetic resonance imaging revealed a spinal epidural mass from T9 to L2. We performed a decompressive laminectomy and mass removal. The histopathology was consistent with a small lymphocytic lymphoma. No metastatic lesion was noted in the chest and abdomen-pelvic computerized tomography (CT) and positron emission tomography computerized tomography (PET-CT) scan. The final diagnosis was primary spinal lymphoma, so we performed chemotherapy combined with radiotherapy. At one year follow-up, he had no neurological deficit and no recurrence on neurologic and radiologic exams. Primary spinal cord lymphomas should be considered in the differential diagnosis of spinal cord tumors. Early surgical management is mandatory to achieve a recovery of neurologic function, especially if the patient has a neurological deficit. PMID:25983828

  3. The application of compressive sampling in rapid ultrasonic computerized tomography (UCT) technique of steel tube slab (STS).

    PubMed

    Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao

    2018-01-01

    This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique.

  4. Herniation of unruptured tuberculous lung abscess into chest wall without pleural or bronchial spillage

    PubMed Central

    Magazine, Rahul; Mohapatra, Aswini K.; Manu, Mohan K.; Srivastava, Rajendra K.

    2011-01-01

    A 22-year-old unmarried man presented to the chest outpatient department with a history of productive cough of two-month duration. He also complained of pain and swelling on the anterior aspect of right side of chest of one-month duration. Imaging studies of the thorax, including chest roentgenography and computerized tomography, revealed an unruptured lung abscess which had herniated into the chest wall. Culture of pus aspirated from the chest wall swelling grew Mycobacterium tuberculosis. He was diagnosed to have a tuberculous lung abscess which had extended into the chest wall, without spillage into the pleural cavity or the bronchial tree. Antituberculosis drugs were prescribed, and he responded to the treatment with complete resolution of the lesion. PMID:22084547

  5. Congenital Anomaly of Single Dominant Right Coronary Artery with Hypoplastic Left Coronary Artery.

    PubMed

    Chuang, Cheng-Yen; Chen, Yen-Chou; Cheng, Ho-Shun; Hsieh, Ming-Hsiung

    2015-11-01

    With the popularization of new imaging technology, more people are deciding to undergo non-invasive studies such as multidetector computerized tomography (MDCT) before receiving coronary angiography. For this reason, coronary anomalies of coronary artery are being encountered more frequently. We here report a 68-year-old male presenting with typical angina. The MDCT images suggested chronic total occlusion of the left anterior descending (LAD) artery with collateral circulation from the right coronary artery (RCA). The patient's coronary angiography showed a congenital coronary anomaly with a single dominant RCA supplying the entire coronary circulation of the heart with both LAD and left circumflex artery hypoplasia. Angiography; Anomaly; Computerized tomography; Coronary artery.

  6. High-resolution PET [Positron Emission Tomography] for Medical Science Studies

    DOE R&D Accomplishments Database

    Budinger, T. F.; Derenzo, S. E.; Huesman, R. H.; Jagust, W. J.; Valk, P. E.

    1989-09-01

    One of the unexpected fruits of basic physics research and the computer revolution is the noninvasive imaging power available to today's physician. Technologies that were strictly the province of research scientists only a decade or two ago now serve as the foundations for such standard diagnostic tools as x-ray computer tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Furthermore, prompted by the needs of both the practicing physician and the clinical researcher, efforts to improve these technologies continue. This booklet endeavors to describe the advantages of achieving high resolution in PET imaging.

  7. COST EFFECTIVE AND HIGH RESOLUTION SUBSURFACE CHARACTERIZATION USING HYDRAULIC TOMOGRAPHY

    DTIC Science & Technology

    2017-08-01

    FINAL REPORT Cost -Effective and High-Resolution Subsurface Characterization Using Hydraulic Tomography ESTCP Project ER-201212 AUGUST...This document has been cleared for public release Page Intentionally Left Blank This report was prepared under contract to the Department of...Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department

  8. Computerized tomography of the otic capsule and otoliths in the oyster toadfish, Opsanus tau.

    PubMed

    Edds-Walton, Peggy L; Arruda, Julie; Fay, Richard R; Ketten, Darlene R

    2015-02-01

    The neurocranium of the toadfish (Opsanus tau) exhibits a distinct translucent region in the otic capsule (OC) that may have functional significance for the auditory pathway. This study used ultrahigh resolution computerized tomography (100 µm voxels) to compare the relative density of three sites along the OC (dorsolateral, midlateral, and ventromedial) and two reference sites (dorsal: supraoccipital crest; ventral: parasphenoid bone) in the neurocranium. Higher attenuation occurs where structural density is greater; thus, we compared the X-ray attenuations measured, which provided a measure of relative density. The maximum attenuation value was recorded for each of the five sites (x and y) on consecutive sections throughout the OC and for each of the three calcareous otoliths associated with the sensory maculae (lagena, saccule, and utricle) in the OC. All three otoliths had higher attenuations than any sites in the neurocranium. Both dorsal and ventral reference sites (supraoccipital crest and parasphenoid bone, respectively) had attenuation levels consistent with calcified bone and had relatively small, irregular variations along the length of the OC in all individuals. The lowest relative attenuations (lowest densities) occurred consistently at the three sites along the OC. In addition, the lowest attenuations measured along the OC occurred at the ventromedial site around the saccular otolith for all seven fish. The decrease in bone density along the OC is consistent with the hypothesis that there is a low-density channel in the skull to facilitate transmission of acoustic stimuli to the auditory endorgans of the ear. © 2014 Wiley Periodicals, Inc.

  9. Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography.

    PubMed

    Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry

    2015-02-01

    We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka's close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans.

  10. Rare Forms of Castleman Disease Mimicking Malignancy: Mesenteric and Pancreatic Involvement.

    PubMed

    Ozsoy, Mustafa; Ozsoy, Zehra; Sahin, Suleyman; Arıkan, Yuksel

    2018-03-12

    Castleman disease is a lymphoproliferative disorder with unknown etiology and pathogenesis. While the disease may involve all parts of the body, the mediastinum appears to be the most common part of involvement. In this study, we present two cases of Castleman disease with different localizations that mimicked malignancy. A 62-year-old female patient presented with jaundice. Laboratory analysis indicated aspartate aminotransferase: 250 U/L, total bilirubin: 4 mg/dl, and carbohydrate antigen (CA) 19-9: 900 U/ml. Computerized tomography (CT) of the abdomen showed a mass originating from the pancreas head which resulted in a biliary tract obstruction. A positron emission tomography-computed tomography (PET/CT) showed that the only site of involvement was the pancreas head. A decision was made to perform pancreaticoduodenectomy. During intra-abdominal exploration, lymphadenopathies were identified in the surroundings of the retropancreatic portal vein and the hepatic artery. Histopathological investigation of the dissected lymph nodes demonstrated findings consistent with granulomatous plasma-cell-rich Castleman disease. A 55-year-old female patient presented with abdominal pain, nausea, and vomiting. Computerized tomography of the abdomen showed an abdominal mass of 7 cm, originating from the mesenterium, with high-contrast uptake in the mesenterium in the lower abdominal quadrant. The mesenteric mass was resected along with segmentary small intestine resection. Histopathological investigation of the mass showed a giant granulomatous structure that consisted of plasma cells consistent with Castleman disease. Castleman disease should be kept in mind during differential diagnosis of locally advanced lymph nodes observed during preoperative investigations and intraoperative exploration.

  11. Local X-ray Computed Tomography Imaging for Mineralogical and Pore Characterization

    NASA Astrophysics Data System (ADS)

    Mills, G.; Willson, C. S.

    2015-12-01

    Sample size, material properties and image resolution are all tradeoffs that must be considered when imaging porous media samples with X-ray computed tomography. In many natural and engineered samples, pore and throat sizes span several orders of magnitude and are often correlated with the material composition. Local tomography is a nondestructive technique that images a subvolume, within a larger specimen, at high resolution and uses low-resolution tomography data from the larger specimen to reduce reconstruction error. The high-resolution, subvolume data can be used to extract important fine-scale properties but, due to the additional noise associated with the truncated dataset, it makes segmentation of different materials and mineral phases a challenge. The low-resolution data of a larger specimen is typically of much higher-quality making material characterization much easier. In addition, the imaging of a larger domain, allows for mm-scale bulk properties and heterogeneities to be determined. In this research, a 7 mm diameter and ~15 mm in length sandstone core was scanned twice. The first scan was performed to cover the entire diameter and length of the specimen at an image voxel resolution of 4.1 μm. The second scan was performed on a subvolume, ~1.3 mm in length and ~2.1 mm in diameter, at an image voxel resolution of 1.08 μm. After image processing and segmentation, the pore network structure and mineralogical features were extracted from the low-resolution dataset. Due to the noise in the truncated high-resolution dataset, several image processing approaches were applied prior to image segmentation and extraction of the pore network structure and mineralogy. Results from the different truncated tomography segmented data sets are compared to each other to evaluate the potential of each approach in identifying the different solid phases from the original 16 bit data set. The truncated tomography segmented data sets were also compared to the whole-core tomography segmented data set in two ways: (1) assessment of the porosity and pore size distribution at different scales; and (2) comparison of the mineralogical composition and distribution. Finally, registration of the two datasets will be used to show how the pore structure and mineralogy details at the two scales can be used to supplement each other.

  12. Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-12-01

    A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.

  13. Strut fracture and disc embolization of a Björk-Shiley mitral valve prosthesis: localization of embolized disc by computerized axial tomography.

    PubMed

    Larrieu, A J; Puglia, E; Allen, P

    1982-08-01

    The case of a patient who survived strut fracture and embolization of a Björk-Shiley mitral prosthetic disc is presented. Prompt surgical treatment was directly responsible for survival. In addition, computerized axial tomography of the abdomen aided in localizing and retrieving the embolized disc, which was lodged at the origin of the superior mesenteric artery. A review of similar case reports from the literature supports our conclusions that the development of acute heart failure and absent or muffled prosthetic heart sounds in a patient with a Björk-Shiley prosthetic heart valve inserted prior to 1978 should raise the possibility of valve dysfunction and lead to early reoperation.

  14. Clinical applications of computerized thermography

    NASA Technical Reports Server (NTRS)

    Anbar, Michael

    1988-01-01

    Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.

  15. Comparison of microtomography and optical coherence tomography on apical endodontic filling analysis.

    PubMed

    Suassuna, Fernanda Clotilde Mariz; Maia, Ana Marly Araújo; Melo, Daniela Pita; Antonino, Antônio Celso Dantas; Gomes, Anderson Stevens Leônidas; Bento, Patrícia Meira

    2018-02-01

    To comparein vitro differences in the apical filling regarding working length (WL) change and presence of voids and to validate optical coherence tomography (OCT) in comparison with computerized microtomography (µCT) for the detection of failures in the apical filling. Forty-five uniradicular teeth with round canals, divided into groups (n = 15) following the obturation protocols: LC (lateral condensation), TMC (thermomechanical compaction) and SC (single cone). Samples were scanned using µCT (parameters: 80 kV, 222 µA, and resolution of 11 µm), OCT (parameters: SSOCT, 1300 nm and axial resolution of 12 µm), and periapical digital radiography. The images were analyzsed by two blind and calibrated observers using ImageJ software to measure the boundary of the obturation WL and voids presence. Categorical and metric data were submitted to inferential analysis, and the validity of the OCT as a diagnostic test was assessed with performance and reliability tests. The WL average remained constant for all obturation techniques and image methods. OCT showed adequate sensitivity and specificity to detect voids in the WL of apical obturations in vitro in comparison with µCT. Both image methods found a higher number of voids for LC technique (µCT p = 0.011/OCT p = 0.002). OCT can be used in apical obturation voids assessment and the LC technique revealed more voids with larger dimensions.

  16. High resolution, MRI-based, segmented, computerized head phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 bytemore » array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.« less

  17. Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline.

    PubMed

    Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin

    2015-07-01

    The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.

  18. Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm.

    PubMed

    Nishizawa, N; Chen, Y; Hsiung, P; Ippen, E P; Fujimoto, J G

    2004-12-15

    Real-time, ultrahigh-resolution optical coherence tomography (OCT) is demonstrated in the 1.4-1.7-microm wavelength region with a stretched-pulse, passively mode-locked, Er-doped fiber laser and highly nonlinear fiber. The fiber laser generates 100-mW, linearly chirped pulses at a 51-MHz repetition rate. The pulses are compressed and then coupled into a normally dispersive highly nonlinear fiber to generate a low-noise supercontinuum with a 180-nm FWHM bandwidth and 38 mW of output power. This light source is stable, compact, and broadband, permitting high-speed, real-time, high-resolution OCT imaging. In vivo high-speed OCT imaging of human skin with approximately 5.5-microm resolution and 99-dB sensitivity is demonstrated.

  19. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  20. 3D noninvasive ultrasound Joule heat tomography based on acousto-electric effect using unipolar pulses: a simulation study

    PubMed Central

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2012-01-01

    Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on acouto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of any priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757

  1. Computational adaptive optics for broadband optical interferometric tomography of biological tissue

    NASA Astrophysics Data System (ADS)

    Boppart, Stephen A.

    2015-03-01

    High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.

  2. Developmental and morphological studies in Japanese medaka with ultra-high resolution optical coherence tomography

    PubMed Central

    Gladys, Fanny Moses; Matsuda, Masaru; Lim, Yiheng; Jackin, Boaz Jessie; Imai, Takuto; Otani, Yukitoshi; Yatagai, Toyohiko; Cense, Barry

    2015-01-01

    We propose ultra-high resolution optical coherence tomography to study the morphological development of internal organs in medaka fish in the post-embryonic stages at micrometer resolution. Different stages of Japanese medaka were imaged after hatching in vivo with an axial resolution of 2.8 µm in tissue. Various morphological structures and organs identified in the OCT images were then compared with the histology. Due to the medaka’s close resemblance to vertebrates, including humans, these morphological features play an important role in morphogenesis and can be used to study diseases that also occur in humans. PMID:25780725

  3. Automatic optimization high-speed high-resolution OCT retinal imaging at 1μm

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Liu, Xiyun; Miao, Dongkai; Lee, Sujin; Lee, Sieun; Bonora, Stefano; Zawadzki, Robert J.; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2015-03-01

    High-resolution OCT retinal imaging is important in providing visualization of various retinal structures to aid researchers in better understanding the pathogenesis of vision-robbing diseases. However, conventional optical coherence tomography (OCT) systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking optical coherence tomography (OCT) system with automatic optimization for high-resolution, extended-focal-range clinical retinal imaging. A variable-focus liquid lens was added to correct for de-focus in real-time. A GPU-accelerated segmentation and optimization was used to provide real-time layer-specific enface visualization as well as depth-specific focus adjustment. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the ONH, from which we extracted clinically-relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  4. [Mobile CT at neurointensive sections--it is possible].

    PubMed

    Frost, Majbritt; Stenkær, Susanne; Kellenberger, Simone; Ehlers, Lars

    2011-01-24

    Intrahospital transportation can be complicated and hazardous. Mobile computerized tomography (CT) of the head performed at the neurointensive care unit is a new technique that minimizes the need for transportation of unstable patients. Even small changes in physiological parameters can be detrimental for these patients and cause secondary injury and thus affect their prognoses. The portable CT scanner in the neurointensive care unit holds great potential, but the high price level may limit its use.

  5. Preoperative Computerized Tomography and Magnetic Resonance Imaging of the Pancreas Predicts Pancreatic Mass and Functional Outcomes After Total Pancreatectomy and Islet Autotransplant.

    PubMed

    Young, Michael C; Theis, Jake R; Hodges, James S; Dunn, Ty B; Pruett, Timothy L; Chinnakotla, Srinath; Walker, Sidney P; Freeman, Martin L; Trikudanathan, Guru; Arain, Mustafa; Robertson, Paul R; Wilhelm, Joshua J; Schwarzenberg, Sarah J; Bland, Barbara; Beilman, Gregory J; Bellin, Melena D

    2016-08-01

    Approximately two thirds of patients will remain on insulin therapy after total pancreatectomy with islet autotransplant (TPIAT) for chronic pancreatitis. We investigated the relationship between measured pancreas volume on computerized tomography or magnetic resonance imaging and features of chronic pancreatitis on imaging, with subsequent islet isolation and diabetes outcomes. Computerized tomography or magnetic resonance imaging was reviewed for pancreas volume (Vitrea software) and presence or absence of calcifications, atrophy, and dilated pancreatic duct in 97 patients undergoing TPIAT. Relationship between these features and (1) islet mass isolated and (2) diabetes status at 1-year post-TPIAT were evaluated. Pancreas volume correlated with islet mass measured as total islet equivalents (r = 0.50, P < 0.0001). Mean islet equivalents were reduced by more than half if any one of calcifications, atrophy, or ductal dilatation were observed. Pancreatic calcifications increased the odds of insulin dependence 4.0 fold (1.1, 15). Collectively, the pancreas volume and 3 imaging features strongly associated with 1-year insulin use (P = 0.07), islet graft failure (P = 0.003), hemoglobin A1c (P = 0.0004), fasting glucose (P = 0.027), and fasting C-peptide level (P = 0.008). Measures of pancreatic parenchymal destruction on imaging, including smaller pancreas volume and calcifications, associate strongly with impaired islet mass and 1-year diabetes outcomes.

  6. Computerized tomography-guided sphenopalatine ganglion pulsed radiofrequency treatment in 16 patients with refractory cluster headaches: Twelve- to 30-month follow-up evaluations.

    PubMed

    Fang, Luo; Jingjing, Lu; Ying, Shen; Lan, Meng; Tao, Wang; Nan, Ji

    2016-02-01

    Sphenopalatine ganglion percutaneous radiofrequency thermocoagulation treatment can improve the symptoms of cluster headaches to some extent. However, as an ablation treatment, radiofrequency thermocoagulation treatment also has side effects. To preliminarily evaluate the efficacy and safety of a non-ablative computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion in patients with refractory cluster headaches. We included and analysed 16 consecutive cluster headache patients who failed to respond to conservative therapy from the Pain Management Center at the Beijing Tiantan Hospital between April 2012 and September 2013 treated with pulsed radiofrequency treatment of sphenopalatine ganglion. Eleven of 13 episodic cluster headaches patients and one of three chronic cluster headaches patient were completely relieved of the headache within an average of 6.3 ± 6.0 days following the treatment. Two episodic cluster headache patients and two chronic cluster headache patients showed no pain relief following the treatment. The mean follow-up time was 17.0 ± 5.5 months. All patients enrolled in this study showed no treatment-related side effects or complications. Our data show that patients with refractory episodic cluster headaches were quickly, effectively and safely relieved from the cluster period after computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion, suggesting that it may be a therapeutic option if conservative treatments fail. © International Headache Society 2015.

  7. Identifying and classifying hyperostosis frontalis interna via computerized tomography.

    PubMed

    May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel

    2010-12-01

    The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.

  8. Attenuation tomography of the main volcanic regions of the Campanian Plain.

    NASA Astrophysics Data System (ADS)

    de Siena, Luca; Del Pezzo, Edoardo; Bianco, Francesca

    2010-05-01

    Passive, high resolution attenuation tomography is used to image the geological structure in the first upper 4 km of shallow crust beneath the Campanian Plain. Images were produced by two separate attenuation tomography studies of the main volcanic regions of the Campanian Plain, Southern Italy, Mt. Vesuvius volcano and Campi Flegrei caldera. The three-dimensional S wave attenuation tomography of Mt. Vesuvius has been obtained with multiple measurements of coda-normalized S-wave spectra of local small magnitude earthquakes. P-wave attenuation tomography was performed using classical spectral methods. The images were obtained inverting the spectral data with a multiple resolution approach expressively designed for attenuation tomography. This allowed to obtain a robust attenuation image of the volumes under the central cone at a maximum resolution of 300 m. The same approach was applied to a data set recorded in the Campi Flegrei area during the 1982-1984 seismic crisis. Inversion ensures a minimum cell size resolution of 500 meters in the zones with sufficient ray coverage, and 1000 meters outside these zones. The study of the resolution matrix as well as the synthetic tests guarantee an optimal reproduction of the input anomalies in the center of the caldera, between 0 and 3.5 km in depth. Results allowed an unprecedented view of several features of the medium, like the residual part of solidified magma from the last eruption, under the central cone of Mt. Vesuvius, and the feeding systems and top of the carbonate basement, 3 km depth below both volcanic areas. Vertical Q contrast image important fault zones, such as the La Starza fault, as well as high attenuation structures that correspond to gas or fluid reservoirs, and reveal the upper part of gas bearing conduits connecting these high attenuation volumes with the magma sill revealed at about 7 km in depth by passive travel-time tomography under the whole Campanian Plain.

  9. The application of compressive sampling in rapid ultrasonic computerized tomography (UCT) technique of steel tube slab (STS)

    PubMed Central

    Jiang, Baofeng; Jia, Pengjiao; Zhao, Wen; Wang, Wentao

    2018-01-01

    This paper explores a new method for rapid structural damage inspection of steel tube slab (STS) structures along randomly measured paths based on a combination of compressive sampling (CS) and ultrasonic computerized tomography (UCT). In the measurement stage, using fewer randomly selected paths rather than the whole measurement net is proposed to detect the underlying damage of a concrete-filled steel tube. In the imaging stage, the ℓ1-minimization algorithm is employed to recover the information of the microstructures based on the measurement data related to the internal situation of the STS structure. A numerical concrete tube model, with the various level of damage, was studied to demonstrate the performance of the rapid UCT technique. Real-world concrete-filled steel tubes in the Shenyang Metro stations were detected using the proposed UCT technique in a CS framework. Both the numerical and experimental results show the rapid UCT technique has the capability of damage detection in an STS structure with a high level of accuracy and with fewer required measurements, which is more convenient and efficient than the traditional UCT technique. PMID:29293593

  10. Validity of multislice computerized tomography for diagnosis of maxillofacial fractures using an independent workstation.

    PubMed

    Dos Santos, Denise Takehana; Costa e Silva, Adriana Paula Andrade; Vannier, Michael Walter; Cavalcanti, Marcelo Gusmão Paraiso

    2004-12-01

    The purpose of this study was to demonstrate the sensitivity and specificity of multislice computerized tomography (CT) for diagnosis of maxillofacial fractures following specific protocols using an independent workstation. The study population consisted of 56 patients with maxillofacial fractures who were submitted to a multislice CT. The original data were transferred to an independent workstation using volumetric imaging software to generate axial images and simultaneous multiplanar (MPR) and 3-dimensional (3D-CT) volume rendering reconstructed images. The images were then processed and interpreted by 2 examiners using the following protocols independently of each other: axial, MPR/axial, 3D-CT images, and the association of axial/MPR/3D images. The clinical/surgical findings were considered the gold standard corroborating the diagnosis of the fractures and their anatomic localization. The statistical analysis was carried out using validity and chi-squared tests. The association of axial/MPR/3D images indicated a higher sensitivity (range 95.8%) and specificity (range 99%) than the other methods regarding the analysis of all regions. CT imaging demonstrated high specificity and sensitivity for maxillofacial fractures. The association of axial/MPR/3D-CT images added important information in relationship to other CT protocols.

  11. Refinement procedure for the image alignment in high-resolution electron tomography.

    PubMed

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Ultra-High Resolution Optical Coherence Tomography Imaging of Unilateral Drusen in a 31 Year Old Woman.

    PubMed

    de Carlo, Talisa E; Adhi, Mehreen; Lu, Chen D; Duker, Jay S; Fujimoto, James G; Waheed, Nadia K

    We report a case of widespread unilateral drusen in a healthy 31 year old Caucasian woman using multi-modal imaging including ultra-high resolution optical coherence tomography (UHR-OCT). Dilated fundus exam showed multiple drusen-like lesions in the posterior pole without heme or fluid. Fundus auto fluorescence demonstrated hyperautofluorescent at the deposits. Fluorescein angiography revealed mild hyperfluorescence and staining of the lesions. Spectral-domain optical coherence tomography (SD-OCT) OS showed accumulations in the temporal macula at Bruch's membrane. UHR-OCT provided improved axial resolution compared to the standard 5 μm on the commercial SD-OCT and confirmed the presence of deposits in Bruch's membrane, consistent with drusen. The retinal layers were draped over the excrescences but did not show any disruption.

  13. Phase-contrast tomography of neuronal tissues: from laboratory- to high resolution synchrotron CT

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Müller, Kristin; Salditt, Tim

    2016-10-01

    Assessing the three-dimensional architecture of neuronal tissues with sub-cellular resolution presents a significant analytical challenge. Overcoming the limitations associated with serial slicing, phase-contrast x-ray tomography has the potential to contribute to this goal. Even compact laboratory CT at an optimized liquid-metal jet micro- focus source combined with suitable phase-retrieval algorithms and preparation protocols can yield renderings with single cell sensitivity in millimeter sized brain areas of mouse. Here, we show the capabilities of the setup by imaging a Golgi-Cox impregnated mouse brain. Towards higher resolution we extend these studies at our recently upgraded waveguide-based cone-beam holo-tomography instrument GINIX at DESY. This setup allows high resolution recordings with adjustable field of view and resolution, down to the voxel sizes in the range of a few ten nanometers. The recent results make us confident that important issues of neuronal connectivity can be addressed by these methods, and that 3D (virtual) histology with nanoscale resolution will become an attractive modality for neuroscience research.

  14. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  15. Computerized PET/CT image analysis in the evaluation of tumour response to therapy

    PubMed Central

    Wang, J; Zhang, H H

    2015-01-01

    Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599

  16. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  17. Hydraulic Tomography and High-Resolution Slug Testing to Determine Hydraulic Conductivity Distributions

    DTIC Science & Technology

    2011-02-01

    Research Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average...REPORT DATE FEB 2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Hydraulic Tomography and High-Resolution Slug Testing to...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Kansas Center for Research 8. PERFORMING

  18. [Diagnostic possibilities of digital volume tomography].

    PubMed

    Lemkamp, Michael; Filippi, Andreas; Berndt, Dorothea; Lambrecht, J Thomas

    2006-01-01

    Cone beam computed tomography allows high quality 3D images of cranio-facial structures. Although detail resolution is increased, x-ray exposition is reduced compared to classic computer tomography. The volume is analysed in three orthogonal plains, which can be rotated independently without quality loss. Cone beam computed tomography seems to be a less expensive and less x-ray exposing alternative to classic computer tomography.

  19. Preoperative predictive model of cervical lymph node metastasis combining fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography findings and clinical factors in patients with oral or oropharyngeal squamous cell carcinoma.

    PubMed

    Mochizuki, Yumi; Omura, Ken; Nakamura, Shin; Harada, Hiroyuki; Shibuya, Hitoshi; Kurabayashi, Toru

    2012-02-01

    This study aimed to construct a preoperative predictive model of cervical lymph node metastasis using fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography ((18)F-FDG PET/CT) findings in patients with oral or oropharyngeal squamous cell carcinoma (SCC). Forty-nine such patients undergoing preoperative (18)F-FDG PET/CT and neck dissection or lymph node biopsy were enrolled. Retrospective comparisons with spatial correlation between PET/CT and the anatomical sites based on histopathological examinations of surgical specimens were performed. We calculated a logistic regression model, including the SUVmax-related variable. When using the optimal cutoff point criterion of probabilities calculated from the model that included either clinical factors and delayed-phase SUVmax ≥0.087 or clinical factors and maximum standardized uptake (SUV) increasing rate (SUV-IR) ≥ 0.100, it significantly increased the sensitivity, specificity, and accuracy (87.5%, 65.7%, and 75.2%, respectively). The use of predictive models that include clinical factors and delayed-phase SUVmax and SUV-IR improve preoperative nodal diagnosis. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Epilepsy Surgery

    MedlinePlus

    ... monitor the brain's activity and detect abnormalities. Single-photon emission computerized tomography (SPECT). The scan image varies ... off anti-seizure drugs after a year or two. By Mayo Clinic Staff . Mayo Clinic Footer Legal ...

  1. Bone Scan

    MedlinePlus

    ... your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ... radioactivity from the tracers is usually completely eliminated two days after the scan. Results A doctor who ...

  2. Redistribution of hematoma to spinal subdural space as a mechanism for the rapid spontaneous resolution of posttraumatic intracranial acute subdural hematoma: case report.

    PubMed

    Wong, Sui To; Yuen, Ming Keung; Fok, Kam Fuk; Yuen, Shing Chau; Yam, Kwong Yui; Fong, Dawson

    2009-01-01

    Rapid spontaneous resolution of posttraumatic intracranial ASDH has been reported in the literature since 1986. We report a case to demonstrate that redistribution of hematoma to the spinal subdural space is a mechanism for the rapid spontaneous resolution of posttraumatic intracranial ASDH. A 73-year-old woman with a slipped-and-fell injury had a worst GCS score of 8/15. Computerized tomography of the brain demonstrated a large intracranial ASDH with mass effect. Conservative management was decided because of her poor premorbid general condition. Rapid clinical improvement was observed within 5 hours after the CT. Progress CT of the brain at 45 hours postinjury showed that the size of the intracranial ASDH was markedly diminished. The CT findings apparently demonstrated a caudal distribution of the intracranial ASDH over the tentorium and then into the posterior fossa. To investigate this further, an MRI of the spine was performed, which showed that there was spinal SDH in the cervical and thoracic spine. This is the first report demonstrating that redistribution of posttraumatic intracranial ASDH to the spinal subdural space is one of the mechanisms behind the rapid spontaneous resolution of posttraumatic intracranial ASDH in the acute phase.

  3. Development of a sub-cm high resolution ion Doppler tomography diagnostics for fine structure measurement of guide field reconnection in TS-U

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi

    2017-10-01

    A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  4. Multiscale GPS tomography during COPS: validation and applications

    NASA Astrophysics Data System (ADS)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the resolution of the tomography grid and the density of GPS network. Finally some applications to different cases studies will be shortly presented.

  5. X-ray phase contrast tomography from whole organ down to single cells

    NASA Astrophysics Data System (ADS)

    Krenkel, Martin; Töpperwien, Mareike; Bartels, Matthias; Lingor, Paul; Schild, Detlev; Salditt, Tim

    2014-09-01

    We use propagation based hard x-ray phase contrast tomography to explore the three dimensional structure of neuronal tissues from the organ down to sub-cellular level, based on combinations of synchrotron radiation and laboratory sources. To this end a laboratory based microfocus tomography setup has been built in which the geometry was optimized for phase contrast imaging and tomography. By utilizing phase retrieval algorithms, quantitative reconstructions can be obtained that enable automatic renderings without edge artifacts. A high brightness liquid metal microfocus x-ray source in combination with a high resolution detector yielding a resolution down to 1.5 μm. To extend the method to nanoscale resolution we use a divergent x-ray waveguide beam geometry at the synchrotron. Thus, the magnification can be easily tuned by placing the sample at different defocus distances. Due to the small Fresnel numbers in this geometry the measured images are of holographic nature which poses a challenge in phase retrieval.

  6. Brain Lesions

    MedlinePlus

    ... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...

  7. Methanol poisoning

    MedlinePlus

    ... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...

  8. CT scan (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  9. Head CT (image)

    MedlinePlus

    CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...

  10. Early prosthetic aortic valve infection identified with the use of positron emission tomography in a patient with lead endocarditis.

    PubMed

    Amraoui, Sana; Tlili, Ghoufrane; Sohal, Manav; Bordenave, Laurence; Bordachar, Pierre

    2016-12-01

    18-Fluorodeoxyglucose positron emission tomography/computerized tomography (FDG PET/CT) scanning has recently been proposed as a diagnostic tool for lead endocarditis (LE). FDG PET/CT might be also useful to localize associated septic emboli in patients with LE. We report an interesting case of a LE patient with a prosthetic aortic valve in whom a trans-esophageal echocardiogram did not show associated aortic endocarditis. FDG PET/CT revealed prosthetic aortic valve infection. A second TEE performed 2 weeks after identified aortic vegetation. A longer duration of antimicrobial therapy with serial follow-up echocardiography was initiated. There was also increased uptake in the sigmoid colon, corresponding to focal polyps resected during a colonoscopy. FDG PET/CT scanning seems to be highly sensitive for prosthetic aortic valve endocarditis diagnosis. This promising diagnostic tool may be beneficial in LE patients, by identifying septic emboli and potential sites of pathogen entry.

  11. Comparison of computed tomography and complex motion tomography in the evaluation of cholesteatoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, K.A.

    1984-08-01

    High-resolution axial and coronal computed tomographic (CT) scans were compared with coronal and sagittal complex motion tomograms in patients with suspected middle ear cholesteatomas. Information on CT scans equaled or exceeded that on conventional complex motion tomograms in 16 of 17 patients, and in 11 it provided additional information. Soft-tissue resolution was superior with CT. In 14 patients who underwent surgery, CT provided information that was valuable to the surgeon. On the basis of this study, high-resolution CT is recommended as the preferred method for evaluating most patients with cholesteatomas of the temporal bone.

  12. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    NASA Astrophysics Data System (ADS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  13. On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France

    NASA Astrophysics Data System (ADS)

    Bastin, Sophie; Champollion, Cédric; Bock, Olivier; Drobinski, Philippe; Masson, Frédéric

    2005-03-01

    Global Positioning System (GPS) tomography analyses of water vapor, complemented by high-resolution numerical simulations are used to investigate a Mistral/sea breeze event in the region of Marseille, France, during the ESCOMPTE experiment. This is the first time GPS tomography has been used to validate the three-dimensional water vapor concentration from numerical simulation, and to analyze a small-scale meteorological event. The high spatial and temporal resolution of GPS analyses provides a unique insight into the evolution of the vertical and horizontal distribution of water vapor during the Mistral/sea-breeze transition.

  14. Carotid Angioplasty and Stenting

    MedlinePlus

    ... and of the blood flow to the brain. Magnetic resonance angiography (MRA) or computerized tomography angiography (CTA). ... vessels by using either radiofrequency waves in a magnetic field or by using X-rays with contrast ...

  15. Windshield washer fluid

    MedlinePlus

    ... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...

  16. Coping with Memory Loss

    MedlinePlus

    ... either using computerized axial tomography (CAT) scans or magnetic resonance imaging (MRI) – can help to identify strokes and tumors, which can sometimes cause memory loss. “The goal is to rule out factors ...

  17. High-resolution computed tomography of the middle ear and mastoid. Part II. Tubotympanic disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swartz, J.D.; Goodman, R.S.; Russell, K.B.

    1983-08-01

    Of more than 200 patients who underwent high-resolution computed tomography (CT) of the middle ear, the vast majority had tubotympanic disease in one of its forms: middle ear effusion, tympanosclerosis, granulation tissue, tympanic membrane retractions, or acquired cholesteatoma. The CT appearance of each of these conditions is discussed and illustrated. Emphasis is placed on the differential diagnosis of tubotympanic disease by determining dependent from nondependent soft-tissue opacity using two CT projections.

  18. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  19. Recurrent Urinary Tract Infections Due to Bacterial Persistence or Reinfection in Women-Does This Factor Impact Upper Tract Imaging Findings?

    PubMed

    Wu, Yuefeng Rose; Rego, Lauren L; Christie, Alana L; Lavelle, Rebecca S; Alhalabi, Feras; Zimmern, Philippe E

    2016-08-01

    We compared the rates of upper tract imaging abnormalities of recurrent urinary tract infections due to bacterial persistence or reinfection. Following institutional review board approval we reviewed a prospectively maintained database of women with documented recurrent urinary tract infections (3 or more per year) and trigonitis. We searched for demographic data, urine culture findings and findings on radiology interpreted upper tract imaging, including renal ultrasound, computerized tomography or excretory urogram. Patients with irretrievable images, absent or incomplete urine culture results for review, no imaging performed, an obvious source of recurrent urinary tract infections or a history of pyelonephritis were excluded from analysis. Of 289 women from 2006 to 2014 with symptomatic recurrent urinary tract infections 116 met study inclusion criteria. Mean ± SD age was 65.0 ± 14.4 years. Of the women 95% were white and 81% were postmenopausal. Almost a third were sexually active and none had prolapse stage 2 or greater. Of the 116 women 48 (41%) had persistent and 68 (59%) had reinfection recurrent urinary tract infection. Imaging included ultrasound in 52 patients, computerized tomography in 26, ultrasound and computerized tomography in 31, and excretory urogram with ultrasound/computerized tomography in 7. Of the total of 58 imaging findings in 55 women 57 (98%) were noncontributory. One case (0.9%) of mild hydronephrosis was noted in the persistent recurrent urinary tract infection group but it was not related to any clinical parameters. Escherichia coli was the dominant bacteria in 71% of persistent and 47% of reinfection recurrent urinary tract infections in the most recently reported urine culture. This study reaffirms that upper tract imaging is not indicated for bacterial reinfection, recurrent urinary tract infections. However, the same conclusion can be extended to recurrent urinary tract infections secondary to bacterial persistence, thus, questioning the routine practice of upper tract studies in white postmenopausal women with recurrent urinary tract infections and trigonitis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Nano-Computed Tomography: Technique and Applications.

    PubMed

    Kampschulte, M; Langheinirch, A C; Sender, J; Litzlbauer, H D; Althöhn, U; Schwab, J D; Alejandre-Lafont, E; Martels, G; Krombach, G A

    2016-02-01

    Nano-computed tomography (nano-CT) is an emerging, high-resolution cross-sectional imaging technique and represents a technical advancement of the established micro-CT technology. Based on the application of a transmission target X-ray tube, the focal spot size can be decreased down to diameters less than 400 nanometers (nm). Together with specific detectors and examination protocols, a superior spatial resolution up to 400 nm (10 % MTF) can be achieved, thereby exceeding the resolution capacity of typical micro-CT systems. The technical concept of nano-CT imaging as well as the basics of specimen preparation are demonstrated exemplarily. Characteristics of atherosclerotic plaques (intraplaque hemorrhage and calcifications) in a murine model of atherosclerosis (ApoE (-/-)/LDLR(-/-) double knockout mouse) are demonstrated in the context of superior spatial resolution in comparison to micro-CT. Furthermore, this article presents the application of nano-CT for imaging cerebral microcirculation (murine), lung structures (porcine), and trabecular microstructure (ovine) in contrast to micro-CT imaging. This review shows the potential of nano-CT as a radiological method in biomedical basic research and discusses the application of experimental, high resolution CT techniques in consideration of other high resolution cross-sectional imaging techniques. Nano-computed tomography is a high resolution CT-technology for 3D imaging at sub-micrometer resolution. The technical concept bases on a further development of the established ex-vivo-micro-CT technology. By improvement of the spatial resolution, structures at a cellular level become visible (e.g. osteocyte lacunae). © Georg Thieme Verlag KG Stuttgart · New York.

  1. Inherent Limitations of Hydraulic Tomography

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  2. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  3. Positron Emission Tomography (PET) and Positron Scanning

    Science.gov Websites

    National Laboratory 'Positron Emission Tomography ... [is a medical imaging technique that] can track human brain.' Edited excerpts from from Medical Applications of Non-Medical Research: Applications Technical Report, November 1988 High-resolution PET (Positron Emission Tomography) for Medical Science

  4. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data

    PubMed Central

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-01-01

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone. PMID:26266764

  5. Tomographic reconstruction of ionospheric electron density during the storm of 5-6 August 2011 using multi-source data.

    PubMed

    Tang, Jun; Yao, Yibin; Zhang, Liang; Kong, Jian

    2015-08-12

    The insufficiency of data is the essential reason for ill-posed problem existed in computerized ionospheric tomography (CIT) technique. Therefore, the method of integrating multi-source data is proposed. Currently, the multiple satellite navigation systems and various ionospheric observing instruments provide abundant data which can be employed to reconstruct ionospheric electron density (IED). In order to improve the vertical resolution of IED, we do research on IED reconstruction by integration of ground-based GPS data, occultation data from the LEO satellite, satellite altimetry data from Jason-1 and Jason-2 and ionosonde data. We used the CIT results to compare with incoherent scatter radar (ISR) observations, and found that the multi-source data fusion was effective and reliable to reconstruct electron density, showing its superiority than CIT with GPS data alone.

  6. High resolution propagation-based imaging system for in vivo dynamic computed tomography of lungs in small animals

    NASA Astrophysics Data System (ADS)

    Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.

    2018-04-01

    We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.

  7. Few CT Scan Abnormalities Found Even in Neurologically Impaired Learning Disabled Children.

    ERIC Educational Resources Information Center

    Denckla, Martha Bridge; And Others

    1985-01-01

    Most of 32 learning disabled children (seven to 14 years old) with neurological lateralization characteristics marked by right and left hemispheres had a normal CT (computerized tomography) scan. (CL)

  8. Prostate Enlargement: Benign Prostatic Hyperplasia (BPH)

    MedlinePlus

    ... such as ultrasound, a computerized tomography scan, or magnetic resonance imaging to guide the biopsy needle into ... heats and destroys selected portions of prostate tissue. Shields protect the urethra from heat damage. Transurethral microwave ...

  9. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    ... can become damaged or even die. Reduced pumping efficiency. SPECT can show how completely your heart chambers ... radioactive tracer SPECT scans aren't safe for women who are pregnant or breast-feeding because the ...

  10. Non-Hodgkin Lymphoma (For Parents)

    MedlinePlus

    ... chest X-ray a computerized tomography (CT or CAT) scan , which rotates around the patient and creates an ... ray (Video) Getting an MRI (Video) Getting a CAT Scan (Video) Chemotherapy Hodgkin Lymphoma Stem Cell Transplants Can ...

  11. Magnetic resonance imaging and computerized tomography in malignant external otitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.

    1986-05-01

    In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less

  12. Uroradiographic manifestations of Burkitt's lymphoma in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernbach, S.K.; Glass, R.B.

    1986-05-01

    The radiological studies of 18 children with biopsy proved Burkitt's lymphoma were analyzed retrospectively. Before therapy the genitourinary tract was evaluated in 15 children by excretory urography, sonography, computerized tomography and/or gallium citrate scintigraphy. Genitourinary abnormalities were detected in 9 children. Changes due to tumor included renal or ureteral displacement in 4 children, hydronephrosis in 3 and intraparenchymal masses in 4. Extrinsic compression of the bladder causing no compromise of function was seen in only 2 children. Gonadal involvement occurred in 2 boys and 1 girl. The modality of choice for evaluating the genitourinary tract in patients with Burkitt's lymphomamore » has been excretory urography. Since ultrasound and computerized tomography provide more direct information about tumor deposits within the kidney and retroperitoneum, either should be performed in this population before initiation of chemotherapy.« less

  13. Rectus sheath hematoma: three case reports

    PubMed Central

    Kapan, Selin; Turhan, Ahmet N; Alis, Halil; Kalayci, Mustafa U; Hatipoglu, Sinan; Yigitbas, Hakan; Aygun, Ersan

    2008-01-01

    Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management. PMID:18221529

  14. Spectral optical coherence tomography for ophthalmologic applications

    NASA Astrophysics Data System (ADS)

    Targowski, Piotr; Bajraszewski, Tomasz; Gorczyńska, Iwona; Szkulmowska, Anna; Szkulmowski, Maciej; Wojtkowski, Maciej; Kowalczyk, Andrzej; Kaluzny, Jakub J.; Kaluzny, Bartłomiej J.

    2006-09-01

    The overview of the Spectral Optical Coherence Tomography an alternative method to more popular Time domain modality is given. Examples from medical practice utilizing high resolution, ultra fast SOCT device are presented.

  15. Impact of Soldier Helmet Configuration on Survivability

    DTIC Science & Technology

    2011-03-01

    helmet cannot sit too low, which is evident when the helmet covers the eyebrows and the helmet interferes with eyewear . The helmet should remain in...agencies, academia, and private industry have also aided in model development. ORCA is a high-resolution computerized personnel casualty model that can

  16. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masahito; Kawagoe, Hiroyuki; Nishizawa, Norihiko

    2016-02-01

    We describe the generation of a high-power, spectrally smooth supercontinuum (SC) in the 1600 nm spectral band for ultrahigh-resolution optical coherence tomography (UHR-OCT). A clean SC was achieved by using a highly nonlinear fiber with normal dispersion properties and a high-quality pedestal-free pulse obtained from a passively mode-locked erbium-doped fiber laser operating at 182 MHz. The center wavelength and spectral width were 1578 and 172 nm, respectively. The output power of the SC was 51 mW. Using the developed SC source, we demonstrated UHR-OCT imaging of biological samples with a sensitivity of 109 dB and an axial resolution of 4.9 µm in tissue.

  17. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  18. Compton imaging tomography technique for NDE of large nonuniform structures

    NASA Astrophysics Data System (ADS)

    Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz

    2011-09-01

    In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.

  19. Epilepsy Surgery for Individuals with TSC

    MedlinePlus

    ... tomography (PET), single-photon emission tomography (SPECT), magnetoencephalography (MEG), Diffusion Tensor Imaging (DTI), and functional MRI (fMRI). ... sclerosis: a comparison of high resolution EEG and MEG. Epilepsia 47:108-114 Jansen FE, Huffelen ACV, ...

  20. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  1. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 microm.

    PubMed

    Lim, Hyungsik; Jiang, Yi; Wang, Yimin; Huang, Yu-Chih; Chen, Zhongping; Wise, Frank W

    2005-05-15

    We report a compact, high-power, fiber-based source for ultrahigh-resolution optical coherence tomography (OCT) near 1 microm. The practical source is based on a short-pulse, ytterbium-doped fiber laser and on generation of a continuum spectrum in a photonic crystal fiber. The broadband emission has an average power of 140 mW and offers an axial resolution of 2.1 microm in air (<1.6 microm in biological tissue). The generation of a broad bandwidth is robust and efficient. We demonstrate ultrahigh-resolution, time-domain OCT imaging of in vitro and in vivo biological tissues.

  2. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars.

    PubMed

    Acar, Buket; Kamburoğlu, Kıvanç; Tatar, İlkan; Arıkan, Volkan; Çelik, Hakan Hamdi; Yüksel, Selcen; Özen, Tuncer

    2015-12-01

    This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.

  3. Using three-dimensional-computerized tomography as a diagnostic tool for temporo-mandibular joint ankylosis: a case report.

    PubMed

    Kao, S Y; Chou, J; Lo, J; Yang, J; Chou, A P; Joe, C J; Chang, R C

    1999-04-01

    Roentgenographic examination has long been a useful diagnostic tool for temporo-mandibular joint (TMJ) disease. The methods include TMJ tomography, panoramic radiography and computerized tomography (CT) scan with or without injection of contrast media. Recently, three-dimensional CT (3D-CT), reconstructed from the two-dimensional image of a CT scan to simulate the soft tissue or bony structure of the real target, was proposed. In this report, a case of TMJ ankylosis due to traumatic injury is presented. 3D-CT was employed as one of the presurgical roentgenographic diagnostic tools. The conventional radiographic examination including panoramic radiography and tomography showed lesions in both sides of the mandible. CT scanning further suggested that the right-sided lesion was more severe than that on the left. With 3D-CT image reconstruction the size and extent of the lesions were clearly observable. The decision was made to proceed with an initial surgical approach on the right side. With condylectomy and condylar replacement using an autogenous costochondral graft on the right side, the range of mouth opening improved significantly. In this case report, 3D-CT demonstrates its advantages as a tool for the correct and precise diagnosis of TMJ ankylosis.

  4. Mini-Stroke vs. Regular Stroke: What's the Difference?

    MedlinePlus

    ... may need various diagnostic tests, such as a magnetic resonance imaging (MRI) scan or a computerized tomography ( ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...

  5. Mineral & Bone Disorder in Chronic Kidney Disease

    MedlinePlus

    ... stages of CKD. Slowed bone growth leads to short stature, which may remain with a child into adulthood. ... and local anesthetic. The health care provider uses imaging techniques such as ultrasound or a computerized tomography ...

  6. The micro-mechanics of strength, durability and damage tolerance in composites: new insights from high resolution computed tomography

    NASA Astrophysics Data System (ADS)

    Spearing, S. Mark; Sinclair, Ian

    2016-07-01

    Recent work, led by the authors, on impact damage resistance, particle toughening and tensile fibre failure is reviewed in order to illustrate the use of high-resolution X-ray tomography to observe and quantify damage mechanisms in carbon fibre composite laminates. Using synchrotron and micro-focus X-ray sources resolutions of less than 1 μm have been routinely achieved. This enables individual broken fibres and the micromechanisms of particle toughening to be observed and quantified. The data for fibre failure, cluster formation and overall tensile strength are compared with model predictions. This allows strategies for future model development to be identified. The overall implications for using such high-resolution 3-D measurements to inform a “data-rich mechanics” approach to materials evaluation and modeling is discussed.

  7. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking

    NASA Astrophysics Data System (ADS)

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J.; Jian, Yifan; Sarunic, Marinko V.

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  8. Retinal optical coherence tomography at 1 μm with dynamic focus control and axial motion tracking.

    PubMed

    Cua, Michelle; Lee, Sujin; Miao, Dongkai; Ju, Myeong Jin; Mackenzie, Paul J; Jian, Yifan; Sarunic, Marinko V

    2016-02-01

    High-resolution optical coherence tomography (OCT) retinal imaging is important to noninvasively visualize the various retinal structures to aid in better understanding of the pathogenesis of vision-robbing diseases. However, conventional OCT systems have a trade-off between lateral resolution and depth-of-focus. In this report, we present the development of a focus-stacking OCT system with automatic focus optimization for high-resolution, extended-focal-range clinical retinal imaging by incorporating a variable-focus liquid lens into the sample arm optics. Retinal layer tracking and selection was performed using a graphics processing unit accelerated processing platform for focus optimization, providing real-time layer-specific en face visualization. After optimization, multiple volumes focused at different depths were acquired, registered, and stitched together to yield a single, high-resolution focus-stacked dataset. Using this system, we show high-resolution images of the retina and optic nerve head, from which we extracted clinically relevant parameters such as the nerve fiber layer thickness and lamina cribrosa microarchitecture.

  9. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon.

    PubMed

    Caillaud, C; Serre-Cousiné, O; Anselme, F; Capdevilla, X; Préfaut, C

    1995-10-01

    We investigated the computerized tomographies (CTs) of the thorax and the pulmonary diffusing capacity for CO (DLCO) in eight male athletes before and after a triathlon. DLCO and alveolar volume (VA) were simultaneously measured during 9 s of breath holding. The transfer coefficient (KCO = DLCO/VA) was then calculated. CT scanning was performed during breath holding with the subjects in the supine position. Scanner analysis was done by 1) counting the linear and polygonal opacities (index of interstitial fluid accumulation) and 2) calculating the physical mean lung density and the mean slice mass. Results showed a significant reduction in DLCO (44.9 +/- 2.3 vs. 42.9 +/- 1.7 ml.min-1.mmHg-1; P < 0.05) and KCO (6.0 +/- 0.3 vs. 5.6 +/- 0.3 ml.min-1.mmHg-1.l of VA-1; P < 0.05) after the triathlon and an increase in mean lung density (0.21 +/- 0.009 vs. 0.25 +/- 0.01 g/cm3; P < 0.0001). The number of polygonal and linear opacities increased after the race (P < 0.001). This study confirmed that DLCO and KCO decrease in elite athletes after a long-distance race and showed a concomitant increase in CT lung density and in the number of opacities.

  10. The reliability of Cavalier's principle of stereological method in determining volumes of enchondromas using the computerized tomography tools.

    PubMed

    Acar, Nihat; Karakasli, Ahmet; Karaarslan, Ahmet; Mas, Nermin Ng; Hapa, Onur

    2017-01-01

    Volumetric measurements of benign tumors enable surgeons to trace volume changes during follow-up periods. For a volumetric measurement technique to be applicable, it should be easy, rapid, and inexpensive and should carry a high interobserver reliability. We aimed to assess the interobserver reliability of a volumetric measurement technique using the Cavalier's principle of stereological methods. The computerized tomography (CT) of 15 patients with a histopathologically confirmed diagnosis of enchondroma with variant tumor sizes and localizations was retrospectively reviewed for interobserver reliability evaluation of the volumetric stereological measurement with the Cavalier's principle, V = t × [((SU) × d) /SL]2 × Σ P. The volumes of the 15 tumors collected by the observers are demonstrated in Table 1. There was no statistical significance between the first and second observers ( p = 0.000 and intraclass correlation coefficient = 0.970) and between the first and third observers ( p = 0.000 and intraclass correlation coefficient = 0.981). No statistical significance was detected between the second and third observers ( p = 0.000 and intraclass correlation coefficient = 0.976). The Cavalier's principle with the stereological technique using the CT scans is an easy, rapid, and inexpensive technique in volumetric evaluation of enchondromas with a trustable interobserver reliability.

  11. Whole-cell imaging of the budding yeast Saccharomyces cerevisiae by high-voltage scanning transmission electron tomography.

    PubMed

    Murata, Kazuyoshi; Esaki, Masatoshi; Ogura, Teru; Arai, Shigeo; Yamamoto, Yuta; Tanaka, Nobuo

    2014-11-01

    Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1 μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy (STEM) is believed to give enhanced contrast and resolution compared to conventional transmission electron microscopy (CTEM). Samples up to 1 μm in thickness have been analyzed with an intermediate-voltage electron microscope because inelastic scattering is not a critical limitation, and probe broadening can be minimized. Here, we employed STEM at 1 MeV high-voltage to extend the useful specimen thickness for electron tomography, which we demonstrate by a seamless tomographic reconstruction of a whole, budding Saccharomyces cerevisiae yeast cell, which is ~3 μm in thickness. High-voltage STEM tomography, especially in the bright-field mode, demonstrated sufficiently enhanced contrast and intensity, compared to CTEM tomography, to permit segmentation of major organelles in the whole cell. STEM imaging also reduced specimen shrinkage during tilt-series acquisition. The fidelity of structural preservation was limited by cytoplasmic extraction, and the spatial resolution was limited by the relatively large convergence angle of the scanning probe. However, the new technique has potential to solve longstanding problems of image blurring in biological specimens beyond 1 μm in thickness, and may facilitate new research in cellular structural biology. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A novel iterative modified bicubic interpolation method enables high-contrast and high-resolution image generation for F-18 FDG-PET.

    PubMed

    Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji

    2017-12-01

    Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  13. A case of mycotic aneurysm due to Burkholderia pseudomallei.

    PubMed

    Ding, C H; Hussin, S; Tzar, M N; Rahman, M M; Ramli, S R

    2013-04-01

    Burkholderia pseudomallei is an free-living gram-negative bacterium causing melioidosis and is endemic in Southeast Asia. A 56-year-old diabetic construction worker with a 1-month history of abdominal pain and 1-day history of high-grade fever was found to have a left non-dissecting infrarenal mycotic aortic aneurysm by abdominal computerized tomography scan. Bacteriological examination of his blood yielded Burkholderia pseudomallei. The patient was treated with right axillo-bifemoral bypass with excision of aneurysm and high-dose intravenous ceftazidime for two weeks, followed by oral trimethoprim/sulfamethoxazole and oral doxycycline for a minimum of five months.

  14. First multiphoton tomography of brain in man

    NASA Astrophysics Data System (ADS)

    König, Karsten; Kantelhardt, Sven R.; Kalasauskas, Darius; Kim, Ella; Giese, Alf

    2016-03-01

    We report on the first two-photon in vivo brain tissue imaging study in man. High resolution in vivo histology by multiphoton tomography (MPT) including two-photon FLIM was performed in the operation theatre during neurosurgery to evaluate the feasibility to detect label-free tumor borders with subcellular resolution. This feasibility study demonstrates, that MPT has the potential to identify tumor borders on a cellular level in nearly real-time.

  15. Dual-modal three-dimensional imaging of single cells with isometric high resolution using an optical projection tomography microscope

    NASA Astrophysics Data System (ADS)

    Miao, Qin; Rahn, J. Richard; Tourovskaia, Anna; Meyer, Michael G.; Neumann, Thomas; Nelson, Alan C.; Seibel, Eric J.

    2009-11-01

    The practice of clinical cytology relies on bright-field microscopy using absorption dyes like hematoxylin and eosin in the transmission mode, while the practice of research microscopy relies on fluorescence microscopy in the epi-illumination mode. The optical projection tomography microscope is an optical microscope that can generate 3-D images of single cells with isometric high resolution both in absorption and fluorescence mode. Although the depth of field of the microscope objective is in the submicron range, it can be extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. Cells suspended in optical gel flow through a custom-designed microcapillary. Multiple pseudoprojection images are taken by rotating the microcapillary. After these pseudoprojection images are further aligned, computed tomography methods are applied to create 3-D reconstruction. 3-D reconstructed images of single cells are shown in both absorption and fluorescence mode. Fluorescence spatial resolution is measured at 0.35 μm in both axial and lateral dimensions. Since fluorescence and absorption images are taken in two different rotations, mechanical error may cause misalignment of 3-D images. This mechanical error is estimated to be within the resolution of the system.

  16. Biopsy: Types of Biopsy Procedures Used to Diagnose Cancer

    MedlinePlus

    ... procedure — such as X-ray, computerized tomography (CT), magnetic resonance imaging (MRI) or ultrasound — with a needle ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...

  17. Intravenous leiomyomatosis of the uterus with extension to the right heart

    PubMed Central

    2011-01-01

    A 42-year-old woman admitted with debilitation and engorgement both lower extremities. Transthoracic two-dimensional echocardiography, abdominal ultrasound and computerized tomography revealed a lobulated pelvic mass, a mass within right internal iliac vein, both common iliac vein, as well as the inferior vena cava, extending into the right atrium. In addition, echocardiography and abdominal ultrasound showed the tumor of right atrium and inferior vena cave has no stalk and has well-demarcated borders with the wall of right atrium and inferior vena cave. Hence, the presumptive diagnosis of IVL was made by echocardiography and abdominal ultrasound and the presumptive diagnosis of sarcoma with invasion in right internal iliac vein, both common iliac vein, the inferior vena cava, as well as the right atrium was made by multi-detector-row computerized tomography. The patient underwent a one-stage combined multidisciplinary thoraco-abdominal operation under general anaesthetic. Subsequently the pathologic report confirmed IVL. PMID:21943238

  18. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  19. A motion artefact study and locally deforming objects in computerized tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2017-11-01

    Movements of the object during the data collection in computerized tomography can introduce motion artefacts in the reconstructed image. They can be reduced by employing information about the dynamic behaviour within the reconstruction step. However, inaccuracies concerning the movement are inevitable in practice. In this article, we give an explicit characterization of what is visible in an image obtained by a reconstruction algorithm with incorrect motion information. Then, we use this result to study in detail the situation of locally deforming objects, i.e. individual parts of the object have a different dynamic behaviour. In this context, we prove that additional artefacts arise due to the global nature of the Radon transform, even if the motion is exactly known. Based on our analysis, we propose a numerical scheme to reduce these artefacts in the reconstructed image. All our results are illustrated by numerical examples.

  20. Nanoscale Photoacoustic Tomography (nPAT) for label-free super-resolution 3D imaging of red blood cells

    NASA Astrophysics Data System (ADS)

    Samant, Pratik; Hernandez, Armando; Conklin, Shelby; Xiang, Liangzhong

    2017-08-01

    We present our results in developing nanoscale photoacoustic tomography (nPAT) for label-free super-resolution imaging in 3D. We have made progress in the development of nPAT, and have acquired our first signal. We have also performed simulations that demonstrate that nPAT is a viable imaging modality for the visualization of malaria infected red blood cells (RBCs). Our results demonstrate that nPAT is both feasible and powerful for the high resolution labelfree imaging of RBCs.

  1. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  2. Outbreak of silicosis in Spanish quartz conglomerate workers

    PubMed Central

    Pérez-Alonso, Aránzazu; Córdoba-Doña, Juan Antonio; Millares-Lorenzo, José Luis; Figueroa-Murillo, Estrella; García-Vadillo, Cristina; Romero-Morillo, José

    2014-01-01

    Objectives: To describe the epidemiological and clinical characteristics of an outbreak of occupational silicosis and the associated working conditions. Methods: Cases were defined as men working in the stone cutting, shaping, and finishing industry in the province of Cádiz, diagnosed with silicosis between July 2009 and May 2012, and were identified and diagnosed by the department of pulmonology of the University Hospital of Puerto Real (Cádiz). A census of workplaces using quartz conglomerates was carried out to determine total numbers of potentially exposed workers. A patient telephone survey on occupational exposures and a review of medical records for all participants were conducted. Results: Silicosis was diagnosed in 46 men with a median age of 33 years and a median of 11 years working in the manufacturing of countertops. Of these cases, 91.3% were diagnosed with simple chronic silicosis, with an abnormal high-resolution computerized tomography (HRCT) scan. One patient died during the study period. Employer non-compliance in prevention and control measures was frequently reported, as were environmental and individual protection failures. Conclusions: The use of new construction materials such as quartz conglomerates has increased silicosis incidence due to intensive occupational exposures, in the context of high demand fuelled by the housing boom. This widespread exposure poses a risk if appropriate preventive measures are not undertaken. PMID:24804337

  3. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Marks, Daniel L.; Ralston, Tyler S.; Boppart, Stephen A.

    2006-03-01

    Optical coherence tomography (OCT) is an emerging high-resolution real-time biomedical imaging technology that has potential as a novel investigational tool in developmental biology and functional genomics. In this study, murine embryos and embryonic hearts are visualized with an OCT system capable of 2-µm axial and 15-µm lateral resolution and with real-time acquisition rates. We present, to our knowledge, the first sets of high-resolution 2- and 3-D OCT images that reveal the internal structures of the mammalian (murine) embryo (E10.5) and embryonic (E14.5 and E17.5) cardiovascular system. Strong correlations are observed between OCT images and corresponding hematoxylin- and eosin-stained histological sections. Real-time in vivo embryonic (E10.5) heart activity is captured by spectral-domain optical coherence tomography, processed, and displayed at a continuous rate of five frames per second. With the ability to obtain not only high-resolution anatomical data but also functional information during cardiovascular development, the OCT technology has the potential to visualize and quantify changes in murine development and in congenital and induced heart disease, as well as enable a wide range of basic in vitro and in vivo research studies in functional genomics.

  4. Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography

    PubMed Central

    Boppart, Stephen A.; Tearney, Gary J.; Bouma, Brett E.; Southern, James F.; Brezinski, Mark E.; Fujimoto, James G.

    1997-01-01

    Studies investigating normal and abnormal cardiac development are frequently limited by an inability to assess cardiovascular function within the intact organism. In this work, optical coherence tomography (OCT), a new method of micron-scale, noninvasive imaging based on the measurement of backscattered infrared light, was introduced for the high resolution assessment of structure and function in the developing Xenopus laevis cardiovascular system. Microstructural details, such as ventricular size and wall positions, were delineated with OCT at 16-μm resolution and correlated with histology. Three-dimensional representation of the cardiovascular system also was achieved by repeated cross-sectional imaging at intervals of 25 μm. In addition to structural information, OCT provides high speed in vivo axial ranging and imaging, allowing quantitative dynamic activity, such as ventricular ejection fraction, to be assessed. The sensitivity of OCT for dynamic assessment was demonstrated with an inotropic agent that altered cardiac function and dimensions. Optical coherence tomography is an attractive new technology for assessing cardiovascular development because of its high resolution, its ability to image through nontransparent structures, and its inexpensive portable design. In vivo and in vitro imaging are performed at a resolution approaching that of histopathology without the need for animal killing. PMID:9113976

  5. Bombesin receptors and transplanted stem cells in rat brain: High-resolution scan with 99mTc BN1.1

    NASA Astrophysics Data System (ADS)

    Scopinaro, F.; Paschali, E.; Di Santo, G.; Antonellis, T.; Massari, R.; Trotta, C.; Gourni, H.; Bouziotis, P.; David, V.; Soluri, A.; Varvarigou, A. D.

    2006-12-01

    The aim of this work is to detect the presence of transplanted stem cells (TSC) in rat brain with high-resolution (HR) scintigraphy and labelled bombesin (BN). BN is a morphogen for Central Nervous System (CNS) as well as for other organs: CNS-oriented TSC over-express BN Receptors (BNR). BN is also a neurotransmitter and modulates several functions of CNS. 99mTc labelled BN-like peptide scan of CNS is the ideal method to detect growing TSC once knowing normal distribution of BNRs in CNS. HR Planar and single photon emission computerized tomography (SPECT) images of rat brain were performed with new HR detectors (Li-tech, Italy). Pertechnetate, 99mTc HMPAO and the new 99mTc BN1.1 (patented) were i.v. administered in five rats. HR SPECT of 99mTc BN1.1 detected olfactory tract, fronto-lateral cortex, cerebellum, basal ganglia and amygdale. Results of SPECT were confirmed by bio-distribution study performed after autopsy of three of the five rats. The remaining two rats underwent cerebral lesions followed by transplant of TSC. Three months later, HR scintigraphy was repeated and showed images completely different from previous basal study, with hot spot of 99mTc BN1.1 corresponding to the site of TSC transplant. Immuno-histochemistry confirmed the presence of viable TSC. Not only 99mTc BN1.1 HR scan showed viability of transplanted TSC but also the "background brain" was the still now unknown map of BNR in mammalian brain.

  6. [CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].

    PubMed

    Demidova, E; Khurdzidze, G

    2017-06-01

    Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.

  7. The Role of High-resolution Peripheral Quantitative Computed Tomography as a Biomarker for Joint Damage in Inflammatory Arthritis.

    PubMed

    Tam, Lai-Shan

    2016-10-01

    Since 2011, members of the SPECTRA Collaboration (Study grouP for xtrEme-Computed Tomography in Rheumatoid Arthritis) have investigated the validity, reliability, and responsiveness of high-resolution peripheral quantitative computed tomography (HR-pQCT) as a biomarker for joint damage in inflammatory arthritis. Presented in this series of articles are a systematic review of HR-pQCT-related findings to date, a review of selected images of cortical and subchondral trabecular bone of metacarpophalangeal (MCP) joints, results of a consensus process to standardize the definition of erosions and their quantification, as well as an examination of the effect of joint flexion on width and volume assessment of the joint space.

  8. Three phase crystallography and solute distribution analysis during residual austenite decomposition in tempered nanocrystalline bainitic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero, F.G.; Yen, Hung-Wei; Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006

    2014-02-15

    Interphase carbide precipitation due to austenite decomposition was investigated by high resolution transmission electron microscopy and atom probe tomography in tempered nanostructured bainitic steels. Results showed that cementite (θ) forms by a paraequilibrium transformation mechanism at the bainitic ferrite–austenite interface with a simultaneous three phase crystallographic orientation relationship. - Highlights: • Interphase carbide precipitation due to austenite decomposition • Tempered nanostructured bainitic steels • High resolution transmission electron microscopy and atom probe tomography • Paraequilibrium θ with three phase crystallographic orientation relationship.

  9. In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue.

    PubMed

    Kantelhardt, Sven R; Kalasauskas, Darius; König, Karsten; Kim, Ella; Weinigel, Martin; Uchugonova, Aisada; Giese, Alf

    2016-05-01

    High resolution multiphoton tomography and fluorescence lifetime imaging differentiates glioma from adjacent brain in native tissue samples ex vivo. Presently, multiphoton tomography is applied in clinical dermatology and experimentally. We here present the first application of multiphoton and fluorescence lifetime imaging for in vivo imaging on humans during a neurosurgical procedure. We used a MPTflex™ Multiphoton Laser Tomograph (JenLab, Germany). We examined cultured glioma cells in an orthotopic mouse tumor model and native human tissue samples. Finally the multiphoton tomograph was applied to provide optical biopsies during resection of a clinical case of glioblastoma. All tissues imaged by multiphoton tomography were sampled and processed for conventional histopathology. The multiphoton tomograph allowed fluorescence intensity- and fluorescence lifetime imaging with submicron spatial resolution and 200 picosecond temporal resolution. Morphological fluorescence intensity imaging and fluorescence lifetime imaging of tumor-bearing mouse brains and native human tissue samples clearly differentiated tumor and adjacent brain tissue. Intraoperative imaging was found to be technically feasible. Intraoperative image quality was comparable to ex vivo examinations. To our knowledge we here present the first intraoperative application of high resolution multiphoton tomography and fluorescence lifetime imaging of human brain tumors in situ. It allowed in vivo identification and determination of cell density of tumor tissue on a cellular and subcellular level within seconds. The technology shows the potential of rapid intraoperative identification of native glioma tissue without need for tissue processing or staining.

  10. Radiation Hard Sensors for Surveillance.

    DTIC Science & Technology

    1988-03-11

    track position measurements were noted. E. Heijne (CERN) reported on the degradation of silicon detectors for doses larger than 2x10 11 muons /cm 2...Workshop on Transmission and Emission Computerized Tomography , July 1978, Seoul, Korea Nahmias C., Kenyon D.B., Garnett E.S.: Optimization of...crystal size in emission computed tomography . IEEE Trans ,.-.e Nucl Sci NS-27: 529-532, 1980. Mullani N.A., Ficke D.C., Ter-Pogossian M.M.: Cesium Fluoride

  11. A Computerized Tomography Study of Vocal Tract Setting in Hyperfunctional Dysphonia and in Belting.

    PubMed

    Saldias, Marcelo; Guzman, Marco; Miranda, Gonzalo; Laukkanen, Anne-Maria

    2018-04-03

    Vocal tract setting in hyperfunctional patients is characterized by a high larynx and narrowing of the epilaryngeal and pharyngeal region. Similar observations have been made for various singing styles, eg, belting. The voice quality in belting has been described to be loud, speech like, and high pitched. It is also often described as sounding "pressed" or "tense". The above mentioned has led to the hypothesis that belting may be strenuous to the vocal folds. However, singers and teachers of belting do not regard belting as particularly strenuous. This study investigates possible similarities and differences between hyperfunctional voice production and belting. This study concerns vocal tract setting. Four male patients with hyperfunctional dysphonia and one male contemporary commercial music singer were registered with computerized tomography while phonating on [a:] in their habitual speaking pitch. Additionally, the singer used the pitch G4 in belting. The scannings were studied in sagittal and transversal dimensions by measuring lengths, widths, and areas. Various similarities were found between belting and hyperfunction: high vertical larynx position, small hypopharyngeal width, and epilaryngeal outlet. On the other hand, belting differed from dysphonia (in addition to higher pitch) by a wider lip and jaw opening, and larger volumes of the oral cavity. Belting takes advantage of "megaphone shape" of the vocal tract. Future studies should focus on modeling and simulation to address sound energy transfer. Also, they should consider aerodynamic variables and vocal fold vibration to evaluate the "price of decibels" in these phonation types. Copyright © 2018. Published by Elsevier Inc.

  12. Quantitative 3D high resolution transmission ultrasound tomography: creating clinically relevant images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wiskin, James; Klock, John; Iuanow, Elaine; Borup, Dave T.; Terry, Robin; Malik, Bilal H.; Lenox, Mark

    2017-03-01

    There has been a great deal of research into ultrasound tomography for breast imaging over the past 35 years. Few successful attempts have been made to reconstruct high-resolution images using transmission ultrasound. To this end, advances have been made in 2D and 3D algorithms that utilize either time of arrival or full wave data to reconstruct images with high spatial and contrast resolution suitable for clinical interpretation. The highest resolution and quantitative accuracy result from inverse scattering applied to full wave data in 3D. However, this has been prohibitively computationally expensive, meaning that full inverse scattering ultrasound tomography has not been considered clinically viable. Here we show the results of applying a nonlinear inverse scattering algorithm to 3D data in a clinically useful time frame. This method yields Quantitative Transmission (QT) ultrasound images with high spatial and contrast resolution. We reconstruct sound speeds for various 2D and 3D phantoms and verify these values with independent measurements. The data are fully 3D as is the reconstruction algorithm, with no 2D approximations. We show that 2D reconstruction algorithms can introduce artifacts into the QT breast image which are avoided by using a full 3D algorithm and data. We show high resolution gross and microscopic anatomic correlations comparing cadaveric breast QT images with MRI to establish imaging capability and accuracy. Finally, we show reconstructions of data from volunteers, as well as an objective visual grading analysis to confirm clinical imaging capability and accuracy.

  13. High-resolution x-ray tomography using laboratory sources

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing

    2006-08-01

    X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.

  14. Computerized Tomography Measures During and After Artificial Lengthening of the Vocal Tract in Subjects With Voice Disorders.

    PubMed

    Guzman, Marco; Miranda, Gonzalo; Olavarria, Christian; Madrid, Sofia; Muñoz, Daniel; Leiva, Miguel; Lopez, Lorena; Bortnem, Cori

    2017-01-01

    The present study aimed to observe the effect of two types of tubes on vocal tract bidimensional and tridimensional images. Ten participants with hyperfunctional dysphonia were included. Computerized tomography was performed during production of sustained [a:], followed by sustained phonation into a drinking straw, and then repetition of sustained [a:]. A similar procedure was performed with a stirring straw after 15 minutes of vocal rest. Anatomic distances and area measures were obtained from computerized tomography midsagittal and transversal images. Vocal tract total volume was also calculated. During tube phonation, increases were measured in the vertical length of the vocal tract, oropharyngeal area, hypopharyngeal area, outlet of the epilaryngeal tube, and inlet to the lower pharynx. Also, the larynx was lower, and more closure was noted between the velum and the nasal passage. Tube phonation causes an increased total vocal tract volume, mostly because of the increased cross-sectional areas in the pharyngeal region. This change is more prominent when the tube offers more airflow resistance (stirring straw) compared with less airflow resistance (drinking straw). Based on our data and previous studies, it seems that vocal tract changes are not dependent on the voice condition (vocally trained, untrained, or disordered voices), but on the exercise itself and the type of instructions given to subjects. Tube phonation is a good option to reach therapeutic goals (eg, wide pharynx and low larynx) without giving biomechanical instructions, but only asking patients to feel easy voice and vibratory sensations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  15. 3D radar wavefield tomography of comet interiors

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Asphaug, Erik

    2018-04-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.

  16. Three-Dimensional Planning in Maxillofacial Fracture Surgery: Computer-Aided Design/Computer-Aided Manufacture Surgical Splints by Integrating Cone Beam Computerized Tomography Images Into Multislice Computerized Tomography Images.

    PubMed

    Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong

    2016-09-01

    This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by the integrated MSCT images. The patients operated with splints tended to regain occlusion. The patients who were operated with the splints which were designed according to registered MSCT images tended to get occlusal recovered.

  17. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  18. Large depth high-precision FMCW tomography using a distributed feedback laser array

    NASA Astrophysics Data System (ADS)

    DiLazaro, Thomas; Nehmetallah, George

    2018-02-01

    Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.

  19. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    PubMed Central

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  20. Evaluation of effects of anterior palatoplasty operation on upper airway parameters in computed tomography in patients with pure snoring and obstructive sleep apnea syndrome.

    PubMed

    Selcuk, Adin; Ozer, Tulay; Esen, Erkan; Ozdogan, Fatih; Ozel, Halil Erdem; Yuce, Turgut; Caliskan, Sebla; Dasli, Sinem; Bilal, Nagihan; Genc, Gulden; Genc, Selahattin

    2017-05-01

    To investigate changes in upper airway volume parameters measured by computerized tomography scans in patients with surgically treated by anterior palatoplasty of whom having pure snoring and mild-moderate obstructive sleep apnea. A prospective study on consecutively anterior palatoplasty performed pure snoring and obstructive sleep apnea patients. Computerized tomography scans were obtained preoperatively and following anterior palatoplasty procedure to measure changes in upper airway volume. Patients underwent diagnostic drug induced sleep endoscopy to assess the site of obstruction. Preoperative and postoperative measurements were compared using student's t test and Chi-square test. Twenty-two patients (16 men and 6 women, age 48.22 ± 9.23, body mass index 25.85 ± 2.57) completed the trial. Anterior palatoplasty was associated with an increase in total upper airway volume from 4.81 ± 1.73 cm 3 before treatment to 6.57 ± 2.03 cm 3 after treatment (p < 0.005). Change in soft palate thickness did not vary significantly (p < 0.039). The mean soft palate length has changed from 4.13 ± 0.41 to 3.93 ± 0.51 cm (p < 0.001). The preoperative and postoperative measurements of cross-sectional areas and volumes all showed significant difference except velopharynx minimal lateral airway dimension. The operational procedure increased the total upper airway volume much more in men than in women (p < 0.05). Results of this study indicate that anterior palatoplasty operation appears to produce significant increase in upper airway volume and cross sectional area. It does not seem to have an effect on lateral airway dimension. Computerized tomography is a quick and noninvasive imaging technique that allows for quantitative assessment of the velopharyngeal patency changes.

  1. The Supraclavicular Artery Perforator Flap: A Comparative Study of Imaging Techniques Used in Preoperative Mapping.

    PubMed

    Sheriff, Hemin Oathman; Mahmood, Kawa Abdullah; Hamawandi, Nzar; Mirza, Aram Jamal; Hawas, Jawad; Moreno, Esther Granell; Clavero, Juan Antonio; Hankins, Christopher; Masia, Jaume

    2018-05-18

     The supraclavicular artery flap is an excellent flap for head and neck reconstruction. The aim of this study is to assess imaging techniques to define the precise vascular boundaries of this flap.  Six imaging techniques were used for supraclavicular artery mapping in 65 cases; handheld Doppler, triplex ultrasound, computed tomography angiography, magnetic resonance angiography, digital subtraction angiography, and indocyanine green angiography. We checked the site of the perforators, the course of a supraclavicular artery, and anatomical mapping of the supraclavicular artery.  Handheld Doppler identified perforators' sites in 80% of the cases but showed no results for the course of the vessel. Triplex ultrasound identified the site of perforators in 52.9%, and partial mapping of the course of a supraclavicular artery in 64.7% of the cases. Computerized tomography angiography showed the site of perforators in 60%, and the course of supraclavicular artery completely in 45%, and partially in an additional 30%of the cases examined. Magnetic resonance angiography showed negative results for all parameters. Digital subtraction angiography showed the partial course of a supraclavicular artery in 62.5%, but showed no perforators. Indocyanine green angiography showed the site of perforators in 60% and a partial course of supraclavicular artery distal to perforators in 60%.Anatomical mapping of the vessel was possible with computerized tomography angiogram completely in 45%, and partially in 30%, and was also possible with indocyanine green angiography partially in 60%.  Computerized tomography angiography showed best results in the mapping of the supraclavicular artery, but with an inability to define the perforator perfusion territories, and also with risks of irradiation, while indocyanine green angiography is a good alternative as it could precisely map the superficial course of the artery and angiosomes, with no radiation exposure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  3. Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer

    PubMed Central

    Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N

    2016-01-01

    Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909

  4. Cross-correlation photothermal optical coherence tomography with high effective resolution.

    PubMed

    Tang, Peijun; Liu, Shaojie; Chen, Junbo; Yuan, Zhiling; Xie, Bingkai; Zhou, Jianhua; Tang, Zhilie

    2017-12-01

    We developed a cross-correlation photothermal optical coherence tomography (CC-PTOCT) system for photothermal imaging with high lateral and axial resolution. The CC-PTOCT system consists of a phase-sensitive OCT system, a modulated pumping laser, and a digital cross-correlator. The pumping laser was used to induce the photothermal effect in the sample, causing a slight phase modulation of the OCT signals. A spatial phase differentiation method was employed to reduce phase accumulation. The noise brought by the phase differentiation method and the strong background noise were suppressed efficiently by the cross-correlator, which was utilized to extract the photothermal signals from the modulated signals. Combining the cross-correlation technique with spatial phase differentiation can improve both lateral and axial resolution of the PTOCT imaging system. Clear photothermal images of blood capillaries of a mouse ear in vivo were successfully obtained with high lateral and axial resolution. The experimental results demonstrated that this system can enhance the effective transverse resolution, effective depth resolution, and contrast of the PTOCT image effectively, aiding the ongoing development of the accurate 3D functional imaging.

  5. Clinical results of computerized tomography-based simulation with laser patient marking.

    PubMed

    Ragan, D P; Forman, J D; He, T; Mesina, C F

    1996-02-01

    Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.

  6. Evaluation of computed tomography numbers for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Fullerton, G.D.; Ezekiel, J.

    1982-09-01

    Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less

  7. Sarcoidosis Occurring After Lymphoma

    PubMed Central

    London, Jonathan; Grados, Aurélie; Fermé, Christophe; Charmillon, Alexandre; Maurier, François; Deau, Bénédicte; Crickx, Etienne; Brice, Pauline; Chapelon-Abric, Catherine; Haioun, Corinne; Burroni, Barbara; Alifano, Marco; Le Jeunne, Claire; Guillevin, Loïc; Costedoat-Chalumeau, Nathalie; Schleinitz, Nicolas; Mouthon, Luc; Terrier, Benjamin

    2014-01-01

    Abstract Sarcoidosis is a granulomatous disease that most frequently affects the lungs with pulmonary infiltrates and/or bilateral hilar and mediastinal lymphadenopathy. An association of sarcoidosis and lymphoproliferative disease has previously been reported as the sarcoidosis-lymphoma syndrome. Although this syndrome is characterized by sarcoidosis preceding lymphoma, very few cases of sarcoidosis following lymphoma have been reported. We describe the clinical, biological, and radiological characteristics and outcome of 39 patients presenting with sarcoidosis following lymphoproliferative disease, including 14 previously unreported cases and 25 additional patients, after performing a literature review. Hodgkin lymphoma and non-Hodgkin lymphoma were equally represented. The median delay between lymphoma and sarcoidosis was 18 months. Only 16 patients (41%) required treatment. Sarcoidosis was of mild intensity or self-healing in most cases, and overall clinical response to sarcoidosis was excellent with complete clinical response in 91% of patients. Sarcoidosis was identified after a follow-up computerized tomography scan (CT-scan) or 18fluorodeoxyglucose-positron emission tomography/computerized tomography (18FDG-PET/CT) evaluation in 18/34 patients (53%). Sarcoidosis is therefore a differential diagnosis to consider when lymphoma relapse is suspected on a CT-scan or 18FDG-PET/CT, emphasizing the necessity to rely on histological confirmation of lymphoma relapse. PMID:25380084

  8. Use of Noncontrast Computed Tomography and Computed Tomographic Perfusion in Predicting Intracerebral Hemorrhage After Intravenous Alteplase Therapy.

    PubMed

    Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K

    2017-06-01

    Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.

  9. Ultra-high resolution spectral domain optical coherence tomography using supercontinuum light source

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yatagai, Toyohiko; Otani, Yukitoshi

    2016-04-01

    An ultra-high resolution spectral domain optical coherence tomography (SD-OCT) was developed using a cost-effective supercontinuum laser. A spectral filter consists of a dispersive prism, a cylindrical lens and a right-angle prism was built to transmit the wavelengths in range 680-940 nm to the OCT system. The SD-OCT has achieved 1.9 μm axial resolution and the sensitivity was estimated to be 91.5 dB. A zero-crossing fringes matching method which maps the wavelengths to the pixel indices of the spectrometer was proposed for the OCT spectral calibration. A double sided foam tape as a static sample and the tip of a middle finger as a biological sample were measured by the OCT. The adhesive and the internal structure of the foam of the tape were successfully visualized in three dimensions. Sweat ducts was clearly observed in the OCT images at very high resolution. To the best of our knowledge, this is the first demonstration of ultra-high resolution visualization of sweat duct by OCT.

  10. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law.

    PubMed

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law

    PubMed Central

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  12. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

  13. Employing temporal self-similarity across the entire time domain in computed tomography reconstruction

    PubMed Central

    Kazantsev, D.; Van Eyndhoven, G.; Lionheart, W. R. B.; Withers, P. J.; Dobson, K. J.; McDonald, S. A.; Atwood, R.; Lee, P. D.

    2015-01-01

    There are many cases where one needs to limit the X-ray dose, or the number of projections, or both, for high frame rate (fast) imaging. Normally, it improves temporal resolution but reduces the spatial resolution of the reconstructed data. Fortunately, the redundancy of information in the temporal domain can be employed to improve spatial resolution. In this paper, we propose a novel regularizer for iterative reconstruction of time-lapse computed tomography. The non-local penalty term is driven by the available prior information and employs all available temporal data to improve the spatial resolution of each individual time frame. A high-resolution prior image from the same or a different imaging modality is used to enhance edges which remain stationary throughout the acquisition time while dynamic features tend to be regularized spatially. Effective computational performance together with robust improvement in spatial and temporal resolution makes the proposed method a competitive tool to state-of-the-art techniques. PMID:25939621

  14. Relatively Long Survival in Hepatocellular Carcinoma Presenting With Carcinoid Syndrome

    PubMed Central

    Nwokediuko, Sylvester Chuks; Uchenna, Ijoma; Esther, Ofoegbu; Okechukwu, Okafor; Augustine, Onuh; Charity, Ajuyah

    2010-01-01

    Hepatocelluar carcinoma is one of the commonest cancers in Nigeria. Some patients may manifest a variety of paraneoplastic syndromes. Carcinoid syndrome is an extremely rare presentation of hepatocellular carcinoma. A 57-year old man presented with recurrent facial flushing and diarrhea, tricuspid regurgitation, and very high level of urinary hydroxyindoleacetic acid (HIAA) as the first manifestation of a multicentric hepatic lesion which proved histologically to be hepatocellular carcinoma. The lesions also exhibited arterial hypervascularization on contrast enhanced computerized tomography. The patient is still alive after 6 years of symptoms. PMID:27956985

  15. Angiographic and structural imaging using high axial resolution fiber-based visible-light OCT

    PubMed Central

    Pi, Shaohua; Camino, Acner; Zhang, Miao; Cepurna, William; Liu, Gangjun; Huang, David; Morrison, John; Jia, Yali

    2017-01-01

    Optical coherence tomography using visible-light sources can increase the axial resolution without the need for broader spectral bandwidth. Here, a high-resolution, fiber-based, visible-light optical coherence tomography system is built and used to image normal retina in rats and blood vessels in chicken embryo. In the rat retina, accurate segmentation of retinal layer boundaries and quantification of layer thicknesses are accomplished. Furthermore, three distinct capillary plexuses in the retina and the choriocapillaris are identified and the characteristic pattern of the nerve fiber layer thickness in rats is revealed. In the chicken embryo model, the microvascular network and a venous bifurcation are examined and the ability to identify and segment large vessel walls is demonstrated. PMID:29082087

  16. Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature.

    PubMed

    Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L

    2017-01-01

    X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

  17. High resolution 3D laboratory x-ray tomography data of femora from young, 1-14 day old C57BL/6 mice.

    PubMed

    Bortel, Emely L; Duda, Georg N; Mundlos, Stefan; Willie, Bettina M; Fratzl, Peter; Zaslansky, Paul

    2015-09-01

    This data article contains high resolution (1.2 µm effective pixel size) lab-based micro-computed tomography (µCT) reconstructed volume data of the femoral mid-shafts from young C57BL/6 mice. This data formed the basis for the analyses of bone structural development in healthy mice, including closed and open porosity as reported in Bortel et al. [1]. The data reveals changes seen in bone material and porosity distribution observed when mouse bones transform from porous scaffolds into solid structures during normal organogenesis.

  18. High-resolution frequency-domain second-harmonic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Su, Jianping; Tomov, Ivan V.; Jiang, Yi; Chen, Zhongping

    2007-04-01

    We used continuum generated in an 8.5 cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 μm. The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.

  19. Fast deep-tissue multispectral optoacoustic tomography (MSOT) for preclinical imaging of cancer and cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Razansky, Daniel; Ntziachristos, Vasilis

    2012-02-01

    Optoacoustic imaging has enabled the visualization of optical contrast at high resolutions in deep tissue. Our Multispectral optoacoustic tomography (MSOT) imaging results reveal internal tissue heterogeneity, where the underlying distribution of specific endogenous and exogenous sources of absorption can be resolved in detail. Technical advances in cardiac imaging allow motion-resolved multispectral measurements of the heart, opening the way for studies of cardiovascular disease. We further demonstrate the fast characterization of the pharmacokinetic profiles of lightabsorbing agents. Overall, our MSOT findings indicate new possibilities in high resolution imaging of functional and molecular parameters.

  20. The GKSS beamlines at PETRA III and DORIS III

    NASA Astrophysics Data System (ADS)

    Haibel, A.; Beckmann, F.; Dose, T.; Herzen, J.; Utcke, S.; Lippmann, T.; Schell, N.; Schreyer, A.

    2008-08-01

    Due to the high brilliance of the new storage ring PETRA III at DESY in Hamburg, the low emittance of 1 nmrad and the high fraction of coherent photons also in the hard X-ray range extremely intense and sharply focused X-ray light will be provided. These advantages of the beam fulfill excellently the qualifications for the planned Imaging BeamLine IBL and the High Energy Materials Science Beamline (HEMS) at PETRA III, i.e. for absorption tomography, phase enhanced and phase contrast experiments, for diffraction, for nano focusing, for nano tomography, and for high speed or in-situ experiments with highest spatial resolution. The existing HARWI II beamline at the DORIS III storage ring at DESY completes the GKSS beamline concept with setups for high energy tomography (16-150 keV) and diffraction (16-250 keV), characterized by a large field of view and an excellent absorption contrast with spatial resolutions down to 2 μm.

  1. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    PubMed Central

    Glick, Stephen J.; Didier, Clay

    2013-01-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in the spectral response with decreasing detector element size. If not corrected for, this caused a large bias in estimating tissue density parameters for material decomposition. It was also observed that degradation of the spectral response due to characteristic x-rays caused worsening precision in the estimation of tissue density parameters. It was observed that characteristic x-rays do cause some degradation in the spatial and spectral resolution of thin CZT detectors operating under breast CT conditions. These degradations should be manageable with careful selection of the detector element size. Even with the observed spectral distortion from characteristic x-rays, it is still possible to correctly estimate tissue parameters for material decomposition using spectral CT if accurate modeling is used. PMID:24187383

  2. High time-resolution photodetectors for PET applications

    DOE PAGES

    Ronzhin, Anatoly

    2016-02-01

    This paper describes recent developments aiming at the improvement of the time resolution of photodetectors used in positron emission tomography (PET). Promising photodetector candidates for future PET-time-of-flight (TOF) applications are also discussed.

  3. A resolution-enhancing image reconstruction method for few-view differential phase-contrast tomography

    NASA Astrophysics Data System (ADS)

    Guan, Huifeng; Anastasio, Mark A.

    2017-03-01

    It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.

  4. Monitoring of experimental rat lung transplants by high-resolution flat-panel volumetric computer tomography (fpVCT).

    PubMed

    Greschus, Susanne; Kuchenbuch, Tim; Plötz, Christian; Obert, Martin; Traupe, Horst; Padberg, Winfried; Grau, Veronika; Hirschburger, Markus

    2009-01-01

    Noninvasive assessment of experimental lung transplants with high resolution would be favorable to exclude technical failure and to follow up graft outcome in the living animal. Here we describe a flat-panel Volumetric Computed Tomography (fpVCT) technique using a prototype scanner. Lung transplantation was performed in allogeneic as well as in corresponding syngeneic rat strain combinations. At different time points post-transplantation, fpVCT was performed. Lung transplants can be visualized in the living rat with high-spatial resolution. FpVCT allows a detailed analysis of the lung and the bronchi. Infiltrates developing during rejection episodes can be diagnosed and follow-up studies can easily be performed. With fpVCT it is possible to control the technical success of the surgical procedure. Graft rejection can be visualized individually in the living animal noninvasively, which is highly advantageous for studying the pathogenesis of chronic rejection or to monitor new therapies.

  5. Deformable image registration for multimodal lung-cancer staging

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Zang, Xiaonan; Bascom, Rebecca; Allen, Thomas W.; Mahraj, Rickhesvar P. M.; Higgins, William E.

    2016-03-01

    Positron emission tomography (PET) and X-ray computed tomography (CT) serve as major diagnostic imaging modalities in the lung-cancer staging process. Modern scanners provide co-registered whole-body PET/CT studies, collected while the patient breathes freely, and high-resolution chest CT scans, collected under a brief patient breath hold. Unfortunately, no method exists for registering a PET/CT study into the space of a high-resolution chest CT scan. If this could be done, vital diagnostic information offered by the PET/CT study could be brought seamlessly into the procedure plan used during live cancer-staging bronchoscopy. We propose a method for the deformable registration of whole-body PET/CT data into the space of a high-resolution chest CT study. We then demonstrate its potential for procedure planning and subsequent use in multimodal image-guided bronchoscopy.

  6. New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.

    2013-12-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  7. The metabolism of the human brain studied with positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greitz, T.; Ingvar, D.H.; Widen, L.

    1985-01-01

    This volume presents coverage of the use of positron emission tomography (PET) to study the human brain. The contributors assess new developments in high-resolution positron emission tomography, cyclotrons, radiochemistry, and tracer kinetic models, and explore the use of PET in brain energy metabolism, blood flow, and protein synthesis measurements, receptor analysis, and pH determinations, In addition, they discuss the relevance and applications of positron emission tomography from the perspectives of physiology, neurology, and psychiatry.

  8. Color intensity projections: A rapid approach for evaluating four-dimensional CT scans in treatment planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cover, Keith S.; Lagerwaard, Frank J.; Senan, Suresh

    2006-03-01

    Purpose: Four-dimensional computerized tomography scans (4DCT) enable intrafractional motion to be determined. Because more than 1500 images can be generated with each 4DCT study, tools for efficient data visualization and evaluation are needed. We describe the use of color intensity projections (CIP) for visualizing mobility. Methods: Four-dimensional computerized tomography images of each patient slice were combined into a CIP composite image. Pixels largely unchanged over the component images appear unchanged in the CIP image. However, pixels whose intensity changes over the phases of the 4DCT appear in the CIP image as colored pixels, and the hue encodes the percentage ofmore » time the tissue was in each location. CIPs of 18 patients were used to study tumor and surrogate markers, namely the diaphragm and an abdominal marker block. Results: Color intensity projections permitted mobility of high-contrast features to be quickly visualized and measured. In three selected expiratory phases ('gating phases') that were reviewed in the sagittal plane, gating would have reduced mean tumor mobility from 6.3 {+-} 2.0 mm to 1.4 {+-} 0.5 mm. Residual tumor mobility in gating phases better correlated with residual mobility of the marker block than that of the diaphragm. Conclusion: CIPs permit immediate visualization of mobility in 4DCT images and simplify the selection of appropriate surrogates for gated radiotherapy.« less

  9. Lensless transport-of-intensity phase microscopy and tomography with a color LED matrix

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-07-01

    We demonstrate lens-less quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED array. Based on multi-wavelength transport-of- intensity phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of ˜3.7μm and an axial resolution of ˜5μm, over wide large imaging FOV of 24mm2. The resolution and FOV can be further improved by using a larger image sensors with small pixels straightforwardly. This compact, low-cost, robust, portable platform with a decent imaging performance may offer a cost-effective tool for telemedicine needs, or for reducing health care costs for point-of-care diagnostics in resource-limited environments.

  10. Scanning instrumentation for measuring magnetic field trapping in high Tc superconductors

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.; Helton, A. J.

    1993-01-01

    Computerized scanning instrumentation measures and displays trapped magnetic fields across the surface of high Tc superconductors at 77 K. Data are acquired in the form of a raster scan image utilizing stepping motor stages for positioning and a cryogenic Hall probe for magnetic field readout. Flat areas up to 45 mm in diameter are scanned with 0.5-mm resolution and displayed as false color images.

  11. Neurologic applications of positron emission tomography.

    PubMed

    Lenzi, G L; Pantano, P

    1984-11-01

    The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential.

  12. Developmental approach towards high resolution optical coherence tomography for glaucoma diagnostics

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Ketelhut, Steffi; Heiduschka, Peter; Thorn, Marie; Larsen, Michael; Schnekenburger, Jürgen

    2018-02-01

    Glaucoma is caused by a pathological rise in the intraocular pressure, which results in a progressive loss of vision by a damage to retinal cells and the optical nerve head. Early detection of pressure-induced damage is thus essential for the reduction of eye pressure and to prevent severe incapacity or blindness. Within the new European Project GALAHAD (Glaucoma Advanced, Label free High Resolution Automated OCT Diagnostics), we will develop a new low-cost and high-resolution OCT system for the early detection of glaucoma. The device is designed to improve diagnosis based on a new system of optical coherence tomography. Although OCT systems are at present available in ophthalmology centres, high-resolution devices are extremely expensive. The novelty of the new Galahad system is its super wideband light source to achieve high image resolution at a reasonable cost. Proof of concept experiments with cell and tissue Glaucoma test standards and animal models are planned for the test of the new optical components and new algorithms performance for the identification of Glaucoma associated cell and tissue structures. The intense training of the software systems with various samples should result in a increased sensitivity and specificity of the OCT software system.

  13. Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography

    PubMed Central

    Ruggeri, Marco; Major, James C.; McKeown, Craig; Knighton, Robert W.; Puliafito, Carmen A.

    2010-01-01

    Purpose. To reveal three-dimensional (3-D) information about the retinal structures of birds of prey in vivo. Methods. An ultra-high resolution spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of retinas of birds of prey. The calibrated imaging depth and axial resolution of the system were 3.1 mm and 2.8 μm (in tissue), respectively. 3-D segmentation was performed for calculation of the retinal nerve fiber layer (RNFL) map. Results. High-resolution OCT images were obtained of the retinas of four species of birds of prey: two diurnal hawks (Buteo platypterus and Buteo brachyurus) and two nocturnal owls (Bubo virginianus and Strix varia). These images showed the detailed retinal anatomy, including the retinal layers and the structure of the deep and shallow foveae. The calculated thickness map showed the RNFL distribution. Traumatic injury to one bird's retina was also successfully imaged. Conclusions. Ultra-high resolution SD-OCT provides unprecedented high-quality 2-D and 3-D in vivo visualization of the retinal structures of birds of prey. SD-OCT is a powerful imaging tool for vision research in birds of prey. PMID:20554605

  14. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging.

    PubMed

    Miller, Joe; Durack, Jeremy C; Sorensen, Mathew D; Wang, James H; Stoller, Marshall L

    2013-02-01

    Calyceal selection for percutaneous renal access is critical for safe, effective performance of percutaneous nephrolithotomy. Available anatomical evidence is contradictory and incomplete. We present detailed renal calyceal anatomy obtained from in vivo 3-dimentional computerized tomography renderings. A total of 60 computerized tomography urograms were randomly selected. The renal collecting system was isolated and 3-dimensional renderings were constructed. The primary plane of each calyceal group of 100 kidneys was determined. A coronal maximum intensity projection was used for simulated percutaneous access. The most inferior calyx was designated calyx 1. Moving superiorly, the subsequent calyces were designated calyx 2 and, when present, calyx 3. The surface rendering was rotated to assess the primary plane of the calyceal group and the orientation of the select calyx. The primary plane of the upper pole calyceal group was mediolateral in 95% of kidneys and the primary plane of the lower pole calyceal group was anteroposterior in 95%. Calyx 2 was chosen in 90 of 97 simulations and it was appropriate in 92%. Calyx 3 was chosen in 7 simulations but it was appropriate in only 57%. Calyx 1 was not selected in any simulation and it was anteriorly oriented in 75% of kidneys. Appropriate lower pole calyceal access can be reliably accomplished with an understanding of the anatomical relationship between individual calyceal orientation and the primary plane of the calyceal group. Calyx 2 is most often appropriate for accessing the anteroposterior primary plane of the lower pole. Calyx 1 is most commonly oriented anterior. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures.

    PubMed

    Maffezzoni, Filippo; Maddalo, Michele; Frara, Stefano; Mezzone, Monica; Zorza, Ivan; Baruffaldi, Fabio; Doglietto, Francesco; Mazziotti, Gherardo; Maroldi, Roberto; Giustina, Andrea

    2016-11-01

    Vertebral fractures are an emerging complication of acromegaly but their prediction is still difficult occurring even in patients with normal bone mineral density. In this study we evaluated the ability of high-resolution cone-beam computed tomography to provide information on skeletal abnormalities associated with vertebral fractures in acromegaly. 40 patients (24 females, 16 males; median age 57 years, range 25-72) and 21 healthy volunteers (10 females, 11 males; median age 60 years, range: 25-68) were evaluated for trabecular (bone volume/trabecular volume ratio, mean trabecular separation, and mean trabecular thickness) and cortical (thickness and porosity) parameters at distal radius using a high-resolution cone-beam computed tomography system. All acromegaly patients were evaluated for morphometric vertebral fractures and for mineral bone density by dual-energy X-ray absorptiometry at lumbar spine, total hip, femoral neck, and distal radius. Acromegaly patients with vertebral fractures (15 cases) had significantly (p < 0.05) lower bone volume/trabecular volume ratio, greater mean trabecular separation, and higher cortical porosity vs. nonfractured patients, without statistically significant differences in mean trabecular thickness and cortical thickness. Fractured and nonfractured acromegaly patients did not have significant differences in bone density at either skeletal site. Patients with acromegaly showed lower bone volume/trabecular volume ratio (p = 0.003) and mean trabecular thickness (p < 0.001) and greater mean trabecular separation (p = 0.02) as compared to control subjects, without significant differences in cortical thickness and porosity. This study shows for the first time that abnormalities of bone microstructure are associated with radiological vertebral fractures in acromegaly. High-resolution cone-beam computed tomography at the distal radius may be useful to evaluate and predict the effects of acromegaly on bone microstructure.

  16. Thirteen-Year Evaluation of Highly Cross-Linked Polyethylene Articulating With Either 28-mm or 36-mm Femoral Heads Using Radiostereometric Analysis and Computerized Tomography.

    PubMed

    Nebergall, Audrey K; Greene, Meridith E; Rubash, Harry; Malchau, Henrik; Troelsen, Anders; Rolfson, Ola

    2016-09-01

    The objective of this 13-year prospective evaluation of highly cross-linked ultra high molecular weight polyethylene (HXLPE) was to (1) assess the long-term wear of HXLPE articulating with 2 femoral head sizes using radiostereometric analysis (RSA) and to (2) determine if osteolysis is a concern with this material through the use of plain radiographs and computerized tomography (CT). All patients received a Longevity HXLPE liner with tantalum beads and either a 28-mm or 36-mm femoral head. Twelve patients (6 in each head size group) agreed to return for 13-year RSA, plain radiograph, and CT follow-up. The 1-year and 13-year plain radiographs as well as the CT scans were analyzed for the presence of osteolysis. The 13-year mean ± standard error steady-state wear was 0.05 ± 0.02 mm with no significant increase over time or between the 2 head size groups. Two patients' CT scans showed radiolucent regions in the acetabulum of 4.51 cm(3) and 11.25 cm(3), respectively. In one patient, this area corresponded to a partially healed degenerative cyst treated with autograft during surgery. The second patient had an acetabular protrusio treated with autograft, and the CT scan revealed areas of remodeling of this graft. One patient's 13-year plain radiographs showed evidence of cup loosening and linear radiolucencies in zones 2 and 3. There was no evidence of significant wear over time using RSA. The CT scans did not show evidence of osteolysis due to wear particles. These results suggest that this material has reduced wear compared to conventional polyethylene, irrespective of head size. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Low osmolar (non-ionic) contrast media versus high osmolar (ionic) contrast media in intravenous urography and enhanced computerized tomography: a cost-effectiveness analysis.

    PubMed

    Wangsuphachart, S

    1991-12-01

    The cost-effectiveness of three alternative policies for the use of intravenous contrast media for urography and enhanced computerized tomography (CT) are analyzed. Alternative #1 is to use high osmolar contrast media (HOCM) in all patients, the historical policy. Alternative #2 is to replace it with low osmolar contrast media (LOCM) in all patients. Alternative #3 is to use LOCM only in the high risk patients. Data on the 6,242 patients who underwent intravenous urography and enhanced CT at the Department of Radiology, Chulalongkorn Hospital in 1989 were used. Both societal and hospital viewpoints were analyzed. The incremental cost-effectiveness (ICE) between #2 and #1 was 26,739 Baht (US$1,070) per healthy day saved (HDS), while the ICE between #3 and #1 was 12,057 Baht (US$482) per HDS. For fatal cases only, ICE between #2 and #1 was 35,111 Baht (US$1,404) per HDS, while the ICE between #3 and #1 was 18,266 Baht (US$731) per HDS. The incremental cost (IC) per patient was 2,341 Baht (US$94) and 681 Baht (US$27) respectively. For the hospital viewpoint the ICE between #2 and #1 was 13,744 (US$550) and between #3 and #1 was 6,127 Baht (US$245) per HDS. The IC per patient was 1,203 Baht (US$48) and 346 Baht (US$14), respectively. From the sensitivity analysis, #3 should be used if the LOCM price is reduced more than 75% (equal to 626 Baht or less) and more than 80% of the patients are able to pay for the contrast media.

  18. Optical coherence tomography for embryonic imaging: a review

    PubMed Central

    Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    Abstract. Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development. PMID:27228503

  19. High-resolution multimodal clinical multiphoton tomography of skin

    NASA Astrophysics Data System (ADS)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  20. Clinical combination of multiphoton tomography and high frequency ultrasound imaging for evaluation of skin diseases

    NASA Astrophysics Data System (ADS)

    König, K.; Speicher, M.; Koehler, M. J.; Scharenberg, R.; Elsner, P.; Kaatz, M.

    2010-02-01

    For the first time, high frequency ultrasound imaging, multiphoton tomography, and dermoscopy were combined in a clinical study. Different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond-laser multiphoton tomograph DermaInspectTM and (iii) dermoscopes. Dermoscopy provides two-dimensional color imaging of the skin surface with a magnification up to 70x. Ultrasound images are generated from reflections of the emitted ultrasound signal, based on inhomogeneities of the tissue. These echoes are converted to electrical signals. Depending on the ultrasound frequency the penetration depth varies from about 1 mm to 16 mm in dermatological application. The 100-MHz-ultrasound system provided an axial resolution down to 16 μm and a lateral resolution down to 32 μm. In contrast to the wide-field ultrasound images, multiphoton tomography provided horizontal optical sections of 0.36×0.36 mm2 down to 200 μm tissue depth with submicron resolution. The autofluorescence of mitochondrial coenzymes, melanin, and elastin as well as the secondharmonic- generation signal of the collagen network were imaged. The combination of ultrasound and multiphoton tomography provides a novel opportunity for diagnostics of skin disorders.

  1. Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lal, Cerine; McGrath, James; Subhash, Hrebesh; Rani, Sweta; Ritter, Thomas; Leahy, Martin

    2016-03-01

    Optical Coherence Tomography (OCT) is a non-invasive 3 dimensional optical imaging modality that enables high resolution cross sectional imaging in biological tissues and materials. Its high axial and lateral resolution combined with high sensitivity, imaging depth and wide field of view makes it suitable for wide variety of high resolution medical imaging applications at clinically relevant speed. With the advent of swept source lasers, the imaging speed of OCT has increased considerably in recent years. OCT has been used in ophthalmology to study dynamic changes occurring in the cornea and iris, thereby providing physiological and pathological changes that occur within the anterior segment structures such as in glaucoma, during refractive surgery, lamellar keratoplasty and corneal diseases. In this study, we assess the changes in corneal thickness in the anterior segment of the eye during wound healing process in a rat corneal burn model following stem cell therapy using high speed swept source OCT.

  2. Childhood Psychosis and Computed Tomographic Brain Scan Findings.

    ERIC Educational Resources Information Center

    Gillberg, Christopher; Svendsen, Pal

    1983-01-01

    Computerized tomography (CT) of the brain was used to examine 27 infantile autistic children, 9 children with other kinds of childhood psychoses, 23 children with mental retardation, and 16 normal children. Gross abnormalities were seen in 26 percent of the autism cases. (Author/SEW)

  3. Checking the possibility of controlling fuel element by X-ray computerized tomography

    NASA Astrophysics Data System (ADS)

    Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.

    2017-08-01

    The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.

  4. Skeletal maturity assessment with the use of cone-beam computerized tomography.

    PubMed

    Joshi, Vajendra; Yamaguchi, Tetsutaro; Matsuda, Yukiko; Kaneko, Norikazu; Maki, Kotarou; Okano, Tomohiro

    2012-06-01

    The aim of the study was to compare cervical vertebrae maturity assessed with the use of cone-beam computerized tomography (CBCT) with the hand-wrist maturation method and cervical vertebrae maturation assessed with the use of lateral cephalography for the assessment of skeletal maturity. Assessment of skeletal maturation was done using skeletal maturity indicators (SMI) from hand-wrist radiography, cervical vertebrae maturity index (CVMI) from CBCT and lateral cephalography (cephalo-CVMI). The Spearman correlation coefficient was used for statistical analysis. We observed a significant relationship between CBCT-CVMI and cephalo-CVMI as well as between CBCT-CVMI and SMI stages. The Spearman correlation coefficient value between CBCT-CVMI and cephalo-CVMI was 0.975 (P < .0001) and between CBCT-CVMI and SMI was 0.961(P < .0001). Cervical vertebrae maturity assessment with CBCT provided a reliable assessment of pubertal growth spurt, and therefore CBCT can be used to assess skeletal maturity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Contrast-enhanced multidetector computerized tomography for odontogenic cysts and cystic-appearing tumors of the jaws: is it useful?

    PubMed

    Kakimoto, Naoya; Chindasombatjaroen, Jira; Tomita, Seiki; Shimamoto, Hiroaki; Uchiyama, Yuka; Hasegawa, Yoko; Kishino, Mitsunobu; Murakami, Shumei; Furukawa, Souhei

    2013-01-01

    The purpose of this study was to investigate the usefulness of computerized tomography (CT), particularly contrast-enhanced CT, in differentiation of jaw cysts and cystic-appearing tumors. We retrospectively analyzed contrast-enhanced CT images of 90 patients with odontogenic jaw cysts or cystic-appearing tumors. The lesion size and CT values were measured and the short axis to long axis (S/L) ratio, contrast enhancement (CE) ratio, and standard deviation ratio were calculated. The lesion size and the S/L ratio of keratocystic odontogenic tumors were significantly different from those of radicular cysts and follicular cysts. There were no significant differences in the CE ratio among the lesions. Multidetector CT provided diagnostic information about the size of odontogenic cysts and cystic-appearing tumors of the jaws that was related to the lesion type, but showed no relation between CE ratio and the type of these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Genesis of Atlantic Lows Experiment NASA Electra Boundary Layer Flights Data Report

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Melfi, S. H.; Boers, Reinout

    1988-01-01

    The objective of this research was to obtain high resolution measurements of the height of the Marine Atmospheric Boundary Layer (MABL) during cold air outbreaks using an Airborne Lidar System. The research was coordinated with other investigators participating in the Genesis of Atlantic Lows Experiment (GALE). An objective computerized scheme was developed to obtain the Boundary Layer Height from the Lidar Data. The algorithm was used on each of the four flight days producing a high resolution data set of the MABL height over the GALE experiment area. Plots of the retrieved MABL height as well as tabular data summaries are presented.

  7. High resolution IVEM tomography of biological specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedat, J.W.; Agard, D.A.

    Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significantmore » new insights into biological function.« less

  8. Comparing the Effect of Different Voxel Resolutions for Assessment of Vertical Root Fracture of Permanent Teeth

    PubMed Central

    Uzun, Ismail; Gunduz, Kaan; Celenk, Peruze; Avsever, Hakan; Orhan, Kaan; Canitezer, Gozde; Ozmen, Bilal; Cicek, Ersan; Egrioglu, Erol

    2015-01-01

    Background: The teeth with undiagnosed vertical root fractures (VRFs) are likely to receive endodontic treatment or retreatment, leading to frustration and inappropriate endodontic therapies. Moreover, many cases of VRFs cannot be diagnosed definitively until the extraction of tooth. Objectives: This study aimed to assess the use of different voxel resolutions of two different cone beam computerized tomography (CBCT) units in the detection VRFs in vitro. Materials and Methods: The study material comprised 74 extracted human mandibular single rooted premolar teeth without root fractures that had not undergone any root-canal treatment. Images were obtained by two different CBCT units. Four image sets were obtained as follows: 1) 3D Accuitomo 170, 4 × 4 cm field of view (FOV) (0.080 mm3); 2) 3D Accuitomo 170. 6 × 6 cm FOV (0.125 mm3); 3) NewTom 3G, 6˝ (0.16 mm3) and 4) NewTom 3G, 9˝ FOV (0.25 mm3). Kappa coefficients were calculated to assess both intra- and inter-observer agreements for each image set. Results: No significant differences were found among observers or voxel sizes, with high average Z (Az) results being reported for all groups. Both intra- and inter-observer agreement values were relatively better for 3D Accuitomo 170 images than the images from NewTom 3G. The highest Az and kappa values were obtained with 3D Accuitomo 170, 4 × 4 cm FOV (0.080 mm3) images. Conclusion: No significant differences were found among observers or voxel sizes, with high Az results reported for all groups. PMID:26557279

  9. Ultrahigh-Resolution Optical Coherence Tomography in Glaucoma

    PubMed Central

    Wollstein, Gadi; Paunescu, Leila A.; Ko, Tony H.; Fujimoto, James G.; Kowalevicz, Andrew; Hartl, Ingmar; Beaton, Siobahn; Ishikawa, Hiroshi; Mattox, Cynthia; Singh, Omah; Duker, Jay; Drexler, Wolfgang; Schuman, Joel S.

    2007-01-01

    Objective Optical coherence tomography (OCT) has been shown to be a valuable tool in glaucoma assessment. We investigated a new ultrahigh-resolution OCT (UHR-OCT) imaging system in glaucoma patients and compared the findings with those obtained by conventional-resolution OCT. Design Retrospective comparative case series. Participants A normal subject and 4 glaucoma patients representing various stages of glaucomatous damage. Testing All participants were scanned with StratusOCT (axial resolution of ~10 μm) and UHR-OCT (axial resolution of ~3 μm) at the same visit. Main Outcome Measure Comparison of OCT findings detected with StratusOCT and UHR-OCT. Results Ultrahigh-resolution OCT provides a detailed cross-sectional view of the scanned retinal area that allows differentiation between retinal layers. These UHR images were markedly better than those obtained by the conventional-resolution OCT. Conclusions Ultrahigh-resolution OCT provides high-resolution images of the ocular posterior segment, which improves the ability to detect retinal abnormalities due to glaucoma. PMID:15691556

  10. High-resolution corneal topography and tomography of fish eye using wide-field white light interference microscopy

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-04-01

    Topography and tomography of fish cornea is reconstructed using high resolution white light interference microscopy. White light interferograms at different depths were recorded by moving the object axially. For each depth position, five phase shifted interferograms were recorded and analyzed. From the reconstructed phase maps, the corneal topography and hence the refractive index was determined and from amplitude images the cross-sectional image of fish cornea was reconstructed. In the present method, we utilize a nearly common-path interference microscope and wide field illumination and hence do not require any mechanical B-scan. Therefore, the phase stability of the recorded data is improved.

  11. Imaging the small animal cardiovascular system in real-time with multispectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Herzog, Eva; Razansky, Daniel; Ntziachristos, Vasilis

    2011-03-01

    Multispectral Optoacoustic Tomography (MSOT) is an emerging technique for high resolution macroscopic imaging with optical and molecular contrast. We present cardiovascular imaging results from a multi-element real-time MSOT system recently developed for studies on small animals. Anatomical features relevant to cardiovascular disease, such as the carotid arteries, the aorta and the heart, are imaged in mice. The system's fast acquisition time, in tens of microseconds, allows images free of motion artifacts from heartbeat and respiration. Additionally, we present in-vivo detection of optical imaging agents, gold nanorods, at high spatial and temporal resolution, paving the way for molecular imaging applications.

  12. Sarcoidosis Occurring After Solid Cancer: A Nonfortuitous Association

    PubMed Central

    Grados, Aurélie; Ebbo, Mikael; Bernit, Emmanuelle; Veit, Véronique; Mazodier, Karin; Jean, Rodolphe; Coso, Diane; Aurran-Schleinitz, Thérèse; Broussais, Florence; Bouabdallah, Reda; Gravis, Gwenaelle; Goncalves, Anthony; Giovaninni, Marc; Sève, Pascal; Chetaille, Bruno; Gavet-Bongo, Florence; Weitten, Thierry; Pavic, Michel; Harlé, Jean-Robert; Schleinitz, Nicolas

    2015-01-01

    Abstract The association between cancer and sarcoidosis is controversial. Some epidemiological studies show an increase of the incidence of cancer in patients with sarcoidosis but only few cases of sarcoidosis following cancer treatment have been reported. We conducted a retrospective case study from internal medicine and oncology departments for patients presenting sarcoidosis after solid cancer treatment. We also performed a literature review to search for patients who developed sarcoidosis after solid cancer. We describe the clinical, biological, and radiological characteristics and outcome of these patients. Twelve patients were included in our study. Various cancers were observed with a predominance of breast cancer. Development of sarcoidosis appeared in the 3 years following cancer and was asymptomatic in half of the patients. The disease was frequently identified after a follow-up positron emission tomography computerized tomography evaluation. Various manifestations were observed but all patients presented lymph node involvement. Half of the patients required systemic therapy. With a median follow-up of 73 months, no patient developed cancer relapse. Review of the literature identified 61 other patients for which the characteristics of both solid cancer and sarcoidosis were similar to those observed in our series. This report demonstrates that sarcoidosis must be considered in the differential diagnosis of patients with a history of malignancy who have developed lymphadenopathy or other lesions on positron emission tomography computerized tomography. Histological confirmation of cancer relapse is mandatory in order to avoid unjustified treatments. This association should be consider as a protective factor against cancer relapse. PMID:26181571

  13. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography.

    PubMed

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ 0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  14. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  15. RAYSAW: a log sawing simulator for 3D laser-scanned hardwood logs

    Treesearch

    R. Edward Thomas

    2013-01-01

    Laser scanning of hardwood logs provides detailed high-resolution imagery of log surfaces. Characteristics such as sweep, taper, and crook, as well as most surface defects, are visible to the eye in the scan data. In addition, models have been developed that predict interior knot size and position based on external defect information. Computerized processing of...

  16. The QUALYOR (QUalité Osseuse LYon Orléans) study: a new cohort for non invasive evaluation of bone quality in postmenopausal osteoporosis. Rationale and study design.

    PubMed

    Chapurlat, Roland; Pialat, Jean-Baptiste; Merle, Blandine; Confavreux, Elisabeth; Duvert, Florence; Fontanges, Elisabeth; Khacef, Farida; Peres, Sylvie Loiseau; Schott, Anne-Marie; Lespessailles, Eric

    2017-12-27

    The diagnostic performance of densitometry is inadequate. New techniques of non-invasive evaluation of bone quality may improve fracture risk prediction. Testing the value of these techniques is the goal of the QUALYOR cohort. The bone mineral density (BMD) of postmenopausal women who sustain osteoporotic fracture is generally above the World Health Organization definition for osteoporosis. Therefore, new approaches to improve the detection of women at high risk for fracture are warranted. We have designed and recruited a new cohort to assess the predictive value of several techniques to assess bone quality, including high-resolution peripheral quantitative computerized tomography (HRpQCT), hip QCT, calcaneus texture analysis, and biochemical markers. We have enrolled 1575 postmenopausal women, aged at least 50, with an areal BMD femoral neck or lumbar spine T-score between - 1.0 and - 3.0. Clinical risk factors for fracture have been collected along with serum and blood samples. We describe the design of the QUALYOR study. Among these 1575 women, 80% were aged at least 60. The mean femoral neck T-score was - 1.6 and the mean lumbar spine T-score was -1.2. This cohort is currently being followed up. QUALYOR will provide important information on the relationship between bone quality variables and fracture risk in women with moderately decreased BMD.

  17. High-Resolution Three-Dimensional Computed Tomography for Assessing Complications Related to Intrathecal Drug Delivery.

    PubMed

    Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme

    2016-07-01

    The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.

  18. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    PubMed

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  19. Preliminary results of a computerized Placido disk surgical corneal topographer

    NASA Astrophysics Data System (ADS)

    Carvalho, Luis A.; Tonissi, S. A.; Castro, Jarbas C.

    1999-06-01

    We have developed a novel instrument for computerized corneal topography during surgery. The instrument measures a region of approximately 7 mm in diameter, providing the surgeon with precise values of power and astigmatism. The system is based on a Placido Disc projecting system, which is attached to the objective lens of the surgical microscope. The Placido Disc pattern is reflected by a 50% beam splitter attached to the body of the microscope. At the beam splitter we installed our home-made adaptor and a CCD monochromatic high resolution camera. A high quality frame grabber is installed on a PC and images are digitized at a 480x640 resolution. Algorithms based on image processing techniques were implemented for edge detection of pattern. Calibrating curves based on 4 spherical surfaces were generated and approximately 3600 points were calculated for each exam. Preliminary measurements on 10 healthy corneas were compared with the measurements made on an EyeSys Corneal Topographer. Mean deviation was 0.05 for radius of curvature, 0.24 D for power and 5 degrees for cylinder. This system, with some improvements, may be successfully used to diminish high post surgical astigmatisms in surgeries such as cataract and corneal transplant. This system could also be used to gather preoperative data in corneal topography assisted LASIK.

  20. Early Diagnosis of Breast Cancer.

    PubMed

    Wang, Lulu

    2017-07-05

    Early-stage cancer detection could reduce breast cancer death rates significantly in the long-term. The most critical point for best prognosis is to identify early-stage cancer cells. Investigators have studied many breast diagnostic approaches, including mammography, magnetic resonance imaging, ultrasound, computerized tomography, positron emission tomography and biopsy. However, these techniques have some limitations such as being expensive, time consuming and not suitable for young women. Developing a high-sensitive and rapid early-stage breast cancer diagnostic method is urgent. In recent years, investigators have paid their attention in the development of biosensors to detect breast cancer using different biomarkers. Apart from biosensors and biomarkers, microwave imaging techniques have also been intensely studied as a promising diagnostic tool for rapid and cost-effective early-stage breast cancer detection. This paper aims to provide an overview on recent important achievements in breast screening methods (particularly on microwave imaging) and breast biomarkers along with biosensors for rapidly diagnosing breast cancer.

  1. Photoacoustic tomography guided diffuse optical tomography for small-animal model

    NASA Astrophysics Data System (ADS)

    Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao

    2015-03-01

    Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.

  2. Comparison of optical projection tomography and optical coherence tomography for assessment of murine embryonic development

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Vadakkan, Tegy; Piazza, Victor; Udan, Ryan; Frazier, Michael V.; Janecek, Trevor; Dickinson, Mary E.; Larin, Kirill V.

    2015-03-01

    The murine model is a common model for studying developmental diseases. In this study, we compare the performance of the relatively new method of Optical Projection Tomography (OPT) to the well-established technique of Optical Coherence Tomography (OCT) to assess murine embryonic development at three stages, 9.5, 11.5, and 13.5 days post conception. While both methods can provide spatial resolution at the micrometer scale, OPT can provide superior imaging depth compared to OCT. However, OPT requires samples to be fixed, placed in an immobilization media such as agar, and cleared before imaging. Because OCT does not require fixing, it can be used to image embryos in vivo and in utero. In this study, we compare the efficacy of OPT and OCT for imaging murine embryonic development. The data demonstrate the superior capability of OPT for imaging fine structures with high resolution in optically-cleared embryos while only OCT can provide structural and functional imaging of live embryos ex vivo and in utero with micrometer scale resolution.

  3. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    PubMed

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  4. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  5. Great Ears: Low-Frequency Sensitivity Correlates in Land and Marine Leviathans.

    PubMed

    Ketten, D R; Arruda, J; Cramer, S; Yamato, M

    2016-01-01

    Like elephants, baleen whales produce low-frequency (LF) and even infrasonic (IF) signals, suggesting they may be particularly susceptible to underwater anthropogenic sound impacts. Analyses of computerized tomography scans and histologies of the ears in five baleen whale and two elephant species revealed that LF thresholds correlate with basilar membrane thickness/width and cochlear radii ratios. These factors are consistent with high-mass, low-stiffness membranes and broad spiral curvatures, suggesting that Mysticeti and Proboscidea evolved common inner ear adaptations over similar time scales for processing IF/LF sounds despite operating in different media.

  6. A look at 15 years of planar thallium-201 imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaul, S.

    1989-09-01

    Extensive experience has been accumulated over the past 15 years regarding planar thallium-201 imaging. Quantitation of technically superior images provides a high sensitivity and specificity for the detection of CAD. In addition, planar thallium-201 images provide very important prognostic information in different clinical situations. Although single photon emission computerized tomography offers potential theoretical advantages over planar imaging, because of the problems involved in reconstruction, specifically the creation of artifacts, it may not be the ideal imaging modality in all situations. Good quality planar thallium-201 imaging still has an important role in clinical cardiology today. 144 references.

  7. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    NASA Astrophysics Data System (ADS)

    Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.

    2012-03-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  8. Ultrahigh-resolution endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Herz, Paul R.; Hsiung, Pei-Lin; Aguirre, Aaron D.; Mashimo, Hiroshi; Desai, Saleem; Pedrosa, Macos; Koski, Amanda; Schmitt, Joseph M.; Fujimoto, James G.

    2005-01-01

    Early detection of gastrointestinal cancer is essential for the patient treatment and medical care. Endoscopically guided biopsy is currently the gold standard for the diagnosis of early esophageal cancer, but can suffer from high false negative rates due to sampling errors. Optical coherence tomography (OCT) is an emerging medical imaging technology which can generate high resolution, cross-sectional images of tissue in situ and in real time, without the removal of tissue specimen. Although endoscopic OCT has been used successfully to identify certain pathologies in the gastrointestinal tract, the resolution of current endoscopic OCT systems has been limited to 10 - 15 m for clinical procedures. In this study, in vivo imaging of the gastrointestinal tract is demonstrated at a three-fold higher resolution (< 5 m), using a portable, broadband, Cr4+:Forsterite laser as the optical light source. Images acquired from the esophagus, gastro-esophageal junction and colon on animal model display tissue microstructures and architectural details at high resolution, and the features observed in the OCT images are well-matched with histology. The clinical feasibility study is conducted through delivering OCT imaging catheter using standard endoscope. OCT images of normal esophagus, Barrett's esophagus, and esophageal cancers are demonstrated with distinct features. The ability of high resolution endoscopic OCT to image tissue morphology at an unprecedented resolution in vivo would facilitate the development of OCT as a potential imaging modality for early detection of neoplastic changes.

  9. Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    2007-05-01

    An electrical capacitance volume tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 × 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This paper presents a method of reconstructing images of high contrast dielectric materials using only the self-capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminium structure inserted at different positions within the sensing region. Comparisons with standard two-dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  10. Electrical capacitance volume tomography of high contrast dielectrics using a cuboid geometry

    NASA Astrophysics Data System (ADS)

    Nurge, Mark A.

    An Electrical Capacitance Volume Tomography system has been created for use with a new image reconstruction algorithm capable of imaging high contrast dielectric distributions. The electrode geometry consists of two 4 x 4 parallel planes of copper conductors connected through custom built switch electronics to a commercially available capacitance to digital converter. Typical electrical capacitance tomography (ECT) systems rely solely on mutual capacitance readings to reconstruct images of dielectric distributions. This dissertation presents a method of reconstructing images of high contrast dielectric materials using only the self capacitance measurements. By constraining the unknown dielectric material to one of two values, the inverse problem is no longer ill-determined. Resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. Comparisons with standard two dimensional ECT systems highlight the capabilities and limitations of the electronics and reconstruction algorithm.

  11. 32 CFR Appendix A to Part 199 - Acronyms

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...

  12. 32 CFR Appendix A to Part 199 - Acronyms

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...

  13. 32 CFR Appendix A to Part 199 - Acronyms

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...

  14. Non-Invasive Visualization and Quantitation of Cardiovascular Structure and Function.

    ERIC Educational Resources Information Center

    Ritman, E. L.; And Others

    1979-01-01

    Described is a new approach to investigative physiology based on computerized transaxial tomography, in which visualization and measurement of the internal structure of the cardiopulmonary system is possible without postmortem, biopsy, or vivisection procedures. Examples are given for application of the Dynamic Spatial Reconstructor (DSR). (CS)

  15. Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts.

    PubMed

    Tomlins, Peter H; Smith, Graham N; Woolliams, Peter D; Rasakanthan, Janarthanan; Sugden, Kate

    2011-04-25

    Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.

  16. In vivo imaging of human labial glands using advanced optical coherence tomography.

    PubMed

    Ozawa, Nobuyoshi; Sumi, Yasunori; Shimozato, Kazuo; Chong, Changho; Kurabayashi, Tohru

    2009-09-01

    Optical coherence tomography (OCT) has emerged as a high-resolution noninvasive clinical imaging application. The purpose of this study was to show OCT images of human labial glands obtained using a swept-source (SS) OCT system. Labial gland OCT imaging was carried out using our new SS-OCT system for 5 healthy volunteers using a hand-held in vivo OCT scanning probe. The labial tissue was scanned in a superior to inferior direction in 2 and 3 dimensions. The resulting 2- and 3-dimensional ultrahigh-resolution images of in vivo OCT human labial minor salivary glands revealed the epithelium, connective tissue, lobes, and duct. OCT was capable of providing simultaneous and noninvasive structural information with high resolution. This clinical imaging modality promises to have clinical impact in the diagnosis of such conditions as Sjögren syndrome and xerostomia.

  17. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography

    NASA Astrophysics Data System (ADS)

    Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.

  18. Neuroimaging in pediatric traumatic head injury: diagnostic considerations and relationships to neurobehavioral outcome.

    PubMed

    Bigler, E D

    1999-08-01

    Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.

  19. Image restoration method based on Hilbert transform for full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2008-01-01

    A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

  20. Microscopic Optical Projection Tomography In Vivo

    PubMed Central

    Meyer, Heiko; Ripoll, Jorge; Tavernarakis, Nektarios

    2011-01-01

    We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms. PMID:21559481

  1. Imaging the slab structure in the Alpine region by high-resolution P-wave tomography

    NASA Astrophysics Data System (ADS)

    Guillot, Stéphane; Zhao, Liang; Paul, Anne; Malusà, Marco G.; Xu, Xiaobing; Zheng, Tianyu; Solarino, stefano; Schwartz, Stéphane; Dumont, Thierry; Salimbeni, Simone; Aubert, Coralie; Pondrelli, Silvia; Wang, Qingchen; Zhu, Rixiang

    2017-04-01

    Based upon a finite-frequency inversion of traveltimes, we computed a new high-resolution tomography model using P-wave data from 527 broadband seismic stations, both from permanent networks and temporary experiments (Zhao et al., 2016). This model provides an improved image of the slab structure in the Alpine region, and fundamental pin-points for the analysis of Cenozoic magmatism, (U)HP metamorphism and Alpine topography. Our results document the lateral continuity of the European slab from the Western to the Central Alps, and the down-dip slab continuity beneath the Central Alps, ruling out the hypothesis of slab breakoff to explain Cenozoic Alpine magmatism. A low velocity anomaly is observed in the upper mantle beneath the core of the Western Alps, pointing to dynamic topography effects (Malusà et al., this meeting). A NE-dipping Adriatic slab, consistent with Dinaric subduction, is possibly observed beneath the Eastern Alps, whereas the laterally continuous Adriatic slab of the Northern Apennines shows major gaps at the boundary with the Southern Apennines, and becomes near vertical in the Alps-Apennines transition zone. Tear faults accommodating opposite-dipping subductions during Alpine convergence may represent reactivated lithospheric faults inherited from Tethyan extension. Our results suggest that the interpretations of previous tomography results that include successive slab breakoffs along the Alpine-Zagros-Himalaya orogenic belt might be proficiently reconsidered. Malusà M.G. et alii (2017) On the potential asthenospheric linkage between Apenninic slab rollback and Alpine topographic uplift: insights from P wave tomography and seismic anisotropy analysis. EGU 2017. Zhao L. et alii (2016), Continuity of the Alpine slab unraveled by high-resolution P wave tomography. J. Geophys. Res., doi:10.1002/2016JB013310.

  2. Individualized localization and cortical surface-based registration of intracranial electrodes

    PubMed Central

    Dykstra, Andrew R.; Chan, Alexander M.; Quinn, Brian T.; Zepeda, Rodrigo; Keller, Corey J.; Cormier, Justine; Madsen, Joseph R.; Eskandar, Emad N.; Cash, Sydney S.

    2011-01-01

    In addition to its widespread clinical use, the intracranial electroencephalogram (iEEG) is increasingly being employed as a tool to map the neural correlates of normal cognitive function as well as for developing neuroprosthetics. Despite recent advances, and unlike other established brain mapping modalities (e.g. functional MRI, magneto- and electroencephalography), registering the iEEG with respect to neuroanatomy in individuals – and coregistering functional results across subjects – remains a significant challenge. Here we describe a method which coregisters high-resolution preoperative MRI with postoperative computerized tomography (CT) for the purpose of individualized functional mapping of both normal and pathological (e.g., interictal discharges and seizures) brain activity. Our method accurately (within 3mm, on average) localizes electrodes with respect to an individual’s neuroanatomy. Furthermore, we outline a principled procedure for either volumetric or surface-based group analyses. We demonstrate our method in five patients with medically-intractable epilepsy undergoing invasive monitoring of the seizure focus prior to its surgical removal. The straight-forward application of this procedure to all types of intracranial electrodes, robustness to deformations in both skull and brain, and the ability to compare electrode locations across groups of patients makes this procedure an important tool for basic scientists as well as clinicians. PMID:22155045

  3. Grand rounds: asbestos-related pericarditis in a boiler operator.

    PubMed

    Abejie, Belayneh A; Chung, Eugene H; Nesto, Richard W; Kales, Stefanos N

    2008-01-01

    Occupational and environmental exposures to asbestos remain a public health problem even in developed countries. Because of the long latency in asbestos-related pathology, past asbestos exposure continues to contribute to incident disease. Asbestos most commonly produces pulmonary pathology, with asbestos-related pleural disease as the most common manifestation. Although the pleurae and pericardium share certain histologic characteristics, asbestos-related pericarditis is rarely reported. We present a 59-year-old man who worked around boilers for almost 30 years and was eventually determined to have calcific, constrictive pericarditis. He initially presented with an infectious exacerbation of chronic bronchitis. Chest radiographs demonstrated pleural and pericardial calcifications. Further evaluation with cardiac catheterization showed a hemodynamic picture consistent with constrictive pericarditis. A high-resolution computerized tomography scan of the chest demonstrated dense calcification in the pericardium, right pleural thickening and nodularity, right pleural plaque without calcification, and density in the right middle lobe. Pulmonary function testing showed mild obstruction and borderline low diffusing capacity. Based on the patient's occupational history, the presence of pleural pathology consistent with asbestos, previous evidence that asbestos can affect the pericardium, and absence of other likely explanations, we concluded that his pericarditis was asbestos-related. Similar to pleural thickening and plaque formation, asbestos may cause progressive fibrosis of the pericardium.

  4. An Automatic and Robust Algorithm of Reestablishment of Digital Dental Occlusion

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Gateno, Jaime; Xiong, Zixiang; Zhou, Xiaobo; Wong, Stephen T. C.

    2017-01-01

    In the field of craniomaxillofacial (CMF) surgery, surgical planning can be performed on composite 3-D models that are generated by merging a computerized tomography scan with digital dental models. Digital dental models can be generated by scanning the surfaces of plaster dental models or dental impressions with a high-resolution laser scanner. During the planning process, one of the essential steps is to reestablish the dental occlusion. Unfortunately, this task is time-consuming and often inaccurate. This paper presents a new approach to automatically and efficiently reestablish dental occlusion. It includes two steps. The first step is to initially position the models based on dental curves and a point matching technique. The second step is to reposition the models to the final desired occlusion based on iterative surface-based minimum distance mapping with collision constraints. With linearization of rotation matrix, the alignment is modeled by solving quadratic programming. The simulation was completed on 12 sets of digital dental models. Two sets of dental models were partially edentulous, and another two sets have first premolar extractions for orthodontic treatment. Two validation methods were applied to the articulated models. The results show that using our method, the dental models can be successfully articulated with a small degree of deviations from the occlusion achieved with the gold-standard method. PMID:20529735

  5. [Lung involvement in systemic connective tissue diseases].

    PubMed

    Plavec, Goran; Tomić, Ilija; Bihorac, Sanela; Kovacević, Gordana; Pavlica, Ljiljana; Cvetković, Gordana; Sikimić, Stevan; Milić, Rade

    2008-09-01

    Systemic connective tissue diseases (SCTD) are chronic inflammatory autoimmune disorders of unknown cause that can involve different organs and systems. Their course and prognosis are different. All of them can, more or less, involve the respiratory sistem. The aim of this study was to find out the frequency of respiratory simptoms, lung function disorders, radiography and high-resolution computerized tomography (HRCT) abnormalities, and their correlation with the duration of the disease and the applied treatment. In 47 non-randomised consecutive patients standard chest radiography, HRCT, and lung function tests were done. Hypoxemia was present in nine of the patients with respiratory simptoms (20%). In all of them chest radiography was normal. In five of these patients lung fibrosis was established using HRCT. Half of all the patients with SCTD had simptoms of lung involment. Lung function tests disorders of various degrees were found in 40% of the patients. The outcome and the degree of lung functin disorders were neither in correlation with the duration of SCTD nor with therapy used (p > 0.05 Spearmans Ro). Pulmonary fibrosis occures in about 10% of the patients with SCTD, and possibly not due to the applied treatment regimens. Hypoxemia could be a sing of existing pulmonary fibrosis in the absence of disorders on standard chest radiography.

  6. Individualized localization and cortical surface-based registration of intracranial electrodes.

    PubMed

    Dykstra, Andrew R; Chan, Alexander M; Quinn, Brian T; Zepeda, Rodrigo; Keller, Corey J; Cormier, Justine; Madsen, Joseph R; Eskandar, Emad N; Cash, Sydney S

    2012-02-15

    In addition to its widespread clinical use, the intracranial electroencephalogram (iEEG) is increasingly being employed as a tool to map the neural correlates of normal cognitive function as well as for developing neuroprosthetics. Despite recent advances, and unlike other established brain-mapping modalities (e.g. functional MRI, magneto- and electroencephalography), registering the iEEG with respect to neuroanatomy in individuals-and coregistering functional results across subjects-remains a significant challenge. Here we describe a method which coregisters high-resolution preoperative MRI with postoperative computerized tomography (CT) for the purpose of individualized functional mapping of both normal and pathological (e.g., interictal discharges and seizures) brain activity. Our method accurately (within 3mm, on average) localizes electrodes with respect to an individual's neuroanatomy. Furthermore, we outline a principled procedure for either volumetric or surface-based group analyses. We demonstrate our method in five patients with medically-intractable epilepsy undergoing invasive monitoring of the seizure focus prior to its surgical removal. The straight-forward application of this procedure to all types of intracranial electrodes, robustness to deformations in both skull and brain, and the ability to compare electrode locations across groups of patients makes this procedure an important tool for basic scientists as well as clinicians. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Three-dimensional evaluation of the facet joints

    NASA Astrophysics Data System (ADS)

    Folio, Les R.

    1990-04-01

    Computerized tomography and magnetic resonance imaging nave revolurionalized analysis of vertebral anatomy and pathology. Further advances with 3-dimensional imaging have recently become an important adjunct for diagnosis and treatment in structural abnormalities. Facets are intimately related to their surrounding musculature and malalignment may cause pain directly or indirectly. High resolution 3-dimensional reformations of CT Scans give us new insight on structure and function of facet joints, since their motion and architecture are ever complex. It is well documented in the literature that facet joint biomecnanics is a partial contributor to the myriad at causes of low back The term "facet Joint syndrome" was coined in 1933 by GhorMley.3 The osteopathic lesion complex is well defined by LeRoy and McCole and comparison of roentgenographic findings before and after manipulation has teen described by Long and Lioyd.4,5 since alterations in facet biamechanics are an important aspect of osteopathic manipulative therapy (OT), 3-dimensional hign resolution imaging will prove to be a great asset in osteopathic research. Rotating the spine allows for different viewing perspectives to provide optimal and consistent measurements of the facet joint. Rotations are performed on the X, Y and 7, axis and measurements pre and post-manipulation are performed and compared on matching axis and perspectives. Rotation about the X, Y and Z axis help appreciate the 3-dimensionality of the vertebral column to project to the viewer a feeling that the spine is floating in space before them. This does give the viewer a 3-D understanding of the object however, only at a perspective at a Lime.

  8. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    DOE PAGES

    Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun; ...

    2016-06-07

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co 2 P nanocrystal, platinum nanoparticles on a carbonmore » nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.« less

  9. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy.

    PubMed

    Levin, Barnaby D A; Padgett, Elliot; Chen, Chien-Chun; Scott, M C; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D; Robinson, Richard D; Ercius, Peter; Kourkoutis, Lena F; Miao, Jianwei; Muller, David A; Hovden, Robert

    2016-06-07

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.

  10. Nanomaterial datasets to advance tomography in scanning transmission electron microscopy

    PubMed Central

    Levin, Barnaby D.A.; Padgett, Elliot; Chen, Chien-Chun; Scott, M.C.; Xu, Rui; Theis, Wolfgang; Jiang, Yi; Yang, Yongsoo; Ophus, Colin; Zhang, Haitao; Ha, Don-Hyung; Wang, Deli; Yu, Yingchao; Abruña, Hector D.; Robinson, Richard D.; Ercius, Peter; Kourkoutis, Lena F.; Miao, Jianwei; Muller, David A.; Hovden, Robert

    2016-01-01

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data. PMID:27272459

  11. Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy

    NASA Astrophysics Data System (ADS)

    Staier, Florian; Eipel, Heinz; Matula, Petr; Evsikov, Alexei V.; Kozubek, Michal; Cremer, Christoph; Hausmann, Michael

    2011-09-01

    With the development of novel fluorescence techniques, high resolution light microscopy has become a challenging technique for investigations of the three-dimensional (3D) micro-cosmos in cells and sub-cellular components. So far, all fluorescence microscopes applied for 3D imaging in biosciences show a spatially anisotropic point spread function resulting in an anisotropic optical resolution or point localization precision. To overcome this shortcoming, micro axial tomography was suggested which allows object tilting on the microscopic stage and leads to an improvement in localization precision and spatial resolution. Here, we present a miniaturized device which can be implemented in a motor driven microscope stage. The footprint of this device corresponds to a standard microscope slide. A special glass fiber can manually be adjusted in the object space of the microscope lens. A stepwise fiber rotation can be controlled by a miniaturized stepping motor incorporated into the device. By means of a special mounting device, test particles were fixed onto glass fibers, optically localized with high precision, and automatically rotated to obtain views from different perspective angles under which distances of corresponding pairs of objects were determined. From these angle dependent distance values, the real 3D distance was calculated with a precision in the ten nanometer range (corresponding here to an optical resolution of 10-30 nm) using standard microscopic equipment. As a proof of concept, the spindle apparatus of a mature mouse oocyte was imaged during metaphase II meiotic arrest under different perspectives. Only very few images registered under different rotation angles are sufficient for full 3D reconstruction. The results indicate the principal advantage of the micro axial tomography approach for many microscopic setups therein and also those of improved resolutions as obtained by high precision localization determination.

  12. Iterative Nonlinear Tikhonov Algorithm with Constraints for Electromagnetic Tomography

    NASA Technical Reports Server (NTRS)

    Xu, Feng; Deshpande, Manohar

    2012-01-01

    Low frequency electromagnetic tomography such as the capacitance tomography (ECT) has been proposed for monitoring and mass-gauging of gas-liquid two-phase system under microgravity condition in NASA's future long-term space missions. Due to the ill-posed inverse problem of ECT, images reconstructed using conventional linear algorithms often suffer from limitations such as low resolution and blurred edges. Hence, new efficient high resolution nonlinear imaging algorithms are needed for accurate two-phase imaging. The proposed Iterative Nonlinear Tikhonov Regularized Algorithm with Constraints (INTAC) is based on an efficient finite element method (FEM) forward model of quasi-static electromagnetic problem. It iteratively minimizes the discrepancy between FEM simulated and actual measured capacitances by adjusting the reconstructed image using the Tikhonov regularized method. More importantly, it enforces the known permittivity of two phases to the unknown pixels which exceed the reasonable range of permittivity in each iteration. This strategy does not only stabilize the converging process, but also produces sharper images. Simulations show that resolution improvement of over 2 times can be achieved by INTAC with respect to conventional approaches. Strategies to further improve spatial imaging resolution are suggested, as well as techniques to accelerate nonlinear forward model and thus increase the temporal resolution.

  13. A multiresolution approach for the convergence acceleration of multivariate curve resolution methods.

    PubMed

    Sawall, Mathias; Kubis, Christoph; Börner, Armin; Selent, Detlef; Neymeyr, Klaus

    2015-09-03

    Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data. Such accurate measurements rise special computational challenges for multivariate curve resolution techniques since pure component factorizations are often solved via constrained minimization problems. The computational costs for these calculations rapidly grow with an increased time or frequency resolution of the spectral measurements. The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure component factorization for the coarsest problem with the lowest resolution. Then the factorization results are used as initial values for the next problem with a higher resolution. Good initial values result in a fast solution on the next refined level. This procedure is repeated and finally a factorization is determined for the highest level of resolution. The described multiresolution approach allows a considerable convergence acceleration. The computational procedure is analyzed and is tested for experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various soft and hard models. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography.

    PubMed

    Acton, Paul D; Choi, Seok-Rye; Plössl, Karl; Kung, Hank F

    2002-05-01

    Functional imaging of small animals, such as mice and rats, using ultra-high resolution positron emission tomography (PET) and single-photon emission tomography (SPET), is becoming a valuable tool for studying animal models of human disease. While several studies have shown the utility of PET imaging in small animals, few have used SPET in real research applications. In this study we aimed to demonstrate the feasibility of using ultra-high resolution SPET in quantitative studies of dopamine transporters (DAT) in the mouse brain. Four healthy ICR male mice were injected with (mean+/-SD) 704+/-154 MBq [(99m)Tc]TRODAT-1, and scanned using an ultra-high resolution SPET system equipped with pinhole collimators (spatial resolution 0.83 mm at 3 cm radius of rotation). Each mouse had two studies, to provide an indication of test-retest reliability. Reference tissue kinetic modeling analysis of the time-activity data in the striatum and cerebellum was used to quantitate the availability of DAT. A simple equilibrium ratio of striatum to cerebellum provided another measure of DAT binding. The SPET imaging results were compared against ex vivo biodistribution data from the striatum and cerebellum. The mean distribution volume ratio (DVR) from the reference tissue kinetic model was 2.17+/-0.34, with a test-retest reliability of 2.63%+/-1.67%. The ratio technique gave similar results (DVR=2.03+/-0.38, test-retest reliability=6.64%+/-3.86%), and the ex vivo analysis gave DVR=2.32+/-0.20. Correlations between the kinetic model and the ratio technique ( R(2)=0.86, P<0.001) and the ex vivo data ( R(2)=0.92, P=0.04) were both excellent. This study demonstrated clearly that ultra-high resolution SPET of small animals is capable of accurate, repeatable, and quantitative measures of DAT binding, and should open up the possibility of further studies of cerebral binding sites in mice using pinhole SPET.

  15. Computerized tomography tailored for the assessment of microscopic hematuria.

    PubMed

    Lang, Erich K; Macchia, Richard J; Thomas, Raju; Ruiz-Deya, Gilberto; Watson, Richard A; Richter, Frank; Irwin R, Robert; Marberger, Michael; Mydlo, Jack; Lechner, Gerhard; Cho, Kyunghee C; Gayle, Brian

    2002-02-01

    We report the results of a multicenter study of arterial, corticomedullary, nephrographic and excretory phase helical computerized tomography (CT) for detecting and characterizing abnormalities causing asymptomatic microscopic hematuria. We evaluated 350 consecutive patients, including 216 men and 134 women 23 to 88 years old, with asymptomatic microscopic hematuria of undetermined cause at 4 medical centers. Patients with known urological pathology were excluded from study. We performed 4 helical CT sequences, including pre-enhancement phase imaging from kidney to symphysis pubis, arterial phase imaging of the kidney and lower pelvis, corticomedullary nephrographic phase imaging of the kidney and lower pelvis, and excretory phase imaging from kidney to symphysis pubis with 2 to 5 mm. collimation and 1 to 1.5 pitch. Of 171 proved lesions 158 were correctly diagnosed. There were 10 false-positive and 13 false-negative diagnoses, indicating 0.9239 sensitivity, 0.9441 specificity, 0.9404 positive and 0.9285 negative predictive values, (p <0.001). All cases of congenital renal lesions, calculous disease, ureteral lesion and neoplastic lesion of the bladder were correctly diagnosed, as were 40 of 41 inflammatory renal, 21 of 23 renal masses and 13 of 16 inflammatory bladder lesions. In 27 patients with renal calculi the study was limited to pre-enhancement spiral CT. A positive diagnosis rate of 45.1% (158 of 350 cases) for the causes of heretofore refractory cases of hematuria with high sensitivity and specificity attest to the effectiveness of our hematuria CT protocol and support its use.

  16. Computerized tomography with 3-dimensional reconstruction for the evaluation of renal size and arterial anatomy in the living kidney donor.

    PubMed

    Janoff, Daniel M; Davol, Patrick; Hazzard, James; Lemmers, Michael J; Paduch, Darius A; Barry, John M

    2004-01-01

    Computerized tomography (CT) with 3-dimensional (3-D) reconstruction has gained acceptance as an imaging study to evaluate living renal donors. We report our experience with this technique in 199 consecutive patients to validate its predictions of arterial anatomy and kidney volumes. Between January 1997 and March 2002, 199 living donor nephrectomies were performed at our institution using an open technique. During the operation arterial anatomy was recorded as well as kidney weight in 98 patients and displacement volume in 27. Each donor had been evaluated preoperatively by CT angiography with 3-D reconstruction. Arterial anatomy described by a staff radiologist was compared with intraoperative findings. CT estimated volumes were reported. Linear correlation graphs were generated to assess the reliability of CT volume predictions. The accuracy of CT angiography for predicting arterial anatomy was 90.5%. However, as the number of renal arteries increased, predictive accuracy decreased. The ability of CT to predict multiple arteries remained high with a positive predictive value of 95.2%. Calculated CT volume and kidney weight significantly correlated (0.654). However, the coefficient of variation index (how much average CT volume differed from measured intraoperative volume) was 17.8%. CT angiography with 3-D reconstruction accurately predicts arterial vasculature in more than 90% of patients and it can be used to compare renal volumes. However, accuracy decreases with multiple renal arteries and volume comparisons may be inaccurate when the difference in kidney volumes is within 17.8%.

  17. Gamma index evaluation of IMRT technique using gafchromic film EBT3 for homogeneous and inhomogeneous material

    NASA Astrophysics Data System (ADS)

    Nisauf, T. A.; Wibowo, W. E.; Pawiro, S. A.

    2017-07-01

    This study was done to evaluate the gamma index for registering between the planar of dose planning and the measurement of EBT film. The treatment plan was simulated for 5 patients using Fan Beam Computerized Tomography (FBCT) modality, Philips Pinnacle planning system, 6 MV photon energy, 50 segments IMRT technique, and calculation grid resolution (CGR) of 0.2 cm. Gamma Index (GI) evaluation was done with criteria of dose difference (DD) of 2 %, dose to agreement (DTA) of 2 mm and dose difference (DD) of 5 % DTA of 3 mm, SAD 100 cm, depth of 5 cm and 10 cm of the phantom. The result shows that GI for homogeneous material is greater than for inhomogeneous material with discrepancy to previous work is about 1.98 % for homogeneous material (depth 5 cm) and 2.05 % (depth 10 cm) while it was found of 2.98 % for inhomogeneous material (equivalent depth 5 cm) and 4.59 % (equivalent depth 10 cm).

  18. Tridimensional reconstruction of the Co-Seismic Ionospheric Disturbance around the time of 2015 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Zhou, Chen; Liu, Yi; Zhai, Changzhi; Wang, Zemin; Liu, Lei

    2018-01-01

    The Co-Seismic Ionospheric Disturbance of the 2015 Nepal earthquake is analyzed in this paper. GNSS data are used to obtain the Satellite-Station TEC sequences. After removing the de-trended TEC variation, a clear ionospheric disturbance was observed 10 min after the earthquake, while the geomagnetic conditions, solar activity, and weather condition remained calm according to the Kp, Dst, F10.7 indices and meteorological records during the period of interest. Computerized ionosphere tomography (CIT) is then used to present the tridimensional ionosphere variation with a 10-min time resolution. The CIT results indicate that (1) the disturbance of the ionospheric electron density above the epicenter during the 2015 Nepal earthquake is confined at a relatively low altitude (approximately 150-300 km); (2) the ionospheric disturbances on the west side and east sides of the epicenter are precisely opposite. A newly established electric field penetration model of the lithosphere-atmosphere-ionosphere coupling is used to investigate the potential physical mechanism.

  19. 3D near-infrared imaging based on a single-photon avalanche diode array sensor

    NASA Astrophysics Data System (ADS)

    Mata Pavia, Juan; Charbon, Edoardo; Wolf, Martin

    2011-07-01

    An imager for optical tomography was designed based on a detector with 128×128 single-photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contact-less setup has been conceived in which scanning of the object is not necessary. This enables one to perform high-resolution optical tomography with much higher acquisition rate, which is fundamental in clinical applications. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new imaging system generated a high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take full advantage of it. Images were generated using a new reconstruction algorithm that combined general inverse problem methods with Fourier transforms in order to reduce the complexity of the problem. Simulations show that the potential resolution of the new setup is in the order of millimeters. Experiments have been performed to confirm this potential. Images derived from the measurements demonstrate that we have already reached a resolution of 5mm.

  20. Colposcopic imaging using visible-light optical coherence tomography.

    PubMed

    Duan, Lian; McRaven, Michael D; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S; Hope, Thomas J; Zhang, Hao F

    2017-05-01

    High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6 × 4.6 - mm 2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

  1. Colposcopic imaging using visible-light optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Duan, Lian; McRaven, Michael D.; Liu, Wenzhong; Shu, Xiao; Hu, Jianmin; Sun, Cheng; Veazey, Ronald S.; Hope, Thomas J.; Zhang, Hao F.

    2017-05-01

    High-resolution colposcopic optical coherence tomography (OCT) provides key anatomical measures, such as thickness and minor traumatic injury of vaginal epithelium, of the female reproductive tract noninvasively. This information can be helpful in both fundamental investigations in animal models and disease screenings in humans. We present a fiber-based visible-light OCT and two probe designs for colposcopic application. One probe conducts circular scanning using a DC motor, and the other probe is capable of three-dimensional imaging over a 4.6×4.6-mm2 area using a pair of galvo scanners. Using this colposcopic vis-OCT with both probes, we acquired high-resolution images from whole isolated macaque vaginal samples and identified biopsy lesions.

  2. High-resolution imaging of biological tissue with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Yue; Gao, Wanrong

    2015-03-01

    A new full-field optical coherence tomography system with high-resolution has been developed for imaging of cells and tissues. Compared with other FF-OCT (Full-field optical coherence tomography, FF-OCT) systems illuminated with optical fiber bundle, the improved Köhler illumination arrangement with a halogen lamp was used in the proposed FF-OCT system. High numerical aperture microscopic objectives were used for imaging and a piezoelectric ceramic transducer (PZT) was used for phase-shifting. En-face tomographic images can be obtained by applying the five-step phase-shifting algorithm to a series of interferometric images which are recorded by a smart camera. Three-dimensional images can be generated from these tomographic images. Imaging of the chip of Intel Pentium 4 processor demonstrated the ultrahigh resolution of the system (lateral resolution is 0.8μm ), which approaches the theoretical resolution 0.7 μm× 0.5 μm (lateral × axial). En-face images of cells of onion show an excellent performance of the system in generating en-face images of biological tissues. Then, unstained pig stomach was imaged as a tissue and gastric pits could be easily recognized using FF-OCT system. Our study provides evidence for the potential ability of FFOCT in identifying gastric pits from pig stomach tissue. Finally, label-free and unstained ex vivo human liver tissues from both normal and tumor were imaged with this FFOCT system. The results show that the setup has the potential for medical diagnosis applications such liver cancer diagnosis.

  3. Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome.

    PubMed

    Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian

    2016-10-01

    Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.

  4. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  5. Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.

    PubMed

    Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro

    2017-02-01

    Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.

  6. In-line optical fiber metallic mirror reflector for monolithic common path optical coherence tomography probes.

    PubMed

    Singh, Kanwarpal; Reddy, Rohith; Sharma, Gargi; Verma, Yogesh; Gardecki, Joseph A; Tearney, Guillermo

    2018-03-01

    Endoscopic optical coherence tomography probes suffer from various artifacts due to dispersion imbalance and polarization mismatch between reference and sample arm light. Such artifacts can be minimized using a common path approach. In this work, we demonstrate a miniaturized common path probe for optical coherence tomography using an inline fiber mirror. A common path optical fiber probe suitable for performing high-resolution endoscopic optical coherence tomography imaging was developed. To achieve common path functionality, an inline fiber mirror was fabricated using a thin gold layer. A commercially available swept source engine was used to test the designed probe in a cadaver human coronary artery ex vivo. We achieved a sensitivity of 104 dB for this probe using a swept source optical coherence tomography system. To test the probe, images of a cadaver human coronary artery were obtained, demonstrating the quality that is comparable to those obtained by OCT systems with separate reference arms. Additionally, we demonstrate recovery of ranging depth by use of a Michelson interferometer in the detection path. We developed a miniaturized monolithic inline fiber mirror-based common path probe for optical coherence tomography. Owing to its simplicity, our design will be helpful in endoscopic applications that require high-resolution probes in a compact form factor while reducing system complexity. Lasers Surg. Med. 50:230-235, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Bessel beam fluorescence lifetime tomography of live embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos. We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level. Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm. Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.

  8. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  9. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging

    PubMed Central

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.

    2017-01-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089

  10. Computerized tomographic quantification of chronic obstructive pulmonary disease as the principal determinant of frontal P vector.

    PubMed

    Chhabra, Lovely; Sareen, Pooja; Gandagule, Amit; Spodick, David

    2012-04-01

    Verticalization of the P-wave axis is characteristic of chronic obstructive pulmonary disease (COPD). We studied the correlation of P-wave axis and computerized tomographically quantified emphysema in patients with COPD/emphysema. Individual correlation of P-wave axis with different structural types of emphysema was also studied. High-resolution computerized tomographic scans of 23 patients >45 years old with known COPD were reviewed to assess the type and extent of emphysema using computerized tomographic densitometric parameters. Electrocardiograms were then independently reviewed and the P-wave axis was calculated in customary fashion. Degree of the P vector (DOPV) and radiographic percent emphysematous area (RPEA) were compared for statistical correlation. The P vector and RPEA were also directly compared to the forced expiratory volume at 1 second. RPEA and the P vector had a significant positive correlation in all patients (r = +0.77, p <0.0001) but correlation was very strong in patients with predominant lower lobe emphysema (r = +0.89, p <0.001). Forced expiratory volume at 1 second and the P vector had almost a linear inverse correlation in predominantly lower lobe emphysema (r = -0.92, p <0.001). DOPV positively correlated with radiographically quantified emphysema. DOPV and RPEA were strong predictors of qualitative lung function in patients with predominantly lower lobe emphysema. In conclusion, a combination of high DOPV and predominantly lower lobe emphysema indicates severe obstructive lung dysfunction in patients with COPD. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Guide-star-based computational adaptive optics for broadband interferometric tomography

    PubMed Central

    Adie, Steven G.; Shemonski, Nathan D.; Graf, Benedikt W.; Ahmad, Adeel; Scott Carney, P.; Boppart, Stephen A.

    2012-01-01

    We present a method for the numerical correction of optical aberrations based on indirect sensing of the scattered wavefront from point-like scatterers (“guide stars”) within a three-dimensional broadband interferometric tomogram. This method enables the correction of high-order monochromatic and chromatic aberrations utilizing guide stars that are revealed after numerical compensation of defocus and low-order aberrations of the optical system. Guide-star-based aberration correction in a silicone phantom with sparse sub-resolution-sized scatterers demonstrates improvement of resolution and signal-to-noise ratio over a large isotome. Results in highly scattering muscle tissue showed improved resolution of fine structure over an extended volume. Guide-star-based computational adaptive optics expands upon the use of image metrics for numerically optimizing the aberration correction in broadband interferometric tomography, and is analogous to phase-conjugation and time-reversal methods for focusing in turbid media. PMID:23284179

  12. Visualization of Stereoscopic Anatomic Models of the Paranasal Sinuses and Cervical Vertebrae from the Surgical and Procedural Perspective

    ERIC Educational Resources Information Center

    Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei

    2017-01-01

    Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…

  13. Robust Spatial Autoregressive Modeling for Hardwood Log Inspection

    Treesearch

    Dongping Zhu; A.A. Beex

    1994-01-01

    We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...

  14. Letter to the Editor: Use of Publicly Available Image Resources

    DOE PAGES

    Armato, Samuel G.; Drukker, Karen; Li, Feng; ...

    2017-05-11

    Here we write with regard to the Academic Radiology article entitled, “Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity” by Drs. Nishio and Nagashima (1). The authors also report on a computerized method to classify as benign or malignant lung nodules present in computed tomography (CT) scans.

  15. PubMed Central

    FOUNTOULAKIS, E.N.; PAPADAKI, E.; PANAGIOTAKI, I.; GIANNIKAKI, E.; LAGOUDIANAKIS, G.; BIZAKIS, J.

    2011-01-01

    SUMMARY Haemangiopericytoma is a rare soft tissue tumour, with great histological variability and unpredictable clinical and biological behaviour. The precise cell type origin is uncertain. One third of haemangiopericytomas occur in the head and neck area, but only a few cases have been reported regarding localization at the parapharyngeal space. Herewith, case is presented of a 54-year-old female, referred to our Department due to a parapharyngeal space tumour with non-specific imaging characteristics. The patient underwent radical excision of the tumour with a trans-cervical sub-mandibular approach. The histolopathologic examination revealed a neoplasm with the characteristic features of haemangiopericytoma. One year later, during the scheduled follow-up, the computerized tomography scan showed no evidence of recurrence or residual disease. The pre-operative evaluation of a haemangiopericytoma must include a thorough imaging evaluation with computerized tomography and magnetic resonance imaging, even if results may not be specific for haemangiopericytoma. Angiography and pre-operative embolization may be performed in cases of large tumours with significant vascularity. The treatment of choice is radical excision. The follow-up includes clinical evaluation every 6 months and annual magnetic resonance imaging for at least 3 years. PMID:22058597

  16. Application of Micromirror in Microsurgical Clipping to the Intracranial Aneurysms.

    PubMed

    Zhao, Chao; Ma, Zhiguo; Zhang, Yuhai; Mou, Shanling; Yang, Yunxue; Yang, Yonglin; Sun, Guoqing; Yao, Weicheng

    2018-05-01

    The aim of the study was to explore the values and disadvantages of micromirror in the intracranial aneurysm clipping surgery. Micromirror was used to assist microsurgical clipping to 36 intracranial aneurysms in 31 patients, of which 3 were carotid-ophthalmic artery aneurysms, 3 were anterior choroidal artery aneurysms, 11 were posterior communicating artery aneurysms, 7 were middle cerebral artery aneurysms, 10 were anterior communicating artery or anterior cerebral artery aneurysms, and the rest were a posterior cerebral artery aneurysm and a posterior inferior cerebellar artery aneurysm. The micromirror was used before and after clipping to observe the anatomic features of necks hidden behind and medial to aneurysms, to visualize surrounding neurovascular structures, and to verify the optimal clipping position. Intraoperative indocyanine green fluorescein angiography, postoperative computerized tomography angiography, and digital subtraction angiography confirmed the success of sufficient clipping. Intraoperative indocyanine green angiography, postoperative computerized tomography angiography , or digital subtraction angiography were performed and showed no case of wrong or insufficient clipping of aneurysm. Micromirror-assisted microsurgical clipping to the intracranial aneurysm is safe, sufficient, convenient, and practical.

  17. [Quantitative analysis method based on fractal theory for medical imaging of normal brain development in infants].

    PubMed

    Li, Heheng; Luo, Liangping; Huang, Li

    2011-02-01

    The present paper is aimed to study the fractal spectrum of the cerebral computerized tomography in 158 normal infants of different age groups, based on the calculation of chaotic theory. The distribution range of neonatal period was 1.88-1.90 (mean = 1.8913 +/- 0.0064); It reached a stable condition at the level of 1.89-1.90 during 1-12 months old (mean = 1.8927 +/- 0.0045); The normal range of 1-2 years old infants was 1.86-1.90 (mean = 1.8863 +/- 4 0.0085); It kept the invariance of the quantitative value among 1.88-1.91(mean = 1.8958 +/- 0.0083) during 2-3 years of age. ANOVA indicated there's no significant difference between boys and girls (F = 0.243, P > 0.05), but the difference of age groups was significant (F = 8.947, P < 0.001). The fractal dimension of cerebral computerized tomography in normal infants computed by box methods was maintained at an efficient stability from 1.86 to 1.91. It indicated that there exit some attractor modes in pediatric brain development.

  18. Revealing fine microstructural morphology in the living human retina using Optical Coherence Tomography with pancorrection

    NASA Astrophysics Data System (ADS)

    Torti, C.; Považay, B.; Hofer, B.; Unterhuber, A.; Hermann, B.; Drexler, W.

    2008-09-01

    Ultra-high speed optical coherence tomography employing an ultra-broadband light source has been combined with adaptive optics utilizing a single high stroke deformable mirror and chromatic aberration compensation. The reduction of motion artefacts, geometric and chromatic aberrations (pancorrection) permits to achieve an isotropic resolution of 2-3 μm in the human eye. The performance of this non-invasive imaging modality enables to resolve cellular structures including cone photoreceptors, nerve fibre bundles and collagenous plates of the lamina cribrosa, and retinal pigment epithelial (RPE) cells in the human retina in vivo with superior detail. Alterations of cellular morphology due to cone degeneration in a colour-blind subject are investigated in ultra-high resolution with selective depth sectioning for the first time.

  19. Advanced imaging of the macrostructure and microstructure of bone

    NASA Technical Reports Server (NTRS)

    Genant, H. K.; Gordon, C.; Jiang, Y.; Link, T. M.; Hans, D.; Majumdar, S.; Lang, T. F.

    2000-01-01

    Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other. Copyright 2000 S. Karger AG, Basel.

  20. A method for evaluating the murine pulmonary vasculature using micro-computed tomography.

    PubMed

    Phillips, Michael R; Moore, Scott M; Shah, Mansi; Lee, Clara; Lee, Yueh Z; Faber, James E; McLean, Sean E

    2017-01-01

    Significant mortality and morbidity are associated with alterations in the pulmonary vasculature. While techniques have been described for quantitative morphometry of whole-lung arterial trees in larger animals, no methods have been described in mice. We report a method for the quantitative assessment of murine pulmonary arterial vasculature using high-resolution computed tomography scanning. Mice were harvested at 2 weeks, 4 weeks, and 3 months of age. The pulmonary artery vascular tree was pressure perfused to maximal dilation with a radio-opaque casting material with viscosity and pressure set to prevent capillary transit and venous filling. The lungs were fixed and scanned on a specimen computed tomography scanner at 8-μm resolution, and the vessels were segmented. Vessels were grouped into categories based on lumen diameter and branch generation. Robust high-resolution segmentation was achieved, permitting detailed quantitation of pulmonary vascular morphometrics. As expected, postnatal lung development was associated with progressive increase in small-vessel number and arterial branching complexity. These methods for quantitative analysis of the pulmonary vasculature in postnatal and adult mice provide a useful tool for the evaluation of mouse models of disease that affect the pulmonary vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Comparison of diffraction-enhanced computed tomography and monochromatic synchrotron radiation computed tomography of human trabecular bone.

    PubMed

    Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z

    2009-10-21

    Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.

  2. Pseudo-shading technique in the two-dimensional domain: a post-processing algorithm for enhancing the Z-buffer of a three-dimensional binary image.

    PubMed

    Tan, A C; Richards, R

    1989-01-01

    Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.

  3. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  4. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    PubMed

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  5. Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility

    NASA Astrophysics Data System (ADS)

    Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao

    2018-07-01

    X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.

  6. Attenuation-difference radar tomography: results of a multiple-plane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire

    USGS Publications Warehouse

    Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.

    2000-01-01

    Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.

  7. Noninvasive imaging analysis of biological tissue associated with laser thermal injury.

    PubMed

    Chang, Cheng-Jen; Yu, De-Yi; Hsiao, Yen-Chang; Ho, Kuang-Hua

    2017-04-01

    The purpose of our study is to use a noninvasive tomographic imaging technique with high spatial resolution to characterize and monitor biological tissue responses associated with laser thermal injury. Optical doppler tomography (ODT) combines laser doppler flowmetry (LDF) with optical coherence tomography (OCT) to obtain high resolution tomographic velocity and structural images of static and moving constituents in highly scattering biological tissues. A SurgiLase XJ150 carbon dioxide (CO 2 ) laser using a continuous mode of 3 watts (W) was used to create first, second or third degree burns on anesthetized Sprague-Dawley rats. Additional parameters for laser thermal injury were assessed as well. The rationale for using ODT in the evaluation of laser thermal injury offers a means of constructing a high resolution tomographic image of the structure and perfusion of laser damaged skin. In the velocity images, the blood flow is coded at 1300 μm/s and 0 velocity, 1000 μm/s and 0 velocity, 700 μm/s and 0 velocity adjacent to the first, second, and third degree injuries, respectively. ODT produces exceptional spatial resolution while having a non-invasive way of measurement, therefore, ODT is an accurate measuring method for high-resolution fluid flow velocity and structural images for biological tissue with laser thermal injury. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  8. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  9. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography.

    PubMed

    Safrani, Avner; Abdulhalim, Ibrahim

    2011-06-20

    Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

  10. How We Manage Patients with Plasmacytomas.

    PubMed

    Fotiou, Despina; Dimopoulos, Meletios A; Kastritis, Efstathios

    2018-04-17

    To discuss the diagnostic approach, treatment options, and future considerations in the management of plasmacytomas, either solitary or in the context of overt multiple myeloma (MM). Advanced imaging techniques such as whole-body magnetic resonance imaging and positron emission tomography/computerized tomography are essential for the diagnostic workup of solitary plasmacytomas (SP) to rule out the presence of other disease foci. The role of flow cytometry and clonal plasma cell detection is currently under study together with other prognostic factors for the identification of patients with SP at high risk of progression to overt MM. Solitary plasmacytomas are treated effectively with local radiotherapy whereas systemic therapy is required at relapse. Clonal plasma cells that accumulate at extramedullary sites have distinct biological characteristics. Patients with MM and soft tissue involvement have poor outcomes and should be treated as ultra-high risk. A revised definition of SP that distinguishes between true solitary clonal PC accumulations and SP with minimal bone marrow involvement should be considered to guide an appropriate therapeutic and follow-up approach. Future studies should be conducted to determine optimum treatment approaches for patients with MM and paraskeletal or extramedullary disease.

  11. Super-resolution reconstruction for 4D computed tomography of the lung via the projections onto convex sets approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu, E-mail: yuzhang@smu.edu.cn, E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei

    2014-11-01

    Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images.more » The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.« less

  12. Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system

    PubMed Central

    Yeo, Boon Y.; McLaughlin, Robert A.; Kirk, Rodney W.; Sampson, David D.

    2012-01-01

    We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging. PMID:22808429

  13. [Pulmonary paracoccidioidomycosis: a case report with high-resolution computed tomography findings].

    PubMed

    Armas, M; Ruivo, C; Alves, R; Gonçalves, M; Teixeira, L

    2012-01-01

    Paracoccidioidomycosis is a systemic mycosis which is endemic in rural areas of Latin America, an important European source of immigrants and a growing European touristic destination as well, with most cases occurring in Brazil, Argentina, Venezuela and Colombia. The authors report a case of a 43 year old man who previously worked in Venezuela and is living in Portugal for 8 years, presenting with a single cutaneous lesion. Despite the absence of valuable respiratory complaints, severe lung damage was found with high-resolution computed tomography (HRCT). Biopsy of the cutaneous lesion and mycologic sputum examination were performed revealing Paracoccidioides brasiliensis infection. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  14. In vivo high resolution human corneal imaging using full-field optical coherence tomography.

    PubMed

    Mazlin, Viacheslav; Xiao, Peng; Dalimier, Eugénie; Grieve, Kate; Irsch, Kristina; Sahel, José-Alain; Fink, Mathias; Boccara, A Claude

    2018-02-01

    We present the first full-field optical coherence tomography (FFOCT) device capable of in vivo imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other in vivo human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.

  15. Determining Metacarpophalangeal Flexion Angle Tolerance for Reliable Volumetric Joint Space Measurements by High-resolution Peripheral Quantitative Computed Tomography.

    PubMed

    Tom, Stephanie; Frayne, Mark; Manske, Sarah L; Burghardt, Andrew J; Stok, Kathryn S; Boyd, Steven K; Barnabe, Cheryl

    2016-10-01

    The position-dependence of a method to measure the joint space of metacarpophalangeal (MCP) joints using high-resolution peripheral quantitative computed tomography (HR-pQCT) was studied. Cadaveric MCP were imaged at 7 flexion angles between 0 and 30 degrees. The variability in reproducibility for mean, minimum, and maximum joint space widths and volume measurements was calculated for increasing degrees of flexion. Root mean square coefficient of variance values were < 5% under 20 degrees of flexion for mean, maximum, and volumetric joint spaces. Values for minimum joint space width were optimized under 10 degrees of flexion. MCP joint space measurements should be acquired at < 10 degrees of flexion in longitudinal studies.

  16. Thyroid tuberculosis: presenting symptom of mediastinal tuberculous lymphadenitis--an unusual case.

    PubMed

    Chandanwale, Shirish S; Buch, Archana C; Vimal, Shruti S; Sachdeva, Punita

    2014-01-01

    Tuberculosis of thyroid gland is extremely rare. It spreads to thyroid by lymphogenous or heamatogenous route or from adjacent focus, either from larynx or cervical and mediastinal adenitis. We report an unusual case of a 33-year-old male with thyroid swelling. Fine needle aspiration (FNA) smears showed epithelioid cells without necrosis and acid fast bacilli (AFB). Subsequent investigation revealed mediastinal tuberculous lymphadenitis on Computerized Tomography (CT) scan. FNA confirmed the diagnosis of mediastinal tuberculous lymphadenitis. We conclude, when epithelioid cells are seen on FNA thyroid, tuberculosis must be ruled out especially in regions where there is high prevalence of tuberculosis.

  17. [Imaging of temporo-mandibular disorders].

    PubMed

    Felizardo, Rufino; Foucart, Jean-Michel; Pizelle, Christophe

    2012-03-01

    Dominated for years by standard films (tomographic mouth open and mouth closed X-rays, MRI) radiographs of the TMJ have progressively lost their usefulness to diagnosticians who have progressively increased their reliance on well codified clinical examinations, which suffice in a great majority of cases.The indications for and diagnostic worth of radiological studies and the impact they have on the management of TMJ disorders are today quite low especially when the high cost of procedures like MRI, computerized tomography, and CBCT is taken into account. In this article we discuss the various maladies that dentists might encounter and the situations in which radiological examinations are still indicated. © EDP Sciences, SFODF, 2012.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Barnaby D. A.; Padgett, Elliot; Chen, Chien-Chun

    Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co 2 P nanocrystal, platinum nanoparticles on a carbonmore » nanofibre imaged over the complete 180° tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.« less

  19. Blood flow changes after unilateral carotid artery ligation monitored by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ma, Yushu; Liang, Chengbo; Suo, Yanyan; Zhao, Yuqian; Wang, Yi; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    Unilateral carotid artery ligation which could induce adaptive improvement is a classic model that has been widely used to study pathology of ischemic disease. In those studies, blood flow is an important parameter to characterize the ischemia. Optical coherence tomography (OCT) is a powerful imaging modality which can provide depth resolved images in biological tissue with high spatial and temporal resolution. SPF rats was anesthetized with isoflurane and divided into two groups. In first group, bilateral carotid artery was surgically exposed, and then left carotid artery was ligated. Blood flow changes of the contralateral carotid artery was monitored using high speed spectral domain optical coherence tomography, including the absolute flow velocity and the flow volume. In the other group, skull window was opened at the ipsilateral cerebral cortex of ligation and blood supply of small artery was measured before and after the ligation. The measured results demonstrate the blood supply compensation process after unilateral carotid artery ligation. With the superiority of high resolution, OCT is an effective technology in monitoring results of carotid artery after ligation.

  20. Comprehensive Clinical Staging for Resectable Lung Cancer: Clinicopathological Correlations and the Role of Brain MRI.

    PubMed

    Vernon, Jordyn; Andruszkiewicz, Nicole; Schneider, Laura; Schieman, Colin; Finley, Christian J; Shargall, Yaron; Fahim, Christine; Farrokhyar, Forough; Hanna, Waël C

    2016-11-01

    In our model of comprehensive clinical staging (CCS) for lung cancer, patients with a computerized tomography scan of the chest and upper abdomen not showing distant metastases will then routinely undergo whole body positron emission tomography/computerized tomography and magnetic resonance imaging (MRI) of the brain before any therapeutic decision. Our aim was to determine the accuracy of CCS and the value of brain MRI in this population. A retrospective analysis of a prospectively entered database was performed for all patients who underwent lung cancer resection from January 2012 to June 2014. Demographics, clinical and pathological stage (seventh edition of the American Joint Committee on Cancer/Union for International Cancer Control tumor, node, and metastasis staging manual), and costs of staging were collected. Correlation between clinical and pathological stage was determined. Of 315 patients with primary lung cancer, 55.6% were female and the mean age was 70 ± 9.6 years. When correlation was analyzed without consideration for substages A and B, 49.8% of patients (158 of 315) were staged accurately, 39.7% (125 of 315) were overstaged, and 10.5% (32 of 315) were understaged. Only 4.7% of patients (15 of 315) underwent surgery without appropriate neoadjuvant treatment. Preoperative brain MRI detected asymptomatic metastases in four of 315 patients (1.3%). At a median postoperative follow-up of 19 months (range 6-43), symptomatic brain metastases developed in seven additional patients. The total cost of CCS in Canadian dollars was $367,292 over the study period, with $117,272 (31.9%) going toward brain MRI. CCS is effective for patients with resectable lung cancer, with less than 5% of patients being denied appropriate systemic treatment before surgery. Brain MRI is a low-yield and high-cost intervention in this population, and its routine use should be questioned. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  1. Variable pixel size ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the proposed method offers an improvement of 8% compared with conventional constant pixel size tomography models in the forward modeling.

  2. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    PubMed

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep behaviour disorder and Parkinson's disease relative to each other and to controls. Connectivity measures of basal ganglia network dysfunction differentiated both rapid eye movement sleep behaviour disorder and Parkinson's disease from controls with high sensitivity (96%) and specificity (74% for rapid eye movement sleep behaviour disorder, 78% for Parkinson's disease), indicating its potential as an indicator of early basal ganglia dysfunction. Rapid eye movement sleep behaviour disorder was indistinguishable from Parkinson's disease on resting state functional magnetic resonance imaging despite obvious differences on dopamine transported single photon emission computerized tomography. Basal ganglia connectivity is a promising biomarker for the detection of early basal ganglia network dysfunction, and may help to identify patients at risk of developing Parkinson's disease in the future. Future risk stratification using a polymodal approach could combine basal ganglia network connectivity with clinical and other imaging measures, with important implications for future neuroprotective trials in rapid eye movement sleep behaviour disorder. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    PubMed Central

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    Abstract See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep behaviour disorder and Parkinson’s disease relative to each other and to controls. Connectivity measures of basal ganglia network dysfunction differentiated both rapid eye movement sleep behaviour disorder and Parkinson’s disease from controls with high sensitivity (96%) and specificity (74% for rapid eye movement sleep behaviour disorder, 78% for Parkinson’s disease), indicating its potential as an indicator of early basal ganglia dysfunction. Rapid eye movement sleep behaviour disorder was indistinguishable from Parkinson’s disease on resting state functional magnetic resonance imaging despite obvious differences on dopamine transported single photon emission computerized tomography. Basal ganglia connectivity is a promising biomarker for the detection of early basal ganglia network dysfunction, and may help to identify patients at risk of developing Parkinson’s disease in the future. Future risk stratification using a polymodal approach could combine basal ganglia network connectivity with clinical and other imaging measures, with important implications for future neuroprotective trials in rapid eye movement sleep behaviour disorder. PMID:27297241

  4. Breaking the acoustic diffraction barrier with localization optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2018-02-01

    Diffraction causes blurring of high-resolution features in images and has been traditionally associated to the resolution limit in light microscopy and other imaging modalities. The resolution of an imaging system can be generally assessed via its point spread function, corresponding to the image acquired from a point source. However, the precision in determining the position of an isolated source can greatly exceed the diffraction limit. By combining the estimated positions of multiple sources, localization-based imaging has resulted in groundbreaking methods such as super-resolution fluorescence optical microscopy and has also enabled ultrasound imaging of microvascular structures with unprecedented spatial resolution in deep tissues. Herein, we introduce localization optoacoustic tomography (LOT) and discuss on the prospects of using localization imaging principles in optoacoustic imaging. LOT was experimentally implemented by real-time imaging of flowing particles in 3D with a recently-developed volumetric optoacoustic tomography system. Provided the particles were separated by a distance larger than the diffraction-limited resolution, their individual locations could be accurately determined in each frame of the acquired image sequence and the localization image was formed by superimposing a set of points corresponding to the localized positions of the absorbers. The presented results demonstrate that LOT can significantly enhance the well-established advantages of optoacoustic imaging by breaking the acoustic diffraction barrier in deep tissues and mitigating artifacts due to limited-view tomographic acquisitions.

  5. Optical coherence tomography for imaging the middle and inner ears: A technical review

    NASA Astrophysics Data System (ADS)

    Ramier, Antoine; Rosowski, John J.; Yun, Seok-Hyun

    2018-05-01

    Optical coherence tomography (OCT), a minimally-invasive, high-speed, high resolution imaging modality, is becoming increasingly popular in the field of hearing research and otology. This review describes the history and state of the art of OCT for applications to understanding the mechanics of hearing and visualizing pathologies in the middle and inner ears. We will also discuss some of the recent developments that may accelerate the adoption of OCT to this field.

  6. Multi-scale Functional and Molecular Photoacoustic Tomography

    PubMed Central

    Yao, Junjie; Xia, Jun; Wang, Lihong V.

    2015-01-01

    Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617

  7. Computed tomography: Will the slices reveal the truth

    PubMed Central

    Haridas, Harish; Mohan, Abarajithan; Papisetti, Sravanthi; Ealla, Kranti K. R.

    2016-01-01

    With the advances in the field of imaging sciences, new methods have been developed in dental radiology. These include digital radiography, density analyzing methods, cone beam computed tomography (CBCT), magnetic resonance imaging, ultrasound, and nuclear imaging techniques, which provide high-resolution detailed images of oral structures. The current review aims to critically elaborate the use of CBCT in endodontics. PMID:27652253

  8. Automated detection of pulmonary nodules in CT images with support vector machines

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Liu, Wanyu; Sun, Xiaoming

    2008-10-01

    Many methods have been proposed to avoid radiologists fail to diagnose small pulmonary nodules. Recently, support vector machines (SVMs) had received an increasing attention for pattern recognition. In this paper, we present a computerized system aimed at pulmonary nodules detection; it identifies the lung field, extracts a set of candidate regions with a high sensitivity ratio and then classifies candidates by the use of SVMs. The Computer Aided Diagnosis (CAD) system presented in this paper supports the diagnosis of pulmonary nodules from Computed Tomography (CT) images as inflammation, tuberculoma, granuloma..sclerosing hemangioma, and malignant tumor. Five texture feature sets were extracted for each lesion, while a genetic algorithm based feature selection method was applied to identify the most robust features. The selected feature set was fed into an ensemble of SVMs classifiers. The achieved classification performance was 100%, 92.75% and 90.23% in the training, validation and testing set, respectively. It is concluded that computerized analysis of medical images in combination with artificial intelligence can be used in clinical practice and may contribute to more efficient diagnosis.

  9. In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography

    PubMed Central

    Christopoulos, Viki; Kagemann, Larry; Wollstein, Gadi; Ishikawa, Hiroshi; Gabriele, Michelle L.; Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Dhaliwal, Deepinder K.; Schuman, Joel S.

    2007-01-01

    Objective: To introduce new corneal high-speed, ultra–high-resolution optical coherence tomography (hsUHR-OCT) technology that improves the evaluation of complicated and uncomplicated cataract, corneal, and refractive surgical procedures. Design: This case series included a control subject and 9 eyes of 8 patients who had undergone phacoemulsification, Descemet membrane stripping endokeratoplasty, corneal implantation for keratoconus, and complicated and uncomplicated laser in situ keratomileusis. These eyes underwent imaging using a prototype ophthalmic hsUHR-OCT system. All the scans were compared with conventional slitlamp biomicroscopy. Results: Cross-sectional hsUHR-OCT imaging allowed in vivo differentiation of corneal layers and existing pathologic abnormalities at ultrahigh axial image resolution. These images illustrate the various incisional and refractive interfaces created with corneal procedures. Conclusions: The magnified view of the cornea using hsUHR-OCT is helpful in conceptualizing and understanding basic and complicated clinical pathologic features; hsUHR-OCT has the potential to become a powerful, noninvasive clinical corneal imaging modality that can enhance surgical management. Trial Registration: clinicaltrials.gov Identifier: NCT00343473 PMID:17698748

  10. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S

    2005-10-01

    To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.

  11. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  12. Is the cervical spine clear? Undetected cervical fractures diagnosed only at autopsy.

    PubMed

    Sweeney, J F; Rosemurgy, A S; Gill, S; Albrink, M H

    1992-10-01

    Undetected cervical-spine injuries are a nemesis to both trauma surgeons and emergency physicians. Radiographic protocols have been developed to avoid missing cervical-spine fractures but are not fail-safe. Three case reports of occult cervical fractures documented at autopsy in the face of normal cervical-spine radiographs and computerized tomography scans are presented.

  13. [Two cases of severe eye and cranial injuries due to firework explosions].

    PubMed

    Saunte, J P; Trojaborg, N S; Nielsen, O A; Thygesen, J

    1999-12-20

    Two patients who sustained serious facial, cranial and eye trauma secondary to recreational fireworks injuries are reported. Initial assessment included axial and coronary computerized tomography, control of haemorrhage, debridement of wound and brain, and in one patient bilateral excenteration of the globe. Both patients suffered from intracranial haemorrhage, but both recovered without severe neurological sequelae.

  14. The New Approach to Sport Medicine: 3-D Reconstruction

    ERIC Educational Resources Information Center

    Ince, Alparslan

    2015-01-01

    The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…

  15. Automated high resolution full-field spatial coherence tomography for quantitative phase imaging of human red blood cells

    NASA Astrophysics Data System (ADS)

    Singla, Neeru; Dubey, Kavita; Srivastava, Vishal; Ahmad, Azeem; Mehta, D. S.

    2018-02-01

    We developed an automated high-resolution full-field spatial coherence tomography (FF-SCT) microscope for quantitative phase imaging that is based on the spatial, rather than the temporal, coherence gating. The Red and Green color laser light was used for finding the quantitative phase images of unstained human red blood cells (RBCs). This study uses morphological parameters of unstained RBCs phase images to distinguish between normal and infected cells. We recorded the single interferogram by a FF-SCT microscope for red and green color wavelength and average the two phase images to further reduced the noise artifacts. In order to characterize anemia infected from normal cells different morphological features were extracted and these features were used to train machine learning ensemble model to classify RBCs with high accuracy.

  16. Multiple-energy Techniques in Industrial Computerized Tomography

    DOE R&D Accomplishments Database

    Schneberk, D.; Martz, H.; Azevedo, S.

    1990-08-01

    Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.

  17. Patterns of Emphysema Heterogeneity

    PubMed Central

    Valipour, Arschang; Shah, Pallav L.; Gesierich, Wolfgang; Eberhardt, Ralf; Snell, Greg; Strange, Charlie; Barry, Robert; Gupta, Avina; Henne, Erik; Bandyopadhyay, Sourish; Raffy, Philippe; Yin, Youbing; Tschirren, Juerg; Herth, Felix J.F.

    2016-01-01

    Background Although lobar patterns of emphysema heterogeneity are indicative of optimal target sites for lung volume reduction (LVR) strategies, the presence of segmental, or sublobar, heterogeneity is often underappreciated. Objective The aim of this study was to understand lobar and segmental patterns of emphysema heterogeneity, which may more precisely indicate optimal target sites for LVR procedures. Methods Patterns of emphysema heterogeneity were evaluated in a representative cohort of 150 severe (GOLD stage III/IV) chronic obstructive pulmonary disease (COPD) patients from the COPDGene study. High-resolution computerized tomography analysis software was used to measure tissue destruction throughout the lungs to compute heterogeneity (≥ 15% difference in tissue destruction) between (inter-) and within (intra-) lobes for each patient. Emphysema tissue destruction was characterized segmentally to define patterns of heterogeneity. Results Segmental tissue destruction revealed interlobar heterogeneity in the left lung (57%) and right lung (52%). Intralobar heterogeneity was observed in at least one lobe of all patients. No patient presented true homogeneity at a segmental level. There was true homogeneity across both lungs in 3% of the cohort when defining heterogeneity as ≥ 30% difference in tissue destruction. Conclusion Many LVR technologies for treatment of emphysema have focused on interlobar heterogeneity and target an entire lobe per procedure. Our observations suggest that a high proportion of patients with emphysema are affected by interlobar as well as intralobar heterogeneity. These findings prompt the need for a segmental approach to LVR in the majority of patients to treat only the most diseased segments and preserve healthier ones. PMID:26430783

  18. Diagnostic accuracy of cone-beam computed tomography scans with high- and low-resolution modes for the detection of root perforations.

    PubMed

    Shokri, Abbas; Eskandarloo, Amir; Norouzi, Marouf; Poorolajal, Jalal; Majidi, Gelareh; Aliyaly, Alireza

    2018-03-01

    This study compared the diagnostic accuracy of cone-beam computed tomography (CBCT) scans obtained with 2 CBCT systems with high- and low-resolution modes for the detection of root perforations in endodontically treated mandibular molars. The root canals of 72 mandibular molars were cleaned and shaped. Perforations measuring 0.2, 0.3, and 0.4 mm in diameter were created at the furcation area of 48 roots, simulating strip perforations, or on the external surfaces of 48 roots, simulating root perforations. Forty-eight roots remained intact (control group). The roots were filled using gutta-percha (Gapadent, Tianjin, China) and AH26 sealer (Dentsply Maillefer, Ballaigues, Switzerland). The CBCT scans were obtained using the NewTom 3G (QR srl, Verona, Italy) and Cranex 3D (Soredex, Helsinki, Finland) CBCT systems in high- and low-resolution modes, and were evaluated by 2 observers. The chi-square test was used to assess the nominal variables. In strip perforations, the accuracies of low- and high-resolution modes were 75% and 83% for NewTom 3G and 67% and 69% for Cranex 3D. In root perforations, the accuracies of low- and high-resolution modes were 79% and 83% for NewTom 3G and was 56% and 73% for Cranex 3D. The accuracy of the 2 CBCT systems was different for the detection of strip and root perforations. The Cranex 3D had non-significantly higher accuracy than the NewTom 3G. In both scanners, the high-resolution mode yielded significantly higher accuracy than the low-resolution mode. The diagnostic accuracy of CBCT scans was not affected by the perforation diameter.

  19. Ultra High-Resolution Anterior Segment Optical Coherence Tomography in the Diagnosis and Management of Ocular Surface Squamous Neoplasia

    PubMed Central

    Thomas, Benjamin J.; Galor, Anat; Nanji, Afshan A.; Sayyad, Fouad El; Wang, Jianhua; Dubovy, Sander R.; Joag, Madhura G.; Karp, Carol L.

    2014-01-01

    The development of optical coherence tomography (OCT) technology has helped to usher in a new era of in vivo diagnostic imaging of the eye. The utilization of OCT for imaging of the anterior segment and ocular surface has evolved from time-domain devices to spectral-domain devices with greater penetrance and resolution, providing novel images of anterior segment pathology to assist in diagnosis and management of disease. Ocular surface squamous neoplasia (OSSN) is one such pathology that has proven demonstrable by certain anterior segment OCT machines, specifically the newer devices capable of performing ultra high-resolution OCT (UHR-OCT). Distinctive features of OSSN on high resolution OCT allow for diagnosis and differentiation from other ocular surface pathologies. Subtle findings on these images help to characterize the OSSN lesions beyond what is apparent with the clinical examination, providing guidance for clinical management. The purpose of this review is to examine the published literature on the utilization of UHR-OCT for the diagnosis and management of OSSN, as well as to report novel uses of this technology and potential directions for its future development. PMID:24439046

  20. Toward a RPC-based muon tomography system for cargo containers.

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J.

    2014-10-01

    A large area scanner for cosmic muon tomography is currently being developed at University of Bristol. Thanks to their abundance and penetrating power, cosmic muons have been suggested as ideal candidates to scan large containers in search of special nuclear materials, which are characterized by high-Z and high density. The feasibility of such a scanner heavily depends on the detectors used to track the muons: for a typical container, the minimum required sensitive area is of the order of 100 2. The spatial resolution required depends on the geometrical configuration of the detectors. For practical purposes, a resolution of the order of 1 mm or better is desirable. A good time resolution can be exploited to provide momentum information: a resolution of the order of nanoseconds can be used to separate sub-GeV muons from muons with higher energies. Resistive plate chambers have a low cost per unit area and good spatial and time resolution; these features make them an excellent choice as detectors for muon tomography. In order to instrument a large area demonstrator we have produced 25 new readout boards and 30 glass RPCs. The RPCs measure 1800 mm× 600 mm and are read out using 1.68 mm pitch copper strips. The chambers were tested with a standardized procedure, i.e. without optimizing the working parameters to take into account differences in the manufacturing process, and the results show that the RPCs have an efficiency between 87% and 95%. The readout electronics show a signal to noise ratio greater than 20 for minimum ionizing particles. Spatial resolution better than 500 μm can easily be achieved using commercial read out ASICs. These results are better than the original minimum requirements to pass the tests and we are now ready to install the detectors.

  1. Dynamic-focusing microscope objective for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Murali, Supraja; Rolland, Jannick

    2007-01-01

    Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.

  2. 3D near-infrared imaging based on a single-photon avalanche diode array sensor

    NASA Astrophysics Data System (ADS)

    Mata Pavia, Juan; Wolf, Martin; Charbon, Edoardo

    2012-10-01

    Near-infrared light can be used to determine the optical properties (absorption and scattering) of human tissue. Optical tomography uses this principle to image the internal structure of parts of the body by measuring the light that is scattered in the tissue. An imager for optical tomography was designed based on a detector with 128x128 single photon pixels that included a bank of 32 time-to-digital converters. Due to the high spatial resolution and the possibility of performing time resolved measurements, a new contactless setup has been conceived. The setup has a resolution of 97ps and operates with a laser source with an average power of 3mW. This new setup generated an high amount of data that could not be processed by established methods, therefore new concepts and algorithms were developed to take advantage of it. Simulations show that the potential resolution of the new setup would be much higher than previous designs. Measurements have been performed showing its potential. Images derived from the measurements showed that it is possible to reach a resolution of at least 5mm.

  3. High speed imaging of dynamic processes with a switched source x-ray CT system

    NASA Astrophysics Data System (ADS)

    Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.

    2015-05-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.

  4. Effective Heart Disease Detection Based on Quantitative Computerized Traditional Chinese Medicine Using Representation Based Classifiers.

    PubMed

    Shu, Ting; Zhang, Bob; Tang, Yuan Yan

    2017-01-01

    At present, heart disease is the number one cause of death worldwide. Traditionally, heart disease is commonly detected using blood tests, electrocardiogram, cardiac computerized tomography scan, cardiac magnetic resonance imaging, and so on. However, these traditional diagnostic methods are time consuming and/or invasive. In this paper, we propose an effective noninvasive computerized method based on facial images to quantitatively detect heart disease. Specifically, facial key block color features are extracted from facial images and analyzed using the Probabilistic Collaborative Representation Based Classifier. The idea of facial key block color analysis is founded in Traditional Chinese Medicine. A new dataset consisting of 581 heart disease and 581 healthy samples was experimented by the proposed method. In order to optimize the Probabilistic Collaborative Representation Based Classifier, an analysis of its parameters was performed. According to the experimental results, the proposed method obtains the highest accuracy compared with other classifiers and is proven to be effective at heart disease detection.

  5. Relationships (II) of International Classification of High-resolution Computed Tomography for Occupational and Environmental Respiratory Diseases with ventilatory functions indices for parenchymal abnormalities.

    PubMed

    Tamura, Taro; Suganuma, Narufumi; Hering, Kurt G; Vehmas, Tapio; Itoh, Harumi; Akira, Masanori; Takashima, Yoshihiro; Hirano, Harukazu; Kusaka, Yukinori

    2015-01-01

    The International Classification of High-Resolution Computed Tomography (HRCT) for Occupational and Environmental Respiratory Diseases (ICOERD) is used to screen and diagnose respiratory illnesses. Using univariate and multivariate analysis, we investigated the relationship between subject characteristics and parenchymal abnormalities according to ICOERD, and the results of ventilatory function tests (VFT). Thirty-five patients with and 27 controls without mineral-dust exposure underwent VFT and HRCT. We recorded all subjects' occupational history for mineral dust exposure and smoking history. Experts independently assessed HRCT using the ICOERD parenchymal abnormalities (Items) grades for well-defined rounded opacities (RO), linear and/or irregular opacities (IR), and emphysema (EM). High-resolution computed tomography showed that 11 patients had RO; 15 patients, IR; and 19 patients, EM. According to the multiple regression model, age and height had significant associations with many indices ventilatory functions such as vital capacity, forced vital capacity, and forced expiratory volume in 1 s (FEV1). The EM summed grades on the upper, middle, and lower zones of the right and left lungs also had significant associations with FEV1 and the maximum mid-expiratory flow rate. The results suggest the ICOERD notation is adequate based on the good and significant multiple regression modeling of ventilatory function with the EM summed grades.

  6. Endoscopic optical coherence tomography with a focus-adjustable probe.

    PubMed

    Liao, Wenchao; Chen, Tianyuan; Wang, Chengming; Zhang, Wenxin; Peng, Zhangkai; Zhang, Xiao; Ai, Shengnan; Fu, Deyong; Zhou, Tieying; Xue, Ping

    2017-10-15

    We present a focus-adjustable endoscopic probe for optical coherence tomography (OCT), which is able to acquire images with different focal planes and overcome depth-of-focus limitations by image fusing. The use of a two-way shape-memory-alloy spring enables the probe to adjust working distance over 1.5 mm, providing a large scanning range with high resolution and no sensitivity loss. Equipped with a homemade hollow-core ultrasonic motor, the probe is capable of performing an unobstructed 360 deg field-of-view distal scanning. Both the axial resolution and the best lateral resolution are ∼4  μm, with a sensitivity of 100.3 dB. Spectral-domain OCT imaging of phantom and biological tissues with the probe is also demonstrated.

  7. NECTAR—A fission neutron radiography and tomography facility

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Lierse von Gostomski, Ch.; Breitkreutz, H.; Jungwirth, M.; Wagner, F. M.

    2011-09-01

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/ D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  8. Orientation-dependent tensile deformation and damage of a T700 carbon fiber/epoxy composite: A synchrotron-based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bie, B. X.; Huang, J. Y.; Fan, D.

    Uniaxial tensile experiments are conducted on a T700 carbon fiber/epoxy composite along various offaxis angles. Stressestrain curves are measured along with strain fields mapped via synchrotron x-ray digital image correlation, as well as computerized tomography. Elastic modulus and tensile strength decrease with increasing off-axis angles, while fracture strain exhibits a nonmonotonic trend as a combined result of tensile strength decrease and fracture mode transition. At high off-axis angles, strain field mapping demonstrates distinct tensile and shear strain localizations and deformation bands approximately along the fiber directions, while deformation is mainly achieved via continuous growth of tensile strain at low off-axismore » angles. Roughness of fracture planes decreases exponentially as the off-axis angle increases. The stressestrain curves, strain fields, tomography and fractographs show consistent features, and reveal a fracture mode transition from mainly tension (fiber fracture) to in-plane shear (interface debonding).« less

  9. High resolution macroscopy (HRMac) of the eye using nonlinear optical imaging

    NASA Astrophysics Data System (ADS)

    Winkler, Moritz; Jester, Bryan E.; Nien-Shy, Chyong; Chai, Dongyul; Brown, Donald J.; Jester, James V.

    2010-02-01

    Non-linear optical (NLO) imaging using femtosecond lasers provides a non-invasive means of imaging the structural organization of the eye through the generation of second harmonic signals (SHG). While NLO imaging is able to detect collagen, the small field of view (FoV) limits the ability to study how collagen is structurally organized throughout the larger tissue. To address this issue we have used computed tomography on optical and mechanical sectioned tissue to greatly expand the FoV and provide high resolution macroscopic (HRMac) images that cover the entire tissue (cornea and optic nerve head). Whole, fixed cornea (13 mm diameter) or optic nerve (3 mm diameter) were excised and either 1) embedded in agar and sectioned using a vibratome (200-300 um), or 2) embedded in LR White plastic resin and serially sectioned (2 um). Vibratome and plastic sections were then imaged using a Zeiss LSM 510 Meta and Chameleon femtosecond laser to generate NLO signals and assemble large macroscopic 3-dimensional tomographs with high resolution that varied in size from 9 to 90 Meg pixels per plane having a resolution of 0.88 um lateral and 2.0 um axial. 3-D reconstructions allowed for regional measurements within the cornea and optic nerve to quantify collagen content, orientation and organization over the entire tissue. We conclude that NLO based tomography to generate HRMac images provides a powerful new tool to assess collagen structural organization. Biomechanical testing combined with NLO tomography may provide new insights into the relationship between the extracellular matrix and tissue mechanics.

  10. Computational adaptive optics for broadband optical interferometric tomography of biological tissue.

    PubMed

    Adie, Steven G; Graf, Benedikt W; Ahmad, Adeel; Carney, P Scott; Boppart, Stephen A

    2012-05-08

    Aberrations in optical microscopy reduce image resolution and contrast, and can limit imaging depth when focusing into biological samples. Static correction of aberrations may be achieved through appropriate lens design, but this approach does not offer the flexibility of simultaneously correcting aberrations for all imaging depths, nor the adaptability to correct for sample-specific aberrations for high-quality tomographic optical imaging. Incorporation of adaptive optics (AO) methods have demonstrated considerable improvement in optical image contrast and resolution in noninterferometric microscopy techniques, as well as in optical coherence tomography. Here we present a method to correct aberrations in a tomogram rather than the beam of a broadband optical interferometry system. Based on Fourier optics principles, we correct aberrations of a virtual pupil using Zernike polynomials. When used in conjunction with the computed imaging method interferometric synthetic aperture microscopy, this computational AO enables object reconstruction (within the single scattering limit) with ideal focal-plane resolution at all depths. Tomographic reconstructions of tissue phantoms containing subresolution titanium-dioxide particles and of ex vivo rat lung tissue demonstrate aberration correction in datasets acquired with a highly astigmatic illumination beam. These results also demonstrate that imaging with an aberrated astigmatic beam provides the advantage of a more uniform depth-dependent signal compared to imaging with a standard gaussian beam. With further work, computational AO could enable the replacement of complicated and expensive optical hardware components with algorithms implemented on a standard desktop computer, making high-resolution 3D interferometric tomography accessible to a wider group of users and nonspecialists.

  11. Increasing Receipt of High-Tech/High-Cost Imaging and Its Determinants in the Last Month of Taiwanese Patients With Metastatic Cancer, 2001-2010: A Retrospective Cohort Study.

    PubMed

    Liu, Tsang-Wu; Hung, Yen-Ni; Soong, Thomas C; Tang, Siew Tzuh

    2015-08-01

    One strategy for controlling the skyrocketing costs of cancer care may be to target high-tech/high-cost imaging at the end of life (EOL). This population-based study investigated receipt of high-tech/high-cost imaging and its determinants for Taiwanese patients with metastatic cancer in their last month of life.Individual patient-level data were linked with encrypted identification numbers from computerized administrative data in Taiwan, that is, the National Register of Deaths Database, Cancer Registration System database, and National Health Insurance claims datasets, Database of Medical Care Institutions Status, and national census statistics (population/household income). We identified receipt of computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and radionuclide bone scans (BSs) for 236,911 Taiwanese cancer decedents with metastatic disease, 2001 to 2010. Associations of patient, physician, hospital, and regional factors with receiving CT, MRI, and bone scan in the last month of life were evaluated by multilevel generalized linear-mixed models.Over one-third (average [range]: 36.11% [33.07%-37.31%]) of patients with metastatic cancer received at least 1 high-tech/high-cost imaging modality in their last month (usage rates for CT, MRI, PET, and BS were 31.05%, 5.81%, 0.25%, and 8.15%, respectively). In 2001 to 2010, trends of receipt increased for CT (27.96-32.22%), MRI (4.34-6.70%), and PET (0.00-0.62%), but decreased for BS (9.47-6.57%). Facilitative determinants with consistent trends for at least 2 high-tech/high-cost imaging modalities were male gender, younger age, married, rural residence, lung cancer diagnosis, dying within 1 to 2 years of diagnosis, not under medical oncology care, and receiving care at a teaching hospital with a larger volume of terminally ill cancer patients and greater EOL care intensity. Undergoing high-tech/high-cost imaging at EOL generally was not associated with regional characteristics, healthcare resources, and EOL care intensity.To more effectively use high-tech/high-cost imaging at EOL, clinical and financial interventions should target nonmedical oncologists/hematologists affiliated with teaching hospitals that tend to aggressively treat high volumes of terminally ill cancer patients, thereby avoiding unnecessary EOL care spending and transforming healthcare systems into affordable high-quality cancer care delivery systems.

  12. Resolution enhancement of partial coherence interferometry by dispersion compensation

    NASA Astrophysics Data System (ADS)

    Baumgartner, Angela; Hitzenberger, Christoph K.; Drexler, Wolfgang; Fercher, Adolf F.

    1997-12-01

    In the past ten years partial coherence interferometry and optical coherence tomography have been developed for high precision biometry and tomography of the human eye in vivo. The longitudinal resolution of the optical coherence tomography technique depends on the spectral bandwidth of the light source used and on the dispersion of the media to be measured. In nondispersive media the resolution is approximately equal to the coherence length of the light used, which is inversely proportional to the width of the emission spectrum. Hence, a broad emission spectrum yields a short coherence length and consequently a good resolution. However, if the tissue under investigation is dispersive, the coherence envelope of the signal broadens leading to a decrease in resolution and interference fringe contrast. This effect becomes predominant if measurements through the dispersive media of the eye to the retina are performed with source bandwidths larger than approximately 25 nm. In order to achieve optimum resolution of OCT by applying a light source with a broad emission spectrum, the dispersion of the object to be measured, i.e. in this case of the ocular media, has to be compensated. Within the scope of this work we demonstrate the resolution improvement that is obtained by compensating the dispersive effects of the ocular media and using broadband light sources. Furthermore, we present the first optical coherence tomogram recorded with this technique in the retina of a human eye in vivo with an axial geometrical resolution of approximately 6 micrometers which is a two-fold improvement compared to presently used technology.

  13. Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm.

    PubMed

    Kwon, Ohin; Woo, Eung Je; Yoon, Jeong-Rock; Seo, Jin Keun

    2002-02-01

    We developed a new image reconstruction algorithm for magnetic resonance electrical impedance tomography (MREIT). MREIT is a new EIT imaging technique integrated into magnetic resonance imaging (MRI) system. Based on the assumption that internal current density distribution is obtained using magnetic resonance imaging (MRI) technique, the new image reconstruction algorithm called J-substitution algorithm produces cross-sectional static images of resistivity (or conductivity) distributions. Computer simulations show that the spatial resolution of resistivity image is comparable to that of MRI. MREIT provides accurate high-resolution cross-sectional resistivity images making resistivity values of various human tissues available for many biomedical applications.

  14. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

    NASA Astrophysics Data System (ADS)

    Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto

    2010-05-01

    Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

  15. Ring-based ultrasonic virtual point detector with applications to photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Yang, Xinmai; Li, Meng-Lin; Wang, Lihong V.

    2007-06-01

    An ultrasonic virtual point detector is constructed using the center of a ring transducer. The virtual point detector provides ideal omnidirectional detection free of any aperture effect. Compared with a real point detector, the virtual one has lower thermal noise and can be scanned with its center inside a physically inaccessible medium. When applied to photoacoustic tomography, the virtual point detector provides both high spatial resolution and high signal-to-noise ratio. It can also be potentially applied to other ultrasound-related technologies.

  16. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we obtain a similar peanut, but without the line singularity.

  17. High School Concussions in the 2008–2009 Academic Year

    PubMed Central

    Meehan, William P.; d’Hemecourt, Pierre; Comstock, R. Dawn

    2011-01-01

    Background An estimated 136 000 concussions occur per academic year in high schools alone. The effects of repetitive concussions and the potential for catastrophic injury have made concussion an injury of significant concern for young athletes. Purpose The objective of this study was to describe the mechanism of injury, symptoms, and management of sport-related concussions using the High School Reporting Information Online (HS RIO) surveillance system. Study Design Descriptive epidemiology study. Methods All concussions recorded by HS RIO during the 2008–2009 academic year were included. Analyses were performed using SPSS software. Chi-square analysis was performed for all categorical variables. Statistical significance was considered for P < .05. Results A total of 544 concussions were recorded. The most common mechanism (76.2%) was contact with another player, usually a head-to-head collision (52.7%). Headache was experienced in 93.4%; 4.6% lost consciousness. Most (83.4%) had resolution of their symptoms within 1 week. Symptoms lasted longer than 1 month in 1.5%. Computerized neuropsychological testing was used in 25.7% of concussions. When neuropsychological testing was used, athletes were less likely to return to play within 1 week than those for whom it was not used (13.6% vs 32.9%; P < .01). Athletes who had neuropsychological testing appeared less likely to return to play on the same day (0.8% vs 4.2%; P = .056). A greater proportion of injured, nonfootball athletes had computerized neuropsychological testing than injured football players (23% vs 32%; P = .02) Conclusion When computerized neuropsychological testing is used, high school athletes are less likely to be returned to play within 1 week of their injury. Concussed football players are less likely to have computerized neuropsychological testing than those participating in other sports. Loss of consciousness is relatively uncommon among high school athletes who sustain a sport-related concussion. The most common mechanism is contact with another player. Some athletes (1.5%) report symptoms lasting longer than 1 month. PMID:20716683

  18. Magnetoacoustic tomography with magnetic induction for imaging electrical impedance of biological tissue

    NASA Astrophysics Data System (ADS)

    Li, Xu; Xu, Yuan; He, Bin

    2006-03-01

    An experimental feasibility study was conducted on magnetoacoustic tomography with magnetic induction (MAT-MI). It is demonstrated that the two-dimensional MAT-MI system can detect and image the boundaries between regions of different electrical conductivities with high spatial resolution. Utilizing a magnetic stimulation coil, MAT-MI evokes magnetically induced eddy current in an object which is placed in a static magnetic field. Because of the existence of Lorenz forces, the eddy current in turn causes acoustic vibrations, which are measured around the object in order to reconstruct the electrical impedance distribution of the object. The present experimental results from the saline and gel phantoms are promising and suggest the merits of MAT-MI in imaging electrical impedance of biological tissue with high spatial resolution.

  19. Concurrent multiscale imaging with magnetic resonance imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liang, Chia-Pin; Yang, Bo; Kim, Il Kyoon; Makris, George; Desai, Jaydev P.; Gullapalli, Rao P.; Chen, Yu

    2013-04-01

    We develop a novel platform based on a tele-operated robot to perform high-resolution optical coherence tomography (OCT) imaging under continuous large field-of-view magnetic resonance imaging (MRI) guidance. Intra-operative MRI (iMRI) is a promising guidance tool for high-precision surgery, but it may not have sufficient resolution or contrast to visualize certain small targets. To address these limitations, we develop an MRI-compatible OCT needle probe, which is capable of providing microscale tissue architecture in conjunction with macroscale MRI tissue morphology in real time. Coregistered MRI/OCT images on ex vivo chicken breast and human brain tissues demonstrate that the complementary imaging scales and contrast mechanisms have great potential to improve the efficiency and the accuracy of iMRI procedure.

  20. Image quality improvement in cone-beam CT using the super-resolution technique.

    PubMed

    Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi

    2018-04-05

    This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.

  1. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay

    PubMed Central

    Morgan, Jessica I. W.

    2016-01-01

    Purpose Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Recent findings Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Summary Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. PMID:27112222

  2. The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay.

    PubMed

    Morgan, Jessica I W

    2016-05-01

    Over the past 25 years, optical coherence tomography (OCT) and adaptive optics (AO) ophthalmoscopy have revolutionised our ability to non-invasively observe the living retina. The purpose of this review is to highlight the techniques and human clinical applications of recent advances in OCT and adaptive optics scanning laser/light ophthalmoscopy (AOSLO) ophthalmic imaging. Optical coherence tomography retinal and optic nerve head (ONH) imaging technology allows high resolution in the axial direction resulting in cross-sectional visualisation of retinal and ONH lamination. Complementary AO ophthalmoscopy gives high resolution in the transverse direction resulting in en face visualisation of retinal cell mosaics. Innovative detection schemes applied to OCT and AOSLO technologies (such as spectral domain OCT, OCT angiography, confocal and non-confocal AOSLO, fluorescence, and AO-OCT) have enabled high contrast between retinal and ONH structures in three dimensions and have allowed in vivo retinal imaging to approach that of histological quality. In addition, both OCT and AOSLO have shown the capability to detect retinal reflectance changes in response to visual stimuli, paving the way for future studies to investigate objective biomarkers of visual function at the cellular level. Increasingly, these imaging techniques are being applied to clinical studies of the normal and diseased visual system. Optical coherence tomography and AOSLO technologies are capable of elucidating the structure and function of the retina and ONH noninvasively with unprecedented resolution and contrast. The techniques have proven their worth in both basic science and clinical applications and each will continue to be utilised in future studies for many years to come. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  3. 3D high-resolution radar imaging of small body interiors

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Asphaug, Erik

    2017-10-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5) exploiting the known (and complex) exterior shape of the studied body facilitates high-resolution imaging and tomography comparable with what could be accomplished by bi/multi-static systems.

  4. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  5. Three dimensional fracture aperture and porosity distribution using computerized tomography

    NASA Astrophysics Data System (ADS)

    Wenning, Q.; Madonna, C.; Joss, L.; Pini, R.

    2017-12-01

    A wide range of geologic processes and geo-engineered applications are governed by coupled hydromechanical properties in the subsurface. In geothermal energy reservoirs, quantifying the rate of heat transfer is directly linked with the transport properties of fractures, underscoring the importance of fracture aperture characterization for achieving optimal heat production. In this context, coupled core-flooding experiments with non-invasive imaging techniques (e.g., X-Ray Computed Tomography - X-Ray CT) provide a powerful method to make observations of these properties under representative geologic conditions. This study focuses on quantifying fracture aperture distribution in a fractured westerly granite core by using a recently developed calibration-free method [Huo et al., 2016]. Porosity is also estimated with the X-ray saturation technique using helium and krypton gases as saturating fluids, chosen for their high transmissibility and high CT contrast [e.g., Vega et al., 2014]. The westerly granite sample (diameter: 5 cm, length: 10 cm) with a single through-going rough-walled fracture was mounted in a high-pressure aluminum core-holder and placed inside a medical CT scanner for imaging. During scanning the pore fluid pressure was undrained and constant, and the confining pressure was regulated to have the desired effective pressure (0.5, 5, 7 and 10 MPa) under loading and unloading conditions. 3D reconstructions of the sample have been prepared in terms of fracture aperture and porosity at a maximum resolution of (0.24×0.24×1) mm3. Fracture aperture maps obtained independently using helium and krypton for the whole core depict a similar heterogeneous aperture field, which is also dependent on confining pressure. Estimates of the average hydraulic aperture from CT scans are in quantitative agreement with results from fluid flow experiments. However, the latter lack of the level of observational detail achieved through imaging, which further evidence the presence of strong heterogeneities in fracture aperture at the mm-scale. These results exemplify the use of non-destructive imaging to determine fracture aperture maps, which can be used to address flow channelization and heat transfer that cannot be obtained from core-flooding experiments alone.

  6. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography

    PubMed Central

    Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.

    2010-01-01

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566

  7. Ionospheric Tomography Using Faraday Rotation of Automatic Dependant Surveillance Broadcast UHF Signals

    NASA Astrophysics Data System (ADS)

    Cushley, A. C.

    2013-12-01

    The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.

  8. Monitoring tumor growth and treatment in small animals with magnetic resonance and optical tomographic imaging

    NASA Astrophysics Data System (ADS)

    Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.

    2006-02-01

    Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.

  9. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    PubMed

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  10. Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks.

    PubMed

    Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats

    2018-06-01

    Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Nondestructive analysis of automotive paints with spectral domain optical coherence tomography.

    PubMed

    Dong, Yue; Lawman, Samuel; Zheng, Yalin; Williams, Dominic; Zhang, Jinke; Shen, Yao-Chun

    2016-05-01

    We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300-1850  μm2. In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.

  12. Geoscientific process monitoring with positron emission tomography (GeoPET)

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gründig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-08-01

    Transport processes in geomaterials can be observed with input-output experiments, which yield no direct information on the impact of heterogeneities, or they can be assessed by model simulations based on structural imaging using µ-CT. Positron emission tomography (PET) provides an alternative experimental observation method which directly and quantitatively yields the spatio-temporal distribution of tracer concentration. Process observation with PET benefits from its extremely high sensitivity together with a resolution that is acceptable in relation to standard drill core sizes. We strongly recommend applying high-resolution PET scanners in order to achieve a resolution on the order of 1 mm. We discuss the particularities of PET applications in geoscientific experiments (GeoPET), which essentially are due to high material density. Although PET is rather insensitive to matrix effects, mass attenuation and Compton scattering have to be corrected thoroughly in order to derive quantitative values. Examples of process monitoring of advection and diffusion processes with GeoPET illustrate the procedure and the experimental conditions, as well as the benefits and limits of the method.

  13. Performance comparison of classifiers for differentiation among obstructive lung diseases based on features of texture analysis at HRCT

    NASA Astrophysics Data System (ADS)

    Lee, Youngjoo; Seo, Joon Beom; Kang, Bokyoung; Kim, Dongil; Lee, June Goo; Kim, Song Soo; Kim, Namkug; Kang, Suk Ho

    2007-03-01

    The performance of classification algorithms for differentiating among obstructive lung diseases based on features from texture analysis using HRCT (High Resolution Computerized Tomography) images was compared. HRCT can provide accurate information for the detection of various obstructive lung diseases, including centrilobular emphysema, panlobular emphysema and bronchiolitis obliterans. Features on HRCT images can be subtle, however, particularly in the early stages of disease, and image-based diagnosis is subject to inter-observer variation. To automate the diagnosis and improve the accuracy, we compared three types of automated classification systems, naÃve Bayesian classifier, ANN (Artificial Neural Net) and SVM (Support Vector Machine), based on their ability to differentiate among normal lung and three types of obstructive lung diseases. To assess the performance and cross-validation of these three classifiers, 5 folding methods with 5 randomly chosen groups were used. For a more robust result, each validation was repeated 100 times. SVM showed the best performance, with 86.5% overall sensitivity, significantly different from the other classifiers (one way ANOVA, p<0.01). We address the characteristics of each classifier affecting performance and the issue of which classifier is the most suitable for clinical applications, and propose an appropriate method to choose the best classifier and determine its optimal parameters for optimal disease discrimination. These results can be applied to classifiers for differentiation of other diseases.

  14. The use of high resolution magnetic resonance on 3.0-T system in the diagnosis and surgical planning of intraosseous lesions of the jaws: preliminary results of a retrospective study.

    PubMed

    Cassetta, M; Di Carlo, S; Pranno, N; Stagnitti, A; Pompa, V; Pompa, G

    2012-12-01

    The pre-operative evaluation in oral and maxillofacial surgery is currently performed by computerized tomography (CT). However in some case the information of the traditional imaging methods are not enough in the diagnosis and surgical planning. The efficacy of these imaging methods in the evaluation of soft tissues is lower than magnetic resonance imaging (MRI). The aim of the study was to show the use of MRI in the evaluation of relation between intraosseous lesions of the jaws and anatomical structures, when it was difficult using the traditional radiographic methods, and to evaluate the usefulness of MRI to depict the morphostructural characterization of the lesions and infiltration of the soft tissues. 10 patients with a lesion of jaw were selected. All the patients underwent panoramic radiography (OPT), CT and MRI. The images were examined by dental and maxillofacial radiology who compared the different imaging methods to analyze the morphological and structural characteristics of the lesion and assessed the relationship between the lesion and the anatomical structures. Magnetic resonance imaging provided more detailed spatial and structural information than other imaging methods. MRI allowed us to characterize the intraosseous lesions of the jaws and to plan the surgery, resulting in a lower risk of anatomic structures surgical injury.

  15. Osteochondrosis of the inferior pole of the scapula (Roca disease).

    PubMed

    Skaf, Abdalla; Taneja, Atul K

    2014-03-01

    We report a rare case of osteochondrosis of the inferior pole of the scapula in a 14-year-old boy, an amateur swimmer, that was diagnosed by a combination of clinical and imaging findings. Also known as Roca disease, this is the first article to report this entity in the English literature and demonstrates its computerized tomography and MRI features.

  16. Predicting internal red oak (Quercus rubra) log defect features using surface defect defect measurements

    Treesearch

    R. Edward Thomas

    2013-01-01

    Determining the defects located within a log is crucial to understanding the tree/log resource for efficient processing. However, existing means of doing this non-destructively requires the use of expensive x-ray/CT (computerized tomography), MRI (magnetic resonance imaging), or microwave technology. These methods do not lend themselves to fast, efficient, and cost-...

  17. A Head and Neck Simulator for Radiology and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Thompson, Larissa; Campos, Tarcísio P. R.

    2013-06-01

    Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.

  18. Analysis of rocket beacon transmissions for computerized reconstruction of ionospheric densities

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Chaturvedi, P. K.; Fulford, J. A.; Forsyth, P. A.; Anderson, D. N.; Zalesak, S. T.

    1993-01-01

    Three methods are described to obtain ionospheric electron densities from transionospheric, rocket-beacon TEC data. First, when the line-of-sight from a ground receiver to the rocket beacon is tangent to the flight trajectory, the electron concentration can be obtained by differentiating the TEC with respect to the distance to the rocket. A similar method may be used to obtain the electron-density profile if the layer is horizontally stratified. Second, TEC data obtained during chemical release experiments may be interpreted with the aid of physical models of the disturbed ionosphere to yield spatial maps of the modified regions. Third, computerized tomography (CT) can be used to analyze TEC data obtained along a chain of ground-based receivers aligned along the plane of the rocket trajectory. CT analysis of TEC data is used to reconstruct a 2D image of a simulated equatorial plume. TEC data is computed for a linear chain of nine receivers with adjacent spacings of either 100 or 200 km. The simulation data are analyzed to provide an F region reconstruction on a grid with 15 x 15 km pixels. Ionospheric rocket tomography may also be applied to rocket-assisted measurements of amplitude and phase scintillations and airglow intensities.

  19. Clinical technique for invasive cervical root resorption

    PubMed Central

    Silveira, Luiz Fernando Machado; Silveira, Carina Folgearini; Martos, Josué; Piovesan, Edno Moacir; César Neto, João Batista

    2011-01-01

    This clinical case report describes the diagnosis and treatment of an external invasive cervical resorption. A 17-year-old female patient had a confirmed diagnosis of invasive cervical resorption class 4 by cone beam computerized tomography. Although, there was no communication with the root canal, the invasive resorption process was extending into the cervical and middle third of the root. The treatment of the cervical resorption of the lateral incisor interrupted the resorptive process and restored the damaged root surface and the dental functions without any esthetic sequelae. Both the radiographic examination and computed tomography are imperative to reveal the extent of the defect in the differential diagnosis. PMID:22144822

  20. An analysis of regional cerebral blood flow in impulsive murderers using single photon emission computed tomography.

    PubMed

    Amen, Daniel G; Hanks, Chris; Prunella, Jill R; Green, Aisa

    2007-01-01

    The authors explored differences in regional cerebral blood flow in 11 impulsive murderers and 11 healthy comparison subjects using single photon emission computed tomography. The authors assessed subjects at rest and during a computerized go/no-go concentration task. Using statistical parametric mapping software, the authors performed voxel-by-voxel t tests to assess significant differences, making family-wide error corrections for multiple comparisons. Murderers were found to have significantly lower relative rCBF during concentration, particularly in areas associated with concentration and impulse control. These results indicate that nonemotionally laden stimuli may result in frontotemporal dysregulation in people predisposed to impulsive violence.

  1. Screening and Biosensor-Based Approaches for Lung Cancer Detection

    PubMed Central

    Wang, Lulu

    2017-01-01

    Early diagnosis of lung cancer helps to reduce the cancer death rate significantly. Over the years, investigators worldwide have extensively investigated many screening modalities for lung cancer detection, including computerized tomography, chest X-ray, positron emission tomography, sputum cytology, magnetic resonance imaging and biopsy. However, these techniques are not suitable for patients with other pathologies. Developing a rapid and sensitive technique for early diagnosis of lung cancer is urgently needed. Biosensor-based techniques have been recently recommended as a rapid and cost-effective tool for early diagnosis of lung tumor markers. This paper reviews the recent development in screening and biosensor-based techniques for early lung cancer detection. PMID:29065541

  2. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  3. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  4. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of cracks in rocks at potential nuclear waste repositories. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  5. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  6. Phase-contrast tomography of sciatic nerves: image quality and experimental parameters

    NASA Astrophysics Data System (ADS)

    Töpperwien, M.; Krenkel, M.; Ruhwedel, T.; Möbius, W.; Pacureanu, A.; Cloetens, P.; Salditt, T.

    2017-06-01

    We present propagation-based phase-contrast tomography of mouse sciatic nerves stained with osmium, leading to an enhanced contrast in the myelin sheath around the axons, in order to visualize the threedimensional (3D) structure of the nerve. We compare different experimental parameters and show that contrast and resolution are high enough to identify single axons in the nerve, including characteristic functional structures such as Schmidt-Lanterman incisures.

  7. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2017-12-01

    AD_________________ (Leave blank) Award Number: W81XWH-13-1-0155 TITLE: Electromagnetic -Optical Coherence Tomography Guidance of Transbronchial...2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 July 2013 - 30 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Electromagnetic -Optical...SUPPLEMENTARY NOTES 14. ABSTRACT We present a novel high-resolution multimodality imaging platform utilizing CT and electromagnetic (EM) navigation for spatial

  8. Tutorial on photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Yao, Junjie; Wang, Lihong V.

    2016-06-01

    Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT's basic principles, major implementations, imaging contrasts, and recent applications.

  9. Motion-compensated cone beam computed tomography using a conjugate gradient least-squares algorithm and electrical impedance tomography imaging motion data.

    PubMed

    Pengpen, T; Soleimani, M

    2015-06-13

    Cone beam computed tomography (CBCT) is an imaging modality that has been used in image-guided radiation therapy (IGRT). For applications such as lung radiation therapy, CBCT images are greatly affected by the motion artefacts. This is mainly due to low temporal resolution of CBCT. Recently, a dual modality of electrical impedance tomography (EIT) and CBCT has been proposed, in which the high temporal resolution EIT imaging system provides motion data to a motion-compensated algebraic reconstruction technique (ART)-based CBCT reconstruction software. High computational time associated with ART and indeed other variations of ART make it less practical for real applications. This paper develops a motion-compensated conjugate gradient least-squares (CGLS) algorithm for CBCT. A motion-compensated CGLS offers several advantages over ART-based methods, including possibilities for explicit regularization, rapid convergence and parallel computations. This paper for the first time demonstrates motion-compensated CBCT reconstruction using CGLS and reconstruction results are shown in limited data CBCT considering only a quarter of the full dataset. The proposed algorithm is tested using simulated motion data in generic motion-compensated CBCT as well as measured EIT data in dual EIT-CBCT imaging. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Esophageal involvement and interstitial lung disease in mixed connective tissue disease.

    PubMed

    Fagundes, M N; Caleiro, M T C; Navarro-Rodriguez, T; Baldi, B G; Kavakama, J; Salge, J M; Kairalla, R; Carvalho, C R R

    2009-06-01

    Mixed connective tissue disease is a systemic inflammatory disorder that results in both pulmonary and esophageal manifestations. We sought to evaluate the relationship between esophageal dysfunction and interstitial lung disease in patients with mixed connective tissue disease. We correlated the pulmonary function data and the high-resolution computed tomography findings of interstitial lung disease with the results of esophageal evaluation in manometry, 24-hour intraesophageal pH measurements, and the presence of esophageal dilatation on computed tomography scan. Fifty consecutive patients with mixed connective tissue disease, according to Kasukawa's classification criteria, were included in this prospective study. High-resolution computed tomography parenchymal abnormalities were present in 39 of 50 patients. Esophageal dilatation, gastroesophageal reflux, and esophageal motor impairment were also very prevalent (28 of 50, 18 of 36, and 30 of 36, respectively). The presence of interstitial lung disease on computed tomography was significantly higher among patients with esophageal dilatation (92% vs. 45%; p<0.01) and among patients with severe motor dysfunction (90% vs. 35%; p<0.001). Although we were not able to prove a causal relationship between esophageal and pulmonary involvement, our series revealed a strong association between esophageal motor dysfunction and interstitial lung disease in patients with mixed connective tissue disease.

  11. Cerebral tuberculomas – A clinical challenge

    PubMed Central

    Monteiro, Regina; Carneiro, José Carlos; Costa, Claúdia; Duarte, Raquel

    2013-01-01

    Cerebral tuberculomas are a rare and serious form of tuberculosis (TB) due to the haematogenous spread of Mycobacterium Tuberculosis (MT). Symptoms and radiologic features are nonspecific, leading sometimes to misdiagnosis. Anti-TB drugs are essential for the successful treatment of cerebral tuberculomas but there is no agreement regarding the duration of therapy. The authors present a case of a 55 years old male, presented to the emergency room with sudden onset of diplopia. Cerebral computerized tomography revealed multiple brain lesions, with contrast enhancement and peri-lesional oedema. The patient was HIV negative and because of previous malignancy the first suspicion was metastatic disease. Cultural exam of the bronchial wash showed MT sensitive to all first-line drugs. The patient started antituberculosis treatment with 4 drugs (HRZE) for 2 months, followed by maintenance therapy (HR). Treatment was prolonged for 24 months because at 12th and 18th months of treatment one of the brain lesions, although significantly smaller, still showed contrast enhancement. Even though it is not clear if contrast enhancement lesions represent active lesions or just inflammation, continuing treatment until total resolution of the tuberculomas is probably prudent. PMID:26029627

  12. Celiac Disease Associated with a Benign Granulomatous Mass Demonstrating Self-Regression after Initiation of a Gluten-Free Diet.

    PubMed

    Tiwari, Abhinav; Sharma, Himani; Qamar, Khola; Khan, Zubair; Darr, Umar; Renno, Anas; Nawras, Ali

    2017-01-01

    Celiac disease is a chronic immune-mediated enteropathy in which dietary gluten induces an inflammatory reaction predominantly in the duodenum. Celiac disease is known to be associated with benign small bowel thickening and reactive lymphadenopathy that often regresses after the institution of a gluten-free diet. A 66-year-old male patient with celiac disease presented with abdominal pain and diarrheal illness. Computerized tomography of the abdomen revealed a duodenal mass. Endoscopic ultrasound-guided fine needle aspiration of the mass revealed bizarre stromal cells which represent a nonspecific tissue reaction to inflammation. This inflammatory mass regressed after the institution of a gluten-free diet. This case report describes a unique presentation of celiac disease in the form of a granulomatous self-regressing mass. Also, this is the first reported case of bizarre stromal cells found in association with celiac disease. In addition to lymphoma and small bowel adenocarcinoma, celiac disease can present with a benign inflammatory mass, which should be serially monitored for resolution with a gluten-free diet.

  13. [The importance of axial computer tomography of the neurocranium in neurotraumatology (1) (author's transl)].

    PubMed

    Gustorf, R

    1979-07-01

    Computer tomography enables exact diagnostic clarification of intracranial lesions in trauma of the neurocranium. Subdural or epidural as well as intracerebral haemorrhages can be localised, and a circumscribed contusion and cerebral oedema become tangible. The article reports on 90 patients subjected to computerized tomography following trauma of the neurocranium. In about 50% of the cases, the trauma had been caused by a traffic accident. About 27% of the accident victims were children and adolescents. In about one-half of the examined persons, subdural or epidural haemorrhages were found, whereas in about 20% of the cases, contusions, partly with mild haemorrhages, were seen. In about 10% of the cases a more or less severe oedema was seen. About 20% of the patients yielded no abnormal finding by CT in accordance with the age of the patient.

  14. LUNGx Challenge for computerized lung nodule classification

    DOE PAGES

    Armato, Samuel G.; Drukker, Karen; Li, Feng; ...

    2016-12-19

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  15. LUNGx Challenge for computerized lung nodule classification

    PubMed Central

    Armato, Samuel G.; Drukker, Karen; Li, Feng; Hadjiiski, Lubomir; Tourassi, Georgia D.; Engelmann, Roger M.; Giger, Maryellen L.; Redmond, George; Farahani, Keyvan; Kirby, Justin S.; Clarke, Laurence P.

    2016-01-01

    Abstract. The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community. PMID:28018939

  16. LUNGx Challenge for computerized lung nodule classification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G.; Drukker, Karen; Li, Feng

    The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less

  17. Pancreatitis: an important cause of abdominal symptoms in patients on peritoneal dialysis.

    PubMed

    Caruana, R J; Wolfman, N T; Karstaedt, N; Wilson, D J

    1986-02-01

    In an eight-month period, four patients in our peritoneal dialysis program developed acute pancreatitis, an incidence significantly higher than that in our hemodialysis program. Diagnosis was difficult since the symptoms of pancreatitis were similar to those of peritoneal dialysis-associated peritonitis. Further difficulties in diagnosis were due to unreliability of serum amylase levels and "routine" ultrasound examinations in suggesting the presence of pancreatitis. Computerized tomography performed in three patients showed enlarged, edematous pancreata with large extrapancreatic fluid collections in all cases. Two patients died, one directly due to complications of pancreatitis. One patient was changed to hemodialysis and showed clinical and radiologic resolution of his pancreatitis. One patient remains on peritoneal dialysis but has now had four attacks of acute pancreatitis. No patient had classic risk factors for development of pancreatitis. Review of patient histories showed no common historical factors except for renal failure itself, peritoneal dialysis, peritonitis, catheter surgery, and hypoproteinemia. It is possible that metabolic abnormalities related to absorption of glucose and buffer from dialysate or absorption of a toxic substance present in dialysate, bags, or tubing can cause pancreatitis in patients on peritoneal dialysis. We feel that a diagnosis of pancreatitis should be considered when peritoneal dialysis patients present with abdominal pain, particularly if peritoneal fluid cultures are negative or if patients with positive cultures do not have prompt resolution of symptoms with appropriate antibiotic therapy.

  18. Simulation-based evaluation of the resolution and quantitative accuracy of temperature-modulated fluorescence tomography.

    PubMed

    Lin, Yuting; Nouizi, Farouk; Kwong, Tiffany C; Gulsen, Gultekin

    2015-09-01

    Conventional fluorescence tomography (FT) can recover the distribution of fluorescent agents within a highly scattering medium. However, poor spatial resolution remains its foremost limitation. Previously, we introduced a new fluorescence imaging technique termed "temperature-modulated fluorescence tomography" (TM-FT), which provides high-resolution images of fluorophore distribution. TM-FT is a multimodality technique that combines fluorescence imaging with focused ultrasound to locate thermo-sensitive fluorescence probes using a priori spatial information to drastically improve the resolution of conventional FT. In this paper, we present an extensive simulation study to evaluate the performance of the TM-FT technique on complex phantoms with multiple fluorescent targets of various sizes located at different depths. In addition, the performance of the TM-FT is tested in the presence of background fluorescence. The results obtained using our new method are systematically compared with those obtained with the conventional FT. Overall, TM-FT provides higher resolution and superior quantitative accuracy, making it an ideal candidate for in vivo preclinical and clinical imaging. For example, a 4 mm diameter inclusion positioned in the middle of a synthetic slab geometry phantom (D:40  mm×W:100  mm) is recovered as an elongated object in the conventional FT (x=4.5  mm; y=10.4  mm), while TM-FT recovers it successfully in both directions (x=3.8  mm; y=4.6  mm). As a result, the quantitative accuracy of the TM-FT is superior because it recovers the concentration of the agent with a 22% error, which is in contrast with the 83% error of the conventional FT.

  19. Zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography.

    PubMed

    Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo

    2012-10-01

    We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.

  20. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  1. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  2. Computed Tomography Studies of Lung Mechanics

    PubMed Central

    Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.

    2005-01-01

    The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757

  3. In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages.

    PubMed

    Kim, Chulhong; Cho, Eun Chul; Chen, Jingyi; Song, Kwang Hyun; Au, Leslie; Favazza, Christopher; Zhang, Qiang; Cobley, Claire M; Gao, Feng; Xia, Younan; Wang, Lihong V

    2010-08-24

    Early diagnosis, accurate staging, and image-guided resection of melanomas remain crucial clinical objectives for improving patient survival and treatment outcomes. Conventional techniques cannot meet this demand because of the low sensitivity, low specificity, poor spatial resolution, shallow penetration, and/or ionizing radiation. Here we overcome such limitations by combining high-resolution photoacoustic tomography (PAT) with extraordinarily optical absorbing gold nanocages (AuNCs). When bioconjugated with [Nle(4),D-Phe(7)]-alpha-melanocyte-stimulating hormone, the AuNCs can serve as a novel contrast agent for in vivo molecular PAT of melanomas with both exquisite sensitivity and high specificity. The bioconjugated AuNCs enhanced contrast approximately 300% more than the control, PEGylated AuNCs. The in vivo PAT quantification of the amount of AuNCs accumulated in melanomas was further validated with inductively coupled plasma mass spectrometry (ICP-MS).

  4. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    PubMed Central

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.

    2013-01-01

    Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

  5. Seismic Tomography and the Development of a State Velocity Profile

    NASA Astrophysics Data System (ADS)

    Marsh, S. J.; Nakata, N.

    2017-12-01

    Earthquakes have been a growing concern in the State of Oklahoma in the last few years and as a result, accurate earthquake location is of utmost importance. This means using a high resolution velocity model with both lateral and vertical variations. Velocity data is determined using ambient noise seismic interferometry and tomography. Passive seismic data was acquired from multiple IRIS networks over the span of eight years (2009-2016) and filtered for earthquake removal to obtain the background ambient noise profile for the state. Seismic Interferometry is applied to simulate ray paths between stations, this is done with each possible station pair for highest resolution. Finally the method of seismic tomography is used to extract the velocity data and develop the state velocity map. The final velocity profile will be a compilation of different network analyses due to changing station availability from year to year. North-Central Oklahoma has a dense seismic network and has been operating for the past few years. The seismic stations are located here because this is the most seismically active region. Other parts of the state have not had consistent coverage from year to year, and as such a reliable and high resolution velocity profile cannot be determined from this network. However, the Transportable Array (TA) passed through Oklahoma in 2014 and provided a much wider and evenly spaced coverage. The goal of this study is to ultimately combine these two arrays over time, and provide a high quality velocity profile for the State of Oklahoma.

  6. High-resolution Surface Analysis by Microarea Auger Spectroscopy: Computerization and Characterization

    NASA Technical Reports Server (NTRS)

    Browning, R.

    1986-01-01

    A custom scanning Auger electron microscope (SAM) capable of introducing a 3-5 keV electron beam of several nA into a 30 nm diameter sample area was fitted with a sample introduction system and was fully computerized to be used for materials science research. The method of multispectral Auger imaging was devised and implemented. The instrument was applied to various problems in materials science, including the study of the fiber/matrix interface in a SiC reinforced titanium alloy, the study of SiC whiskers in Al alloy 2124 (in cooperation with NASA-Langley), the study of NiCrAl superalloys (in collaboration with NASA-Lewis), the study of zircalloy specimens (in collaboration with Stanford University), and the microstructure of sintered SiC specimens (in collaboration with NASA-Lewis). The report contains a number of manuscripts submitted for publication on these subjects.

  7. Entropic Comparison of Atomic-Resolution Electron Tomography of Crystals and Amorphous Materials.

    PubMed

    Collins, S M; Leary, R K; Midgley, P A; Tovey, R; Benning, M; Schönlieb, C-B; Rez, P; Treacy, M M J

    2017-10-20

    Electron tomography bears promise for widespread determination of the three-dimensional arrangement of atoms in solids. However, it remains unclear whether methods successful for crystals are optimal for amorphous solids. Here, we explore the relative difficulty encountered in atomic-resolution tomography of crystalline and amorphous nanoparticles. We define an informational entropy to reveal the inherent importance of low-entropy zone-axis projections in the reconstruction of crystals. In turn, we propose considerations for optimal sampling for tomography of ordered and disordered materials.

  8. Role of endoscopic ultrasonography in the loco-regional staging of patients with rectal cancer

    PubMed Central

    Marone, Pietro; de Bellis, Mario; D’Angelo, Valentina; Delrio, Paolo; Passananti, Valentina; Di Girolamo, Elena; Rossi, Giovanni Battista; Rega, Daniela; Tracey, Maura Claire; Tempesta, Alfonso Mario

    2015-01-01

    The prognosis of rectal cancer (RC) is strictly related to both T and N stage of the disease at the time of diagnosis. RC staging is crucial for choosing the best multimodal therapy: patients with high risk locally advanced RC (LARC) undergo surgery after neoadjuvant chemotherapy and radiotherapy (NAT); those with low risk LARC are operated on after a preoperative short-course radiation therapy; finally, surgery alone is recommended only for early RC. Several imaging methods are used for staging patients with RC: computerized tomography, magnetic resonance imaging, positron emission tomography, and endoscopic ultrasound (EUS). EUS is highly accurate for the loco-regional staging of RC, since it is capable to evaluate precisely the mural infiltration of the tumor (T), especially in early RC. On the other hand, EUS is less accurate in restaging RC after NAT and before surgery. Finally, EUS is indicated for follow-up of patients operated on for RC, where there is a need for the surveillance of the anastomosis. The aim of this review is to highlight the impact of EUS on the management of patients with RC, evaluating its role in both preoperative staging and follow-up of patients after surgery. PMID:26140096

  9. Design and testing of prototype handheld scanning probes for optical coherence tomography

    PubMed Central

    Demian, Dorin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-01-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic—for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat—in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. PMID:25107512

  10. Design and testing of prototype handheld scanning probes for optical coherence tomography.

    PubMed

    Demian, Dorin; Duma, Virgil-Florin; Sinescu, Cosmin; Negrutiu, Meda Lavinia; Cernat, Ramona; Topala, Florin Ionel; Hutiu, Gheorghe; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-08-01

    Three simple and low-cost configurations of handheld scanning probes for optical coherence tomography have been developed. Their design and testing for dentistry applications are presented. The first two configurations were built exclusively from available off-the-shelf optomechanical components, which, to the best of our knowledge, are the first designs of this type. The third configuration includes these components in an optimized and ergonomic probe. All the designs are presented in detail to allow for their duplication in any laboratory with a minimum effort, for applications that range from educational to high-end clinical investigations. Requirements that have to be fulfilled to achieve configurations which are reliable, ergonomic-for clinical environments, and easy to build are presented. While a range of applications is possible for the prototypes developed, in this study the handheld probes are tested ex vivo with a spectral domain optical coherence tomography system built in-house, for dental constructs. A previous testing with a swept source optical coherence tomography system has also been performed both in vivo and ex vivo for ear, nose, and throat-in a medical environment. The applications use the capability of optical coherence tomography to achieve real-time, high-resolution, non-contact, and non-destructive interferometric investigations with micrometer resolutions and millimeter penetration depth inside the sample. In this study, testing the quality of the material of one of the most used types of dental prosthesis, metalo-ceramic is thus demonstrated. © IMechE 2014.

  11. Nonlinear optical THz generation and sensing applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2012-03-01

    We have suggested a wide range of real-life applications using novel terahertz imaging techniques. A high-resolution terahertz tomography was demonstrated by ultra short terahertz pulses using optical fiber and a nonlinear organic crystal. We also report on the thickness measurement of very thin films using high-sensitivity metal mesh filter. Further we have succeeded in a non-destructive inspection that can monitor the soot distribution in the ceramic filter using millimeter-to-terahertz wave computed tomography. These techniques are directly applicable to the non-destructive testing in industries.

  12. Cone-beam micro computed tomography dedicated to the breast.

    PubMed

    Sarno, Antonio; Mettivier, Giovanni; Di Lillo, Francesca; Cesarelli, Mario; Bifulco, Paolo; Russo, Paolo

    2016-12-01

    We developed a scanner for micro computed tomography dedicated to the breast (BµCT) with a high resolution flat-panel detector and a microfocus X-ray tube. We evaluated the system spatial resolution via the 3D modulation transfer function (MTF). In addition to conventional absorption-based X-ray imaging, such a prototype showed capabilities for propagation-based phase-contrast and related edge enhancement effects in 3D imaging. The system limiting spatial resolution is 6.2mm -1 (MTF at 10%) in the vertical direction and 3.8mm -1 in the radial direction, values which compare favorably with the spatial resolution reached by mini focus breast CT scanners of other groups. The BµCT scanner was able to detect both microcalcification clusters and masses in an anthropomorphic breast phantom at a dose comparable to that of two-view mammography. The use of a breast holder is proposed in order to have 1-2min long scan times without breast motion artifacts. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Using sparse regularization for multi-resolution tomography of the ionosphere

    NASA Astrophysics Data System (ADS)

    Panicciari, T.; Smith, N. D.; Mitchell, C. N.; Da Dalt, F.; Spencer, P. S. J.

    2015-10-01

    Computerized ionospheric tomography (CIT) is a technique that allows reconstructing the state of the ionosphere in terms of electron content from a set of slant total electron content (STEC) measurements. It is usually denoted as an inverse problem. In this experiment, the measurements are considered coming from the phase of the GPS signal and, therefore, affected by bias. For this reason the STEC cannot be considered in absolute terms but rather in relative terms. Measurements are collected from receivers not evenly distributed in space and together with limitations such as angle and density of the observations, they are the cause of instability in the operation of inversion. Furthermore, the ionosphere is a dynamic medium whose processes are continuously changing in time and space. This can affect CIT by limiting the accuracy in resolving structures and the processes that describe the ionosphere. Some inversion techniques are based on ℓ2 minimization algorithms (i.e. Tikhonov regularization) and a standard approach is implemented here using spherical harmonics as a reference to compare the new method. A new approach is proposed for CIT that aims to permit sparsity in the reconstruction coefficients by using wavelet basis functions. It is based on the ℓ1 minimization technique and wavelet basis functions due to their properties of compact representation. The ℓ1 minimization is selected because it can optimize the result with an uneven distribution of observations by exploiting the localization property of wavelets. Also illustrated is how the inter-frequency biases on the STEC are calibrated within the operation of inversion, and this is used as a way for evaluating the accuracy of the method. The technique is demonstrated using a simulation, showing the advantage of ℓ1 minimization to estimate the coefficients over the ℓ2 minimization. This is in particular true for an uneven observation geometry and especially for multi-resolution CIT.

  14. Improved Visualization of Glaucomatous Retinal Damage Using High-speed Ultrahigh-Resolution Optical Coherence Tomography

    PubMed Central

    Mumcuoglu, Tarkan; Wollstein, Gadi; Wojtkowski, Maciej; Kagemann, Larry; Ishikawa, Hiroshi; Gabriele, Michelle L.; Srinivasan, Vivek; Fujimoto, James G.; Duker, Jay S.; Schuman, Joel S.

    2009-01-01

    Purpose To test if improving optical coherence tomography (OCT) resolution and scanning speed improves the visualization of glaucomatous structural changes as compared with conventional OCT. Design Prospective observational case series. Participants Healthy and glaucomatous subjects in various stages of disease. Methods Subjects were scanned at a single visit with commercially available OCT (StratusOCT) and high-speed ultrahigh-resolution (hsUHR) OCT. The prototype hsUHR OCT had an axial resolution of 3.4 μm (3 times higher than StratusOCT), with an A-scan rate of 24 000 hertz (60 times faster than StratusOCT). The fast scanning rate allowed the acquisition of novel scanning patterns such as raster scanning, which provided dense coverage of the retina and optic nerve head. Main Outcome Measures Discrimination of retinal tissue layers and detailed visualization of retinal structures. Results High-speed UHR OCT provided a marked improvement in tissue visualization as compared with StratusOCT. This allowed the identification of numerous retinal layers, including the ganglion cell layer, which is specifically prone to glaucomatous damage. Fast scanning and the enhanced A-scan registration properties of hsUHR OCT provided maps of the macula and optic nerve head with unprecedented detail, including en face OCT fundus images and retinal nerve fiber layer thickness maps. Conclusion High-speed UHR OCT improves visualization of the tissues relevant to the detection and management of glaucoma. PMID:17884170

  15. Improvement of resolution in full-view linear-array photoacoustic computed tomography using a novel adaptive weighting method

    NASA Astrophysics Data System (ADS)

    Omidi, Parsa; Diop, Mamadou; Carson, Jeffrey; Nasiriavanaki, Mohammadreza

    2017-03-01

    Linear-array-based photoacoustic computed tomography is a popular methodology for deep and high resolution imaging. However, issues such as phase aberration, side-lobe effects, and propagation limitations deteriorate the resolution. The effect of phase aberration due to acoustic attenuation and constant assumption of the speed of sound (SoS) can be reduced by applying an adaptive weighting method such as the coherence factor (CF). Utilizing an adaptive beamforming algorithm such as the minimum variance (MV) can improve the resolution at the focal point by eliminating the side-lobes. Moreover, invisibility of directional objects emitting parallel to the detection plane, such as vessels and other absorbing structures stretched in the direction perpendicular to the detection plane can degrade resolution. In this study, we propose a full-view array level weighting algorithm in which different weighs are assigned to different positions of the linear array based on an orientation algorithm which uses the histogram of oriented gradient (HOG). Simulation results obtained from a synthetic phantom show the superior performance of the proposed method over the existing reconstruction methods.

  16. 3.0Tesla magnetic resonance angiography (MRA) for comprehensive renal evaluation of living renal donors: pilot study with computerized tomography angiography (CTA) comparison.

    PubMed

    Gulati, Mittul; Dermendjian, Harout; Gómez, Ana M; Tan, Nelly; Margolis, Daniel J; Lu, David S; Gritsch, H Albin; Raman, Steven S

    2016-01-01

    Most living related donor (LRD) kidneys are harvested laparoscopically. Renal vascular anatomy helps determine donor suitability for laparoscopic nephrectomy. Computed tomography angiography (CTA) is the current gold standard for preoperative imaging; magnetic resonance angiography (MRA) offers advantages including lack of ionizing radiation and lower incidence of contrast reactions. We evaluated 3.0T MRA for assessing renal anatomy of LRDs. Thirty consecutive LRDs underwent CTA followed by 3.0T MRA. Data points included number and branching of vessels, incidental findings, and urothelial opacification. Studies were individually evaluated by three readers blinded to patient data. Studies were reevaluated in consensus with discrepancies revealed, and final consensus results were labeled "truth". Compared with consensus "truth", both computed tomography (CT) and magnetic resonance imaging were highly accurate for assessment of arterial and venous anatomy, although CT was superior for detection of late venous confluence as well as detection of renal stones. Both modalities were comparable in opacification of lower ureters and bladder; MRA underperformed CTA for opacification of upper urinary tracts. 3.0T MRA enabled excellent detection of comprehensive renal anatomy compared to CTA in LRDs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography

    PubMed Central

    Wang, Lihong V.

    2004-01-01

    This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709

  18. Cognitive impairment in systemic lupus erythematosus women with elevated autoantibodies and normal single photon emission computerized tomography.

    PubMed

    Peretti, Charles-Siegfried; Peretti, Charles Roger; Kozora, Elizabeth; Papathanassiou, Dimitri; Chouinard, Virginie-Anne; Chouinard, Guy

    2012-01-01

    Systemic lupus erythematosus (SLE) is known to induce psychiatric disorders, from psychoses to maladaptive coping. Brain autoantibodies were proposed to explain SLE neuropsychiatric disorders and found to be elevated before the onset of clinical symptoms. We assessed cognition in Caucasian SLE women with elevated autoantibodies without overt neuropsychiatric syndromes, in conjunction with single photon emission computerized tomography (SPECT). 31 women meeting SLE criteria of the American College of Rheumatology (ACR) were included. Patients who met the ACR neuropsychiatric definition were excluded. Matched controls were 23 healthy women from the Champagne-Ardenne region, France. Participants completed neuropsychological and autoantibodies measurements, and 19 completed SPECT. 61% (19/31) of women with SLE and 53% (9/17) of those with normal SPECT had significant global cognitive impairment defined as 4 T-scores <40 in cognitive tests, compared to 0% (0/23) of controls. SLE women also had significantly greater cognitive dysfunction (mean T-score) on the Wechsler Adult Intelligence Scale (WAIS) visual backspan, Trail Making Test A and B, WAIS Digit Symbol Substitution Test and Stroop Interference, compared to controls. Elevated antinuclear antibody correlated with impairment in the WAIS visual span, WAIS visual backspan, and cancellation task; elevated anti-double-stranded DNA antibody and anticardiolipin correlated respectively with impairment in the Trail Making Test A and WAIS auditive backspan. Two SLE women had abnormal SPECT. A high prevalence of cognitive deficits was found in Caucasian SLE women compared to normal women, which included impairment in cognitive domains important for daily activities. Elevated autoantibodies tended to correlate with cognitive dysfunction. Copyright © 2012 S. Karger AG, Basel.

  19. Combining ultrasonography and noncontrast helical computerized tomography to evaluate Holmium laser lithotripsy

    PubMed Central

    Mi, Jia; Li, Jie; Zhang, Qinglu; Wang, Xing; Liu, Hongyu; Cao, Yanlu; Liu, Xiaoyan; Sun, Xiao; Shang, Mengmeng; Liu, Qing

    2016-01-01

    Abstract The purpose of the study was to establish a mathematical model for correlating the combination of ultrasonography and noncontrast helical computerized tomography (NCHCT) with the total energy of Holmium laser lithotripsy. In this study, from March 2013 to February 2014, 180 patients with single urinary calculus were examined using ultrasonography and NCHCT before Holmium laser lithotripsy. The calculus location and size, acoustic shadowing (AS) level, twinkling artifact intensity (TAI), and CT value were all documented. The total energy of lithotripsy (TEL) and the calculus composition were also recorded postoperatively. Data were analyzed using Spearman's rank correlation coefficient, with the SPSS 17.0 software package. Multiple linear regression was also used for further statistical analysis. A significant difference in the TEL was observed between renal calculi and ureteral calculi (r = –0.565, P < 0.001), and there was a strong correlation between the calculus size and the TEL (r = 0.675, P < 0.001). The difference in the TEL between the calculi with and without AS was highly significant (r = 0.325, P < 0.001). The CT value of the calculi was significantly correlated with the TEL (r = 0.386, P < 0.001). A correlation between the TAI and TEL was also observed (r = 0.391, P < 0.001). Multiple linear regression analysis revealed that the location, size, and TAI of the calculi were related to the TEL, and the location and size were statistically significant predictors (adjusted r2 = 0.498, P < 0.001). A mathematical model correlating the combination of ultrasonography and NCHCT with TEL was established; this model may provide a foundation to guide the use of energy in Holmium laser lithotripsy. The TEL can be estimated by the location, size, and TAI of the calculus. PMID:27930563

  20. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  1. Use of Cone Beam Computed Tomography in Endodontics

    PubMed Central

    Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.

    2009-01-01

    Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362

  2. Adaptive-optics optical coherence tomography processing using a graphics processing unit.

    PubMed

    Shafer, Brandon A; Kriske, Jeffery E; Kocaoglu, Omer P; Turner, Timothy L; Liu, Zhuolin; Lee, John Jaehwan; Miller, Donald T

    2014-01-01

    Graphics processing units are increasingly being used for scientific computing for their powerful parallel processing abilities, and moderate price compared to super computers and computing grids. In this paper we have used a general purpose graphics processing unit to process adaptive-optics optical coherence tomography (AOOCT) images in real time. Increasing the processing speed of AOOCT is an essential step in moving the super high resolution technology closer to clinical viability.

  3. Seismic Tomography of the Arabian-Eurasian Collision Zone and Surrounding Areas

    DTIC Science & Technology

    2010-05-20

    zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of the subducted Neotethys...We first obtain Pn and Sn velocities using local and regional arrival time data. Second, we obtain the 3-D crustal P and S velocity models...teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models

  4. Tutorial on photoacoustic tomography

    PubMed Central

    Zhou, Yong; Yao, Junjie; Wang, Lihong V.

    2016-01-01

    Abstract. Photoacoustic tomography (PAT) has become one of the fastest growing fields in biomedical optics. Unlike pure optical imaging, such as confocal microscopy and two-photon microscopy, PAT employs acoustic detection to image optical absorption contrast with high-resolution deep into scattering tissue. So far, PAT has been widely used for multiscale anatomical, functional, and molecular imaging of biological tissues. We focus on PAT’s basic principles, major implementations, imaging contrasts, and recent applications. PMID:27086868

  5. Abbreviated injury scale scoring in traffic fatalities: comparison of computerized tomography and autopsy.

    PubMed

    Leth, Peter Mygind; Ibsen, Marlene

    2010-06-01

    The purpose of this investigation is to evaluate the value of postmortem computerized tomography (CT) for Abbreviated Injury Scale (AIS) scoring and Injury Severity Scoring (ISS) of traffic fatalities. This is a prospective investigation of a consecutive series of 52 traffic fatalities from Southern Denmark that were CT scanned and autopsied. The AIS and ISS scores based on CT and autopsy (AU) were registered in a computer database and compared. Kappa values for reproducibility of AIS-severity scores and ISS scores were calculated. On an average, there was a 94% agreement between AU and CT in detecting the presence or absence of lesions in the various anatomic regions, and the severity scores were the same in 90% of all cases (range, 75-100%). When different severity scoring was obtained, CT detected more lesions with a high severity score in the facial skeleton, pelvis, and extremities, whereas AU detected more lesions with high scores in the soft tissues (especially in the aorta), cranium, and ribs. The kappa value for reproducibility of AIS scores confirmed that the agreement between the two methods was good. The lowest kappa values (>0.6) were found for the facial skeleton, cerebellum, meninges, neck organs, lungs, kidneys, and gastrointestinal tract. In these areas, the kappa value provided moderate agreement between CT and AU. For all other areas, there was a substantial agreement between the two methods. The ISS scores obtained by CT and by AU were calculated and were found to be with no or moderate variation in 85%. Rupture of the aorta was often overlooked by CT, resulting in too low ISS scoring. The most precise postmortem AIS and ISS scorings of traffic fatalities was obtained by a combination of AU and CT. If it is not possible to perform an AU, then CT may be used as an acceptable alternative for AIS scoring. We have identified one important obstacle for postmortem ISS scoring, namely that aorta ruptures are not easily detected by post mortem CT.

  6. Accelerated high-resolution photoacoustic tomography via compressed sensing

    NASA Astrophysics Data System (ADS)

    Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward

    2016-12-01

    Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.

  7. A computerized tomography system for transcranial ultrasound imaging.

    PubMed

    Tang, Sai Chun; Clement, Gregory T

    Hardware for tomographic imaging presents both challenge and opportunity for simplification when compared with traditional pulse-echo imaging systems. Specifically, point diffraction tomography does not require simultaneous powering of elements, in theory allowing just a single transmit channel and a single receive channel to be coupled with a switching or multiplexing network. In our ongoing work on transcranial imaging, we have developed a 512-channel system designed to transmit and/or receive a high voltage signal from/to arbitrary elements of an imaging array. The overall design follows a hierarchy of modules including a software interface, microcontroller, pulse generator, pulse amplifier, high-voltage power converter, switching mother board, switching daughter board, receiver amplifier, analog-to-digital converter, peak detector, memory, and USB communication. Two pulse amplifiers are included, each capable of producing up to 400Vpp via power MOSFETS. Switching is based around mechanical relays that allow passage of 200V, while still achieving switching times of under 2ms, with an operating frequency ranging from below 100kHz to 10MHz. The system is demonstrated through ex vivo human skulls using 1MHz transducers. The overall system design is applicable to planned human studies in transcranial image acquisition, and may have additional tomographic applications for other materials necessitating a high signal output.

  8. A close-range photogrammetric technique for mapping neotectonic features in trenches

    USGS Publications Warehouse

    Fairer, G.M.; Whitney, J.W.; Coe, J.A.

    1989-01-01

    Close-range photogrammetric techniques and newly available computerized plotting equipment were used to map exploratory trench walls that expose Quaternary faults in the vicinity of Yucca Mountain, Nevada. Small-scale structural, lithologic, and stratigraphic features can be rapidly mapped by the photogrammetric method. This method is more accurate and significantly more rapid than conventional trench-mapping methods, and the analytical plotter is capable of producing cartographic definition of high resolution when detailed trench maps are necessary. -from Authors

  9. Cryo-scanning transmission electron tomography of vitrified cells.

    PubMed

    Wolf, Sharon Grayer; Houben, Lothar; Elbaum, Michael

    2014-04-01

    Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography.

  10. Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries

    PubMed Central

    Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk

    2013-01-01

    Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452

  11. Computational high-resolution optical imaging of the living human retina

    NASA Astrophysics Data System (ADS)

    Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.

    2015-07-01

    High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.

  12. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    NASA Astrophysics Data System (ADS)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  13. Multiscale 3D virtual dissections of 100-million-year-old flowers using X-ray synchrotron micro- and nanotomography.

    PubMed

    Moreau, Jean-David; Cloetens, Peter; Gomez, Bernard; Daviero-Gomez, Véronique; Néraudeau, Didier; Lafford, Tamzin A; Tafforeau, Paul

    2014-02-01

    A multiscale approach combining phase-contrast X-ray micro- and nanotomography is applied for imaging a Cretaceous fossil inflorescence in the resolution range from 0.75 μm to 50 nm. The wide range of scale views provides three-dimensional reconstructions from the external gross morphology of the inflorescence fragment to the finest exine sculptures of in situ pollen. This approach enables most of the characteristics usually observed under light microscopy, or with low magnification under scanning and transmission electron microscopy, to be obtained nondestructively. In contrast to previous tomography studies of fossil and extant flowers that used resolutions down to the micron range, we used voxels with a 50 nm side in local tomography scans. This high level of resolution enables systematic affinities of fossil flowers to be established without breaking or slicing specimens.

  14. Microstructural abnormalities in MEWDS demonstrated by ultrahigh resolution optical coherence tomography.

    PubMed

    Nguyen, My Hanh T; Witkin, Andre J; Reichel, Elias; Ko, Tony H; Fujimoto, James G; Schuman, Joel S; Duker, Jay S

    2007-01-01

    Histopathological studies of acute multiple evanescent white dot syndrome (MEWDS) have not been reported because of the transient and benign nature of the disease. Ultrahigh resolution optical coherence tomography (UHR-OCT), capable of high resolution in vivo imaging, offers a unique opportunity to visualize retinal microstructure in the disease. UHR-OCT images of the maculae of five patients with MEWDS were obtained and analyzed. Diagnosis was based on clinical presentation, examination, visual field testing, and angiography. UHR-OCT revealed disturbances in the photoreceptor inner/outer segment junction (IS/OS) in each of the five patients (six eyes) with MEWDS. In addition, thinning of the outer nuclear layer was seen in the case of recurrent MEWDS, suggesting that repeated episodes of MEWDS may result in photoreceptor atrophy. Subtle disruptions of the photoreceptor IS/OS are demonstrated in all eyes affected by MEWDS. UHR-OCT may be a useful adjunct to diagnosis and monitoring of MEWDS.

  15. Hydraulic Tomography in Fractured Sedimentary Rocks to Estimate High-Resolution 3-D Distribution of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Patterson, J.; Johnson, C. D.

    2016-12-01

    Hydraulic tomography was performed in a 100 m2 by 20 m thick volume of contaminated fractured mudstones at the former Naval Air Warfare Center (NAWC) in the Newark Basin, New Jersey, with the objective of estimating the detailed distribution of hydraulic conductivity (K). Characterizing the fine-scale K variability is important for designing effective remediation strategies in complex geologic settings such as fractured rock. In the tomography experiment, packers isolated two to six intervals in each of seven boreholes in the volume of investigation, and fiber-optic pressure transducers enabled collection of high-resolution drawdown observations. A hydraulic tomography dataset was obtained by conducting multiple aquifer tests in which a given isolated well interval was pumped and drawdown was monitored in all other intervals. The collective data from all tests display a wide range of behavior indicative of highly heterogeneous K within the tested volume, such as: drawdown curves for different intervals crossing one another on drawdown-time plots; unique drawdown curve shapes for certain intervals; and intervals with negligible drawdown adjacent to intervals with large drawdown. Tomographic inversion of data from 15 tests conducted in the first field season focused on estimating the K distribution at a scale of 1 m3 over approximately 25% of the investigated volume, where observation density was greatest. The estimated K field is consistent with prior geologic, geophysical, and hydraulic information, including: highly variable K within bedding-plane-parting fractures that are the primary flow and transport paths at NAWC, connected high-K features perpendicular to bedding, and a spatially heterogeneous distribution of low-K rock matrix and closed fractures. Subsequent tomographic testing was conducted in the second field season, with the region of high observation density expanded to cover a greater volume of the wellfield.

  16. A graphics-oriented personal computer-based microscope charting system for neuroanatomical and neurochemical studies.

    PubMed

    Tourtellotte, W G; Lawrence, D T; Getting, P A; Van Hoesen, G W

    1989-07-01

    This report describes a computerized microscope charting system based on the IBM personal computer or compatible. Stepping motors are used to control the movement of the microscope stage and to encode its position by hand manipulation of a joystick. Tissue section contours and the location of cells labeled with various compounds are stored by the computer, plotted at any magnification and manipulated into composites created from several charted sections. The system has many advantages: (1) it is based on an industry standardized computer that is affordable and familiar; (2) compact and commercially available stepping motor microprocessors control the stage movement. These controllers increase reliability, simplify implementation, and increase efficiency by relieving the computer of time consuming control tasks; (3) the system has an interactive graphics interface allowing the operator to view the image during data collection. Regions of the graphics display can be enlarged during the charting process to provide higher resolution and increased accuracy; (4) finally, the digitized data are stored at 0.5 micron resolution and can be routed directly to a multi-pen plotter or exported to a computer-aided design (CAD) program to generate a publication-quality montage composed of several computerized chartings. The system provides a useful tool for the acquisition and qualitative analysis of data representing stained cells or chemical markers in tissue. The modular design, together with data storage at high resolution, allows for potential analytical enhancements involving planimetric, stereologic and 3-D serial section reconstruction.

  17. Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms

    NASA Astrophysics Data System (ADS)

    Mohan, K. Aditya

    2017-10-01

    4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.

  18. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  19. CMT for materials science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, J.

    This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less

  20. Heidelberg Retina Tomography Analysis in Optic Disks with Anatomic Particularities

    PubMed Central

    Alexandrescu, C; Pascu, R; Ilinca, R; Popescu, V; Ciuluvica, R; Voinea, L; Celea, C

    2010-01-01

    Due to its objectivity, reproducibility and predictive value confirmed by many large scale statistical clinical studies, Heidelberg Retina Tomography has become one of the most used computerized image analysis of the optic disc in glaucoma. It has been signaled, though, that the diagnostic value of Moorfieds Regression Analyses and Glaucoma Probability Score decreases when analyzing optic discs with extreme sizes. The number of false positive results increases in cases of megalopapilllae and the number of false negative results increases in cases of small size optic discs. The present paper is a review of the aspects one should take into account when analyzing a HRT result of an optic disc with anatomic particularities. PMID:21254731

  1. Test target for characterizing 3D resolution of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  2. Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Zhao, Dapeng; Huang, Zhouchuan; Xu, Mingjie; Wang, Liangshu; Nishizono, Yukihisa; Inakura, Hirohito

    2018-05-01

    A high-resolution model of three-dimensional (3-D) P-wave velocity (Vp) tomography of the crust in the source area of the 2016 Kumamoto earthquake (M 7.3) in West Japan is determined using a large number of arrival times of first P-waves and reflected P-waves from the Moho discontinuity (PmP). The PmP data are collected from original seismograms of the Kumamoto aftershocks and other local crustal events in Kyushu. Detailed resolution tests show that the addition of the PmP data can significantly improve the resolution of the crustal tomography, especially that of the lower crust. Our results show that significant low-velocity (low-V) anomalies exist in the entire crust beneath the active arc volcanoes, which may reflect the pathway of arc magmas. The 2016 Kumamoto earthquake occurred at the edge of a small low-V zone in the upper crust. A significant low-V anomaly is revealed in the lower crust beneath the source zone, which may reflect the arc magma and fluids ascending from the mantle wedge. These results suggest that the rupture nucleation of the 2016 Kumamoto earthquake was affected by fluids and arc magma.

  3. X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Xiao, Xianghui; Fusseis, Florian; De Carlo, Francesco

    2012-10-01

    State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies.

  4. Lung cancer disparities and African-Americans.

    PubMed

    Sin, Mo-Kyung

    2017-07-01

    African-Americans, as historically disadvantaged minorities, have more advanced stages of cancer when diagnosed, lower survival rates, and lower rates of accessing timely care than do Caucasians. Lung cancer incidence and mortality, in particular, are high among African-Americans. The U.S. Preventive Services Task Force recently released an evidence-based lung cancer screening technology called low-dose computerized tomography. High-risk African-Americans might benefit greatly from such screening but not many are aware of this technology. Public health nurses can play a key role in increasing awareness of the technology among African-American communities and encouraging qualified African-Americans to obtain screening. This study discusses issues with lung cancer and smoking among African-Americans, a recently released evidence-based lung cancer screening technology, and implications for public health nurses to enhance uptake of the new screening technology among high-risk African-Americans. © 2017 Wiley Periodicals, Inc.

  5. Virtual Reality Therapy for the Treatment of Alcohol Dependence: A Preliminary Investigation With Positron Emission Tomography/Computerized Tomography.

    PubMed

    Son, Ji Hyun; Lee, Sang Hoon; Seok, Ju Won; Kee, Baik Seok; Lee, Hyun Woong; Kim, Hyung Joon; Lee, Tae Kyung; Han, Doug Hyun

    2015-07-01

    Virtual reality therapy (VRT) uses multimodal stimulation that includes visual, auditory, olfactory, and gustatory stimuli. The aim of this study was to assess the effectiveness of VRT in treating subjects with alcohol dependence (AD) by evaluating changes in brain metabolism. The VRT protocol consisted of three steps: relaxation, presentation of a high-risk situation, and presentation of an aversive situation. Twelve alcohol-dependent subjects underwent 10 sessions of VRT. The alcohol-dependent subjects were assessed with 18F-fluorodeoxyglucose positron emission tomography images before and after VRT, whereas the control group underwent imaging according to the same protocol only at baseline. Compared with the healthy control group, AD subjects showed higher metabolism in the right lentiform nucleus and right temporal lobe (BA20) at baseline (P(FDR < .05) = .026). In addition, the metabolism in the left anterior cingulate was lower in subjects with AD (P(uncorr) = .001). After VRT, alcohol-dependent subjects showed decreased brain metabolism in the right lentiform nucleus (P(FDR < .05) = .026) and right temporal lobe (BA38, P(FDR < .05) = .032) relative to that at baseline. Our results suggest a neurobiological imbalance, notably, a high sensitivity to stimuli, in the limbic system in subjects with AD. Furthermore, we determined that metabolism decreased in the basal ganglia after VRT, which may explain the limbic-regulated responses of reward and regulation. Therefore, we tentatively recommend VRT to treat AD through its regulating effect on limbic circuits.

  6. Instrumentation of Molecular Imaging on Site-Specific Targeting Fluorescent Peptide for Early Detection of Breast Cancer

    NASA Astrophysics Data System (ADS)

    Yu, Ping; Ma, Lixin

    2012-02-01

    In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.

  7. Hybrid setup for micro- and nano-computed tomography in the hard X-ray range

    NASA Astrophysics Data System (ADS)

    Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon

    2017-12-01

    With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.

  8. Imaging of cellular spread on a three-dimensional scaffold by means of a novel cell-labeling technique for high-resolution computed tomography.

    PubMed

    Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph

    2012-03-01

    Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.

  9. Ultra-high resolution, polarization sensitive transversal optical coherence tomography for structural analysis and strain mapping

    NASA Astrophysics Data System (ADS)

    Wiesauer, Karin; Pircher, Michael; Goetzinger, Erich; Hitzenberger, Christoph K.; Engelke, Rainer; Ahrens, Gisela; Pfeiffer, Karl; Ostrzinski, Ute; Gruetzner, Gabi; Oster, Reinhold; Stifter, David

    2006-02-01

    Optical coherence tomography (OCT) is a contactless and non-invasive technique nearly exclusively applied for bio-medical imaging of tissues. Besides the internal structure, additionally strains within the sample can be mapped when OCT is performed in a polarization sensitive (PS) way. In this work, we demonstrate the benefits of PS-OCT imaging for non-biological applications. We have developed the OCT technique beyond the state-of-the-art: based on transversal ultra-high resolution (UHR-)OCT, where an axial resolution below 2 μm within materials is obtained using a femtosecond laser as light source, we have modified the setup for polarization sensitive measurements (transversal UHR-PS-OCT). We perform structural analysis and strain mapping for different types of samples: for a highly strained elastomer specimen we demonstrate the necessity of UHR-imaging. Furthermore, we investigate epoxy waveguide structures, photoresist moulds for the fabrication of micro-electromechanical parts (MEMS), and the glass-fibre composite outer shell of helicopter rotor blades where cracks are present. For these examples, transversal scanning UHR-PS-OCT is shown to provide important information about the structural properties and the strain distribution within the samples.

  10. A multiresolution approach to iterative reconstruction algorithms in X-ray computed tomography.

    PubMed

    De Witte, Yoni; Vlassenbroeck, Jelle; Van Hoorebeke, Luc

    2010-09-01

    In computed tomography, the application of iterative reconstruction methods in practical situations is impeded by their high computational demands. Especially in high resolution X-ray computed tomography, where reconstruction volumes contain a high number of volume elements (several giga voxels), this computational burden prevents their actual breakthrough. Besides the large amount of calculations, iterative algorithms require the entire volume to be kept in memory during reconstruction, which quickly becomes cumbersome for large data sets. To overcome this obstacle, we present a novel multiresolution reconstruction, which greatly reduces the required amount of memory without significantly affecting the reconstructed image quality. It is shown that, combined with an efficient implementation on a graphical processing unit, the multiresolution approach enables the application of iterative algorithms in the reconstruction of large volumes at an acceptable speed using only limited resources.

  11. High resolution spectroscopic optical coherence tomography in the 900-1100 nm wavelength range

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Povazay, Boris; Apolonski, Alexander A.; Unterhuber, Angelika; Hermann, Boris; Sattmann, Harald; Russell, Phillip S. J.; Krausz, Ferenc; Fercher, Adolf F.; Drexler, Wolfgang

    2002-06-01

    We demonstrate for the first time optical coherence tomography (OCT) in the 900-1100 nm wavelength range. A photonic crystal fiber (PCF) in combination with a sub-15fs Ti:sapphire laser is used to produce an emission spectrum with an optical bandwidth of 35 nm centered at ~1070 nm. Coupling the light from the PCF based source to an optimized free space OCT system results in ~15 micrometers axial resolution in air, corresponding to ~10 micrometers in biological tissue. The near infrared wavelength range around 1100 nm is very attractive for high resolution ophthalmologic OCT imaging of the anterior and posterior eye segment with enhanced penetration. The emission spectrum of the PCF based light source can also be reshaped and tuned to cover the wavelength region around 950-970 nm, where water absorption has a local peak. Therefore, the OCT system described in this paper can also be used for spatially resolved water absorption measurements in non-transparent biological tissue. A preliminary qualitative spectroscopic Oct measurement in D2O and H2 O phantoms is described in this paper.

  12. Enhancing sensitivity of high resolution optical coherence tomography using an optional spectrally encoded extended source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Wang, Xianghong; Liu, Linbo

    2016-03-01

    High-resolution optical coherence tomography (OCT) is of critical importance to disease diagnosis because it is capable of providing detailed microstructural information of the biological tissues. However, a compromise usually has to be made between its spatial resolutions and sensitivity due to the suboptimal spectral response of the system components, such as the linear camera, the dispersion grating, and the focusing lenses, etc. In this study, we demonstrate an OCT system that achieves both high spatial resolutions and enhanced sensitivity through utilizing a spectrally encoded source. The system achieves a lateral resolution of 3.1 μm and an axial resolution of 2.3 μm in air; when with a simple dispersive prism placed in the infinity space of the sample arm optics, the illumination beam on the sample is transformed into a line source with a visual angle of 10.3 mrad. Such an extended source technique allows a ~4 times larger maximum permissible exposure (MPE) than its point source counterpart, which thus improves the system sensitivity by ~6dB. In addition, the dispersive prism can be conveniently switched to a reflector. Such flexibility helps increase the penetration depth of the system without increasing the complexity of the current point source devices. We conducted experiments to characterize the system's imaging capability using the human fingertip in vivo and the swine eye optic never disc ex vivo. The higher penetration depth of such a system over the conventional point source OCT system is also demonstrated in these two tissues.

  13. Quantitative observation of tracer transport with high-resolution PET

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna

    2016-04-01

    Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes, like conservative flow, reative transport, and diffusion (Kulenkampff et al, 2015). Such experimental data are complementary to the outcome of model simulations based upon structural μCT-images. The PET-data can be evaluated with respect to specific process parameters, like effective volume and flow velocity distribution. They can further serve as a basis for establishing intermediate-scale simulation models which directly incorporate the observed specific response functions, without requiring modeling on the pore scale at the highest possible spatial resolution. Kulenkampff, J., Gründig, M., Richter, M., Wolf, M., Dietzel, O.: First applications of a small-animal-PET scanner for process monitoring in rocks and soils. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03727, 2008a. Kulenkampff, J., Gründig, M., Richter, M., and Enzmann, F.: Evaluation of positron emission tomography for visualisation of migration processes in geomaterials, Physics and Chemistry of the Earth, 33, 937-942, 2008b. Kulenkampff, J., Gruendig, M., Zakhnini, A., Gerasch, R., and Lippmann-Pipke, J.: Process tomography of diffusion with PET for evaluating anisotropy and heterogeneity, Clay Minerals, accepted 2015, 2015.

  14. Characterization of dynamic physiology of the bladder by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian

    2012-03-01

    Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.

  15. Radiation dose to the eyes and parotids during CT of the sinuses.

    PubMed

    Bassim, Marc K; Ebert, Charles S; Sit, Roger C; Senior, Brent A

    2005-10-01

    To measure the radiation dose to the lens and parotid during high-resolution computed tomography scan of the sinuses. Nine cadaver heads were scanned in the axial plane by means of a fine-cut (0.75 mm) protocol. Images were then reconstructed in the coronal and sagittal planes for use with the image guidance software. Thermoluminescent dosimeters were taped over the eyes and parotids and used to measure the radiation dose absorbed by these organs. Doses obtained were 29.5 mGy for the lens and around 30 mGy for the parotid. The measured doses are lower than the reported acute thresholds of 500-2000 mGy for lens opacities and well below the threshold of 2500 mGy for damage to the parotid. These results demonstrate minimal risk from radiation through the use of high-resolution computed tomography and support the use of such a protocol for diagnosis and preoperative planning.

  16. High-resolution computed tomography findings in eight patients with hantavirus pulmonary syndrome.

    PubMed

    Barbosa, Diego de Lacerda; Hochhegger, Bruno; Souza, Arthur Soares; Zanetti, Gláucia; Escuissato, Dante Luiz; Meirelles, Gustavo de Souza Portes; Funari, Marcelo Buarque de Gusmão; Marchiori, Edson

    2017-01-01

    The purpose of this study was to describe the high-resolution computed tomography (HRCT) findings in patients with hantavirus pulmonary syndrome (HPS). We retrospectively reviewed HRCT findings from eight cases of HPS. All patients were men, aged 19-70 (mean, 41.7) years. Diagnoses were established by serological test (enzyme-linked immunosorbent assay) in all patients. Two chest radiologists analyzed the images and reached decisions by consensus. The predominant HRCT findings were ground-glass opacities (GGOs) and smooth inter- and intralobular septal thickening, found in all eight cases; however, the crazy-paving pattern was found in only three cases. Pleural effusion and peribronchovascular thickening were observed in five patients. The abnormalities were bilateral in all patients. The predominant HRCT findings in patients with HPS were GGOs and smooth inter- and intralobular septal thickening, which probably correlate with the histopathologic findings of pulmonary edema.

  17. Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation

    NASA Astrophysics Data System (ADS)

    Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.

    2017-06-01

    Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.

  18. Wide-field optical coherence tomography based microangiography for retinal imaging

    PubMed Central

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N.; Wang, Ruikang K.

    2016-01-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice. PMID:26912261

  19. Wide-field optical coherence tomography based microangiography for retinal imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  20. Wide-field optical coherence tomography based microangiography for retinal imaging.

    PubMed

    Zhang, Qinqin; Lee, Cecilia S; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L; Munsen, Richard; Kinyoun, James; Johnstone, Murray; Van Gelder, Russell N; Wang, Ruikang K

    2016-02-25

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

Top